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Machine-Assisted Interpolation Algorithm for Semi-Automated 
Segmentation of Highly Deformable Organs

Dishane C. Luximon, Yasin Abdulkadir, Phillip E. Chow, Eric D. Morris, James M. Lamb
Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los 
Angeles, CA 90095, USA

Abstract

Purpose: Accurate and robust auto-segmentation of highly deformable organs (HDOs), e.g., 

stomach or bowel, remains an outstanding problem due to these organs’ frequent and large 

anatomical variations. Yet, time-consuming manual segmentation of these organs presents a 

particular challenge to time-limited modern radiotherapy techniques such as on-line adaptive 

radiotherapy and high-dose-rate brachytherapy. We propose a machine-assisted interpolation 

(MAI) that uses prior information in the form of sparse manual delineations to facilitate rapid, 

accurate segmentation of the stomach from low field magnetic resonance images (MRI) and the 

bowel from computed tomography (CT) images.

Methods: Stomach MR images from 116 patients undergoing 0.35T MRI-guided abdominal 

radiotherapy and bowel CT images from 120 patients undergoing high dose rate pelvic 

brachytherapy treatment were collected. For each patient volume, the manual delineation of the 

HDO was extracted from every 8th slice. These manually drawn contours were first interpolated to 

obtain an initial estimate of the HDO contour. A 2-channel 64×64 pixel patch-based convolutional 

neural network (CNN) was trained to localize the position of the organ’s boundary on each slice 

within a 5-pixel wide road using the image and interpolated contour estimate. This boundary 

prediction was then input, in conjunction with the image, to an organ closing CNN which output 

the final organ segmentation. A Dense-UNet architecture was used for both networks. The MAI 

algorithm was separately trained for the stomach segmentation and the bowel segmentation. 

Algorithm performance was compared against linear interpolation (LI) alone and against fully 

automated segmentation (FAS) using a Dense-UNet trained on the same datasets. The Dice 

Similarity Coefficient (DSC) and mean surface distance (MSD) metrics were used to compare the 

predictions from the three methods. Statistically significance was tested using Student’s t test.

Results: For the stomach segmentation, the mean DSC from MAI (0.91 ± 0.02) was 5.0% and 

10.0% higher as compared to LI and FAS respectively. The average MSD from MAI (0.77 ± 0.25 

mm) was 0.54 and 3.19 mm lower compared to the two other methods. Only 7% of MAI stomach 

predictions resulted in a DSC<0.8, as compared to 30% and 28% for LI and FAS, respectively. For 

the bowel segmentation, the mean DSC of MAI (0.90 ± 0.04) was 6% and 18% higher, and the 

average MSD of MAI (0.93 ± 0.48 mm) was 0.42 and 4.9 mm lower as compared to LI and FAS. 
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16% of the predicted contour from MAI resulted in a DSC<0.8, as compared to 46% and 60% for 

FAS and LI, respectively. All comparisons between MAI and the baseline methods were found to 

be statistically significant (p-value<0.001).

Conclusions: The proposed machine-assisted interpolation algorithm significantly outperformed 

linear interpolation in terms of accuracy and robustness for both stomach segmentation from low-

field MRIs and bowel segmentation from CT images. At this time, fully automated segmentation 

methods for HDOs still require significant manual editing. Therefore, we believe that the MAI 

algorithm has the potential to expedite the process of HDO delineation within the radiation therapy 

workflow.

I. INTRODUCTION

Organs that show large variations in shape, size, position, and texture on a day-to-day or 

an hourly basis are often referred as Highly Deformable Organs (HDOs). Such examples 

are the stomach and the bowel which not only show large anatomical variations between 

patients, but also manifest intra-day variations due to their dependence on food intake and 

metabolism.[1]

In external beam radiation therapy and brachytherapy, it is essential to accurately delineate 

the target and organs at risk to create an optimal treatment with minimal side- effects. 

To date, clinical contouring of HDOs remains a time-consuming manual process that is 

subject to substantial inter-observer variation effects.[2, 3] Lamb et al have shown that the 

complete process of abdominal and pelvic intra-fraction contour adjustment takes up to 22 

minutes for the MRIdian system (ViewRay Inc. Oakwood Village, OH, USA).[2] They also 

highlighted that the segmentation of the stomach is done exclusively from scratch due to 

the inability of the built-in auto-contouring algorithm to capture large changes in organ size. 

This time-consuming aspect of manual delineation not only limits the number of treatments 

performed every day but may also lead to less efficient treatment plans due to patient 

discomfort and an increased risk of patient motion.[2]

Over the years, several concepts have proven to be successful in segmenting structures in 

the head and neck, abdominal, and pelvic regions. Atlas-based methods [4, 5], for example, 

are historically among the most established in the clinic. However, these methods generally 

fail for HDOs due to their propensity to be shape-conserving. Statistical shape models [6] 

and pixel-wise classification methods [7–9] have been proposed to solve this issue, but these 

methods were found to be laborious due to the requirement of feature definitions, which can 

be subjective. Hence, segmenting HDOs remains a challenging problem for the current era.

With the recent rise in computing power, deep learning shows huge potential in the field 

of medical imaging. [10, 11] Today, the use of fully convolutional neural networks [12] 

(CNNs) is the focus of a great deal of research effort and is rapidly becoming the state 

of the art for medical segmentation. [13] The U-Net [14] is an example of a CNN which 

is extensively used in biomedical image segmentation. Several studies have shown that the 

U-Net [15–18], and its extensions [19–21] can be used to accurately segment various organs 

and tumors in the abdomen, pelvic, and head & neck regions. However, the learning process 

in many of these proposed concepts is facilitated by regularly shaped organs [22], which 
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generally leads to an increase in mislabeling and loss in accuracy in the context of HDOs. 

Hence, while these algorithms produce acceptable results on stable anatomical organs, they 

generally fail when it comes to the more deformable organs.

To address this learning problem, Tong et al proposed a task-wise, self-paced learning 

strategy to avoid over-fitting their network with respect to the stable organs. [23] While this 

method has been shown to improve the segmentation of HDOs on CT images, there is still a 

considerable performance gap between the segmentation of stable organs and HDOs which 

require further investigation. Some other groups have tried to improve the segmentation of 

these more difficult cases by connecting the CNN with a post-processing layer. One such 

example has been shown by Christ et al where they applied densely connected conditional 

random field (CRF) layers to refine the segmentation result of their CNN. [24] However, 

its implementation was found to be impractical due to the extensive memory it requires, 

particularly for large 3D datasets. Fu et al have shown a more feasible approach by 

proposing a correction network that can be implemented into the CNN, without requiring 

a post-processing step. [25] The network presented was composed of three sub-CNNs, 

where the second and third CNNs were used to improve the segmentation results from the 

first CNN through iterative feedback; the result from one CNN was concatenated with the 

original image and fed to the next CNN, which used its own loss function to refine the initial 

segmentation. While this method imposed some type of anatomical constraints and was 

found to have great potential in contouring both relatively stable organs and HDOs in the 

abdomen region, the first CNN allowed the possibility of erroneous labeling which was not 

always corrected by the subsequent CNNs. Their results have shown a 10% decrease in Dice 

Similarity Coefficient [26] (DSC) when comparing the stomach segmentation results to that 

of the liver (a relatively more stable organ) and a 8.7% decrease from bowel segmentation to 

liver segmentation. Hence, in regards to these highly deformable organs, we believe that the 

overall performance has room for further improvement.

The goal of this work is to propose a practical and alternative solution to a task that has 

been proven to be challenging for the current auto-segmentation methods, while still helping 

to expedite the process of contouring HDOs. The proposed technique was inspired by an 

interpolation-based contouring strategy that is commonly used in manual organ contouring 

by radiation therapy planners. In this strategy the organ of interest is contoured on sparse 

slices, while slices in between are skipped. Subsequently, linear interpolation is performed to 

fill in the missing slices. The planner then corrects the interpolated contours.

Based on this manual delineation technique, we propose a Machine-Assisted Interpolation 

(MAI) algorithm that uses a CNN to correct linearly interpolated contours, reducing the 

amount of time needed for manual correction, thus reducing overall contouring time. This 

technique is evaluated using stomach segmentation from 0.35T MRI-guided radiotherapy, 

and bowel segmentation from CT-guided high-dose rate brachytherapy. The specific 

implementation is as follows. Manual contours were extracted from every 8th slice within a 

patient volume and linearly interpolated on the skipped slices. Subsequently, a patch-based 

CNN, named the Boundary Detection Network (BDN), is used to predict the approximate 

position of the boundaries of the HDO on the target images. The input to the BDN is the 

interpolated contour, and the corresponding target images (i.e., image on which the contour 
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is interpolated). The output of the BDN, an estimated boundary, is then input together 

with the target image to a second CNN, called the Organ Closing Network (OCN), which 

produces the final organ segmentation.

II. METHODS

A. Dataset

The MAI algorithm was separately trained and tested on two datasets; a low-field MR 

dataset for stomach segmentation and a CT dataset for bowel segmentation. Our first 

dataset consisted of 116 planning MRIs that were collected from patients undergoing 

treatment on the MRIdian system at the UCLA Medical Center. All of the 116 patients 

received treatment in the abdomen region, including the liver, pancreas, and stomach. The 

images were acquired during treatment planning using a built-in 0.35T MR imaging system 

with a balanced steady state free precession sequence (bSSFP). The second dataset was 

composed of 120 planning CT scans obtained from patients undergoing High-Dose Rate 

(HDR) Brachytherapy treatment in the pelvic region at the UCLA Medical Center. The CT 

scans were acquired using a SOMATOM Sensation Open CT scanner (Siemens, Munich, 

Germany). Both datasets were collected under the auspices of IRB-approved retrospective 

analysis protocols. Clinical stomach and bowel contouring was performed by experienced 

dosimetrists and medical physicists. Prior to algorithm training, contours were inspected and 

corrected as needed for optimal accuracy.

The 116 MR volumes had a pixel spacing of either 1.5 × 1.5 mm2 or 1.63 × 1.63 mm2, 

and slice thickness of 3 mm. The image sizes varied between 276 ×276 pixels and 334 × 

300 pixels. The CT images had pixel spacing ranging from 0.27 × 0.27 mm2 to 0.66 × 0.66 

mm2, and slice thickness of 2 mm. To ensure uniformity over the whole dataset, the MR and 

CT volumes were resampled through linear interpolation to have voxel sizes of 1.5 × 1.5 × 

3 mm3 and 1 × 1 × 2 mm3, respectively. For the CT dataset, a threshold of [−1000, 2000] 

Hounsfield units was imposed on the images in order to minimize the effects of artifacts 

due to procedure implants and air in the urinary and gastro-intestinal regions. The manually 

delineated HDO contours were saved as binary masks and received the same resampling and 

cropping process as the MR and CT volumes. This resampling and cropping process was 

performed in the MATLAB programming environment (Mathworks Inc, Natick, MA, USA).

B. Data Pre-processing

For each patient volume, the HDO was present in a discrete range of 2D slices indexed by S 

∈ [1, c], where 0 is the index of the first slice containing the HDO, and c is the index of the 

last slice containing the HDO. The slices containing the organ of interest, or target images, 

can then be denoted as tS and the binary masks as bS. Binary masks from bS were extracted 

every 8th slices starting from the slice index S = i, where i is a randomly chosen integer 

between 1 and 4. The extracted binary masks’ indices can then be denoted as K ∈ [i, i+8, …, 

i+p], where p is the largest integer between i and s-i which is divisible by 8.

The extracted binary masks bK were resampled using a linear interpolation method to 

produce a set of interpolated masks bv, where v ∈ [i, i+1, i+2, …, i+p]. At this point, every 
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target image in tv had its corresponding interpolated mask in Bv. Each target image, Tv, was 

then concatenated with its corresponding interpolated mask Bv to obtain I(v): a 2-channel 

image, where the first channel contained the target image, and the second channel, the 

interpolated contour.

I; ; 1
(v) = Tv #(1)

I; ; 2
(v) = Bv #(2)

C. Boundary Detection Network (BDN)

For each image I(v), 64 × 64 × 2 patches were extracted. These patches were centered about 

the boundary points of Bv and the number of patches extracted for each slice was directly 

proportional to the length of the contour obtained from Bv. The patch size was chosen to 

allow focusing on target organ boundary, while avoiding over-focusing such a given patch 

always or almost always contained the target boundary.

The exact boundary of the targeted organ is not necessarily known at the precision of one 

pixel. Hence, a 5-pixel wide contour line around the true contour of the HDO was used as 

ground truth during this phase of our algorithm as shown in Figure 1. This width was found 

to produce less spurious labeling compared to smaller and larger widths.

The Dense-UNet [27] architecture was used for BDN as shown in Figure 2a. This 

architecture was composed of a dense contracting path (left side) that captures contextual 

features from the input, followed by a dense expanding path (right side) that extract 

these local features. The Dense Block constituted of four densely connected layers, each 

comprising seven layers as shown in Figure 2b. All four densely connected layers in the 

Dense Block were connected to each other in a feed-forward mode. This method was used 

to maximize feature reuse and had been shown to be computationally efficient, thereby 

allowing a deeper network.

D. Organ Closing Network

For each image I(v), the patch-wise predictions from the BDN were re-assembled to regain 

the original size of the target image. As the 64 × 64 patches frequently overlapped with 

each other, re-assembling them resulted in a weighted boundary where a higher pixel value 

meant a higher probability of a boundary at that position. The weighted boundary was 

then smoothed using a 3×3 averaging filter to minimize the effect of spurious labeling. 

The smoothed boundary Bv2, considered a better approximation to the desired contour, was 

subsequently used to replace the linearly interpolated contour in I(v). Hence, the second 

channel in I(v) can be denoted as follows:

I; ; 2
(v) = Bv2 #(3)
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The new prior information, Bv2, was used to extract a 160 × 160 × 2 patches centered about 

the centroid of each contour in Bv2. The 160 × 160 patches were found to provide enough 

global positional and spatial context to the OCN while also providing positional constraints 

such that spurious labeling outside of the region of interest is avoided. During this phase of 

our algorithm, the binary masks from the manually delineated HDO contours were used as 

ground truth, as seen in Figure 1.

The OCN used the same Dense-UNet architecture as the BDN. However, due to the larger 

patch size, this network required a larger set of parameters and hence, more memory. To 

avoid GPU memory overflow, each dense block in the OCN was composed of 3 densely 

connected layers, and the number of filters at each level was reduced to half as compared to 

the BDN shown in Figure 2a.

E. Loss Function

Both networks used a combination of a Dice loss function [28] and a boundary loss function 

[29] as shown in equation 4.

L = αDL + (1 − α)BL #(4)

Where α is a variable between 0 and 1, DL is the Dice loss function, and BL is the boundary 

loss function.

The Dice loss function was used to maximize the area of overlap between the prediction 

mask and the ground truth mask. The boundary loss function works by converting the 

ground truth’s boundary to a distance-to-boundary array, which is then multiplied to the 

model’s prediction to give a measure of the distance between the two contours.

During training, α was decreased from 1 to 0.8 by 0.02 increments for the first 10 epochs, 

after which it was kept constant at 0.8. This loss functions schedule was chosen because it 

maximized overall accuracy.

F. Training Configuration

Separate experiments were performed on the low-field MR images (stomach segmentation) 

and on the CT images (bowel segmentation). Each dataset was shuffled and randomly 

split into a training, validation, and test set. For the stomach segmentation, the training set 

was composed of 79 MR patients, the validation set of 7 patients, and the test set of 30 

patients. In the case of bowel segmentation, the training set constituted of 84 CT patients, 

the validation set of 6 patients, and the test set of 30 patients. The proposed networks were 

implemented using Tensorflow 2.2 with Keras backend. The networks were trained using 

Adam Optimizer [30] with a starting learning rate of 10−4. The models were evaluated after 

each epoch using the validation set and the learning rate was reduced by a factor of 0.8 if the 

validation loss did not improve for 20 consecutive epochs. The BDN and OCN were trained 

until the training loss did not improve for 25 consecutive epochs, and for each network, the 

model with the minimum validation loss was saved. For the stomach segmentation, the BDN 

and OCN models converged after 59 and 154 epochs, respectively. In the case of the bowel 

segmentation, the BDN and OCN models converged after 49 and 200 epochs, respectively.

Luximon et al. Page 6

Med Phys. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



G. Evaluation Metrics

The Dice Similarity Coefficient and the mean surface distance [31] (MSD) were used to 

compare the predicted contours against the ground truth contours on a slice-by-slice basis 

and in terms of their volume. MSD was obtained by calculating the average of the minimum 

distances from each point on one surface to the other surface as shown below:

MSD =
G P

G + P G
P

2
#(5)

Where G → P is the sum of minimum distances from the ground truth surface to the 

predicted surface, G is the number of points on the surface of the ground truth volume, P → 
G is the sum of distances from the prediction surface to the ground truth surface, and P is the 

number of points on the surface of the prediction volume.

To demonstrate the usefulness of the neural networks in our algorithm, we compared our 

predicted contours to the linearly interpolated contours mentioned in Section II B. We also 

trained a single-channel Dense-UNet for fully-automatic segmentation (FAS) without using 

any prior information. This comparison was performed to validate the use of the prior 

information. Student t-test was used to assess statistical significance of differences between 

groups, with a p value <0.05 being considered statistically significant.

III. RESULTS AND ANALYSIS

A. Quantitative Analysis

The validation metrics were calculated for 30 MR patients (623 slices) and 30 CT patients 

(511 slices) present in our test sets. To make the method comparisons fair, slices where the 

prior information were extracted from were excluded from our analysis.

Table II shows a brief summary of the results obtained from MAI, LI, and FAS by 

comparing their prediction volume to the ground truth volume. For each method, we also 

reported the number of slices below a threshold DSC of 0.8, and the number of slices with 

MSD >3 mm in Table III. Figure 3 and Figure S-1 summarize the DSC of the three methods 

on a slice-by-slice basis for each of the 30 test cases. We believe that these metrics can 

provide enough information to compare the performance of the three methods in each of the 

segmentation tasks.

From Tables II and III, it can be observed that the Machine-Assisted Interpolation 

outperformed the two other methods both in terms of accuracy and robustness. Furthermore, 

Figure 3 and Figure S-1 show that MAI obtained superior results in the majority of test 

cases as compared to LI and FAS. All of our comparisons in our analysis were found to be 

statistically significant with a p-value <0.001.

IV. DISCUSSION

We proposed a Machine-Assisted Interpolation algorithm which used a few manually 

contoured slices to automatically segment a highly deformable organ for the rest of the 
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patient volume. The first part of the algorithm consisted of a Boundary Detection Network 

that utilized global anatomical and positional context to find the boundaries of the HDO. 

The predicted boundary was then used in our Organ Closing Network to segment the 

HDO from the target image. The proposed method was employed for two segmentation 

tasks; stomach segmentation from low-field MR images and bowel segmentation from 

brachytherapy planning CT images. Our results have shown that MAI outperforms the 

LI in terms of accuracy and robustness in the given segmentation tasks. For the stomach 

segmentation, the DSC of MAI was on average 5% higher compared to LI, and the 

average MSD was 0.54 mm lower (both p-values <0.001). For the bowel segmentation, 

MAI yielded a DSC 6% higher compared to LI, and the average MSD was 0.42 mm lower 

(both p-values <0.001). Figure 3 demonstrates the ability of MAI to produce a significantly 

smaller number of sub-optimal segmentation of the stomach and the bowel in most test cases 

when compared to LI. From Figure S-1, it can also be observed that MAI outperformed LI in 

terms of the median and inter-quartile range in every single test case for the stomach and for 

29 out of 30 cases for the bowel.

To qualitatively analyze our results, Figure 4 below shows direct comparisons of the 

prediction from MAI to the prediction of the LI and FAS on three selected slices. Figures 

4(a)–(c) and Figures S-2 (a)–(h) show that the predictions from MAI are closer to the 

gold standard as compared to FAS, which demonstrates the ability of our algorithm to 

acquire useful information from the prior information to output a better segmentation of the 

stomach. The importance of positional and spatial constraint used during different the phases 

of our method can be particularly observed in Figure 4(c) and Figures S-2 (a), (d), (f), (g), 

and (h). The constraints provided from our prior information forced our networks to stay 

within a particular region of interest and avoid spurious labeling in the wrong regions as 

seen with FAS.

Similarly, we can see from Figures 5(a)–(c) and Figures S-3(a)–(h) that MAI has proven to 

yield more accurate bowel contours as compared to the FAS. Again, it can be observed that 

the use of prior information provides practical information that allows for a more accurate 

and robust delineation of the bowel. Furthermore, in the case of brachytherapy treatment, 

the sigmoid is usually identified separately from the bowel. We have observed that MAI has 

been efficient in avoiding the mis-identification of the sigmoid as the bowel. On the other 

hand, FAS frequently misrepresented the sigmoid as the bowel as pointed out in cases (a)-(c) 

in Figure 5 (FAS contours). We believe that MAI has more potential in avoiding confusion 

during the delineation of the bowel and the sigmoid, and can thereby expedite the contouring 

process as compared to FAS or LI.

However, due to the variations in texture within the organ, the BDN can sporadically 

perceive an abrupt change in texture within the HDO as a boundary. These erroneous 

boundary labels may sometime propagate through the OCN and give rise to sub-optimal 

contours. Furthermore, too much reliance on the prior information may lead the network 

to segmenting only a sub-section of the targeted organ in cases where the boundary of 

the organ is far from that of the prior information. In this case, the positional and spatial 

constraint provided by the prior information can be found to be misleading as seen in 

Figures 4(d) and 5(d). However, as seen in Figure 3, Figure S-1, and Table III, these 
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occurrences are very rare and do not considerably impact the superiority of MAI when 

compared to LI and FAS.

Compared to the state-of-the-art automatic segmentation methods involving the stomach [23, 

25, 32–36] (reported DSC 0.81–0.90) and bowel [25, 37–41] (reported DSC 0.78–0.89), 

MAI shows higher segmentation accuracy. Because auto-segmentation results are sensitive 

to the composition of training and evaluation datasets, we also compared MAI to a fully-

automated Dense- UNet segmentation that was trained and evaluated on our own dataset. 

For the stomach segmentation, the DSC of MAI was on average 10% higher compared 

to FAS, and the average MSD was 3.19 mm lower (both p-values <0.001). For the bowel 

segmentation, MAI yielded a DSC 18% higher compared to FAS, and the average MSD 

was 4.9 mm lower (both p-values <0.001). Furthermore, it can be observed from Figure 6 

that MAI outperformed FAS in terms of the median and inter-quartile range in 28 out of 

30 stomach test cases, and 27 out of 30 bowel test cases. Yet, the most important aspect 

to note from Figure 3 and Figure S-1 is the ability of MAI to produce more consistent 

results throughout the test cases as compared to FAS where the method occasionally fails to 

produce good results (e.g., Cases 6, 7, 12, 20, and 30 for the stomach, and Cases 1, 10, 11, 

23, and 24 for the bowel).

However, the prior information used in our algorithm gives our method an obvious 

advantage in segmenting the stomach and the bowel accurately as opposed to the 

fully-automatic segmentation methods. Hence, comparing our results to these automatic 

segmentation methods is not the primary aim of this study. The main goal of this work is to 

instead provide a practical solution that can exploit the information obtained from the expert 

user to contour HDOs with high accuracy, which MAI has shown its efficacy in during 

our testing phase. Furthermore, inspired by a commonly used manual interpolation-based 

contouring strategy, MAI can potentially be implemented in the radiation therapy workflow 

without disrupting the user’s current practice and habits during the contouring process. This 

aspect of MAI, together with the results obtained from our experiments, make us believe 

that our algorithm can speed up the contouring process within the external beam radiation 

therapy and brachytherapy workflow where the automatic segmentation tool is not always 

the preferred choice.

Leger et al. also demonstrated the concept of prior information usage in the context 

of bladder segmentation. [42] Their results showed that the use of prior information 

outperformed both the standard UNet and a registration-based contour propagation method 

when the prior information is extracted within 5 slices from the target image. However, the 

bladder is an organ that is amenable to highly accurate auto-segmentation. In contrast, in this 

work we focused on stomach and the bowel which are generally believed to be more difficult 

tasks due to their larger variations in shape, size, and position.

This work is subject to certain limitations. First, HDOs often show significant patient- 

to-patient variation. Our evaluation dataset size of 30 patients per organ site may not 

completely capture the range of performance that might be observed on a much larger 

dataset. Secondly, while we demonstrated increased accuracy of MAI versus linear 

interpolation, in a clinical workflow, some edits would likely still be needed. We were 
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unable to assess whether the corresponding time differences for correction would be 

practically significant. These additional tests will be pursued in future studies. Nevertheless, 

the differences in DSC and MSD reported in this work are consistent with differences that 

are regarded as significant in the literature. [23, 25, 42]

From our observations, our algorithm takes an average of 12.4 seconds/case (0.6 seconds/

slice) and 22.1 seconds/case (1.3 seconds/slice) to segment the stomach and the bowel, 

respectively, using an Nvidia Quadro P1000 4GB GPU (Nvidia Corporation, Santa Clara, 

CA, USA) system with 16GB RAM. As our algorithm has not been optimized for fast 

execution time, a run time optimization could further reduce the inference time. However, 

we believe that MAI is sufficiently fast to be clinically implemented as-is. Future works 

also include applying this algorithm to segment multiple organs in the abdominal and pelvic 

regions, which has the potential of further expediting the contouring process within the 

radiation therapy workflow.

V. CONCLUSION

The stomach and the bowel can be characterized as highly deformable organs due to their 

large and frequent changes in shape, size, and texture. Hence, it is a time-consuming task 

to manually locate and delineate these organs, even for the experienced professionals in the 

clinic. Automatic segmentation tools have thus far proven to be inefficient in solving this 

issue for HDOs due to their lack in accuracy and robustness.

We proposed herein a robust MAI algorithm which can accurately segment both the stomach 

from low-field MR images and the bowel from brachytherapy planning CT images using 

a few manually contoured slices as prior information. This algorithm has the potential of 

facilitating the localization and delineation of the stomach and the bowel in the external 

beam radiation therapy and brachytherapy workflow.
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Figure 1: 
Schematic of the proposed MAI algorithm. The Boundary Detection Network is used to 

identify the boundary of the organ while the Organ Closing Network uses this boundary 

information to give the final segmentation of the desired organ.

Luximon et al. Page 14

Med Phys. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Illustration of the Dense-UNet architecture used for the Boundary Detection phase of our 

algorithm. This architecture was composed of a dense contracting path (left side) that 

captures contextual features from the input, followed by a dense expanding path (right side) 

that extract these local features. The densely connected layers in the Dense Block were 

connected in a feed-forward mode to maximize feature reuse.
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Figure 3: 
The bar graphs show the percentage of slices with a DSC of less than 0.8 for each test case 

using MAI, LI, and FAS. The colored dots denote a value of 0% and the bar graphs to the far 

right show combined results over all test cases. MAI: Machine-Assisted Interpolation; LI: 

Linear Interpolation; FAS: Fully-Automatic Segmentation.
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Figure 4: 
Comparison between the stomach segmentation results of the Machine-Assisted 

Interpolation (MAI), Linear Interpolation (LI), and Fully-Automatic Segmentation (FAS) 

on 4 selected MR slices (a-d) across 4 unique patients (cases 4, 8, 20, and 30, respectively). 

The top row shows the predicted stomach contour from MAI (red contour), the second row, 

the result from LI (purple contour), and the third row, the results from FAS (orange contour). 

On all slices, the ground truth contour is shown in green.
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Figure 5: 
Comparison between the bowel segmentation results of the Machine-Assisted Interpolation 

(MAI), Linear Interpolation (LI), and Fully-Automatic Segmentation (FAS) on 4 selected 

CT slices (a-d) across 4 unique patients (cases 3, 7, 17, and 29, respectively). The top row 

shows the predicted stomach contour from MAI (red contour), the second row, the result 

from LI (purple contour), and the third row, the results from FAS (orange contour). On all 

slices, the ground truth contour is shown in green. The red arrows point to contours that 

were clinically identified as the sigmoid.
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TABLE I:

Definitions of relevant acronyms used in this paper

Acronym Definition

HDO Highly Deformable Organ

CNN Convolutional Neural Network

BDN Boundary Detection Network

OCN Organ Closing Network

MAI Machine-Assisted Interpolation

LI Linear Interpolation

FAS Fully-Automatic Segmentation
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TABLE II:

Average 3D Dice coefficient (DSC) and mean 3D surface distance (MSD) between the predicted volumes of 

LI, FAS and MAI, and the ground truth volumes, including their standard deviations. The best results are in 

bold.

Stomach Bowel

DSC MSD (mm) DSC MSD (mm)

Linear Interpolation (LI) 0.86 ± 0.03 1.31 ± 0.26 0.84 ± 0.06 1.35 ± 0.54

Automatic Segmentation (FAS) 0.81 ± 0.11 3.96 ± 3.12 0.72 ± 0.11 5.81 ± 5.37

MAI Algorithm 0.91 ± 0.02 0.77 ± 0.25 0.90 ± 0.04 0.93 ± 0.48
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TABLE III:

Results of the slice-by-slice analysis of each method to compare the robustness of each method. The number 

of slices, along with the percentage of slices, falling within the given thresholds are shown. The best results are 

highlighted in bold

Linear Interpolation (LI) Automatic Segmentation (FAS) MAI Algorithm

Stomach
# DSC <0.8 184 (30%) 175 (28%) 44 (7%)

# MSD >3 mm 377 (61%) 312 (50%) 159 (26%)

Bowel
# DSC <0.8 236 (46%) 305 (60%) 80 (16%)

# MSD >3 mm 231 (45%) 361 (71%) 105 (21%)
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