UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Embodiment Effects in Evolutionary Robotics

Permalink

https://escholarship.org/uc/item/8v30473n

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 38(0)

Authors

Livingston, Nicholas Bernatskiy, Anton Livingston, Kenneth <u>et al.</u>

Publication Date 2016

Peer reviewed

Embodiment Effects in Evolutionary Robotics

Nicholas Livingston

Vassar College

Anton Bernatskiy

University of Vermont

Kenneth Livingston

Vassar College

Marc Smith

Vassar College

Jodi Schwarz

Vassar College

Joshua Bongard

University of Vermont

David Wallach Vassar College

vassar College

Evan Altiero Vassar College

John Long Vassar College

Abstract: We evolve simple neural network controllers in swimming robots in order to test the hypothesis that, given distinct dimensions of control for the tail structure, evolution will favor the emergence of modular neural networks as most likely to enhance fitness (successful light harvesting). Evolution does lead to improved fitness, but this does not appear to result from increases in modularity. However, an unexpected result highlights the importance of embodiment for the evolution of the agent. The output of the neural network controller is high frequency with many extreme excursions, but the actual movements of the tail are damped by the physics of the body as it interacts with the aquatic environment. Subsequent simulations establish the role of these physical parameters in dampening noisy network controller output. Thus, morphology can increase evolvability by acting as a low pass filter of high-frequency controller dynamics.