
UC Berkeley
UC Berkeley Previously Published Works

Title
Gene Expression Networks Across Multiple Tissues Are Associated with Rates of 
Molecular Evolution in Wild House Mice

Permalink
https://escholarship.org/uc/item/8v48b0f9

Journal
Genes, 10(3)

ISSN
2073-4425

Authors
Mack, Katya L
Phifer-Rixey, Megan
Harr, Bettina
et al.

Publication Date
2019

DOI
10.3390/genes10030225
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8v48b0f9
https://escholarship.org/uc/item/8v48b0f9#author
https://escholarship.org
http://www.cdlib.org/


genes
G C A T

T A C G

G C A T

Article

Gene Expression Networks Across Multiple Tissues
Are Associated with Rates of Molecular Evolution in
Wild House Mice

Katya L. Mack 1,*, Megan Phifer-Rixey 2, Bettina Harr 3 and Michael W. Nachman 1,*
1 Department of Integrative Biology and Museum of Vertebrate Zoology, University of California,

Berkeley, CA 94720, USA
2 Department of Biology, Monmouth University, West Long Branch, NJ 07764, USA; mphiferr@monmouth.edu
3 Max-Planck-Institute for Evolutionary Biology, Plön 24306, Germany; bettina.harr@mac.com
* Correspondence: katyamack@berkeley.edu (K.L.M.); mnachman@berkeley.edu (M.W.N.)

Received: 28 January 2018; Accepted: 11 March 2019; Published: 18 March 2019
����������
�������

Abstract: Interactions between genes can influence how selection acts on sequence variation. In gene
regulatory networks, genes that affect the expression of many other genes may be under stronger
evolutionary constraint than genes whose expression affects fewer partners. While this has been
studied for individual tissue types, we know less about the effects of regulatory networks on
gene evolution across different tissue types. We use RNA-sequencing and genomic data collected
from Mus musculus domesticus to construct and compare gene co-expression networks for 10 tissue
types. We identify tissue-specific expression and local regulatory variation, and we associate these
components of gene expression variation with sequence polymorphism and divergence. We found
that genes with higher connectivity across tissues and genes associated with a greater number of
cross-tissue modules showed significantly lower genetic diversity and lower rates of protein evolution.
Consistent with this pattern, “hub” genes across multiple tissues also showed evidence of greater
evolutionary constraint. Using allele-specific expression, we found that genes with cis-regulatory
variation had lower average connectivity and higher levels of tissue specificity. Taken together, these
results are consistent with strong purifying selection acting on genes with high connectivity within
and across tissues.

Keywords: co-expression; gene regulation; house mice

1. Introduction

Understanding the forces that govern genetic and phenotypic variation within and between
species is an enduring problem in evolutionary biology. The number of interactions between genes
and the phenotypic consequences of these interactions may be important determinants of evolutionary
constraint [1,2]. For example, a gene with many interactions in a gene regulatory network common
across cells may be more pleiotropic than genes in the periphery of that network, or genes with
tissue-specific expression [3,4]. Such highly connected genes are expected to be under strong negative
selection, as any change to these genes could affect their downstream partners [3]. One approach to
studying relationships between genes across the genome is to create gene co-expression networks,
summarizing relationships between genes based on their coordinated expression across samples.
The relationship between one gene and all other genes can be assessed based on the strength of
connection between that gene and others in a network. Genes whose expression is more highly
correlated with other genes in the network are thus more “connected” within a co-expression network.
Gene co-expression is of biological interest as co-expressed genes are expected to be controlled by the
same transcriptional regulatory program or otherwise be functionally related. Gene co-expression
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network analysis has been used to study co-expressed gene sets, compare patterns across tissues [5],
between species [6–8], and to identify sets of functionally related genes associated with quantitative or
disease phenotypes [9–12].

A general feature of co-expression networks is that there are a small number of highly connected
genes and many genes with very few connections [13]. The few highly connected genes are expected
to show higher levels of pleiotropy compared to genes with fewer connections, and consequently are
predicted to be more constrained both in terms of changes in gene expression and in protein sequence.
Consistent with this, a number of studies have found that more connected genes exhibit lower genetic
diversity and lower rates of molecular evolution [14–16]. These findings parallel what has been seen
in protein–protein interaction networks, where genes encoding proteins with more protein–protein
interactions have been shown to evolve more slowly than genes with fewer interactions (e.g., [1,2]).

The interplay of co-expression network topology and gene expression across tissues has received
less attention. However, differences in co-expression networks between tissues may affect sequence
evolution. All cells carry out a combination of common and tissue-specific processes associated with
their unique phenotypes, and tissues contain a collection of different cell types. Consequently, genes
that are highly connected in one tissue type may be more peripheral in others. A simple prediction that
follows from this is that genes that are highly connected in more tissues should, on average, be less
tolerant of sequence variation and evolution, as these genes may be more pleiotropic. Comparisons of
co-expression networks across tissues have been used to characterize network topology across different
tissues [5,17], but how the properties of these networks affect sequence evolution remains unexplored.

House mice are a biomedical model system and have extensive genomic resources (Mus
musulus domesticus) [18,19], making them a powerful system for studying co-expression networks.
To investigate the relationship between cross-tissue co-expression networks and molecular evolution,
we constructed co-expression networks for 10 tissue types in 21 progeny of mice collected from natural
populations. We used these data to compare co-expression network topology between tissues, identify
tissue specific expression and local regulatory variation, and associate these components of gene
expression variation with sequence variation and evolution.

2. Materials and Methods

2.1. Expression Data

RNA-sequencing (RNA-seq) data were downloaded from Harr et al. [20]. These samples
correspond to lab-born progeny of M. m. domesticus collected from Germany, Iran, and France,
with up to 10 tissue types per individual (muscle, thyroid, brain, testis, spleen, liver, gut, heart, lung,
kidney) (File S1). Detailed descriptions of sample locations and breeding design can be found in Harr
et al. [20] (http://wwwuser.gwdg.de/~evolbio/evolgen/wildmouse/). To avoid sampling relatives,
individual mice were collected between 500 m–1 km apart, covering an area of no more than 50 km
radius for each of the three populations. Samples for DNA and RNA-sequencing were obtained from
the first or second generation of out-breeding in an animal facility and are expected to represent
full wild-type variation. Individuals used for RNA-seq were age-matched males (10–12 weeks of
age). We downloaded RNA-seq reads mapped with Tophat2 [21] to the mm10 reference genome [20].
We then counted reads that mapped to exonic regions using HTSeq-count [22] based on the Ensembl
GRCm38 annotation.

2.2. Co-Expression Analysis

Three individuals were removed because of relatedness (first- or second-degree relatives), leaving
21 individuals for co-expression analyses. Samples that were tissue-specific outliers (3) were identified
through a principal component analysis and removed from subsequent analyses of that tissue type
(see File S1 for a list of samples included in this analysis for each tissue type). This resulted in
188 samples for downstream analysis. For individual co-expression analyses, genes with fewer than
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20 reads on average per tissue were removed. Gene expression was then quantile-normalized and
then concurrently corrected for known and unknown covariates (first 5 principal components of
genotype data to account for population structure and 10 hidden confounders), which are known
to explain variation in gene expression, using a Bayesian approach implemented in the program
PEER [23,24]. Accounting for hidden factors and other confounders reduces the influence of this
variation on downstream analyses, variation that can obscure true signals or generate false signals
due to covariance [25]. Principle components are frequently used to correct for population structure
in gene expression data (e.g., [26,27]). The R program SNPrelate was used to perform principal
component analyses on genotype data [28]. The program Weighted Gene Co-expression Network
Analysis (WGCNA) was then used to construct co-expression networks for all tissue types for all
individuals, following WGCNA protocols [29]. In short, we first constructed a gene co-expression
network, represented by an adjacency matrix, which denotes co-expression similarity between pairs of
genes among different individuals, for each tissue. Then, modules were identified using unsupervised
clustering. Dissimilarly between clusters is measured based on topological overlap and defined
by cutting branches off the dendrogram [29,30]. Modules are then arbitrarily assigned colors for
identification. Each module is summarized by a representative eigengene, or the first principal
component of the module. Each gene’s total connectivity within a tissue was then retrieved using the
command intramodularConnectivity.

To identify co-expression modules that were conserved across tissues, we also restricted our
analysis to genes that were expressed in every tissue (with a minimum average read depth of
50 reads/sample; 10,780 genes) and created consensus networks between each possible pair of tissues
(45 comparisons) following WGCNA protocols [29,31]. The consensus network is a single network
arising from two tissues (Figure 1D). In this way, a consensus network analysis differs from analyses
where modules are identified in one “reference” network and preservation of these modules is studied
in other networks (e.g., [32]). Instead, consensus modules are expected to represent co-expression
patterns conserved across tissues [29,31].

As in a single network analysis (see above), consensus modules are defined based on unsupervised
clustering and arbitrarily assigned colors for identification.

2.3. Tissue Specificity

To compare gene expression across tissue types and identify genes with tissue specific expression,
mapped reads were downsampled across samples/tissue types to account for differences in average
library size between individual samples. For our analysis of tissue specificity, genes with fewer than
an average of 50 reads across all samples were discarded. Tissue specificity was subsequently defined
as in Sonawane et al. [17]:

S(t)
j = med

(
e(t)j

)
− med

(
e(all)

j

)
− IQR

(
e(all)

j

)
where the specificity (S) of gene j in tissue t corresponds to (the median (med) expression (e) of the gene
in that tissue (t)—the median expression of the gene in all tissues (all))—interquartile range (IQR) of
expression of that gene across all tissues. A gene’s highest S value across all 10 tissues was designated
Smax. Genes in a tissue for which S > 2 were considered tissue-specific. Under this definition, genes
can be tissue specific in more than one tissue. The number of tissues for which a gene was considered
tissue-specific is the gene’s multiplicity value. For example, a gene with S > 2 in three tissues has a
multiplicity of three. A total of 4902 genes were found to be tissue specific in just one tissue type,
meaning these genes have a multiplicity of one.

2.4. Allele-Specific Expression

To identify allele-specific expression, we downloaded genome-wide single nucleotide
polymorphism (SNP) calls from Harr et al. [20] for these individuals, filtering variants based on
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the “PASS” flag. Two individuals (132 and IR122) did not have corresponding genomic data and
were not included in this analysis. To test for allele-specific expression in each tissue, RNA-seq reads
mapped to the reference and alternative allele for heterozygous sites were counted using GATK
ASEReadCounter [33]. Heterozygous sites with fewer than 20 mapped RNA-seq reads supporting
the reference and the alternative allele were discarded. Allele-specific expression was then called as
described in [34]. The number of single-nucleotide polymorphism (SNPs) that could be tested in each
tissue is listed in Table S1, corresponding to a total of 15,390 genes across all tissue types. We retained
the variants with the lowest p-values per gene and then performed a false-discovery rate correction
using R’s p.adjust (Table S2).

2.5. Measures of Sequence Evolution

Estimates of dN (nonsynonymous substitutions per nonsynonymous site) and dS (synonymous
substitutions per synonymous site) between mouse and rat were downloaded from Ensembl
(GRCm38) [35]. We also calculated dN and dS between M. m. domesticus and Mus caroli. Expression
level, expression variation, and connectivity were compared to dN/dS for individual genes to
quantify the effects of gene expression on rates of protein evolution. Similar results were obtained
in comparisons between mouse and rat as in comparisons between M. m. domesticus and Mus caroli.
(Table S3). Given the similarity of the results, only dN/dS comparisons between mouse and rat are
reported in the text. SNP density was estimated based on genome-wide SNP calls from Harr et al. [20],
counting SNPs that fell within the boundaries of each gene and correcting for the length of a gene
using gene start and stop annotations downloaded from Ensembl (GRCm38). Gene start and end
coordinates correspond to the outermost transcript start and end coordinates, meaning these regions
contain both exonic and intronic sites.

2.6. Enrichment Analyses

Tests for enrichments of mutant phenotypes were done using modPhEA [36]. All Gene Ontology
(GO) category enrichment analyses were performed with PANTHER [37].

2.7. Protein Interaction Networks

Predicted protein networks were downloaded from STRING (v10) [38] for M. m. domesticus.
STRING predicts interactions based on various sources of data, including experimental, text-mining,
and databases [39]. Interactions were filtered for “high confidence” interactions (>0.7; [38]).

2.8. Variant Annotations

Variants were annotated (e.g., synonymous, nonsynonymous) using the Ensembl Variant Effect
Predictor [40].

We analyzed genome-wide expression data generated by Harr et al. [20] for 188 tissue samples
from 21 male M. m. domesticus. These samples correspond to 10 different tissue types (muscle, thyroid,
brain, testis, spleen, liver, gut, heart, lung, kidney) collected from lab-born progeny of wild house mice
of diverse genotypes captured in Iran (n = 6), France (n = 7), and Germany (n = 8), and raised in a
common environment (see File S1).

3. Results

3.1. Properties of Gene Connectivity within and Across Tissues

To characterize properties of gene connectivity within and across tissue, we used WGCNA [29]
to construct co-expression networks, identify co-expression modules, and estimate gene connectivity
across all individuals. Gene expression was quantile-normalized for each tissue type and then corrected
for hidden cofounders and population structure (see methods). Individuals from all three populations
were then used to construct a gene co-expression network for each tissue type.
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In a gene co-expression network analysis, the expression of each pair of genes is compared across
samples to create a co-expression network. A gene’s connectivity is defined as the sum of connection
strengths between a focal gene and all other genes in a network. Genes with similar expression patterns
can then be grouped into co-expression modules (see methods) [29] (Figure 1).
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Figure 1. Constructing gene co-expression networks [29]. (A) Co-expression similarity is compared
between pairs of genes among individuals in order to build (B) a co-expression network of all genes.
(C) Co-expression modules are identified and defined by hierarchical clustering and cutting branches
off the dendrogram. Modules are then assigned colors for identification. (D) Consensus networks
across each pair of tissues are created to identify co-expression modules that are conserved across
tissues (consensus modules) [31].

First, we investigated general properties of co-expression network topology within and across
tissue types. Consistent with previous studies with single tissues [15], we found a significant
positive correlation between connectivity and gene expression level for each tissue type (Spearman’s
rank correlation, Table S4). Gene connectivity was also correlated between different tissue types
(Spearman’s rank correlation, Table S5), with correlation coefficients ranging between 0.06–0.35 in
pairwise comparisons between tissues. Testis, brain, and spleen showed the lowest average correlation
coefficients in pairwise comparisons between these and other tissues.

To investigate co-expression relationships across tissues, we also used WGCNA to identify modules
that are shared across two tissue types, known as consensus modules (Figure 1) [29,31]. To identify
consensus modules, we restricted our analysis to genes expressed across all tissue types (10,780 genes)
and built co-expression networks for each pair of tissues (45 comparisons total) (see methods). We then
counted the number of consensus modules with which each gene was significantly associated. For example,
a gene that is significantly associated with a co-expression module between every pair of tissues would
be found in 45 consensus modules, whereas a gene that is only found in a consensus module between
the liver and spleen would be found in one consensus module. Average expression was significantly
positively associated with the number of consensus modules in which a gene was found (Spearman’s rank
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correlation, rho = 0.88, p < 2.2 × 10−16), as was average gene connectivity across tissues (Spearman’s rank
correlation, rho = 0.79, p < 2.2 × 10−16). We also observed a significant, but weaker, negative association
with tissue-specificity (see below) (Spearman’s rank correlation, rho = −0.088, p = 1.17 × 10−15), where
genes that had higher tissue-specificity values were found in fewer consensus modules.

3.2. Tissue Specific Expression and Connectivity

Differences in connectivity between tissues are expected to be a consequence of tissue-specific
expression patterns. To identify genes with tissue-specific expression, we compared the expression
of each gene across the 10 tissue types included in this study and estimated each gene’s specificity
(S) for a tissue, based on the gene’s expression level and variance across all tissues (see methods)
(Figure S1) [17]. Consistent with other studies on tissue-specificity [41,42], the testis had the greatest
number of genes with tissue-specific expression, followed by the brain.

Tissue-specific genes were found to have higher connectivity on average within their tissue when
compared to non-tissue specific genes (permutation tests, all comparisons p < 0.0001), but we also
observed a weak negative correlation between a gene’s level of tissue specificity (Smax) and connectivity
across all tissues (Spearman’s rank correlation, rho = −0.035, p = 0.0014) (Figure S2). Using annotations
from the DBD transcription factor prediction database [43], we found that tissue-specific genes were
significantly less likely to encode transcription factors (χ2 test, p = 0.0069, Odds ratio = 0.80). While there
are very few transcription factors that were tissue-specific, the tissue-specific transcription factors were
enriched for tissue-specific mutant phenotypes in some tissues (Table S6). For example, tissue-specific
brain transcription factors were enriched for mutant phenotypes related to abnormal brain size
(q = 1.725 × 10−4), abnormal cerebellar cortex morphology (q = 1 × 10−3), and abnormal brain weight
(q = 1.725 × 10−4), compared to the background set of genes expressed across tissues.

3.3. Relationship between Regulatory Variation and Connectivity

Previous studies have found that genes with local (cis-) regulatory variation also show lower
average connectivity in gene expression networks [15,16]. One interpretation of this observation is
that genes in the periphery of a network are more tolerant of local regulatory variation. To investigate
the relationship between connectivity and regulatory variation in house mice, we identified genes
with allele-specific expression in each tissue type. Allele-specific expression, the difference in
expression between parental alleles, can be used to identify cis acting epigenetic or genetic variation
in heterozygous individuals [44]. In each tissue, we tested exonic heterozygous sites for differences
in expression between parental alleles (see Methods) (Table S1). We identified 4146 genes with
allele-specific expression across all 10 tissue types (False-discovery rate < 0.1; Table S2), many of which
(28.48%) showed allele-specific expression in more than one tissue-type.

We then tested whether genes with allele-specific expression showed lower average connectivity
within a tissue. As the power to detect allele-specific expression increases with expression level [45]
(Figure S3), connectivity scores were adjusted for average expression level within each tissue (see
methods). We found that in all tissues, genes with cis-regulatory variation had lower average
connectivity than genes without cis-regulatory variation (permutation tests, all comparisons p < 0.0001).
We also found that genes with allele-specific expression had higher levels of tissue-specificity on
average (permutation test, p < 0.0001; Smax adjusted for average expression level across tissues).

Genes with cis-regulatory variation may have lower average connectivity if genes with higher
connectivity are under stronger purifying selection and thus less tolerant of cis-regulatory variation.
Consistent with this, we find that genes with allele-specific expression in any tissue have higher dN/dS
values (Mann–Whitney U, p = 0.03). We also downloaded predicted protein interaction data from
STRING [39] and found that genes with allele-specific expression encoded proteins that have fewer
interacting partners on average (Mann–Whitney U, p < 2.2 × 10−16). Finally, we found that genes with
allele-specific expression were less likely to encode transcription factors (χ2 test, p < 0.0001). This was
also observed for transcription factors that were considered tissue-specific (χ2 test, p < 0.0001).
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3.4. Relationship between Connectivity and Sequence Evolution

To examine the relationship between evolutionary constraint and characteristics of gene
expression, we performed pairwise tests between aspects of gene expression across tissues (average
connectivity, average expression level, and variance in expression and connectivity across tissues)
and measures of sequence variation (SNP density) and protein evolution (dN/dS ratio) (Table 1).
To control for the relationship between these measures and different aspects of gene expression,
we then performed partial Spearman correlations between properties of gene expression (listed in
Table 1) and sequence evolution. In contrast to pairwise tests, partial correlations measure the degree
of association between two variables when other variables are removed to control for the confounding
relationship between multiple variables. We found that average connectivity and average expression
level across tissues showed highly significant negative associations with dN/dS ratio (Figure 2A) and
SNP density (Figure 2B) (Table 1). We also performed 1000 permutations in which the relationship
between the predictors and dN/dS ratio and SNP density was randomized. None of the correlations in
the permutated datasets were more extreme than the observed partial correlations. Despite the broad
patterns shown in Figure 2, we note that there are some genes with high levels of constraint that show
low connectivity (bottom left corner of Figure 2A,B). In contrast, there were no genes with very low
levels of constraint and very high connectivity.

Table 1. Spearman’s rank correlation coefficient between gene expression-related measures and
sequence evolution.

dN/dS SNP Density

Variable Pairwise 1 Partial 2 Pairwise Partial

Average expression level across tissues −0.26 *** −0.15 *** −0.15 *** −0.14 ***
Expression IQR across tissues −0.22 *** 0.042 ** −0.05 *** 0.17 ***

Average connectivity across tissues −0.18 *** −0.045 *** −0.16 *** −0.09 ***
Connectivity IQR across tissues −0.12 *** 0.04 ** −0.11 *** −0.04 ***

1 Pairwise correlations measure the correlation between the variable and dN/dS or SNP density. 2 Partial correlations
measure the association between the variable and dN/dS or SNP density when other variables are accounted for.
Interquantile range (IQR), where IQR = Quantile 3 − Quantile 1. *** p < 0.0001; ** p < 0.001. SNP: Single-nucleotide
polymorphism. dN/dS: Nonsynonymous to synonymous substitutions rate ratio.
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Figure 2. (A) Average connectivity across tissues is significantly negatively correlated with dN/dS
ratio (Pairwise Spearman’s rank correlation rho = −0.18, p < 0.0001; Partial Spearman rho = −0.045,
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Modules that are preserved across tissues are expected to have functions that are common
across tissues [5]. To assess whether the preservation of module relationships across tissues was also
associated with rates of sequence evolution, we asked whether genes found in a greater number of
consensus modules between pairs of tissue types showed greater sequence conservation. We predicted
that genes that were found in more modules across tissues would show greater sequence constraint,
as these genes may also show higher levels of pleiotropy. Consistent with prediction, we found
that dN/dS (Figure 3A; Spearman’s rank correlation, rho = −0.22, p < 2.2 × 10−16) and SNP density
(Figure 3B; Spearman’s rank correlation, rho = −0.16, p < 2.2 × 10−16) were significantly negatively
correlated with the number of consensus modules in which a gene was found. As in the previous
analysis, we also performed a partial Spearman correlation to account for average expression level,
expression variance, gene connectivity, and variance in connectivity across tissues. We found that the
association between dN/dS ratio (Partial Spearman correlation, rho = −0.11, p < 2.2 × 10−16) and SNP
density (Partial Spearman correlation, rho = −0.039, p = 0.00036) were still significant when accounting
for these variables. In 1000 permutations in which the relationship between pair number and dN/dS
ratio or SNP density was randomized, no correlation was more extreme than that observed for the
dN/dS ratio and only one permutation was more extreme than that observed for SNP density.
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Figure 3. (A) Genes in more consensus modules show significantly lower dN/dS values (Pairwise
Spearman’s rank correlation rho = −0.22, p < 2.2 × 10−16; Partial Spearman rho = −0.11, p < 2.2 × 10−16).
(B) Genes in more consensus modules also show significantly lower SNP density (Pairwise Spearman’s
rank correlation rho = −0.16, p < 2.2 × 10−16; Partial Spearman rho = −0.039, p = 0.00036). Blue points
indicate median values.

To better understand the observed associations between SNP density and these measures,
we filtered our SNP set to only include coding variants. We found that both the number of
nonsynonymous and the number of synonymous polymorphisms within genes were negatively
correlated with a gene’s average connectivity (nonsynonymous: Spearman’s rho = −0.078,
p = 5.96 × 10−12; synonymous: Spearman’s rho = −0.072, p = 1.49 × 10−6) as well as with the
number of consensus modules a gene was associated with (nonsynonymous: Spearman’s rho = −0.091,
p < 2.2 × 10−16; synonymous: Spearman’s rho = −0.07, p = −1.83 × 10−10). These patterns may be a
consequence of either direct selection against deleterious variants and/or background selection against
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linked deleterious variants. While most synonymous mutations are expected to be neutral, there are
some examples of deleterious synonymous mutations that affect protein folding [46].

3.5. Constraint on Cross-Tissue Hub Genes

Co-expression analyses have been widely applied to identify “hub” genes, or genes whose
expression is highly correlated with their expression module. Hub gene analysis has also become a
popular method for identifying genes whose expression is related to variation in quantitative traits [9]
or disease phenotypes (e.g., [10–12]). As hub genes represent the genes most highly associated with
their module’s expression, we expected genes that were annotated as hubs in more than one tissue to be
involved in upstream processes common across cells and therefore show greater sequence constraint.

Using the individual co-expression networks we created for each tissue, we first identified
hub genes by estimating each gene’s module membership. Each gene’s module membership was
estimated based on the correlation between that gene’s expression and the expression of the module
eigengene [29]. Genes where module membership was greater than 0.8 were considered “hub
genes” for subsequent analyses, a cut-off selected because of its usage in previous studies (e.g., [11]).
Consistent with what has been seen in human populations [17], we found that genes that encode
transcription factors were more likely to be hub genes (χ2 test, p = 0.0002, Odds ratio = 1.25).

We then compared hub genes across tissues. We found that a large proportion of the hub genes
we identified in our analysis are unique to one tissue type (61%), and only 9.2% of these genes were
annotated as hubs in 3 or more tissues (Figure S1). Consistent with the idea that cross-tissue hub genes
represent genes with essential biological functions, we also found that genes that were identified in
hubs in 3 or more tissues were highly enriched for mutant phenotypes related to mortality/aging
(q = 2.93 × 10−12; including significant enrichment of the mortality/aging subcategories abnormal
survival, preweaning lethality, prenatal lethality, and embryonic lethality), abnormal cell physiology
(q = 5.66 × 10−5), and abnormal homeostasis (q = 1.98 × 10−4). These genes were also enriched
for several GO terms, including positive regulation of biological process (q = 1.03 × 10−26) and
regulation of cellular processes (q = 3.01 × 10−22). Genes annotated as hubs in just two tissues were
also significantly enriched for mutant phenotypes related to mortality/aging, but this enrichment was
less significant (q = 0.01).

Parallel to the previous analyses, where we asked whether more highly connected genes or genes
found in a greater number of cross-tissue modules were more constrained, we also asked whether
genes annotated as hubs in more tissue types were under greater evolutionary constraint by comparing
the dN/dS ratios and SNP densities for genes identified as hubs in no tissues, one tissue (n = 6632),
two tissues (n = 2532), and three or more tissues (n = 1001). We found that genes identified as hubs in
more tissues showed lower average dN/dS and SNP density (Figure 4).
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4. Discussion

Here, we have used natural populations of house mice to characterize co-expression networks
for 10 tissue types and associate components of gene expression variation with sequence variation
and evolution. Genes with higher connectivity across tissues showed significantly lower genetic
diversity and lower rates of protein evolution. We also found that genes in more consensus
modules across tissues show significantly lower genetic diversity and lower rates of protein evolution.
The association between these measures and reduced genetic diversity may be a consequence of
selection against deleterious variants and/or purifying selection acting on deleterious mutations at
linked sites (background selection) [47]. Genes that were hubs across more tissues likewise showed
evidence of evolutionary constraints and were significantly enriched for mutant phenotypes related to
mortality and aging. Finally, we found that genes with allele-specific expression had lower connectivity
on average, higher dN/dS values, and fewer connections in protein–protein interaction networks.
Altogether, this suggests that genes with allele-specific expression may be less constrained. In this
regard, we speculate that regulatory variation at peripheral genes may provide variation that can
act as a substrate for adaptive evolution. Altogether, our results suggest that gene connectivity is an
important determinant of evolutionary constraint.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/3/225/s1,
Figure S1: (A) The number of genes in each tissue that were classified as tissue-specific. In orange are genes that
encode transcription factors. (B) The number of hub genes that are found across different numbers of tissues,
Figure S2: (A) Average expression across tissues and Smax are negatively correlated. (B) Connectivity across
tissues is negatively correlated with Smax, Figure S3: Genes for which we could detect allele-specific expression
have higher expression on average (permutation test, p < 0.0001), Table S1: Number of genes with a SNP that
could be tested for allele-specific expression (ASE), Table S2: Number of genes with allele-specific expression,
Table S3: Spearman’s rank correlation coefficient between gene expression-related measures and dN/dS between
M. m. domesticus and M. caroli, Table S4: The relationship between gene expression and connectivity within tissues,
Table S5: Pairwise comparisons of gene connectivity between tissues (Spearman’s rank correlation, rho), Table S6:
Tissue-specific transcription factors are enriched for tissue-specific mutant phenotypes, File S1: Samples included
in co-expression analysis after filtering.
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