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The role of repulsive interactions in statistical systems of Bose particles is investigated. Three different
phenomenological frameworks are considered: a mean-field model, an excluded volume model, and a model
with a medium-dependent effective mass. All three models are tuned to yield similar equations of state, with
only minor deviations from the ideal Bose gas at small chemical potentials. Our analysis indicates, however,
that these models lead to qualitatively different results for the Bose-Einstein condensation phenomenon. We
discuss the different aspects of this phenomenon, namely, an onset of the Bose-Einstein condensation, particle
number fluctuations, and a behavior of the Bose condensate. The obtained results can be helpful for interpreting
the lattice QCD data at small temperature and large isospin chemical potential and the data on multiple pion
production in high-energy nuclear collisions.

DOI: 10.1103/PhysRevC.102.035202

I. INTRODUCTION

The Bose-Einstein condensation (BEC) in the ideal gas
of bosons was predicted many years ago [1,2] and later ex-
perimentally confirmed for cold atomic gases in magnetic
traps [3–6]. This effect appears to be common for different
systems of free or interacting bosons, ranging from con-
densed matter physics to high-energy nuclear physics and
astrophysics (see, e.g., Refs. [7–14]).

The theory of the BEC phenomenon for interacting par-
ticles has been extensively discussed [15–19]. In particular,
modifications of the BEC onset line (further referred to as
the BEC line) due to the small repulsive interactions between
particles were predicted [20–26]. Namely, an increase of the
temperature of the onset of BEC due to the repulsive interac-
tions when compared with ideal Bose gas (Id-BG) at the same
density was found. However, this conclusion is not of general
validity, as will be shown in the present paper. We use three
different phenomenological models to describe the effects
of particle repulsion in boson systems: a mean-field model,
an excluded volume model, and a model with a medium-
dependent effective mass. The parameters of these models are
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tuned to produce quantitatively similar equations of state at
zero chemical potential and with only small deviations from
the Id-BG. However, the properties of the BEC phenomenon
appear to be very sensitive to specific features of these con-
sidered models. This fact motivates our interest to perform a
comparative analysis of these models.

Most real systems have, in addition to repulsion, also at-
tractive forces that dominate thermodynamics at low densities,
producing phase diagrams with a more complex structure
compared to the ones obtained here. In particular, one can
observe first- and second-order phase transitions in addition to
the BEC. In the phase diagram regions where such effects can
be neglected, however, we expect our arguments to be true.
Influence of particle interactions on the thermodynamic prop-
erties was also considered within the S-matrix formulation
of statistical mechanics [27]. In particular, the attractive and
repulsive interaction from pion-pion and other hadron-hadron
scatterings were discussed in a number of works [28–31].

In addition to the behavior of the BEC line and the phase
with the Bose condensate (BC), we also analyze the behavior
of particle number fluctuations, as their measurements can
serve as a signature of the BEC. We find qualitatively different
results for all considered quantities for the BEC in the three
considered models.

Our discussion is appropriate for a generic system of
bosons with repulsive interactions. Nevertheless, to be specific
we will refer mostly to a statistical system of π mesons.
Two arguments motivate this choice. First, recent results from
lattice QCD support an existence of the pion BEC at finite
isospin chemical potential [32,33], as suggested earlier by
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the chiral perturbation theory [34]. Second, the pion BEC
phenomenon has a number of applications, including ultra-
relativistic collisions of heavy ions [8,9], the hypothetical
pion stars [35–37], and the cosmic trajectory in the early uni-
verse [32,38]. Recently, the possibility of Bose condensation
in a pion system was considered within a Skyrme-like model
including both attractive and repulsive interaction terms [39].

The paper is organized as follows. Section II describes
the characteristics of the BEC in the Id-BG gas. Section III
presents a description of the theoretical frameworks used in
the paper. In Sec. IV we present the model results for the BEC
and reveal the qualitative differences obtained within the three
considered models. A summary in Sec. V closes the paper.

II. IDEAL BOSE GAS

The pressure function of the relativistic gas in the grand
canonical ensemble can be written as [40]

pid (T, μ) = d

6π2

∫ ∞

0
dk

k4

√
k2 + m2

fk, (1)

where the momentum distribution fk reads

fk(T, μ; m) =
[

exp

(√
k2 + m2 − μ

T

)
− η

]−1

, (2)

where η = 1 and η = −1 for the Bose and Fermi statistics,
respectively. The classical Boltzmann approximation corre-
sponds to η = 0. m is the particle mass, T and μ are the
system’s temperature and chemical potential, respectively, and
d is the degeneracy factor. The density of particles in the ideal
gas is given by

nid (T, μ) ≡
(

∂ pid

∂μ

)
T

= d

2π2

∫ ∞

0
dkk2 fk(T, μ; m). (3)

In what follows we discuss the identical bosons in the same
internal state, spin, and isospin states. Thus we keep d = 1
for the number of internal degrees of freedom.

At fixed T , the particle number density (3) is a
monotonously increasing function of μ. For bosons, η = 1,
the integral in Eq. (3) reaches its maximal value at μ = m.
Chemical potentials values larger than μ = m are forbidden
as they would lead to negative values of particle occupation
numbers fk in some k states. Note that such a restriction on
μ is absent in the ideal Fermi gas with η = −1. At μ = m
the total number of particles N0 at k = 0 may become of a
macroscopic magnitude, i.e., proportional to the system’s vol-
ume, N0 ∝ V . In this case the particle number density n0 in the
lowest energy level, k = 0, should be accounted separately, as
an additional term in the particle number density. The total
particle number density n is then written as follows:

n = nid (T, μ = m) + n0, (4)

where n0 � 0 is the density of particles with zero momentum,
the so-called BC density.

The BEC line, Tc = Tc(n), can be obtained by substituting
μ = m in Eq. (3) and solving the equation with respect to T .
For the nonrelativistic, (k2 + m2)1/2 ≈ m + k2/(2m), and ul-
trarelativistic, (k2 + m2)1/2 ≈ k, approximations the solutions

are explicit [40,41]:

Tc ≈ 2π

m

(
n

ζ (3/2)

) 2
3

≈ 3.31
n2/3

m
, Tc/m � 1, (5)

Tc ≈
(

π2n

ζ (3)

) 1
3

≈ 2.02n1/3, Tc/m � 1, (6)

where ζ (x) = ∑∞
n=1 n−x is the Riemann zeta function with

ζ (3/2) ≈ 2.612 and ζ (3) ≈ 1.202. The BEC in the cold low-
density atomic gases corresponds to region T/m < 10−10,
while in nuclear physics, e.g., for α particles, to T/m < 10−3.
Thus, these physical phenomena can be accurately described
within the nonrelativistic limit (5). However, the BEC of pi-
ons can happen at T/mπ ≈ 1 and this necessitates using the
relativistic formulation. The Id-BG BEC line Tc(n) is shown
by the solid line in Fig. 1(a).

The BC fraction,

n0

n
= 1 − nid (T, μ = m)

nid (Tc, μ = m)
, (7)

lies between zero at the onset of the BEC at T = Tc and unity
at T = 0. In the nonrelativistic and ultrarelativistic cases this
quantity takes, respectively, the following forms:

n0

n
= 1 −

(
T

Tc

) 3
2

, Tc/m � 1; (8)

n0

n
= 1 −

(
T

Tc

)3

, Tc/m � 1. (9)

The BC fraction n0/n in the Id-BG at T < Tc is shown in
Fig. 2(a).

The BC does not produce an additional pressure in the Id-
BG,1 thus the system pressure at the phase with BC equals
pid (T, μ = m) at T � Tc. There is also no contribution from
the BC to the entropy density,

sid(T, μ = m) ≡
(

∂ pid (T, μ)

∂T

)
μ=m

, (10)

whereas the energy density ε at T � Tc does get a contribution
from the BC and reads

ε = εid(T, μ = m) + m n0. (11)

At T = 0 all particles of the Id-BG are in the BC state, thus

n = n0, p = 0, s = 0, ε = mn0. (12)

A useful measure for the particle number fluctuations in the
thermodynamic limit is the scaled variance:

ω = lim
N→∞

〈N2〉 − 〈N〉2

〈N〉 , (13)

where N is the total number of particles, and 〈. . .〉 denotes the
grand canonical ensemble averaging.2 The scaled variance of

1This does not necessarily apply to systems of interacting bosons.
2The finite-size effects have been discussed in Ref. [9].
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FIG. 1. (a) The BEC-lines Tc = Tc(n) and (b) Tc = Tc(μ) for Id-BG, MF, EV, and EM models. The star denotes the maximal temperature
T max

c at which the BEC is possible in the EM model.

particle number fluctuations in the Id-BG is [8]

ω = T

n

(
∂n

∂μ

)
T

= ωid(T, μ)

= 1 + η

2 π2 nid

∫ ∞

0
dkk2[ fk(T, μ, m)]2. (14)

The scaled variance ωid(T, μ) in the Boltzmann approxi-
mation (η = 0) equals to ω = 1, meaning that the particle
number distribution in the classical ideal gas is given by a
Poisson distribution. For the Id-BG (η = 1) the scaled vari-
ance ωid is always above unity, and for the ideal Fermi gas it
is always smaller than unity. ωid → 1 in the T -μ regions of the
phase diagram where the effects of Bose and Fermi statistics
are negligible, i.e., when fk � 1. For the Id-BG the scaled

variance (14) diverges as one approaches the BEC line:

ωid(Tc, μ = m) = ∞. (15)

Relation (15) remains valid in the phase with the BC, i.e., for
all T < Tc. The scaled variance ω for the Id-BG is presented
as a function of T and n in Fig. 3(a).

III. MODELS OF REPULSIVE INTERACTIONS

To address the problem of BEC in the presence of re-
pulsive interactions we will consider three phenomenological
models. As motivated in the Introduction, we shall refer to
the system of π mesons in our consideration from this point

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.99

Ideal Bose gas / Mean field

0.5

0.9

(a)

T
/m

n / m3

0

1
n0 / n

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.99

Effective mass (b)

0.5

0.9

1.1

T
/m

n / m3

0

1
n0 / n

FIG. 2. The BC fraction, n0/n, as a function on n and T (a) for the Id-BG and MF models, and (b) for the EM model. The line of the onset
of BEC is shown by the dashed curve for each model. The result for the EV model is close to the Id-BG/MF result and, thus, is not presented.
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FIG. 3. The scaled variance ω of particle number fluctuations as the function of density and temperature for (a) the Id-BG, (b) the MF
model, (c) the EV model, and (d) the EM model. The black color corresponds to the (n, T ) region where ω is close to the Poisson limit, ω = 1,
i.e., both the Bose statistics and repulsive interaction effects are small. Regions with infinite value of ω in (a) and (c) are hatched. The line of
the onset of BEC is shown by the dashed curve for each model.

on.3 The π mesons are bosons with spin equal to zero. There
are three types of pions, π+, π−, and π0, with mπ± ∼= 140
MeV and mπ0 ∼= 135 MeV. In the relativistic systems the
number of particles is not a conserved quantity. In the case
of pions, the conserved quantity is the electric charge (or,
equivalently, isospin). The average value of the electric charge
is regulated by the electric chemical potential μQ in the grand
canonical ensemble. The chemical potentials of all three pion
species are defined by μQ only: μπ+ = μQ, μπ− = −μQ,
and μπ0 = 0. Nonzero values of μπ+ (or μπ− ) in chemically
equilibrated systems are only possible for nonzero net electric
charge. Chemical nonequilibrium is another possibility, where

3The obtained results, however, have general validity.

fast nonequilibrium processes can produce overpopulation
of all type of pions in comparison to the state of chemical
equilibrium. Such a possibility has been suggested within
ultrarelativistic collisions of hadrons and/or nuclei (see, e.g.,
Ref. [8]). In what follows we focus on the BEC of a single
pion species. Therefore, we fix a single pion type with the
degeneracy factor d = 1 and particle mass m = mπ , keeping
the notation μ for the chemical potential of that pion species.

In this section we present the formulations of the three
models under consideration for phase diagram regions with-
out BEC. In the next section we generalize these models to
describe the region with a nonzero BC component.

Mean-field model. The first model under consideration
is the thermodynamic mean-field (MF) model (see, e.g.,
Ref. [42] and references therein). Within the MF model the

035202-4
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pressure and particle number density at given μ and T > Tc

are given by the following equations:

p(T, μ) = pid (T, μ∗) +
∫ n

0
dn′ n′ dU (n′)

dn′ , (16)

n =
(

∂ p

∂μ

)
T

= nid (T, μ∗), (17)

μ∗ = μ − U (n). (18)

Here U (n) is a density-dependent mean field and μ∗ is the
effective chemical potential. The purely repulsive interactions
correspond to dU/dn > 0. The MF model with

U (n) = an, a > 0, (19)

was applied to describe the BEC of interacting bosons in
Ref. [43]. More elaborate potentials with higher powers of n
can be of interest at high densities, the Skyrme-like MF model
with U (n) describing both repulsive and attractive interactions
was used to study the BEC of α particles in Refs. [7,44,45].
We use the simplest version of U (n) in the form of Eq. (19) in
the following.

The scaled variance ω (13) of particle number fluctuations
in the MF model can be presented as

ω = T

n

(
∂n

∂μ

)
T

= ωid (T, μ∗)

1 + a n
T ωid (T, μ∗)

. (20)

In the Boltzmann approximation ωid = 1. From Eq. (20) it
then follows

ω =
(

1 + a n

T

)−1

< 1, (21)

and ω → 1 at a → 0. Therefore, in the classical (Boltzmann)
gas the MF repulsion leads to a suppression of particle num-
ber fluctuations. A stronger repulsion (larger a) leads to the
stronger suppression. In the Id-BG, on the other hand, ω is
always larger than 1 due to the effects of Bose statistics.

Excluded volume model. The next approach is the excluded
volume (EV) model, which describes repulsive interactions of
particles in terms of their eigenvolumes. This approximation
is usually used to model short-range repulsion similar to the
hard-core repulsion in a classical gas of hard spheres. The
EV model was generalized to include the effects of quantum
statistics in Ref. [46]. It is defined by the following equations:

p(T, μ) = pid (T, μ∗), (22)

n =
(

∂ p

∂μ

)
T

= nid (T, μ∗)

1 + b nid (T, μ∗)
, (23)

μ∗ = μ − b pid (T, μ∗), (24)

where b > 0 is the classical eigenvolume parameter, which
regulates the strength of repulsion. As seen from Eq. (23)
the particle number density of the EV model satisfies an
inequality n < 1/b. In the classical gas of hard spheres the
parameter b is identified with the second virial coefficient and
is expressed through hard-core radius r as b = 16πr3/3. Note,
however, that in the case of quantum hard spheres the second
virial coefficient suggests a temperature dependent b [47],
which will be addressed in future works.

The EV model scaled variance is calculated as follows
[48]:

ω(T, μ) = T

n

(
∂n

∂μ

)
T

= (1 − bn)2 ωid (T, μ∗). (25)

The scaled variance in the EV model is suppressed by the
factor (1 − bn)2 in comparison to ωid. Therefore, for classical
ideal gas, where ωid = 1, one finds ω = (1 − bn)2 < 1, i.e.,
the EV repulsion effects lead to a suppression of the particle
number fluctuations [49].

Effective mass model. The third model that we consider
is the effective mass (EM) model. A formulation of the
EM model with m∗ = m∗(T ) and μ = 0 was suggested in
Ref. [50] (see also Refs. [51,52]). We extend the EM model
to m∗ = m∗(T, μ) by choosing a simple modification of the
model that leads to a thermodynamically consistent descrip-
tion:

p(T, μ) = pid (T, μ; m∗) + (m − m∗)2

2c
, (26)

n(T, μ) = nid (T, μ; m∗) , (27)

m∗(T, μ) = m + cns
id (T, μ; m∗), (28)

where

ns
id (T, μ; m∗) = dm∗

2π2

∫ ∞

0

k2dk√
k2 + m∗2

fk(T, μ; m∗) (29)

is the scalar density of an ideal Bose gas and c > 0 is a model
parameter.

The requirement c > 0 leads to m∗ > m, which corre-
sponds to the repulsive interactions. The numerical value of
c regulates a strength of the particle repulsion. The EM model
considered here resembles the Walecka model [53–55] of
nuclear matter. However, the second term in the right-hand
side of Eq. (26) is positive and describes the pion repulsion,
whereas in the Walecka model the corresponding term is neg-
ative and it describes the attractive forces between nucleons.

The scaled variance of the particle number fluctuations is
calculated as follows:

ω = T

n

(
∂n

∂μ

)
T

= T

n

[
∂nid(T, μ; m∗)

∂μ
+ ∂nid (T, μ; m∗)

∂m∗
∂m∗(T, μ)

∂μ

]
. (30)

The partial derivative ∂m∗(T, μ)/∂μ is evaluated by differen-
tiating Eq. (28) with respect to μ and solving the resulting
equation for ∂m∗(T, μ)/∂μ:

∂m∗(T, μ)

∂μ
=

c ∂
∂μ

ns
id (T, μ; m∗)

1 − c ∂
∂m∗ ns

id (T, μ; m∗)
. (31)

The expression for ω simplifies in the Boltzmann approx-
imation η = 0, i.e., when effects of quantum statistics are
neglected, and by applying either nonrelativistic (T/m∗ � 1)
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or ultrarelativistic (T/m∗ � 1) limits:

ω =
(

1 + c
n

T

)−1

, T/m∗ � 1, (32)

ω = 1, T/m∗ � 1. (33)

Tuning the model parameters. The positive model param-
eters, a, b, and c for MF, EV, and EM models, respectively,
regulate the strength of repulsive interactions in all the mod-
els. At a = b = c = 0 all the three models are reduced to
the Id-BG. We fix the numerical values of the above pa-
rameters through the following considerations. At μ = 0 one
observes a suppression of the system’s pressure in comparison
to the Id-BG due to the repulsion effects. These suppres-
sion effects become larger with increasing T , and the ratio
p(T, 0)/pid (T, 0) thus decreases with T in all three descrip-
tions. To keep only small deviations from the Id-BG results
in the whole temperature region for μ = 0 we fix this ratio at
mπ = 135 MeV, T = 150 MeV to a value

p(T, μ = 0)

pid (T, μ = 0)
∼= 0.98 < 1, (34)

the same for all three models. Therefore, the difference be-
tween all three models is almost negligible at μ = 0, and their
deviations from the Id-BG pressure are indeed very small at all
physically reasonable T values.4 The requirement (34) fixes
the model parameters to

MF model: a = 0.15m−2
π , (35)

EV model: b = 0.145m−3
π , (36)

EM model: c = 2.21m−2
π . (37)

If b is to be interpreted as the excluded volume parameter
in the system of classical spheres, one finds r ∼= 0.3 fm for
the pion hard-core radius. This is consistent with the values
considered in Refs. [58,59].

One comment is appropriate here. An evident intuitive
expectation is that the system’s pressure should increase
when the interparticle repulsion is switched on. Equation (34)
demonstrates the opposite behavior. This counterintuitive re-
sult comes due to a decrease of particle number density at
any fixed T and μ values as a consequence of the repulsive
interactions. This suppression of the particle number density
n leads to the lower values of the pressure when compared
with the corresponding values in the system of noninteracting
particles at the same T and μ (see Ref. [60]). The pressure in
models with repulsive interaction becomes indeed higher than
that of the Id-BG if they will be compared at fixed T and n
values. Therefore, the ratio

p(T, n)

pid (T, n)
> 1 (38)

is larger than 1 for all three models. For example, at T =
110 MeV and n = 0.06 fm−3 the numerical values of the

4The QCD chiral crossover transition pseudocritical temperature at
μ = 0 is Tpc

∼= 155 MeV [56,57].

ratio (38) equal approximately to 1.02, 1.02, and 1.15 for MF,
EV, and EM models, respectively.

IV. BEC ANALYSIS

MF model. In the MF model [Eqs. (16)–(19)] the BEC line
corresponds to the effective chemical potential being equal
to the particle’s mass, μ∗ = m. Therefore, as follows from
Eq. (17) the density, n, and temperature, Tc, at the BEC line
are connected by the same equation as for the Id-BG case:

n = nid (Tc, μ
∗ = m). (39)

Thus, the BEC line in the MF model coincides with that
in the Id-BG in the (n, T ) plane, and it is described by the
same analytic relations as in Eqs. (5) and (6). The MF model
BEC line is shown in Fig. 1(a) by the dashed red ine. The
BC fraction also keeps its Id-BG forms (8) and (9). This is
depicted in Fig. 2(a). However, as follows from Eq. (18), the
chemical potential at T � Tc behaves as follows:

μ = m + U (n) (40)

and does not keep a constant value along the BEC line, in
contrast to μ = m constant value in the Id-BG. Namely, the
μ = μc value increases along the BEC line with increasing
Tc as shown in Fig. 1(b). This is because the critical density
n = nc [and thus the U (nc) contribution to μc in Eq. (40)]
increases with Tc as seen from Fig. 1(a).

At T � Tc Eq. (17) is modified to account for the nonzero
contribution from the BC:

n = nid (T, μ∗ = m) + n0, T � Tc. (41)

This can be used to calculate the BC density n0 as a function
of n and T . The BC density satisfies the same Eq. (7) as in the
Id-BG, shown in Fig. 2(a). It leads to 0 � n0 � n with n0 = 0
at T = Tc and n0 = n at T = 0.

The scaled variance of particle number fluctuations is given
by Eq. (20). Approaching the BEC line (μ∗ = m) one has
ωid (T, μ∗) → ∞ in Eq. (20) and thus

ω = T

n

(
dU

dn

)−1

= T

an
, T � Tc. (42)

Note that Eq. (42) remains valid at all T � Tc.
The scaled variance for the MF model is presented in

Fig. 3(b). In contrast to the Id-BG case, in the MF model ω is
finite both near the BEC line and inside a phase with the BC,
n0 > 0, changing continuously as one goes across the BEC
line. Equation (20) illustrates also the requirement of thermo-
dynamic stability of the MF model for bosons, especially on
the BEC line. To fulfill an evident requirement ω > 0, which
follows from the definition (13), one needs dU/dn > 0. This
last inequality is valid for repulsive interactions. In particular,
this is valid for U (n) given by Eq. (19) with a > 0. Purely
attractive interaction with a < 0 in Eq. (19) would lead to
thermodynamic instability.

EV model. The temperature Tc on the BEC line is obtained
by substituting μ∗ = m in Eq. (23) and solving that equation
with respect to T . In contrast to the MF model, the EV model
Tc(n) dependence does not coincide with the Id-BG result.
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At T = Tc Eqs. (23) and (24) are transformed to

n = nid (Tc, μ
∗ = m)

1 + b nid (Tc, μ∗ = m)
, (43)

μ = m + bpid (Tc, μ
∗ = m). (44)

The solutions of Eqs. (43) and (44) are shown in Figs. 1(a)
and 1(b), respectively. A novel feature of the EV model is the
modification of the BEC line in the (n, T ) plane with T EV

c (n)
being larger than T MF

c (n) = T id
c (n) BEC line of the MF and

Id-BG models. This modification of the BEC-line with respect
to the Id-BG result, shown in Fig. 1(a) is consistent, with many
other results reported for Bose gases with repulsion [20–26].

The scaled variance ω is given at T � Tc by Eq. (25).
As one approaches the BEC line (μ∗ → m), the Bose effects
start to dominate ω since ωid (T, μ∗ → m) → ∞, implying
that particle number fluctuations start to diverge. The scaled
variance remains divergent at all T � Tc in the EV model.
This behavior is similar to the Id-BG but differs from the
MF model where fluctuations remain finite everywhere.
The behavior of ω as a function of temperature and density
in the EV model is presented in Fig. 3(c).

EM model. The phase with the BC corresponds in the EM
model to a condition μ = m∗. The BEC line is thus defined by
the following equation:

m∗(Tc) = m + c ns
id (Tc, μ = m∗; m∗). (45)

The resulting BEC line Tc = Tc(μ) is shown in Fig. 1(b) by a
dotted line. With n calculated from

n = nid (Tc, μ = m∗; m∗) (46)

the BEC line is shown in Fig. 1(a) as a function of particle
number density, Tc = Tc(n). A distinct new feature of the EM
model is a decrease of the BEC line Tc(n) as compared to
the Id-BG. Therefore, the three considered models of particle
repulsion show three qualitatively different possibilities for
the changes of the BEC line in comparison to the Id-BG
behavior, namely

T EV
c (n) > T MF

c (n) = T id
c (n) > T EM

c (n). (47)

Another interesting feature of the EM model is an absence of
the BEC at large temperatures, i.e. Eq. (45) has no solutions
at T > T max

c , meaning that the BEC is only possible at T <

T max
c . The T max

c value is obtained by numerically analyzing
Eq. (45) and it is marked by the stars in Fig. 1. Explicit
expressions for T max

c can be obtained if the non-relativistic or
ultrarelativistic approximations are applied:

T max
c

∼= 2πm

3

(
2

m2c ζ (3/2)

)2/3

, m2c � 1, (48)

T max
c

∼= m

(
12

m2c

)1/2

, m2c � 1. (49)

The expressions (26)–(28) for the EM model equation of
state are modified in a presence of the nonzero BC density
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FIG. 4. Effective mass m∗/m as a function of density and temper-
ature for the EM model. The black color corresponds to the m∗ = m
region where both the Bose statistics and repulsive interaction effects
are negligible. The line of the onset of BEC is shown by the dashed
curve.

n0 > 0 at T < Tc. Namely,

p(T, μ) = pid (T, μ; m∗ = μ) + (μ − m)2

2c
, (50)

n(T, μ) = nid (T, μ; m∗ = μ) + n0(T, μ), (51)

n0(T, μ) = μ − m

c
− ns

id (T, μ; m∗ = μ). (52)

The BC density n0 = n0(n, T ) in the EM model is presented
in Fig. 2(b) whereas the behavior of the scaled effective mass
m∗/m presented in Fig. 4, both above and below Tc.

The scaled variance of particle number fluctuations for
T � Tc is given by Eq. (30) while for T < Tc it is evaluated as
follows:

ω = T

n

(
∂n

∂μ

)
T

= T

n

[
∂nid(T, μ; m∗ = μ)

∂μ

− ∂ns
id(T, μ; m∗ = μ)

∂μ
+ 1

c

]
. (53)

The function ω = ω(n, T ) in the EM model is presented in
Fig. 3(c). We used Eq. (30) for calculations at T � Tc and
Eq. (53) for calculations at T < Tc. The scaled variance ω

remains finite at all (n, T ) values. Furthermore, the behavior
of ω is found to be continuous as one crosses the BEC line.
This EM model result is similar to the MF model, but differs
the Id-BG and EV results where ω is divergent for all T � Tc.

The scaled variance ω is close to unity at fixed temperature
T > Tc and small density, n ≈ 0, in all considered models
of particle repulsion. This is a region of the phase diagram
where both the interaction and Bose statistics effects become
negligible and the ideal gas Boltzmann approximation can be
applied. However, close to the BEC line and inside the phase
with the nonzero BC n0 > 0 the models differ qualitatively. In
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contrast to the Id-BG and EV models, one finds within the MF
and EM models the finite values of ω at all temperatures and
densities including those at T � Tc. These two models lead
also to ω → 0 at T → 0 as seen from Figs. 3(b) and 3(c).

An increase in the values of the model parameters a, b,
and c makes the repulsive effects stronger and leads to a de-
crease of particle number fluctuations. The maximal possible
temperature of the BEC in the EM model T max

c will become
lower. The density at an onset of the BEC decreases in the EV
and increases in the EM models. No qualitative changes are
observed.

In the limit T → 0 the entropy approaches zero, s → 0,
in all considered models. This is in agreement with the third
law of thermodynamics. Also, all particles are located in the
condensate at zero temperature, i.e., n → n0 as T → 0, as
is the case in the Id-BG. However, the pressure and energy
density does depend on the specific model used. For instance,
the MF model yields the following in the zero temperature
limit;

p = a
n2

0

2
, ε = m n0 + a

n2
0

2
. (54)

The EM model gives similar expressions:

p = c
n2

0

2
, ε = m n0 + c

n2
0

2
. (55)

Both Eqs. (54) and (55) differ from the Id-BG result (12).
The particle number density n shows a linear dependence

on the chemical potential μ at μ > m in both the EM and the
MF models at T = 0, more specifically nMF

0 (μ) = (μ − m)/a
[as follows from Eq. (40)] in the MF model, and nEM

0 (μ) =
(μ − m)/c [Eq. (52)] in the EM model. Interestingly, lattice
QCD simulations at finite isospin density do exhibit the same
linear increase of the isospin (pion) density in the BEC phase
at T = 0. The linear regime persists in a range m � μ �
1.4 m, see Fig. 1 in Ref. [35]. The lattice data, therefore, can
be interpreted as evidence for repulsive interactions between
pions in the BEC phase. For a more quantitative analysis of
the lattice data, parameters a and c in Eqs. (35) and (37)
would have to be refitted, and possibly more involved for-
mulations of the MF and EM models considered to reach the
μ > 1.4 m region. Such extensions will enable new applica-
tions, for instance to study the properties of the hypothetical
pion stars [35]. These questions will be a subject of future
studies.

V. SUMMARY

The phenomenology of the Bose-Einstein condensation
(BEC) in equilibrium systems with repulsive interactions has
been studied in three different models. The results from dif-
ferent models are compared with each other as well as with
the ideal Bose gas (Id-BG) baseline. The mean-field (MF),

excluded volume (EV), and effective mass (EM) models have
been considered to describe the particle repulsion. The model
parameters are fixed to have very similar results at μ = 0 for
all the considered temperatures. In this region of the phase
diagram, far away from the BEC onset, the three considered
models demonstrate universal features of the repulsive in-
teractions, with only minor (≈2%) deviations of the system
pressure from that in the Id-BG. However, the model results
differ significantly in their peculiar behavior on the BEC line
as well as inside the phase with a Bose condensate.

First, deviations of the BEC line Tc = Tc(n) from the Id-
BG baseline are qualitatively different in all three considered
models: T EV

c (n) > T id
c (n) for the EV model, T EM

c (n) < T id
c (n)

for the EM model, and T MF
c (n) = T id

c (n) for the MF model.
Second, essential qualitative differences are observed for

the behavior of the scaled variance ω of particle number
fluctuations. ω is divergent at T � Tc in the EV model, which
is similar to the Id-BG behavior. On the other hand, the
values of ω remain finite and continuous at all densities n
and temperatures T within the MF and EM models. This fact
provides an opportunity to distinguish the features of particle
interactions experimentally, by the measurements of particle
number fluctuations.

Third, the EM model exhibits a distinctive feature: ex-
istence of the maximal temperature T max

c above which the
BEC does not occur. Interestingly, a similar behavior is seen
in lattice QCD simulations at finite isospin, with T max

c ≈
160 MeV ≈ 1.2 mπ [32]. There, the disappearance of the pion
BEC is usually attributed to a transition to partonic degrees
of freedom—a mechanism that the EM model studied here
does not possess. Nevertheless, the EM model could be useful
for parametrizing the QCD equation of state at finite isospin
density for temperatures T � 160 MeV, for instance by in-
corporating pions described by the EM model into the hadron
resonance gas and by constraining the parameters by the lat-
tice data at zero temperature.
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