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Abstract 

STABLE AND UNSTABLE CLASSICAL SOLUTIONS 

IN AN EFFECTIVE GAUGE THEORY 

FOR LOW ENERGY MESONS 

F.R. Klinkhamer 

Nuclear Science Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

LBL-19807 

We study the stability of two related classical solutions in an effective 

gauge theory, which correctly describes the properties of ~ and p mesons at 

low energies. The first solution (sphaleron), which excites only the p 

field, with baryon number B = 0 and energy E ~ 1.5 GeV, is unstable. The 

second (Skyrmion), which excites both the~ and p fields, with B = 1 and 

E ~ 1.0 GeV, is stable locally. We show how to make this Skyrmion absolutely 

stable, which is desirable for identification with the nucleon. This Skyrmion 

solution may also have some relevance for the electroweak interactions (now 

E ~ 10 TeV) . 
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1. Introduction 

We think we know what fundamental theory underlies the strong 

interactions, namely Quantum Chromodynamics (QCD), but we cannot solve it 

analytically. Even numerical simulations of lattice QCD [1] are not expected 

to give in the near future (a few years, say) reasonably accurate values for 

all quantities of interest. Awaiting these results it may be worthwhile to 

agree on an effective Lagrangian, which describes the low energy physics. 

Ultimately the values of the free parameters in this Lagrangian should be 

determined from the lattice calculations, or from other non-perturbative 

methods should they be found. Of course, a lot is known already about the 

effective low energy theory, especially the body of results from current 

algebra [2]. In particular, the pion dynamics is given by the Lagrangian of 

the non-linear sigma model (3] supplemented by the Wess-Zumino term [4], which 

incorporates the effects of anomalies. 

Although we cannot solve QCD, we are able to obtain some information 

about what its low energy behaviour may be expected to look like. The idea 

[5] is to consider not exactly QCD with its N = 3 colors, but the version with 

infinitely many colors (N = m). One takes the point of view that real QCD is 

obtained from an expansion in 1/N evaluated at N = 3, i.e. symbolically 

2 "QCD" _ [1 + 1/N + 1/N + ... ]N=3 (1 . 1) 

and that the leading term, where only planar Feynman graphs contribute, is 

already a reasonable approximation. The reason for (1.1) is perhaps the fact 

that the starting point planar QCD is a better defined theory, i.e. the 

Feynman expansion may be summable [6]. For matters pertaining to confinement 
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it is thought that the pure gauge theory (no dynamical quark fields) contains 

the essential ingredients, in which case the expansion parameter in (1.1) 

becomes l/N2 instead of 1/N. If this holds planar QCD may be within a few 

tenths of a percent (l/N2 - 10%) from the full theory. Indeed large-N QCD 

displays qualitative features as observed in the real world, see Ref. 7 for a 

review. For our present purpose the most important are the existence of 

infinitely many narrow meson resonances and the spontaneous breakdown [8] of 

the chiral symmetry SU(NF) x SU(NF) to SU(NF) for NF flavors of massless 

quarks. Furthermore, baryons are thought to arise [9] as solitons of the 

effective meson theory, which confirms the prophetic ideas of Skyrme [10]. In 

obtaining these impressive results from large-N QCD one crucial assumption was 

made, namely that confinement survives the limit N ~ m. Recent numerical 

results appear to support this assumption, see Ref. 11 for further 

discussion. We see that the large-N point of view gives a picture of the low 

energy world in terms of mesons only, but alas it has been impossible, even in 

this simplified planar theory, to calculate the specific effective Lagrangian 

of the mesons. 

As mentioned above we know what Lagrangian [3,4] describes the low energy 

pions, but it is a non-trivial matter how to include the vector and axial 

vector mesons. Already in 1960 Sakurai [12] argued rather persuasively that 

the p vector meson might be a "massive Yang-Mills" field, i.e. that the p's 

might be related to a local gauge symmetry. His problem was how to give the 

p a mass without violating this gauge symmetry. As is well known, the very 

same problem was solved in the context of the weak interaction through the 

Higgs mechanism and the resulting Weinberg-Salam theory [13] has been verified 

experimentally over the last two decennia, culminating in the discovery of the 
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massive gauge bosons w± and z0 [14]. The Weinberg-Salam theory for Higgs 

coupling A~~ take the form of a non-linear sigma mod~l [15]. The 

historic circle has been closed recently by Sando et al. [16] (independently 

by Hung [17] also), who argue that the strong interactions, in guise of the 

non-linear sigma model, may have a hidden SU(2) gauge symmetry whose massive 

gauge bosons are to be identified with the p mesons. The effective 

Lagrangian correctly describes many properties of pions and p 1 S interacting 

with each other and also with the photon field of electromagnetism. In fact, 

this coupling is precisely of the same form [15] as in the Weinberg-Salam 

theory and there is the following correspondence between the gauge bosons: 

gauge group: SU(2) U(l) 

electroweak: w±,z0 + y ( 1 . 2) 

electrostrong: + 0 p-,p + y 

In (1.2) we glossed over the mixing of the neutral gauge boson of the SU(2) 

factor and the one of the U(1) factor, which gives the physical states z0,y 
0 and p ,y. From the observed [14,18] mass ratios (ffiwlmz =cos ew and 

similarly for the p 1 s) one gets the following mixing angles 

( 1 • 3) 

Apparently there is less mixing with the strong sector than with the weak 

sector, which is a fact that must be explained by some Grand Unified Theory or 



4 

Technicolor/Compositeness theory (for three reviews see Ref. 19). The present 

author would like to see (1.3) as a hint that the z0 is a composite just as 

the PO is and that the different binding forces (?? and QCD) account for the 

different mixing with the fundamental massless photon y (for some further 

discussion see at the end of this article). 

After these speculative flights let us return down to earth, viz. low 

energy ~·s and p 1 S as described by the effective SU(2) Lagrangian. In fact, 

it is possible to enlarge [20,21,16] the gauge group to U(2) x U(2), where the 

massive gauge bosons are identified with the p and w vector mesons and the A 

and D axial vector mesons. But the enlarged recipe leaves something 

undetermined, so that in this paper we will be mainly concerned with the SU(2) 

sector for the p 1 S, which as said above are the cousins of the Wand Z. In 

this there are two types of classical solutions, which we will study in detail 

in the present article. The first is a static, but unstable, solution, for 

which we coined [22] in general the word "sphaleron" (the Greek sphaleros 

means unstable) in order to distinguish it from the stable "soliton." As 

discussed by Manton and the present author (22] the Weinberg-Salam theory has 

a sphaleron, whose ansatz was first proposed by Dashen, Hasslacher and Neveu 

[22]. For the Higgs coupling constant A= m its energy is [22] 

E(WS,A=m) = 
Sph 2 70 4~v - 5.40 4; ~ ~ 13.5 TeV • g - g ( 1 . 4) 

where v ~ 250 GeV is the Higgs vacuum expectation value, g ~ 0.632 the SU(2) 

1 coupling constant and ~ = 2 gv. Turning to the effective p~ gauge theory 

of Bando et al. [16] we remarked [20] that the field equations for the p, 

while setting the ~ field zero, allow for the same solution under a simple 

rescaling, so that the energy (1.4) becomes 
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2.70 4~ 2v/a f = 5.40 4~2 m ~ 1.5 GeV 
g ~ g p 

where f ~ 93 MeV is the pion decay constant, g ~ 5.87 the SU(2) gauge 
~ 

( 1 . 5) 

coupling of the p Yang-Mills field, and a ~ 2 a free parameter of the 

lagrangian, which appears in the expression m2 = a g2f 2 for the p mass. In 
p ~ 

fact, Boguta [24] was to our knowledge the first to entertain the possibility 

of a classical solution in an effective gauge theory for the p meson, for 

which he used a rescaled Weinberg-Salam theory without the U(l) factor, but 

this theory differs from the one [16] considered here in having a scalar 

degree of freedom.* Boguta rediscovered the Dashen, Hasslacher, Neveu [23] 

solution and named it "hadroid," but he erroneously claimed it to be 

(meta)stable and we prefer to call this solution a p-sphaleron. 

The second solution we will study here is closely related to the one 

Skyrme [10] found 25 years ago, so let us review his results briefly. The 

theory under consideration is the non-linear sigma model with the following 

lagrangian [3,10] 

( 1 • 6) 

( 1. 7) 

( 1 . 8) 

where for NF =2 flavors U = exp(i aa~a/f~) E SU(2) contains the three 

*later [25] he realised that the Sakurai theory [12], with an explicit mass 
term violating gauge invariance, allows for the same A= m solution (1 .5). 
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massless pion fields ~a. The chiral symmetry SU(NF)L 8 SU(NF)R is realised 

t as U ~ gLU gR. The Skyrme ansatz [10] 

~ 

U = USk = exp(i F(r) x 
~ 

• a ( 1 . 9) 

F(O) = ~ F(m) = 0 

gives a solution of the field equations, which has an energy [26] 

(1.10) 

It was necessary to include the higher derivative term (1.8) in the Lagrangian 

in order to prevent the solution from shrinking to a "spike" (F(O) = ~. 

F(r > 0) = 0) with zero energy; indeed (1 .10) ~ 0 fore~ m. But the 

fourth order term (1 .8) is not unique and there are two other terms consistent 

with the chiral symmetry, c.f. [27]. Skyrme made the important observation 

that his solution (1 .9) has a topological charge T = 1 and he argued to 

identify this with the baryon number B 

(1.11) 

which was later confirmed [28]. The expression on the right hand side of 

(1.11) measures the winding number of the map U(x) : s3 ~ SU(2) ~ s3. This 

identification and static properties [26] leads one to conclude that the 

Skyrmion (1.9) describes the nucleon as a soliton in the effective theory 

L(~) of (1.6), which, as discussed above, seems reasonable from a large-N 

point of view. 
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After this summary of Skyrme•s work, let us return to the effective gauge 

theory for the ~ and p, which basically is the covariant generalization of 

(1.7) with an additional kinetic term for the p, but without higher 

derivative terms as (1.8). Igarashi et al. [29] recently showed that there is 

again a Skyrme-like solution given by the ansatz (1.9) supplemented by a 

hedgehog for the p field V (x) E SU(2) 
\J 

a gV. 
1 

= G( ) x./r2 
r Eija J 

G(O) = 2 G(w) = 0 

and the energy of the solution is [29] 

E(p~) = 3.696 4~2 m ~ 1.04 GeV 
Sk g p 

(1.12) 

(1.13) 

The repulsion that prevents this Skyrmion from shrinking comes from the p 

self interaction. 

In summary, the effective gauge theory [16] for the ~ and p fields has 

spherically symmetric sphaleron and skyrmion solution with energies (1 .5) and 

(1.13), respectively. In addition, there may be other (non-spherically 

symmetric) sphalerons [30], which excite only the p field, and Skyrme-like 

solutions, which excite both ~ and p fields, perhaps one related to the 

8 = 2 solution [28] in the pure~ theory (1 .6). But before we get excited, 

we have to conjure a potential disaster for the identification of the Skyrmion 
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(1.9) + (1.12) with the nucleon: the p field (1.12) of the Skyrmion is 

precisely the same as that of the unstable sphaleron and perhaps the Skyrmion 

is unstable too? In this article we attack this problem and obtain a 

(partial) victory. Incidentally, Igarashi et al. [29] have disproven the 

claim by Adkins and Nappi [31] that they could stabilise the Skyrmion without 

the term (1.8) by introducing thew vector meson (coupled to the baryon 

number current as w B~). 
~ 

The outline of this paper is as follows. In Section 2 we present the 

effective gauge theory for the low energy mesons. In Sections 3 and 4 we 

discuss the sphaleron and skyrmion solutions and discuss their stability 

properties. We will find that the p~-Skyrmion is locally stable, and in the 

final Section 5 we suggest some fortifying measures to make it absolutely 

stable, which is a desirable property for the identification of the Skyrmion 

with the nucleon. Also we discuss the elevation of the p~-Skyrmion to the 

energy scale of the electroweak interactions. 

2. Effective gauge theory 

In this Section we discuss the derivation of the effective gauge theory 

for low energy p vector mesons (Va, a= 1,2,3) and pions <~a). In the rest 

of this article we consider 2 flavors, but extension to NF > 2 massless 

flavors is straightfoward. Actually "derivation" may be too big a word; 

rather we have a "recipe" that gives us a successful effective Lagrangian. In 

fact, this Lagrangian contains a single free parameter a and remarkably many *· 

experimental results are obtained by simply setting a = 2. The crucial step 

towards an effective Lagrangian is the identification of the relevant • 
collective variables. The physical starting point for us is the non-linear 
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sigma model (1.7), but instead of a single variable U E SU(2) the recipe 

[16,20] introduces two 

.. 
( 2. 1 } 

where L,R E U(2} and det L = det R. In general, more variables means more 

symmetries and with (2.1} there arises a hidden gauge symmetry with group 

H = U(2} in addition to the global SU(2)L ® SU(2)R 

(

L(x}) ... (h(x} L(x) gt)· 

R(x) . h(x) R(x) g: . 

(2.2) 

Next we define the covariant derivative D ~ = (a - ig W }~. where W is the 
~ ~ ~ ~ 

gauge field corresponding to the new local symmetry (2.2}. Instead of (1.7} 

we can write a more general Lag.rangian [16] 

(2.3} 

where a is a free parameter and 

... (2.4} 

.. 
with 

J+ = {1/2i}(D L • Lt + 0 R • Rt) = (1/2i)(a L • Lt +a R • Rt) - gW 
~ ~ ~ ~ ~ ~ 

(2.5a) 
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(2.5b) 

Note that the square in (2.4) involves Hermitian conjugation. Up till now we 

have only changed variables and (2.3) can be seen to contain the same physics 

as (1.7). The crucial step now is to assume that QCD generates in addition to 

(2.3) a kinetic term for the W field, so that 
p 

L + aL - l Tr w wPv 
+ 2 pv 

(2.6) 

where W = a W - a W - i[W ,W ] is the Yang-Mills field strength. We 
pv p v v p p v 

write W = WaTa, where Ta are the generators of the algebra of U(2) 
p p . 

normalised as Ta = (1.~)/2 with~ the Pauli matrices. If we want to single 

out the SU(2) part we will write Va instead of Wa, a= 1,2,3. In the 

symmetric gauge* 

one easily checks that L(p~) contains a mass term 

l a(g f )2fwa)2 
2 ~ \ p . 

If we identify the Wa gauge bosons with the~ and p vector mesons (2.8) 

gives the mass relation [16,20] 

*Another useful gauge is R = 1, L = u+, which we used [20] to show the 
relation with the Weinberg-Salam theory. 

(2.7) 

(2.8) 

.. 
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m = m + = ya g f 
w p- 11' 

(2.9) 

As we remarked in the Introduction the PO mass gets a small contribution from 

mixing with the U(l) field B (see (2.12) below). But the first equality in 

(2.9) is not rock solid. As we noted in [20] the field strength term in (2.6) 

could in principle have had different weights for the two factors of the Lie 

algebra su(2) x R, so that the respective coupling constants g2 and g1 would 

differ. In that case (2.8) would become 

(2. 10) 

An heuristic argument [20] for having g2 = g1 = g is that the generation of 

the kinetic term is a non-perturbative effect, which probably depends on the 

gauge~ H rather than its algebra h, c.f. the discussion in [32] for a 

lattice theory, where it is indeed the group that matters. If we take H the 

largest and most symmetric group allowed by (2.1), namely H = U(2) and not -

H = SU(2) ® U(l), say, then we have a single coupling constant for this~ 

and the mass equality (2.9) follows. 

In the Lagrangian (2.6) we can include the coupling to an external U(1} 

gauge field B (x) just as in the Weinberg-Salam theory [15] by use of the 
\J 

following covariant derivative 

(2.11) 

Diagonalizing for the physical PO and y states one gets the PO mass 2 and 

the electric charge [16] 
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(2.12a} 

~( ~2 2 ) -1 /2 ~( 2 )-1 12 e = e 1 + e /g = e 1 + tan es (2.12b} 

and the es value of (1 .3} then gives e = 0.9954 e. Furthermore (2.6} with 

(2.11} give the relations [16] 

gB = ga/2 
11'11' 

gn = e(a/2- 1) 
. , .... 11'11' 

= 2g f 2 
p'll''ll' 11' 

( 2. 13a} 

(2.13b} 

(2.13c) 

which for the parameter value a = 2 agree quite well with the experimental 

facts [12] of (a) universality, (b) vector dominance of the pion 

electromagnetic form factor, and (c) the KSRF relation, in which gpO is the 

coupling in the PO- y mixing term of the Lagrangian. In addition to (2.13} 

we have also the relation (2.9) for the p mass. With no disturbance of these 

remarkable relations it is possible [21] to extend the gauge group to 

U(2)v ® U(2)A' where the gauge bosons are now identified with thew and p 

vector mesons and A and D axial vector mesons with masses 

(2.14) 

The ratio gA/g has to be fixed by hand (in fact, the hand of QCD) so as to 
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give the experimental results [18] mA/mP ~ 1.7. A disappointment in this 

approach is that no Ap~ coupling occurs, which could have been anticipated 

since A and p belong to different factors of the gauge group. Adding by 

hand a term to the Lagrangian 

- ! f g A . (V~ X :) 
2 ~ A ~ 

(2.15) 

where the vectors are for isospin, breaks the gauge symmetry softly, and we 

conclude that knowledge of the compositeness mechanism that gives the A and p 

is required to explain residual terms such as (2.15). For this reason we will 

omit the axial vector in the considerations of this article. 

In addition to (2.6) there are anomalous terms. For NF = 2 there is, of 

course, no Wess-Zumino -1 term rwz<U d U) in the action, but if we couple to 

external fields AL and AR one must make r WZ covariant. This entails, even 

for NF = 2, new contributions to the action, which in contradistinction to 

rWZ proper can be written as a 4d integral. In [33] the anomalous Lagrangian 

is discussed in detail 

L(p~) 
an Lwz,cov.<u 

6 

+ ~ ciLi(L,R,V,AL,AR) 
i=l 

(2.16) 

where the first term and the last six are given in their equations (2.8) and 

(4.5), respectively. Even if the external fields AL,AR vanish (2.16) still 

has non-zero terms Li, i = 1,2,3,4; for example 

(2.17) 
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where we use differential forms (FV is the 2-form field strength of gauge 

field V). For the sake of simplicity we neglect (ci = 0) such higher 

derivative terms as (2.17), but in a final analysis geared to precise values, 

e.g. for (1.13), their contribution should be included. 

In the next Sections we consider some classical solutions that occur in 

the theory (2.6) detailed here, and for simplicity we only consider the SU(2) 

part (w = 0). 
l.l 

3. p-Sphaleron 

In the Introduction we briefly described the two types of solution in the 

effective theory (2.6) which we will study in this article. We start with the 

sphaleron, first in the context of the Weinberg-Salam theory. The ansatze for 

the SU(2) gauge field V (x) and the Higgs doublet ~(x) are [34,22] 
l.l 

gV = -g(r)i a u~ • u~-l 
m m ( 3.1) 

where g and h are radial functions vanishing at the origin and approaching 

unity at infinity and where U~ = U~(l.l = ~/2; x,y,z) E SU(2) describes the 

behaviour of the fields at infinity (pure gauge). After a gauge 

transformation with Q = u~-l (3.1) becomes 

(3.2a) 

4_ 
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§..lrl . -1 gV = - , a Q • Q m 2 m (3.2b) 

<1> = (v/y'l)h(r) (~) (3.2c) 

where G(r) = 2(1 - g(r)). The specific form of U~ implies that Q = U~-l = 
~ A ~ A -u (~ = ~/2; x,y,-z). As mentioned in [22] (3.2b) can be transformed to the 

hedgehog form of [23] by a global gauge transformation with iax. In the 

Weinberg-Salam theory there are two sets of field equations resulting from 

variations &V or &<!>. If we were to freeze the theory to one where <1> has a 

fixed amplitude v212 and work in the unitary gauge <1> = constant, then the 

ansatz (3.2ab) still gives a solution, of course. In fact, this is the 

sphaleron ansatz for the effective p~ gauge theory (2.6) with vanishing ~ 

field: 

gVa 
0 = 0 

a 
G(r) Emja 

2 (3.3) gV = xj/r m 

a 0 ~ = 

The ansatz reduces the field equations to a single differential equation for 

G(r) and its solution G(r) gives the energy (1.5), see (3.4) below. The form 

(3.2b) of the ansatz is useful to demonstrate the instability of the 

sphaleron. Manton [34] constructed a non-contractible loop (NCL; parameter 

~ = 0 ~ ~> in the space of 3d configuration, which starts from and ends at 

the vacuum (~ = o.~) and passes through the sphaleron at ~ = ~12. The 
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configurations of this loop are of the form (3.2b) but with Q = Q(~). see 

(4.5) below. The energy functional for these NCL configurations is 

(3.4) 

where we introduced the dimensionless radial distance~= m rand G = G(~). 
p ' 

The energy density (3.4) is spherically symmetric for all configurations of 

the loop, in particular for the sphaleron at ~ = ~12. One sees that (3.4) 

decreases monotonically away from ~ = ~12 and that the sphaleron merits 

its name. Inserting G, which is the numerical solution of G for the sphaleron 

at~= ~12, the energy functional gives the dashed curve in Fig. 1. Note 

that one could make the drop away from the sphaleron sharper by varying G 

also: G = G(~) with G(~/2) = G. Apart from this, we conjecture that the 

non-contractible loop [34] lies along the unstable eigenvector (in 

configuration space, of course) of the sphaleron at ~ = ~12, or at least 

close to it. We base this conjecture on the remarkably simple form of (3.4). 

4. p~-skyrmion 

The ansatz of Igarashi et al. [29] was given in (1.9) for the pion field 

and in (1.12) to the p field. In the previous Section we showed that this 

hedgehog p field is unstable by itself and this Section is devoted to a study 

of the stability* of the p~-skyrmion. 

*Despite the title of their paper Igarashi et al. do not really discuss 
stabi 1 ity. 



,. 

17 

With this ansatz the energy function~l becomes 

E(p-rr} 1 J d3~ [~. f2 • 2 sin
2F) + L (1 2 =-m - cos F - G) + Sk g2 p ~2 ~2 

+ _, G'2 
~2 

+ - 1- G2(G 
2~4 

- 2)2] ( 4.1} 

where ~ = m r and a prime denotes differentiation with respect to ~. The 
p 

field equations reduce under the ansatz to the following two differential 

equations, which also follow from variation of (4.1), 

~= 2 F" + 2~=F' ~ ~ +(a- l}sin 2F + 2a(G- l}sin F = 0 

II 1 
G + (1 -cos F- G)·-- G(G- l}(G- 2} = 0 

~2 

(4.2a} 

(4.2b} 

Remark that the energy (4.1} for F = 0 equals the sphaleron energy (3.4} at 

~ = -rr/2. Remarkably, the introduction of the pions keeps the energy density 

(4.1} spherically symmetric. The reason is that in the current (2.5a} the -rr 

and p parts have the same structure and combine as 

(4.3} 

The numerical solutions F,G of (4.2}, with the correct boundary conditions, 

give for the energy (4.1} the value (1.13), which is only 10% higher than the 

nucleon mass. The solution looks a trifle small (75% of its energy within a 

radius of 0.43 fm}, but before we start worrying about the details we must be 

sure if the overall picture is correct; in particular is the solution stable? 
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Let us return for a moment to the Skyrmion (1.9) in the pure pion theory 

(1.6) with an explicit higher derivative term (1.8). At the risk of 

belabouring the obvious we give a heuristic argument for the stability of this 

Skyrmion (the reader may picture configuration space as a plane above which 

the energy functional traces out a surface): 

1. The ansatz (1.9) has a topological charge (1.11) T = 1, so that under 

smooth deformations of the configuration Twill remain equal to 1 always. 

2. Suppose there is an unstable direction at U = USk and let us follow 

the steepest descent path. Where do we end up? Not at the vacuum 

Uv = const., because T(Uv) = 0 ¢ 1. There must be a non-trivial 

configuration U with T(U) =·1 and E(U) < E(U5k). 

3. The ansatz (1 .9) arranges its energy so nicely (spherical symmetry) that 

it is hard to believe another configuration U exists with even lower 

energy. Hence the assumption in 2. must be false and the Skyrmion is 

stable. 

In short, the Skyrmion (1.9) is absolutely stable, because it is able to 

distribute its energy density so smoothly that it has the lowest total energy 

of all configurations in the T = 1 sector. Recently we became aware of Ref. 

3~, where point 3. is shown mathematically. The role of the higher derivative 

term (1.8) is to prevent the size (R) of the Skyrmion from shrinking, and it 

contributes the second term to the energy ESk = af!R + b/e2R, where a and b 

are some numbers, c.f. (1.10). The stability of the Skyrmion is both dynamic 

and topological in origin. 

Returning to the Skyrmion in the effective p~ theory, Igarashi et al. [29] 

argued that the Yang-Mills field strength of the p could produce a term 

b/g2R in the energy, which prevents shrinking. But what if the p-configuration 

I 
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can be "unwrapped" t~ zero, so that b = 0? As we have seen the p 

configuration of the p-sphaleron and p~-Skyrmion is the same. The danger 

for the p~-Skyrmion lies in the p sector and for this reason we consider the 

following variation 

u -+ u 
(4.4) 

V -+ V + 6V]along NCL 

Specifically, V + 6V is given by (3.2b) with 

c :in • sin 
e -i4> ieill(cos - i sin • cos e) e '1.1 

Q = ' ( 4. 5) 
-1'1.1 i sin l.l cos e) i sin. '1.1 sin e ei 41 ie (cos l.l + 

where e and 41 are the standard spherical coordinates. With (4.5) we get 

vm = 0 at '1.1 = o.~ and the hedgehog at l.l = ~12. Apart from some strategic 

signs and a multiplication on the left by iox, (4.5) is the same as the U~ 

constructed by Manton [34]. For this loop of configurations the energy 

functional is given by 

~ 

J 
0 

d~[{G2 + G
12

)(sin2
l.l- 1) + -

1
- G2(G 

2~2 

+ 2 (1 - cos F)G0 - ~ sin
2
•(l + 2 sin •>)] 

(4.6) 
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where the expression for E~k~) has already been given in (4.1). All terms in 

(4.6) come from a spherically symmetric energy density. except for the one 

proportional to sin 2~ (1 + 2 sin~). whose energy density was axisymmetric 

(1 - cos F)G sin 2~ [-sin2e- (1 + cos 2e)sin ~] (4.7) 

It is precisely this term. which originated from Tr(J;) 2• that turns the 

instability of the sphaleron around to stability for the Skyrmion, as we will 

see in a moment. The reason for this is that the delicate balance in (4.3) is 

upset for~= ~12 + e (O<Iel<<l). so that the energy increases as e2. In 

fact. close to the Skyrmion we have 

(4.8) 

and for the solution F.G of (4.2) the coefficient of c
2 becomes 

[8.45- 5.37- 1.05] = 2.03 > 0 (4.9) 

As we see it, the local stability (4.9) is just a numerical "coincidence." 

In Fig. 1 we plot E(~.F.G) as the full curve and it looks as if the Skyrmion 

is not only locally stable. but actually the lowest energy configuration in 

the B = 1 sector. Alas. our happiness does not last very long. when we 

realise what we have at~= 0: a configuration U = USk(F). gVm = o. which 

by a scale transformation r ~ ~r. ~ < 1, can be reduced to a spike with 
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B = 1 and E = 0. Furthermore, we can perform this scale transformation while 

we travel on the loop(~= ~12 ~ 0), so that the energy functional E(~.F,G) 

becomes 

00 

E(~,a) = 4~ m J d~ ~{~.(~2F' 2 
+ 2 sin 2F) 

g2 p 

0 

+ (1 - cos - - 2 -2 2 F -G) + G (sin ~- 1) 

1 { -I 2 • 2 1 -2 -+ ;; G s1n ~ + - 2 G (G -
2~ 

(4.10) 

In Fig. 2a we show this energy behaviour for the optimal a(~) (Fig. 2b), 

which follows from a simple variational calculation. We see that the Skyrmion 

remains locally stable even for the "double barrelled" attack, but the height 

of the barrier becomes rather small 

(4.11) 

for~~ 1.12 and a~ 0.73. 

At this moment the obvious question is if there are other variations for 

which the Skyrmion is really unstable (no barrier). We think the answer is 

negative. The potential danger is in the first place the unwrapping of the p 

configuration, which has a single negative eigenmode equal to the one for the 

p-sphaleron. At the end of Section 3 we conjectured that the path of the 

non-contractible loop at ~ = ~12 + £ lies along this eigenvector (in 
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configuration space), or at least has a significant projection on it. For 

·I& I < 0.3, say, there remains enough of the p field to give repulsion against 

collapse, but when too much of it is gone(~< 1.12 in Fig. 2a) the 

configuration collapses to the spike configuration. Provided our conjecture 

holds we have shown in (4.8-9) that the Skyrmion remains locally stable 

against the compounded dangers of unwrapping and collapse. By the way, if we 

only shrink the F configuration and keep the hedgehog for V while allowing 

G(r) to adjust itself, the energy increases from E = E~k~) at a= 1 to 

E = E~~~) at a = 0, where the final configuration is a p-sphaleron with at 

its center a ~-spike, which has B = 1. 

To summarise, we have shown (modulo a conjecture) that the Skyrmion 

solution, which Igarashi et al. [29] considered to be a candidate for the 

nucleon, is locally stable. Whether or not this is sufficient will be the 

subject of the next Section. 

5. Stability and speculation 

An effective low energy Lagrangian should contain at least the pions and 

the p vector mesons. Sakurai [12] has drawn attention to many facts 

(universality, vector dominance, current field identity) that point towards 

some kind of gauge invariance. Only recently was an effective Lagrangian 

proposed [16] that realizes Sakurai•s idea. This Lagrangian was, of course, 

not really derived from QCD, rather it emerged from postulating appropriate 

collective variables (2.1). With these variables and the basic dynamics of 

the non-linear sigma model there is little freedom left, a single parameter a 

in fact. For the value a= 2 several interesting relations (2.13) follow. 

For this reason we think that the Lagrangian (2.6) with a = 2 is an important 
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part of the full effective theory of low energy mesons. It is then 

appropriate to look for classical solutions. Normally we would not be 

interested in classical solutions of a theory with g2/4• ~ 2.8, which 

certainly does not look very small. But the underlying theory QCD does have a 

"small" parameter 1/N, which translates [7] to f and g being of order N112 
• 

and N-112 , respectively. Rescaling gW ~ W , this shows that the Lagrangian 
~ ~ 

(2.6) is proportional to N, which makes a saddle-point approximation quite 

reasonable [7,9]. 

In this article we studied two simple types of classical solutions, but 

there may be others [28,30] probably with higher energy. The first was a 

static, but unstable, solution which excites only the p field and which we 

called the p-sphaleron (another name proposed in [24] was "hadroid"). This 

solution lies on top of an energy barrier between the vacuum in different 

gauges, but the same physical vacuum all the same [22]. In the Weinberg-Salam 

theory the passage over this barrier induces a change in baryon number 6B = 

1, and in fact the WS-sphaleron has B = 1/2 [22]. In the P• theory (2.6), 

where there is no anomaly for the baryon number current (left-right symmetry), 

there is no such signal, and the p-sphaleron has baryon number 0, c.f. 

(1.11). Still, if one would try to excite a field configuration close to that 

of a sphaleron one would stand a better chance for the P• theory. Not only 

are energies of 1 GeV more manageable than those of 10 TeV, but precisely the 

fact that g2/4• is not very small in the P• context, whereas it is in the 

electroweak theory, is of practical importance. The size of a classical 

solution is in general proportional to (4w/g2)E-l, so that the p-sphaleron is 

reasonably small. In fact, the sphaleron radii are approximately [22] 



R(WS) ~ 
Sph 

-1 2m ~ 0.5 fm 
p 

2 m~l >> 1/E(WS) 
w Sph 
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(5.la) 

(5.lb) 

Twice these distances give the size of the region over which the field should 

be coherent. For this reason the experimental study of configuration space 

seems more feasible in relativistic heavy ion collisions. For the moment we 

have not thought much about possible signals. In [25] it was shown that 

fermions coupled covariantly to the p, i.e. in the Lagrangian 

~(y~D + m)w (5.2) 
~ 

have a large cross section with the p-sphaleron. But what are these fermions 

in (5.2) if we take the view that the nucleons are not elementary, but 

solitons rather of the ~ and p fields? At the very least, (5.2) for 

nucleons must be changed by the effect of a form factor. 

The p-sphaleron excites the p field but not the ~ field. In general 

the opposite is not possible. In the p field equation 

D V = S (V,L,R) 
~ ~u u 

(5.3) 

the source termS , c.f. (2.5a), does not vanish in general for V = 0 and 
u 

L,R ¢ 0. Our equations (4.2) for the ansatze (1.9) and (1.12) illustrate 

this: we have a solution with F = 0 and G ¢ 0, i.e. the p-sphaleron, but 

not a naked Skyrmion with F ¢ 0 and G = 0. The ansatz of Igarashi et al. 

[29] gives the p-field response to a non-trivial ~field, which provides the 
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non-zero baryon number {1.11). We have shown in Section 4 that the p~ 

interaction is of such a form {2.5a) as to compensate for the instability of 

the p field itself, c.f. {4.8). We have not proven this rigorously, which 

would be a difficult matter, but argued that it is very likely. But is local 

stability enough? On face value Fig. 2a would give a tunneling rate of order 

-~E/~m 

r - m e P - m 
p p 

(5.4) 

which gives an uncomfortably short lifetime for a proton. There are two 

attitudes one can take: 1. not to worry, or 2. to return as the prodigal son 

to Skyrme. The first alternative then is to say that we are doing only 

classical field theory and quantum mechanical tunneling effects should not 

worry us (in (5.4) r ~ oo for~~ 0). In fact, quantum corrections to the 

sigma model are pretty sick [36]. The strategy would be to hope that the 

classical Lagrangian (2.6) is the relevant partfor the low energy 

phenomenology. There are, of course, an infinite number of higher derivative 

terms, which all together should be a renormalizable theory, since QCD is. 

The statement in the previous sentence is somewhat cavalier, since QCD itself 

may be sick towards the infrared and our effective Lagrangian is precisely at 

this IR end. We do not know if QCD is a "theory," c.f. our remarks below 

(1.1). 

For the moment we favor the second attitude. Probably higher derivative 

terms arise anyway in addition to (2.6). Their contributions should prevent 

in Fig. 2a the downward slide for small values of o. Of course, it is 

disappointing to depend on these terms, since we lose in predictive power when 

there are a priori many higher derivative terms, some of which should somehow 
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be more important than the others. We have a fancy for two particular terms, 

the first of which is 

L (p1r) :: - 1- Tr[J+, J+]
2 

Sk,++ 2 2 ~ v 
e++ 

(5.5) 

and the second the original term (1 .8) of Skyrme, which basically is L(p1r) in Sk,--

the notation of (5.5). 

Consider first the pure Skyrme term (1.8) added to L(p1r) of (2.6).* One 

could think of the Lagrangian (1.6) as describing the "fundamental" pion 

field, for which the hidden gauge mechanism turns (1 .7) into (2.6) by making 

the p a propagating composite of 1r 1 S. The p-sphaleron is unaffected by the 

L~~) term, since its field equation (4.2b) with F = 0 is unchanged. For the 

p1r-Skyrmion an additional contribution to its energy density (4.1) arises [26] 

which gives some extra terms in the field equation (4.2a). In order to get a 

qualitative picture and to estimate what value of e is needed to make the 

Skyrmion absolutely stable, we given in Fig. 3a the energy (4.5) + (5.7) 

evaluated with our old functions F,G. We estimate from this that for 

e < e c ri t ~ V2 g ( 5. 7) 

*At this point the reader may very well object: "Good Lord, after all the 
fuss about the p you are back at the Skyrme term, you better stick with the 
pure pion theory (1 .6), where there is no problem with the stability of the 
Skyrmion!" To answer him we submit that 1. the pis important for 
phenomenology [12] and should be included; and 2. just setting the p field 
zero probably does not lead to a solution, see our discussion below (5.3). 

.... 

• 
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the p~-Skyrmion becomes absolutely stable. The resulting configurations at 

~ = 0 are smoothed out versions of the spike Skyrmion, see a few lines below 

(4.9). They are not solutions of the field equations, c.f. (4.2b), and lie in 

a cusp of the energy surface over configuration space. Note that for ~ = 0 

we return to the ansatz (1.9) + (1.12), but in a different topological sector 

G(r = 0) = 0, and that the energy density (4.1) is infinite at the origin. 

There is a (small) chance that for e2 - 3 g2 this ~ = 0 configuration is the 

relevant one for the nucleon, whereas the p~-Skyrmion would be an excitation 

at ~20% higher energy. ·1n the following, we will try to see the p~-Skyrmion 

as the nucleon, but this other possiblity should be kept in mind. For 

comparison the arrows show in Fig. 3a the Skyrmion energy (1 .10) for the pure 

pion theory normalised to E~k~) of (1.13). There is no need for concern that 

these values are lower, since the theories are different; in particular (4.1) 

has a term (1 -cos F) 2;~ 2 • which does not arise in the pure pion theory (1.6). 

Fore just below ecrit (5.7) the true Skyrmion energy will be a little 

less than the value of Fig. 3a (5.03 (4~/g 2 )m ~ 1.4 GeV), since the F and G 
p 

have not precisely the optimal shapes to minimize the full energy including 

(5.6). In fact, because F,G are not optimal it is advantageous to do a scale 

transformation even at~= ~12, c.f. Fig. 3b. 

We see that the pure Skyrme term (1.8) can stabilize the p~-Skyrmion, 

but at the expense of increasing its energy by a few 100 MeV; which may be too 

much perhaps. Therefore we turn to the higher derivative term (5.5), which 

gives an additional contribution to the energy density (4.1) of 

(5.8) 



28 

which is spherically symmetric also (probably this is not the case for the 

contribution of an eventual L~k~!- term). With (5.8) we calculate for F,G 
• 

the increase of the total energy 

(5.9) 

For the same type of variation as used above, the qualitative picture will be 

the same as in Fig. 3a (reading g 2/e~ for g2/e2), with similar energy values 

at ~ = 0, where the gauge field vanishes, and at ~ = ~12 the energy values 

2 2 from (5.9), namely E(~/2,a) = 1.084, 1.061, 1.044 and 1.027 for g /e++ = 1, 

0~72, 0.52 and 0.32, respectively. This indicates that the higher derivative 

term (5.5) stabilizes the p~-Skyrmion absolutely for 

e < e . t l:: - 13 g ( 5. 1 0) ++ ++,cr1 v 

while its energy becomes (1 .13) + (5.9). It is remarkable that the energy 

value of the Skyrmion changes little, whereas the global stability properties 

are completely "turned around" (c.f. Fig. 3a). On the other hand for the 

p-sphaleron, which has F = 0 and G(O) = 2, (5.8) would give an infinite 

contribution to the energy. One could consider a sphaleron configuration 

(mark we do not say "solution") with a hole around the origin, but clearly 

this would be rather inelegant. 

In a future communication we hope to report on an extensive numerical 

analysis of the interplay of higher order terms, which should also include the 

ones of (2.16) and other terms not mentioned here. Another outstanding 

problem is the response of the w and the axial vector meson fields, see our 

discussion below (2.15). 

.• 
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We conclude that in the effective gauge theory (2.6) for the ~ and p 

the generalized Skyrme terms can make the Skyrmion absolutely stable, which is 

not so surprising after all. If the parameters of these 3 terms, one of which 

is given explicitly in (5.5), are related as 

(5.11) 

there are at least two classical solutions: 

1. a p-sphaleron, with an energy value close to (1.5) (for finite e++ this 

will be an "approximate" solution only); 

2. an absolutely stable p~-Skyrmion, with energy ~1.1 GeV if 

e++ ~ e++crit- 6 << e or energy ~1.4 GeV if 

e ~ e •t - 6 << e++' where 6 is a small positive number. --Crl 

Although we have lost in predictive power (why should (5.11) hold?), we are 

gratified that in what is probably the relevant effective theory for low 

energy mesons there is indeed a candidate p~ solution for the nucleon. · 

Furthermore, a choice of parameters is possible so that E ~ 1.1 GeV! In 

addition there may be a p-sphaleron (approximate) solution, and other 

possible solutions, of course. 

Finally, we want to follow up our speculative remarks below (1.2) and 

(1.3) of the Introduction. The discussion of a Skyrmion solution in (2.6) may 

be of some relevance for the physics of the electroweak interactions. Gipson [37] 

discussed a naked Skyrmion in a non-linear sigma model for the Higgs [15], but 

as we mentioned above this probably is not a true solution of the full theory, 

which contains massive gauge fields also.* In fact, the SU(2) theory (2.6) 

*In Ref. 38 the Skyrme model .was gauged SU(2)L and the authors discuss the 
stability of the "Skyrmion.•• This theory is different from ours; still we 
invite the reader to look at their results and to compare with our picture. 
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could be seen as an effective theory of composite W and Z* and "technipions" 

(IT) provided.these technipions can be given a large enough mass (miT< mw?). 

Our model (2.6) for SU(2), with the rescaling [20] indicated in (1.4-5), is 

related to the model of Abbott and Farhi [39], who consider also the coupling . . . ( . . 

to composite quarks and leptons (vector meson dominance may be important). 

Perhaps our w± and z0 are joined by another boson rP in analogy with the ~}. 

but neutral current phenomenology [39] requires m~ > 20 ~· which in 

principle is possible, c.f. (2.10). With the caveat on the technipion mass we 

can scale the previous solution down in size to get the WIT-Skyrmion, for which 

the energy (1 .13) becomes 

E~~IT) ~ 3.969 4; mW + ~E ~ 9.2 TeV + ~E 
g 

(5.9) 

where ~E contains a contribution due to the technipion mass and perhaps a 

further contribution from higher derivative terms. In addition, there is the 

W-sphaleron with energy (1.4). Depending on what higher derivative terms 

occur this WIT-Skyrmion is or is not absolutely stable (in our discussions 

replace p by W). Ultimately it will decay, of course, since its building 

blocks (W,IT) are unstable, see the discussions in [37], but perhaps vacuum 

polarization effects of "heavy" fermions suppress the Skyrmion decay rate 

[40]. These are rather wild speculations and problems abound; happily there 

can be no doubt that at least the world of ff
1 S and p 1 S is real. 

*The U(1) factor can be coupled in easily, and the parameter p =cos ew mz/mw 
is unity, c.f. (1 .2), (1.3) and (2.12). This effective theory has no scalar 
particle, in contrast to the Weinberg-Salam theory [13]. Of course, for A 
large its mass becomes large also and the particle does not propagate far. 

•• 
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Figure captions: 

Fig. 1 Dashed curve: 

Energy along a non-contractible loop (~ = 0 ~ ff) in configuration 

space. There is symmetry around ~ = ff/2. At ~ = ff/2 the loop 

passes through the p-sphaleron solution, whose energy is given in 

(1.5). This shows that the solution is unstable. 

Full curve: 

Energy along a loop, ~ E [O,ff], of configuration (4.4). There is 

again symmetry around ~ = ffl2. At ~ = ffl2 the loop passes 

through the pff-Skyrmion solution, whose energy is given in (1.13). 

The Skyrmion appears to be stable, at least for this variation, see 

text. 

Fig. 2 a) Change in energy (4.10) of the pff-Skyrmion (~ = ff/2) under 

variation of the p-field (parameter ~ = ff/2 ~ 0) and a 

simultaneous scale transformation r ~ or. For comparison the curve 

for a= 1 is shown also(= full curve of Fig. 1). The energy is 

normalised to that of the pff-Skyrmion solution (1 .13). 

b) The optimal values a for the scale transformation parameter a as 

used in a). 

Fig. 3 a) Same as in Fig. 2a, but now the energy contains a contribution from 

a Skyrme term (1.8), (5.7), which has a prefactor g2!e2 . The 

functions F,G were used. For g2;e2 = 0 the curve is the same as in 

Fig. 2a. The energy is normalised to that (1.13) of the pff-Skyrmion 

solution for g2!e2 = 0. For comparison, the arrows give the pure 

Skyrmion energy (1.10) for the non-zero values of g2!e2 . 

b) Optimal scale parameters~ used in a); they are in the same order. 



33 

References 

1. K. Wilson, Phys. Rev. 010 (1974), 2445; 

C. Rebbi (ed.), Lattice gauge theories and Monte Carlo simulations, World 

~ Scientific (1983); 

F.R. Klinkhamer and M.8. Halpern (eds.), Quark confinement and 

liberation: Numerical results and theory, World Scientific (1985), in 

press 

2. S.B. Treiman, R. Jackiw and O.J. Gross, Lectures on current algebra and 

its applications, Princeton UP (1972) 

3. F. Gursey, Nuovo Cimento ~ (1960), 230 

4. J. Wess and B. Zumino, Phys. Lett. 378 (1971), 95 

E. Witten, Nucl. Phys. 8223 (1983), 422 

5. G. 't Hooft, Nucl. Phys. 872 (1974), 461; 875 (1974), 461 

6. G. •t Hooft, Comm. Math. Phys. 88 (1983), 1; 

V. Rivasseau, Comm. Math. Phys. 95 (1984), 445 

7. S. Coleman, in A. Zichichi (ed.) Pointlike structure inside and outside 

hadrons, Plenum, N.Y. (1982) 

8. S. Coleman and E. Witten, Phys. Rev. Lett. 45 (1980), 100 

9. E. Witten, Nucl. Phys. 8160 (1979), 57 

10. T.H.R. Skyrme, Nucl. Phys. 11 (1962), 556; Proc. R. Soc. London A260 

(1961), 127 

11. F.R. Klinkhamer, "Confinement at large-N," preprint LBL-19746, in F.R. 

Klinkhamer and M.B. Halpern (eds.) of Ref. 1 

12. J.J. Sakurai, Ann. Phys. 11 (1960), 1; Currents and mesons, Chicago UP 

(1969) 



34 

13. S. Weinberg, Phys. Rev. Lett. 12. (1967), 1264; 

A. Salam, in N. Svartholm (ed.), Elementary particle theory: 

relativistic groups and analyticity (Nobel Symp. No. 8), Wiley, New York 

( 1969) 

14. G. Arnison et al., UAl Collaboration, Phys. Lett. 122B (1983), 103; 129B 

(1983), 273; 126B (1983), 398; 

P. Bagnaia, UA2 Collaboration, Phys. Lett. 129B (1983), 130; Z. Phys. C24 

(1984). 1 

15. T. Appelquist and C. Bernard, Phys. Rev. 022 (1980), 200; 

A.C. Longitano, Phys. Rev. 022 (1980), 1166 

16. M. Banda et al .• Phys. Rev. Lett. 54 (1985), 1215; 

M. Banda, T. Kugo and K. Yamawaki, "On the vector mesons as dynamical 

gauge bosons of hidden local symmetries," preprint DPNU84-38 rev. (1985) 

17. P.Q. Hung, "Hidden local symmetry, the standard electroweak model and 

their relationships to current algebra and vector meson dominance," U. of 

Virginia preprint (1984) 

18. Particle Data Group, Rev. Mod. Phys. 56 (1984), Sl 

19. P. Langacker, Phys. Rep. 72 (1981), 185; 

E. Farhi and L. Susskind, Phys. Rep. 74 (1981). 277; 

M. Peskin, in Proceedings 1981 Int. Symposium on Lepton and Photon 

Interactions (Bonn, 1981) 

20. F.R. Klinkhamer. "Thew meson also may be a dynamical gauge boson," + 

Note Added, preprint LBL-19451 (1985) 

21. F.R. Klinkhamer, "On the emergence of a U(2) x U(2) gauge theory for low 

energy mesons," preprint LBL-19562 (1985) 

22. F.R. Klinkhamer and N.S. Manton, Phys. Rev. 030 (1984), 2212 



·' 

35 

23. R.F. Dashen, B. Hasslacher and A. Neveu, Phys. Rev. 010 (1974), 413B 

24. J. Boguta, Phys. Rev. Lett. 50 (1983), 148 

25. J. Boguta and J. Kunz, Phys. Lett. 154B (1985), 407 

26. G.S. Adkins, C.R. Nappi and E. Witten, Nucl. Phys. B228 (1983), 552; 

E. Witten, Nucl. Phys. B223 (1983), 433 

27. N.K. Pak and H.C. Tze, Ann. Phys. 117 (1979), 164 

28. A.P. Balachandran et al., Phys. Rev. 027 (1983), 1153 

29. Y. Igarashi et al., "Stabilization of Skyrmions via p mesons," preprint 

DPNU-85-02 (1985) 

30. F.R. Klinkhamer, "A new sphaleron in the Weinberg-Salam theory?" preprint 

LBL-19221 (1985) 

31. G.S. Adkins and C.R. Nappi, Phys. Lett. 1378 (1984), 251 

32. D. Foerster, H.B. Nielsen and M. Ninomya, Phys. Lett. 94B (1980), 135 

33. T. Fujiwara et al.~ "Non-abelian anomaly and vector mesons as dynamical 

gauge bosons of hidden local symmetries," preprint KUNS 764 (1984) 

34. N.S. Manton, Phys. Rev. 028 (1983), 2019 

35. Yu. P. Rybakov and V.I. Sanyuk, "Topological Skyrmions," preprtnt Niels 

Bohr Inst. (1981) 

36. I.J.R. Aitchison and C.M. Fraser, "Trouble with boson loops in Skyrmion 

physics," preprint Oxford TP 6/85 (1985) 

37. ·J.M. Gipson, Nucl. Phys. B231 (1984), 365; 

E. o•Hoker and E. Farhi, Nucl. Phys. 8241 (1984), 109 

~ 38. J. Ambjorn and V.A. Rubakov, "Classical versus semiclassical electroweak 

decay of a Techni-Skyrmion," preprint NORDITA 85/1 (1985) 

39. L.F. Abbott and E. Farhi, Phys. Lett. 1018 (1981), 69; Nucl. Phys. Bl89 

(1981), 547 

40. R. MacKenzie, F. Wilczek and A. Zee, Phys. Rev. Lett. 53 (1984), 2203 



36 

(rf) 3 
CX) co ~ ~ - ci ci 0 0 0 

" 
N 
0 ,., 
I 

<D 

I Ill 

I 
CX) CX) 

- l:) 
(..) 

I 
X 

I N 

\ ~ 

\ v -
\ 

" ~ 

" -
" .--i 

" -::i. . 
t;l 

·.-! 

"'"' 

" CX) 

" 0 

" " co 

" 0 

'\~ ~ 

\ 
0 

\ ~ 

\ 0 

0 .; 

1.0 0 1.0 0 1.0 -~ ~ - - 0 - - - - -
(rf) 3 



37 

(a) 

1.2 o-=1 
,.1~ 

1 
,.,1 

~ 0.8 
b--w 0.6 1.06 

0.4 1.04 ~ 
• 

0.2 1.02 

0 1.00 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 rr/2 

J-L 
1 

(b) 

0.8 

~ 
0.6 

-lb 
0.4 

0.2 

0 
0 0.2 0.4 0.6 0:8 1 1.2 1.4 rr/2 

J-L .X:CG 856-304 

Fig.2 



38 

2 

1.8 

1.6 

b "' 1.4 

:i - 1.2 w 

1 

0.8 

0.6 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 rr/2 

fL 

1.6 

1.4 

1.2 

"3: 
1 

f'b 0.8 

0.6 

0.4 
,, 

0.2 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 rr/2 

fL 
XCG 856-313 

Fig.3 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



.. :~-....-.. 

LAWRENCE BERKELEY LAB ORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

~~-




