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Abstract 

If people are required to respond very quickly in a same-
different task, their judgments of sameness are heavily reliant 
on attribute matches, despite the fact that when given ample 
time, the judgments seem to rely chiefly on relational matches 
(Goldstone & Medin, 1994). One interpretation of this 
temporal pattern is that attribute matches enter into the 
comparison process before relational matches. However, an 
alternate explanation, suggested by findings of Sloutsky & 
Yarlas (submitted) is that attributes are encoded before 
relations. In this case, if the comparison process begins before 
the encoding is completed, early matches will involve 
attributes but not relations.  We show via a simulation that 
SME can model the Goldstone & Medin results, as well as the 
Sloutsky & Yarlas (submitted).  

1. Introduction 
There is considerable evidence that the processes that 
govern analogical mapping may also apply to similarity 
comparisons (Markman & Gentner, 1996; Gentner & 
Markman, 1997). For example, Markman and Gentner 
(1996) found that when rating the similarity of two images, 
subjects attended more to differences connected to the 
common structure of the two images (alignable differences) 
than to differences unrelated to the common structure. These 
findings suggest that when asked to find a difference, 
participants first carried out a structural alignment between 
the images.  Results such as this suggest that the same 
cognitive process may underlie both analogy and similarity. 
Consistent with this, the Structure-Mapping Engine (SME) 
(Falkenhainer, Forbus & Gentner 1989), a computational 
model of analogy, has successfully modeled perceptual 
similarity results (Kuehne, Gentner, & Forbus, 2000; 
Loewenstein & Gentner, 2005).  

 A critical issue in modeling the psychological processes 
of analogy and similarity is simulating the time course of 
processing. In an  important study, Goldstone and Medin 
(1994) found that participants in a similarity task showed 
relatively greater sensitivity to attribute matches early in 
processing, and to relational matches later. This suggests 
that in perceptual similarity computations, attribute matches 
are made before relational matches. We begin by reviewing 
this study and then discuss results from Sloutsky and Yarlas 
(submitted) that suggest that the lag between attributes and 
relations arises from the time course of encoding rather than 

of comparison. We use SME to simulate both studies, 
providing evidence that supports the time course of 
encoding interpretation. 

 
 

Figure 1. Scenes from Goldstone & Medin (1994) 

2. Time-Course Effects in Comparison 
In Experiment 1 of Goldstone and Medin’s (henceforth 
G&M) study, participants were told to compare two scenes, 
each composed of two drawings of butterflies. The 
butterflies varied along four dimensions: head shape, tail 
shape, body texture, and wing texture.  The two butterflies 
in the base scene differed on all four dimensions (see Figure 
1).  The two butterflies in the comparison scene were 
systematically varied to produce different degrees of feature 
overlaps with the base two.  For example, if the two base 
butterflies were classified as AAAA and BBBB, where each 
letter is a value along one of the four dimensions, then a 
comparison butterfly labeled AAAB would have three 
features in common with one of the base butterflies and one 
feature in common with the other.  A butterfly labeled 
BBBD would have three features in common with one of 
the base scene butterflies and one novel feature. 

G&M assessed the similarity between two scenes by 
looking at subjects’ abilities to label them as different in a 
same-different task under a deadline. The assumption was 
that participants would align each butterfly in the 
comparison scene with one of the butterflies in the base 
scene, based on the overall degree of attribute overlap. 
Participants were told to disregard the butterflies’ relative 
positions; e.g., the top butterfly in one scene could match 
the bottom butterfly in the other.   

There were three deadlines, which varied within-subject: 
short (1 s), medium (1.84 s), and long (2.68 s). The 
dependent measure was the error rate on different trials: the 
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number of times subjects mistakenly believed that two 
different scenes were the same.  

 
 

 
 

Figure 2. Results from Goldstone & Medin (1994) 
 

G&M analyzed the pairs in terms of matches in place 
(MIPs) and matches out of place (MOPs). A MIP refers to a 
match between features in corresponding butterflies. For 
example, if an AAAB butterfly were matched to the AAAA 
butterfly, they would share three common features, or MIPs.  
A MOP refers to a match between features that belong to 
non-corresponding butterflies: in other words, a cross-
mapped attribute. In the example, the final feature of the 
AAAB butterfly matches that of the BBBB butterfly, 
producing a MOP. G&M looked at the effect of adding two 
MIPs with a constant number of MOPs and the effect of 
adding two MOPs with a constant number of MIPs. At the 
short deadline, there was no significant difference between 
increasing the number of MIPs or the number of MOPs 
(Figure 2).  In both cases, as the number of matches 
increased, subjects were more likely to confuse the two 
scenes. At the long deadline this relationship changed 
significantly.  The error rate became more sensitive to MIPs 
and less sensitive to MOPs, with one additional MIP having 
a greater effect than two additional MOPs. 

As Goldstone and Medin noted, these results suggest 
that early in the process, local attribute matches contributed 
to a sense of similarity regardless of whether they were 

structurally consistent with the (yet to be determined) 
maximal alignment (i.e., whether they were MIPs or 
MOPs). More generally, these findings could suggest that 
the comparison process is chiefly sensitive to attribute 
matches during the early stages of comparison, with 
sensitivity to relational consistency (e.g., attention to 1-1 
correspondences) entering later in the process. Goldstone 
(1994) simulated these results with his SIAM model. Such 
an effect might also be captured in SME by assuming that in 
speeded judgments, an early sense of similarity can be 
generated from SME’s initial parallel matching stage, in 
which all possible matches are generated between the two 
items, with no regard for structural consistency (Forbus et 
al., 1995).  

However, before drawing strong conclusions concerning 
the comparison process, we must consider a second possible 
interpretation of the G&M findings. The results just 
discussed could reflect the time course of encoding, rather 
than the time course of comparison. Results by Sloutsky and 
Yarlas (submitted) (hereafter S&Y) suggest that when 
subjects see an image, their construction of a representation 
may begin with entities and their attributes, with relations 
between entities added to the representations later.  

We next describe S&Y’s findings. Then we describe a 
simulation of the G&M findings based on the idea that 
relations may be encoded more slowly than attributes. 
Finally, we apply this simulation to the S&Y results as well.  

3. Evidence for Encoding Effects 
In G&M’s study, participants had to both encode the two 
scenes and compare them during the limited time given 
them. In order to separate encoding from comparison (at 
least partly), S&Y used a sequential same-different task 
instead of simultaneous presentation. Subjects first saw the 
base scene for a limited time, followed by a mask. Then the 
comparison scene was presented for an unlimited time. 
Thus, only the time to encode the base scene was limited. 
Any relational lag must thus be attributed to encoding 
processes, not to comparison processes.  

 
 

Figure 3. Scenes from Sloutsky & Yarlas (submitted) 
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The scenes were rows of three objects. All three objects 
had different colors, but two had the same shape.  The 
shapes appeared in one of three relational patterns: A-B-A, 
A-A-B, or A-B-B. Figure 3 shows a base scene with an A-
B-A pattern.  The comparison scene could differ from the 
base scene either in its elements or in its relations.  An 
element match (E+) contained the same three shapes with 
the same three colors (though not necessarily in the same 
pattern), while an element mismatch (E-) contained different 
shapes and colors.  A relational match (R+) contained the 
same pattern (e.g., A-B-A / C-D-C), whereas a relation 
mismatch (R-) contained a different pattern (e.g., A-B-A / 
C-C-D). S&Y varied the amount of time that the base scene 
was displayed.  In the ample time condition, the base scene 
was shown for 2100 ms, but in the limited time condition, it 
was shown for only 150 ms.  The dependent measure was 
d’, accuracy in detecting whether the scenes were different.  

The results, shown in Figure 7, indicated that when the 
attributes were changed (in the E-/R+ and E-/R- conditions), 
performance was extremely accurate, regardless of whether 
the relations changed or remained the same. In both cases, 
performance was only slightly lower with limited encoding 
time than with ample encoding time. A very different 
pattern held when the relational pattern changed, but the 
attributes did not (the E+/R- condition). With ample initial 
encoding time, performance was high, as in the other two 
conditions. However, performance dropped sharply with 
limited encoding time, far more than in the other conditions.  

In sum, subjects’ accuracy at detecting a change in the 
relational pattern was high given a long encoding time, and 
very low given a short encoding time. Their accuracy at 
detecting changes in attributes was high in both cases.  
These results suggest that more encoding time was needed 
for relations than for attributes. Indeed, S&Y conjectured 
that encoding attributes may be necessary for encoding 
relations (see also Goldstone, Medin & Gentner, 1991).   

Assuming that the process of comparison can begin 
before the encoding is complete, then matches among 
attributes may be discovered before the potentially matching 
relations have all be computed. If so, then an early similarity 
judgment will be dominated by local attribute matches, 
without regard for their relational role. As the encoding 
process continues and relations are added to the 
representations, then the mapping may be updated using 
incremental mapping techniques (Forbus et al., 1994; Keane 
et al., 1988). We explore this possibility in two simulations. 

4. Simulation: Incremental Encoding 
Our goal in the first simulation was to test whether SME 
could simulate the G&M results by assuming (a) that 
attribute encoding precedes relation encoding; and (b) that 
mapping can begin before the encoding is complete, and be 
incremented as the encoding proceeds. For the G&M 
simulation we assumed a two-stage process in which all 
attributes are encoded first, followed by all relations. This is 
clearly an oversimplification; in our S&Y simulation we 
also tested a gradual encoding process.  SME can compare 

the currently available data at any point in the encoding 
process, using incremental mapping techniques to update 
the mapping after new information is encoded. 

To simulate performance on the same-different task, we 
used the number of differences produced by SME. This is a 
reasonable measure because time required to detect that two 
stimuli are different increases with the number of 
differences between them (Farell, 1985).  Thus given 
limited time for a comparison, accuracy should increase 
with the number of differences detected.  Interestingly, the 
accuracy in detecting that two scenes are different does not 
vary with the number of differences; given a sufficient time 
to make a decision, subjects’ accuracy should remain high 
regardless of the number of differences. 

To measure the number of differences, we used the 
number of candidate inferences that SME produced. When 
computing an analogy between base and target cases, SME 
produces candidate inferences whenever the base contains 
an expression (connected with the mapping) that is not 
present in the target. Candidate inferences do not capture 
non-alignable differences, (i.e., differences not connected at 
all to the mapping) and so in general they are not adequate 
for measuring differences.  However, they suffice for the 
simple stimuli used in these experiments. (The stimuli were 
always completely alignable, so all differences are alignable 
differences.) Importantly, this measure will also note a 
difference when, due to time pressure, some information is 
not encoded in the target. 

To avoid hand-coding the stimuli, we sketched the visual 
scenes for these simulations using sKEA, the sketching 
Knowledge Entry Associate (Forbus & Usher, 2002).  sKEA 
is an open-domain sketch understanding system designed to 
produce structural representations of a sketch.  Objects in 
the sketch (called glyphs) can be identified as instances of 
categories from a large off-the-shelf knowledge base.  sKEA 
automatically computes various spatial relationships, 
including relative positions and sizes of glyphs, and has 
some limited shape recognition capabilities.   

 
Figure 4. Sketch of G&M stimuli 

Simulating Goldstone & Medin’s (1994) Results 
For our simulation of the G&M study, we drew each of the 
butterfly body parts (head, wings, body, and tail) as separate 
glyphs (Figure 4).  This captures the fact that the individual 
parts were perceptually differentiable entities that could 
match on their own with each other.  Thus SME could align 
parts from corresponding butterflies (MIPs) or non-
corresponding butterflies (MOPs).  
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For convenience, we used color, rather than texture or 
shape, as the dimension along which all four butterfly parts 
varied. This is because sKEA can identify colors readily and 
this choice does not seem to be of theoretical importance.  
G&M made no distinction between changes in shape, the 
dimension used for the head and tail, and changes in texture, 
the dimension used for the body and wings.  There were 
four different colors that could be used for each butterfly 
part: the color for the first butterfly in the base scene, the 
color for the second butterfly in the base scene, and two 
novel colors.  To avoid confusion, different sets of colors 
were used for each butterfly part. This follows a decision 
made in the original study, in which the texture of the 
butterfly body never matched the texture of the wings.  

To draw the butterflies, we drew glyphs for each part, 
applying the closest conceptual label from the knowledge 
base (e.g., the body was labeled Trunk-BodyCore).  The 
glyphs for the parts were selected as a group and declared 
(using sKEA’s interface) to be a group glyph, which was 
given the label Butterfly. Most of the visual relationships 
computed by sKEA were automatically filtered out for this 
simulation, since subjects were told in the original study that 
the positions of the butterflies were irrelevant.  The glyph 
group information was used to automatically compute part-
of relationships between a butterfly and its parts.   

For this simulation we sketched one base scene (Figure 
4) and 13 comparison scenes, representing the variations of 
MIPs and MOPs used in the original Goldstone & Medin 
(1994) study.  Because there was no theoretical difference 
between the different shapes and textures used in the 
original study and no functional difference between the 
colors used in our simulation, we were able to use a single 
base scene without loss of generality.  While the original 
study used short, medium, and long deadlines, only the 
differences between the short and long deadlines were 
analyzed in detail, so we used only two deadline conditions.  
In the short deadline condition, only the attributes of each 
scene were encoded and fed into SME.  In the long deadline 
condition, an initial SME mapping was built using only the 
attributes, and then the relations were added and SME 
remapped.  The dependent measure was the number of 
differences SME found.  SME mapped every butterfly part 
to another butterfly part of the same type and every part-of 
relation to another part-of relation, so the only differences 
found were differences in color.  For example, a light blue 
tail might be matched to a brown tail. 

In analyzing our results, we were primarily concerned 
with the effects of adding two MIPs or MOPs (see Figure 5, 
and compare to Figure 3).  Keep in mind that a decrease in 
the number of differences identified by SME corresponds to 
an increase in confusability of the stimuli and thus an 
increase in error rate in the original study.  For robustness, 
we focus on replicating the ordinal properties of the results 
in the original studies, as is common in such simulations. 

Our results matched G&M’s results for human subjects 
in two important respects.  At short intervals, increasing the 
number of MIPs or the number of MOPs by two had the 

same influence on similarity.  At long intervals, increasing 
the number of MIPs by two continued to have a strong 
influence, whereas increasing the number of MOPs by two 
had a much weaker influence.  Thus, we successfully 
replicated the effect of MOPs increasing similarity more at 
short intervals than at long intervals.  This was the effect of 
primary interest to us, as it led the original experimenters to 
conclude that attributes played a stronger role early on in the 
comparison process than later in the process.  We believe 
this result demonstrates that incremental encoding is a 
plausible alternative explanation for this effect. 
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Figure 5. Simulation results for G&M stimuli 
 

We also note that our results differ from the G&M 
results in a few respects.  First, those results showed a 
greater difference between performance at the short and 
long intervals.  For example, the error rate for 0 MOPs was 
much higher in the short deadline condition than in the long 
deadline condition in the original study, whereas in our 
simulation the number of differences was the same for these 
two conditions.  We suspect that the human results arise 
from the greater likelihood of decision errors under very 
short decision deadline—if so, this is a general effect, not 
specific to the comparison task. Second, G&M found a 
small effect of the number of MOPs even in the long 
deadline condition, whereas in our simulation the number of 
MOPs had no effect at all on the number of differences in 
the long deadline condition.  This result suggests that MOPs 
may actually affect similarity even when subjects have time 
to fully encode and compare stimuli.  Other studies have 
also found evidence that MOPs can affect similarity in the 
absence of time constraints (Goldstone, 1994; Larkey & 
Markman, 2005).  We hope to explore this phenomenon 
further in a later paper.  
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Simulating the Sloutsky & Yarlas Results 
We tested whether SME could simulate the S&Y results, 
using the same assumptions of incremental encoding and 
mapping processes that are launched before encoding has 
been completed. Given unlimited time to make a 
comparison, the evidence suggests that even a single 
difference should generally allow subjects to correctly 
determine that two scenes are not the same. Thus. our 
measure of performance for this study was the presence of 
any differences produced by SME. 

In S&Y’s limited time condition, subjects had limited 
time to look at the base scene, but had unlimited time to 
look at the comparison scene while making their 
comparison. To simulate this, in the limited time condition 
we limited the number of facts encoded about the base 
scene, but always encoded every fact about the comparison 
scene.  We entered the base scene as the base case for SME 
and the comparison scene as the target case, so SME only 
made inferences from the base scene to the comparison 
scene.  (This ensured that it would find differences when 
there were facts in the representation of the base scene that 
were not in the representation of the comparison scene, but 
not in the other direction, where spurious differences might 
have been found simply because not all the facts from the 
base scene had been encoded.) 

However, one complexity in the human data should be 
noted. The prediction from the preceding paragraphs is that 
subjects should perform at only two levels (mostly correct 
for E-/R- and E-/R+ (E-) trials and mostly wrong for limited 
time E+/R- trials). But S&Y’s subjects exhibited at least 
three levels, with medium levels of performance in the 
limited-time condition for the E- trials (see Figure 7). Of 
course, in the limited-time trials, it is expected that subjects 
might fail to encode some of the attributes (as well as failing 
to encode relations).  However, on the E- trials, the second 
scene differed from the first with respect to all object 
attributes, so the only way to explain the lower performance 
in the limited time condition would be if subjects failed to 
encode any of the attributes.  This might be the case.  Given 
that subjects received a large number of trials (60) with no 
break between trials, they might occasionally have failed to 
attend during the 150 ms during which the base scene was 
displayed.  We suspect that this accounts for the slight drop 
in performance from ample to limited time in the E- trials. 

To capture these patterns, we varied the number of facts 
that were encoded for the base scene in the limited time 
condition.  1/5 of the time, the system failed to encode any 
attributes.  1/3 of the time, the system encoded all the 
attributes and a random subset of the positional relations.  
The rest of the time, the system encoded a random subset of 
the attributes.  We ran each condition 90 times and 
calculated the percentage of the time that the system found 
at least one difference between the scenes. 

 
 

Figure 6. Sketch of Y&S stimuli with A-B-A pattern 

 
For this simulation, we sketched six base scenes (see 

Figure 6 for an example) along with the E-/R-, E-/R+, and 
E+/R- comparison scenes for each base.  As in the initial 
study, E+ indicated a scene in which the three objects 
shared all their attributes with the base scene, whereas E- 
indicated a scene with objects possessing entirely different 
colors and shapes.  R+ indicated a scene with objects in the 
same relational pattern as in the base scene (A-B-A, A-A-B, 
or A-B-B), whereas R- indicated a scene with objects in a 
different relational pattern.   

We sketched two base scenes for each of the three 
relational patterns.  The R- comparison scenes for these 
bases each used one of the other patterns. Thus, the six sets 
of stimuli covered all possible combinations of relational 
patterns in the base and R- comparison scene.  Because 
there was no theoretical or functional difference between 
shapes or colors, we were able to use these six stimulus sets 
for our results without loss of generality.  We ran each 
condition 15 times per stimulus set, producing 90 total 
trials, and averaged the results. 

In contrast to the previous simulation, in this simulation 
no information about the sketches was entered manually by 
the user.  sKEA automatically determined the color and 
shape of each glyph, as well as the relative positions of the 
glyphs, which were encoded as right-of relations.  Our 
system also encoded a same-shape relation for the two 
glyphs that shared the same shape.  

Our results closely matched S&Y’s findings for humans 
(see Figure 7). As in that study, when there was ample time 
to encode the base scene, performance in difference 
detection was roughly equal (and very high) for the E-/R-, 
E-/R+, and E+/R- pairs. When the base encoding time was 
limited, our results for the three scenes showed the same 
divergence as in the human results. For the E-/R- and E-/R+ 
pairs, there was only a small drop in performance.  For the 
E+/R- pair, the drop was much greater.  (We concede that 
the size of the drop in performance with the E-/R- and E-
/R+ pairs was dependent on the probability of encoding 
attributes from the initial scene, as determined by our 
probability distribution. However, the ordinal properties of 
the results were relatively insensitive to changes in that 
distribution.  As long as there is some chance of subjects’ 
failing to encode any attributes and some chance of 
encoding some attributes but no relations, the results would 
still replicate the human ordinal results.) 

Most importantly, the simulation captures the large 
advantage of ample time over limited time for pairs with 
relational differences (E+/R-), and shows that it exceeds the 
small gain that  occurs for ample time over limited time for 
pairs with attributional differences (E-/R+ or E-/R-). Thus, 
performance with relations is more sensitive to time 
constraints than performance with attributes, suggesting that 
relations are encoded later. 
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Figure 7. Results of S&Y’s study (top) and of our 
simulation (bottom) 

5. Discussion 
We believe we have successfully replicated the Goldstone 
and Medin (1994) and Sloutsky and Yarlas (submitted) 
studies.  Our simulation suggests that the early effects of 
structurally inconsistent attribute matches (cross-mapped 
attributes, or MOPs) found by G&M may reflect the time 
course of encoding, instead of (or in addition to) the time 
course of comparison itself. 

Further research will be necessary to determine the 
generality of the claim that attributes are encoded before 
relations. The possibility that the encoding of relations may 
depend on prior encoding of attributes should also be tested 
further.   

Finally, while our simulations suggest that an 
incremental comparison process may not be needed to 
explain the early effect of cross-mapped attributes on 
similarity, the possibility of such a process remains open. It 
is possible that attributes have priority both during encoding 
and during comparison. Further studies that independently 
manipulate encoding time and comparison time are needed 
to decide this. 
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