
UC Davis
UC Davis Previously Published Works

Title
Genetic Background Shapes Phenotypic Response to Diet for Adiposity in the 
Collaborative Cross

Permalink
https://escholarship.org/uc/item/8v54q5sq

Authors
Yam, Phoebe
Albright, Jody
VerHague, Melissa
et al.

Publication Date
2021

DOI
10.3389/fgene.2020.615012

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8v54q5sq
https://escholarship.org/uc/item/8v54q5sq#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ORIGINAL RESEARCH
published: 11 February 2021

doi: 10.3389/fgene.2020.615012

Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 11 | Article 615012

Edited by:

Mete Civelek,

University of Virginia, United States

Reviewed by:

Marcus M. Seldin,

University of California, Irvine,

United States

Casey E. Romanoski,

University of Arizona, United States

Susanna R. Keller,

University of Virginia, United States

*Correspondence:

Brian J. Bennett

brian.bennett@usda.gov

Specialty section:

This article was submitted to

Nutrigenomics,

a section of the journal

Frontiers in Genetics

Received: 07 October 2020

Accepted: 15 December 2020

Published: 11 February 2021

Citation:

Yam P, Albright J, VerHague M,

Gertz ER, Pardo-Manuel de Villena F

and Bennett BJ (2021) Genetic

Background Shapes Phenotypic

Response to Diet for Adiposity in the

Collaborative Cross.

Front. Genet. 11:615012.

doi: 10.3389/fgene.2020.615012

Genetic Background Shapes
Phenotypic Response to Diet for
Adiposity in the Collaborative Cross
Phoebe Yam 1,2, Jody Albright 3, Melissa VerHague 3, Erik R. Gertz 2,

Fernando Pardo-Manuel de Villena 4 and Brian J. Bennett 1,2,5*

1 Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis, CA, United States, 2Western

Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Davis, CA, United States,
3Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, United States, 4Department of Genetics,

Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States, 5Department of

Nutrition, University of California, Davis, Davis, CA, United States

Defined as chronic excessive accumulation of adiposity, obesity results from long-term

imbalance between energy intake and expenditure. The mechanisms behind how caloric

imbalance occurs are complex and influenced by numerous biological and environmental

factors, especially genetics, and diet. Population-based diet recommendations have

had limited success partly due to the wide variation in physiological responses across

individuals when they consume the same diet. Thus, it is necessary to broaden our

understanding of how individual genetics and diet interact relative to the development

of obesity for improving weight loss treatment. To determine how consumption of diets

with different macronutrient composition alter adiposity and other obesity-related traits

in a genetically diverse population, we analyzed body composition, metabolic rate,

clinical blood chemistries, and circulating metabolites in 22 strains of mice from the

Collaborative Cross (CC), a highly diverse recombinant inbred mouse population, before

and after 8 weeks of feeding either a high protein or high fat high sucrose diet. At

both baseline and post-diet, adiposity and other obesity-related traits exhibited a broad

range of phenotypic variation based on CC strain; diet-induced changes in adiposity and

other traits also depended largely on CC strain. In addition to estimating heritability at

baseline, we also quantified the effect size of diet for each trait, which varied by trait

and experimental diet. Our findings identified CC strains prone to developing obesity,

demonstrate the genotypic and phenotypic diversity of the CC for studying complex

traits, and highlight the importance of accounting for genetic differences when making

dietary recommendations.

Keywords: collaborative cross, diet, nutrigenomics and nutrigenetics, genetics, obesity

INTRODUCTION

Obesity is a complex disease characterized by excessive adipose tissue accumulation and has become
one of the leading preventable causes of death in both developed and developing countries (Bell
et al., 2005; Friedman, 2015;WHO, 2015). Fundamentally, obesity results from a chronic imbalance
between energy intake and expenditure (Hill et al., 2012; Romieu et al., 2017; Swift et al., 2018;
Oussaada et al., 2019). This imbalance is caused by numerous biological factors including: genetics
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(Bell et al., 2005; Singh et al., 2017; Loos, 2018), metabolism
(Timper and Brüning, 2017; Speakman, 2018; Fernández-
Verdejo et al., 2019), and the gut microbiome (John and Mullin,
2016; Martinez et al., 2016; Torres-Fuentes et al., 2017), as well
as environmental factors such as chemical exposure (Janesick
and Blumberg, 2016; Heindel and Blumberg, 2019; Shahnazaryan
et al., 2019) and diet, particularly in the context of overfeeding
relative to physical activity levels (Sims, 1976; Danforth, 1985;
Schmidt et al., 2012; Cuthbertson et al., 2017; Creasy et al., 2018).

Identification of the underlying genes predisposing an
individual to obesity has been a very active area of investigation.
Large-scale human genome-wide association studies (GWAS)
that test the association of millions of genetic variants with
adiposity, body mass index, and waist-to-hip ratio have
identified >300 genetic loci for obesity traits, such as the
FTO, TMEM18, CADM2, and LYPLAL1 loci, among others
(Loos et al., 2008; González-Muniesa et al., 2017; Loos, 2018).
Complementing approaches in humans, studies in mice have
provided fundamental insights into the genetic regulation of
adiposity and susceptibility to obesity (Coleman and Hummel,
1974; Lu et al., 1994; Carroll et al., 2004; Attie et al., 2017).
For example, the genes that encode leptin and leptin receptor
which arose as spontaneous deficiency mutations in ob/ob and
db/db obese mice respectively (Ingalls et al., 1950; Hummel et al.,
1966) were shown to regulate satiety after gene cloning was
possible (Zhang et al., 1994; Tartaglia et al., 1995). Similarly, the
link between the FTO gene and obesity was first reported in
mice prior to the identification of this gene’s association with
obesity in humans (Fischer et al., 2008). The similar biology
between humans and mice in terms of physiology, morphology,
and genetics, and the ability tomanipulate themouse genome has
aided our understanding of the underlying mechanisms affecting
energy balance and obesity (Robinson et al., 2000; Pomp et al.,
2008).

Similarly, diet is among the most studied environmental
factors, as it remains an important and potentially successful
focus of public health interventions (Wilborn et al., 2005;
Eknoyan, 2006; Makris and Foster, 2011). One of the difficulties
identifying the optimal dietary recommendation for a population
is the inter-individual variation observed in response to diet
(Berry et al., 2020). At a certain level there may be no “perfect”
diet that works universally across populations to mitigate obesity
(Dansinger et al., 2005; Johnston et al., 2014). Thus, in spite of
the successes of GWAS and dietary intervention studies, there
still remains practical public health challenges for understanding
and preventing obesity. Animal models often solve some of the
challenges by limiting confounding environmental influences
to gain a more complete understanding of the etiology of
obesity. Studies performed using inbred mouse strains suggest
that phenotypic response to diet occurs in a strain-dependent
manner (West et al., 1992, 1995; Barrington et al., 2017).
Understanding the interaction of genetics and diet offers insight
into how “precision nutrition” could improve and refine our
dietary recommendations.

In order to broaden our understanding of how genetics and
diet impact obesity at both the individual and population levels in
a genetically diverse population, we analyzed how consumption

of diets with different macronutrient compositions altered
adiposity and other physiological traits in 22 strains of mice from
the Collaborative Cross (CC), a large recombinant inbred mouse
population generated from elaborate intercrosses of C57BL/6J,
A/J, NOD/ShiLtJ, NZO/HiLtJ, 129S1/SvImJ, WSB/EiJ, CAST/EiJ,
and PWK/PhJ, mouse strains (Churchill et al., 2004; Iraqi et al.,
2008; Threadgill and Churchill, 2012). The tremendous genetic
diversity of the CC population (Philip et al., 2011; Collaborative
Cross Consortium, 2012; Srivastava et al., 2017; Shorter et al.,
2019) facilitates the discernment between effects caused by
diet from effects caused by genetic variation when measuring
differences and changes in adiposity and other metabolic traits
across multiple genetic “replicates” in each strain, thereby
increasing power, reproducibility, and relevance to obesity in
humans (Mathes et al., 2011). Following a 2-week acclimation
period on standard synthetic diet (AIN-76A) to determine
baseline phenotypes, mice between 8 and 11 weeks of age
were randomized and put on experimental diets (high fat high
sucrose or high protein) for 8 weeks, followed by analysis of
body composition, metabolic rate, clinical blood chemistries,
and circulating metabolites to assess the effect of diet on each
trait since diets with higher protein, low glycemic index, and
lower fat content may assist in maintaining weight loss compared
to diets with higher carbohydrate content (Abete et al., 2010;
Larsen et al., 2010; Hu et al., 2018; Myrmel et al., 2019; San-
Cristobal et al., 2020). While both genetics and diet interact to
influence adiposity and other phenotypes, health outcomes were
more strongly impacted by genetic effects than diet. Furthermore,
the effect of diet on each trait varied depending on CC strain,
indicating that genetics determine how a particular diet may
affect body composition.

MATERIALS AND METHODS

Animals and Husbandry
Female mice from 22 CC strains were obtained in 2016
from University of North Carolina’s Systems Genetics Core
Facility (Welsh et al., 2012) (total n = 204, Figure 1). All
strains used are listed in Supplementary Table 1. Mice were
then acclimated for 2 weeks on standard synthetic diet (AIN-
76A), housed three mice per cage at 22◦C with non-irradiated
pine bedding, and provided free access to sterile water in a
climate-controlled facility under a 12-h light/dark cycle. Mice
were put on experimental diets between 8 and 11 weeks
of age after the 2-week acclimation period, randomized into
different cages by experimental diet (Supplementary Figure 1,
Supplementary Table 1), and housed under the same conditions.
After randomization, mice were challenged on their respective
diets for 8 weeks, and analysis of body composition, metabolic
rate, and physical activity were performed at the UNC Animal
Metabolism Phenotyping Core post diet challenge (methods
for analysis of body composition, metabolic rate, and physical
activity described below) followed by necropsy and tissue
collection. Because only a limited number of mice were
available at one time, experiments spanning 11 weeks (2
weeks of acclimation, 8 weeks of diet challenge, post-diet
phenotype assessments) for each “batch” were performed in
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FIGURE 1 | Experimental design and timeline. Collaborative Cross (CC) mice were obtained between 6 and 9 weeks of age (n = 204) and acclimated for 2 weeks on

standard synthetic diet (AIN-76A) for baseline phenotype assessment which included body composition assessment and a blood draw for quantification of circulating

plasma clinical chemistries and metabolites before cage randomization and starting diet challenges on either high protein (HP) or high fat high sucrose (HS) diet

between 8 and 11 weeks of age, with an average age of 9.4 weeks. For each CC strain, 4–5 mice were assigned to each experimental diet except for

CC024/GeniUnc which had 2 mice assigned to each experimental diet; the number of mice from each strain assigned to each diet are shown in

Supplementary Table 1. Mice were subsequently maintained on experimental diets for a total of 8 weeks, with the final phenotype assessment performed the

following week (week 9) which included another body composition assessment and indirect calorimetry to measure metabolic rate and activity. Samples collected

during the necropsy were blood used in the current study, kidney, liver, subcutaneous and gonadal fat, and cecum samples for additional studies.

7 batches, where each batch contained about 33 mice on
average, except for batch 6 which contained 14 mice. All
mice were maintained on their respective experimental diets
for the remainder of the study using protocols in accordance
with the University of North Carolina Institution Animal
Care and Use Committee guidelines. All maintenance protocols
and experimental procedures were approved by the IACUC
at University of North Carolina (UNC) Chapel Hill (IACUC
Protocol Number: 13-103).

Diets
During the 2-week acclimation period, mice were maintained
on the defined synthetic diet containing 20.8% kcal protein,
67.7% kcal carbohydrate, and 11.5% kcal fat, referred to
as AIN-76A in this study (D10001, Research Diets, New
Brunswick, NJ; Supplementary Table 2) until 8–11 weeks of
age to account for differences due to variable components
of standard chow. Subsequently, one sibling from each
of the 102 sibling trios was randomly assigned to each
experimental diet (Supplementary Table 1). One hundred and
two mice were transferred to a synthetic high fat high
sucrose diet (HS) containing 16.8% kcal protein, 51.4%
kcal carbohydrate, and 31.8% kcal fat, and 102 mice were
placed on a high protein diet (HP) containing 40% kcal
protein, 40% kcal carbohydrate and 20% kcal fat (D12266B

and D12083101, respectively, Supplementary Table 2; Research
Diets, New Brunswick, NJ).

Body Composition and Weight
Body composition (lean and fat mass) was assessed in all cohorts
during the first week of the acclimation phase to establish
baseline phenotypes, as well as after 8 weeks of the experimental
diet challenge using the Echo MRI-130 Body Composition
Analyzer (EchoMRI, Houston, TX, USA). Body fat and lean mass
percentages were calculated by dividing fat mass by scale weight
and dividing lean mass by scale weight, respectively.

Metabolic Rate and Activity
Mice were placed into individual indirect calorimetry cages
(Phenomaster, TSE SYSTEMS, Chesterfield, MO) the week
immediately following the 8 weeks of the experimental diet
challenge for ∼3 days and two nights (∼48 h) to obtain O2

consumption and CO2 production, activity, and feed and water
consumption measurements. After an 8-h acclimation period,
data were collected for two complete 12-h night cycles and one
complete 12-h day cycle every 42min (Supplementary Figure 2).
Basal activity was measured in three dimensions (x, y, and z) as
breaks in the two infrared light beam frames that surrounded
each cage. Rearing was detected by beam breaks in the z axis
and total physical activity was defined as the sum of beam breaks
in all three axes in counts. Feed and water were available ad
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libitum and consumption was measured by weighing sensors that
held containers for feed and water, respectively, and recorded the
amount of feed or water consumed. Spilled feed and water were
caught by extended attachments on the feed and water containers
suspended from the weighing sensors, so spilled feed and water
were not recorded as consumed.

Heat production calculations were performed two ways by
the TSE software (LabMaster) using O2 consumption and
CO2 production measurements: (1) for the computation of
total body weight (kcal/h/kg), and (2) for the computation of
an exponent lean body mass assigned to total body weight
(kcal/h/kg). From the exported raw data, energy consumption
was calculated by multiplying feed consumption measurement
(in grams) by the calorie (kcal) content per gram feed for
each diet (Supplementary Table 2). Protein, carbohydrate, and
fat consumption were calculated by multiplying the feed
consumption measurement (in grams) by macronutrient content
(in grams) per total gram of feed. For example, the average
protein consumption for mice on the high protein diet was
calculated by multiplying the measured feed consumed (g) by
(40.6 g protein/90.3 g feed total).

Individual and combined diurnal means were calculated for
each metabolic measurement using data collected at time points
between the start and end times of the day cycle. Likewise,
individual and combined nocturnal means were calculated
for each metabolic measurement using data collected at time
points between the start and end times of the night cycle
(Supplementary Figure 2). Means for each measure were also
calculated by date, e.g., mean of feed consumption for both light
and dark cycles on the second day of the experiment.

Biological Samples Collection
Tail clippings and blood samples were collected immediately
before putting mice on experimental diets to establish baseline
values. To collect tail clippings, tail tips were cleaned with 70%
ethanol, and up to 5mm of the tail tips were excised with
sterile scissors and placed in 2ml screw-cap tubes. After 8 weeks
on experimental diets, mice were anesthetized via isoflurane
inhalation and euthanized using cervical dislocation during the
necropsy following a 4-h fast. Blood, kidney, liver, subcutaneous
and gonadal fat, and cecum samples were collected (Figure 1).
Blood samples were collected via retro-orbital bleed with
heparinized capillary tubes into EDTA tubes, placed on ice, and
centrifuged at 6,000 rpm for 10min at 4◦C for plasma collection.
Plasma was then transferred to 1.5ml Eppendorf tubes. Tissues
were placed in 2ml screw-cap tubes and snap frozen in liquid
nitrogen. All plasma, frozen tissues, and previously collected
samples were stored at −80◦C. Additional gonadal fat, kidney,
and liver tissues were fixed in capped glass vials containing 10%
formalin and stored at room temperature.

Plasma Clinical Chemistries
Cholesterol, triglyceride (TG), glucose, albumin, creatinine, urea,
aspartate transaminase (AST), and alanine transaminase (ALT)
levels were quantified using the Cobas Integra 400 Plus (Roche
Diagnostics, Indianapolis, IN), according to manufacturer’s
instructions. An internal control (Human UTAK) was used

to assess run variation. Baseline and post-diet circulating
insulin were measured using ultrasensitive mouse insulin
ELISA (ALPCO Diagnostics, Salem, NH) per manufacturer’s
instructions except for the following adjustment: 15 µl of plasma
sample dilutions were used in the assay and back calculations
were performed to determine actual plasma concentrations.
Insulin optical density (OD) was measured at 450 nm using
a spectrophotometric BioTek Synergy 2 plate reader (BioTek
Instruments Inc, Winooski, VT). Insulin concentrations were
derived from measured ODs using BioTek’s Gen5 software.

Liquid Chromatography-Mass
Spectrometry (LC-MS)
Baseline and post-diet circulating trimethylamine N-oxide
(TMAO), choline, phosphocholine, betaine, and carnitine were
quantified using liquid chromatography–mass spectrometry
(LC-MS) methods described by Wang et al. (2014) with
modifications. Standards ranging from 0 to 100µM of non-
deuterated analytes in methanol were run in order to establish
analyte standard curves. Two-fold serial dilutions of a 100µM
stock solution in methanol was used to make 13 standards.
5µM of surrogate standard (SSTD) were prepared comprising
of deuterated analytes in methanol. All standards were purchased
from Sigma-Aldrich (St. Louis, MO). All reagent solvents were
mass spectrometry grade and purchased from Fisher Scientific
(Waltham, MA). Details of the protocol are contained in the data
supplement and Supplementary Table 3.

Statistical Methods
Determining Contributors to Phenotypic Variance
All phenotype data were tested for normality using the Shapiro-
Wilk test in the statistical programming language R (R Core
Team, 2019). Baseline non-normal data were transformed using
power transformation or rank normalization if necessary before
linear fixed models were fitted using CC strain and mouse
batch (“week” in Supplementary File 2) as fixed effects to test
for significant CC strain effects on phenotypic variance. Post-
diet non-normal data were also normalized using these methods
as appropriate for fitting linear mixed models using restricted
maximum likelihood (REML) to determine the significance
of the effect of diet and strain/diet interactions. To test for
the significance of the effect of diet underlying phenotypic
variance, linear mixed model analysis of the relationship
between diet and phenotypic traits was performed using R
and packages lme4 (Bates et al., 2015), lmerTest (Kuznetsova
et al., 2017), and car (Fox and Weisberg, 2019) for each
post-diet phenotype. For models testing diet as the main
effect, fixed effects included experimental diet and mouse
batch, and random effects (intercepts) included CC strain, CC
strain × experimental diet, randomization cage nested within
experimental diet, and baseline cage nested within CC strain.
In models used to test for the significance of the effect of
strain/diet interactions, linear mixed models were fit for each
post-diet phenotype, which included CC strain, experimental
diet, CC strain × experimental diet, and mouse batch as fixed
effects, and randomization cage nested within experimental diet
and baseline cage nested within CC strain as random effects
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(intercepts). Visual inspection of residual plots did not reveal
obvious deviations from homoscedasticity or normality. P-values
were obtained by implementing Satterthwaite approximations as
described by Luke (2016).

Calculation of Health Scores to Estimate Overall

Metabolic Health
Metabolic health scores were calculated for all mice at baseline
and 9 weeks post-diet. First, Z scores were calculated for
several metabolic risk factors (circulating glucose, insulin,
glucose/insulin ratio, cholesterol, TG, and body fat %) measured
at baseline and post-diet for each mouse; the distribution used
to calculate the Z score for baseline was all baseline samples,
while samples were separated by diet before calculating post-
diet Z scores. Next, the Z scores for each metabolic risk factor
were added together, and thenmultiplied by−1 so that decreased
health is reflected by a lower health score.

Baseline Broad-Sense Heritability Estimates
From linear models fitted using baseline normalized data with
CC strain and mouse batch as the covariates used to test for
significant CC strain effects on phenotypic variance (described
above), broad-sense heritability (H2) was estimated for each
phenotype by calculating the intraclass correlation (rI) and the
coefficient of genetic determination (g2) using derived values for
mean square between (MSB) strains and mean square within
(MSW) strains (Festing, 1979). rI may be interpreted as the
proportion of total phenotypic variation that is accounted for by
differences between strains, while g2 accounts for the additive
genetic variance that doubles during inbreeding (Festing, 1979;
Falconer, 1989; Lightfoot et al., 2001), so g2 is a more appropriate
estimate for broad sense heritability in this study. However, other
studies sometimes only provide one estimate or the other, so we
have included both values to facilitate comparisons with other
findings in the literature. rI and g2 were calculated using the
following formulas, where n is the number of mice per strain:

rI =
(MSB−MSW)

MSB+ (n− 1)MSW
g2 =

(MSB−MSW)

MSB+ (2n− 1)MSW

The number of mice per strain varies in this study, so n was
calculated as:

n =
1

(a− 1)

(

N −
6ni

2

N

)

where a is the number of strains, ni is the number of mice
in the ith strain, and N is the total number of mice (samples)
per phenotype.

Post-diet Broad-Sense Heritability Estimates
Post-diet broad-sense heritability estimates (H2) were calculated
for each trait to contrast the proportion of relative heritable
variation attributed to genetics or diet, and to assess whether
different diet “environments” affect heritability. Post-diet
intraclass correlation (rI) values and the coefficients of genetic
determination (g2) were calculated using the formulas above
and the MSB and MSW derived from four different linear
models: (1) a “full” additive model with strain, diet, and week

as variables fitted with phenotype data from both experimental
diets, (2) a “partial” additive model including strain and week
as variables (diet excluded) fitted with phenotype data from
both experimental diets, (3) a “HP” additive model including
strain and week as variables fitted with phenotype data from only
mice fed the HP diet, and (4) a “HS” additive model including
strain and week as variables fitted with phenotype data from
only mice fed the HS diet. H2 estimates derived from models
fitted with data from all mice post-diet compare the contribution
of genetics (strain) and diet overall to heritable phenotypic
variance, while diet-specific H2 estimates were calculated to
discern differences in heritability affected by differences in
macronutrient composition.

Quantification of Heritable Variation Attributed to

Genetics, Diet, and Gene ×Diet Interactions
Linear mixed models with strain, diet, and strain x diet
interactions as random effects (intercepts) were fitted using all
post-diet phenotype data for body fat % and obesity-related traits
to quantify the relative heritable variation attributed to genetics,
diet, and gene × diet interactions based on the variance of each
term in the model. The approximate values for the proportion
of variance for strain, diet, and interaction were calculated by
dividing the variance for each term by the sum of the variance
for all terms in the model (including residuals).

Quantification of Diet Effect Size
To quantify size effects of diet on each trait, Hedges’ g values for
the HP diet were calculated by using the baseline-specific (AIN-
76A) mean of the phenotype minus the HP-specific mean of the
phenotype (M1-M2), and then dividing this value by the weighted
pooled standard deviation (SD) for the two groups (Ellis, 2009):

Hedges′g =
M1 −M2

SD∗pooled

The weighted pooled SDs was calculated using the following
equation where n1 = the number of samples from mice on the
AIN-76A diet and n2 = the number of samples from mice on the
HP diet:

SD∗
pooled =

√

(n1 − 1) SD1
2 + (n2 − 1) SD2

2

n1 + n2 − 2

Calculations for Hedges’ g were performed using the following
function from the effsize package in R (Torchiano, 2019), with
pooled weighted SD, unpaired samples, removed NA entries and
a 95% confidence interval, where d = phenotype measurements
and f= experimental diets: cohen.d (d, f, pooled= TRUE, paired
= FALSE, na.rm= TRUE, hedges.correction= TRUE, conf.level
= 0.95). CorrectedHedges’ g effect sizes are presented as standard
deviation units so that a Hedges’ g value of 1 indicates that
the baseline diet and respective experimental diet differ by 1
standard deviation, a g of 2 indicates they differ by 2 standard
deviations, and so on with the sign indicating the direction
of change between diets. Positive Hedges’ g indicates increased
phenotype values post-diet compared to baseline, e.g. body fat %
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was increased from baseline in mice after feeding them the HP
diet. Magnitude descriptions are based on the following cut-offs
of |g|: negligible < 0.2 < small < 0.5 < medium < 0.8 < large.
Hedges’ g values were calculated for the HS diet for each trait
using the same method.

To further quantify the effect size of diet, we also calculated
the intraclass correlation (ICC) for diet using the mean square
between (MSB) diets and mean square within (MSW) diets
derived from post-diet linear models including strain, diet, and
week as variables, using the following formula where n= number
of mice on each diet:

ICC =
(MSB−MSW)

MSB+ (n− 1)MSW

The ICC for diet can be interpreted as the proportion of the
total phenotypic variation that is accounted for by differences
between diet.

Testing Significance of Phenotypic Difference

Between Day and Night Cycles for Metabolic Traits
Phenotype data for metabolic traits were viewed in histograms to
check for normality of the distributions, revealing skewness and
non-normality. Thus, Wilcoxon signed rank tests with continuity
correction were performed instead of student’s t-tests using the
following function from the stats package in R (R Core Team,
2019), with paired samples and a 95% confidence interval, where
day = diurnal metabolic trait data and night = corresponding
nocturnal metabolic trait data: wilcox.test (day, night, paired =

TRUE, conf.int= TRUE).

Additional Statistical Analyses
All statistical analyses were performed in R (R Core Team,
2019). Summary statistics were calculated for all phenotypic data,
include means and standard error (SE). Spearman’s correlations
were performed to determine significant relationships between
traits at baseline and post-diet. To ascertain the magnitude of
the effect of diet behind gene x environmental effects found for
each trait in our linear mixed models, Spearman’s correlation
analysis was performed between the F-statistic of the gene x diet
interactions of our models and Hedges’ effect size for both diets
(|g|). Each trait was categorized as either largely affected by diet
(|g| > 0.8) or not (|g| < 0.8), and significantly affected by gene
x diet interactions (p < 0.05) or not (p > 0.05), followed by Chi
square analysis of whether the effect size of diet and the gene x
environment are significantly related for the given trait.

RESULTS

Baseline Traits Show Extensive Phenotypic
Variation Among CC Strains
Baseline values for adiposity (synonymous with body fat % in
this study), clinical blood chemistries, and circulatingmetabolites
were established to assess the degree of phenotypic variation
due to genetic background of the CC strain (see Methods and
Figure 1). Adiposity and circulating metabolic health marker
levels exhibited wide ranges of phenotypic variation by CC

strain (Figure 2) and there was a wide range of adiposity in
the CC population ranging from 1.1 to 29.8% body fat, with
strain CC019/TauUnc least susceptible to obesity (average body
fat 4.4 ± 0.6%) and strain CC028/GeniUnc most susceptible
(average body fat 23.1 ± 1.5%) (Figure 2A). Similarly, there was
a wide range in average weight across the CC lines ranging from
12.4 ± 0.2 g in strain CC019/TauUnc to 23.7 ± 1.0 g in line
CC011/Unc (Figure 2B). Within CC strains, CC040/TauUnc had
the highest range of variability in adiposity (1.7–29.3%), while
CC030/GeniUnc had the lowest range of variability in adiposity
(7.6–12.6%). CC040/TauUnc had the highest variability in weight
(11–28 g), while CC019/TauUnc had the lowest variability in
weight (11.1–13.2 g). Linear regression analysis was performed
to assess the significance of the effect of strain on each of
the measured traits at baseline (Supplementary Table 4), and
strain was found to have a significant effect on almost all
traits, especially body fat % (F = 12.44, p = 7.71 × 10−25)
and weight (F = 19.39, p = 3.95 × 10−35). To estimate the
overall health of the mice from each CC strain, a metabolic
health score was calculated using the sum of Z scores from
measurements of several metabolic risk factors (circulating
glucose, insulin, glucose/insulin ratio, cholesterol, TG, and body
fat %). While the health score includes body fat % as one of
the components, the phenotypes exhibited across CC strains for
circulating analytes typically used as markers of metabolic health
(circulating glucose, insulin, glucose/insulin ratio, cholesterol,
TG) varied so that although one strain may have high body
fat %, it may simultaneously have low levels of TG or glucose,
such as CC040/TauUnc at baseline. Because metabolic health is
determined by multiple phenotypes, the health score provides a
way to estimate overall metabolic health for each CC strain in a
way that accounts for these differences. For example, at baseline
CC028/GeniUnc had the highest BF% but its health score was
close to 0, so it was not exceedingly unhealthy relative to the
other strains in this study despite its high BF%, since this strain’s
glucose, TG, and cholesterol levels were not elevated. Similar
to adiposity and circulating analytes (Figures 2C–F), metabolic
health also showed a wide range of phenotypic variation by CC
strain at baseline (Figure 2G), where most strains with higher
adiposity also appeared to have decreased metabolic health
(Figures 2A,G), with the exception of CC028/GeniUnc.

Total Body Weight Has a Limited Effect on
Increased Adiposity
To determine whether total body weight predicts susceptibility
to increased adiposity, body fat % was correlated with total
body weight. Although the leanest strain overall (CC019/TauUnc,
average body fat 4.41 ± 0.56%) was on average also the
smallest strain (12.4 ± 0.22 g) and body fat % was positively
correlated with weight overall (Figure 3B, rho = 0.56, p < 2.2
× 10−16), the largest average CC strain was not necessarily
the most susceptible to developing obesity (Figures 2A,B,
Supplementary Figure 3). For example, the CC strains with the
highest average weight (23.4 ± 0.97 g in CC011/Unc, 22.4 ±

1.08 g in CC028/GeniUnc, and 22.3 ± 0.7 g in CC008/GeniUnc)
did not necessarily always have the highest body fat % (15.7 ±
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FIGURE 2 | Body composition, circulating metabolic health marker levels, and metabolic health score are strain-dependent in the Collaborative Cross. At baseline, the

Collaborative Cross demonstrates phenotypic variation in a strain-dependent manner. Baseline measurements of metabolic phenotypes are shown for (A) body fat %,

(B) total weight, (C) triglycerides (TG), (D) total cholesterol, (E) glucose, (F) insulin, and (G) metabolic health score by strain during the 2-week acclimation period while

mice were fed the baseline diet (AIN-76A). For metabolic health score (G), strains are ordered from left to right by least healthy to most healthy. Data are mean ± SE

for (A–F); data are mean for (G). For body fat % and total weight, 8-10 mice were available per strain, except for CC024/GeniUni (n = 4). For TG, cholesterol, glucose,

insulin, and metabolic health score, 8–10 mice were available per strain, except for CC024/GeniUni (n = 4), and CC063/Unc (n = 6). Baseline linear models with CC

strain and week as a covariate showed significant CC strain effects for all phenotypes shown (p < 2.87 × 10−6).

1.29% in CC011/Unc, 23.11 ± 1.59% in CC028/GeniUnc, and
15.00± 1.39% in CC008/GeniUnc).

Adiposity Exhibits Complex Associations
Across Various Health Measures at
Baseline
Excessive adiposity is a risk factor for metabolic dysfunction
and thus we quantified the relationship between circulating
plasma analyte levels and body fat % (Figure 3). For example, for
traits associated with metabolic syndrome such as total weight,
circulating glucose, insulin, TG, and cholesterol, body fat %
was significantly correlated with weight (rho = 0.56, p < 2.2
× 10−16), insulin (rho = 0.44, p = 8.8 ×10−11), and TG (rho

= 0.24, p = 5.9 × 10−4) as shown in Figures 3B–D, but not
glucose nor cholesterol. In terms of metabolites associated with
cardiovascular health, adiposity was not correlated with the risk
factor TMAO but was moderately associated with circulating
choline (rho = 0.190, padj = 0.012), carnitine (rho = 0.17,
padj = 0.023), and phosphocholine (rho = 0.260, padj = 0.001;
Figure 3A, Supplementary Table 5).

Estimates for Broad Sense Heritability (H2)
Show the Size of Strain Effects on
Phenotypic Variation at Baseline
We next calculated broad sense heritability (H2) of traits at
baseline to quantify the degree that genetic variation influences
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FIGURE 3 | Phenotypic correlations at baseline illustrate the strength of relationships between traits without the influence of diet. Body fat % shows the strongest

relationship with weight, insulin, triglycerides (TG), and metabolic health score at baseline compared to other traits. (A) Spearman’s correlations of baseline

phenotypes with p values adjusted using the Benjamini–Hochberg method. Only significant correlations (padj < 0.05) are shown. Scale indicates rho value.

Spearman’s correlations between baseline body fat % and (B) weight (R = 0.56, p <2.2 × 10−16), (C) insulin (R = 0.44, p = 8.8 × 10−11), and (D) TG (R = 0.24, p =

0.00059) show significant correlations between body fat % and obesity-associated phenotypes. R is Spearman’s rho.

phenotypic variation compared to the variation of environmental
factors. Linear regression analysis was performed to test whether
strain had significant effects on phenotypic variation. Strain
was a significant predictor for all traits at baseline except for
circulating non-esterified fatty acids (Supplementary Table 4).
Using the between- and within-strain mean square values (MSB
and MSW, respectively) derived from these linear models,
broad sense heritability (H2) was estimated by calculating the
intraclass correlation (rI) and coefficient of genetic determination
(g2) which determine the proportion of phenotypic variation
accounted for by differences between strain (genetic variation)
(Table 1). Estimates of H2 for phenotypic variation based on g2

were 0.359–0.565. The highest and lowest estimates of H2 were
for lean mass (g2 = 0.565) and circulating non-esterified fatty
acids (g2 = 0.029). Our assessment of H2 demonstrates that

genotypic variation accounts for a large proportion of phenotypic
variation in the CC for all body composition traits and a medium
proportion of phenotypic variation for traits related to 1-carbon
metabolism. We note that not all analytes were highly heritable.

Genetic Background Mediates Degree of
Weight Gain, Adiposity, and Metabolic
Health in Response to Diet
After establishing baseline phenotype values to examine the effect
of strain without the influence of diet, we investigated the effect
of diet in the CC population on weight gain and metabolic
health. To accomplish this, we randomized the 204 female mice
from 22 CC strains to one of two diets and challenged them
for 8 weeks with either a high protein (n = 102) or high fat
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TABLE 1 | Broad sense heritability for baseline traits.

Trait Baseline rI Baseline g2

Body fat % 0.554 0.383

Lean % 0.529 0.359

Total weight 0.666 0.499

Fat mass 0.560 0.389

Lean mass 0.722 0.565

TG 0.622 0.452

Cholesterol 0.634 0.464

Glucose 0.259 0.149

Insulin 0.266 0.153

Glucose/Insulin 0.400 0.250

Albumin 0.515 0.347

ALT 0.407 0.255

AST 0.254 0.146

Creatinine 0.213 0.119

NE fatty acids 0.057 0.029

Urea/BUN 0.392 0.244

Betaine 0.621 0.450

Carnitine 0.398 0.249

Choline 0.329 0.197

Phosphocholine 0.419 0.265

TMAO 0.593 0.421

Metabolic health score 0.341 0.206

Heritability estimates were calculated for traits at baseline using all mice. For each

baseline trait, MSB and MSW values were derived from linear models with strain and

week as covariates. Estimations of broad sense heritability were calculated for each trait

represented by intraclass correlations (rI ), which may be interpreted as the proportion

of total phenotypic variation that is accounted for by differences between strains, and

coefficients of genetic determination (g2), which accounts for the additive genetic variance

that doubles during inbreeding. Since the CC is a recombinant inbred panel, g2 may be a

more appropriate estimate for broad sense heritability in this study. However, other studies

sometimes only provide one estimate of heritability or the other, so we present both values

to facilitate comparisons with other findings in the literature.

high sucrose diet (n = 102). After 8 weeks on the experimental
diets, we assessed whether phenotypic response to diet differed
by genetic background (CC strain) (see Methods and Figure 1).
MRI body composition analysis of the CC mice after 8 weeks
on the diet challenge revealed that diet influenced susceptibility
to adiposity in a strain-dependent manner (Figure 4A). Strain
CC028/GeniUnc was most susceptible to increased adiposity on
the high fat high sucrose (HS) diet (35.7 ± 2.0%) and strain
CC019/TauUnc was least susceptible (4.68 ± 0.5%) (Figure 4A,
Supplementary Figure 4). CC040/TauUnc was most susceptible
to increased adiposity on the high protein (HP) diet (29.7 ±

1.37%) and strain CC019/TauUnc was least susceptible (4.7
± 0.47%). The effect of diet was highly variable across the
selected strains from the CC. For example, CC028/GeniUnc and
CC004/TauUnc had a 12% increase in adiposity when fed the HS
diet compared to the HP diet (Supplementary Figure 4), while
CC019/TauUnc and CC063/Unc showed negligible differences in
adiposity when fed different diets (0.05 and 0.54%). Comparisons
of phenotypic differences between baseline and post-diet body
fat % (Supplementary Figure 5A) by strain and diet further

emphasize the strain-dependent response of body fat % to diet
in the CC.

Similar to adiposity, total weight, circulating analyte levels,
and metabolic health score all showed phenotypic variation and
different responses to diet depending on CC strain (Figure 4),
though to a lesser degree than adiposity. As shown in Figure 4G,
strain effects account for the inherent phenotypic variation
in metabolic health illustrated by metabolic health score,
as well as the varied responses to diet. Certain strains such
as CC059/TauUnc and CC008/GeniUnc showed very little
responses to diet in terms of their metabolic health score,
while other strains showed improved metabolic health on
either the HP compared to the HS diet (CC032/GeniUnc
and CC004/TauUnc) or HS compared to the HP diet
(CC012/GeniUnc and CC030/GeniUnc).

To ascertain whether there is a significant effect of CC
strain x experimental diet interaction on adiposity and related
traits, linear mixed models were fitted as appropriate for each
trait using CC strain, experimental diet, and CC strain ×

experimental diet as covariates, followed by application of
the Satterthwaite approximations for degrees of freedom for
evaluating significance (Supplementary Table 6). A significant
effect of CC strain × diet interactions was found for adiposity,
fat mass, lean mass percentage, metabolic health score, and
circulating TMAO and TG. The models for each phenotype
were significant with the range of significant p-values from
p = 7.37 × 10−5 for adiposity to p = 0.03 for metabolic
health score (F = 3.36 and F = 1.84). There was a significant
effect of strain on circulating cholesterol, glucose, and insulin
(Supplementary Table 6), but no significant effect of CC strain×
diet interactions which suggests that genotypic variation is largely
responsible for the phenotypic variation of these traits.

To determine the magnitude of the effect of diet behind gene
× environmental effects found for each trait in our linear mixed
models, we performed Spearman’s correlation analysis between
the F-statistic of the gene x diet interactions of our models and
Hedges’ effect size for both diets (|g|), which demonstrated that
the significance of gene x diet interactions were not significantly
affected by diet for either diet (HP p = 0.96, HS p = 0.74).
Furthermore, we categorized each trait as either largely affected
by diet (|g| > 0.8) or not (|g| < 0.8), and significantly affected by
gene × diet interactions (p < 0.05) or not (p > 0.05), followed
by Chi square analysis of whether the effect size of diet and the
gene x environment are significantly related. The results of the
Chi square analysis (p > 0.99) were consistent with the results
of the Spearman’s correlations performed between the F-statistic
of the gene x diet interactions models and Hedges’ effect size for
both diets (|g|) which suggest that the magnitude of the effect of
diet is not a significant “driver” of gene x diet interactions.

Magnitude of Quantified Diet Effects Varies
Depending on Diet Macronutrient
Composition for Body Composition and
Obesity-Related Traits
Because diet is an important environmental factor that affects
the manifestation of phenotypes, we next investigated the relative
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FIGURE 4 | Average post-diet body fat %, total weight, circulating metabolic health marker levels, and metabolic health score by strain and diet show greater

phenotypic variation by strain than diet. Phenotypic variation showed greater dependence on CC strain than experimental diet. Post-diet measurements of metabolic

(Continued)
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FIGURE 4 | phenotypes are shown by diet for (A) body fat %, (B) total weight, (C) triglycerides (TG), (D) total cholesterol, (E) glucose, (F) insulin, (G) metabolic health

score for each CC strain. CC strains in (A–F) are arranged in descending order based on HP diet. CC strains for (G) metabolic health score are ordered left to right

from least healthy to most healthy. Data are mean ± SE for (A–F); data are mean for (G). For body fat % and weight, there were 4–5 mice per strain per diet except for

CC024/GeniUnc (n = 2 per diet) and CC063/Unc (n = 3 per diet). For TG, cholesterol, glucose, insulin, and metabolic health score, 8–10 mice were available per

strain, except for CC024/GeniUni (n = 2 per diet), CC063/Unc (n = 3 per diet), and CC071/TauUnc (HP n = 5, HS n = 3). H-Protein and H-Sucrose represent the HP

and HS diets, respectively.

TABLE 2 | Heritability estimations and Hedges’ g diet effect sizes for post-diet traits.

Trait Post-diet

rI (full)

Post-diet

rI (partial)

HP rI HS rI Post-diet

g2 (full)

Post-diet

g2 (partial)

HP g2 HS g2 HP hedges’ g HS hedges’ g ICC of diet

Body fat % 0.626 0.613 0.679 0.710 0.456 0.442 0.514 0.551 0.510 0.754 0.085

Lean % 0.619 0.598 0.679 0.671 0.449 0.426 0.514 0.505 −0.557 −0.810 0.133

Total weight 0.670 0.631 0.672 0.681 0.503 0.461 0.506 0.517 0.834 1.136 0.229

Fat mass 0.677 0.659 0.694 0.669 0.512 0.491 0.531 0.502 0.662 0.940 0.121

Lean mass 0.729 0.709 0.744 0.704 0.573 0.549 0.592 0.543 0.714 0.969 0.143

TG 0.547 0.543 0.464 0.639 0.377 0.372 0.302 0.469 −0.618 −0.423 0.027

Cholesterol 0.587 0.502 0.504 0.704 0.416 0.335 0.337 0.544 −0.798 −0.124 0.416

Glucose 0.244 0.239 0.351 0.125 0.139 0.136 0.213 0.067 0.318 0.426 0.033

Insulin 0.291 0.324 0.447 0.204 0.170 0.193 0.287 0.113 −0.439 −0.393 0.006

Glucose/Insulin 0.303 0.304 0.433 0.202 0.178 0.179 0.276 0.112 0.640 0.688 −0.010

Albumin 0.361 0.361 0.271 0.495 0.220 0.220 0.157 0.329 −0.712 −0.619 −0.002

ALT 0.222 0.223 0.281 0.248 0.125 0.125 0.164 0.141 −0.268 −0.337 −0.005

AST 0.219 0.216 0.234 0.180 0.123 0.121 0.132 0.099 −0.210 −0.326 0.018

Creatinine 0.175 0.172 0.174 0.114 0.096 0.094 0.095 0.061 −0.497 −0.364 0.025

NE Fatty acids 0.137 0.135 0.043 0.198 0.073 0.072 0.022 0.110 −0.794 −0.967 0.016

Urea/BUN 0.535 0.348 0.490 0.533 0.366 0.210 0.324 0.364 0.546 −0.800 0.610

Betaine 0.470 0.390 0.530 0.427 0.307 0.242 0.361 0.272 −0.331 0.473 0.366

Carnitine 0.424 0.411 0.491 0.321 0.269 0.258 0.326 0.191 −0.035 0.263 0.081

Choline 0.258 0.256 0.123 0.319 0.148 0.147 0.066 0.190 −0.781 −0.841 0.016

Phosphocholine 0.270 0.264 0.215 0.190 0.156 0.152 0.120 0.105 −0.417 −0.258 0.045

TMAO 0.363 0.344 0.436 0.332 0.221 0.208 0.279 0.199 −0.674 −0.622 0.107

Metabolic health score 0.328 0.329 0.390 0.391 0.196 0.197 0.242 0.243 −0.041 0.026 −0.010

Post-diet heritability estimates were calculated from linear models including strain, diet, and week as covariates [Post-diet (Full)] and from linear models that only included strain and

week as covariates [Post-diet (Partial)]. Diet-specific estimations of broad sense heritability were calculated for each trait represented by intraclass correlations (rI ) and coefficients of

genetic determination (g2 ) for each trait using the MSB and MSW for strain derived from linear models with strain and week as covariates using only data from each experimental diet

per model as indicated to assess how different diet “environments” affect heritability. Hedges’ g diet effect size values for HP and HS diets as compared to the baseline diet on post-diet

traits were calculated to estimate the magnitude of effect size for each diet, with the sign indicating the direction of change between diets. Positive Hedges’ g indicates increased

phenotype values post-diet compared to baseline, e.g., body fat % was increased from baseline in mice after feeding them the HP diet. The intraclass correlation (ICC) for diet, which

is the proportion of the total phenotypic variation that is accounted for by differences between diet, was calculated to compare the proportion of phenotypic variation attributed to diet

in general or genetics.

effect size of diet on clinical traits associated with adiposity
and metabolic health. To accurately quantify the effect size of
diet on each phenotype, Hedges’ g was calculated for each trait
instead of Cohen’s d because strain groups were dissimilar in
sample size for various traits. The difference in n by strain may
result in unequal measures of variation between experimental
groups, which needs to be adjusted for so that the standard
deviation (SD) used to calculate effect size more closely reflects
the SD of the population. Hedges’ g uses pooled SD weighted
by sample size of each group in its calculation (see Methods),
which makes it a more appropriate measure of effect size when
experimental groups are dissimilar in sample size compared to
Cohen’s d (Ellis, 2009). As shown inTable 2, the HS diet had large
effects on circulating choline, urea and non-esterified fatty acids

(NEFAS), as well as most traits associated with body composition
(|g|> 0.8); medium effects on adiposity, glucose/insulin ratio,
TMAO, and albumin (0.8 > |g| > 0.5); and small to negligible
on all other phenotypes (|g| < 0.5). In contrast, the HP diet
only had large effects on total weight (|g|> 0.8); medium effects
on glucose/insulin ratio, circulating choline, TMAO, NEFAS,
albumin, urea, cholesterol, and TG, as well as all phenotypes
associated with body composition; and small to negligible on all
other phenotypes (|g| < 0.5).

Post-diet values for body fat %, clinical blood chemistries,
and circulating metabolites were established for each diet to
assess the degree of phenotypic variation due to differences in
macronutrient composition of diet (Figure 5). For both diets,
there was a wide range of phenotypic variation within each diet
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FIGURE 5 | Average post-diet body fat %, total weight, circulating metabolic health marker levels, and metabolic health score by diet. Post-diet measurements of

phenotypes are shown for (A) body fat %, (B) total weight, (C) triglycerides (TG), (D) total cholesterol, (E) glucose, (F) insulin, and (G) metabolic health score by diet

after 8 weeks of feeding the experimental diets as indicated. Points are measurements obtained for each mouse. Linear mixed model analysis revealed that

experimental diet alone did not have a significant effect in general on body fat %, TG, glucose, insulin, nor metabolic health score, but experimental diet did have

significant effects on total weight (p < 0.01) and cholesterol (p < 0.001). For body fat % and weight, there were 4–5 mice per strain per diet except for

CC024/GeniUnc (n = 2 per diet) and CC063/Unc (n = 3 per diet). For TG, cholesterol, glucose, insulin, and metabolic health score, 8–10 mice were available per

strain, except for CC024/GeniUni (n = 2 per diet), CC063/Unc (n = 3 per diet), and CC071/TauUnc (HP n = 5, HS n = 3). H-Protein and H-Sucrose represent the HP

and HS diets, respectively.

for body fat % (HP= 3.6–33.9%, HS= 3.17–41.7%), total weight
(HP = 14.1–35.5 g, HS = 14.1–39 g) and cholesterol (HP =

64.8–199.5 mg/dL, HS = 63–228.9 mg/dL). Means per diet for
body fat % (HP = 17.95 ± 0.77%, HS = 20.31 ± 0.97%), total
body weight (HP= 21.78± 0.42 g, HS= 24.02± 0.5 g), TG (HP
= 104.6 ± 4.28 mg/dL, HS = 113.65 ± 4.73 mg/dL), cholesterol
(HP = 115.1 ± 2.85 mg/dL, HS = 139.51 ± 3.3 mg/dL), glucose
(HP = 173.45 ± 5.73 mg/dL, HS = 184.63 ± 6.42 mg/dL), and
insulin (1.03 ± 0.05 ng/ml, HS = 1.17 ± 0.08 ng/ml) showed
slightly elevated values for each trait on the HS diet compared
to the HP diet (Supplementary Table 7), but the only significant
increases in phenotype were for total weight and cholesterol (p <

0.01, Student’s t-test), not body fat %, TG, glucose, insulin, nor
metabolic health score (Figure 5). Relative to mice fed the HP
diet, mice fed the HS diet showed a 10.6% increase in total weight
(Figure 5B) and a 21.2% increase in cholesterol (Figure 5D),
suggesting that macronutrient composition had a stronger effect
on these traits compared to body fat %, TG, glucose, insulin, and
metabolic health score.

To further assess whether diet had a significant effect on
adiposity and related phenotypes, linear mixed model analysis
was performed (Supplementary Table 8), which showed that

experimental diet had a significant effect on all phenotypes
related to body composition, except post-diet body fat % for
which diet showed a suggestive effect (F = 3.98, p = 0.057).
Although experimental diet alone did not have a significant effect
in general on body fat %, TG, glucose, insulin, nor metabolic
health score (Figure 5), experimental diet did have significant
effects on total weight (F= 20.0, p= 0.0002) and cholesterol (F=

43.8, p = 6.22 × 10−7). Furthermore, experimental diet also had
significant effects on circulating urea, betaine, TMAO, carnitine,
and phosphocholine (Supplementary Table 8), indicating that
diet macronutrient composition still plays an important role in
terms of metabolic health.

To confirm the degree to which genetic background mediates
weight gain, adiposity, and metabolic health in response to
diet, additional linear mixed model analyses with strain, diet,
and strain × diet interactions as all random effects were
performed for each trait to estimate the relative heritable
variation that can be attributed to genetics, environment (diet),
and gene × environmental effects. From the results of these
models, we calculated the variance for each of these terms
(Supplementary Table 9) and found that a large proportion of
relative phenotypic variation can be attributed to background
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FIGURE 6 | Dietary effects of heat expenditure, energy intake, RER, and activity in the Collaborative Cross. Similar to body composition, circulating analytes, and

metabolic health score, phenotypic variation of metabolic traits showed greater dependence on CC strain than experimental diet. Post-diet quantification of average

(Continued)
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FIGURE 6 | (A) heat expenditure adjusted for total body mass (kcal/h/kg), (B) heat expenditure adjusted for lean mass (kcal/h/kg), (C) RER, (D) energy intake (kcal/h),

and (E) total basal activity (beam breaks/h) for each CC strain on each diet shows range of variation across strains for metabolic traits. Strains are ordered in

descending order by HP diet. For metabolic traits, there were 4–5 mice per strain per diet except for CC024/GeniUnc (n = 2 per diet) and CC063/Unc (n = 3 per diet).

H-Protein and H-Sucrose represent the HP and HS diets, respectively.

strain for most traits, especially body fat %, total weight, and TG
(> ∼49.6%). In contrast, the proportion of relative phenotypic
variation that can be attributed to diet varied depending on the
trait, where cholesterol, betaine, and urea/BUN were the traits
that had the highest proportion of heritable variation attributed
to diet (> ∼21%).

Post-diet Estimates for Broad Sense
Heritability (H2) Reaffirm the Strong
Contribution of Strain Effects on Heritable
Phenotypic Variation and Identify Traits
With High Proportions of Heritable
Phenotypic Variation Attributed to Diet
The degree to which genetics, diet, and gene x diet interactions
influence phenotypic variation differs depending on the trait.
To quantify the relative heritable phenotypic variation which
can be attributed to genetics or diet for body fat % and
obesity-related traits, we calculated heritability using the mean
square between (MSB) strains and mean square within (MSW)
strains derived from two different linear models for post-diet
traits (a “full” additive model that includes strain, diet, and
week as variables and a “partial” model that excludes diet)
and the intraclass correlation (ICC) for diet using the mean
square between (MSB) diets and mean square within (MSW)
diets derived from the “full” model (Methods). Heritability
estimates were similar for most traits regardless of the model
used (“full” vs. “partial”) except for traits where the ICCs
for diet were relatively high, such as total weight, cholesterol,
urea/BUN, and betaine, demonstrating the robust contribution
of strain to heritable variation compared to diet (Table 2).
The relatively high diet ICCs for total weight, cholesterol,
urea/BUN, and betaine suggest that diet may be responsible
for a higher proportion of heritable variation for these traits
compared to other traits, which is consistent with the results
of our linear mixed models testing the significance of diet
that also show diet as significantly affecting these traits
(Supplementary Table 8). Traits with negative or close to zero
diet ICCs had higher within-diet variation than between-
diet variation. Interestingly, with the exception of insulin
and metabolic health score, most post-diet traits had higher
heritability estimates when the MSB term was used from
linear models that included diet compared to the models
excluding diet, suggesting that accounting for the effect of diet
improved heritability estimates since either the within-strain
variation was decreased and/or the between-strain variation
was increased.

Diet-specific heritability was also calculated using linear
models fitted only including mice fed HP or HS diet with
strain and week as covariates to compare changes in heritability
for each experimental diet due to “environmental” differences

(Tables 1, 2). One caveat of comparing baseline heritability and
diet-specific post-diet heritability is that diet-specific post-diet
heritability values were calculated using half the number of
mice as the baseline heritability values, which could affect the
within-strain variance component of the heritability calculations.
Nonetheless, assuming that the genotypic variance is the same
between diets and time points (baseline vs. post-diet), we
can still identify which traits may be more strongly affected
by differences in macronutrient composition. Indeed, after
calculating the heritability estimates for each of the traits post-
diet on the respective experimental diets, we found that the
different “environments” (diets) resulted in slight alterations
in heritability estimates depending on the trait. For example,
the difference in macronutrient composition appears to have a
bigger impact on traits such as cholesterol, insulin, and glucose
with larger variation in heritability (Table 2), and less important
to traits such as metabolic health score where heritability
estimates remain consistent (baseline g2 = 0.21, HP g2 = 0.24,
HS g2 = 0.24).

Comparison of Quantified Metabolic Traits
During Daytime and Nighttime Show
Decreased Rates of Metabolism, Energy
Intake, Utilization of Carbohydrates as a
Fuel Source, and Basal Activity During Rest
Obesity is characterized by the excess accumulation of body fat,
which results from chronic energy imbalance between energy
intake and expenditure. Given the diverse range of body fat
accumulation in response to diet across strains, we sought to
elucidate the differences in metabolism between strains on each
diet by using indirect calorimetry to measure the following
traits related to energy balance in mice after 8 weeks on the
experimental diets: (1) heat expenditure to estimate metabolism
levels, (2) respiratory exchange rate (RER) to estimate substrate
utilization (carbohydrate compared to fat as a source of energy),
(3) food intake to estimate energy consumption, and (4) basal
activity. Energy consumption was calculated by multiplying feed
consumption measurement (in grams) by the calorie (kcal)
content per gram feed for each diet. Similar to other phenotypes
reported above, linear mixed model analysis was performed for
each trait to test whether experimental diet, CC strain, and/or CC
strain x experimental diet interactions had significant effects on
metabolic traits.

Heat production, RER, energy intake, and basal
activity phenotypes varied widely by CC strain (Figure 6,
Supplementary Figures 6, 7, Supplementary Table 10), with
phenotype measurements higher at night than day which
reflected the active nocturnal behavior of mice. Wilcoxon
signed rank tests performed comparing the day and night
measurements for each trait confirmed the differences between
light and dark cycles for all strains on both diets (p < 2.2 ×
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10−16 for all traits). Overall heat production while accounting
for total weight (Heat1) was highest on average for both day
and night cycles in the leanest strain, CC019/TauUnc on the
HS diet (21.4 ± 0.64 and 27.6 ± 0.87 kcal/h/kg in the day and
night) (Figure 6A, Supplementary Figure 6A). During the
day, heat production was lowest in CC030/GeniUnc on the
HP diet (11.9 ± 2.86 kcal/h/kg) even though CC030/GeniUnc
was relatively lean compared to other strains on the same diet
(11.9 ± 1.2%, Figure 4A), while heat production was lowest
in CC008/GeniUnc during the night on the HS diet (15.4 ±

0.30 kcal/h/kg), which was one of the fatter strains compared
to other strains in the same diet (26.8 ± 1.3%, Figure 4A).
Overall heat production while accounting for only lean mass
(Heat2) (Figure 6B, Supplementary Figure 6B) was highest
on average for CC019/TauUnc on the HS diet during the day
(7.61 ± 0.23 kcal/h/kg) and CC004/TauUnc on the HP diet at
night (10.2 ± 0.56 kcal/h/kg) and lowest in CC030/GeniUnc
on the HP diet (4.35 ± 1.06 and 5.81 ± 0.94 kcal/h/kg in
the day and night, respectively). In summary, variation in
energy production was much larger between strains than diets,
with the differences in phenotype by diet depending on the
strain (Supplementary Figure 6). Linear mixed model analysis
showed that CC strain × experimental diet interactions had
significant effects on energy production during both day and
night, but the effect of CC strain was much stronger and may be
driving the effects of CC strain × experimental diet interactions
(Supplementary Table 6). In linear mixed models testing the
effect of experimental diet alone, diet had a significant effect on
Heat2 during the day (F = 5.3, p= 0.03) but not any of the other
heat production measured (Supplementary Table 8), suggesting
that diet may have a different effect on metabolism during the
day for lean mass compared to non-lean mass.

Similar to energy production, the wide range of variation
in substrate utilization (RER) depended on CC strain and
were all higher during the night compared to the day for
mice within the same strain on either diets (Figure 6C,
Supplementary Figure 7A). RER levels were lowest in
CC030/GeniUnc during the day and CC012/GeniUnc during
the night on the high protein diet (0.725 ± 0.007 and 0.76
± 0.01) even though the adiposity of CC012/GeniUnc was
twice the adiposity of CC030/GeniUnc (24.1 ± 1.8% and 11.9
± 1.2%, Figure 4A), while RER levels were highest in CC071
during the day and CC019/TauUnc during the night on the HS
diet (0.825 ± 0.019 and 0.943 ± 0.013) despite vastly different
levels of adiposity (13.9 ± 1.5% in CC071 and 4.7 ± 0.5% in
CC019/TauUnc, Figure 4A). Surprisingly, linear mixed model
analysis revealed that both CC strain and experimental diet
independently had significant effects on RER for both day
and night (Supplementary Tables 6, 8), but despite CC strain
having a stronger effect than diet, the effects of CC strain × diet
interactions were not significant.

Our indirect calorimetry assays were also able to calculate
the energy intake and activity of the mice over the 48-h test.
As expected, there were significant differences between night
and day cycles in both of these behaviors, as confirmed by the
results of Wilcoxon signed rank tests (p < 2.2 × 10−16). Energy
intake was lowest in the lean strain CC041/TauUnc on the HP

diet for both day and night (0.579 ± 0.110 kcal/h and 2.68
± 0.915 kcal/h) (Figure 6D, Supplementary Figure 7B). Food
intake was highest for strain CC024/GeniUnc during the day
(16.47 ± 3.661 kcal/h) and CC019/TauUnc during the night
(26.64 ± 7.301 kcal/h) on the HS diet. The energy consumption
was variable depending on the diet consumed. For example,
in terms of mice on the HS diet, energy intake was highest
in CC024/GeniUnc during the day (16.47 ± 3.66 kcal/h) and
CC019/TauUnc at night (26.64 ± 7.30 kcal/h), and lowest in
CC063/Unc during both day (2.32± 0.17 kcal/h) and night (4.59
± 0.44 kcal/h). Additionally, energy intake for CC063/Unc was
extremely variable on the HP diet during the day and night
(39.45 ± 18.00 kcal/h and 40.42 ± 17.34 kcal/h). Because of this
high variability, four types of linear mixed models were fitted
for both day and night energy intake: (1) model testing for the
effect of diet including CC063/Unc, (2) model testing for the
effect of diet excluding CC063/Unc, (3) model testing for the
effect of CC strain × diet including CC063/Unc, and (4) model
testing for the effect of CC strain x diet excluding CC063/Unc.
For energy intake both day and night, both experimental diet
and CC strain had significant effects on energy intake regardless
of whether CC063/Unc was included, but the CC strain ×

diet interaction did not significantly affect energy intake when
CC063/Unc was excluded (Supplementary Table 11). Although
we could not identify a specific error with the collection or
calculation of the data for CC063/Unc, results for energy intake
from CC063/Unc should be interpreted with caution.

Basal activity exhibited phenotypic variation depending
on and between CC strains, but barely any difference by
diet (Figure 6E, Supplementary Figure 7C). Diurnal basal
activity was lowest in CC030/GeniUnc on the HP diet and
CC041/TauUnc on the HS diet (988.8 ± 383.1 and 1,188.2 ±

260.6 beam breaks/h), and highest in CC004/TauUnc on the
HP diet and CC045/GeniUnc on the HS diet (4,328.1 ± 985.7
and 3,322.5 ± 988.8 beam breaks/h), while nocturnal basal
activity was lowest in CC012/GeniUnc on the both HP and HS
diets (2,304.4 ± 124.7 and 2,792.7 ± 337.7 beam breaks/h), and
highest in CC004/TauUnc on HP and CC045/GeniUnc on HS
diets (16,742.5± 1,919.9 and 11,081.9± 6,070.3 beam breaks/h).
Linear mixed model analysis confirmed that only CC strain had
a significant effect on both diurnal and nocturnal basal activity;
the effects of experimental diet and CC strain x experimental diet
interactions were not significant (Supplementary Tables 6, 8).

Complex Relationships Between Adiposity,
Energy Intake, and Energy Expenditure
Suggest an Important Role of Diet
Substrate Utilization in Maintaining Energy
Homeostasis
Our comprehensive phenotyping demonstrates the high
variability among metabolic traits. Using the phenotyping
data, Spearman’s correlations between body composition and
traits related to energy intake or expenditure were performed.
Although the individual phenotypes are variable between strains
there are several notable results, such as the negative correlations
between body fat percentage and all expenditure phenotypes
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FIGURE 7 | Post-diet Spearman’s correlations of indirect calorimetry phenotypes contrast the difference in relationship between body fat % and each metabolic trait

depending on time. Phenotypic correlations between body fat % and metabolic traits reveal stronger relationships between body fat % and energy expenditure than

body fat % and energy intake regardless of the time of day. (A) Spearman’s correlation of post-diet phenotypes assessed using indirect calorimetry with p-values

adjusted using the Benjamini–Hochberg method. Only significant correlations (Padj < 0.05) are shown. Scale indicates rho value. Spearman’s correlations by diet

between post-diet body fat % and nocturnal (B) heat production adjusted for total body weight (R < −0.49, p < 2.11 × 10−7), (C) energy intake (R < −0.269, p <

6.81 × 10−3), (D) RER (R < −0.471, p < 1.01 × 10−6), and (E) total basal activity (R < −0.0471, p > 0.419). R is Spearman’s rho. H-Protein and H-Sucrose

represent the HP and HS diets, respectively.

except for basal activity and diurnal fat intake (rho < −0.17,
padj < 0.02). Conversely, lean mass percentage was positively
correlated with all energy intake/expenditure phenotypes except
for basal activity, diurnal fat intake, and diurnal carbohydrate
intake (rho > 0.16, padj < 0.025, Figure 7). Total body weight
was significantly but negatively correlated with nocturnal protein
intake, night RER, and heat expenditure (rho < −0.17, padj
< 0.01), while all energy intake phenotypes were positively
correlated with RER, energy expenditure phenotypes, and basal
activity (rho > 0.19, padj < 0.008, Figure 7). Body fat percentage

and heat production (accounting for total weight) are negatively
correlated for both day and night (rho = −0.563 and rho =

−0.612), stronger than the negative correlations between body
fat percentage and energy intake (rho = −0.20 and rho =

−0.26). These data demonstrate that the decrease in food intake
as body fat percentage increases is not enough to maintain
energy balance.

Coupled with average adiposity measurements, indirect
calorimetry data demonstrated that energy expenditure varies
tremendously between inbred strains of similar weight,
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FIGURE 8 | Strain-specific effects of diet on body fat %, heat expenditure, energy intake, activity, and RER. Examination of body composition and metabolic traits of

two specific CC strains suggests different methods of maintaining energy balance for each strain. Post-diet quantification of average (A) total weight, (B) body fat %,

(C) energy intake (kcal/h), (D) heat expenditure adjusted for total body mass (kcal/h/kg), (E) RER, and (F) total basal activity (beam breaks/h) for strains

CC019/TauUnc and CC030/GeniUnc. Data are mean ± SE calculated using data from both diets for each strain.

specifically strains CC030/GeniUnc and CC019/TauUnc
(Figure 8). Although mice from these two strains were close
in terms of average total body weight (Figure 8A), the average

body fat percentage of CC030/GeniUnc was more than twice
the average body fat percent of CC019/TauUnc (Figure 8B).
CC019/TauUnc stayed consistently lean across diets, while
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CC030/GeniUnc’s highest average post-diet body fat percentage
paradoxically decreased with increasing dietary fat content
(Figure 4A). Comparing the two strains of mice on the
same diet, CC019/TauUnc mice consistently consumed more
calories than CC030/GeniUnc mice during both day and
night (Figure 8C) but also consistently produced more heat
than CC030/GeniUnc and importantly, produced enough
heat to achieve energy balance (Figure 8D). In addition to
CC019/TauUnc’s relatively high metabolism, the difference in
substrate utilization between the two strains could help to explain
their different responses to diet (Figure 8E); during the night, the
average RERs of CC019/TauUnc are 0.943 and 0.926 on the HS
and HP diets, and the average RERs of CC030/GeniUnc are 0.82
and 0.798 on the HS and HP diets, implying that CC019/TauUnc
mice are utilizing carbohydrates as their fuel source more than
CC030/GeniUnc mice, which could suggest that CC019/TauUnc
mice are more active than CC030/GeniUnc mice. Intriguingly,
substrate utilization during the light phase was quite different
between strains. The average RERs of CC019/TauUnc across
diets is 0.800 and the average RERs of CC030/GeniUnc are
0.746 and 0.725 on the HS and HP diets, which suggests that at
rest CC030/GeniUnc mice preferentially utilize fat as an energy
source more than carbohydrate as compared to CC019/TauUnc
mice (Figure 8F).

Small but Significant Alterations in
Metabolite Levels Are Associated With
Diet-Driven Adiposity, but Largely Not
Associated With Metabolic Phenotypes
Given the variation in diet-driven changes in adiposity, we next
investigated whether there were alterations in metabolic health
in corresponding fashion. We correlated body fat % after diet
feeding with other traits (Figure 9). Broadly, body fat % is
strongly correlated with total weight (Figure 9B; rho > 0.579, p
< 3.91 × 10−10), and moderately correlated with insulin levels,
total heat production, and total RER (Supplementary Table 12).
Remarkably, the significant correlations at baseline (Figure 3)
between body fat % and TG (rho = 0.24, padj = 1.35 × 10−3),
carnitine (rho = 0.17, padj = 0.036), and choline (rho = 0.19,
padj = 0.018) were no longer significant after the diet challenge
(Supplementary Table 12), indicating that themetabolic effect of
diet varies among clinical traits.

Spearman’s correlation analysis performed between metabolic
traits and other traits related to adiposity (Figure 9A) revealed
significant correlations between metabolic health score and heat
production accounting for total weight (Heat1) (rho = 0.37,
padj = 2.61 × 10−7), heat production accounting for lean mass
(Heat2) (rho = 0.32, padj = 9.12 × 10−6), feed intake (rho =

0.20, padj =0.009), energy intake (rho = 0.20, padj = 0.009), and
RER (rho = 0.36, padj = 7.08 × 10−7) but not basal activity
(padj = 0.76). These relationships are heavily driven by the body
fat % component of metabolic health score, as body fat % was
also significantly correlated with these traits but in the “opposite”
direction (Supplementary Table 12). Of all circulating analytes
and 1-carbon metabolites, RER was moderately correlated with
albumin (rho = −0.29, padj = 3.21 × 10−4), heat production
accounting for total body weight and lean mass showed a slight

negative correlation with albumin (rho = −0.19, padj = 0.01
for both heat production estimations), and feed intake was
positively correlated with betaine (rho = 0.21, padj = 0.02) and
carnitine (rho= 0.22, padj = 9.12× 10−3). Other than metabolic
traits, the only traits which total basal activity showed slight
correlations with were insulin (rho = 0.23, padj = 3.31 × 10−3)
and glucose/insulin ratio (rho=−0.19, padj = 0.02).

DISCUSSION

With the rapid rise in the global prevalence of obesity and
obesity-related diseases in the recent decades (Flegal, 2010;
Ogden et al., 2016, 2018), there is a crucial need to improve
our understanding of obesity. Individually, diet and genetics are
known to be critical factors in the development of obesity, but
our understanding of how diet and genetics interact to affect
obesity remain to be fully elucidated. Taken at the individual
gene level, this is a daunting task. There are hundreds of genes
associated with body weight and BMI reported in the GWAS
catalog and these can interact with each other and diet, increasing
the complexity of obesity (Bell et al., 2005; Rankinen et al., 2006;
Kunej et al., 2013; Singh et al., 2017). Thus, the complexity and
heterogeneity of obesity may affect dietary recommendations, as
illustrated by the lack of a universally “perfect” diet for weight
loss (Dansinger et al., 2005; Johnston et al., 2014). Increasing
our knowledge of how genetics and environmental factors
(particularly diet) interact, the degree to which these interactions
impact the development of obesity, and the mechanisms behind
these effects are crucial to developing successful methods for
mitigating obesity.

To investigate the degree that genetics, diet, and gene-by-
diet interactions impact phenotypic variation in obesity, obesity-
related traits, and metabolic traits, we performed our study on
multiple strains ofmice from the CC genetic reference population
to overcome the limitations of human studies, especially in terms
of controlling genetic background, diet, and other environmental
influences. The CC is well-suited for investigating genetic vs.
environmental impacts on phenotypic variation due to its high
genetic diversity and ability to generate genetic “replicates” which
enables increased accuracy in phenotypic measurements. Indeed,
the CC has already been used to provide a genetic framework
to depict the relationship between body weight and the central
nervous system (Mao et al., 2015), high fat diet and fasting
glucose levels (Atamni et al., 2016), and hepatic gene expression
in response to impaired glucose tolerance (Atamni et al., 2019).
The CC has also been used as a model to study exercise-induced
paradoxical fat response (McMullan et al., 2018). The current
manuscript adds to this literature by examining the dietary
responses of the CC.

While previous studies have examined subsets of obesity-
related traits in the CC and energy balance traits have been
examined in pre-CC lines (Mathes et al., 2011), we examined the
unique effect of diet in this population. In this study we sought
to elucidate the relationships between genetic background,
diet, adiposity, and obesity-related traits. Our comprehensive
phenotyping included: body composition, circulating analyte and
metabolite levels, and metabolism through indirect calorimetry,
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FIGURE 9 | Post-diet phenotype correlations demonstrate that most relationships between traits are maintained after the diet challenge. Relationships between body

fat % and weight, insulin, and metabolic health score are still strong after the diet challenge for both diets, while the association between body fat % and triglycerides

(TG) is no longer significant. (A) Spearman’s correlations of post-diet phenotypes with p-values adjusted using the Benjamini–Hochberg method. Only significant

correlations (padj < 0.05) are shown. Scale indicates rho value. Spearman’s correlations by diet between post-diet body fat % and (B) weight (R > 0.579, p < 3.91 ×

10−10), (C) insulin (R > 0.359, p < 2.91 × 10−4), and (D) TG (R < 0.101, p > 0.329) show significant correlations between body fat % and weight, as well as body fat

% and insulin, but not TG. R is Spearman’s rho. H-Protein and H-Sucrose represent the HP and HS diets, respectively.

followed by the integration of all these data in common analyses.
We found that in the absence of dietary perturbation, many of
the traits phenotyped in this manuscript are heritable in the
CC. Defined as the proportion of phenotypic variation due to
genetic variation for a specific population, we calculated broad

sense heritability for adiposity and other traits for mice on the
synthetic chow diet at baseline to estimate the strength of genetic
contribution. Traits related to body composition had moderately
high broad sense heritability (g2) at baseline ranging between
0.359 and 0.565, with the broad sense heritability estimate of
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total body weight at 0.499 which is higher than a previously
reported estimate in the CC at 0.37 (Atamni et al., 2016). Given
that H2 estimates can vary among studies, we also calculated
g2 for baseline body fat %, lean %, and total weight using four
publicly available body composition data sets (McMullan et al.,
2018). The range of g2 for these traits across the 4 data sets
were between 0.268 and 0.511, similar to the estimates in this
study. The average baseline g2 for lean % in the McMullan
study (g2 = 0.358) and the current study (g2 = 0.359) were
closer than the average g2 for weight in the McMullan study
(g2 = 0.357) and the current study (g2 = 0.499), but the
average g2 for body fat % in the McMullan study and the
current study was the same (g2 = 0.383), which is close to the
minimum heritability of 0.4 in humans as indicated by twin
studies (Bell et al., 2005). The heritability of most circulating
metabolites in the CC varied between 12 and 46%, similar to
the heritability of circulating small metabolites and amino acids
in humans, which has been reported to vary between 23 and
55% (Dharuri et al., 2014). Interestingly, broad sense heritability
for circulating insulin (0.153) was much lower than heritability
for adiposity (0.383), which implies that environmental factors
such as diet or lifestyle may have a stronger effect on attenuating
hyperinsulinemia than adiposity. Overall, these data suggest
similar overall metabolic health parameters to those observed in
humans, demonstrating that the high genetic, and phenotypic
diversity of the CC make this mouse panel a suitable model
for studying obesity, a trait with complex etiology. Furthermore,
we have identified which specific strains have predispositions
for increased adiposity accumulation, total weight, circulating
analyte levels, and metabolic phenotypes.

Like the CC, the relationship between weight and adiposity
is not always uniform within humans (Hashimoto et al.,
2016; Verheggen et al., 2016). While the CC mostly showed
a strong positive relationship between adiposity and weight,
several strains such as CC011/Unc, CC008/GeniUnc, and
CC059/TauUnc that weighed more than the majority of other
strains had only ∼15% body fat, compared to the fattest strains
with 20–23% body fat. Similar to the relationship between weight
and adiposity, the relationship between adiposity and overall
metabolic health can vary within humans (Yaghootkar et al.,
2014, 2016; Ding et al., 2016; Gonçalves et al., 2016; Iacobini et al.,
2019). At both baseline and post-diet, significant associations
between body fat % and individual markers of metabolic health
were only detected consistently for body fat % and insulin,
and body fat % and alanine transaminase (ALT). One possible
explanation for the lack of associations obtained is the nocturnal
eating pattern of mice, since the concentration of glucose and
insulin fluctuates with their circadian rhythms (Jensen et al.,
2013), though the number of hours that the mice were fasted
prior to the blood draw could also have minor effects on the
analytes measured.

By estimating the average metabolic health of each CC
strain via calculation of a metabolic health score, we identified
CC028/GeniUnc and CC040/TauUnc as two of the fattest
strains in our study that were healthier than the leaner strains
CC030/GeniUnc and CC041/TauUnc at baseline, whose body fat
% were half of CC028/GeniUnc and CC040/TauUnc, mirroring

the “sub-phenotypes” within obesity of metabolically “healthy”
or “unhealthy” individuals found in human studies (Peppa et al.,
2013; Dobson et al., 2015; Schulze, 2019). After the 8-week
diet challenge, CC028/GeniUnc and CC040/TauUnc remained
healthier than CC030/GeniUnc, while CC041/TauUnc was both
leaner and healthier than these three strains, reflecting the strain-
dependent effect of diet.

At baseline the body fat % measured in the CC mice
demonstrated that the predisposition to developing obesity
occurred in a strain-dependent manner; baseline body fat %
also highlighted the wide phenotypic variation across strains
and minor phenotypic variation within strains, which varied
by trait and strain. For most traits at baseline such as total
weight, TG, cholesterol, and glucose, the ranges of strain
coefficients of variation (CV%) were within ∼20%; for example,
the CV% of total weight for each strain was 4.91–23.2% where
CC030/GeniUnc exhibited the lowest within-strain phenotypic
variation (CV% = 4.91) and CC040/TauUnc exhibited the
highest within-strain phenotypic variation (CV% = 23.2%). The
range of strain CV% for baseline body fat % was slightly larger
(13.9–44.7%), demonstrating that certain traits may be more
sensitive to environmental differences such as being housed in
different cages which could lead to differences in microbiome
exposure, or minor genetic differences since completed CC
lines are at least 98% homozygous (UNC Systems Genetics
Core Facility, 2012) but not necessarily the same degree of
homozygosity across individuals.

By analyzing the post-diet metabolic traits measured in these
22 CC strains together, our data recapitulates some key findings
in humans by Sims (1976). As expected, metabolic rate estimated
as heat production had the strongest inverse relationship with
post-diet body fat %, which implies that body fat % increases
as metabolic rate decreases. Body fat % was not significantly
correlated with basal activity, showing that spontaneous physical
activity alone did not significantly alter the degree of adiposity
accumulation. Remarkably, energy intake decreased as body
fat % increased; when adjusted for total body weight, this
negative correlation increased in both strength and significance
regardless of diet (Supplementary Figure 8), suggesting that
the body attempts to adjust energy consumption and maintain
energy homeostasis when adiposity is in excess, as reflected by
changes in hormone levels that regulate energy consumption
such as increased leptin secretion from adipose tissue (Caro
et al., 1996; Friedman and Halaas, 1998) and lower levels of
the gut satiety-related peptide tyrosine-tyrosine (PYY) found in
obese individuals (Simpson et al., 2011). As body fat % increases,
the secretion of the satiety hormone leptin from adipocytes
also increases, which would lead to a decrease in appetite and
therefore a decrease in feed consumption. Because the HS diet
contains 290 g of sucrose for 1,042.8 g of HS diet and the HP
diet contains 113 g of sucrose for 1,000.1 g of HP diet, another
potential explanation for the negative correlation between energy
intake and body fat % is the glucostatic theory, which states
that glucose availability and utilization in specific regions of the
brain may affect the regulation of satiety perception and short-
term regulation of appetite (Mayer, 1953). Thus, for two mice
consuming the same grams of experimental diet, the mouse
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fed the HS diet would consume more sucrose than the mouse
fed the HP diet, resulting in a difference in the availability of
glucose for each mouse and possible differences in the utilization
of macronutrients depending on the strain (genetic effects).
For example, the night RER of CC002/Unc was 0.847 on the
HP diet and 0.921 on the HS diet, whereas the night RER of
CC008/GeniUnc was 0.821 on the HP diet and 0.824 on the HS
diet (Supplementary Table 10). Future studies using isocaloric
diets with more extreme differences only in fat content or only
sucrose content would help determine whether the stronger
negative correlation between energy intake after correcting for
total weight and body fat % of mice fed the HS diet is attributed
to increased fat or sucrose content.

As accumulation of adiposity increased, RER decreased which
implies increased utilization of fat as the substrate for energy
expenditure since fat is in excess. RER was strongly positively
correlated with heat production, illustrating that the increase in
metabolic rate shifts substrate utilization toward carbohydrates
and away from fat. If energy expenditure remains unchanged,
the metabolic flexibility of shifting from carbohydrate utilization
toward lipid utilization would compensate for the decrease
in energy consumption (Farias et al., 2011; Goodpaster and
Sparks, 2017). Along with the strong positive correlation
between heat production and energy intake, the relationships
between metabolic traits reaffirm the implication of energy
balance. The consistency between the current results and Sims’
results demonstrates the ability of the CC to reliably model
human genotypic and phenotypic variation when studying
complex traits.

After 8 weeks of feeding the CC mice either the HP or
HS diet, assessing body composition in the CC revealed
the strains’ different responses to diet in terms of weight
gain and other phenotypic changes in obesity-related traits.
Consistent with the findings of Barrington et al. (2017), the
strength of the effect of diet depended on the trait examined,
macronutrient composition, and subject strain (genetic
background). For example, certain CC strains did not respond
to differences in macronutrient composition, either remaining
persistently fat (CC040/TauUnc, CC063/Unc, CC001/Unc) or
lean (CC019/TauUnc) regardless of experimental diet, while
other strains clearly accumulated less body fat % on the HP diet
compared to the HS diet (CC028/GeniUnc, CC004/TauUnc,
CC006/TauUnc). Furthermore, experimental diet alone did not
have a significant effect in general on circulating glucose, insulin,
nor TG based on the results of the linear mixed model analysis,
but certain CC strains showed drastic differences in phenotypic
response to diet for these traits, such as CC036/Unc, CC002,
and CC004/TauUnc for TG; CC036/Unc and CC040/TauUnc for
glucose; and CC040/TauUnc, CC004/TauUnc, CC045/GeniUnc,
and CC032/GeniUnc for insulin. The different response to diet
by CC strain suggests that variation in genetic architecture
may contribute to differences in individual nutrient need and
substrate utilization, which should be taken into account when
developing weight loss strategies.

Similar to the findings in this study, a recent large-scale human
study performed by Berry et al. (2020) examining postprandial
metabolic response to food relative to precision nutrition

highlighted large inter-individual variability when subjects were
fed identical meals, and found that genetic background and
environmental factors, including person-specific factors (e.g.,
the microbiome) and meal macronutrients, had varying degrees
of influence on traits assessed. Mirroring the broad range of
phenotypic response to diet in the CC, human participants in
the DIETFITS Randomized Clinical Trial that were administered
either a low-fat or low-carbohydrate diet also exhibited a wide
range of response to diet in terms of weight loss over 12
months, regardless of their genotypes defined by three SNPs
(Gardner et al., 2018). Due to the complex etiology of obesity,
studies in humans endeavoring to prove direct relationships
between individual SNPs and obesity have succeeded in finding
associations between genetic loci and body weight (Deeb et al.,
1998; Scuteri et al., 2007; Speliotes et al., 2010; Claussnitzer
et al., 2015; Hägg et al., 2015), but translational application of
these associations will first require further investigation into the
biological function of novel obesity-associated genetic loci (Loos,
2018) and elucidation of the causes behind conflicting findings
where associations between genetic loci and phenotypes were not
detected (Sørensen et al., 2006; Drabsch et al., 2018; Gardner
et al., 2018; Merino et al., 2018). Nevertheless, the phenotypic
variation in adiposity by CC strain in this study clearly
illustrate the genetic predisposition for developing obesity,
concurrent with findings in humans (Stunkard et al., 1986;
Bouchard and Tremblay, 1997; Viitasalo et al., 2019). Therefore,
effective mitigation of obesity using personalized nutrition would
ideally incorporate information regarding an individual’s genetic
background, behavior, environmental influences, physiological
response to diet, and socioeconomic situation in addition to their
genotype in terms of recommendations for alterations in diet and
exercise levels (Drabsch and Holzapfel, 2019).

One caveat of our study design is that we cannot assess the
effect of aging nor whether there are strain specific age-related
phenotypes given the natural variation both between strains
and between individuals within strains. Similar to the current
study, a preprint of a pending manuscript utilizing B × D mice
indicates that certain age-related phenotypes such as longevity
and weight are under strong genetic regulation and are also
affected by diet and gene-by-environmental interactions (Roy
et al., 2019). Our diet challenge and age are confounded and
we cannot assess differences in genetic susceptibility that are
age dependent. Additional investigations using a modified study
design could effectively assess the effect of aging on metabolic
factors in CC mice.

Although basal activity levels were assessed, one limitation
of this study is the lack of “true” exercise activity (e.g., wheel
running), since increased weight loss in humans has been shown
to be associated with increased physical activity if calorie intake
is controlled (Zemel et al., 2009). Another caveat of this study
is the unavailability of metabolic phenotype data for the mice
at baseline (e.g., energy expenditure, feed intake, RER, basal
activity), which limits the conclusions that can bemade regarding
the effects of diet compared to feed intake on energy balance
when interpreting these data. Moreover, recent studies have
found that the gut microbiota also potentially play a significant
role in the development of obesity (Tilg and Kaser, 2011; Pace
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and Crowe, 2016; Lee et al., 2018). Further studies should
be performed with multiple genetically diverse populations to
determine which diets would be most effective for weight loss
by individuals according to their genetic background and to
examine the state of epigenetic markers and transcript expression
levels in specific tissues.
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