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ABSTRACT	OF	THE	DISSERTATION	
	

Single	cell	sequencing	analysis	reveals	mammary	epithelial	cell	diversity	and	regulation	
by	

Nicholas	Pervolarakis	
Doctor	of	Philosophy	in	Mathematical,	Computational,	and	Systems	Biology	

University	of	California,	Irvine,	2021	
Assistant	Professor	Kai	Kessenbrock,	Chair	

	
	

The	mammary	epithelial	system	is	a	heterogeneous	cellular	compartment	thought	
to	be	comprised	of	two	major	cell	types,	basal	and	luminal	respectively,	that	are	in	flux	
throughout	an	individual’s	life	and	require	a	stem	cell	compartment	to	maintain.	Questions	
remain	about	the	origin	and	nature	of	these	stem	cells,	and	how	the	constituent	
components	of	the	gland	interplay	in	order	to	maintain	a	healthy	tissue	or	ultimately	
responds	to	cancer	present.	Through	the	usage	of	single	cell	microfluidic	based	
experimental	tools,	we	have	been	able	to	explore	this	relevant	heterogeneity	with	single	
cell	RNA	sequencing	(scRNA-seq)	in	human	and	mouse	and	single	cell	ATAC	sequencing	
(scATAC-seq)	in	mouse.	We	highlight	in	both	species	the	different	basal	and	luminal	cell	
types,	with	the	stratification	of	the	luminal	compartment	into	hormone	response	or	
secretory	cells.	Additional	relevant	cell	states	present	within	the	secretory	luminal	cell	type	
manifest	with	tissue	relevant	consequences.	Using	scRNA-seq	in	human	we	present	three	
major	epithelial	cell	types,	one	basal	and	two	distinct	luminal	referred	to	as	L1	(Secretory)	
and	L2	(Hormone	Responsive).	After	applying	pseudotemporal	reconstruction,	it	is	shown	
that	the	three	populations	interconnect	in	a	developmental	lineage	with	basal	cells	
branching	into	the	two	luminal	end	points.	In	mouse,	a	similar	three	epithelial	cell	type	
structure	is	highlighted	in	the	mammary	gland	with	both	scRNA-seq	and	scATAC-seq	in	an	
integrated	analysis.	The	secretory	luminal	compartment	is	additionally	stratified	into	
luminal	progenitor	and	lactation-committed	progenitors,	with	distinct	regulatory	features	
underpinning	each	cell	state	through	both	cis	and	trans	acting	elements.	Taken	together,	
these	results	emphasize	newly	discovered	heterogeneity	in	the	luminal	compartment	of	the	
mammary	gland,	challenging	of	previously	held	definitions	of	the	mammary	stem	cell,	and	
the	underlying	regulation	of	cell	state.	
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Chapter	1:	INTRODUCTION	

Background	and	Motivation	

Breast	cancer	is	currently	the	most	commonly	diagnosed	form	of	cancer	in	the	

united	states,	and	possesses	the	second	highest	death	rate	caused	by	the	cancer	behind	

only	lung/bronchus	cancers	[https://gis.cdc.gov/Cancer/USCS/DataViz.html].	The	disease	

itself	is	not	a	monolith,	with	a	multitude	of	molecular	subtypes	that	have	been	previously	

described	through	pathological	and	expression	based	studies1.	These	subtypes,	namely	

Luminal	A,	Luminal	B,	Her2,	Triple	Negative	(basal	like),	Normal-like,	and	Claudin-low,	

exhibit	distinct	expression	patterns	and	regulation	of	hormone	receptors2.	Although	

prognosis	remains	good	for	patients	that	are	identified	at	an	early	stage,	late	stage	survival	

is	still	quite	poor.	This	serves	to	highlight	the	critical	importance	of	early	detection	for	

patients,	and	with	that	comes	the	need	for	a	better	understanding	of	what	cell	types	and	

states	are	represented	in	the	epithelial	compartment	of	the	mammary	gland.	A	thorough	

description	of	the	heterogeneity	present	in	adult	epithelial	tissue,	the	cells	that	ultimately	

develop	into	breast	cancer,	under	normal	homeostasis	will	provide	stronger	insight	into	

what	trajectory	that	cell	takes	as	it	develops	into	a	disease	state.	With	this,	scientist	and	

clinicians	can	better	stratify	patients	and	give	better	risk	assessments	throughout	the	

lifetime	of	an	individual.		

The	human	mammary	gland	is	comprised	of	a	series	of	branching	epithelial	ducts	

and	lobular	structures	embedded	in	an	adipose	rich	tissue3.	These	epithelial	structures	

exist	as	a	bilayer	with	the	inner	component	of	cells	referred	to	as	luminal	cells	which	

surround	the	lumen	of	the	ducts	and	lobules	and	perform	a	secretory	function	in	the	

lactating	gland,	and	basal	cells	which	in	turn	surround	these	luminal	cells	and	have	a	
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contractive	ability	thought	to	aide	in	the	flow	of	milk	through	the	tissue4.	The	mammary	

gland	is	one	that	even	in	adulthood	requires	the	ability	to	undergo	drastic	changes	in	

structure	and	function,	in	the	cases	of	natural	monthly	hormonal	cycling,	pregnancy,	

lactation,	and	subsequent	involution.	It	is	thought	that	this	plasticity	is	achievable	through	

the	existence	of	an	epithelial	stem	cell	compartment	that	is	constantly	maintained	in	the	

gland,	referred	to	as	the	mammary	stem	cell	(MaSC).	Many	studies	have	been	performed	in	

the	hopes	of	identifying	the	MaSC	in	human,	but	many	cell	surface	marker	based	flow	

cytometry	assays	have	fallen	short	in	clearly	defining	the	ultimate	cells	of	interest5.		

The	mouse	mammary	gland	has	also	served	as	a	critical	model	system	for	the	study	

of	the	dynamics	of	the	tissue,	and	how	the	scientific	community	can	better	test	hypotheses	

that	working	with	human	samples	cannot	achieve.	In	mouse,	studies	with	the	intent	of	

finding	the	MaSC	have	been	more	fruitful,	where	through	the	transplantation	of	specific	

individual	cells	of	the	basal	lineage	researchers	have	been	able	to	reconstitute	a	fully	

branched	gland6,7.	In	the	first	of	these	two	landmark	studies,	researchers	transplanted	

isolated	single	Lin-	CD29hi	CD24+	cells	into	cleared	mammary	fat	pads	and	were	able	to	

show	the	development	of	a	healthy,	fully	functional	gland	that	can	produce	milk.	In	the	

second	by	Stingl	et	al.,	individual	transplanted	mouse	basal	cells	marked	by	CD45-Ter119-

CD31-CD140a-CD24medCD49fhigh	were	isolated	through	limiting	dilutions.	These	mammary	

repopulating	units	(MRU)	were	able	to	reconstruct	a	fully	branch	gland	when	injected	into	

a	cleared	mouse	mammary	fat	pad	at	a	1	in	60	or	1	and	90	acceptance	rate	depending	on	

the	mouse	model	in	question.	This	research	is	not	without	debate,	and	it	has	to	be	

acknowledged	that	there	is	a	difference	between	the	capacity	that	a	cell	has	in	the	context	

of	a	cleared	gland	to	reconstitute	its	structure	vs	in	an	adult	tissue	where	the	gland	is	
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already	established	and	does	not	have	to	serve	such	a	plastic	role.	In	addition	to	

transplantation	assays,	lineage	tracing	experiments	in	mouse	have	been	employed	to	

further	investigate	the	potential	of	different	cell	lineages	and	their	role	in	the	developing	

gland8.	Specifically,	Wang	et	al.	expand	upon	the	isolation	strategy	described	above	for	

transplantation	assays	and	further	delineate	the	Lin-	CD29hi	CD24+	compartment	into	

Procr+	and	Procr-	cell	populations.	The	Procr+	population	is	then	interrogated	using	a	

tdTomato+	/	GFP+	reporter	line	specific	to	the	basal	lineage	that	shows	the	multipotent	

potential	of	basal	cells	in	this	compartment	both	through	development	as	well	as	adult	

maintenance	of	the	gland.	More	recently,	a	comprehensive	review	paper	by	Fu	et	al.	2020	

highlighted	the	state	of	the	field	in	terms	of	mammary	gland	differentiation	hierarchy9.	

Focusing	on	their	summarized	discussion	of	the	progenitor	cells	in	the	adult	gland,	one	

result	that	seemed	consistent	from	previous	studies	is	the	notion	of	the	accumulation	of		

CD61+	positive	cells	(thought	to	be	indicative	of	the	luminal	progenitor	population)	when	

factors	such	as	Gata3	and	Elf5	are	ablated	in	cells	and	then	permitted	to	reconstitute	the	

gland9.	Taken	together,	these	results	still	do	not	paint	the	full	picture	of	the	epithelial	cell	

hierarchy	in	the	mouse	gland,	let	alone	human.		

An	underlying	problem	of	these	studies	is	the	inability	to	survey	the	full	spectrum	of	

cell	types	and	states	present	in	the	gland	in	an	unbiased	fashion.	Different	types	of	cells	in	

one	study	as	separated	by	FACS	markers	x,	y,	and	z	might	be	lumped	in	the	next	studies	

gating	strategy.	For	expression	based	assays	like	microarray	or	RNA-seq,	you	are	limited	by	

the	purity	of	your	sort	to	analyze	what	cell	types	are	expressing	what	genes	relevant	to	the	

biological	question	and	important	differences	can	and	will	be	lost	through	the	blending	of	

different	heterogeneous	signatures	present	in	the	underlying	cells	sampled	that	would	
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have	otherwise	offered	important	insight	and	hypotheses	to	test.	It	is	with	this	in	mind	that	

we	look	to	the	burgeoning	field	of	single	cell	based	genomic	assays	to	delve	deeper	into	the	

true	biology	at	play.	

WHY	SINGLE	CELL	OMICS	TECHNOLOGIES	ARE	THE	TOOL	FOR	THE	JOB	

Single	cell	based	omics	techniques	have	exploded	in	popularity	for	many	of	the	same	

reasons	that	we	tout	the	expansion	of	sequencing	in	general	and	its	similarly	profound	

reduction	in	cost	per	unit	of	information	generated.	We	stand	on	the	shoulders	of	many	

fields,	with	biochemistry,	molecular	biology,	material	science,	and	microfluidics	foremost	

among	them	that	contribute	to	what	is	possible	today.	The	two	modalities	that	have	lent	

themselves	best	to	single	cell	resolution	have	been	RNA-sequencing	(the	capture	and	

sequencing	of	mRNA	molecules	of	a	sample)10	and	ATAC-sequencing	(the	capture	and	

sequencing	of	regions	of	open	and	accessible	chromatin	within	the	cells	of	a	sample)11.	

Individually,	scRNA-seq	can	provide	a	snapshot	of	what	a	cell	is	“thinking”	by	capturing	the	

mRNA	that	is	actively	transcribed	and	ready	to	be	turned	into	protein	to	ultimately	

perform	the	functions	that	the	cell	needs12.	For	scATAC-seq,	a	snapshot	is	captured	of	what	

the	cell	has	the	potential	to	be	thinking	and	provide	insight	into	what	features	of	the	cells	

regulatory	machinery	are	at	work	in	the	cell	of	questions	current	state	such	as	

transcription	factor	binding	and	novel	enhancer	regions13.		

Combined	together	within	a	single	study,	these	tools	allow	for	the	gain	of	insight	not	

only	into	what	cell	types	and	states	are	present	in	a	sample	of	interest,	but	additionally	

learn	what	regulatory	underpinnings	that	better	explain	the	observations	made	at	the	

mRNA	level14–16.	Single	cell	omics	assays	create	the	opportunity	to	isolate	an	individual	cell	

and	perform	the	same	traditional	molecular	assays	thousands	of	times	over	for	any	sample	
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of	interest.	The	resultant	dataset	is	then	the	opportunity	for	the	direct	identification	of	

cellular	heterogeneity	within,	without	having	to	deal	with	complicated	and	limited	

deconvolution	algorithms	from	an	otherwise	bulk	dataset17.		

Single	cell	technologies	are	not	a	perfect	tool,	and	as	with	any	fledgling	technology,	

it	has	its	own	suite	of	caveats	associated	with	the	generation	and	analysis	of	its	data.	

Highlighted	in	Figure	1.1,	we	will	now	delve	into	greater	detail	regarding	single	cell	library	

preparation	and	experimental	design	considerations.		

CELL	DISSOCIATION	AND	SINGLE-CELL	PREPARATION		

The	process	of	single-cell	preparation	is	arguably	the	greatest	source	of	unwanted	

technical	variation	and	batch	effects	in	any	single-cell	study18.	Different	tissues	can	vary	

significantly	in	extracellular	matrix	(ECM)	composition,	cellularity,	and	stiffness,	and	

therefore	dissociation	protocols	must	be	optimized	for	the	specific	tissue	type	of	interest.	

Conventional	protocols	for	single-cell	preparation	typically	involve	the	following	steps:	(1)	

tissue	dissection,	(2)	mechanical	mincing,	(3)	enzymatic/proteolytic	ECM	breakdown	(e.g.,	

dispase,	collagenase,	trypsin)	often	accompanied	by	mechanical	agitation,	and	(4)	optional	

enrichment	for	cell	types	of	interest	by	flow	cytometry,	bead-based	immune-selection,	

differential	centrifugation,	or	sedimentation.	Each	step	can	affect	the	cells’	expression	

signatures,	and	should	therefore	be	carefully	optimized	to	introduce	the	least	artifact.	An	

optimal	tissue	dissociation	protocol	will	yield	as	many	viable	cells	as	possible	in	the	

shortest	possible	duration	without	preferentially	depleting	or	significantly	altering	the	

frequencies	of	certain	cell	types.		

Recent	advances	in	bioengineering	of	innovative	microfluidic	cell	dissociation	

devices19	have	the	potential	to	radically	change	the	way	tissue	samples	are	dissociated	into	



 

6 
 

single	cells,	while	avoiding	inter-assay	variation	due	to	human	handling	of	the	tissue.	

Several	microfluidic	devices	have	been	optimized	for	streamlined	tissue	digestion,	cell	

dissociation,	filtering,	and	polishing.	In	brief,	these	devices	were	designed	to	work	with	

tissue	sequentially	through	progressively	smaller	size	scales,	starting	from	tissue	specimen,	

through	cellular	aggregates	and	clusters,	and	finally	eluting	a	solution	containing	close	to	

100%	single	cells,	which	will	be	ideal	for	scRNAseq	applications.	In	addition,	new	semi-

automated	commercially	available	systems	can	help	streamline	tissue	dissociation	(e.g.,	

Miltenyi	gentleMACS).	These	devices	offer	tissue-type	specific	kits	that	may	allow	more	

reproducible,	time-saving	and	efficient	tissue	dissociation	and	single-cell	preparation20,21.	

Ultimately,	determining	a	“best	practices”	dissociation	strategy	through	heuristic	

optimization	will	be	critical	for	downstream	single-cell	library	quality.		

Cell	Type	Enrichment		

There	are	various	methods	for	isolating	specific	cell	populations	or	removal	of	

unwanted	populations	that	should	be	optimized	for	any	specific	tissues	type.	Manual	

isolation	utilizing	magnetic	beads	or	gradient	purification	are	potential	methods	for	

removal	of	unwanted	cells	such	as	dead	cells.	Flow	cytometry	is	a	widely	used,	high-

throughput	method	to	enrich	for	rare	cells	such	as	hematopoietic	stem	cells22,23.	However,	

these	methods	are	not	without	drawbacks,	since	they	can	introduce	artificial	stress	on	cells	

and	change	their	expression	profile24.	Methods	that	involve	antibody	binding	for	

purification	can	also	affect	the	cell	expression	profile	if	binding	of	the	antibodies	to	cell	

surface	molecules	induce	intracellular	signaling25,26.	Flow	cytometry-isolated	cells	are	

exposed	to	high	pressure	during	sorting	and	these	osmotic	and	pressure	changes	
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introduced	to	cells	during	cell	sorting	and	handling	can	induce	change	to	the	cell	

expression	profile	of	multiple	cell	types24,27,28.		

Quality	Control		

Due	to	the	high	cost	of	single-cell	sequencing	experiments,	careful	quality	control	

measurements	should	be	executed.	The	performance	of	alternative	protocols	can	be	

assessed	using	a	number	of	readouts.	A	useful	first	metric	can	be	acquired	using	imaging	of	

viability	such	as	using	the	Countess	platform	(Thermo	Fisher	Scientific).	Flow	cytometry	is	

particularly	valuable	to	measure	several	critical	metrics	simultaneously,	such	as	cell	

viability,	and	contamination	with	doublets	and	small	cell	clusters	which	can	confound	

single-cell	sequencing	results.	Flow	cytometry	can	also	be	used	to	evaluate	whether	cell	

populations	of	interest,	such	as	immune	cells,	stromal	fibroblasts,	or	stem	cell	populations,	

are	maintained	in	the	cell	preparation	and	in	the	appropriate	frequency.	Finally,	an	

additional	metric	on	RNA	quality	can	be	acquired	using	the	RNA	integrity	number	(RIN)	

method29.		

SINGLE-CELL	TRANSCRIPTOMIC	PLATFORM		

Protocols	for	transcriptome	analysis	have	advanced	rapidly,	resulting	in	several	

robust	methods	which	range	in	cell	and	mRNA	capture	strategy,	barcoding,	throughput,	

and	level	of	automation12,30.	Selection	of	the	optimal	approach	depends	largely	on	the	

research	question.	Recent	high-throughput	protocols	for	scRNAseq	have	dramatically	

increased	scalability	through	automation,	increasing	the	number	of	cells	that	can	be	

processed	simultaneously,	and	decreasing	reagent	cost	through	reaction	miniaturization.	

Using	microwell-based	(Cytoseq,	Wayfergen),	microfluidics-based	(Fluidigm	C1	HT),	or	

droplet-based	(inDrop,	Drop-seq,	and	10×	Chromium)	approaches,	hundreds	to	thousands	
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of	cells	can	be	captured	in	a	single	experiment31–35.	The	newest	of	these	protocols	utilize	

beads	functionalized	with	oligonucleotide	primers,	which	each	contain	a	universal	PCR	

priming	site,	a	cell-specific	barcode,	an	mRNA	capture	sequence,	and	Unique	Molecular	

Identifiers	(UMI).	Individual	cells	are	captured	in	wells	or	droplets	with	a	single	bead.	Cell-

specific	barcode	are	similar	within	a	droplet	but	unique	UMI	sequence	on	the	primer	allows	

for	individual	transcripts	within	a	cell	to	be	counted.	This	provides	a	quantitative	readout	

of	the	number	of	transcripts	of	each	gene	detected	in	a	cell,	thereby	reducing	the	effects	of	

amplification	duplicates	that	occur	with	earlier	technologies36,37.	High-throughput	3’	-end	

counting	approaches	have	several	important	limitations.	Since	only	the	3’	-end	of	each	

mRNA	are	sequenced,	differential	splicing	analyses	are	not	feasible12,34.	High-throughput	

approaches	typically	only	achieve	∼10%	transcriptome	coverage,	relative	to	∼40%	for	full-

length	scRNAseq	protocols	that	use	Switching	Mechanism	at	5’	End	of	RNA	Template	

(SMART)	chemistry38,39.	This	is	partly	due	to	lower	mRNA	capture	efficiency,	but	also	due	

to	lower	sequencing	depth.	Single-cell	qPCR	platforms	(e.g.,	Fluidigm	C1	and	Biomark)	

remain	superior	in	sensitivity	for	detecting	low-expressed	genes40.		

Protocols	for	processing	rare	cells	usually	involve	an	upstream	capture	step	by	flow	

cytometry	or	micromanipulation,	followed	by	dispensing	single	cells	into	microtubes	or	

microwell	plates.	Studies	investigating	rare	cell	populations	that	require	selection	via	

specific	markers	(e.g.,	adult	tissue	stem	cell	populations),	are	best	performed	using	these	

protocols.	Single-cell	libraries	are	prepared	using	SMART-based	chemistry,	which	utilizes	a	

template-switching	oligonucleotide	(TSO)38.	This	TSO	can	be	used	to	prime	off	of	the	

untemplated	nucleotides	added	by	the	reverse	transcriptase,	enabling	subsequent	PCR	

using	a	single	primer	and	capture	of	full	length	transcripts38,39.	cDNAs	are	then	amplified	by	
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PCR	and	libraries	are	prepared	for	sequencing	using	standard	protocols.	Although	there	

have	been	several	large	scale	projects	utilizing	these	protocols,	because	they	are	manual	in	

nature	and	utilize	larger	microliter	reaction	volumes,	they	limit	the	number	of	cells	that	can	

be	processed	at	reasonable	cost.	

Another	area	of	ongoing	debate	is	how	to	determine	how	many	cells	one	should	be	

analyzed	to	reach	sufficient	statistical	power.	Several	methods	have	been	developed	using	

power	analysis	statistics,	such	as	Scotty	or	web-based	tools	,	but	one	must	estimate	the	

number	and	expected	frequencies	of	cell	populations	present	in	the	sample,	and	such	

information	is	often	not	available.	Therefore,	these	decisions	are	usually	made	based	on	

logistical	restraints	(i.e.,	the	number	of	cells	available),	financial	considerations,	or	re-

iterative	experiments	where	an	initial	sample	of	cells	is	sequenced	to	get	a	sense	for	overall	

population	structure,	and	then	increasing	numbers	of	cells	are	sequenced	until	one	is	

satisfied	that	all	the	main	populations	have	been	identified.		

SINGLE	NUCLEI	ISOLATION	AND	SEQUENCING		

Single-cell	RNA	sequencing	methods	are	optimal	when	cells	can	be	harvested	intact	

and	viable41.	However,	certain	cell	types	(e.g.,	neurons,	adipocytes),	are	not	amenable	to	

standard	organ	dissociation	protocols,	since	enzymatic	and	mechanical	forces	easily	

disrupt	the	cytoplasmic	contents42.	In	these	cases,	an	option	could	be	to	isolate	intact	nuclei	

for	single-nucleus	RNAseq	(snRNAseq)41–46.	To	prepare	single	nuclei,	cells	are	lysed	with	

detergent	and	dounce	homogenized	to	expel	cytoplasmic	contents	and	nuclei	from	the	

cellular	membrane43,		which	may	avoid	transcriptomic	changes24.	Nuclei	can	then	be	

purified	by	flow	cytometry	or	gradient	centrifugation41,43,47.	When	cell-type	specific	nuclear	
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proteins	exist,	they	can	be	used	for	nuclei	isolation	from	specific	cell	types	using	antibody	

labeling42,45.		

Single-nucleus	RNAseq	(snRNAseq)	is	not	only	amenable	for	difficult	to	isolate	cell	

types,	but	can	also	be	used	for	archived	tissues	such	as	flash-frozen	clinical	samples.	

Individual	nuclei	isolated	from	frozen	adult	mouse	and	human	brain	tissues	have	been	

successfully	sequenced,	demonstrating	that	snRNAseq	has	sufficient	resolution	to	identify	

many	different	cell	types	from	frozen	and	post-mortem	tissue41.	With	the	rapid	

development	of	many	applications	for	snRNAseq,	nuclei	are	amenable	to	other	studies	not	

easily	done	by	scRNAseq.		

An	important	question	remains:	To	what	degree	is	the	nuclear	transcriptome	

representative	of	the	whole	cell?	Recent	studies	have	demonstrated	that	many	transcripts	

of	cell	http://scotty.genetics.utah.edu/	2http://satijalab.org/howmanycells	and	nucleus	

are	equally	represented	and	that	nuclear	RNA	represents	an	important	and	significant	

population	of	transcripts	that	contribute	greatly	to	the	overall	diversity	of	transcripts48,49.	

Comparative	studies	of	scRNAseq	and	snRNAseq	in	neural	progenitor	cells	have	also	

demonstrated	that	genes	are	expressed	in	equal	proportion	between	whole	cell	and	

nuclei41.	Nanogrid	single-cell	and	nuclei	RNA	sequencing	studies	in	the	same	breast	cancer	

lines	found	that	overall	copy	number,	expression	level,	and	abundance	had	a	high	(rs	=	

0.95)	Spearman’s	correlation50.	Similarly,	the	transcriptomes	of	single	cells	and	nuclei	of	

3T3	cells	have	also	demonstrated	high	correlation	(Pearson,	r	=	0.87)42.	Together	these	

results	suggest	that	nuclei	and	cells	have	highly	correlated	relative	gene	expression.		

Despite	the	similarities	between	single-cell	and	nuclei	transcriptomic	profiles	there	

remain	notable	differences.	Not	surprisingly,	nuclear	transcriptomes	are	enriched	for	
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several	types	of	nuclear	RNAs	(ncRNAs)41–44,50.	Since	ncRNAs	are	only	polyadenylated	in	

the	nucleus,	snRNAseq	provides	a	feasible	strategy	to	capture	the	heterogeneity	of	ncRNA	

transcription	in	single-cell	resolution44.	In	addition,	nuclear	transcriptomes	are	enriched	

for	lncRNAs	and	nuclear-function	genes50.	Another	difference	between	cell	and	nuclear	

RNAseq	is	the	higher	abundance	of	intronic	sequences	in	snRNAseq,	which	ranged	between	

10–40%	of	mapped	reads41,42,50.	These	features	need	to	be	accounted	for	when	comparing	

datasets	from	cellular	versus	nuclear	transcriptome	analyses.	In	conclusion,	snRNAseq	has	

emerged	as	a	promising	avenue	for	profiling	archived	samples	or	cell	types	that	are	hard	to	

viably	isolate	from	tissues.	

	

SINGLE-CELL	LIBRARY	SEQUENCING		

The	next	critical	part	of	designing	single-cell	workflows	is	to	align	the	analysis	

pipeline	with	the	respective	NGS	platform	and	sequencing	depth.	It	is	important	to	confirm	

that	the	chemistry	used	for	library	construction	is	compatible	with	the	sequencing	

technology.	Currently,	there	are	two	major	outputs	for	libraries	from	scRNAseq:	full-length	

transcript	or	3’	-end	counted	libraries,	which	each	require	different	read	depths51.	Full-

length	transcript	libraries	are	typically	sequenced	at	a	depth	of	106	reads	per	cell,	but	may	

still	yield	important	biological	information	at	as	low	as	5	×	104	reads	per	cell10.	For	specific	

applications	such	as	alternative	splicing	analysis	on	the	single-cell	level,	much	higher	

sequencing	depth	up	to	15–	25	×	106	reads	per	cell	is	necessary.	On	the	other	hand,	3’	-end	

counting	libraries	are	sequenced	at	much	lower	depth	of	around	104	or	105	reads	per	

cells51.	Reaching	the	optimal	sequencing	depth	can	be	an	iterative	process	and	may	require	



 

12 
 

multiple	rounds	of	optimization.	Sequencing	saturation	can	be	estimated	by	plotting	down-

sampled	sequencing	depth	in	mean	reads	per	cell	(e.g.,	10X	Genomics	Cell	Ranger).	

 
STUDY	DESIGN	AND	DATA	ANALYSIS		

In	the	following	section,	we	highlight	several	key	considerations	from	a	data	

analysis	perspective	for	adequately	designing	a	successful	scRNAseq	study.	As	mentioned,	

many	single-cell	technologies	can	be	greatly	affected	by	technical	variation,	and	without	

proper	study	design	the	results	can	be	difficult	to	interpret.	One	critical	aspect	of	this	is	the	

separation	of	batch	and	condition.	Batch	refers	to	a	library	that	was	singularly	generated	in	

a	contained	workflow	(i.e.,	harvesting	tissue	specimen,	disassociating	into	single-cell	

suspension,	and	generating	scRNAseq	library).	Condition	refers	to	a	biological	state	or	

experimental	treatment	that	is	being	analyzed	in	the	study.	Technical	variation	can	be	

difficult	to	separate	from	relevant	biological	variation	when	conditions	are	interrogated	

individually.	To	help	correct	for	this,	the	generation	of	replicates	(biological	or	technical)	

whenever	possible	is	strongly	recommended.		

In	addition	to	replicates,	an	option	is	to	mix	samples	and	conditions	within	a	batch,	

such	that	they	can	be	treated	without	confounding	each	other52.	One	example	is	the	

Demuxlet	workflow,	where	samples	from	genetically	distinct	individuals	can	be	processed	

within	the	same	library	generation	protocol	and	sequenced	together53.	Prior	to	library	

generation,	genotyping	of	distinct	samples	is	performed	and	subsequently	used	in	

conjunction	with	the	scRNAseq	library	to	demultiplex	the	mixed	cell	sample	into	the	

samples	of	origin.	In	situations	where	genetically	identical	samples	are	used,	or	genotypic	

data	is	not	readily	available,	cellular	hashing	can	be	employed54.	This	involves	oligo-tagged	

antibodies	specific	to	each	sample	in	the	study	and	then	pooling	and	generating	the	
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scRNAseq	library	from	the	sample	mixture.	The	antibodies	labeled	with	unique	barcodes	

can	be	traced	back	to	its	sample	of	origin54.		

Efforts	can	be	made	computationally	to	mitigate	batch-to	batch	variation.	Batch	

effects	are	not	unique	to	scRNAseq	data,	but	the	assumptions	made	by	correction	

algorithms	are	not	always	appropriate	for	the	bimodality	of	gene	expression	in	zero-

inflated	scRNAseq	data.	Here,	we	highlight	recent	analytical	frameworks	that	may	be	used	

to	correct	for	this	phenomenon.	A	recently	developed	approach	by	Haghverdi	et	al.	

(2018)55	builds	a	mixed	nearest	neighbor	model	for	cells	between	datasets	or	samples	that	

does	not	require	known	or	equal	proportions	of	cell	types	between	data	sets.	In	addition,	

the	widely	used	Seurat	pipeline	for	scRNAseq	analysis	has	implemented	a	workflow	to	

allow	for	not	only	multiple	batches	but	can	integrate	even	different	data	modalities	by	first	

learning	a	set	of	“anchors”	between	the	data	groupings	in	question	using	Canonical	

Correlation	Analysis	(CCA),	then	projecting	query	datasets	onto	a	reference	set	to	achieve	a	

coembedding	of	the	data	as	well	as	an	adjusted	gene	expression	matrix	of	the	features	used	

for	the	above	process56.	Finally,	the	single-cell	batch	correction	framework	MAST57	models	

the	positive	expression	mean	and	the	over-the-background	and	calculates	a	fraction	of	

detected	genes	per	cell	and	uses	this	as	a	covariate	that	is	independent	of	a	previously	

specified	control	set	of	genes.	Together,	these	methods	serve	as	recent	examples	to	handle	

batch-to-batch	variation	computationally,	resulting	in	improved	dimensionality	reduction	

and	clustering	for	meaningful	scRNAseq	data	analysis.	

Beyond	accounting	for	technical	variation,	a	common	question	that	researchers	

address	is	the	relatedness	of	described	cell	populations	through	the	lens	of	a	differentiation	

processes.	The	key	assumption	of	pipelines	that	seek	to	address	this	is	that	the	tissue	
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sample	analyzed	using	scRNAseq	contains	cell	types/states	that	represent	not	only	the	

ends	of	a	differentiation	process,	but	also	stem/progenitor	cells	and	transitional	cell	states	

along	the	path	of	differentiation.	Common	analysis	suites	that	seek	to	reconstruct	these	

differentiation	trajectories	are	Monocle58,	TSCAN59,	and	CellTree60.	Each	use	different	

methods,	but	their	goal	is	to	visualize	differentiation	trajectories	and	identify	expression	

signatures	that	change	through	pseudotime.	

CONCLUSION		

To	fully	harness	the	potential	of	single-cell	analysis	tools	to	decipher	complex	

biological	systems	on	the	level	of	individual	cells,	careful	study	design	and	rigorous	

optimization	of	every	step	along	the	experimental	procedure	are	mandatory.	Here,	we	

delineate	a	step-wise	experimental	approach	for	optimizing	tissue	handling,	cell	

dissociation	and	enrichment,	single-cell	platform	selection,	library	sequencing,	and	data	

analysis	for	designing	single-cell	workflows.	A	move	toward	standardized	and	automated	

processing	of	tissues	will	minimize	changes	introduced	by	tissue	handling	that	may	

obscure	biologically	relevant	transcriptomic	profiles.	For	tissues	that	are	problematic	to	

dissociate	into	high-quality	and	viable	single-cell	suspensions,	snRNAseq	offers	a	solution	

to	this	problem,	and	can	be	used	to	achieve	uniform	extraction	and	sequencing	of	multiple	

cell	types	for	cross	comparison.	Numerous	computational	frameworks	are	currently	

emerging	that	help	mitigate	batch	effects	to	separate	biological	variation	from	unwanted	

technical	variation.	
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FIGURE	1.1.	Overview	of	step-wise	approach	to	designing	single-cell	analysis	workflows.	RNA	integrity	number	(RIN);	Reads	per	
cell	(RPC).	

Portions	of	this	chapter	were	reprinted	and	adapted	with	permission	from:	

Nguyen,	Quy	H.,	et	al.	"Experimental	considerations	for	single-cell	RNA	sequencing	
approaches."	Frontiers	in	cell	and	developmental	biology	6	(2018):	108.	

KK	outlined	concept	and	overview	of	review.	QN,	NP,	and	KN	wrote	the	manuscript.	KK	and	
QN	designed	and	prepared	the	figures.	
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Chapter	2:	Profiling	human	breast	epithelial	cells	using	single	

cell	RNA	sequencing	identifies	cell	diversity	

	

Introduction	

Breast	cancer	is	a	highly	heterogeneous	disease	that	is	subtyped	based	on	tissue	

morphology	and	molecular	signatures2.	At	least	six	different	intrinsic	subtypes	of	breast	

cancers	have	been	established,	namely	luminal	A,	luminal	B,	HER2-enriched,	basal-like,	

normal	breast,	claudin-low1,	and	more	recently	up	to	ten	subtypes	have	been	described61.	

Each	subtype	is	speculated	to	arise	from	a	different	cell	of	origin62;	however,	gaps	in	our	

understanding	of	the	full	spectrum	of	cellular	heterogeneity	and	the	distinct	cell	types	that	

comprise	the	human	breast	epithelium	hinder	our	ability	to	investigate	their	roles	in	cancer	

initiation	and	progression.		

Breast	cancer	arises	from	the	breast	epithelium,	which	forms	a	ductal	network	

embedded	into	an	adipose	tissue	that	connects	the	nipple	through	collecting	ducts	to	an	

intricate	system	of	12–20	lobes,	which	are	the	milk	producing	structures	during	pregnancy	

and	lactation.	Throughout	the	duct	and	lobular	system,	the	breast	epithelium	is	composed	

of	two	known	cell	types,	an	inner	layer	of	secretory	luminal	cells	and	an	outer	layer	of	

basal/myoepithelial	cells.	A	series	of	recent	reports	have	indicated	that	further	

heterogeneity	exists	within	these	two	cell	layers	in	mice62.	Two	landmark	papers	published	

in	2006	identified	a	functionally	distinct	subpopulation	of	basal	epithelial	cells	that	harbors	

stem	cell	capacity	and	is	capable	of	reconstituting	a	fully	developed	mammary	epithelial	

network	when	transplanted	into	the	cleared	mammary	fat	pads	of	mice6,7.	Moreover,	a	
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subpopulation	of	luminal	progenitor	cells	identified	by	high	expression	of	KIT	as	well	as	a	

subpopulation	of	mature	luminal	cells	have	been	identified	using	flow	cytometry	(FACS)	

isolation	strategies63,64.	Interestingly,	based	on	comparative	bulk	expression	analyses,	

these	luminal	progenitors	may	have	increased	propensity	to	give	rise	to	triple	negative	

breast	cancers	in	patients	with	mutations	in	the	BRCA1	gene65.	It	remains	to	be	determined	

if	other	distinct	cell	types	exist	within	the	breast	epithelium	and	how	these	relate	to	the	

known	subtypes	of	breast	cancer.		

Advances	in	next	generation	sequencing	and	microfluidic	based	handling	of	cells	

and	reagents	now	enable	us	to	explore	cellular	heterogeneity	on	a	single	cell	level	and	

reconstruct	lineage	hierarchies	using	single	cell	mRNA	sequencing	(scRNAseq)10,66.	This	

approach	allows	an	unbiased	analysis	of	the	spectrum	of	heterogeneity	within	a	population	

of	cells,	since	it	utilizes	transcriptome	reconstruction	from	individual	cells.	scRNAseq	has	

been	successfully	applied	to	understand	the	complex	subpopulations	in	normal	tissues	

such	as	lung66	or	brain10	as	well	as	in	various	cancers	including	melanoma38,	

glioblastoma37,	and	within	circulating	tumor	cells	from	patients	with	pancreatic	cancer67.	

The	goal	of	the	present	study	is	to	generate	a	molecular	census	of	cell	types	and	

states	within	the	human	breast	epithelium	using	unbiased	scRNAseq.	Focusing	on	the	

breast	epithelium,	our	work	provides	a	critical	first	impetus	toward	generating	large-scale	

single	cell	atlases	of	the	tissues	comprising	the	human	body	as	part	of	the	international	

human	cell	atlas	initiative68.	This	molecular	census	can	shed	light	on	lineage	relationships	

and	differentiation	trajectories	in	the	human	system	and	how	it	relates	to	breast	cancer.	

Our	single-cell	transcriptome	analysis	provides	unprecedented	insights	into	the	spectrum	

of	cellular	heterogeneity	within	the	human	breast	epithelium	under	normal	homeostasis	
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and	will	serve	as	a	valuable	resource	to	understand	how	the	system	changes	during	early	

tumorigenesis	and	tumor	progression.	

Results	

scRNAseq	reveals	three	cell	types	in	the	breast	epithelium.		

We	collected	a	cohort	of	reduction	mammoplasties	from	age-	and	ethnicity-

matched,	post-pubertal	and	pre-menopausal	females,	and	performed	scRNAseq	on	purified	

breast	epithelial	cells,	which	were	isolated	from	surrounding	stromal	cells	using	flow	

cytometry	based	on	differential	expression	of	CD49f	and	EpCAM40.	Basal	and	luminal	cells	

were	separately	loaded	onto	the	Fluidigm	C1	microfluidics-enabled	scRNAseq	platform	

(Fig.	2.1a).	Capture	efficiency	was	monitored	by	microscopic	imaging	to	exclude	doublets	

and	debris	from	further	analysis.	We	used	13	C1	chips	in	total	to	capture	and	sequence	

transcriptomes	of	868	cells	from	three	human	individuals.	The	resulting	single	cell	cDNA	

libraries	were	sequenced	in	parallel	at	an	average	read	depth	of	1.6	M	reads	per	cell.	After	

removing	cells	with	less	than	900	genes	detected	and	additional	quality	control	filtering	

(see	Methods	section),	we	proceeded	to	analyze	703	single	cells	at	~4500	genes	detected	

on	average	per	cell,	where	the	gene	detection	range	was	comparable	between	basal	and	

luminal	cells.	

To	identify	the	main	cell	types	within	the	breast	epithelium	that	are	generalizable	

across	individuals,	we	performed	a	combined	analysis	of	all	cells	from	the	three	individuals	

using	the	recently	described	Seurat	pipeline12.	This	analysis	identified	three	very	distinct	

clusters	of	cells	(Fig.	2.1b),	indicating	that	the	breast	epithelium	is	composed	of	three	main	

cell	types.	We	then	explored	the	genes	that	are	significantly	up-regulated	within	each	

cluster	(Fig.	2.1c),	which	revealed	that	these	main	clusters	correspond	to	one	major	basal	
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(KRT14+;	AUC	=	0.83)	cell	type	and	two	luminal	cell	types	that	both	express	the	typical	

markers	KRT8	and	KRT18.	Importantly,	cells	representing	all	three	cell	types	were	detected	

in	each	of	the	three	individuals.	We	found	several	distinct	markers	for	these	luminal	cell	

types	such	as	SLPI	(AUC	=	0.89)	for	L1,	and	ANKRD30A	(AUC	=	0.81)	for	L2.	Comparing	

these	signatures	to	previously	published	microarray	expression	analyses	of	FACS-isolated	

human	breast	epithelial	cells65,69,	we	found	that	L1	corresponds	closely	to	the	

CD49f+/EpCAM+	population	designated	as	“luminal	progenitors,”	L2	resembles	the	CD49f	

−/EpCAM+	population	called	“mature	luminal,”	and	the	basal	cluster	matched	with	

CD49fhi/EpCAM−	“Basal/MaSC.”	Since	basal	cells	contain	a	subset	of	mammary	stem	cells	

(MaSCs)6–8,	we	examined	the	basal	cell	cluster	in	more	detail.	Particularly	intriguing	was	

the	observation	of	a	subset	with	increased	expression	of	mesenchymal	and	stem	cell	

markers	ZEB170	and	TCF4	(Fig.	2.1d).	Interestingly,	previous	work	established	a	direct	link	

between	mesenchymal	gene	expression	signatures	and	MaSC	capacity71,	suggesting	these	

ZEB1/TCF4-expressing	cells	may	represent	a	subset	of	basal	cells	with	increased	MaSC	

potential.	

Droplet-mediated	scRNAseq	reveals	subpopulation	diversity.		

To	determine	whether	additional	cellular	diversity	exists,	we	next	utilized	a	more	

scalable	droplet-mediated	scRNAseq	platform	(10x	Genomics	Chromium)35.	Here,	we	

focused	on	reduction	mammoplasty	samples	from	nulliparous	women	to	reduce	variability	

associated	with	pregnancy-related	changes	of	the	breast.	We	isolated	both	luminal	and	

basal	cells	together	(EpCAM+/CD49fhi/lo)	by	flow	cytometry	and	subjected	them	as	one	

sample	to	droplet-based	scRNAseq	targeting	on	average	5000		
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Fig.	2.1	Identification	of	three	major	epithelial	cell	types	and	their	markers	using	scRNAseq.	a	Overview	of	scRNAseq	approach	
using	primary	human	breast	tissue	samples	that	were	processed	into	single	cell	suspension,	followed	by	FACS	isolation	of	basal	(CD49f-
hi,	EPCAM+)	and	luminal	(CD49f+,	EPCAM-	hi),	and	scRNAseq	analysis	using	the	microfluidics-enabled	scRNAseq.	b	Combined	tSNE	
projection	of	cells	from	all	three	microfluidics-enabled	scRNAseq	datasets.	The	major	basal	cluster	is	highlighted	in	red;	Luminal1	(L1)	in	
green;	Luminal2	(L2)	in	blue.	c	Heatmap	displaying	the	scaled	expression	patterns	of	top	marker	genes	within	each	cell	type	with	
selected	marker	genes	highlighted;	yellow	indicating	high	expression	of	a	particular	gene,	and	purple	indicating	low	expression.	d	
Feature	plots	showing	the	scaled	expression	of	TCF4	and	ZEB1	marking	a	subpopulation	of	basal	cells	and	gene	plot	showing	co-	
expression	of	TCF4	and	ZEB1	in	the	same	cells.		
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cells	per	sample	(Fig.	2.2a).	We	sequenced	a	total	of	24,646	cells	from	four	individuals	

(Ind4-7)	at	an	average	~60,000	reads	per	cell.		

After	quality	control	filtering	to	remove	cells	with	low	gene	detection	(10%),	

detailed	clustering	analysis	of	the	first	individual	(Ind4)	using	Seurat	confirmed	the	

existence	of	three	main	epithelial	cell	types,	namely	Basal	(KRT14+),	Luminal1	(L1;	

KRT18+/SLPI+)	and	Luminal2	(L2;	KRT18+/ANKRD30A+)	(Fig.	2.2b).	These	analyses	also	

revealed	three	additional	small	clusters;	cluster	8	was	defined	by	stromal	marker	VIM	(P	<	

9.6	×	10−25);	cluster	9	showed	specific	expression	of	endothelial	marker	gene	ESAM	(P	<	4.1	

×	10−30);	and	cluster	10	included	a	small	number	of	dispersed	cells	most	likely	representing	

outliers.	We	concluded	that	these	clusters	(8–10)	were	of	non-epithelial	nature	and	

denoted	them	as	unclassified	(X)	in	further	analyses.		

Interestingly,	multiple	subclusters	emerged	within	each	of	the	main	epithelial	cell	

types	as	indicated	by	their	distinct	marker	gene	signatures	(Fig.	2.2c).	We	hypothesized	

that	the	main	islands	of	cells	(Basal,	L1,	L2)	represent	distinct	“cell	types”,	whereas	

subclusters	within	each	island	depict	“cell	states”	that	are	more	transient	over	time72.	

Within	basal	cells	we	detected	three	distinct	cell	states,	which	showed	specific	expression	

of	inflammatory	mediators	(IL24;	P	<	1.4	×	10−180;	Cluster	3),	markers	for	myoepithelial	cell	

function	(ACTA2;	P	<	7.4	×	10−292;	Cluster	4)	and	specific	epithelial	keratin	expression	

(KRT17;	P	<	1.6	×	10−38;	Cluster	5),	respectively.	ZEB1	and	TCF4,	which	marked	a	subset	of	

basal	cells	in	our	microfluidics-enabled	scRNAseq	analysis	(Fig.	2.1d),	were	lowly	detected	

and	therefore	not	interpretable	in	droplet-enabled	scRNAseq,	which	is	likely	due	to	lower	

coverage	compared	to	the	microfluidics-enabled	platform73.		
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Within	luminal	cell	type	L1	we	observed	three	distinct	cell	states	that	were	marked	

by	genes	associated	with	milk	production	(LTF;	P	<	8.4	×	10−270;	Cluster	1),	high	expression	

of	secretory	molecules	(SAA2;	P	<	2.2	×	10−90;	Cluster	0)	and	distinct	epithelial	keratin	

expression	(KRT23;	P	<	2.5	×	10−157;	Cluster	2).	The	second	luminal	cell	type	L2	harbored	

two	distinct	cell	states	that	were	marked	by	expression	of	hormone	responsive	genes	

(AGR2;	P	<	3.1	×	10−144;	Cluster	6)	and	specific	cell	surface	markers	(CD74;	P	<	2.9	×	10−121;	

Cluster	7).	We	next	performed	detailed	individual	Seurat	clustering	analyses	for	three	

additional	individual	datasets	from	nulliparous	women,	which	confirmed	many	of	the	

patterns	described	for	Ind4	(Fig.	2.2).	Like	Ind4,	the	other	individuals	possessed	three	main	

cell	clusters	clearly	corresponding	to	cell	types	Basal,	L1,	and	L2,	and	eight	to	ten	

subclusters	(Fig.	2.3a–c).	The	number	of	subclusters	per	cell	type	varied	across	the	

individuals	with	Ind5	comprising	five	Basal,	three	L1	and	one	L2	clusters,	Ind6	containing	

seven	Basal,	three	L1	and	one	L2	clusters,	and	Ind7	comprising	one	Basal,	three	L1	and	five	

L2	clusters	(Fig.	2.3a–c),	which	may	be	due	to	individual-to-individual	variation	or	

anatomical	location	of	the	surgical	specimens.		

To	determine	cell	states	that	are	generalizable	across	individuals,	we	developed	a	

comparative	approach	using	a	cell	scoring	method	adapted	from	recently	published	work38.	

Using	the	marker	gene	signatures	for	each	of	the	11	clusters	(0–10)	detected	in	Ind4	(Fig.	

2.2b,	c),	we	performed	pairwise	gene	scoring	analyses	to	find	matches	for	every	distinct	

cluster	identified	in	Ind5–7	(Fig.	2.3a–c).	Comparing	Ind4	to	Ind5–7		
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Fig.	2.2	High	throughput	droplet-mediated	scRNAseq	reveals	additional	epithelial	cell	states.	a	Overview	for	droplet-enabled	
scRNAseq	approach	as	described	above;	basal	and	luminal	epithelial	cells	were	sorted	together	and	subjected	to	combined	scRNAseq	
analysis	using	the	droplet-based	scRNAseq.	b	Data	from	individual	four	was	analyzed	using	Seurat	and	the	distinct	clusters	(0–10)	are	
displayed	in	tSNE	projection	with	selected	marker	gene	for	each	cluster,	and	main	epithelial	cell	types	(Basal,	L1,	L2)	are	outlined.	
Feature	plots	of	characteristic	markers	for	the	three	main	cell	types	are	shown	on	the	right	showing	expression	levels	as	gradient	of	
purple.	c	Heatmap	showing	the	top	ten	marker	genes	for	each	cluster	as	determined	by	Seurat	analysis	with	three	selected	genes	per	
cluster	highlighted	on	the	right.		 	
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Fig.	2.3.	Clustering	analysis	and	marker	gene	determination	for	individuals	5-7.	(a-c)	The	individual	data	matrices	for	Individual	5	
(a),	6	(b),	and	7	(c)	were	analyzed	using	Seurat	and	their	initial	cluster	determinations	are	displayed	using	tSNE	projection.	Feature	plots	
of	characteristic	markers	of	highlighting	the	three	main	cell	types	Basal,	L1	and	L2	are	shown.	Additional	less	frequent	non-epithelial	
populations	were	detected	in	some	individuals	and	were	designated	unclassified	(X).	Heatmaps	showing	the	top	10	marker	genes	of	each	
cluster	is	displayed	highlighting	selected	marker	genes	for	each	cluster.		
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showed	that	the	main	cell	types	(Basal,	L1,	L2)	readily	match	up	across	all	individuals	(Fig	

2.4a–c).	In	addition,	it	revealed	that	the	there	are	two	distinct	cell	states	present	within	L1	

(L1.1	and	L1.2)	that	emerge	in	all	four	individuals.	The	L2	population,	which	contained	two	

clusters	in	Ind4,	was	found	to	be	more	homogeneous,	and	therefore	these	clusters	were	

combined	to	a	single	L2	population.	Comparing	basal	subclusters	between	individuals	

suggested	that	there	are	at	least	two	generalizable	cell	states	within	basal	cells	(Fig	2.4a–c).	

To	further	explore	this,	we	performed	a	separate	Seurat	analysis	using	combined	basal	cells	

from	all	four	individuals	(Fig	2.5a).	Several	clusters	displayed	consistently	high	expression	

of	genes	associated	with	myoepithelial	cell	function	(e.g.,	ACTA2,	TGLN,	KRT14).	We	

therefore	generated	a	“myoepithelial	cell	signature”	gene	list	based	on	published	work74	to	

stratify	basal	cells	into	either	a	“Basal”	or	“Myoepithelial”	grouping	(Fig	2.5b,	c).	These	

results	allowed	us	to	include	all	individual-specific	clusters	into	the	final	cluster	

designations,	namely	Basal	(B),	Myoepithelial	(Myo),	Luminal1.1	(L1.1),	Luminal1.2	(L1.2),	

Luminal2	(L2),	and	the	small	Unclassified	(X)	as	summarized	in	Fig	2.5c.	These	

designations	were	used	to	perform	a	combined	Seurat	analysis	of	all	24,465	cells	from	four	

individuals	(Fig	2.4d),	which	enabled	us	to	determine	the	common	marker	genes	(e.g.,	B:	

APOD;	Myo:	TAGLN;	L1.1:	LTF;	L1.2:	CLDN4;	L2:	AGR2)	for	each	cell	state	that	are	

generalizable	across	all	four	individuals	(Fig	2.4e).		



 

26 
 

	

Fig	2.4	Combined	droplet	based	RNAseq	data	to	identify	generalizable	cell	types	and	states.	a–c	Heatmaps	showing	gene	scoring	
results	using	marker	genes	for	Ind4	clusters	(0–10;	on	bottom	of	heatmap)	in	all	clusters	from	Ind5	(a),	Ind6	(b),	and	Ind7	(c).	
Individual-specific	cluster	IDs	are	shown	in	different	colors	on	the	right	and	bottom,	and	cell	type	IDs	for	Basal	(b),	L1,	L2,	X	are	indicated	
on	for	every	cluster.	Data	shown	as	Z	scores	from	purple	(low)	to	yellow	(high).	Two	distinct	cell	states	L1.1	and	L1.2	were	found	within	
L1	in	all	pairwise	comparisons	as	highlighted	by	colored	boxes	on	heatmap.	d	Combined	tSNE	projection	of	all	individual	datasets	
(outlined)	is	shown	including	the	cell	state	identity	marked	by	different	colors.	e	Heatmap	showing	the	expression	pattern	of	the	top	ten	
markers	per	cell	state	with	selected	markers	indicated	(yellow	=	high	expression;	purple	=	low	expression).		
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Fig.	2.5.	Combined	basal	cell	only	analysis	and	ingenuity	pathway	analysis	(IPA).	(a)	Basal	cell	clusters	(KRT14+)	from	all	four	
droplet-enabled	scRNAseq	datasets	were	combined	and	analyzed	using	Seurat.	tSNE	projections	and	of	cells	belonging	to	the	basal	cell	
lineage	across	all	individuals	in	a	combined	analysis,	colored	by	cluster	determination	and	individual	library	source.	(b)	Violin	plots	
showing	the	gene	scoring	results	for	a	curated	Myoepithelial	gene	signature	was	used	to	stratify	regular	basal	cells	from	myoepithelial	
clusters(marked	by	#).	(c)	Summary	of	individual	cluster	matches	and	final	cluster	assignments	as	indicated	in	“Cell	State”	column.	Basal	
cell	populations	were	separately	analyzed	and	then	scored	using	a	myoepithelial	signature	gene	list,	resulting	in	the	final	cell	state	
determinations	of	Basal	(B),	Myoepithelial	(Myo),	Luminal1.1	(L1.1),	Luminal1.2	(L1.2),	Luminal2	(L2),	and	Unclassified	(X).	(d)	Heatmap	
showing	log-scaled	p-value	of	enrichment	for	IPA	annotated	pathways,	processed	via	comparison	of	IPA	expression	enrichment	analysis	
on	marker	genes	for	each	cluster.		

	

	

To	learn	more	about	the	biology	underlying	these	cell	states,	we	used	Ingenuity	

Pathway	Analysis	(IPA)	to	identify	distinct	signaling	pathways	(Fig	2.5d),	and	interrogated	

for	transcription	factor	consensus	sites	using	the	Enrichr	tool75.	These	analyses	revealed	

that	the	Myo	state	might	be	controlled	by	the	transcription	factors	TP63	and	PPARγ,	and	is	

defined	by	increased	integrin	and	paxillin	signaling	indicating	that	these	cells	provide	

physical	integrity	within	the	breast	epithelial	architecture.	The	B	state	was	found	to	be	

linked	to	transcription	factors	STAT3	as	well	as	SOX2,	NANOG,	and	KLF4,	which	are	

associated	with	stem	cell	capacity	and	cellular	plasticity76,	suggesting	that	population	B	

may	harbor	MaSCs.	Within	the	luminal	compartment,	L1.1	showed	distinct	signatures	of	

iNOS	and	IL6	signaling	that	may	indicate	a	sentinel	function	of	tissue	harm	and	

inflammation	associated	with	this	cell	state.	L1.2	displayed	increased	levels	of	PI3K/AKT	

and	glucocorticoid	signaling,	which	may	indicate	a	link	to	steroid	hormone	signaling	for	

this	cell	population.	Within	the	second	luminal	cell	type	L2	we	found	evidence	for	elevated	

mTOR	signaling	as	well	as	aldosterone	signaling	in	epithelial	cells,	which	suggests	that	this	

cell	type	represents	a	hormone-responsive	cell	population.	

Spatial	integration	of	cell	types	and	states.		
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We	next	used	indirect	immunofluorescence	analysis	to	validate	our	scRNAseq	

findings	on	the	protein	level	and	to	spatially	integrate	newly	discovered	cell	types	and	

states	into	the	anatomy	of	the	breast.	We	first	focused	on	the	cell	states	detected	within	the	

basal	compartment.	Immunostaining	for	ZEB1,	which	we	identified	in	a	subset	of	basal	cells	

in	microfluidics-enabled	scRNAseq	(Fig.	2.1d),	showed	that	this	protein	is	indeed	expressed	

in	a	small	fraction	of	basal	epithelial	cells	(Fig.	2.6a).	High	ZEB1	and	medium	KRT14	levels	

have	been	recently	described	in	a	population	of	protein	C	receptor	(ProCR)	expressing	

murine	MaSCs	with	in	vitro	and	in	vivo	stem	cell	activity8.	Comparison	of	published	gene	

expression	signatures	of	ProtCR+	MaSCs	with	the	ZEB1+	population	identified	here	showed	

striking	similarity	(Fig.	2.6b),	suggesting	that	the	ZEB1+	basal	cells	may	represent	a	

population	of	human	MaSCs.	In	addition,	staining	for	TCF4,	revealed	a	comparable	staining	

pattern	to	ZEB1	within	the	basal	(smooth	muscle	actin-positive)	compartment	(Fig.	2.6c).	

These	findings	show	that	the	cell	state	characterized	by	ZEB1	and	TCF4	expression	exists	

within	the	basal	compartment	in	intact	breast	tissue.		

KRT14	expression	is	a	hallmark	for	basal	cells,	and	our	differential	gene	expression	

analysis	confirmed	that	KRT14	is	predominantly	expressed	within	basal	cells.	However,	it	

exhibited	surprising	variability	across	all	basal	cell	population	with	particularly	high	

expression	in	the	Myo	cell	state	(Fig.	2.6d).	Immunofluorescence	analysis	for	KRT14	

confirmed	this,	and	revealed	that	KRT14	high	cells	localized	to	the	basal	cell	layer	within	

ductal	regions,	while	lobular	basal	cells	generally	displayed	lower	and	more	variable	

staining	for	KRT14	(Fig.	2.6e).	Myo	cells	also	expressed	high	levels	of	the	definitive	

myoepithelial	marker	ACTA2,	as	well	as	other	genes	associated	with	smooth	muscle		
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Fig.	2.6	Characterization	and	spatial	integration	of	basal	cell	states.	a	Immunofluorescence	analysis	of	ZEB1	protein	expression	(red)	
in	combination	with	basal	marker	KRT14	(green)	and	DNA	stain	using	DAPI	(blue)	within	tissue	sections	from	primary	human	reduction	
mammoplasty	samples	showing	ZEB1	expression	in	a	subpopulation	of	basal	(KRT14+)	cells.	Scale	bar	=	15	μm.	b	Heatmap	showing	
expression	of	genes	previously	shown	to	be	up-	(red)	or	down-regulated	(blue)	in	a	population	of	PROCR+	mammary	stem	cells	show	
correlation	with	ZEB1+	cells	in	scRNAseq.	c	Immunofluorescence	analysis	of	TCF4	protein	expression	(red)	in	combination	with	basal	
marker	SMA	(green)	and	DNA	stain	using	DAPI	(blue)	within	tissue	sections	from	primary	human	reduction	mammoplasty	samples	
revealed	that	TCF4	is	expressed	in	a	subpopulation	of	basal	(SMA+)	cells.	Scale	bar	=	25	μm.	d	Violin	plot	for	expression	of	KRT14	by	cell	
state	showing	highest	expression	in	the	myoepithelial	(Myo)	cells.	e	KRT14	and	KRT8	double	immunostaining	revealed	highest	
expression	of	KRT14	in	ductal	basal	cells,	while	lobular	basal	cells	show	more	diverse	KRT14	positivity.	Scale	bar	=	75	μm.		
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differentiation	and	function	in	other	tissues	such	as	MYLK,	MYL9,	and	TAGLN/Transgelin77.		

Surprisingly,	basal	and	luminal	markers	were	not	always	exclusive	and	we	noted	a	

distinct	fraction	of	cells	that	co-express	luminal-	(e.g.,	KRT8)	and	basal-	(e.g.,	KRT14)	

specific	genes,	as	shown	by	correlation	analysis	of	our	single	cell	expression	data	(Fig.	

2.7a).	To	determine	whether	this	population	exists	in	the	intact	tissue,	we	performed	in	situ	

co-localization	analysis	by	immunofluorescence	staining	for	KRT8	and	KRT14.	While	most	

areas	within	the	human	breast	epithelium	showed	the	expected	luminal	KRT8+/KRT14−	or	

basal	KRT8−/KRT14+	pattern,	we	observed	several	rare	loci	within	lobular	regions	of	the	

tissue	that	indeed	showed	distinct	KRT8+/KRT14+	patterns	(Fig.	2.7b).	Although	this	cell	

state	has	been	previously	observed	in	mouse	fetal	MaSCs78,	our	work	revealed	that	this	

state	exists	in	the	human	tissue	in	adult	homeostasis.		

	

Fig.	2.7.	Expanded	characterization	of	cellular	heterogeneity	within	the	basal	compartment.	(a)	Correlated	expression	analysis	of	
luminal	marker	KRT8	and	basal	marker	KRT14	from	scRNAseq	data	revealed	a	significant	number	of	double	positive	cells.	(b)	Combined	
immunostaining	for	KRT8	and	KRT14	showing	rare	foci	of	double	positive	cells	in	the	luminal	cell	layer	of	lobular	regions.	Scale	bar	=	50	
μm.		

The	scRNAseq	analyses	revealed	that	the	luminal	compartment	harbors	two	

discrete	epithelial	cell	types	(L1,	L2).	To	determine	if	L1	and	L2	correspond	to	ductal	and	

a b 
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lobular	anatomical	location	within	the	tissue,	we	used	specific	markers	for	L1	(SLPI)	and	L2	

(ANKRD30A)	to	identify	their	spatial	distribution	within	the	breast	tissue	using	in	situ	

immunofluorescence.	These	analyses	showed	that	both	L1	and	L2	are	located	next	to	each	

other	within	both	ducts	and	lobules	(Fig.	2.8a).	We	also	found	on	the	protein-level	that	L2	

marker	ANKRD30A	commonly	overlaps	with	ER	(32.4%	of	cells),	PR	(38.0%),	and	AR	

(46.8%),	whereas	SLPI-positive	cells	showed	markedly	lower	percentage	of	hormone	

receptor	expression	(Fig.	2.8b–d).	PGR	was	also	expressed	in	a	sub-fraction	of	basal	cell	

states,	although	PR	was	not	detected	in	basal	cells	on	the	protein	level	(Fig.	2.8c).	

L2	was	also	characterized	by	higher	levels	of	KRT8	than	L1	(Fig.	2.8g).	To	quantify	

protein	expression	in	individual	cells,	we	utilized	a	recently	developed	single-cell	western	

blot	application	(ProteinSimple,	Milo),	which	performs	electrophoretic	separation	of	the	

protein	content	of	about	2000	cells	per	chip	and	subsequently	probed	with	fluorescently	

labeled	antibodies.	Applying	single-cell	western	blotting	to	luminal	and	basal	cells	isolated	

by	FACS	identified	three	cell	states,	namely	KRT8-	negative,	-low,	and	-high	(Fig.	2.8h–i),	

which	illustrates	the	usefulness	of	single	cell	Western	blotting	as	a	quantitative	validation	

tool	downstream	of	scRNAseq	analyses.		

Taken	together,	these	analyses	confirmed	remarkable	concordance	between	the	

patterns	observed	in	scRNAseq	and	on	the	protein-level	in	intact	tissues.	Our	spatial	

analyses	confirmed	that	the	luminal	compartment	contains	two	distinct	cell	types	(L1	and	

L2)	that	intermingle	within	ducts	and	lobules.	Both	contain	a	subset	of	proliferative	cells,	

suggesting	that	they	each	contain	L1-	and	L2-committed	progenitor	cells	to	maintain	these	
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cell	types.	Based	on	their	expression	signatures,	L1	may	be	committed	to	secretory	

function,	while	L2	likely	functions	as	a	hormone-sensing	unit	of	the	breast	epithelium.	

	

Fig.	2.8	Validation	and	spatial	integration	of	two	distinct	luminal	cell	types.	a	Immunofluorescence	analysis	of	NY-BR-1	protein	
expression	(green)	in	combination	with	basal	marker	SLPI	(red)	and	DNA	stain	using	DAPI	(blue)	within	tissue	sections	from	primary	
human	reduction	mammoplasty	samples	revealed	that	NY-BR-1	and	SLPI	are	markers	for	distinct	luminal	subpopulations.	b–e	
Immunofluorescence	analysis	of	NY-BR-1	and	SLPI	(red)	protein	expression	with:	hormone	receptors	for	estrogen	receptor	(b),	
progesterone	(c),	and	androgen	(d)	and	proliferation	marker	Ki67	e	in	green.	f	Summary	of	hormone	receptor	and	proliferation	marker	
expression	in	L1	and	L2	cells.	g	Violin	plot	showing	expression	of	KRT8	in	the	luminal	subpopulations,	higher	expression	is	seen	in	the	
luminal	L1.1	and	L1.2	subpopulation.	h	Sample	frame	for	detection	of	KRT8	protein	content	from	individual	cells	using	single	cell	
Western	blot	following	detection	using	microarray	scanner.	i	Population	summary	showing	cell	number	per	fluorescence	intensity	
confirmed	bimodal	distribution	of	KRT8	expression	on	the	protein	level.		
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Reconstructing	lineage	hierarchies	within	the	epithelium.		

To	understand	how	these	observed	cell	types	and	states	are	related	to	each	other,	

we	next	reconstructed	differentiation	trajectories	by	pseudotemporal	ordering	of	single	

cells	using	Monocle,	which	utilizes	reverse	graph	embedding	to	generate	a	trajectory	plot	

that	can	account	for	both	branched	and	linear	differentiation	processes79.	Applying	

Monocle	to	our	droplet-based	scRNAseq	dataset	on	a	subsampled	population	(4000	cells;	

1000	cells	per	individual)	from	all	four	individuals	yielded	one	tightly	connected	

differentiation	trajectory	that	separates	into	three	main	branches	corresponding	to	the	

main	cell	types	Basal,	L1	and	L2	(Fig.	2.9a).	This	suggests	that	the	system	is	maintained	

through	one	continuous	rather	than	several	disconnected	lineages.	Considering	the	

substantial	evidence	supporting	the	existence	of	MaSCs	within	the	basal	cell	

compartment6,7,	we	manually	set	the	start	of	pseudotime	within	the	basal	cell	type	(Fig.	

2.9b),	thus	resulting	in	a	trajectory	that	differentiates	into	three	main	branches	that	are	

each	enriched	for	Myo,	L1	and	L2,	respectively.	Of	note,	L1.2	is	markedly	enriched	at	the	

branching	point	between	L1	and	L2,	suggesting	that	it	represents	a	luminal-restricted	bi-

potent	progenitor.	It	also	precedes	L1.1	on	the	L1	branch,	suggesting	that	L1.2	is	a	

progenitor	to	L1.1.	Interestingly,	L1.1	displayed	high	ELF5	and	KIT	expression,	which	have	

been	previously	reported	as	progenitor	cell	markers63,64.	Our	data	instead	suggests	that	

L1.1	represents	a	second	mature,	differentiated	luminal	cell	type	rather	than	a	luminal	

progenitor	that	is	upstream	of	L2.	These	results	are	in	line	with	previous	models	of	

mammary	differentiation	mediated	by	bi-potent	stem/progenitor	cells62.	
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Fig.	2.9	Reconstruction	of	differentiation	and	relation	of	cell	states	to	breast	cancer	subtypes.	a	Monocle-generated	
pseudotemporal	trajectory	of	a	subsampled	population	of	cells	(n	=	4000)	from	four	individuals	analyzed	using	droplet-mediated	
scRNAseq	is	shown	colored	by	cell	state	designation.	b	Pseudotime	is	shown	colored	in	a	gradient	from	dark	to	light	blue	and	start	of	
pseudotime	is	indicated.		

	

Subpopulations	correspond	to	breast	cancer	subtypes.		

To	learn	more	about	the	relationship	of	these	newly	defined	subpopulations	to	

existing	subtypes	of	breast	cancer,	we	used	our	gene	scoring	approach	to	directly	compare	

the	gene	signatures	of	each	population	to	gene	signatures	associated	with	each	cancer	

subtype	from	the	Metabric	dataset80.	This	showed	that	both	Luminal	A	and	Luminal	B	

subtypes	of	breast	cancer	are	closely	related	to	L2-	type	luminal	cells	(Fig.	2.10c,	top),	

which	is	in	line	with	previous	gene	signature	analyses	of	FACS-enriched	basal,	luminal	

progenitor,	and	mature	luminal	cells65.	In	addition,	a	recent	report	by	Lehman	et	al.	used	

global	gene	expression	analyses	to	identify	molecularly	distinct	subtypes	within	triple	

negative	breast	cancer	(TNBC)81.	We	found	that	Myo	showed	highest	similarity	to	the	

mesenchymal-like	subtype	of	TNBC,	while	the	Basal1	class	of	TNBC	yielded	highest	scores	

in	the	luminal	L1.1	state	(Fig.	2.10c,	bottom).	Taken	together,	these	analyses	allow	us	to	
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directly	link	several	defined	breast	cancer	subtypes	to	distinct	cell	populations	of	epithelial	

cells	suggesting	that	the	subtypes	of	breast	cancer	may	arise	from	different	tumor	cells-of-

origin.	

	

Fig.	2.10.	Reconstructing	breast	epithelial	lineage	hierarchies	their	relation	to	breast	cancer.	(a)	Pseudotemporal	analysis	of	
microfluidics-enabled	scRNAseq	results	using	Monocle2	based	on	a	set	of	183	Seurat	identified	marker	genes	suggest	a	differentiation	
trajectory	from	ZEB1+	progenitor	cells	(green)	bifurcating	into	basal	(red)	and	luminal	(blue)	differentiated	cells.	(b)	Selected	marker	
genes	are	shown	as	dot	plots	displayed	as	expression	level	over	pseudotime.	(c)	Relation	of	cell	states	identified	in	droplet-enabled	
scRNAseq	analysis	to	different	breast	cancer	subtypes	is	shown	as	violin	plots	displaying	gene	scoring	results	for	a	cells	on	gene	lists	
derived	from	breast	cancer	subtypes,	namely	Metabric	Luminal	A	(LumA),	Metabric	Luminal	B	(LumB),	triple-negative	breast	cancer	
(TNBC)	mesenchymal-like,	and	TNBC-Basal1.		 	



 

36 
 

Discussion		

The	current	state	of	knowledge	in	breast	epithelial	biology	is	largely	based	on	

population-level	analyses	of	separated	basal	and	luminal	cells	following	bulk	analyses	of	

these	distinct	epithelial	cell	types63.	While	several	distinct	subpopulations	of	murine	basal	

and	luminal	cells	have	been	reported	anecdotally62,	comprehensive	knowledge	about	

expression	signatures	and	cellular	identities	of	these	subpopulations	remains	sparse,	

particularly	in	the	human	system.	Our	scRNAseq	analysis	of	the	human	breast	epithelium	

from	non-diseased,	post-puberty,	pre-menopause	individuals	for	the	first	time	allow	for	

unbiased,	de	novo	identification	of	distinct	cell	types	and	states	in	the	adult	human	breast	

epithelium	before	pregnancy-induced	changes	occur.	Strikingly,	our	approach	revealed	the	

existence	of	three	main	epithelial	cell	types	(Basal,	L1	and	L2),	in	line	with	a	recent	

scRNAseq	analysis	of	the	mouse	mammary	gland82,	although	this	work	referred	to	these	

populations	as	“basal”,	“luminal	progenitor”	and	“mature	luminal	cells”.	Our	spatial	

analyses	showed	that	these	three	cell	types	inter-	mingle	within	ducts	and	lobules,	and	

appear	to	form	functionally	distinct	lineages	that	contribute	to	different	aspects	of	breast	

biology	(summarized	in	Fig.	2.11a).	The	fact	that	all	three	cell	types	contained	a	fraction	of	

proliferative	cells	suggests	that	each	cell	type	may	be	maintained	by	cycling,	lineage-

restricted	progenitor	cell	subpopulations	during	normal	homeostasis.		

Our	unbiased	clustering	analysis	and	pseudotemporal	reconstruction	of	

differentiation	trajectories	strongly	suggest	that	these	cell	types	represent	three	main	

branches	of	specified,	differentiated	cells,	namely	basal/myoepithelial,	secretory	L1,	and	

hormone-responsive	L2	cells	(Fig.	2.11b).	The	lineage	hierarchy	likely	starts	with	basal	
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MaSCs6,7	that	differentiate	either	into	specified	myoepithelial	cells,	or	into	a	common	

luminal	pro-	genitor,	which	gives	rise	to	the	two	distinct	luminal	cell	types	L1	and	L2.	

Interestingly,	the	ELF5/KIT-expressing	subpopulation	L1.1	represents	a	mature	

differentiated	luminal	cell	state	as	it	was	predominantly	located	at	the	end	of	the	L1	

branch,	suggesting	that	ELF5/KIT	may	be	crucial	for	differentiation	into	the	secretory	L1	

cell	type,	rather	than	promoting	progenitor	cell	function	as	previously	described63,64.	It	

appears	to	be	the	L1.2	cell	state	within	the	L1	cell	type	that	harbors	a	luminal-restricted	bi-

potent	progenitor	capacity	for	differentiation	into	the	more	specified	secretory	L1.1	or	

hormone-responsive	L2	cells.		

	

Fig.	2.11	Proposed	cellular	heterogeneity	and	lineage	hierarchies	within	the	human	breast.	a	Schematic	summary	of	discovered	
cell	states	within	the	basal	and	luminal	compartment	of	the	human	breast	epithelium	with	proposed	function,	key	transcription	factors	
(in	white),	selected	markers	(in	black)	and	similarities	to	breast	cancer	subtypes	indicated	in	boxes.	b	Proposed	model	summarizing	the	
lineage	hierarchies	within	the	breast	epithelium	based	on	one	continuous	differentiation	trajectory	from	basal	stem	cells	to	three	distinct	
differentiated	cell	types	with	overlaid	marker	genes	of	interest	shown	(black	on	gray	bars)		

	

A	currently	unresolved	question	of	active	debate	is	whether	MaSCs	act	as	bi-potent	

stem	cells	that	give	rise	to	both	lineages	of	basal	and	luminal	cells83,	or	whether	

homeostasis	is	mediated	through	distinct	uni-potent,	lineage-restricted	basal	and	luminal	
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stem	cells84.	Considering	these	two	models,	Monocle	could	have	yielded	a	sparsely	

connected	differentiation	trajectory	separating	basal	and	luminal	lineages,	which	would	

have	supported	a	trajectory	driven	by	lineage-restricted	basal	and	luminal	uni-potent	

progenitor	cells	on	both	ends	of	the	spectrum.	Instead,	the	outcome	of	our	Monocle	

analysis	is	in	favor	of	the	existence	of	the	bi-potent	stem/progenitor	model	as	it	clearly	

identified	one	continuous	trajectory	indicative	of	a	common	source	for	both	basal	and	

luminal	cell	differentiation.		

Understanding	the	origins	of	breast	cancer	in	its	earliest	phases	has	the	potential	to	

advance	methods	of	cancer	early	detection,	and	may	ultimately	form	the	basis	to	prevent	

cancer	progression	before	it	turns	into	a	life-threatening	disease.	Here,	we	asked	whether	

the	newly	identified	cell	states	correspond	to	specific	subtypes	of	breast	cancer,	and	thus	

may	represent	potential	cancer	cells-of-origin	for	the	specific	breast	cancer	subtypes.	The	

luminal	epithelial	cell	type	L2	showed	the	clearest	correlation	with	both	Luminal	A	and	B	

subtypes	from	the	Metabric	dataset85,	which	is	in	line	with	previously	reported	similarities	

between	a	FACS-enriched	population	of	mature	luminal	cells	and	the	luminal-like	breast	

cancer	subtypes65.	The	fact	that	several	L2	markers	are	independently	known	as	breast	

cancer-associated	antigens	such	as	SYTL2	and	ANKRD30A86,	and	that	it	shows	highest	

expression	of	CDKN1B/p27	as	a	marker	for	potential	breast	cancer	cells	of	origin87	further	

corroborates	the	link	between	the	hormone-responsive	L2	cell	type	to	breast	cancer	in	

general.	Interestingly,	the	cell	state	closest	related	to	the	TNBC	Basal	subtype	was	found	to	

be	the	luminal	progenitor-like	population	L1.1.	The	concept	that	a	luminal	cell	may	be	the	

cell-of-origin	for	basal-type	breast	cancer	is	not	new	and	has	been	previously	proposed	in	

the	context	of	BRCA1-driven	disease65.	Interestingly,	those	cell	states	containing	subsets	of	
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proliferative	cells,	namely	B,	L1.1	and	L2	are	predominantly	linked	to	breast	cancer	

subtypes,	which	is	line	with	previous	reports	showing	an	association	of	mammary	

epithelial	cell	proliferation	in	normal	tissues	with	increased	breast	cancer	risk88.		

In	summary,	our	results	provide	crucial	insights	into	the	spectrum	of	cellular	

heterogeneity	within	the	human	breast	epithelium	in	unprecedented	resolution.	Our	

unbiased	analysis	of	the	single-cell	gene	signatures	from	seven	human	individuals	provide	

evidence	for	defined	differentiation	trajectories	to	maintain	homeostasis	in	the	adult	

human	breast,	as	well	as	distinct	subpopulations	of	both	basal	and	luminal	lineage	that	may	

serve	as	cells	of	origin	for	the	different	subtypes	of	breast	cancer.	Our	single-cell	atlas	

comprising	the	human	breast	epithelium	will	serve	as	a	resource	to	map	out	the	defined	

changes	occurring	during	breast	cancer	and	therefore	form	the	basis	for	improved	methods	

of	cancer	early	detection	and	possibly	strategies	for	cancer	prevention.	
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Methods		

Origin	of	tissue	samples.		

Anonymous	reduction	mammoplasty	samples	were	acquired	from	NCI	Cooperative	Human	

Tissue	Network	(CHTN)	and	from	Department	of	Surgery,	Feinberg	School	of	Medicine,	

Northwestern	University.	Other	investigators	may	have	received	specimens	from	the	same	

tissue	specimens	obtained	through	NCI	CHTN.	Specimens	were	anonymized	then	collected	

and	distributed	by	CHTN,	specimens	are	covered	under	collection/distribution	of	tissues	

under	consent	or	waiver	of	consent.	Samples	were	washed	in	PBS	(Corning	21-031-CV)	and	

mechanically	dissociated	using	a	razor	blade.	Dissociated	samples	were	digested	overnight	

in	DMEM	(Corning	10-013-CV)	with	Collagenase	Type	I,	2	mg/mL	(Life	Technologies	

17100-017).	Viable	organoids	were	separated	using	differential	centrifugation	and	viably	

frozen	in	50%	FBS	(Omega	Scientific	FB-12),	40%	DMEM,	and	10%	DMSO	(Sigma-Aldrich	

D8418)	by	volume.		

Single-cell	RNA	sequencing		

Viable	organoids	were	thawed	and	washed	using	DMEM,	and	digested	with	0.05%	trypsin	

(Corning	25-052-CI)	containing	DNase	(Sigma	Aldrich	D4263-5VL)	to	generate	single	cell	

suspension.	Cells	were	stained	for	FACS	using	fluorescently	labeled	antibodies	for	CD31	

(eBiosciences	48-0319-	42),	CD45	(eBiosciences	48-9459-42),	EpCAM	(eBiosciences	50-

9326-42),	CD49f	(eBiosciences	12-0495-82),	and	SytoxBlue	(Life	Technologies	S34857).	

We	only	proceeded	with	samples	showing	at	least	80%	viability	as	measured	using	

SytoxBlue	in	FACS.	Sorted	cells	were	washed	and	resuspended	at	a	concentration	of	~500	

cells/µl.	For	microfluidics-enabled	scRNAseq,	cell	suspensions	were	mixed	with	Fluidigm	
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C1	Suspension	Reagents	(Fluidigm	100-5315)	at	a	ratio	of	8:2	before	loading	mix	onto	C1	

chip	(Fluidigm	100-5760).	Bright	field	images	of	captured	cells	were	collected	using	a	

Keyence	BZ-X710	microscope	(Keyence	Corporation,	Itasca,	Illinois,	USA).	Single-cell	RNA	

isolation	and	amplification	were	performed	using	the	Fluidigm	C1	Single	Cell	Auto	Prep	IFC	

following	the	Fluidigm	Protocol:	100-	7168	I1.	RNA	spike-in	controls	were	omitted.	cDNA	

library	preparation	were	performed	following	the	Fluidigm	C1	Protocol:	100-7168	I1.	For	

droplet-enabled	scRNAseq,	flow	cytometry	sorted	cells	were	washed	in	PBS	with	0.04%	

BSA	and	resuspended	at	a	concentration	of	~1000	cells/µl.	Library	generation	for	10×	

Genomics	v1	chemistry	was	performed	following	the	Chromium	Single	Cell	3ʹ	Reagents	Kits	

User	Guide:	CG00026	Rev	B.	Library	generation	for	10×	Genomics	v2	chemistry	were	

performed	following	the	Chromium	Single	Cell	3ʹ	Reagents	Kits	v2	User	Guide:	CG00052	

Rev	B.	Quantification	of	cDNA	libraries	was	performed	using	Qubit	dsDNA	HS	Assay	Kit	

(Life	Technologies	Q32851)	and	high-sensitivity	DNA	chips	(Agilent.	5067-	4626).	

Quantification	of	library	construction	was	performed	using	KAPA	qPCR	(Kapa	Biosystems	

KK4824).	For	microfluidics-enabled	scRNAseq	libraries,	we	generally	multiplexed	96	cells	

per	lane	on	an	Illumina	HiSeq2500	resulting	in	a	calculated	depth	of	~1.6	million	reads	per	

cell	(Illumina	Rapid	PE	kit	v2	402-4002	and	Rapid	SBS	kit	v2	FC	401-4022).	For	droplet-

enabled	scRNAseq,	we	used	the	Illumina	HiSeq4000	platform	to	achieve	an	average	of	

50,000	reads	per	cell.		

Processing	of	scRNAseq	data.		

After	demultiplexing	sequencing	libraries	to	individual	cell	FASTQ	files	(observed	average	

read	depth	per	cell	was	found	to	be	~1.6	Million	reads),	each	library	was	aligned	to	an	
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indexed	GRCh38	RefSeq	genome	using	RSEM	version	1.2.1289,	and	bowtie2	version	2.2.3	

with	the	following	options	enabled:	rsem-calculate-	expression	-p	$CORES—bowtie2—

paired-end	-output-	genome-bam.	Fragments	Per	Kilobase	of	transcript	per	Million	mapped	

reads	(FPKM)	values	were	quantified	and	concatenated	into	a	resulting	gene	expression	

matrix	for	each	library,	which	was	then	loaded	into	R	for	subsequent	computational	

analysis.	For	quality	control	filtering,	we	generally	excluded	libraries	with	less	than	900	

genes	detected.	In	addition,	genes	that	were	not	detected	in	at	least	3	of	the	cells	after	this	

trimming	were	also	removed	from	further	analysis.	Alignment	of	3ʹ	end	counting	libraries	

from	droplet-enabled	scRNAseq	analyses	was	completed	utilizing	10×	Genomics	Cell	

Ranger	1.3.1.	Each	library	was	aligned	to	an	indexed	GRCh38	genome	using	Cell	Ranger	

Count.	“Cell	Ranger	Aggr”	function	was	used	to	normalize	the	number	of	confidently	

mapped	reads	per	cells	across	the	libraries	from	different	individuals	utilizing	10×	v2	

chemistry.		

Cluster	identification	using	Seurat.		

For	cluster	identification	in	both	microfluidics-	and	droplet-enabled	scRNAseq	datasets,	we	

utilized	the	Seurat	pipeline12.	The	data	matrices	were	imported	into	R	and	were	processed	

with	the	Seurat	R	package	version	1.2.1,	where	the	FPKM	values	were	transformed	into	log-

space	after	the	aforementioned	trimming	steps	(each	gene	was	expressed	in	at	least	three	

cells,	each	cell	has	at	least	900	genes).	PCA	was	performed	using	highly	variable	genes	in	

the	trimmed	dataset.	Using	the	first	two	PC’s	as	input,	we	then	performed	density	

clustering	to	identify	groupings	in	the	data	and	t-distributed	statistical	neighbor	

embedding	(tSNE)	to	visualize.	Using	further	Seurat	functionality,	marker	genes	for	each	
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respective	cluster	were	identified	and	used	for	subsequent	analysis.	For	droplet-enabled	

scRNAseq	data,	we	used	the	Seurat	R	package	version	2.0.0.	Data	was	read	into	R	as	a	

counts	matrix	and	transformed	into	log-space.	Due	to	the	difference	in	gene	detection	

across	the	two	platforms,	differences	in	chemistry	for	the	library	prep,	as	well	as	

sequencing	depth	per	cell,	a	minimum	cutoff	of	500	and	a	maximum	cut-off	of	6000	genes	

per	cell	for	this	dataset	was	used.	In	addition,	cells	with	a	percentage	of	total	reads	that	

aligned	to	the	mitochondrial	genome	(referred	to	as	percent	mito)	greater	than	10%	were	

removed,	since	increased	detection	of	mitochondrial	genes	can	be	associated	with	cells	

undergoing	stress	and	cell	death90.	To	account	for	the	possibility	of	individual	cell	

complexity	driving	cluster	separation,	we	employed	Seurat’s	“RegressOut”	function	to	

reduce	the	contribution	of	both	the	number	of	UMI’s	and	the	percent	mito.	Variable	genes	

were	then	determined	for	subsequent	PCA	for	each	separate	individual.	For	tSNE	

projection	and	clustering	analysis,	we	used	the	first	ten	principal	components.	We	used	the	

feature	plot	function	to	highlight	expression	of	known	marker	genes	for	basal	(e.g.,	KRT5,	

KRT14)	and	luminal	cells	(e.g.,	KRT8,	KRT18)	to	identify	which	clusters	belonged	to	which	

epithelial	cell	type.	The	specific	markers	for	each	cluster	identified	by	Seurat	were	

determined	using	the	“FindAllMarkers”	function.		

Cluster	comparisons	and	assignment.		

Cluster	specific	marker	genes	from	the	individual	library	analyses	were	used	as	input	lists	

to	the	previously	described	gene	scoring	method	(described	in	more	detail	below)	to	

compare	cluster	signatures	in	a	pairwise	manner	between	individuals.	To	visualize	

pairwise	gene	scoring	results,	we	generated	heatmaps	displaying	averaged	gene	scoring	
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results	for	each	cluster.	We	overlaid	individual-specific	cluster	designations	onto	these	

heatmaps	to	find	which	individual	clusters	best	match	to	each	other.	Clusters	were	merged	

together	in	the	case	that	multiple	clusters	scored	highly.	We	performed	a	separate	Seurat	

analysis	using	combined	basal	cells	from	all	four	individuals,	and	then	matched	clusters	

using	the	gene	scoring	method	on	a	set	of	genes	curated	to	represent	a	myoepithelial	cell	

fate25	to	score	and	classify	the	clusters	as	either	Basal	(B)	or	Myoepithelial	(Myo)	cell	

state.		

Gene	scoring.		

To	compare	gene	signatures	and	pathways	in	epithelial	subpopulations,	we	utilized	

individual	gene	scores	as	described	previously38.	Briefly,	each	score	was	generated	by	

calculating	total	gene	expression	for	each	of	the	analyzed	genes	and	separating	them	into	

25	bins	of	similar	expression.	For	every	gene	in	each	target	pathway	or	signature,	100	

“control”	genes	were	selected	from	its	corresponding	bin	and	added	to	a	“control”	pathway.	

The	resulting	“control”	pathway	contained	an	equivalent	expression	distribution	as	the	

target	pathway	and	its	average	represents	an	equivalent	sampling	of	100	pathways	of	

equal	size	to	the	target	pathway.	The	expression	of	genes	in	the	target	pathway	and	the	

“control”	pathways	was	averaged	across	each	cell	to	generate	a	target	score	(STarget)	and	

control	score	(SCtrl).	The	cell’s	score	for	the	target	pathway	(SPath)	is	the	difference	

between	the	target	score	and	control	score:	SPath	=	STarget	−	SCtrl.	To	determine	

statistical	significance,	we	used	the	unpaired	Wilcox	test	with	a	95%	confidence	interval.	

Gene	set	and	pathway	analysis.		
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Cells	belonging	to	subpopulations	were	averaged	to	serve	as	a	representation	of	each	

subgroup,	and	trimmed	to	their	respective	marker	genes	as	determined	by	Seurat	following	

log2	transformation.	Each	subpopulation	sample	was	then	uploaded	to	Ingenuity	Pathway	

Analysis	(Ingenuity	Systems,	www.ingenuity.com)	core	analysis	feature	and	compared.	A	p-

value	of	0.05	was	used	as	a	cut-off	to	determine	significant	enrichment	of	a	pathway	or	

annotated	gene	grouping	present	in	the	Ingenuity	Knowledge	base.	In	addition,	

comprehensive	gene	set	enrichment	was	done	using	Enrichr75	based	on	the	cell	type	and	

state	specific	marker	genes	identified	by	Seurat.	

Immunofluorescence	analysis.		

Tissues	were	fixed	in	4%	formaldehyde	for	24	h,	dehydrated	in	solutions	of	increasing	

concentrations	of	ethanol,	cleared	with	xylene,	and	embedded	in	paraffin.	Slides	of	10-μm	

sections	were	prepared	using	a	Leica	SM2010	R	Sliding	Microtome	(Leica	Biosystems,	

Wetzlar,	Germany).	Slides	were	heated	at	65	°C	for	1	h,	followed	by	two	5-min	incubations	

in	Histo-Clear	(National	Diagnostics,	Cat.	No.	HS-200,	Atlanta,	Georgia,	USA)	for	paraffin	

removal.	Tissues	were	rehydrated	with	solutions	of	decreasing	concentrations	of	ethanol,	

washed	in	double-distilled	H2O	and	PBS,	and	subjected	to	antigen	retrieval	using	a	

microwave	pressure	cooker	with	10	mM	citric	acid	buffer	(0.05%	Tween	20,	pH	6.0).	

Tissues	were	blocked	in	blocking	solution	(0.1%	Tween	20	and	10%	Goat	Serum	in	PBS)	

for	20	min	at	room	temperature,	incubated	with	primary	antibodies	prepared	in	blocking	

solution	at	4	°C	overnight,	washed	in	PBS,	incubated	with	secondary	antibodies	diluted	in	

PBS	for	1	h	at	room	temperature,	and	washed	in	PBS.	Slides	were	mounted	with	

VECTASHIELD	Antifade	Mounting	Medium	with	DAPI	(Vector	Laboratories,	Cat.	No.	H-
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1200,	Burlingame,	California,	USA)	and	micrographs	were	taken	with	the	BZ-X700	Keyence	

fluorescent	microscope.	For	quantification	of	staining	(e.g.,	ZEB1	and	KRT14	staining),	we	

manually	counted	positive	cells	as	signal	around	nuclei	(DAPI)	and	utilized	the	BZH	Hybrid	

Cell	Count	software	(Keyence)	in	at	least	three	different	fields	of	view	using	a	40×	objective	

in	at	least	two	different	samples.	Primary	Antibodies:	Estrogen	Receptor	(ER)	rat	mAb	

diluted	1:50	(Cat.	No.	916201);	KRT14	rabbit	pAb	diluted	1:500	(Cat.	No.	PRB-155P)	

(Biolegend,	San	Diego,	CA,	USA);	Androgen	Receptor	(AR)	rabbit	mAb	diluted	1:400	(Cat.	

No.	5153);	Progesterone	Receptor	(PR)	rabbit	mAb	diluted	1:1000	(Cat.	No.	8757)	(Cell	

Signaling,	Danvers,	MA,	USA);	KRT8	(TROMA-1)	mouse	mAb	diluted	1:500	(DSHB,	Iowa	

City,	Iowa,	USA);	SLPI	goat	pAb	diluted	1:200	(R&D	Systems,	Cat	No.	AF1274-SP,	

Minneapolis,	MN,	USA);	α-Smooth	Muscle	Actin	mouse	mAb	diluted	1:500	(Cat.	No	

GTX60466),	Ki67	mAb	diluted	1:200	(Cat.	No.	GTX16667);	TP63	rabbit	pAb	diluted	1:500	

(Cat.	No.	GTX102425),	MUC1	rabbit	pAb	diluted	1:500	(Cat.	No.	GTX15481),	ACTA2	mouse	

mAb	diluted	1:500	(Cat.	No.	GTX60466);	TCF4	rabbit	pAb	diluted	1:500	(Cat.	No.	

GTX54531);	E-cadherin	(DCH1)	rabbit	pAb	diluted	1:500	(Cat.	No.	GTX100443);	KRT18	

rabbit	pAb	diluted	1:500	(Cat.	No.	GTX112978)	(GeneTex,	Inc.,	Irvine,	California,	USA);	

ACTA2	mouse	mAb	diluted	1:500	(Cat.	No.	MA511547);	NY-BR-1	mouse	mAb	diluted	1:500	

(Cat.	No.	MS-1932-P0);	KRT14	mouse	mAb	diluted	1:100	(Cat.	No.	MA511599);	and	KRT18	

mouse	mAb	diluted	1:100	(Cat.	No.	MA512104)	(Thermo	Fisher	Scientific	Inc.,	Carlsbad,	

California,	USA).	Secondary	Antibodies:	Donkey	anti-mouse	Cy5.5-conjugated	IgG	(Novus	

Biologicals,	Cat.	No.	NBP1-73774,	Littleton,	CO,	USA);	Goat	anti-rabbit	IgG	conjugated	with	

Alexa	Fluor	568	and	488	(Cat.	No.	A21069	&	A11034);	Goat	antimouse	IgG	conjugated	with	

Alexa	Fluor	568	and	488	(Cat.	No.	A11004	&	A11001);	Goat	anti-rat	IgG	conjugated	with	



 

47 
 

Alexa	Fluor	488	(Cat.	No.	A11006);	Donkey	anti-rabbit	FITC-conjugated	IgG	(Cat.	No.	

A16030);	and	Donkey	anti-goat	IgG	conjugated	to	FITC	and	Alexa	Fluor	568	(Cat.	No.	

A16006	&	A11057)	(Thermo	Fisher	Scientific	Inc.,	Carlsbad,	California,	USA).	

Single-cell	western	blot.		

Single-cell	western	blots	were	completed	using	the	Single-Cell	Western	instrument	Milo,	

scWest	chips,	and	reagents	from	ProteinSimple	(San	Jose,	CA).	A	standard	6%T	scWest	chip	

was	re-hydrated	in	1×	Suspension	Buffer	for	15	min	at	room	temperature.	A	volume	of	1	

mL	of	flow	cytometry-sorted	human	mammary	epithelial	cells	(combined	basal	and	

luminal)	at	100,000	cells/mL	were	settled	in	medium	onto	the	scWest	chip	for	15	min	at	

room	temperature.	Un-captured	cells	were	washed	away	with	1	mL	of	media.	Captured	

cells	were	lysed	for	10	s,	then	individual	cell	protein	lysates	were	electrophoretically	

separated	for	1	min	at	240	V,	and	proteins	were	UV-captured	for	4	min.	After	running	on	

Milo,	the	scWest	chip	was	washed	2	×	10	min	in	1×	Wash	Buffer,	then	probed	for	mouse	

anti-cytokeratin	8	(Abcam	ab9023)	at	200	µg/mL	and	rabbit	anti-β-tubulin	(Abcam	

ab6046)	at	100	µg/mL	for	2	h	at	room	temperature.	Primary	antibodies	were	diluted	in	1	×	

Wash	Buffer	(final)	containing	5%	(w/v)	BSA.	After	3	×	10-min	washes	in	1×	Wash	Buffer,	

the	scWest	chip	was	incubated	with	donkey	anti-rabbit	IgG	Alexa	647	(A-31573	

ThermoFisher	Waltham,	MA)	and	donkey	anti-mouse	IgG	Alexa	488	(A-21202	

ThermoFisher)	at	100	µg/mL	in	1×	Wash	Buffer	containing	5%	BSA	for	1	h	in	the	dark	at	

room	temperature.	The	chip	was	then	washed	3	×	15	min	in	1×	Wash	Buffer,	dried,	and	

imaged	using	a	Molecular	Devices	Genepix	4400A	(Sunnyvale,	CA)	(Standard	Blue	Filter	
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500	gain,	Standard	Red	Filter	600	gain).	Images	were	saved	as	single-color	tiffs	and	

analyzed	using	Scout	software	(ProteinSimple).		

Reconstructing	differentiation	trajectories	using	Monocle.		

Cell	fate	decisions	and	differentiation	trajectories	were	reconstructed	with	the	Monocle	2	

package,	which	utilizes	reverse	graph	embedding	based	on	a	user	defined	gene	list	to	

generate	a	pseudotime	plot	that	can	account	for	both	branched	and	linear	differentiation	

processes.	For	pseudotemporal	analysis	of	breast	epithelial	cells	in	C1	data,	we	used	

Monocle	version	2.2.0,	ordered	a	combined	set	of	cells	from	all	three	individuals	on	a	list	of	

marker	genes	as	determined	by	Seurat	analysis	using	up	to	20	genes	per	cluster	with	least	

0.5	power.	Labels	of	basal	and	luminal	cells	respectively	were	assigned	according	to	the	

identity	of	the	cells	from	the	initial	cell	sorting	and	ZEB1	positive	cells	were	labeled	based	

on	expression	level	>0.	For	pseudotemporal	analysis	of	droplet-based	scRNAseq	data,	we	

first	ordered	the	four	individuals	in	Monocle	2.2.0	separately	using	cell	type	markers	

identified	in	the	C1	analysis	along	with	the	top	20	marker	genes	for	each	subpopulation	in	

Seurat.	Next,	for	each	of	these	four	datasets,	we	identified	genes	differentially	expressed	

between	trajectory	clusters	(States),	averaged	the	gene	expressions	values	for	all	cells	

within	each	State,	and	generated	a	Pearson	correlation	matrix	for	these	average	gene	

expression	value	across	States.	We	averaged	the	four	correlation	matrices	into	one	matrix	

and	kept	only	genes	that	had	an	average	Pearson	correlation	of	0.8	with	at	least	one	other	

gene.	Finally,	we	ordered	a	random	subsample	of	4000	cells	(1000	cells	from	each	

individual)	by	the	genes	from	our	correlation	analysis	that	overlapped	with	Seurat	

identified	subpopulation	marker	genes.	
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Comparison	of	subpopulations	to	breast	cancer	subtypes.		

To	learn	more	about	the	relationship	of	the	newly	defined	normal	breast	epithelial	

subpopulations	to	the	known	breast	cancer	subtypes,	we	used	the	gene	scoring	method	to	

compare	each	subpopulation	to	previously	described	triple	negative	breast	cancer	

subtypes.	To	this	end,	we	utilized	the	genes	that	are	specifically	up-regulated	in	each	

subtype	as	previously	reported35,39.	To	compare	each	subpopulation	to	METABRIC	

derived	molecular	subtype	signatures,	the	METABRIC	microarray	expression	dataset	was	

downloaded	and	processed	using	the	R	Bioconductor	package	Limma	version	3.30.13.	

Samples	were	grouped	by	their	annotated	molecular	subtype,	and	differentially	expressed	

genes	was	calculated	for	each	group.	The	top	20%	of	the	upregulated	genes	as	sorted	by	

log-fold	change	were	then	used	for	downstream	scoring	
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Chapter	3:	Integrated	Single-Cell	Transcriptomics	and	Chromatin	

Accessibility	Analysis	Reveals	Regulators	of	Mammary	Epithelial	Cell	

Identity	

INTRODUCTION		

Breast	cancer	is	a	heterogeneous	disease	of	at	least	six	intrinsic	subtypes,	namely,	the	

luminal	A,	luminal	B,	HER2-enriched,	basal-like,	normal	breast,	and	claudin-low	subtypes2.	

Breast	cancer	arises	from	the	breast	epithelium,	which	forms	a	ductal	epithelial	network	

consisting	of	an	inner	layer	of	luminal	cells	and	an	outer	layer	of	basal/myoepithelial	

cells91,	with	additional	heterogeneity	existing	within	these	two	cell	layers.	For	example,	a	

functionally	distinct	subpopulation	of	mammary	stem	cells	may	comprise	a	small	subset	of	

basal	cells6,7,	as	well	as	subpopulations	of	progenitors	and	mature,	hormone-responsive	

cells	defined	within	the	luminal	compartment63.	Technological	advances	enable	us	to	

explore	cellular	heterogeneity	without	bias	using	single-cell	RNA	sequencing	(scRNAseq)10.	

This	approach	was	used	to	describe	the	cell	types	and	states	within	the	human92	and	mouse	

mammary	epithelium82,93,94	and	generally	yielded	three	main	cell	types,	namely,	basal	cells	

(marked	by	Krt14);	secretory	luminal	(L-Sec)	cells,	also	called	luminal	progenitors	(marked	

by	Elf5);	and	mature,	hormone-responsive	luminal	(L-HR)	cells	(marked	by	Prlr).	Although	

it	is	known	that	these	cell	types	change	their	transcriptional	programs	during	pregnancy93,	

it	remains	elusive	whether	additional	cellular	diversity	exists	under	normal,	adult	

homeostasis.	Cellular	identity	is	strongly	influenced	by	the	epigenetic	wiring	of	the	cell,	
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which	is	not	measurable	by	scRNA-seq.	Instead,	these	features	can	interrogated	by	the	

assay	for	transposase-accessible	chromatin	using	sequencing	(ATAC-seq)	to	reconstruct	

cis/transregulatory	elements	associated	with	cellular	identity	in	bulk	assays95	and	at	the	

level	of	single-cell	ATAC-seq	(scATAC-seq)11.		This	approach	provided	insights	into	the	

differentiation	trajectories	of	the	hematopoietic	system96,97	and	has	elucidated	

transcriptional	regulators	of	developmental	lineages	of	the	fetal	mammary	gland	both	

using	bulk	ATAC-seq98	and	scATAC-seq99.	The	goal	of	the	present	study	is	to	elucidate	the	

molecular	underpinnings	mediating	cellular	identity	within	the	mouse	mammary	

epithelium	by	integrating	single-cell	transcriptomics	(scRNA-seq)	and	chromatin	

accessibility	(scATAC-seq)	profiling	of	mammary	epithelial	cells	(MECs).	Our	combined	

scRNA-seq/	scATAC-seq	analysis	revealed	luminal	progenitor	and	lactation-committed	cell	

states	within	the	L-Sec	cell	type	and	identified	cis/trans-regulatory	elements	associated	

with	cellular	identity	and	luminal	differentiation	states.	Our	work	provides	important	

insights	into	the	spectrum	of	MEC	identity	under	normal	homeostasis	and	will	serve	as	a	

resource	to	understand	how	the	system	changes	in	cancer.	
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RESULTS	AND	DISCUSSION		

Single-Cell	Chromatin	Accessibility	Reveals	Luminal	Epithelial	Cell	States	in	the	

Mouse	Mammary	Epithelium	

	Recent	single-cell	transcriptomics	analyses	revealed	that	the	MEC	system	consists	of	three	

main	cell	types—namely,	basal	(marked	by	Krt14),	L-Sec	(marked	by	Elf5),	and	mature	L-

HR	(marked	by	Prlr)—in	both	human	and	mammary	glands82,92–94	To	determine	whether	

additional	cell	states	exist	on	an	epigenetic	level,	we	used	massively	parallel,	droplet-

enabled	scATAC-seq	analysis	(10X	Genomics	Chromium)	on	MECs	sorted	from	post-

pubertal	mice	using	flow	cytometry.	We	subjected	MECs	to	scATAC-seq	analysis	in	three	

separate	samples,	profiling	in	total	23,338	individual	cells	(Figure	3.1A).	After	data	

processing	using	the	Cell	Ranger	pipeline	(10X	Genomics),	we	performed	unbiased	

clustering	on	all	peaks	using	Seurat12,	which	revealed	4	main	clusters	(0–3)	of	MECs	and	

minor	populations	of	contaminating	stromal	cells	(Figure	3.1B;	Figures	S1A	and	S1B).	To	

identify	the	genes	accessible	in	each	cell	type,	we	generated	a	gene	activity	matrix	to	serve	

as	pseudoexpression	data56.	This	enabled	us	to	identify	basal	cells	(cluster	0;	marked	by	

Krt14),	L-Sec	(clusters	2	and	3;	marked	by	Kit),	and	L-HR	(cluster	1;	marked	by	FoxA1)	

(Figure	3.1C).	We	also	generated	pseudobulk	profiles	to	visualize	differentially	accessible	

genomic	regions.	Wnt10a	was	found	to	be	specifically	accessible	in	basal	cells	(Figure	

3.1D),	whereas	Cldn3	displayed	one	major	peak	of	high	accessibility	in	all	three	clusters	of	

luminal	cells,	which	was	essentially	absent	from	the	basal	pseudobulk	analysis	(Figure	

3.1E).	Interestingly,	we	observed	two	distinct	clusters	within	the	L-Sec	cell	type	(Figure	

3.1C):	cluster	2	(marked	by	Tm4sf1,	encoding	a	tetraspanin	transmembrane	molecule	
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involved	in	breast	cancer	metastasis	through	regulation	of	the	phosphatidylinositol	3-

kinase	[PI3K]	pathway100),	and	cluster	3	(marked	by	Rspo1,	encoding	a	regulator	of	Wnt	

signaling,	R-Spondin	1,	that	can	mediate	mammary	stem	cell	renewal101).	Cluster	3	also	

showed	moderate	accessibility	of	the	basal	marker	gene	Krt14	(Figure	3.1C),	suggesting	

that	this	cell	state	within	L-Sec	shows	similarity	to	basal	cells,	which	could	indicate	a	

bipotent	progenitor	cell	state	that	can		
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Figure	3.1.	Single-Cell	Chromatin	Accessibility	Profiling	of	MECs	from	Post-pubertal	Mice	Reveals	Luminal	Epithelial	Cell	States	
(A)	Schematic	of	the	experimental	workflow	for	scATAC-seq	analysis.	(B)	UMAP	visualization	of	scATAC-seq	libraries,	colored	by	Seurat	
clustering	performed	on	an	aggregated	peak	matrix.	Cell	types	are	outlined	by	dotted	lines,	with	basal	cells	in	green,	hormone-responsive	
luminal	(L-HR)	cells	in	orange,	and	secretory	luminal	(L-Sec)	cells	in	indigo.	(C)	Violin	plots	of	Cicero-generated	gene	accessibility	matrix-
based	marker	genes	of	each	cluster,	with	boxes	colored	by	cell-type-specific	accessibility.	(D	and	E)	UMAP	of	scATAC-seq	analysis	on	the	
left,	with	cells	colored	by	gene	accessibility	expression	level	of	Wnt10a	and	Cldn3.	Pseudobulk	profiles	of	library	fragments	on	the	right,	
subset	by	cluster	at	genomic	regions	corresponding	to	Wnt10a	and	Cldn3.		
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differentiate	into	both	basal	and	luminal	lineages	or	a	transitory	luminal	progenitor	that	is	

directly	derived	from	a	basal	mammary	stem	cells6,7.	These	initial	analyses	showed	that	our	

scATAC-seq	dataset	represents	a	resource	to	explore	the	chromatin	accessibility	landscape	

in	individual	mouse	MECs.	

Defining	the	Distinct	Gene	Expression	Signatures	within	Mammary	Cell	Types	and	

States	Using	Single-Cell	Transcriptomics	

	To	further	explore	the	distinct	gene	expression	signatures	underlying	the	cell	states	

revealed	by	scATAC-seq,	we	performed	scRNA-seq	on	fluorescence-activated	cell	sorting	

(FACS)-isolated	MECs	from	age-	and	background-matched,	10-week-old,	female	FVB/NJ	

mice,	yielding	a	dataset	of	26,859	single-cell	transcriptome	libraries	(Figure	3.2A;	Figures	

3.3A	and	3.3B).	Using	clustering	through	Seurat,	we	detected	three	main	clusters	of	MECs	

and	their	distinct	marker	genes	(Figure	3.2B;	Figure	3.3C;)	that	correspond	to	basal	

(Krt14+),	L-Sec	(Kit/Elf5+),	and	L-HR	(Prlr+),	in	line	with	previous	single-cell	

transcriptomics	analyses82,93.	All	clusters	were	evenly	composed	of	cells	from	all	three	

individual	experiments.	We	detected	a	small	cluster	of	contaminating	stromal	cells,	minor	

clusters	of	proliferating	(P)	cells	(Mki67+),	and	small	clusters	expressing	both	luminal	and	

basal	keratins	that	displayed	high	levels	of	genes	per	cell,	suggesting	that	these	represent	

doublets	(D).	We	detected	two	distinct	cell	states	within	the	L-Sec	cluster	(Figure	3.2B;	

Figure	3.3D),	which	emerged	as	one	homogeneous	cluster	in	previous	scRNA-seq	

studies82,93.	Differential	gene	expression	analysis	revealed	that	one	of	these	clusters	was	

marked	by	genes	associated	with	milk	production,	such	as	Lipa,	Csn2,	and	Lalba,	and	thus	

labeled	the	lactation		
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Figure	3.2.	Single-Cell	Transcriptomics	of	MECs	Reveal	the	Lactation-Precursor	Cell	State	(A)	Schematic	of	the	experimental	
workflow	for	scRNA-seq	analysis	of	isolated	mouse	MECs.	(B)	UMAP	visualization	of	scRNA-seq	libraries	anchored	by	sample,	with	colors	
corresponding	to	unbiased	clustering	and	annotated	by	cell	type	and	state.	Basal	cells	are	in	red,	L-HR	cells	are	in	light	green,	and	L-Sec	
cells	are	outlined	in	dark	green.	Putative	doublets	are	marked	by	D,	and	proliferative	cells	are	marked	by	P.	Within	the	L-Sec	cell	type,	
two	distinct	clusters	emerged	that	were	labeled	mature	or	progenitor	based	on	gene	expression	signatures.	(C)	Volcano	plot	showing	
genes	that	are	differentially	expressed	between	L-Sec	luminal	progenitor	and	lactation	progenitor	cells.	(D	and	E)	Fluorescence	images	
from	in	situ	RNAscope	analysis	for	Aldh1a3	in	combination	with	immunostaining	for	basal-specific	KRT14	are	shown.	Luminal	and	basal	
compartments	are	outlined	in	the	blown-up	image.	Quantification	of	transcript	counts	per	basal	and	luminal	cells	is	shown;	data	were	
combined	from	three	independent	regions	of	mouse	mammary	gland	sections.	(F–H)	Validation	of	two	distinct	cell	states	using	flow	
cytometry.	(F)	Feature	plot	showing	gene	expression	of	Itgb3	encoding	CD61.	(G)	Flow	cytometry	analysis	of	primary	mouse	MECs	gated	
on	L-Sec	cells	only	showing	levels	of	CD61	ranging	from	negative	()	to	low	(lo)	and	high	(hi).	(H)	Gene	expression	of	marker	genes	from	
scRNA-seq	analysis	defining	luminal	progenitors	and	lactation	progenitors	measured	in	CD61,	CD61-lo,	and	CD61-hi	cells	using	qPCR.	
The	error	bar	indicates	inter-assay	variability	as	SEM	from	n	=	3	experiments.		
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Figure	3.3:	scRNAseq	quality	control	and	cell	type	identification	(A)	Sequencing	and	alignment	metrics	for	the	three	scRNAseq	
libraries.	(B)	UMAP	of	scRNAseq	analysis,	with	cells	colored	by	library	of	origin.	Proliferative	cells	are	marked	by	high	Mki67	gene	
expression,	with	dark	red	corresponding	to	high	expression	and	light	grey	to	low.	(C)	Marker	gene	heatmap	of	clusters	corresponding	to	
epithelial	cells,	with	yellow	corresponding	to	high	expression	and	purple	with	low.	(D)	Focused	analysis	of	L-Sec	cluster	and	
corresponding	marker	gene	is	shown,	where	expression	is	scaled	such	that	dark	red	corresponds	to	high	expression	of	the	gene	and	light	
grey	corresponds	low	expression	of	the	gene	in	question;	top	GO-term	including	accession	number	is	listed	for	Progenitor	and	Mature	
cell	states.	(E)	Bach	et	al.	analysis	of	NP	and	G	stage	mouse	scRNAseq	data,	with	UMAP	reduction	colored	by	their	cell	type	labels,	scoring	
of	our	scRNAseq	derived	L-sec	progenitor	and	lactation	progenitor	gene	signatures	visualized	via	ViolinPlot.	(F)	Summary	of	flow	
cytometry	strategy	to	specifically	gate	on	L-Sec	cells	from	primary	mouse	mammary	epithelial	cell	preparations.	(G)	Quantification	of	
mammosphere	formation	assay	using	CD61-	and	CD61+	L-Sec	cells	quantified	by	mammosphere	size	after	4	days	of	culture	(n	=	3).	Error	
bar	indicates	SEM.	Difference	between	CD61-	and	CD61+	was	statistically	significant	(t-test:	p<0.05).		 	
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progenitor,	whereas	the	second	cluster	expressed	high	levels	of	genes	associated	with	

general	luminal	progenitor	cell	capacity,	including	Aldh1a3102	and	Rspo1,	and	therefore	

labeled	the	luminal	progenitor	(Figure	3.2C).	Mature	alveolar	luminal	cells	arise	during	

pregnancy	and	lactation91.	Because	our	dataset	was	generated	from	nulliparous	mice,	we	

hypothesized	that	lactation	progenitors	represent	a	subset	of	lactation-precursor	cells	even	

before	pregnancy.	To	corroborate	this,	we	explored	an	scRNA-seq	analysis	of	mouse	MECs	

from	nulliparous,	pregnant,	and	lactating	mice	(Figure	3.3E)93.	We	performed	gene	scoring	

analysis	using	our	luminal	progenitor	and	lactation	progenitor	gene	signatures,	which	

revealed	that	alveolar	and	luminal	progenitors	correspond	to	our	luminal	progenitor	

cluster,	whereas	differentiated	alveolar	cells	from	pregnant	mice	are	highly	comparable	to	

our	lactation	progenitor	cell	state.	Because	Aldh1a3	marks	a	subset	of	luminal-restricted	

progenitor	cells102we	next	used	Aldh1a3	as	a	marker	for	in	situ	validation	of	this	cell	state.	

Using	a	specific	RNA-based	probe	(RNAscope)	for	Aldh1a3,	in	combination	with	anti-

KRT14	antibody	staining	to	label	the	basal	cell	compartment,	we	detected	a	subset	of	

luminal	epithelial	cells	(KRT14-negative)	with	pronounced	expression	of	Aldh1a3	located	

in	both	ductal	and	lobular	regions	of	the	mammary	gland	(Figure	3.2D).	Quantification	of	

cells	with	more	than	5	transcripts	per	cell	revealed	~15%	of	Aldh1a3+	in	the	luminal	

compartment	detected	by	RNAscope	(Figure	3.2E),	which	was	in	line	with	our	scRNA-seq	

results	showing	~13%	of	Aldh1a3+	luminal	cells.	We	also	found	that	the	cell	surface	

marker	CD61	(Itgb3),	which	is	known	to	mark	luminal	progenitors103,	is	increased	in	

lactation	progenitor	cells	(Figure	3.2F).	Using	flow	cytometry,	we	isolated	cKit+/CD61+	and	

cKit+/CD61	MECs	for	further	validation	by	qPCR	of	lactation	progenitor	genes	(Figure	

3.2G).	In	line	with	our	scRNA-seq	data,	we	found	that	cKit+/CD61+	cells	express	higher	
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levels	of	the	lactation	associated	genes	Lalba,	Spp1,	and	Csn2,	whereas	cKit+/	CD61	cells	

showed	expression	of	Rspo1	and	Aldh1a3,	as	detected	in	luminal	progenitor	cells	(Figure	

3.2H).	Altogether,	these	findings	confirmed	the	existence	of	two	distinct	states	within	the	L-

Sec	cell	type	as	predicted	by	scATAC-seq	and	allowed	us	to	integrate	these	results	with	the	

previously	proposed	functional	designations	as	luminal	progenitor	and	lactation	

progenitor	L-Sec	cells.	

Pseudotemporal	Analysis	Reveals	Continuous	Trajectory	from	Luminal	Progenitor	to	

Lactation	Progenitor	Cells	

We	next	used	pseudotemporal	ordering	using	Monocle	3	pseudotemporal	analyses79	to	

reconstruct	the	lineage	dynamics	between	luminal	progenitors	and	lactation	progenitors.	

In	particular,	we	wanted	to	answer	whether	these	are	distinct	cell	states	resulting	in	a	

loosely	connected	trajectory	or	whether	they	form	a	continuum	with	progenitor	and	

lactation-precursor	cell	states	at	both	ends	of	the	spectrum.	First,	focusing	on	our	scRNA-

seq	data,	we	generated	a	graph	trajectory	through	the	L-Sec	cluster	in	uniform	manifold	

approximation	and	projection	(UMAP)	space,	which	revealed	one	main	trajectory	

connecting	luminal	progenitor	and	lactation	progenitor	cells	with	minor	paths	branching	

off	to	each	side	(Figure	3.4A).	To	learn	more	about	the	different	regions	in	pseudotime,	we	

divided	the	cells	into	10	bins	based	on	their	position	along	the	trajectory	for	further	

interrogation	(Figure	3.4A).	Using	gene	signatures	from	the	Bach	et	al.	(2017)	dataset	for	

luminal	progenitor	scores	(LP	scores)	from	nulliparous	mice	and	alveolar	differentiated	

scores	(Avd	scores)	from	pregnant	mice,	we	found	that	L-Sec	cells		
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Figure	3.4.	Pseudotemporal	Analysis	Shows	a	Continuous	Differentiation	Trajectory	within	L-Sec	Cells	(A)	UMAP	reduction	of	the	
scRNA-seq	subset	on	L-Sec	cells	only	colored	by	Seurat	cluster	with	Monocle	3	pseudotemporal	trajectory	overlay,	with	the	boldface	path	
representing	the	major	transitionary	graph	from	luminal	to	lactation	progenitors.	UMAP	reduction	is	shown	(left	plot),	with	cells	colored	
by	pseudotime	with	dark	blue	corresponding	to	early	and	light	yellow	corresponding	to	late	(middle	plot).	The	right	plot	shows	UMAP	
reduction	colored	by	pseudotime	bin,	with	1	as	the	earliest	and	10	as	the	latest.	(B)	UMAP	reduction	colored	by	the	LP	score	derived	
from	Bach	et	al.	(2017)	(left),	and	a	feature	scatter	showing	individual	cell	gene	scores	colored	by	the	pseudotime	bin	score,	with	the	
dotted	line	indicating	the	associated	Pearson	correlation	(right).	(C)	UMAP	reduction	colored	by	the	Avd	score	from	cells	in	pregnant	
mice	(left)	derived	from	Bach	et	al.	(2017),	and	a	feature	scatter	showing	individual	cell	gene	scores	colored	by	the	pseudotime	bin	score,	
with	the	dotted	line	indicating	the	associated	Pearson	correlation	(right).		(D)	UMAP	reduction	visualizing	the	Smad2	downstream	target	
gene	expression	score,	in	which	cells	colored	dark	blue	have	low	scoring	and	cells	colored	light	yellow	have	high	scoring,	and	a	feature	
scatter	colored	by	the	pseudotime	bin	of	score	versus	pseudotime	and	the	associated	Pearson	correlation	(right).	(E)	UMAP	reduction	
visualizing	Gata1	downstream	target	gene	expression	score,	in	which	cells	colored	dark	blue	have	low	scoring	and	cells	colored	light	
yellow	have	high	scoring,	and	a	feature	scatter	colored	by	pseudotime	bin	of	score	versus	pseudotime	and	associated	Pearson	correlation	
(right).		

form	a	continuous	gradient	from	luminal	progenitors	with	high	LP	scores	and	low	Avd	

scores	to	lactation	progenitors	with	low	LP	scores	and	high	Avd	scores	(Figures	3.4B	and	

3.4C),	indicating	that	these	cells	exist	on	a	continuum	rather	than	in	distinct	states	of	
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progenitor	and	lactation-precursor	L-Sec	cells.	Focusing	on	our	scATAC-seq	data,	we	used	

Cicero104	to	generate	a	subset	L-Sec	UMAP	reduction	for	subsequent	pseudotemporal	

analysis	and	binning	as	described	earlier.	This	revealed	a	main	trajectory	connecting	

luminal	and	lactation	progenitor	cells	similar	to	our	scRNA-seq	analysis	(Figure	3.5A).	To	

identify	modules	of	genomic	peak	regions	in	the	scATAC-seq	that	are	coaccessible	and	vary	

through	pseudotime,	we	employed	the	CisTopic	pipeline	to	calculate	topics	of	

coaccessibility105.	We	found	several	topics	to	be	dynamically	correlated	with	pseudotime;	

for	example,	topic	5	showed	accessibility	early	in	pseudotime,	whereas	topic	1	represented	

features	that	were	accessible	late	in	pseudotime	(Figure	3.5B).	To	link	transcriptional	and	

chromatin	accessibility	dynamics,	we	next	analyzed	these	specific	topics	using	HOMER106	

to	test	for	significant	representation	of	the	transcription	factor	(TF)	binding	motifs	

contained	within.	We	then	used	our	scRNA-seq	dataset	to	generate	expression	modules	

that	are	differentially	expressed	along	the	major	trajectory	in	pseudotime	and	performed	

Gene	Ontology	(GO)	term	analysis	for	TF	signaling	outputs	using	Enrichr75	to	compare	

these	with	the	TF	motifs	identified	by	HOMER	on	the	scATAC-seq	level.	Interestingly,	we	

found	that	Smad2	motif	accessibility	and	Smad2	downstream	gene	expression	were	high	

early	and	gradually	decreased	in	pseudotime,	whereas	TF	motif	accessibility	and	

downstream	gene	expression	associated	with	GATA1	started	low	early	and	then	increased	

later	in	pseudotime	(Figure	3.4D	and	3E;	Figure	3.5).	Smad	family	TF	motifs	are	key		
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Figure	3.5:	scATACseq-based	pseudotemporal	analysis	in	secretory	luminal	compartment	(A)	UMAP	reductions	and	
corresponding	pseudotemporal	trajectory	overlay	for	secretory	luminal	cells	from	scATAC	analysis,	with	cells	colored	by	Seurat	clusters.	
(A)	UMAP	reduction	with	cells	colored	by	pseudotime,	with	dark	blue	corresponding	to	early	and	light	yellow	to	late.	(A)	UMAP	reduction	
with	cells	colored	by	pseudotime	bin,	with	1	as	the	earliest	and	10	as	the	latest.	(B)	Feature	scatter	plots	of	Topics	5,7,and	1	probability	
vs	Pseudotime,	with	cells	colored	by	position	in	pseudotime	and	associated	Pearson	correlation.	(B)	Topic’s	5	and	1	showed	enrichment	
of	the	Smad2	and	Gata1	binding	motifs	respectively	highlighted	below	their	feature	scatters.		
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mediators	of	transforming	growth	factor	b	(TGF-b)	signaling107,	indicating	that	this	

pathway	is	active	in	luminal	progenitor	cells.	However,	GATA	signaling	is	generally	

associated	with	luminal	differentiation108.	Altogether,	our	findings	support	a	continuous	

transition	between	L-Sec	progenitor	and	lactation	progenitor	cells	and	highlight	several	

chromatin	accessibility	changes	and	potential	transcriptional	regulators	associated	with	

this	transition.	

Integration	of	scRNA-Seq	and	scATAC-Seq	Reveals	Cell-Type-Specific	Transcriptional	

Regulators	and	cis	and	trans-Regulatory	Elements		

We	next	sought	to	integrate	our	scRNA-seq	and	scATAC-seq	datasets	to	gain	deeper	

biological	understanding	about	the	link	between	chromatin	accessibility	and	gene	

expression	within	MECs.	To	this	end,	we	used	an	approach	to	anchor	diverse	datasets	

together	for	comprehensive	integration	of	single-cell	modalities56.	This	integrated	object	

yielded	consistent	overlap	between	modalities	within	each	of	the	main	cell	types	and	

recapitulated	the	two	clusters	of	luminal	and	lactation	progenitor	cells	within	the	L-Sec	cell	

type	(Figures	4A	and	4B;	Figure	3.7A).	Known	hallmark	genes	for	mammary	cell	types	(e.g.,	

Krt5,	Krt8,	Kit,	and	Foxa1)	showed	strong	correspondence	between	chromatin	accessibility	

and	gene	expression	in	this	integrated	analysis	(Figure	3.7B).	We	observed	overall	high	

correlation	between	ATAC-seq	and	RNA-seq	data	(Figure	3.7C).	In	particular,	we	observed	

striking	consistency	for	Rspo1	in	progenitor	cells	and	Lalba	in	mature	L-Sec	cells	in	terms	

of	chromatin	accessibility	paired	with	gene	expression	(Figure	3.6B).	We	sought	to	use	this	

integrated	analysis	to	identify	TFs	that	may	be	critical	for	regulating	cell-type	identity.	We	

used	the	ChromVar	analysis	pipeline109	to	analyze	accessibility	of	cell-type-specific	TF	
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motifs	in	our	scATAC-seq	dataset.	Using	Seurat’s	marker	gene	test	on	the	resultant	TF	motif	

deviation	matrix,	we	uncovered	sets	of	cell-type	specific	TF	motif	enrichments	(Figure	

3.6A).	We	then	performed	cocorrelation	analysis	to	pinpoint	TF	modules	in	the	MEC	system	

(Figure	3.7D),	which	revealed	three	major	modules.	Module	1	contained	predominantly	Jun	

and	Fos-related	TF	motifs,	indicating	that	this	feature	is	related	to	a	subset	of	cells	showing	

stress	response,	most	likely	because	of	tissue	dissociation	and	FACS	isolation.	Module	2	

contained	numerous	TFs	previously	associated	with	basal	epithelial	biology,	such	as	

Tp63110,	but	Gata3	and	other	Gata	family	TFs	were	also	observed,	which	have	been	linked	

with	regulation	of	luminal	cell	fate	decisions108.	Finally,	module	3	contained	mostly	TFs	

associated	with	luminal	epithelial	biology,	such	as	Foxa1111	and	Elf5112,	but	also	included	a	

cluster	of	epithelial-to-mesenchymal	transition	(EMT)-related	TFs,	such	as	Tcf4,	Snai2,	and	

ID4113.	Next,	we	devised	cell-type-specific	TFs	displaying	both	motif	accessibility	and	active	

downstream	target	gene	expression	as	determined	by	Enrichr	analysis.	Reassuringly,	the	

master	regulator	of	basal	cell	biology,	Tp63110,	emerged	as	one	of	the	top	TF	motifs	that	

was	specifically	accessible	in	basal	cells	and	showed	distinct	gene	expression	as	calculated	

using	the	gene	score	for	a	set	of	TP63	target	genes	(Figure	3.6C).	Several	SMAD	TFs	yielded	

top	motif	scores	within	basal	cells;	however,	SMAD3	showed	the	highest	target	gene	

expression	scores	in	basal	cells,	indicating	that	SMAD3	represents	a	key	TF	in	the	

regulation	of	basal	cell	identity.	SMAD	family	TFs	are	critical	mediators	of	transforming	

growth	factor	b1	(TGFb1),	which	has	wide	implications	in	regulating	mammary	biology	and	

cancer114.	SMAD	TFs	also	showed	increased	activity	in	L-Sec		
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Figure	3.6.	Integration	of	Single-Cell	Chromatin	Accessibility	and	Transcriptomics	Datasets	(A)	Coembedding	of	scRNA-seq	and	
scATAC-seq	data	into	a	single	UMAP	visualization,	with	cells	colored	by	Seurat	cluster	or	label-transferred	cluster.	(B)	Coembedded	
UMAP	faceted	by	technology	type,	with	cells	from	scATAC-seq	libraries	on	the	left	and	cells	from	scRNA-seq	libraries	on	the	right.	Cells	
are	colored	based	on	scaled	expression,	with	gray	corresponding	to	low	expression	and	dark	red	corresponding	to	high	expression.	(C)	
Faceted	UMAP	visualization	of	coembedded	analysis,	with	scATAC-seq	cells	on	the	left	and	scRNA-seq	cells	on	the	right.	scATAC-seq	data	
are	colored	by	scaled	deviations	of	TF	motif	accessibility,	and	scRNA-seq	data	are	colored	by	gene	scoring	of	downstream	targets	of	TF	
signaling	as	annotated	through	GO	terms.	Yellow	corresponds	to	high	values,	and	dark	blue	to	corresponds	low	values.	(D)	Cicero	
connection	data	at	enhancer	region	chr7_101932449_101936345	generated	by	subset	analysis	by	cluster.	Connections	from	lactation	
progenitor	cells	are	shown	in	the	top	panel,	and	connections	from	the	L-Sec	progenitor	are	shown	in	the	bottom	panel,	with	a	minimum	
coaccessibility	score	of	0.2	visualized.	(E)	Violin	plot	ofFolr1expression	in	the	coembedded	analysis,	split	by	technology	type.	
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progenitors	(Figure	3.4E;	Figure	3.5B),	which	highlights	the	connection	between	basal	and	

L-Sec	progenitor	cells.	ELF1	showed	the	highest	motif	accessibility	in	both	luminal	clusters	

(L-Sec	and	L-HR);	however,	expression	of	ELF1	target	genes	is	most	predominantly	

detected	in	L-Sec	cells.	Finally,	we	explored	FOXA1	as	a	known	regulator	of	luminal	

differentiation,	which	showed	strong	correspondence	between	high	TF	motif	accessibility	

and	elevated	target	gene	expression	scores	specifically	in	L-HR	cells,	corroborating	the	

notion	that	FOXA1	is	a	master	regulator	of	the	L-HR	cell	type115.	To	identify	cis-regulatory	

elements	that	may	contribute	to	celltype	distinction,	we	used	the	Cicero	pipeline	for	

coaccessibility	analysis	to	determine	cell-type-specific	genomic	connections104.	The	

resulting	connections	were	subset	to	those	in	which	one	peak	of	each	pair	corresponded	to	

an	enhancer	region	from	EnhancerAtlas’s	mouse	mammary	putative	enhancer	list116.	

Directly	comparing	L-Sec	cell	states,	we	found	enhancer-specific	connections	near	the	Folr1	

locus	that	were	specific	to	lactation	progenitors,	but	not	luminal	progenitors	(Figure	3.6D).	

Further	interrogation	of	gene	expression	and	chromatin	accessibility	revealed	the	specific	

signal	for	Folr1	in	L-Sec	lactation	progenitors	(Figure	3.6E).	Folr1	has	been	identified	as	a	

putative	regulator	of	milk	protein	synthesis	in	cow	mammary	glands	(Menzies	et	al.,	2009),	

which	is	in	line	with	the	notion	that	this	cluster	is	a	lactation-committed	precursor	(Figure	

3.4	2C).	Altogether,	this	suggests	that	this	enhancer	region	on	chromosome	7	represents	a	

key	regulatory	element	that	becomes	active	during	lactation-precursor	differentiation.	

Altogether,	our	integrated	single-cell	transcriptomics	and	chromatin	accessibility	analysis	

of	the	MEC	system	revealed	a	cell-state	hierarchy	within	the	luminal	epithelial	

compartment	and	defined	transcriptional	and	epigenetic	underpinnings	regulating	cellular	

identity	in	the	mammary	epithelium.	In	particular,	we	define	distinct	maturation	states	
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within	L-Sec	cells,	which	exist	on	a	continuum	ranging	from	general	luminal	progenitor	

cells	(Rspo1	and	Aldh1a3)	to	potentially	lactation-committed	progenitor	cells	(Lalba	and	

Csn2).	By	directly	integrating	transcriptomics	and	chromatin	accessibility	datasets,	we	

provide	a	framework	to	devise	putative	key	TFs	by	combining	motif	accessibility	with	

positive	downstream	target	gene	expression.	We	also	identified	enhancer	regions	that	are	

systematically	associated	with	gene	accessibility	and	expression	of	effector	genes	

associated	with	L-Sec	differentiation	(Folr1).	Our	findings	lay	the	groundwork	for	future	

studies	to	functionally	address	the	biological	significance	of	these	cis/trans-regulatory	

elements	in	mediating	mammary	stem	and	progenitor	cell	function	and	to	determine	how	

the	chromatin	accessibility	landscape	changes	during	breast	cancer.	
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Figure	3.7:	Data	integration	quality	control	and	TF	motif	co-correlation	analysis	(A)	Coembedded	UMAP	representation	of	both	
scATACseq	cells	and	scRNAseq	cells,	with	colors	corresponding	to	the	data	type	of	origin.	(B)	Split	Dot	Plot	of	cell	type	markers,	with	
imputed	RNA	expression	intensity	in	the	scATACseq	cells	scaled	from	grey	to	dark	blue,	and	expression	intensity	in	scRNAseq	cells	
displayed	in	a	scale	from	grey	to	dark	red.	The	size	of	the	dot	corresponds	to	the	percentage	of	cells	within	that	cluster	have	positive	
expression	of	the	gene.	(C)	Correlation	of	gene	activity	matrix	from	scATACseq	cells	and	gene	expression	in	cells	from	scRNAseq,	split	by	
cell	type.	(D)	Heatmap	displaying	co-correlation	of	TF	motif	accessibility	shown	as	z-scores	(blue	=	low;	red	=	high).	Transcription	factors	
were	subset	to	those	that	were	found	through	logistic	regression	to	be	significantly	associated	with	a	particular	cluster	post	label	
transfer	from	scRNAseq	data	onto	scATACseq	data,	and	had	an	average	log-fc	greater	than	one.	Key	TFs	are	highlighted	in	relation	to	
putative	function	on	the	box	to	the	right.		
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EXPERIMENTAL	MODEL	AND	SUBJECT	DETAILS	

Mice	For	sequencing,	FVB/NJ	mice	are	from	Jackson	Laboratory	(Stock	Number:	001800)	

were	employed.	In	both	scRNAseq	and	scATACseq	experiment,	10	weeks	old	female	mice	

were	used	for	tissue	collection.	For	RNAscope	experiments,	10-week	old	C57BL/6	mice	

from	Jackson	Laboratory	(Stock	Number:	000664)	were	used.	All	experiments	have	been	

approved	and	abide	by	regulatory	guidelines	of	the	International	Animal	Care	and	Use	

Committee	(IACUC)	of	the	University	of	California,	Irvine.	

METHOD	DETAILS	

Cell	Isolation	and	single-cell	RNA	and	ATAC	sequencing	library	generation		

Mammary	glands	number	4	were	collected	and	pooled	from	a	total	of	four	10-week	old,	

female	FVB/NJ	mice.	Glands	were	minced	into	pieces	~1mm	in	diameter	and	processed	as	

previously	described117.	In	brief,	minced	glands	were	incubated	with	a	2mg/ml	collagenase	

type	IV	solution	at	37C	while	shaking	for	1	hour.	Digested	organoids	were	collected	by	

differential	centrifugation.	Collected	organoids	were	further	dissociated	with	trypsin	into	

single	cells.	Cells	were	stained	for	flow	cytometry	using	fluorescently	labeled	antibodies	for	

CD49f,	EpCAM,	CD31,	CD45,	Ter119,	and	SytoxBlue.	For	scRNAseq,	live	epithelial	cells	were	

collected	for	sequencing.	For	scATACseq,	basal	and	luminal	cells	were	collected	separately.	

Library	generation	for	10x	Genomics	v2	chemistry	was	performed	following	the	Chromium	

Single	Cell	30Reagents	Kits	v2	UserGuide:	CG00052	Rev	B.	Library	generation	for	single	cell	

ATACseq	were	performed	following	the	Chromium	Single	Cell	ATAC	Re-agent	Kits	User	

Guide:	CG000168	Rev	B.	Single	cell	RNAseq	and	ATACseq	libraries	were	sequenced	on	the	

Illumina	HiSeq4000	plat-form	targeting	approximately	50,000	reads	per	cells.	
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Validation	by	qPCR	

Mammary	Glands	number	2,	3,	4,	and	5	were	collected	and	combined	from	a	total	of	four	

13-week	old,	female	FVB/NJ	mice.	Mammary	glands	were	processed	with	the	same	

procedure	as	those	isolated	for	scRNAseq.	Cells	were	stained	for	flow	cytometry	using	

fluorescently	labeled	antibodies	for	CD49f,	EpCAM,	cKit,	CD61,	CD31,	CD45,	Ter119,	and	

SytoxBlue.	Gates	were	set	to	sort	out	and	collect	CD61-,	CD61lo,	and	CD61+	cells	from	the	

cKit+	luminal	epithelial	population.	Directly	after	sorting,	RNA	was	collected	using	a	Quick-

RNA	Microprep	RNA	isolation	kit	(Zymo	Research:	R1054).	The	extracted	RNA	was	

immediately	processed	into	cDNA	using	an	iScript	cDNA	Synthesis	Kit	(Biorad:	1708891).	

qPCR	reactions	were	performed	using	PowerUp	SYBR	Green	Master	Mix	

(AppliedBiosystems:	A25742)	and	Ct	values	were	normalized	to	Gapdh	Ct	values.	

Mammosphere	assay		

Mammary	Glands	number	2,	3,	4,	and	5	were	collected	and	combined	from	a	total	of	four	

female	FVB/NJ	mice	in	triplicate	(10-	13	weeks	in	age).	Mammary	glands	were	processed	

with	the	same	procedure	as	those	isolated	for	scRNAseq.	Cells	were	stained	with	the	same	

panel	as	for	the	qPCR	validation,	and	gates	were	set	to	sort	and	collect	basal	cells,	CD61-	

and	CD61+	cells	from	the	cKit+	luminal	population,	as	well	as	cKit-	luminal	cells.	Each	cell	

type	was	then	individually	resuspended	in	complete	Epicult-	B	Mouse	Medium	(Stemcell:	

05610)	medium	and	mixed	1:1	with	Matrigel	(Corning:	354230).	Cells	were	plated	in	the	

center	of	individual	wells	on	a	24-well	cell	culture	plate	(Genesee:	25-107)	at	a	density	of	

10,000	cells/well,	in	a	final	cell-containing	Matrigel	solution	volume	of	40uL/well.	The	cell-

containing	Matrigel	was	solidified	for	15	mins	in	a	humidified	37C	cell	culture	incubator	
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with	5%	CO2.	Each	well	then	had	1mL	of	Epicult	media	added	to	it.	Mammospheres	were	

cultured	in	a	humidified	37C	cell	culture	incubator	with	5%	CO2	for	a	total	of	7	days.		

Mammosphere	image	analysis		

Brightfield	2x	magnification	z	stack	images	of	the	mammosphere	cultures	were	taken	using	

a	Keyence	Microscope	on	day	4	and	day	7	of	culture.	The	full	focus	z	stack	images	were	

then	analyzed	using	ImageJ	v1.52p	software.	Each	image	was	converted	to	binary	with	the	

‘‘Make	Binary’’	function,	then	underwent	‘‘Fill	Holes’’	and	‘‘Watershed’’	processing.	To	

count	the	number	and	average	area	of	spheres	in	each	image	we	then	used	the	‘‘Analyze	

Particles’’	feature.	A	lower	sphere	area	threshold	was	set	to	0.005	inch2	(smallest	size	that	

still	appears	to	be	a	real	sphere	in	the	image)	for	every	image,	and	the	upper	sphere	area	

threshold	was	determined	by	measuring	the	area	of	the	largest	sphere	in	each	image.	

Circularity	was	set	to	0.50-1.00.	Each	condition	in	every	experiment	is	rep-	resented	by	

four	images	(quadruplicate),	each	from	an	individual	well.		

Sequence	alignment	and	data	processing		

Alignment	of	scRNAseq	analyses	was	completed	utilizing	10x	Genomics	Cell	Ranger	

pipeline	(version	2.1.0).	Alignment	of	scATAC	seq	analyses	was	completed	utilizing	10x	

Genomics	Cell	Ranger	ATAC	pipeline	(version	1.1.0).	Each	library	was	aligned	to	an	indexed	

mm10	genome	using	Cell	Ranger	Count	and	Cell	Ranger	ATAC	Count.	‘‘Cell	Ranger	Aggr’’	

function	was	used	to	normalize	the	number	of	confidently	mapped	reads	per	cells	across	

the	libraries	from	different	libraries	for	scRNAseq	and	scATACseq	separately.		

Cell-type	clustering	analysis	and	marker	identification	using	Seurat		
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The	aggregated	peak-by-cell	data	matrix	was	read	into	R	(R	version	3.6.0)	and	processed	

using	the	Seurat	single	cell	analysis	pack-	age	version	3.0.212.	Along	with	the	peak	matrix,	

the	Cicero-generated	gene	activity	matrix	(see	below)	and	ChromVar	deviations	score	

matrix	(see	below)	were	added	as	assays	to	the	Seurat	object.	A	quality	control	cutoff	of	a	

minimum	of	2500	fragments	per	cell	was	applied	to	trim	the	dataset	of	low-quality	cells.	

Next,	variable	features	of	the	peak	matrix	were	set	to	peak	regions	of	>	100	across	the	

matrix.	These	variable	features	were	used	to	perform	Latent	Semantic	Indexing	(LSI),	and	

the	first	50	components	were	calculated.	These	components	were	then	used	to	generate	a	

Uniform	Manifold	Approximation	and	Projection	(UMAP)	dimensionality	reduction.	Post	

UMAP,	a	Shared-Nearest-Neighbor	graph	was	generated	from	the	first	14	LSI	components	

chosen	via	the	elbow	plot	method	and	was	used	to	cluster	the	cells	via	Seurat’s	Louvain	

algorithm.		

Marker	genes	for	peak-based	clustering	were	generated	using	Seurat’s	default	

FindAllMarkers()	function	on	the	gene	activity	matrix.	Pseudobulk	profiles	by	cluster	

highlighting	fragment	stack	ups	at	particular	genomic	regions	were	generated	using	Signac	

(version	0.1.0).		

Post	label	transfer,	cell	type-specific	transcription	factor	motifs	were	calculated	using	the	

logistic	regression	method	option	implemented	in	Seurat’s	FindAllMarkers()	function.	

Those	TF	motifs	that	had	an	average	log	fold	change	greater	than	one	were	used	to	

generate	the	correlation	heatmap	to	find	co-correlated	modules	of	transcription	factor	

motif	enrichment.		

Single-cell	RNAseq	analysis		
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Each	of	the	scRNAseq	data	libraries	were	independently	read	into	R	version	3.6.0	and	

processed	using	the	Seurat	pipeline	version	3.0.2.	Genes	had	to	be	expressed	in	at	least	

three	cells	to	be	considered	for	analysis.	Cells	were	trimmed	to	those	that	had	at	least	200	

minimum	unique	genes	expressed,	no	more	than	6000	unique	genes,	and	less	than	30%	of	

counts	aligning	to	the	mitochondrial	genome.	Libraries	were	anchored	and	integrated	

using	the	top	2000	variable	features	per	library	calculated	via	the	‘‘vst’’	method	in	Seurat.	

Canonical	correlation	analysis	(CCA)	on	these	2000	features	between	the	libraries	was	

calculated,	and	the	first	20	dimensions	used	as	input	for	anchoring.	Post	anchoring,	PCA	

was	performed	and	the	first	10	PC’s	were	used	for	UMAP	dimensionality	reduction	and	

subsequent	clustering	using	the	default	Louvain	implementation.	Marker	genes	per	cluster	

were	calculated	using	Seurat’s	Find	AllMarkers()	function	and	the	‘‘wilcox’’	test	option.	GO	

term	enrichment	was	performed	using	Enrichr75.		

Gene	activity	matrix	generation		

The	aggregated	peak-by-cell	data	matrix	was	read	into	R	version	3.6.0,	binarized,	and	

processed	with	the	Cicero	analysis	package	version	1.2.0	and	the	monocle	3	alpha	version	

2.99.3	to	generate	a	gene	activity	matrix	for	all	cells	sequenced	in	the	study.	The	generation	

of	the	matrix	took	into	account	not	only	fragments	that	aligned	to	regions	proximal	to	the	

promoter	site	of	each	protein	coding	gene	in	the	genome	took	into	account	peak	co-

accessibility	scores	also	generated	through	Cicero	for	all	cells	to	factor	in	distal	genomic	

relationships	to	the	promoter	site	of	each	gene.		

Single-cell	ATACseq	analysis	using	cisTopic		
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After	cell	filtration,	the	binarized	matrix	was	inputted	in	an	R	package,	cisTopic(v.0.2.2),	to	

cluster	the	ATAC-seq	data	and	analyze	the	chromatin	accessibility	difference	among	cell	

groups.	It	generated	probabilities	of	a	region–topic	distribution	and	topic–cell	distribution	

which	were	calculated	using	a	latent	Dirichlet	allocation	model	with	a	collapsed	Gibbs	

sampler.	Regions	were	identified	as	associated	with	certain	topics	by	automatically	

selecting	a	probability	threshold	based	on	a	fit	of	the	region	scores	to	a	gamma	distribution.		

Cis-regulatory	regions	by	cluster		

Post	label	transfer,	scATACseq	cell	libraries	were	subset	by	their	predicted	ID	label,	

whereupon	the	Cicero	pipeline	was	utilized	on	each	subset.	Co-accessibility	networks	were	

generated,	with	pairs	of	peak	regions	and	their	corresponding	score	in	a	data	frame.	This	

data	frame	was	subset	to	only	those	pairs	that	overlapped	with	regions	in	the	

EnhancerAtlas	mouse	mammary	list	as	the	first	peak	of	the	connection116.	This	trimmed	

connection	matrix	was	then	thresholded	for	each	cell	type	to	those	that	had	a	co-

accessibility	score	greater	than	0.2.	Next,	the	second	non-enhancer	peak	in	the	pair	was	

annotated	to	its	closest	protein	coding	gene.	Conserved	expression	markers	between	

technology	(RNA	and	ATAC	in	the	RNA-imputed	matrix)	were	found	by	cell	type	and	the	

respective	co-accessible	gene	regions	that	were	both	highly	connected	to	an	enhancer	

region,	and	represented	a	marker	for	a	cell	type	were	selected.		

Transcription	factor	(TF)	motif	analysis	using	ChromVar		

Motif	enrichment	analysis	was	performed	using	an	R	package	ChromVAR	version	1.4.1109.	

Open	chromatin	peaks	and	read	counts	at	open	chromatin	were	defined	by	the	Cell	Ranger	

pipeline	as	described	above.	After	correction	of	GC	bias,	TF	deviation	score	was	calculated	
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using	a	total	of	579	TF	motif	position	weight	matrices	provided	with	the	10X	Genomics	Cell	

Ranger	package.	For	TF	clustering	analysis,	only	cells	corresponding	to	epithelial	clusters	

post	label	transfer	(0,1,2,3)	were	selected.	TF	enrichment	scores	were	averaged	by	cluster	

and	hierarchically	clustered	using	hclust(	)	and	pheatmap(	)	in	R.		

Combined	scATACseq	and	scRNAseq	analysis		

To	generate	a	coembedding	of	cells	from	both	scATACseq	and	scRNAseq	libraries,	cells	

from	the	scRNAseq	analysis	were	used	as	a	reference	dataset	to	predict	cluster	labels	in	the	

scATACseq	dataset	and	transfer	them.	This	prediction	used	the	variable	features	of	the	

scRNAseq	analysis	on	the	RNA	assay,	and	the	gene	activity	matrix	of	the	scATACseq	

analysis	as	the	query	data.	Transfer	anchors	were	learned	using	FindTransferAnchors(	)	

and	the	cluster	labels	were	predicted	using	the	TransferData(	)	function	together	with	the	

peak-based	scATACseq	LSI	reduction	as	the	weight.reduction	function	option	input.	Next,	

an	imputed	gene	activity	matrix	was	generated	by	using	the	TransferData(	)	function	again,	

with	the	previously	learned	transfer	anchors	and	a	matrix	consisting	of	only	the	variable	

features	of	the	scRNAseq	analysis	and	its	corresponding	cells	as	the	reference.	This	

imputed	expression	matrix	was	then	used	to	merge	the	two	Seurat	objects,	allowing	for	co-

visualization	of	cells	labeled	by	the	scRNAseq	cluster	labels	or	their	predicted	cluster	labels	

for	the	scRNAseq	based	or	scATACseq	respectively.		

For	combined	TF	motif	accessibility	and	target	gene	expression	analysis,	we	first	identified	

cell	type-specific	TF	motifs	in	our	ChromVar	analysis	(see	above),	and	then	performed	

Enrichr	analysis	using	cell	type	marker	genes	from	scRNAseq	to	identify	‘‘ENCODE	and	

ChEA	Consensus	TFs	from	ChIP-X’’	for	each	cell	type.	Transcription	factor	targets	came	
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from	the	Enrichr	analysis,	where	marker	genes	by	cluster	were	analyzed	and	those	genes	

that	had	pathway	hits	in	the	‘‘ENCODE	and	ChEA	Consensus	TFs	from	ChIP-X’’	annotation	

for	particular	transcription	factors	were	used	to	score	all	cells	using	Seurat’s	AddModule-	

Score(	)	function.		

Pseudotemporal	Analyses		

For	the	scRNAseq	analysis,	using	R	version	3.6.3,	cells	pertaining	to	clusters	1	and	3	(L-sec	

progenitor	and	lactation	progenitor)	were	subset	into	their	own	raw	counts	data	matrix.	

This	matrix	was	then	processed	using	Monocle	3	version	0.2.1	functionality.	Using	the	

subset	UMAP	cell	positions	from	the	scRNAseq	analysis,	we	next	employed	monocle	to	

learn	a	graph	trajectory	through	this	space.	The	beginning	of	pseudotime	was	chosen	as	the	

branch	node	that	started	within	our	L-sec	progenitor	cluster.	Cells	were	then	binned	into	

10	groups	based	on	their	positions	along	pseudotime.	To	further	explore	the	branch	of	the	

trajectory	that	traveled	from	the	start	of	pseudotime	toward	the	lactation	progenitor	

population,	we	manually	selected	cells	along	the	branch	for	subset	analyses.	We	per-	

formed	differential	expression	as	a	function	of	pseudotime	and	clustered	the	genes	from	

the	output	into	expression	modules	that	varied	along	the	trajectory.	These	modules	were	

then	each	separately	entered	into	Enrichr75	to	interrogate	TF	downstream	signaling	genes,	

which	were	then	compared	to	scATACseq	analysis.		

For	the	scATACseq	pseudotemporal	analysis,	we	first	used	Cicero	(version	1.3.4.8,	built	of	

the	aforementioned	monocle	3	version),	to	project	clusters	2	and	3	in	a	subset	analysis.	

Contaminating	cells	were	removed,	and	the	resulting	peak	region	matrix	was	binarized	and	

processed	using	cicero.	A	UMAP	dimensionality	reduction	was	calculated	and	used	as	the	
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basis	for	learning	the	graph	trajectory.	The	beginning	of	pseudotime	was	selected	as	the	

branch	point	harboring	progenitor	cells	as	previously	annotated.	An	identical	binning	

approach	was	then	applied	to	the	cells	in	the	analysis	as	described	above	for	scRNAseq	

data.	Seeking	an	analogous	com-	parison	to	the	gene	expression	modules	generated	in	the	

RNA	analysis,	we	employed	cisTopic	to	generate	topics	of	peak	regions	that	we	could	then	

visualize	using	our	binned	pseudotime	designations	to	observe	which	topics	had	an	

increased	probability	at	different	positions	along	the	graph.	The	regions	associated	with	

each	topic	were	output	as	bed	files	containing	the	genomic	coordinates	by	getBedFiles	

function	in	cisTopic.	The	bed	files	were	used	as	input	into	the	findMotifsGenome	command	

of	HOMER(v4.7).	The	size	parameter	was	set	to	200	and	the	repeat-masked	sequence	was	

used.	Mm10	was	used	as	the	reference	genome.	HOMER	screened	its	library	of	known	

motifs	against	the	input	regions	and	background	for	enrichment.	These	motifs	were	then	

cross-referenced	to	the	scRNA	pseudotime	gene	module	Enrichr	output	for	those	TF’s	that	

had	both	a	hit	on	our	HOMER	analysis	and	in	their	downstream	signaling	outputs	among	

modules	and	topics	that	exhibited	similar	patterns	(probability	or	gene	module	scores)	

through	pseudotime.		

Comparison	with	scRNAseq	dataset	from	pregnancy		

Single	cell	gene	expression	matrix	from	Bach	et	al.	(2017)	was	downloaded	and	loaded	into	

R	version	3.6.3.	Using	meta	data	supplied	by	the	authors,	cells	corresponding	to	their	

published	analysis	of	both	the	Nulliparous	(NP)	and	Gestational	(G)	stages	of	mouse	

samples	were	separated	into	a	single	matrix	and	analyzed	using	Seurat	version	3.1.4.	No	

additional	trimming	was	performed	to	maintain	consistency	with	the	published	analyses.	
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Following	standard	Seurat	workflow12,	a	UMAP	was	generated	using	the	top	2,000	variable	

genes	selected	via	the	default	‘‘vst’’	method.	Cluster	/	cell	type	labels	were	preserved	from	

the	manuscript	for	visualization	and	downstream	analysis.	Using	Seurat,	marker	genes	

were	generated	for	the	labeled	clusters,	whereupon	the	top	100	markers	by	log	fold	change	

for	the	LP	and	Avd	cell	types	were	used	for	scoring	in	the	scRNAseq	pseudotime	analysis	

(see	above).	Using	the	top	100	marker	genes	by	log	fold	change	derived	from	our	scRNAseq	

data,	cells	in	the	Bach	et	al.	(2017)	analysis	were	additionally	scored	using	the	Seurat	

function	AddModuleScore()	using	genes	corresponding	to	the	L-sec	progenitor	and	

lactation	progenitor	cell	designations	and	visualized.		

In	situ	RNA	analysis	using	RNAscope	

Mammary	glands	were	harvested	from	a	10-week	old	C57BL/6	mouse	and	frozen	in	O.C.T	

Compound	(4583,	Sakura).	10-micron	sections	were	fixed	with	fresh	4%	PFA	made	from	

40%	PFA	(15715-S,	Electron	Microscopy	Sciences)	diluted	in	PBS	(21-031-	CV,	Corning)	for	

1	hour	at	RT.	The	RNAscope	assay	for	the	Aldh1a3	probe	(501201,	ACDBio)	was	performed	

according	to	the	manufacturer’s	protocol	for	fresh	frozen	sections.	The	images	were	

acquired	with	a	Zeiss	LSM	700	confocal	microscope.	Fiji	was	used	to	calculate	the	number	

of	Aldh1a3	foci	(RNA	molecules)	per	nuclei	manually.	Nuclei	enveloped	in	Krt14	protein	

are	called	basal	for	this	analysis.	Nuclei	adjacent	to,	but	not	enveloped,	are	called	luminal.	

To	quantify	the	percentage	of	Aldh1a3-positive	cells,	we	applied	a	cut-off	of	n	>	5	molecules	

per	nuclei	and	calculated	the	percentage	of	all	cells	in	basal	or	luminal	compartment.		
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Chapter	4:	Conclusion	and	Future	Directions	

	 The	mammary	gland	remains	a	critical	area	of	study	at	the	intersect	developmental,	

cell,	and	cancer	biology.	With	continued	advances	in	standard	of	care	for	breast	cancer	

patients	(https://www.breastcancer.org/research-news/20100930),	greater	and	greater	

value	should	be	placed	on	tools	for	early	detection	and	informing	risk	for	the	patient	

population.	That	value	is	generated	by	the	thorough	characterization	of	the	normal	breast	

epithelial	hierarchy	to	establish	a	foundation.	Moving	forward,	we	as	scientists	can	clearly	

establish	the	molecular	transitions	that	accompany	cancer	development.	Armed	with	this	

information	we	will	save	lives	and	reduce	healthcare	costs	across	the	board.	From	a	

developmental	perspective,	the	majority	of	the	mammary	gland	takes	place	postnatally	and	

so	mouse	model	systems	are	ideal	to	interrogate	and	test	hypotheses.	Heterogeneity	has	

always	been	relevant	to	the	underlying	questions	being	asked	in	mammary	gland,	but	it	is	

only	now	with	the	advent	of	single	cell	technologies	that	we	can	truly	begin	to	explore	an	

unbiased	view	of	the	biology	at	hand.	

	 This	is	not	without	its	challenges,	and	through	the	process	of	the	thesis	described	

above,	we	examine	the	boons	and	potential	pitfalls	of	the	nature	of	library	preparation	and	

the	resultant	data’s	analysis.	Due	to	the	fast	moving	nature	of	this	field,	many	of	the	specific	

computational	approaches	applied	to	ameliorate	issues	such	as	batch	effects	and	unwanted	

technical	variation	are	likely	to	have	new	solutions	in	the	works	or	already	published.	That	

being	said,	the	foundational	considerations	of	these	issues	will	never	go	away	when	

designing	an	experimental	plan	and	the	more	that	researchers	can	set	themselves	up	for	

success	by	reducing	potential	for	issues	will	only	improve	a	study.	Benjamin	Franklin	
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famously	said	“An	ounce	of	prevention	is	worth	a	pound	of	cure”	in	reference	to	fire	

susceptibility	in	Philadelphia,	and	this	is	no	less	true	for	in	science.	It	is	better	to	cover	your	

bases	beforehand	than	have	to	put	out	“fires”	computationally	post	dataset	generation.		

	 Chapter	2	of	this	thesis	employed	scRNA-seq	as	a	tool	to	characterize	the	normal,	

adult	mammary	epithelial	compartment	from	mammoplasty	reduction	tissue	sources.	

When	working	with	human	tissue,	this	source	is	one	of	the	better	ways	to	get	“normal”	

tissue	without	capture	postmortem	but	not	without	its	own	biases	(weight,	age,	parity	

status).	We	show	that	despite	patient	to	patient	variation	driving	individual	datasets	to	

separate	in	our	analysis	that	their	remains	a	distinct	underlying	structure	to	the	epithelial	

hierarchy	of	Basal	Cells,	L1,	and	L2	cell	types	respectively.	Basal	and	Myoepithelial	cells	

marked	by	high	KRT14	expression,	with	the	former	having	more	specific	expression	of	

APOD	and	TIMP1,	while	the	latter	is	characterized	by	higher	TAGLN	and	ACTA2	

expression(Figure	2.4)	The	luminal	compartment	presented	two	main	cell	types	that	were	

both	positive	for	KRT8	and	KRT18	expression,	with	a	secretory-like	cell	type	referred	to	as	

L1	marked	by	SLPI	and	a	more	hormone	responsive-like	population	marked	by	specific	

expression	of	ANKRD30A	and	AGR2	(Figure	2.4).	The	L1	compartment	also	exhibited	two	

cell	states	within,	with	L1.1	characterized	by	higher	LTF	positivity	and	L1.2	presenting	

higher	CLDN4	expression	(Figure	2.4).	

	 The	mRNA	gene	expressions	of	these	cell	types	were	consistent	across	individuals	

sampled	in	the	study,	but	things	were	taken	a	step	further	to	validate	the	existence	of	these	

cell	types	through	immunofluorescence	analysis	in	tissue	sections.	In	the	basal	

compartment,	it	is	shown	that	the	heterogeneous	observation	of	KRT14	expression	along	
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with	rare	population	characterized	by	ZEB1	and	TCF4	positivity	are	preserved	from	mRNA	

to	protein	(Figure	2.6).	We	show	distinct	separation	spatially	of	the	L1	and	L2	cell	types	

(Figure	2.8),	through	staining	of	SLPI,	ANKRD30A,	and	three	different	hormone	receptors	

(ER,	PR,	AR).		Additionally,	it	was	observed	through	expression	and	staining	that	in	the	

luminal	compartment	there	exists	a	subset	of	cells	that	are	double	positive	for	both	KRT14	

and	KRT18	(Figure	2.7).	

	 The	next	step	of	the	analysis	was	to	attempt	to	relate	these	different	cell	types	and	

states	to	one	another	in	a	developmental	context	bioinformatically.	Because	this	is	primary	

human	data,	we	cannot	easily	establish	a	true	timeline	of	development	in	a	healthy	tissue	

and	so	must	rely	on	the	“snapshot”	nature	of	our	epithelial	cell	capture	for	sequencing	and	

the	dynamic	process	of	homeostasis	within	the	adult	gland.	For	this,	we	employed	the	

pseudotemporal	reconstruction	algorithm	Monocle	to	generate	a	trajectory	of	the	putative	

developmental	relationship	between	the	observed	cell	types.	With		ZEB1/TCF4	positive	

basal	cells	set	as	the	beginning	of	pseudotime,	the	graph	then	branched	into	3	major	

trajectories	(Figure	2.9,2.10,2.11).	Basal	cells	comprised	the	right	most	path,	with	an	

enrichment	for	the	Myoepithelial	subtype	the	later	into	pseudotime	the	cells	progressed.	

To	the	other	side	of	the	trajectory,	the	luminal	cells	segregated	themselves	into	two	

separate	branches	largely	enriched	for	L1	and	L2	respectively.	It	is	also	of	note	that	the	

L1.2	subtype	presented	the	highest	density	at	the	branch	point	between	the	two,	

suggesting	it	may	be	a	more	progenitor-like	cell	state	that	gives	rise	to	the	distinct	luminal	

cell	types.	
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	 Chapter	3	of	this	thesis	took	the	next	steps	past	scRNA-seq	analysis	of	the	mammary	

gland	epithelium	and	employed	scATAC-seq	to	interrogate	the	notion	of	heterogeneity	

encoded	at	the	epigenetic	level	of	cells	and	what	regulatory	machinery	contributes	to	cell	

identity	in	a	mouse	model	system.	Reassuringly,	the	basic	architecture	of	the	mammary	

gland	between	human	and	mouse	with	one	major	basal	population	represented,	and	two	

major	luminal	populations	(L-HR	and	L-Sec)	(Figure	3.1).	The	L-Sec	cell	type	showed	

additional	sub-structure	by	splitting	into	two	distinct	subclusters.	Using	the	chromatin	

accessibility	data,	we	show	that	through	pseudoexpression	generated	using	Cicero	that	

basal	cells	are	characterized	by	increased	accessibility	at	the	Krt17	and	Krt14	genomic	loci	

(Figure	3.1).	L-HR	exhibited	specific	accessibility	associated	with	Foxa1,	while	L-Sec	

alternatively	possessed	unique	accessibility	associated	with	the	Kit	genomic	loci.	

	 Using	scRNA-seq,	we	show	that	a	similar	architecture	of	the	gland.	Here	canonical	

cell	type	markers	are	consistent	with	basal	cells	expressing	high	levels	of	Krt14,	Acta2,	and	

Tagln	(Figure	3.2).	In	the	luminal	compartment,	L-HR	cells	were	characterized	by	Krt18,	

Prlr,	and	Areg	while	the	both	L-Sec	populations	were	marked	by	Krt18	(Figure	3.2,3.3).	

Taking	a	deeper	dive	into	the	substructure	of	the	L-sec	compartment,	we	show	through	

differential	expression,	RNAscope,	and	qPCR	after	FACS	that	there	is	consistent	

heterogeneous	expression	of	Aldh1a3	associated	with	the	L-Sec	Progenitor-like	population	

as	compared	to	the	L-Sec	Mature	(Figure	3.2,3.3).	

	 With	the	language	of	progenitor	and	mature-like	being	used	to	describe	these	cell	

states	within	the	L-Sec	compartment,	it	was	a	natural	next	step	to	employ	pseudotemporal	

trajectory	construction	algorithms	to	investigate	how	gene	expression	and	chromatin	
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accessibility	profiles	change	as	a	cell	travels	the	path	from	a	more	progenitor	like	state	to	

that	of	the	mature.	The	resultant	graph	for	the	scRNA-seq	trajectory	begins	with	cells	of	the	

L-Sec	Prog	cluster,	and	as	cells	travel	through	positive	pseudotime	end	up	in	regions	

enriched	for	the	L-sec	Mat	cluster	(Figure	3.4).	We	show	that	there	is	a	reduction	in	gene	

expression	associated	with	a	Luminal	Progenitor	type	signature	(taken	from	an	analysis	of	

Bach	et	al.	2017)	and	an	increase	in	gene	expression	associated	with	their	published	

Differentiated	Alveolar	through	pseudotime	(Figure	3.4).	The	scATAC-seq	data	provided	a	

graph	reconstruction	similar	to	that	of	the	scRNA-seq	in	their	relationship	to	progenitor	

and	mature	states	and	pseudotime,	as	well	as	a	host	of	genomic	regions	differentially	

accessible	through	pseudotime	(Figure	3.5).	These	regions	were	then	processed	with	

HOMER	to	calculate	motif	enrichment	of	transcription	factors.	Specifically,	we	found	that	

the	SMAD3	motif	was	associated	with	cells	early	in	pseudotime	while	the	GATA1	motif	

exhibited	accessibility	late	in	the	trajectory	(Figure	3.5).	Using	GO	annotations,	we	then	

took	genes	associated	with	SMAD3	and	GATA1	downstream	signaling	respectively	and	

show	that	in	the	scRNA-seq	based	trajectory	a	very	similar	pattern	of	expression	changes	

that	mirror	that	of	the	motif’s	pattern	(Figure	3.4,3.5).	

	 Up	until	this	point,	we	have	highlighted	the	existence	of	three	major	cell	types	in	the	

mouse	mammary	epithelium	and	dug	deeper	into	insights	within	the	secretory	luminal	

compartment	but	we	have	fallen	short	of	driving	home	the	relationship	of	what	chromatin	

accessibility	profiles	correspond	to	what	gene	expression	profiles	across	our	two	data	

modalities.	To	accomplish	this,	we	employed	the	Seurat	label	transfer	and	integration	

workflow	to	first	predict	cell	type	labels	with	the	scRNA-seq	data	as	our	reference	and	

projecting	onto	the	scATAC-seq	data	as	the	query.	From	there,	we	calculated	anchors	
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across	the	data	and	generated	a	co-embedding	resulting	in	a	final	UMAP	that	contains	cells	

from	both	the	scRNA-seq	and	scATAC-seq	with	common	cluster	labels	(Figure	3.6).	With	

this	space	now	generated,	we	were	interested	in	asking	what	transcription	factor	motifs	

might	be	specifically	associated	with	variation	in	accessibility	and	if	we	can	find	evidence	

for	their	downstream	signaling	activity	through	gene	expression	in	a	cell	type	specific	

fashion.	To	accomplish	this,	we	first	employed	ChromVar	to	calculate	TF	motif	enrichment	

scores	for	every	cell	in	the	scATAC	analysis	(Figure	3.6,3.7).	Using	this	resultant	cells-by-TF	

matrix	as	input,	we	show	specific	variation	in	accessibility	of	TP63	and	SMAD3	in	Basal	

cells,	ELF1	in	L-Sec	cells,	and	FOXA1	in	L-HR	cells	(Figure	3.6,3.7).	We	additionally	find	the	

aforementioned	TF’s	specific	downstream	gene	expression	signatures	in	the	same	cell	

type’s	scRNA-seq	data,	highlighting	the	concordance	between	the	two	data	modalities	and	

the	power	of	leveraging	the	two	together.		

	 Taken	together,	all	of	these	results	point	to	additional	previously	uncharacterized	

heterogeneity	present	in	the	mammary	gland	with	an	emphasis	on	the	secretory	luminal	

cell	type	and	substates	present	within.	In	human,	these	cell	states	manifested	in	our	

analysis	as	being	at	important	branch	points	in	pseudotime	as	well	as	having	similarities	to	

different	molecular	subtypes	on	breast	cancer.	In	mice,	we	highlight	in	the	analogous	cell	

type	the	existence	of	a	pre-committed	lactation	progenitor	in	nulliparous	mice	and	

dynamics	of	a	putative	developmental	relationship	between	the	traditional	luminal	

progenitor	cell	and	these	more	mature	like	cells	in	the	gland.	This	work	additionally	

challenges	previously	held	notions	of	markers	for	progenitor	like	cells	in	the	mammary	

gland,	through	the	identification	of	heterogeneous	CD61+	expression	in	the	secretory	

luminal	compartment	and	who’s	positivity	is	associated	with	the	more	mature	like	cells	
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within	the	compartment.		What	remains	as	a	critical	gap	in	understanding	is	how	this	

Aldh1a3+	L-Sec	luminal	progenitor	state	contributes	to	in	the	development	of	the	mature	

state	/	lactation	committed	cells	as	well	as	L-HR	cells,	and	if	their	progenitor	capacity	is	

indeed	manifest	in	a	tissue	context.	

	 To	this	end,	we	propose	the	generation	of	a	WAP-cre	Aldh1a3fl/fl	mouse	model	that	

will	specifically	delete	Aldh1a3	in	the	mouse	mammary	gland	and	disrupt	the	L-Sec	

progenitor	function118.	The	notion	of	Aldh1a3+	positivity	marks	cells	as	putative	mammary	

progenitor	cells	is	not	new102	and	has	additionally	been	discussed	through	the	work	

presented	in	Chapter	3,	but	through	the	thorough	exploration	of	this	model	we	can	gain	

insight	into	Aldh1a3’s	role	in	progenitor	capacity.	Firstly,	we	will	characterize	this	model	

and	the	effect	of	Aldh1a3	deletion	on	gland	development.	To	accomplish	this,	WAP-cre	

Aldh1a3fl/fl	adult	mouse	mammary	glands	will	be	harvested	at	10	weeks	and	sectioned	for	

histopathology.	Immunohistochemistry	staining	of	Krt14/Krt8/Csn2/Prlr	will	provide	

insight	into	proportions	of	L-Sec	Prog	vs	L-Sec	Mat	vs	L-HR	in	the	adult	gland	as	well	as	any	

morphological	differences	that	may	have	arose.	We	hypothesize	that	ablation	of	Aldh1a3	in	

L-Sec	cells	will	disrupt	progenitor	capacity	and	cause	an	accumulation	of	this	more	naïve	

state	in	the	gland,	bottlenecking	development	and	greatly	reducing	the	representation	of	

more	mature	/	L-HR	cells	in	the	mouse.	In	H&E,	we	would	expect	this	result	to	be	shown	as	

a	disruption	of	the	regular	morphology	of	the	epithelial	cell	layers,	as	well	as	a	marked	

reduction	in	Csn2	and	Prlr	staining.		

Carrying	this	idea	forward,	we	will	employ	the	FACS	strategy	previously	described	

in	Chapter	3	to	perform		mammosphere	outgrowth	assays	to	calculate	the	sphere	forming	
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potential	of	cKit+	luminal	cells	from	the	Aldh1a3fl/fl	mouse	as	compared	to	a	wild	type	B6	

background,	with	the	expected	result	of	our	floxxed	gland	cells	having	less	sphere	forming	

potential	vs	the	WT.	Additionally,	we	will	employ	our	developed	CD61+	based	gating	

strategy	and	qPCR	to	assay	the	secretory	heterogeneity	and	determine	if	there	has	been	

any	additional	disruption	of	the	transition	of	cells	from	the	more	progenitor	like	state	to	

that	of	the	pre-committed	lactation	phenotype.		

These	experimental	propositions	additionally	hinge	on	the	assumption	that	in	

deleting	Aldh1a3	in	mammary	epithelial	cells,	we	will	affect	largely	the	progenitor	cell	

capacity	of	this	substate	without	otherwise	dysregulating	the	L-Sec	Prog	identity	and	our	

ability	to	identify	and	differentiate	this	cell	state	from	other	luminal	cell	types	in	the	

perturbed	mouse.	It	could	be	the	case	that	through	this	deletion,	we	will	disrupt	cKit	/	

CD61	expression	and	be	unable	to	stratify	our	luminal	cells	via	FACS.	Additionally,	the	

bottleneck	hypothesis	may	not	hold	true,	and	instead	we	may	accumulate	other	types	of	

luminal	cell	types	present	only	in	the	experimental	model	that	will	require	deeper	

characterization.	To	this	end,	given	sufficient	preliminary	data,	we	propose	to	interrogate	

this	mouse	model	extensively	through	different	stages	of	lactation	and	pregnancy	through	

single	cell	sequencing.		

Cohorts	of	wild	type	and	Aldh1a3fl/fl	nulliparous		mice	at	10	weeks,	pregnant,	and	

actively	lactating	using	same	cell	scRNA-seq	/	scATAC-seq	sampling	from	10x	Genomics	

will	be	subjected	to	sequencing	with	the	aim	of	dissecting	the	role	of	Aldh1a3	in	mouse	

development	and	contribution	to	proper	lactation.	Although	previous	studies	have	

investigated	the	mouse	mammary	gland	with	similar	time	courses,	they	fell	short	of	
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identifying	the	L-Sec	heterogeneity	that	we	have	highlighted.	The	combined	scATAC-seq	

data	will	also	provide	extremely	valuable	insight	into	drivers	of	cell	state	and	identity	at	the	

epigenetic	level,	and	can	help	answer	why	cell	types	that	are	perturbed	manifest	as	they	do	

in	this	experimental	model.		

Through	this	sequencing,	we	would	expect	in	the	wild	type	to	closely	mirror	the	

results	of	Bach	et	al.	2017,	where	from	nulliparous	to	pregnant	mice	we	observe	a	

transition	from	an	enrichment	of	more	progenitor	like	luminal	secretory	cells	to	a	strong	

representation	of	Csn2	positive	luminal	cells	in	the	pregnant	model.	When	disrupted	

through	the	Cre	construct,	we	expect	that	there	will	be	a	massive	depletion	of	these	Csn2+	

cells	at	the	pregnancy	timepoint	concomitant	with	an	accumulation	of	Rspo1+	cells.	

Incorporating	the	post-birth	/	lactation	timepoint,	with	the	gland	affected	as	such	we	

would	expect	the	inability	for	these	mice	to	properly	lactate	and	such	only	find	many	basal	

/	myoeptheial	cells	dominating	the	gland	similar	to	what	was	observed	in	the	Bach	et	al.	

data.		

The	scATAC-seq	data	will	also	provide	for	a	deeper	definition	of	cell	type	and	state	

in	these	models,	having	shown	the	strength	of	this	combinatorial	approach	earlier	in	this	

document.	We	are	delving	into	new	territory	for	how	the	gland	regulates	with	a	disrupted	

homeostasis	and	this	same	cell	data	will	be	critical	to	highlighting	the	developmental	

dynamics	at	play	in	the	gland.	The	data	will	also	allow	for	us	to	observe	disruption	at	the	

putative	enhancer	regions	described	in	Chapter	3,	and	the	role	of	Fol1R	accessibility	

associated	with	milk	regulation	in	both	the	WT	and	experimental	groups.	We	hypothesis	

that	L-Sec	specific	TF	dynamics	will	not	be	preserved,	and	if	there	is	not	wholesale	
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reconstruction	of	co-connectivity	of	genomic	regions	in	Luminal	epithelial	cells	then	at	

least	observable	differences	in	magnitude	of	connection	strengths	will	make	themselves	

apparent.												

This	approach	is	not	with	its	potential	pitfalls	and	caveats.	Primary	among	these	is	

that	Aldh1a3	is	not	essential	for	proper	progenitor	function	of	L-Sec	Prog	cells	in	the	mouse	

mammary	gland.	It	has	been	described	as	a	marker	for	these	cells	in	human	and	mouse102,	

but	this	does	not	mean	that	functionally	it	plays	an	important	role.	It	could	be	the	case	that	

when	deleted,	other	progenitor	state	drivers	pick	up	the	slack	so	to	speak	and	the	cells	are	

able	to	perform	business	as	usual	in	the	gland	without	disruption.	If	that	is	the	case,	our	

first	suite	of	experiments	should	show	this	well	before	sequencing	and	we	will	be	forced	to	

re-evaluate	our	usage	of	this	model.	It	may	be	necessary	to	implement	a	DTP	based	

ablation	of	these	cells	in	the	gland	rather	than	just	deleting	Aldh1a3	expression	to	better	

disrupt	luminal	progenitor	capacity	in	the	mammary	epithelium.	The	Aldh1a3fl/fl	mouse	is	

also	of	the	B6	background	as	opposed	to	FVB	which	was	employed	in	the	majority	of	the	

study	presented	in	Chapter	3,	and	so	model	to	model	differences	can	also	contribute	to	

potential	difficulties.	

Beyond	these	model	considerations,	the	transition	from	scRNA-seq	and	scATAC-seq	

performed	separately	also	presents	some	potential	issues.	In	Chapter	3	we	characterize	

heterogeneity	in	the	mouse	mammary	epithelium	using	scRNA-seq	data	taken	from	whole	

cells,	whereas	the	scRNA-seq	data	generated	in	the	simultaneous	scRNA/scATAC	protocol	

is	actual	single	nuclear	RNA	data,	capturing	nuclear	transcripts	vs	cytoplasmic.	It	could	be	

the	case	that	the	heterogeneity	described	will	not	be	maintained	in	these	nuclear	
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transcriptomic	data	and	we	will	have	a	difficult	time	bioinformatically	relating	the	cell	

types	and	states	captured	in	the	our	newly	generated	data	to	the	observations	and	

conclusions	from	past	studies	that	the	model	was	designed	to	investigate.	The	wild	type	

control	will	help	with	this	to	serve	as	a	baseline	for	what	heterogeneity	can	be	expected	at	

this	resolution,	but	this	may	still	fall	short.	In	this	case,	we	will	lean	heavily	on	the	

chromatin	accessibility	data	that	had	examples	independent	of	what	gene	expression	data	

to	serve	as	an	anchor	point	for	making	comparison.	 	
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