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Intractability has been a thorny issue in cognitive science.
Informally, intractability refers to the problem that compu-
tations that work for small toy domains cannot scale to do-
mains of real-world complexity due to prohibitive resource
consumption. It is not uncommon for cognitive scientists to
try to discredit theories in competing frameworks by point-
ing out that those frameworks run into intractability issues.
For instance, both connectionists and Bayesians have argued
against symbolic and logic approaches, respectively, because
the latter two would yield intractable theories of cognition
(Haselager, 1997; Oaksford & Chater, 1998). Yet, it is now
well known that also connectionist and Bayesian theories
can be intractable (Frank, Haselager, & van Rooij, 2009;
Kwisthout, Wareham, & van Rooij, 2011). Moreover, even
heuristic and dynamical systems theories, both often lauded
for being tractable, seem unable to live up to that image when
forced to scale beyond toy domains (van Rooij, Wright, &
Wareham, 2012; van Rooij, 2012). Evidently, intractability is
not a problem for specific theories, or even for specific theo-
retical frameworks. Instead, it seems a ubiquitous feature of
theoretical frameworks with high degrees of generality.

In this talk, I put forth the argument that cognitive science
may have been too quick in seeing intractability as “just bad
news” and that the field has been losing out on the opportu-
nity to turn what seems to be a curse into a blessing. The up-
shot of my argument will be that the ubiquity of intractability
can better be seen as a useful theoretical guide to the bound-
aries of cognition’s domain-generality. Using formal notions
from computational complexity theory, I will explain how in-
tractability helps demarcate those boundaries.

Computational-level theories
Theories of cognition can be formulated at different levels of
explanation. For instance, following Marr’s (1982) widely
used tripartite distinction, a theory can be formulated at the
computational level (‘what is the computational problem (or
function) being computed?’), the algorithmic level (‘what
algorithm is used for the computation’), or the implemen-
tational level (‘how is the algorithm physically realised?’).
Here, I will focus on computational-level theories.

Formally, a computational level theory can be conceived
of as a mathematical function, T : IT → OT , mapping inputs
i ∈ IT to outputs T (i) ∈ OT . Defining a computational-level
theory T of some cognitive capacity φ involves defining both
the input domain IT and output domain OT and the nature
of the mapping, T : IT → OT , between them. We will say

that T is an accurate characterisation of a cognitive capacity
φ : Iφ→Oφ if and only the following three conditions are met:

1. T (i) = φ(i), for every i ∈ Iφ

2. T (i) = φ(i), for every i ∈ IT

3. IT = Iφ

It may happen that condition (1) is met, without conditions
(2) and (3) being met. This can happen, for instance, when
IT ⊃ Iφ. In that case, we say that T is an overgeneralisation of
φ. Note that an overgeneralization describes φ accurately for
inputs confined to Iφ⊂ IT , but that IT includes inputs in its do-
main that are outside the scope of the capacity φ. Conversely,
it can also happen that condition (2) is met, without condi-
tions (1) and (3) being met. This can happen, for instance,
when IT ⊂ Iφ. In that case, we say that T is an undergener-
alisation of φ. Note that an undergeneralization describes φ

accurately for inputs confined to IT ⊂ Iφ, but that IT fails to
include inputs in its domain that are within the scope of the
capacity φ. In cases where neither condition (1) or (2) is met,
we consider T to be a mischaracterisation of φ.1

Coming up with accurate characterisations of cognitive ca-
pacities is no easy task, given the sheer size of the space of
possible distractors: For any given capacity φ there exist in
principle infinitely many possible mischaracterisations, many
of which may even seem plausible in light of existing empir-
ical observations. This underdetermination problem has long
been known and has motivated theorists to propose theoreti-
cal constraints on candidates for T , such as rationality (An-
derson, 1990), or tractability (van Rooij, 2008), or a combina-
tion of the two (van Rooij, Wright, Kwisthout, & Wareham,
2014).

Intractability and NP-hardness
Although there are many notions of intractability of relevance
for cognitive science, here we consider specifically the notion
of NP-hardness (Arora & Barak, 2009). If a computational-
level function T : IT → OT is NP-hard, then all algorithms
computing T require super-polynomial time for some (in-
finitely many) inputs in the domain IT .2 To illustrate why
super-polynomial time algorithms are considered intractable,
let us take an exponential-time algorithm (taking on the or-
der of 2n time) as an example. Even if we were to assume
that the algorithm could perform 1000 computation steps per

1Arguably, mischaracterisations come in different kinds and de-
grees, but for purposes of the argument I put forth here we need
not concern ourselves with such details, as nothing in the argument
hinges on them.

2This is assuming P 6= NP, a conjecture generally believed by
computer scientists and uncontested by cognitive scientists.
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second—say, in parallel—the algorithm would run for 12
days on an input size of n = 30, and 35 millennia for an input
size of n = 50. It is because of such prohibitive resource de-
mands that super-polynomial time algorithms are generally
considered unfeasible for anything but small inputs. Given
that many cognitive capacities operate on inputs of inter-
mediate to large sizes (e.g., vision, categorisation, language
learning, belief fixation), super-polynomial time algorithms
are generally computationally implausible. Hence, the same
holds for NP-hard computational-level theories.

Inter-theory reductions and domain generality
As alluded to above, many computational-level theories in
cognitive science are NP-hard. This intractability is not spe-
cific to any particular type of model, nor is it specific to
a particular cognitive capacity, as intractability is observed
for models of perception, language, reasoning, categorisa-
tion, decision making, and motor planning (Kwisthout, et al.,
2011; van Rooij & Wareham, 2012). This ubiquity of NP-
hardness can be understood as a natural consequence of at-
tempting to scale one’s computational-level models to general
domains, without regards for tractability. To explain why this
is so, we will consider computational-level theories in terms
of their inter-theory subsumption and reduction relations (see
Figure 1).

Figure 1: Illustration of hypothetical space of possible theories (cir-
cles) for a given capacity φ. See text for details.

Let us say that a computational-level theory T : IT → OT
subsumes another T ′ : I′T →O′T whenever T (i) = T ′(i) for all
i∈ IT and IT ′ ⊂ IT . In such case, we also say T ′ reduces to T .3

It is known that tractability is inherited along the direction of
the subsumption relation, and intractability is inherited along
the direction of the reduction relation. Put differently, if a
theory T is tractable, then so are all theories that it subsumes;
and if a theory T is intractable then so are all theories that it
reduces to.

In Figure 1 subsumption relations between theories (cir-
cles) are denoted by solid arrows, with the reduction relation

3The inverse of subsumption is a special case of the more general
notion of polynomial-time reduction (Arora & Barak, 2009). With
the latter, it can also be shown that theories in different frameworks
are of comparable (in)tractability (dotted lines, Fig. 1).

running in the opposite direction. Other (less direct) forms
of inter-theory reductions are depicted by dotted arrows (see
footnote 3). For the sake of argument, let the green thick cir-
cle denote an accurate computational-level characterisation T
of φ. Note that T subsumes undergeneralisations of φ that be-
long to toy domains as well as reduces to overgeneralisations
of φ that are intractable. Many accurate computational-level
theories of relevance for cognitive science may similarly lie
somewhere on a path crossing the boundary between tractable
and intractable domains. This is to be expected, given that
cognitive capacities require quite expressive formalisms for
their accurate characterisation and expressive functions are
typically intractable for unrestricted domains.

In this perspective, hitting upon an intractable character-
isation T ′ does not mean that one has mischaracterised the
cognitive capacity φ. It could simply mean that T ′ is an over-
generalisation. By exploring computational-level theories
that are subsumed by T ′ one may identify several tractable,
but still quite domain-general, candidates for an accurate
computational-level characterisation. Such a strategy would
also help map out the border between tractable and intractable
computational-level theories for cognitive capacities, which
can provide cognitive science with a useful view on what
are the scope and limits of domain generality for resource-
bounded cognition, be it human or artificial.
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