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A new symmetrical quasi-classical model for electronically non-adiabatic
processes: Application to the case of weak non-adiabatic coupling

Stephen J. Cottona) and William H. Millerb)

Department of Chemistry and Kenneth S. Pitzer Center for Theoretical Chemistry, University of California,
Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory,
Berkeley, California 94720, USA

(Received 28 July 2016; accepted 18 September 2016; published online 14 October 2016)

Previous work has shown how a symmetrical quasi-classical (SQC) windowing procedure can be
used to quantize the initial and final electronic degrees of freedom in the Meyer-Miller (MM)
classical vibronic (i.e, nuclear + electronic) Hamiltonian, and that the approach provides a very
good description of electronically non-adiabatic processes within a standard classical molecular
dynamics framework for a number of benchmark problems. This paper explores application of the
SQC/MM approach to the case of very weak non-adiabatic coupling between the electronic states,
showing (as anticipated) how the standard SQC/MM approach used to date fails in this limit, and
then devises a new SQC windowing scheme to deal with it. Application of this new SQC model to a
variety of realistic benchmark systems shows that the new model not only treats the weak coupling
case extremely well, but it is also seen to describe the “normal” regime (of electronic transition
probabilities & 0.1) even more accurately than the previous “standard” model. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4963914]

I. INTRODUCTION

In recent years we have been pursuing the question of
how well some very simple classical molecular dynamics
(MD)-based approaches can describe electronically non-
adiabatic processes in molecular systems.1–7 The practical
motivation for this is obvious: only classical MD simulations
can treat very large molecular systems with essentially
arbitrary interaction potentials, and electronically non-
adiabatic processes are ubiquitous in many important areas
of molecular science. The foundation of the approach is
to treat electronic and nuclear degrees of freedom (DOFs)
equivalently, so as to describe the dynamics of their interaction
consistently, albeit classically, and the first step in this regard
is to use the Meyer-Miller8 (MM) classical model for the
electronic DOFs, to go along with the standard classical
treatment of the nuclear DOFs. The resulting classical vibronic
(i.e., nuclear + electronic) Hamiltonian (which can be derived
in various ways, heuristic or more rigorous9) is actually an
exact Hamiltonian in the sense that if the classical nuclear
and electronic coordinates and momenta were all replaced
by quantum mechanical operators in the standard way, and
the resulting Hamiltonian operator used in the Schrödinger
equation, this would describe the quantum vibronic dynamics
exactly. The approximation is that we treat both nuclear
and electronic DOFs classically, i.e., by computing classical
trajectories in these nuclear and electronic variables.

The second aspect of the approach is how electronic
state information is extracted from such classical trajectories,
for example, to calculate transition probabilities from one

a)Electronic mail: StephenJCotton47@gmail.com
b)Author to whom correspondence should be addressed. Electronic mail:

MillerWH@berkeley.edu

electronic state to another. Semiclassical (SC) theory10,11

provides a general and well-defined prescription for how
to do this, but a rigorous implementation of SC approaches
leads to a much more involved calculation than a straight-
forward classical MD simulation. For this reason we have
focused on very simple quasi-classical (QC) models—which
originated12 in the 1960’s for treating state-to-state vibrational
transitions—to see how well they can work for the “electronic
harmonic oscillators” of the MM Hamiltonian, especially
when implemented with some of the useful “tweaks” that
have been added to the QC technique in the intervening years:
the “symmetrical” QC (SQC) idea suggested many years ago13

but not pursued, Stock’s suggestion14,15 of including less than
the full zero point energy (ZPE) in the electronic oscillators
of the MM model, and Bonnet and Rayez’s16 introduction of
window functions of reduced size.

The “standard” version of this SQC/MM approach that
we have focused on has been described in detail in our recent
papers (for example, Refs. 2 and 6) and is summarized briefly
in Sec. II. It has shown a remarkably good agreement with
accurate quantum benchmark calculations for a variety of
examples involving electronic transitions, from 1-D scattering
problems to a variety of models of complex molecular systems
(e.g., various spin-boson type models). It has been seen to
quantitatively describe both coherence effects in the dynamics,
as well as the quenching/“de-coherence” of such effects, all
coming out of a straightforward classical MD simulation with
no additional inputs nor ad hoc additions to the theory. Though
the classical dynamics resulting from the MM Hamiltonian
was noted from its origin to be “Ehrenfest dynamics”—i.e.,
the force on the nuclei at any time is the coherent average
of over all electronic states—we have explained how the
boundary conditions implicit in the SQC procedure eliminate
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FIG. 1. Square histogram windows, with γ = 0.366, for the electronic action
variables of two electronic states; black dots show the integer values of the
actions for the two states.

the Ehrenfest method’s well-known deficiency of emerging
from a region of electronic coupling in an intermediate
electronic configuration; relatedly, we have shown how the
boundary conditions further ensure that detailed balance
is described in a reasonable way4 (though not necessarily
exactly). Most recently, we have shown7 that in addition
to accurately describing the time-evolution of the electronic
state populations—i.e., the diagonal elements of the electronic
density matrix—off-diagonal elements of the density matrix
may also be extracted from a standard SQC/MM MD
simulation simply by defining additional window functions
corresponding to these off-diagonal elements.

However, the SQC model is such a simple and primitive
way for “quantizing” the electronic DOFs that it has been clear
to us from the beginning that it could not always perform as
well as we have observed. One situation where we have
anticipated it to fail is for the case of very weak coupling
between the electronic states. This is easy to understand
by referring to Fig. 1 which depicts the square histogram
window functions of the standard SQC approach for the case
of two electronic states (and thus two electronic oscillators
in the MM model). In the SQC model the initial electronic
action variables (n1,n2) begin in one of the histograms, and
the probability of being in the other state at time t is the
fraction of such trajectories that have their action variables
in the other histogram at that time. If the electronic coupling
were zero, the initial action variables would of course retain
their initial values for all times and the transition probability
would be zero for all times, which is correct. However, if

the coupling is very small but not zero, the true transition
probability will be very small (but not absolutely zero), yet for
no trajectories will the action variables have changed enough
to fall within the bounds of the other histogram, thus yielding
a zero transition probability. Our supposition, therefore, has
been that our “standard” SQC approach would fail in the case
of exponentially small transition probabilities. (This has been
a well-recognized problem with the QC approximation for
vibrationally inelastic transitions in earlier years.)

The purpose of this paper is to describe a new SQC
model—a variation on our original—which does in fact
describe exponentially small transition probabilities quite
well, and as a bonus it describes transitions in the “normal”
regime (i.e., probabilities & 0.1) even better than our previous
standard model. Section II begins with a brief overview of the
classical Meyer-Miller (MM) vibronic Hamiltonian and a short
description of how electronic states are determined within the
symmetrical quasi-classical (SQC) framework. Section III
then describes a model problem utilized in the original MM
paper (a universal 2-channel scattering problem) and treats
it via our “standard” SQC/MM approach to illustrate (and
quantify) the problem with very weak transitions. A solution to
the problem is then given in Section IV, which presents a new
windowing scheme seen to treat the weak coupling regime as
well as normal coupling regime exceptionally well. Section V
presents our results of applying this new SQC/MM approach
to more realistic problems, beginning with validation of the
new approach in the normal coupling regime by treating a set
of challenging spin-boson benchmarks for which the original
SQC/MM approach did very well. More realistic examples
in the weak coupling regime are then explored including a
version of Tully’s17 1-D single avoided crossing scattering
problem (Tully #1), but modified with exponentially reduced
values of the non-adiabatic coupling, and also a treatment of
a very weakly coupled 2-state site exciton model similar to
those treated in Ref. 6. Our conclusions are summarized in
Section VI.

II. THEORETICAL BACKGROUND

We have recently provided a thorough review of the
SQC/MM methodology in conjunction with our work6 treating
the light-harvesting Fenna-Mathews-Olson (FMO) complex,
so only the bare essentials are covered here. The two core
ingredients of the methodology are (i) the Meyer-Miller (MM)
classical vibronic Hamiltonian8 and (ii) a symmetrical quasi-
classical (SQC) windowing procedure1,2 for “quantizing” the
electronic DOFs embodied as harmonic oscillators in the MM
Hamiltonian.

A. The classical vibronic Hamiltonian

The MM Hamiltonian was originally given in terms of
action-angle (a-a) variables, a pair for each electronic state,

H(P,R,n,q) = |P|2
2µ
+


k

nk Hk,k(R) + 2

k<k′

√
nk + γ

√
nk′ + γ cos(qk − qk′) Hk,k′(R), (1)
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where the first term is the nuclear kinetic energy, and
{Hk,k′ (R)} is the diabatic electronic matrix (which depends
parametrically on the nuclear coordinates R); there is an
equivalent adiabatic version of the Hamiltonian. Calculations
(i.e., numerical integration of Hamilton’s equations), however,
are usually more conveniently carried out in the Cartesian
electronic variables which are related to the a-a variables (by
canonical transformation) as follows:

pk = −


2 (nk + γ) sin(qk), (2a)

xk =


2 (nk + γ) cos(qk), (2b)

or inversely,
nk =

1
2

p2
k +

1
2

x2
k − γ, (3a)

qk = −tan−1
(

pk
xk

)
, (3b)

and in which terms the MM Hamiltonian for say F electronic
states is

H(P,R,p,x) = |P|2
2µ
+

F
k

(
1
2

p2
k +

1
2

x2
k − γ

)
Hk,k(R)

+

F
k<k′

(pkpk′ + xkxk′) Hk,k′(R). (4)

The MM representation thus characterizes the F
electronic states as F (coupled) harmonic oscillators, the

excitation of which represents the occupation of that
electronic state, and electronic transitions emerge in this
picture as “vibrational” transitions between these “electronic
oscillators.” A classical simulation thus adds F vibrational-like
DOFs to the set of (perhaps very many) nuclear DOFs, and is
thus typically a very modest addition to a MD simulation with
only the nuclear DOFs—provided, of course, that one has
the potential energy surfaces (PESs) for the various electronic
states and their couplings, which may come from rigorous
“quantum chemistry” (possibly computed on-the-fly), less-
rigorous density functional theory (DFT), or from a semi-
empirical “molecular mechanics” force field as often used in
bio-molecular simulations.

The parameter γ in Eqs. (1) and (4) sets the zero point
energy (ZPE) of the electronic oscillators in the MM model.
Originally, MM took it to have the QM value of 1

2 , but
Stock observed14,15 that better results could be obtained in
a classical simulation by using a value less than 1

2 . In
the SQC/MM model, we have thus also taken γ to be an
empirical parameter, though (as described below) we have
essentially found the same value to be optimal in every
application.

There is also a symmetrized version of the MM
Hamiltonian which has proved convenient (and is used in all
calculations in this paper). In terms of the Cartesian electronic
variables, it is given by

H(P,R,p,x) = |P|2
2µ
+ H̄(R) +

F
k<k′




(
1
2

p2
k +

1
2

x2
k −

1
2

p2
k′ −

1
2

x2
k′

)
·

Hk,k(R) − Hk′,k′(R)
F

+ (pkpk′ + xkxk′) · Hk,k′(R)



, (5)

and is obtained2,6 from Eq. (4) by adding and subtracting
the average of the diagonal electronic matrix elements,
H̄(R) ≡ 1

F

F
k Hkk(R). Note that in this symmetrized version,

the ZPE γ-parameter of Eq. (4) does not appear, however it
still enters the calculation through the initial and final actions
using Eq. (3a). Eq. (5) also makes it apparent that the local
frequencies of the electronic oscillators (i.e., at a given R) are
the differences of the diabatic PES, which is essentially why
the vibrations of these electronic oscillators couple effectively
to the nuclear DOFs.

B. The symmetrical quasi-classical (SQC) model

To determine the population of individual electronic
states (initially and at later times) within a simple classical
framework, we have employed an updated version of the
quasi-classical (QC) model that was used many years ago for
determining state-to-state vibrational transitions from classical
trajectory simulations. The underlying idea here is that
quantum states correspond to integer values of the classical
action variables {nk} (i.e., Bohr-Sommerfeld or semiclassical
quantization), but rather than imposing this quantization
condition strictly it is replaced by requiring the action variables

to be within a “window” about the relevant integer values
of the actions. This is not only easier to implement than
requiring the actions to be exactly integer values, but also the
smoothing effect this brings about leads to classical results
that are in much better agreement with the correct quantum
results.18 (There are a variety of ways to derive this SQC
model, as reviewed in Ref. 6.) The symmetrical aspect of
the SQC procedure is that the quantization condition (the
“windowing”) be imposed equivalently on both the initial
and final actions of each computed trajectory. This builds in
microscopic reversibility (unlike the standard QC prescription)
and, as will be illustrated below, the symmetrical aspect is
critical for properly handling the limit of weak non-adiabatic
coupling.

In all previous work, we have applied the SQC
quantization procedure using histogram window functions,
e.g.,

wN(n) = 1
2γ

h (γ − |n − N |) , (6)

where

h(x) ≡



0 x < 0
1 x ≥ 0

,
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which is basically a box of width 2γ centered at the QM
value of the classical action, N = 1 or 0 (for occupied or
unoccupied, respectively). In the limit γ → 0, these window
functions become delta functions, δ(n − N), which is the
exact limit of Bohr-Sommerfeld quantization but which, as
noted above, is not what is desired. These window functions
may thus be thought of as “pre-limit” delta functions and
are thus the essential parameters of the SQC model. There
is, of course, no unique pre-limit delta function, and we
have to date applied Occam’s razor in choosing the simplest
model that makes sense, realizing that the window functions
for the different states should not overlap and that each
window should be centered on the quantum values of
the action variables for its corresponding state (e.g., as in
Fig. 1).

In addition, we have found that much better results
are obtained if the width parameter γ in Eq. (6) has the
same value as the zero point energy (ZPE) parameter γ
in Eq. (4) (see also Eqs. (2) and (3)), and that this single
γ-parameter be chosen to have the value (√3 − 1)/2 ≈ 0.366.
In practice, we have found this particular value of γ to
be optimal (or nearly so) for every application of the
SQC/MM methodology that we have reported, and this
choice also has some theoretical justification, as described
in the Appendix of Ref. 2. Nevertheless, we have always
been careful to point out that γ is essentially still just an
empirical parameter (QM’ly it should be 1/2), and that other
values of γ may work better in future applications or in
certain regimes yet to be explored (as will be demonstrated
below).

The histogram window function of Eq. (6) “quantizes” a
single electronic DOF (constraining a single action nk to lie
within an interval [N − γ,N + γ], N = 0 or 1). To window all
the actions associated with a full electronic configuration, one
may construct a joint window function by taking the product of
1-D window functions. E.g., for the case of F = 2 electronic
states, the complete configuration of actions for state 1 is
(n1,n2) = (1,0), and likewise, for state 2 it is (n1,n2) = (0,1);
therefore, joint window functions based on Eq. (6) may be
written as

W1(n1,n2) = 1
4γ2 · h(γ − |n1 − 1|) · h(γ − |n2|), (7a)

W2(n1,n2) = 1
4γ2 · h(γ − |n1|) · h(γ − |n2 − 1|). (7b)

Likewise, for an arbitrary F number of electronic states/DOFs,
a joint window function for the full configuration of actions
corresponding to a state k may be written as

Wk(n ≡ n1, . . . nk, . . . nF)

=
1

(2γ)F · h(γ − |nk − 1|) ·
F

k′,k

h(γ − |nk′|). (8)

Thus, in the SQC/MM approach, a non-adiabatic
transition probability between an initial electronic state i
and final state f is calculated by Monte Carlo evaluation of
the following phase space integral over the initial values of the
coordinates and momenta of all DOFs (nuclear + electronic),
which is carried out simultaneously for all energetically
feasible final states k,

P̃k← i(t) = 1
(2π)G+F


dP0 dR0 dn0 dq0 ρ(P0,R0) ·Wk(n(t)) ·Wi(n0). (9)

In evaluating Eq. (9), the window function for the initial state,
Wi(n), is used to sample the F initial actions; likewise, ρ(P,R)
is used as the sampling function for the G nuclear DOF. The
full set of action window functions {Wk(n)}, corresponding
to all possible final states, is used to “bin” the time-evolved
actions n(t) at each desired final time t over the ensemble
of trajectories. This gives a set of raw transition probabilities
{P̃k← i(t)}, one for each possible final state k, which are
renormalized via

Pf← i(t) = P̃f← i(t)
 F
k=1

P̃k← i(t) , (10)

to give the final SQC/MM result for the transition probability.
While the symmetrical windowing is done in terms of

the electronic actions, trajectories are usually run in Cartesian
oscillator variables using the symmetrized Cartesian version
of the MM Hamiltonian given in Eq. (5). Thus, after selecting
initial actions using Wi(n), the corresponding Cartesian
coordinates and momenta are calculated from Eq. (2), where

the qk’s—the classical “angle” variables conjugate to the
electronic actions—are chosen randomly from the interval
[0,2π]. At each final time t, Eq. (3a) is used to calculate the
set of final actions associated with each trajectory, n(t), which
are then “quantized” in Eq. (9) with {Wk}.

III. TREATMENT OF A UNIVERSAL 2-CHANNEL
SCATTERING MODEL PROBLEM

The primary goals of this paper are (i) to apply the
SQC/MM approach to the problem of very weak electronically
non-adiabatic coupling, (ii) to gauge the extent to which our
standard SQC/MM model fails in the weak-coupling regime
(as we have suspected it will), and (iii) to present a new
version of the SQC approach which expands the model to
treat this regime.

To begin, we apply our standard SQC model (to date) to
a universal 2-channel time-independent scattering model that
was considered and used as a benchmark in the original MM
paper.8
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A. The universal model

A general 2 × 2 unitary matrix can be written in terms of
three parameters, e.g., two angles and one scalar, as

S =



1 − peiα i

√
pei(α+β)/2

i
√

p ei (α+β)/2


1 − p ei β


, (11)

which we take to be the 2 × 2 S-matrix for a 2-channel
scattering process (i.e., two electronic states with a given time-
dependent trajectory for the nuclei), with the final electronic

amplitudes related to their initial values by

c(t = ∞) = S · c(t = 0). (12)

The parameter p in Eq. (11) thus sets the transition probability
between the two electronic states, i.e.,

�
S1,2

�2
= p. Writing the

initial and final electronic amplitudes in terms of classical
action-angle variables (as done by MM),

ck(t) =


nk(t) + γ e−i qk(t), (13)

gives the final electronic action variables in terms of the initial
action and angle variables as



n1

n2

 (t=∞)
=



(1 − p) · n1 + p · n2 − 2


p (1 − p)(n1 + γ)(n2 + γ) · sin
(
q1 − q2 +

β − α

2

)
p · n1 + (1 − p) · n2 + 2


p (1 − p)(n1 + γ)(n2 + γ) · sin

(
q1 − q2 +

β − α

2

)  (t=0)

. (14)

This expression may then be used to calculate the P2←1
transition probability within the SQC framework of Eq. (9),
though here there are no nuclear DOFs (P,R) to consider. The
phase space average is thus only over the initial actions and
angles of the electronic DOFs (n0 q0), with the initial actions
sampled using the state 1 window function of Eq. (7). The
final actions are “binned” in the usual way (using Eq. (7)), but
here are calculated directly from the initial actions and angles
using Eq. (14) (i.e., there are no trajectories to integrate in
order to determine the final variables as a function of their
initial values).

This 2-channel scattering problem is universal in the
sense that it encompasses all possible electronic transition
probabilities (as specified by the parameter p in Eq. (11)).
The limitation is that it assumes a given nuclear trajectory
R(t) (i.e., the “classical path approximation”) restricting its
scope to cases where the details of the nuclear dynamics do
not affect the overall electronic transition probabilities—e.g.,
for high collisional velocities. We are not concerned with
such details here, however, our focus being on using
this universal model problem as a tool for assessing the
performance of the SQC/MM methodology for all possible

transition probabilities simultaneously, and most importantly,
for analyzing the regime of exponentially weak non-adiabatic
coupling.

Note also that in Eq. (14) the S-matrix phase parameters
α and β enter the result only as an additive constant to the
initial angle variables q1 and q2. However, since q1 and q2
are each averaged uniformly over the interval [0,2π], α and
β do not affect the final results and can thus be ignored;
i.e., the only parameter of this universal 2-channel model
embodied in Eq. (11) is p which parametrizes the transition
probability.

B. Results using the standard SQC approach

Fig. 2 shows the results obtained by applying the
standard SQC windowing methodology to this universal
model problem. Specifically, plotted in Fig. 2 are the P2←1
transition probabilities calculated using different choices of
the γ-parameter over a range of possible values of S-matrix
parameter p. (Parameter p can, of course, vary from 0 to 1, but
by symmetry, P2←1 over p ∈ [0, 1

2 ] is equivalent to 1 − P2←1

over p ∈ [1, 1
2 ].)

FIG. 2. Universal problem treated with
the standard SQC approach (i.e., using
square histogram window functions as
in Fig. 1).
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The left and right panels of Fig. 2 show the same results,
but on the right the results are plotted using a log-log scale. The
exact result is that P2←1 = p, as indicated by the diagonal line
in both panels. It is seen that for no value of the γ-parameter
does the SQC methodology give good agreement with the
exact results over the full range of p. The main conclusions
from the left panel are (i) that small values of γ (< 1

4 ) perform
quite poorly (in addition to being less efficient due to the
more restrictive windowing) and (ii) that our preferred value
of γ = 0.366 (≈ (√3 − 1)/2) does in fact appear, on average,
to be about the optimal value.

The log-log scale of the right panel provides a detailed
view of the weak-coupling (i.e., small p) limit. As we
anticipated based on Fig. 1, if the SQC window functions
do not touch (i.e, γ < 1

2 ) the SQC methodology fails to
properly treat the weak-coupling limit. Fig. 2 illustrates that
even for values of p ≈ 0.1 (i.e., not too small), the SQC results
begin to show significant deviation from the exact results,
and by p ≈ 0.01 the SQC results have essentially fallen to
zero.

The exception is the result corresponding to γ = 1
2 .

Although the γ = 1
2 windows do a relatively poor job for

values of p > 0.1, as seen in the left panel of Fig. 2, it is quite
surprising to see how well they perform for values of p < 0.1,
as seen in the right hand panel, even down to p ≈ 10−5. The
reason for this is that the γ = 1

2 windows touch at a point
in the electronic action space thereby effectively probing the
perturbative limit of the non-adiabatic process. The notion
that the windows must touch to describe this limit properly
also underscores another advantage of the SQC approach
versus the traditional QC method: in the latter, because
trajectories are always initialized with integer action, they
can never be perturbatively close to another (weakly coupled)
state.

The challenge is to find a SQC windowing scheme which
provides the best of both worlds—i.e., performs as well as
using γ = 0.366 in the “normal” coupling limit, but as well as
using γ = 1

2 in the weak coupling limit.

IV. A NEW SQC SCHEME EMPLOYING
TRIANGLE-SHAPED WINDOW FUNCTIONS

A. Model development

We have indeed discovered a simple alternative SQC
windowing scheme which properly treats the limit of
exponentially weak coupling, and as a bonus, it performs even
better than our standard methodology in the “normal” coupling
regime while being no more complicated to implement.

The solution is to use triangular-shaped window functions
as shown in Fig. 3. This may at first seem strange, but the
logic leading to this development is straightforward. (Also,
keep in mind that these window functions are actually pre-limit
delta functions about the integer action values which define
the quantum states, and there is no unique pre-limit delta
function; this is the modelistic aspect of the SQC approach.)
From the analysis in Section III of the data in Fig. 2, it is clear
that a set of improved SQC window functions should satisfy
several criteria:

FIG. 3. Triangle (blue) and square histogram (red) window functions (with
dots indicating quantum centers).

(i) The window functions corresponding to the different
states must touch at a point (the key feature of the γ = 1

2
square histograms).

(ii) A value of γ in the neighborhood of 0.366 should be
retained, as experience has repeatedly shown that this
value is approximately optimal (aside from the weak-
coupling limit).

(iii) The lower/outer edge of each window function should be
matched/tied to the ZPE, i.e., be defined by n > −γ (this
is the remedy for the problem of ZPE leakage).

(iv) The centroid of the window functions should be the
integer action values which define the quantum states,
i.e., (1,0) and (0,1) (because the SQC approach is to
be viewed as an approximation to semiclassical Bohr-
Sommerfeld quantization).

It is criteria (iii), and what is missing from it, which gives
the important clue: there does not appear to be any reason
why the upper limits of n1 and n2 imposed by each window
need to be tied to the ZPE/γ-parameter. Hence, a logical
tactic is to take the original two square histogram windows
(of γ ≈ 0.366) and to extend their inner edges towards each
other until they touch (specifically, by relaxing the upper
limit of n2 along the inner n1 = 1 − γ edge of the state 1
window, and by relaxing the upper limit of n1 along the inner
n2 = 1 − γ edge of the state 2 window such that both edges
extend to and touch at the point (1 − γ,1 − γ)), thus satisfying
criteria (i).

Following this logic further, the corresponding outer
limits of each window must be adjusted so that the windows
are balanced, and then—in an attempt to preserve the value
of γ we know to be effective (criteria (ii))—the upper portion
of the window functions is cutoff with a diagonal line which
extends through the point (1 − γ,1 − γ) where the windows
touch.
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Equations for these triangle window functions (analogous
to Eq. (7) for square histograms) are thus given (with
normalization) by

W1(n1,n2) = 2 · h(n1 + γ − 1) · h(n2 + γ)
× h(2 − 2γ − n1 − n2), (15a)

W2(n1,n2) = 2 · h(n1 + γ) · h(n2 + γ − 1)
× h(2 − 2γ − n1 − n2), (15b)

where, again,

h(x) ≡



0 x < 0
1 x ≥ 0

.

Note that the h(2 − 2γ − n1 − n2) factor in each of Eqs. (15a)
and (15b) serves as an upper bound to the actions
and makes the triangular windows non-separable in the
electronic DOFs. However, one notes that separability is
not a requirement for a multi-dimensional pre-limit delta
function, and so Eqs. (15a) and (15b) may still be
viewed as approximately implementing Bohr-Sommerfeld
quantization.

The diagonal line, n1 + n2 = 2 − 2γ, used in Eq. (15)
is a polyad of constant total n, and because the sum of
the n’s (n1 + n2) is conserved by the MM Hamiltonian, all
trajectories which start on this line move along this line,
and trajectories which start away from it nevertheless move
parallel to it. In other words, one could say that the triangular
shapes of these window functions “fit” the dynamics of
the electronic action space better than the square histogram
windows.

A more subtle point, and potentially a practical
consideration from the standpoint of numerical convergence,
is that the extension of the outer edges of these windows
(in conjunction with the elimination of trajectories having
the highest range of total n) actually patches a gap which
was present in the scheme provided by the square histogram
windows. Specifically, the ensemble of trajectories—each of
which moves diagonally in the action space on a polyad of
constant total n—in the most extreme case, has its turning
points (in the action space) at the lines given by n1 = −γ
and n2 = −γ, which are exactly the outer edges of these
triangle windows. As a consequence, these new windows
provide a more complete solution to the problem of ZPE
leakage than the square-histogram windows by virtue of
their triangular shape. It is also pleasing to note (although
perhaps of little consequence) that the triangle windows,
in a symmetrical fashion, exactly divide the dynamically
accessible electronic action space into three regions: the
regions of the two states and a triangular-shaped intermediate
region.

The remaining considerations are criteria (ii): the
selection of a value for the γ-parameter close to 0.366;
and, relatedly, the satisfaction of criteria (iv): that the
centroids of the window functions be the integer action
values which define the Bohr-Sommerfeld quantum states.
Fig. 3 shows a set of triangle (and square histogram) window
functions having γ = 1

3 (which is reasonably close to 0.366).
It turns out that this is the unique value of γ for which
the triangle windows simultaneously satisfy both criteria

(i), that the windows touch at a point, and criteria (iv),
that the windows are properly centered at the quantum
values.

To see this, note that triangle windows for states 1 and
2, as defined in Eq. (15), always touch at the single point
(1 − γ,1 − γ). Thus, rather than altering the width of these
windows, varying γ instead has the effect of translating both
windows in concert along a 45◦ line (n2 = n1) extending from
the origin. For example, Fig. 4 shows the triangle windows (as
defined by Eq. (15)) for extreme values of the γ-parameter,
γ = 0 and γ = 1

2 . For γ = 0, the windows are just above the
n1 + n2 = 1 polyad (line of constant total n) which passes
through the quantum values. The γ = 1

2 windows border this
same polyad from below. For the intermediate value of γ = 1

3 ,
the windows are correctly positioned, centered on the quantum
values of the actions, as shown in Fig. 3, and this is simply
because the centroid of an isosceles right triangle, short sides
of unit length, is exactly 1

3 . Thus, unlike the square histogram
scheme where γ was viewed as an empirical parameter
whose optimal value was arrived at through numerical
“experimentation” (and separately justified on independent

FIG. 4. Un-centered triangle window functions (dots indicating quantum
values).
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theoretical grounds2), for these triangle windows, the “right”
value of γ (i.e., 1

3 ) is uniquely determined from the geometric
considerations required to satisfy the four criteria listed above.

B. Application of the SQC triangle windowing scheme
to the universal 2-channel scattering problem

The triangle window functions have been designed to
address the weak-coupling limit (by touching at a point),
and to otherwise attempt to preserve the excellent results
we have observed in the “normal” coupling regime (inter
alia, by approximately retaining our preferred value for the
γ-parameter). Fig. 5 shows the results of applying the SQC
triangle windowing scheme to the universal model problem
described in Section III, along with the prior results taken
from Fig. 2 for square histogram windows of γ = 0.366
and of γ = 1

2 . The log-log scale plot of Fig. 5 (right panel)
confirms that the triangle scheme does in fact do an excellent
job of reproducing the exact results in the limit of very weak
coupling, all the way down to transition probabilities of 10−5.
This is not too surprising: the triangle window scheme was
constructed to address this limit, and it is of course true that
the γ = 1

2 square histogram windows (which also touch at a
point) do an excellent job in this regime as well.

What is truly surprising about this new windowing
scheme, however, are the results one obtains with it over
the full range of “normal” coupling strengths. As shown
in Fig. 5 (left panel), the γ = 1

2 square histogram windows
generally do a relatively poor job for anything other than the
weak coupling regime, significantly worse than the γ = 0.366
square histogram results (also shown), which are generally
quite good, representing a sort of “best fit” compromise
(although the γ = 0.366 square histograms are not perfect
either). The triangles, on the other hand, are seen in Fig. 5
(left panel) to reproduce the exact result essentially perfectly
over the full range of possible coupling strengths (and this is
without any alteration relative to the weak-coupling case, γ
already being 1

3 ).
In summary, Fig. 5 shows that the triangle windows

elegantly handle the limit of exponentially weak coupling (as
they were designed to do) but as a bonus also essentially
exactly reproduce the correct P2←1 transition probabilities
over all possible coupling strengths—i.e., for any 2-channel S-

matrix within this simple universal model (where the dynamics
of the nuclear DOFs do not enter).

V. APPLICATIONS

While the universal model treated in Secs. III and IV has
served its purpose as a useful discovery tool, the important
question is how well the new SQC triangle window scheme
performs in more realistic applications where the dynamics of
the nuclear DOFs are intertwined with the electronic dynam-
ics, and where the previous SQC square histogram model (with
γ = 0.366) has been seen to provide reliable performance.

A. Validation against previously studied benchmark
spin-boson problems

We begin by validating the new SQC triangle windowing
model against a set of benchmark spin-boson problems that
we have treated in recent papers2,5 using our standard SQC
approach with square histogram windows.

The spin-boson problem models an electronically non-
adiabatic process in a condensed phase medium which
acts to dissipate/absorb electronic energy and modulate the
decoherence in the electronic DOFs. The model consists of
a pair of diabatic potential energy surfaces (PESs) which
are spatially offset multi-dimensional harmonic oscillators in
the nuclear DOFs, energetically biased by 2ϵ , and coupled
together by a non-adiabatic coupling constant ∆ (which is
independent of nuclear coordinates),

H11(Q) =
G
k=1

1
2
ω2

kQ2
k +

G
k=1

ckQk + ϵ,

H22(Q) =
G
k=1

1
2
ω2

kQ2
k −

G
k=1

ckQk − ϵ,

H12(Q) = H21(Q) = ∆.

(16)

The SB problem comes in symmetric (ϵ = 0) and asymmetric
versions (ϵ , 0), the latter generally being considered far more
challenging for simple (and inexpensive) methodologies to
describe accurately. The most difficult aspect of the problem,
of course, is accurately describing the time-dependence of the
quantum coherence effects in the electronic DOFs (including
the decoherence of such effects). The electronic coherences

FIG. 5. Universal problem treated us-
ing SQC triangle window functions of
Fig. 3.



144108-9 S. J. Cotton and W. H. Miller J. Chem. Phys. 145, 144108 (2016)

are most pronounced when the temperature T (= 1
kBβ

) is
low (relative to the coupling ∆), as determined by selecting
an appropriate thermal distribution for the initial oscillator
coordinates {Qk} and momenta {Pk},

ρ(P,Q) ∝
G
k=1

e
−ak ·



1
2 P

2
k
+ 1

2ω
2
k
*
,
Qk+

ck

w2
k

+
-

2
,

(17)

where ak =
2
ωk

tanh
(
β ωk

2

)
.

The frequencies {ωk} and coupling constants {ck} are
chosen according to some spectral density (SD) function,

J(ω) = π

2

G
k=1

c2
k

wk
δ(ω − ωk), (18)

which characterizes the distribution and coupling strengths
of local vibrational modes in a specific condensed phase
environment; the coupling constants in Eq. (16) are thus given
in terms of the SD by

ck =


2
π
∆ω ωk J(ωk). (19)

For simplicity, the SD is often taken to have a continuous
functional form which cuts off at high-frequency, and for
the benchmark problems considered here, the common
exponentially damped Ohmic form is used given by

J(ω) = π

2
αωe−ω/ωc, (20)

where ωc is the SD’s characteristic frequency and α is the
bath coupling (or friction) parameter.

The same four cases are considered here as in Refs. 2 and
4—symmetric and asymmetric versions of the SB problem
at high and low temperatures. Results using standard square
histograms and the triangle windows are shown in Fig. 6, with

the parameters given in the figure caption for the four cases.
Specifically, the results correspond to the time-dependent
population difference between electronic states 1 and 2,

P1←1(t) − P2←1(t),
after the system is initialized in electronic state 1 with the
appropriate thermal distribution for the nuclear DOFs (as
given in Eq. (17)). SQC results are plotted against the exact
QM benchmark results from Ref. 19 for the symmetric SB
problems and from Ref. 20 for the asymmetric versions. All
the SQC calculations employed G = 100 bath modes (see
Eqs. (16) and (9)), so of a dimensionality on the order of what
would be relevant to an electronic transition in the condensed
phase.

These are not weak-coupling problems, and the prior
results obtained using square histogram window functions
were impressive to begin with. Fig. 6 basically serves to
confirm that the new triangle scheme is able to maintain the
good results previously seen with the SQC/MM approach.

There is one small point of improvement: at very
short time in Fig. 6(a) there is a discernible delay in the
initial population decay when calculated with the γ = 0.366
histogram window functions. This is again because these
windows do not touch (and therefore a certain amount of
time must pass before any trajectories have crossed the gap
between the windows). In contrast, the results in Fig. 6(a)
calculated using the SQC triangle windows show a smooth
quadratic decay right from time zero. While it is only a small
effect, it does remedy a slight qualitative discrepancy seen in
our earlier results, and for some problems, this may turn out
to be more pronounced.

Finally, with respect to classical trajectory simulations of
QM processes, a great deal of interest is often expressed in the
number of trajectories required to obtain converged results, as

FIG. 6. Symmetric (ϵ = 0) and asym-
metric (ϵ = 1) spin-boson benchmark
problems at high and low tempera-
ture treated with SQC triangle and
square histogram windows versus ex-
act QM results;19,20 parameters corre-
sponding to Eqs. (16), (17), and (20):
case(a) α = 0.09, β∆= 0.1,ωc = 2.5∆;
case (b) α = 0.09, β∆= 5, ωc = 2.5∆;
case (c) α = 0.1, β∆= 5, ωc = 2.5∆;
case (d) α = 0.1, β∆= 0.25, ωc =∆.
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well as how few trajectories may be used to obtain reasonable
results (even if not perfect). Therefore, provided in Fig. 15
of the Appendix are results analogous to those shown in Fig.
6 but with only 1000 (1K) trajectories (versus a trajectory
number on the order of 104 used to obtain the essentially fully
converged definite results shown in Fig. 6). The 1K results
are not perfect, but they are indeed still reasonable and would
likely be quite acceptable for modeling a “real” molecular
system; and though these results have been presented in raw
form in Fig. 15 (to show the level of statistical noise), one
could always apply a simple smoothing procedure to improve
their aesthetics if that is desired.

B. New spin-boson benchmark problems

Additional SB results for cases we had not previously
considered are shown in Fig. 7. The SQC results are
benchmarked against exact QM results from Ref. 21 (as
calculated using a combination of the quantum-classical
path integral (QCPI), full path sum, and full “blip”22 sum
methodologies, as detailed therein). These two SB examples
are different from the prior examples in Fig. 6 in that the
coupling to the bath is much stronger: α = 2 for the symmetric
problem and α = 4 for the asymmetric version (ϵ = 5) (the
other parameters as indicated in the figure caption).

The case presented in Fig. 7(b) is strongly asymmetric
(with ϵ = 5), exhibiting monotonic decay down to the final
state 1 population of ≈ 25%. It also has the stronger bath
coupling (of α = 4). But the decay curve is simple, and
both SQC methodologies (triangles and square histograms)
reproduce the exact QM results quantitatively.

The symmetric case presented in Fig. 7(a) seems to
be the more challenging of the two, the QM decay curve
having a bit more structure to it, and the shorter time scale
illustrating the quadratic decay from time zero. Here, there is
once again apparent a slight qualitative discrepancy exhibited
in the square histogram results at short time (as discussed
above with respect to Fig. 6(a)). On the other hand, the SQC
triangle results perfectly capture the initial quadratic decay,
and also track the QM result with discernible improvement in
the region of t ≈ 1 AU.

The reasonable conclusion to take away from these SB
results—in combination with those from Sec. V A—is that the

good performance of the triangle windowing scheme is not
limited to the weak-coupling regime. Rather, the new scheme
seems to do at least as well as the original square histogram
methodology for realistic problems having higher coupling
strengths, and in some cases, even slightly better. This is, of
course, what one expects based on the analysis of the universal
model in Sections III and IV.

C. Application to 1-D scattering (Tully problem #1)
in the weak coupling limit

With the new scheme suitably validated against previous
benchmark problems (and some new ones), the next task is to
apply the triangle windowing to more realistic weakly coupled
problems where we know treatment with the square histogram
windows must fail. A simple example having a single nuclear
DOF interacting with two coupled electronic states is the
well-known Tully #1 problem17 which we previously treated2

with good results. Here, we revisit Tully 1, and use it to
examine the limit of very weak coupling by modifying the
non-adiabatic coupling relative to the standard version by
many orders of magnitude.

Briefly, Tully 1 is a simple 1-D model of the avoided
crossing of two potential energy surfaces (PES) which is
given by

H11(R) =



A · (1 − e−R) R ≥ 0
−A · (1 − eR) R < 0,

H22(R) = −H11(R),
H12(R) = H21(R) = C · e−D ·R2

,

(21)

where, in the original version, A = 0.01, B = 1.6, C = 0.005,
and D = 1 (all expressed in atomic units). Here we consider
various exponentially reduced values of the C-parameter down
to 10−5 thereby modifying the off-diagonal non-adiabatic
coupling elements, H12(R) and H21(R), of the diabatic
Hamiltonian matrix given in Eq. (21).

In its original form, Tully 1 is a very strongly coupled
problem, and so we begin again by validating the new SQC
triangle windowing scheme against prior square histogram
results and a relevant QM benchmark calculation. Originally,
we compared our standard SQC square histogram windowing
methodology against QM benchmark results from time-

FIG. 7. New spin-boson benchmark
problems with stronger bath coupling
parameter α: SQC triangle and square
histogram windows versus exact QM
results;21 parameters corresponding to
Eqs. (16), (17), and (20) for the sym-
metric (ϵ = 0) case (a) α = 2, β∆= 1,
ωc =∆; for the asymmetric (ϵ = 5) case
(b) α = 4, β∆= 0.1, ωc = 2∆.



144108-11 S. J. Cotton and W. H. Miller J. Chem. Phys. 145, 144108 (2016)

FIG. 8. Energy-domain benchmark QM scattering calculation for Tully #1
with non-adiabatic coupling parameter C = 0.005 before and after Gaussian-
smoothing over nuclear momentum (∆P = 1 AU).

domain wave-packet scattering calculations (as was done in
Tully’s original paper17 for testing the fewest switches surface-
hopping algorithm). Here, because the aim is to consider
very weak transition probabilities, rigorous time-independent
energy-domain scattering calculations were performed and
then energy-averaged with Gaussian-weighting (with ∆P = 1)
to produce results analogous to the original Gaussian
wavepacket calculations. An example calculation is shown
in Fig. 8 which corresponds to the original version of the
Tully 1 problem (i.e., with parameter C = 0.005). The time-
independent energy-domain scattering calculations in Fig. 8
exhibit pronounced “Feshbach resonances” which correspond
to a weakly bound state on the upper adiabatic surface. These
resonances, however, are smoothed away by the Gaussian
averaging, as also shown in Fig. 8, which gives us a benchmark
result very similar (if not indistinguishable) to what one
obtains from an analogous wavepacket calculation with a
similar spread in momenta.

Fig. 9 shows SQC/MM results using both the triangle
and square histogram windowing schemes versus the exact
(Gaussian-weighted) QM benchmark result taken from Fig. 8.
The SQC square histogram result is a recomputed version

FIG. 9. SQC/MM versus QM wave-packet scattering results, C = 0.005.

of what we have reported previously2 and it agrees very
well with the QM result. Results shown as computed with
the triangle windowing scheme are also quite good, with
some slight differences. The triangle windowing does seem to
over-smooth the threshold region to a slightly greater extent
than the square histogram windows do (probably because the
latter are somewhat more localized in the action space as
shown in Fig. 3). Above threshold, however, while the square
histogram results are good, the triangle scheme gives results
which are in even better agreement with the QM transmission
probabilities, over the entire momentum range from 9 to
29 AU. (Note that, for consistency, the same Gaussian-
weighted averaging has been applied to the SQC/MM results,
though it has little effect as the SQC/MM model already
has some intrinsic energy averaging due to the dispersion in
electronic energy from the windowing.)

Our real interest here, though, is the weak coupling
regime. Fig. 10 shows a calculation analogous to Fig. 9 (same
Gaussian-weighted averaging, etc.) but with the coupling
constant C in Eq. (21) reduced by a factor of 50 to 10−4, and
the resulting T2←1 transmission probabilities reduced by more
than two orders of magnitude. Unsurprisingly, the standard
histogram scheme captures almost none of the non-adiabatic
transition probability, while the triangle scheme, though not
perfect, does capture a good portion of the non-adiabatic
transition probability throughout the main portion of the
sharply peaked region (momenta ≈ 7 AU) and slightly beyond
(≈ 8 AU) where there is significant structure in the raw QM
results; they also describe the threshold region (i.e., 4–7 AU)
quite well. More impressive are results generated with the tri-
angle methodology in the region of higher collisional momenta
(from 9–29 AU) where the agreement with the QM calcula-
tions (throughout this range) is essentially exact. (In this
region, as seen in Fig. 8, there are no QM resonance-related
phenomena in the nuclear DOFs likely complicating matters.)

Finally, similar to what was done with the universal
model, a broad range of non-adiabatic coupling strengths
was investigated by varying parameter C (Eq. (21))
—from its original value of 0.005 down to 10−5—while
fixing as constant the collisional momentum (P = 15 AU,
i.e., a value in the middle of Figs. 9 and 10 was chosen).

FIG. 10. SQC/MM versus QM wave-packet scattering results, C = 10−4.
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Fig. 11 shows the SQC-calculated T2←1 transmission
probabilities plotted in log-log scale versus the exact QM
results and what is seen is reminiscent of what was seen
with the universal model in Fig. 5: the original/standard SQC
square histogram scheme begins to show some deviation from
the exact results for non-adiabatic transition probabilities
around 0.1, significant deviation around 0.01, and below that,
the original methodology is unable to capture any of the
non-adiabatic effects. Once again, however, the new triangle
scheme is seen to capture23 these effects, seemingly with near
perfect quantitative accuracy.

D. A weakly coupled site-exciton model

In recent work,6 we used our standard (square histogram)
SQC/MM model to treat a suite of 2-state site-exciton (SE)

models (as a preamble to treating a far more complicated 7-
state SE model of the light-harvesting Fenna-Mathews-Olson
(FMO) complex). Here, to give an example of weak electronic
coupling in the condensed phase, we revisit one of these 2-site
models, but reduce the electronic coupling from ∆ = 100 cm−1

to 10 cm−1, and then to 1 cm−1 (i.e., to 10% and then to 1% of
its original value).

The SE Hamiltonian24 is very similar to the SB
Hamiltonian given above in Eq. (16), the primary differences
being that, in the SE model, there are different sites each
of which may be electronically excited, and that each site is
coupled to its own independent harmonic bath. Considering
the set of electronic states where only one site is electronically
excited at a time (the notion being that the electronic excitation
hops from site to site), the diabatic Hamiltonian matrix is given
by

H(Q) =


ϵ1 + V (1)
bath(Q − D) + V (2)

bath(Q) ∆

∆ ϵ2 + V (1)
bath(Q) + V (2)

bath(Q − D)

, (22)

where {ϵk} are the site energies, ∆ is the non-adiabatic
coupling constant, and

V (k)
bath(Q) =

G
ξ∈ site k

modes

1
2
ω2

ξQ2
ξ. (23)

In the standard SE model, the bath vibrational modes {ωξ}
are characterized by a Debye spectral density (SD),

J(ω) = 2λ
ωωc

ω2 + ω2
c

, (24)

ωc being the characteristic frequency and λ the “reorganiza-
tion energy,”25 which is used (like Eq. (20) above) to select
the bath frequencies and coupling strengths. Specifically, the

FIG. 11. Above barrier (P = 15 (AU)) results: SQC/MM versus energy-
domain QM scattering results.

coupling constants D ≡ {Dξ} in Eq. (22) are given by

Dξ =


2
π

∆ω

ω3
ξ

J(ωξ), (25)

which is almost the same as Eq. (19) above for the SB
problem, the difference being one of form and consistency
with Eq. (22). See Refs. 6 and 24 for further details. As in
Ref. 6, calculations here employed G = 200 bath modes per
site (see Eq. (23)) and thus 400 nuclear DOFs.

In Ref. 6 we treated 8 separate parameter regimes for
this problem. Here, to consider weak-coupling, we treat as
an example the case which exhibited the strongest electronic
coherence (because drastically reducing the coupling strength
will reduce the coherence).

Fig. 12 shows the results corresponding to the original
problem with non-adiabatic coupling ∆ = 100 cm−1, and for
exponentially reduced values of the coupling, ∆ = 10 cm−1

and ∆ = 1 cm−1 (with the other parameters as given in the
figure caption). To show treatment of the weak-coupling limit,
the figure plots the population transfer to the ground state
P2←1 on a log-scale. SQC/MM results using the original
square histogram and triangle SQC windowing schemes are
shown versus results calculated via Ishizaki and Fleming’s
hierarchical equations of motion (HEOM) methodology,
which is considered essentially exact for this site-exciton
problem.

The results in Fig. 12 indicate that what we have learned
from the universal model in Section III (and specifically, Fig.
5) likely holds for non-trivial electronically non-adiabatic
processes involving hundreds of nuclear DOFs. For the
original version of the problem (∆ = 100 cm−1)—which
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FIG. 12. SQC/MM treatment
of a weakly coupled version
(∆ ∈ {100 cm−1,10 cm−1,1 cm−1})
of Ishizaki and Fleming’s 2-state
site-exciton model at T = 300 K,
having site energies ϵ1−ϵ2= 100 cm−1,
reorganization energy λ = 2 cm−1,
and bath characteristic frequency
ωc = 53.08 cm−1 (corresponding to
a bath time constant of τ = 1/ωc

= 100 femtoseconds). See Fig. 4 of
Ref. 24 and Fig. 1 of Ref. 6.

is in the “normal” coupling regime (i.e., transition proba-
bilities & 0.1)—both the triangle and square histograms show
almost perfect agreement with the benchmark HEOM results
(the triangle scheme perhaps doing a slightly better job of
gauging the magnitude of the first recurrence in the transition
probability).

However, when the non-adiabatic coupling is reduced
to 10% of its original value (∆ = 10 cm−1), the HEOM
benchmark shows that the true P2←1 transition probabilities
never reach 0.1. In this regime, the square histogram
result begins to show significant deviation from the exact
answer—just the same behavior as seen in Fig. 5—while the
SQC triangle calculation is still able to reproduce the true
dynamics.

Moreover, the conclusion generalizes to the weaker
coupling strength of ∆ = 1 cm−1 (i.e., 1% of its original
value): in this very weak-coupling regime, the true (HEOM-
calculated) P2←1 transition probability never exceeds 10−3,
and here, as expected, the square histogram result is exactly
zero (and so on this log-scale plot does not even appear).
In contrast, the SQC triangle scheme is still able to retain
its original accuracy—again, precisely what was seen in
Fig. 5 for the universal model system (and also with Tully 1
in Fig. 11).

Therefore, the qualitative behavior exhibited by the
universal (classical path) model treated in Section III is seen
to hold for the more realistic benchmark systems treated
in this section, and the new SQC triangle window scheme
is demonstrated capable of describing these more complex
systems quite well in both the normal coupling regime and
the weak-coupling limit.

E. The full electronic density matrix

We recently showed7 how the SQC approach may
be viewed as an approximate implementation of a new
Wigner model where the Wigner functions are calculated
directly (using the Wigner transform) in action-angle variables

(instead of being calculated in Cartesian variables and
then converted to action-angle variables, as is traditionally
done), and that the practical consequence of this view
is that it provides an extremely simple prescription for
calculating the full electronic density matrix (i.e., the off-
diagonal electronic coherences as well as the electronic
populations (diagonals)) within the standard SQC framework,
and to do so at essentially no additional computational
expense.

As a concrete example, Ref. 7 demonstrated one way this
may be done using square histogram window functions and
treated the same SE model above (in Fig. 12) with Ishizaki
and Fleming’s original electronic coupling of ∆ = 100 cm−1

(i.e., not weak coupling). Here, we provide an analogous

FIG. 13. SQC windowing functions for the diagonal and off-diagonal ele-
ments of the density matrix applied to a system of 2 electronic states.
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demonstration (of calculating the full density matrix) for the
same SE model except using the new triangle windowing
scheme. Fig. 13 depicts a natural extension of the triangle
scheme to the calculation of the full density matrix, where
the red triangle window centered at (n1,n2) = ( 1

2 ,
1
2 ) is used to

collect the electronic phase information encoded in the angle
variables {qi} as trajectories pass through it. (The trajectory
calculation necessarily includes propagation of the angles
variables anyway—but at time t they are simply discarded if
one is only interested in the populations.)

The results of such a calculation to estimate the full
2 × 2 electronic density matrix for the SE model of Eq. (22)
are shown in Fig. 14 plotted against exact HEOM results

FIG. 14. SQC/MM computed density matrix {ρi j(t)} versus HEOM re-
sults for the 2-state site-exciton model (difference in site energies ϵ1−ϵ2
= 100 cm−1, non-adiabatic coupling ∆= 100 cm−1, bath characteristic fre-
quencyωc = 53.08 cm−1, reorganization energy λ = 20 cm−1, andT = 300 K;
see Fig. 4 of Ref. 24).

(as in Ref. 7). One can see that the off-diagonal electronic
coherences (right panel) agree quite well with the exact
results, though not perfectly. (The diagonal elements (left
panel) are the same populations plotted in Fig. 12 (but not
on a log scale).) We emphasize that this is a preliminary
calculation based on what seems a natural extension of
the triangle windowing scheme following the principles of
Ref. 7, however, whether further optimizations are feasible
will be a topic of future work covering a wider range of
examples.

VI. SUMMARY AND CONCLUSION

The primary accomplishment of this paper is the new
SQC triangle windowing scheme described in Section IV.
It was motivated by the goal of being able to treat very
weak non-adiabatic transitions, and the critical aspect of
being able to do so was revealed by considering the universal
2-channel scattering system (with a given nuclear path) in
Section III. Section IV A discusses the intuitive insights that
led to the final result. As a bonus, the new triangle windows
are seen to describe not only the weak coupling regime of
exponentially small transition probabilities extremely well, but
also the “normal” regime (of moderate to strong non-adiabatic
coupling) even better than our previous “standard” model
(square histogram windows with the parameter γ = 0.366).
At present we thus consider it to be our new “standard”
version of the SQC/MM approach (at least for the case of 2
electronic states, as applications involving higher electronic
dimensionality (more states) will be considered in later
work).

For none of the benchmark systems treated herein
(nor any that we have yet encountered) have we seen
this new windowing scheme fail to work reasonably well
(and often it is seen to work spectacularly well). Although
we feel there is elegance in the simplicity of this new
windowing geometry, there will surely be cases where it
will fail to provide good results. The spirit of this work
is to push forward the limits of what one can accomplish
(in the treatment of non-adiabatic processes) within the
framework of a straightforward classical MD approach, but in
a theoretically sound and intuitive way, and as universally as
possible.

The formal origin of the window functions in these SQC
approaches is as “pre-limit” delta functions that impose an
approximate version of Bohr-Sommerfeld (i.e., semiclassical)
quantization (i.e., quantum states defined by integer values
of the classical action variables). Though it has been realized
for a long time that pre-limit delta functions introduce a
smoothing effect that often makes a classical approximation
work better than the actual delta functions themselves (and
it certainly makes the calculations much simpler), there is
nevertheless no unique pre-limit delta function, and this is
where the modelistic aspect of the approach enters. One
thus looks for models that are as simple and well-defined as
possible, with as few empirical parameters as possible, and
which cover as wide a range of systems as possible. We feel
that this work represents significant progress along these lines,
but it undoubtedly is not the end.
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FIG. 15. Spin-boson problems of Fig. 6
(symmetric and asymmetric, high and
low temperature) treated with only 1 K
trajectories: i.e., 20 trajectories/nuclear-
DOF (with G = 50).
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APPENDIX: SAMPLE 1K TRAJECTORY
SPIN-BOSON CALCULATIONS

The purpose of this work is to present the new SQC
triangle windowing scheme and to provide an assessment
of its performance, particularly in the limit of very weak
electronic coupling. Therefore, the focus has been on definitive
comparisons to benchmark results and no attempt has been
made (in general) to minimize the number of trajectories used
in the calculations presented here. Nevertheless (as mentioned
in Section V), there is often interest in what can be obtained
with relatively few trajectories for a given methodology.

Thus, presented in Fig. 15 are results for the same four
versions of the spin-boson (SB) problem presented in Fig. 6,
but here running only 1000 (1K) trajectories, and one sees
that quite reasonable results are obtained, although obviously
not perfect. They show more statistical noise, but do track
the true results with relatively small deviations at any fixed
point in time (despite their oscillations); this would likely be
adequate if the formulation of the model for a given molecular
system is not that detailed and/or accurate to begin with. It
is certainly sufficient for gauging the general character of the
results and if, based on the noise, one desires additional
confirmation, more trajectories can be added at a later
time.

An additional detail regarding Fig. 15 versus Fig. 6 is that
G = 50 (instead of 100) oscillators were used to discretize
the harmonic bath of Eq. (23). This is clearly a sufficient
number (based on Fig. 15), but it was observed that better 1K
results were obtained using the more coarsely discretized bath,
underscoring that it is the number of nuclear DOFs (each of
which is thermalized) that dictates the number of trajectories
required for reasonable convergence. Even with the smaller
G = 50 discretization, the calculation in Fig. 15 still utilizes
only 20 trajectories per nuclear DOF.
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