
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Simple Structures in Deep Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Rakib Hyder

September 2022

Dissertation Committee:

Dr. M. Salman Asif, Chairperson
Dr. Amit K. Roy-Chowdhury
Dr. Samet Oymak

Copyright by
Rakib Hyder

2022

The Dissertation of Rakib Hyder is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, without whose help, I would not have been here. He has

been patient with me all these years and taught me the fundamental of research. My

research thinking has been greatly influenced by him. I would also like to thank Dr. Amit K

Roy-Chowdhury and Dr. Samet Oymak for their generous help as being committee members

for my dissertation evaluation and defense. I would like to express my gratitude to Dr.

Hassan Mansour for the wonderful opportunity to work as an intern at MERL. I would also

like to thank Dr. Chenguang Liu for providing me the opportunity to work as an intern

in Samsung research laboratories. Finally, I would like to thank all of my collaborators,

colleagues and teachers who enriched me with their inspiring ideas and helped me learn new

things along the way.

iv

To my parents for all the love and support.

v

ABSTRACT OF THE DISSERTATION

Simple Structures in Deep Networks

by

Rakib Hyder

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2022

Dr. M. Salman Asif, Chairperson

Deep networks have received considerable attention in recent years due to their

applications in different problems of science and engineering. This dissertation explores

the application of deep networks in continual learning and inverse problems. In this work,

we enforce some simple structures on the networks to achieve better solution in terms of

performance, memory and computational cost.

Continual Learning with Low-rank Increment: Continual learning is a process

of training a single neural network on multiple tasks one after another, where training data

for each task is often available only during the training of that task. Neural networks tend

to forget older tasks when they are trained for the newer tasks; this property is often known

as catastrophic forgetting. To address this issue, continual learning methods use episodic

memory, parameter regularization, masking and pruning, or extensible network structures.

This work proposes a continual learning framework based on low-rank factorization of the

network weights. To update the network for a new task, a rank-1 (or low-rank) matrix

is learned and added to the weights of every layer. An additional selector vector is also

vi

introduced that assigns different weights to the low-rank matrices learned for the previous

tasks. Our proposed approach demonstrates superior performance compared to the current

state-of-the-art methods with much lower number of network parameters.

Inverse Problems with Deep Networks: Inverse problems form a family of

problems where we try to recover the true signal given the modified version of the signal.

Since inverse problems are often ill-posed in nature, we often need to impose some constraints

on the solution set. This dissertation mainly focuses on deep generative networks as a prior

for solving inverse problems. Low-rank matrix and tensor structures have been used in this

work as constraints on the input latent vectors of the deep generative networks to improve

quality of the reconstruction with reduced parameters. This dissertation also explores

unrolled networks where classical iterative solution approaches are structured as fixed layer

networks with each iteration forming a layer of the network. We use such unrolled network

structures to design sensing parameters for nonlinear inverse problems that led to achieving

good reconstruction quality with a fixed number of layers (or iterations).

vii

Contents

List of Figures xi

List of Tables xix

1 Introduction 1
1.1 Continual Learning . 1

1.1.1 Incremental Task Learning . 2
1.2 Inverse Problems . 3

1.2.1 Linear Inverse Problems . 3
1.2.2 Nonlinear Inverse Problems . 4

1.3 Organization . 5

2 Background and Related Works 7
2.1 Continual Learning . 7

2.1.1 Regularization-based approaches . 7
2.1.2 Memory-based approaches . 8
2.1.3 Dynamic network architectures . 8

2.2 Deep Generative Models . 10
2.2.1 Tensor Factorization Methods . 11

2.3 Inverse Problems . 11
2.3.1 Compressive Sensing . 12
2.3.2 Phase retrieval . 13

3 Incremental Task Learning with Low-rank Increment 18
3.1 Introduction . 18
3.2 Incremental Task Learning via Rank Increment 21
3.3 Experiments and Results . 24

3.3.1 Datasets and Task Description . 24
3.3.2 Training Details . 25
3.3.3 Comparing Techniques . 27
3.3.4 Results with Three-Layer MLP . 28
3.3.5 Results with ResNet18 . 33

viii

3.3.6 Effect of updating last few layers. 35
3.3.7 Relationship between the newly learned rank-1 weights and the fixed

weights learned in the previous task 36
3.3.8 Effect of task similarity . 37

4 Low-rank Generative Networks for Linear Inverse Problems 38
4.1 Introduction . 38
4.2 Technical Approach . 42

4.2.1 Latent Code Optimization . 43
4.2.2 Joint Latent Codes and Generator Optimization 44
4.2.3 Low Rank Constraint . 47

4.3 Experimental Setup . 48
4.4 Results and Analysis . 53

4.4.1 Sequence Size vs Performance . 53
4.4.2 Denoising . 54
4.4.3 Inpainting . 57
4.4.4 Compressive Sensing . 59
4.4.5 Flutter Shutter . 60
4.4.6 Rank of the Latent Matrix . 62
4.4.7 Computational Complexity . 63
4.4.8 Comparison with Video DIP . 65

5 Tensor Ring Autoencoders for Linear Inverse Problems 71
5.1 Introduction . 71

5.1.1 Our Contributions . 73
5.2 Technical Details . 74
5.3 Experiment and Results . 78
5.4 Performance as an Image Generator . 83

5.4.1 Image Generation from Noise . 83
5.4.2 Latent Space Interpolation . 84
5.4.3 Data fitting performance . 84

6 Consensus Equilibrium to Combine DIP with RED 86
6.1 Introduction . 86
6.2 Related Work . 90
6.3 Consensus Equilibrium for DIP and RED 91

6.3.1 DeepRED as fixed-point CE . 91
6.4 Experimental Validation . 94

7 Phase Retrieval with Deep Generative Network 98
7.1 Introduction . 98
7.2 Algorithm . 102

7.2.1 Phase update . 102
7.2.2 Gradient descent update . 103
7.2.3 Projection step . 103

ix

7.3 Models and Experiments . 104

8 Generative Network with Side Information for Phase Retrieval 108
8.1 Introduction . 108
8.2 Proposed Method . 110
8.3 Experimental Setup . 113
8.4 Results and Discussion . 116

9 Unrolling Network to Learn Reference for Phase Retrieval 121
9.1 Introduction . 121
9.2 Proposed Approach . 125
9.3 Experiments . 129

9.3.1 Configurations of Reference (u) . 131
9.3.2 Setup of Training Samples and Sample Size 132
9.3.3 Generalization of Reference on Different Classes 133
9.3.4 Noise Response . 135
9.3.5 Random Reference versus Learned Reference 135
9.3.6 Comparison with Existing Phase Retrieval Methods 136
9.3.7 Effects of Number of Layers (K) . 137
9.3.8 Localizing the Reference . 138

10 Unrolling Network to Learn Coded Illumination Patterns 141
10.1 Introduction . 141
10.2 Proposed Method . 145
10.3 Experiments . 150

10.3.1 Setup and hyper-parameter search 151
10.3.2 Comparison between random and learned illumination patterns . . . 151
10.3.3 Effect of number of iterations/layers (K) 154
10.3.4 Comparision with existing methods 155
10.3.5 Generalization of learned patterns on different datasets 158
10.3.6 Noise response . 160
10.3.7 Mismatch in training and test images 162

11 Conclusion 163
11.1 Continual Learning with Low-Rank Increment 163
11.2 Inverse Problems with Deep Networks . 164

11.2.1 Solving Linear Inverse Problems with Untrained Generative Prior . . 164
11.2.2 Solving Phase Retrieval with Trained Generative Prior 165
11.2.3 Learning Sensing Parameters Using Unrolling Networks 165

11.3 Future Directions . 166
11.3.1 Continual Learning with Low-Rank Networks 166
11.3.2 Inverse Problems with Structured Networks 167

Bibliography 169

x

List of Figures

3.1 An overview of our proposed method for continual learning via low-rank
network updates. We first represent (and learn) the weight matrix (or tensor)
for each layer as a product of low-rank matrices. To train a network for new
tasks without forgetting the earlier tasks, we reuse the factors from the earlier
tasks and add a new set of factors for the new task. Our experiments suggest
that a rank-1 update is often sufficient for successful continual learning. . . 19

3.2 Average test accuracy for different datasets (Permuted MNIST, Rotated
MNIST, Split CIFAR100, Split miniImageNet) along different tasks using
different algorithms (AGEM,EWC, Orthog. Subspace, ICARL and our ap-
proach). We use three layer MLP here. Parallel full-rank results corresponds
to the case when we train every task on separate full rank networks indepen-
dently (serves as an upper limit for ITL methods). We showed the average of
20 tasks. 31

3.3 Evolution of task-wise test accuracy on P-MNIST (first row) and R-MNIST
(second row) datasets for EWC, Orthogonal Subspace, and Our approach. We
can observe from the decrease in the test accuracy that EWC and Orthogonal
Subspace forget the previous tasks as they learn new tasks. Our approach
does not show any forgetting as we learn new tasks. 32

3.4 Top K singular values of weight matrices corresponding to different tasks for
S-CIFAR100 with MLP experiments. 36
a Layer 1 . 36
b Layer 2 . 36

4.1 A candidate architecture we use in our experiments with one fully connected
and four fractionally strided convolutional layers. Generative model: x =
Gγ(z) maps a vector z ∈ Rk into an image x ∈ Rn. 40

4.2 An illustration of different generative priors discussed in the chapter: (a)
Optimizing latent codes can only reconstruct images in the range of the
generative network. (b) Jointly optimizing latent code and network weights
enables recovery of a larger range of images. (c) Low-rank and similarity
constraints on latent code further regularize the problem and potentially
explain other structures in data. 41

xi

a . 41
b . 41
c . 41

4.3 Joint optimization versus latent code optimization. First row is the true
images of the videos sequences. The second row contains the masked samples
of the sequences. In the third row, we reconstruct frames with latent code
optimization using a generator trained on some other frames of the same video
sequence (Generator1). In the fourth row, we use latent code optimization
with a generator trained on CIFAR10 dataset (Generator2). The fourth row
is the reconstruction with joint optimization of generator initialized with
random weights. We can observe that latent code optimization does not
perform well (row 4) when we do not have generator pretrained on similar
distribution. However, joint optimization performs as good as as or better
than latent code optimization without any pretrained weights. 43

4.4 Sequence size vs performance for video approximation and compressive sensing
tasks. Here the results corresponds to joint optimization. We can observe
that increasing video length improves compressive sensing performance for
joint optimization. This effect diminishes with the increased size of video
sequences. 55
a Handwaving . 55
b Handclapping . 55
c Apply Eye Makeup . 55

4.5 Reconstruction of different video sequences using different algorithms for
denoising problem. Handclapping and Handwaving video sequences are 64×64
and Archery and Apply Eye Makeup video sequences are 256×256. The error
bars are standard deviation intervals. The deep decoder reconstruction here
correspond to overparameterized deep decoder structure. All the comparing
algorithms show very good reconstruction quality. 56

4.6 Reconstruction quality curves for denoising experiments with different al-
gorithms for different levels of signal to noise ratio. The curves also show
standard deviation intervals. We compare the performance for (a) Handclap-
ping (b) Handwaving (c) Archery (d) Apply Eye Makeup video sequences.
All the comparing methods other than UP deep decoder performs similarly.
The curves suggest that UP deep decoder has reached its limit to generate
the sequences. 57
a Handclapping . 57
b Handwaving . 57
c Archery . 57
d Apply Eye Makeup . 57

xii

4.7 Some reconstruction results on inpainting problem. Handclapping and Hand-
waving video sequences are 64×64 and Archery sequence is 256×256. The deep
decoder reconstruction here correspond to overparameterized deep decoder
structure. The boxed regions are zoomed for details. We can observe that
joint optimization gives better reconstruction than the comparing algorithms
in terms of details. 58

4.8 Inpainting performance for different available measurement rate for (a) Hand-
clapping (b) Handwaving (c) Archery (d) Apply Eye Makeup video sequences.
Measurement rate represents the available fraction of the total pixels. The
error bars are standard deviation intervals. Other than Archery sequence,
joint optimization outperforms the other comparing methods especially at
lower measurement rate. 59
a Handclapping . 59
b Handwaving . 59
c Archery . 59
d Apply Eye Makeup . 59

4.9 Some reconstruction results on spatial compressive sensing problem. Hand-
clapping and Handwaving video sequences are 64 × 64 and Archery and
Apply Eye Makeup video sequences are 256× 256. The compressive frames
from Handclapping and Handwaving are 29 × 29 whereas the compressive
frames from Archery and Apply Eye Makeup video sequences are 114× 114.
The deep decoder reconstruction here correspond to overparameterized deep
decoder structure. We can observe that the reconstructions are similar for
the comparing algorithms. 61

4.10 Compressive sensing performance for different available measurement rate for
(a) Handclapping (b) Handwaving (c) Archery (d) Apply Eye Makeup video
sequences. Measurement rate (or compression ratio) represents the available
fraction of the total measurements. The error bars are standard deviation
intervals. We can observe from the curves that joint optimization performs at
par with the other comparing methods. 62
a Handclapping . 62
b Handwaving . 62
c Archery . 62
d Apply Eye Makeup . 62

4.11 Some reconstructions for flutter shutter problem. Here we have a single
measurements for every 4 non overlapping frames. We can observe that
TVAL3D suffers ghosting effect for the fast changing parts of the videos such
as the hand or leg movement. However, they perform similarly in background
details reconstruction. 63

4.12 Effect of different value of rank for low rank constraint in inpainting problem
with 80% pixels randomly missing. We also show standard deviation interval
for each point. 64

xiii

4.13 Pairwise cosine similarity between frames, measurements or latent codes for
extended Handwaving video sequence where Handwaving action is repeated
in an interval of around 45 frames. Blue indicates highest similarity whereas
yellow indicates lowest similarity. We can observe that the similarity pattern
in the original frames are not maintained in the compressive frames. As
the Video DIP latent codes are drawn at random, we do not observe any
similarity pattern in them (c). However, the corresponding latent matrix for
joint optimization (d) captures the similarity structure. Low rank constraint
(e) further enhances this similarity. 68
a Original Frames . 68
b Compressive Frames . 68
c Latent Matrix of Video DIP . 68
d Latent Matrix of Joint Optimization 68
e Latent Matrix of Joint Optimization + Low Rank Constraint 68

4.14 Pairwise cosine similarity between frames, measurements or latent codes for
extended mixed video sequence where 16 frames of 6 different video sequences
(Handwaving, Handclapping, Walking, Archery, Apply Eye Makeup, Band
Marching in order) are concatenated in the temporal dimension. Blue indicates
highest similarity whereas yellow indicates lowest similarity. We observe that
adding low rank constraint further bolster the similarity observed in the
frames of same video sequences found by joint optimization. 69
a Original Frames . 69
b Compressive Frames . 69
c Latent Matrix of Video DIP . 69
d Latent Matrix of Joint Optimization 69
e Latent Matrix of Joint Optimization + Low Rank Constraint 69

5.1 General overview of our proposed tensor ring factorized autoencoder. We map
a set of images {X} to latent codes {Z} using an encoder E. We then perform
tensor factorization on the latent space codes using tensor factorization (shown
as T block). Finally, we pass the factorized representation though the decoder
D to generate target images X̂. 74

5.2 Reconstruction results for (a) denoising and (b) inpainting on Small NORB,
RaFD and 3dShapes datasets. 79

5.3 Interpolation in the latent space to change object shape/size using different
generators. Left and rightmost images are part of training set. The views in
between are synthesized using linear interpolation in latent space. 85

6.1 Consensus Equilibrium of model mismatch, RED, and DIP. The top images
result from the action of different agents that are combined to produce the
CE solution. 88

6.2 Image deblurring performance of DeepRED and CE formulation under (a)
the presence of high noise (σn = 8/255,σk = 1.6) and (b) the presence of high
blurring (σn =

√
2/255,σk = 2.4). 94

xiv

6.3 Reconstruction quality resulting from the combination of the three different
agents. 94

7.1 Illustration of APPGD algorithm. It has two major steps: alternating mini-
mization and projection onto the range of the generator nework. In alternating
minimization step, we update phase and perform one gradient descent update
using the updated phase. Starting from a random vector, we perform phase
update, gradient descent update step and projection step iteratively to reach
the final estimate. 100

7.2 Comparison of three approaches on MNIST test set. 105
a Reconstruction results on MNIST for three different approaches with

m = 60 measurements. 105
b Reconstruction error (per pixel) for three approaches on MNIST. . . 105
c Mean SSIM for three approaches on MNIST. 105

7.3 Comparison of three approaches on celebA test set and some reconstruction
results for our APPGD algorithm. 106
a Reconstruction results on celebA dataset for APPGD with m = 1000

measurements. 106
b Reconstruction error (per pixel) for three approaches on celebA. . . 106
c Mean SSIM for three approaches on celebA. 106

8.1 Illustration of phase retrieval with side information. An image x is divided
into a known (s) and unknown part (q) such that x = [s q]. Fourier amplitude
measurements of the image are observed as |F (x)| ≡ |Fq+ b|. Alternating
minimization algorithm uses the knowledge of the known part to initialize the
problem and enforces additional constraints on the signal estimate at every
iteration. 109

8.2 Simulation results for Fourier phase retrieval with different side information.
We form an image by concatenating five MNIST digit images. We have
concatenated different known 32 × 32 image to that concatenated MNIST
image as the first patch. We use a trained generative network which is trained
on MNIST digits as prior. We project each 32×32 digit onto the range of that
trained prior. The last column shows reconstruction without side information.
We can observe that side information gives significant performance boost. . 110

8.3 Simulation results for Fourier phase retrieval with and without side informa-
tion. We observed the reconstruction when we know different parts of the
image. We have concatenated 4 different MNIST digits. Here 2nd to 5th
columns correspond to the reconstructions where we have prior knowledge of
1st, 2nd, 3rd and 4th digit (32× 32 image patch) respectively. 6th column
corresponds to the reconstruction without side information. 113

xv

8.4 Reconstruction with known name tags as side information. We have concate-
nated the last names of the corresponding celebrities as side information to
the original image. Fourier phase retrieval performance significantly increases
with such side information. We have shown reconstruction for different size
and position of the name tags. In (a), (b) and (c) name tags are of size 16×64,
32× 64 and 64× 64 respectively. The target celebrity image is 64× 64. So
the ratio of side information to the unknown part is 1 : 4, 1 : 2 and 1 : 1
respectively. In (d), (e) and (f) we placed the text on the bottom, middle and
the top of the known name tag with size 64× 64. 117

8.5 Reconstruction when some part of the image is known. We have shown
cases when top-left, top-right, bottom-left, bottom-right 32× 32 patches of
64 × 64 celebrity images are known. We have also shown comparison with
the reconstruction without any side information. 118

9.1 Our proposed approach for learning reference signal by solving phase retrieval
using an unrolled network. Unrolled network has K layers. Each layerk
gets amplitude measurements y, reference u, and estimate xk−1 as inputs,
and updates the estimate to xk. The operations inside layerk are shown in
the dashed box on the right, where A and B are both linear measurement
operators, and A∗ is the adjoint operator of A. 125

9.2 Reconstruction results using learned references. Each block (a)-(f) shows
results for different dataset: (left) learned reference with a colorbar; (middle)
sample original images and reconstruction with PSNR on top; (right) his-
togram of PSNR over the entire test dataset (vertical dashed line represents
the mean PSNR). 130
a MNIST . 130
b EMNIST . 130
c Fashion MNIST . 130
d SVHN . 130
e CIFAR10 . 130
f CelebA . 130

9.3 Phase retrieval results using learned and random references. First Row:
Original 512× 512 test images. Second Row: Reconstruction using random
references with uniform distribution between [0, 1] best result out of 100
trials. Third Row: Reconstruction using the reference learned on CelebA
dataset and resized from 200 × 200 to 512 × 512. (PSNR shown on top of
images). 131

9.4 Test results on shifted/flipped/rotated images using the reference learned on
upright-centered (canonical) images. PSNR shown on top of images. 134
a MNIST . 134
b CIFAR10 . 134

9.5 Reconstruction quality of the test images vs noise level of the measurements
for different datasets. We learned the reference using noise-free measurements.136
a Gaussian . 136
b Poisson . 136

xvi

9.6 Reconstruction PSNR vs the number of blocks (K) in the unrolled network
at training and testing. (a) K is same for training and testing (shaded region
shows ±0.25 times std of PSNR). (b) K = 1 and (c) K = 10, but tested
using different K. 138
a Training K=Testing K . 138
b Training K=1 . 138
c Training K=50 . 138

9.7 Single step reconstruction with reference in range [0, 1]. Each of the 6 sets (a)-
(f) has the the ground truth in the first row. Second row is the reconstruction
(PSNR values on top). 139

9.8 Performance of our method if the reference is an 8×8 block placed at different
positions. Fixing the minimum value at 0, we increased the maximum value
of the reference we learn. We observe that the small reference placed in the
corners performs better than the ones placed in the center. 140
a MNIST . 140
b CIFAR10 . 140

10.1 Pipeline of our proposed framework at inference time. Our framework mainly
contains two components: (1) a learnable sensing system that updates
the illumination patterns during training time, but at inference time the
learned illumination patterns are fixed; (2) a fixed unrolled network that runs
phase retrieval process to recover the original signal x form measurements
Y . The number of layers in the network is fixed to K. Steps at every
iteration are fixed and depicted as an unrolled network (details can be found
in Algorithm 10). We illustrate the steps of kth layer of the unrolling network.
Phase retrieval algorithm uses the measurements Y = {yt} and illumination
patterns D = {dt} to provide an estimate xK after K iterations. During
training time, our goal is to learn the illumination patterns D to minimize
the error between the estimated xK and the ground truth. More details can
be found in section 10.2. 143

10.2 Selected ground truth (GT) images, corresponding reconstructed images using
random and learned illumination patterns. PSNR is shown on top of every
reconstruction. Below each dataset, we show the histograms of the PSNRs of
all images with random patterns (shown in blue) and learned patterns (shown
in orange). The dashed vertical line indicates the mean of all PSNRs. We
used T = 4 illumination patterns. Random illumination patterns are selected
best out of 30 trials. The learned illumination patterns are trained on 128
training images. 152
a MNIST . 152
b F. MNIST . 152
c CIFAR10 . 152
d CelebA . 152

10.3 Learned illumination patterns corresponding to the reported results for
MNIST, F. MNIST, CIFAR10 and CelebA in Table 10.2. 153

xvii

10.4 Comparison of the reconstruction quality with random and learned illumi-
nation patterns for different values of K = 1, . . . , 200. We plot the average
PSNR in bright color and the PSNR of randomly selected 100 samples in
light shadows. Learned represents the reconstruction PSNR with learned
illumination patterns (shown in red), and Random represents PSNR for
random illumination patterns (shown in blue). The number of illumination
patterns is T = 4. Random illumination patterns are selected best out of 30
trials. The learned illumination patterns are trained on 128 training images
and number of iterations K = 50 during training. 153
a MNIST . 153
b F. MNIST . 153
c CIFAR10 . 153
d CelebA . 153

10.5 Reconstruction quality vs number of iterations (layers) at test time (i.e., K is
different for training and testing with T = 4). We show error bar of ±0.25σ
for each dataset. In (a) and (b), we fixed K (K=10, 20) and tested using
different K. In (c), we trained and tested using the same number of layers. . 154
a Training K=10 . 154
b Training K=20 . 154
c Training K=Test K . 154

10.6 First Row: Ground truth images from image processing standard test
datasets. Second Row: Reconstruction using random illumination patterns
with uniform random distribution [0, 1] (we selected T = 4 patterns that
provided best results on celebA test images in 30 trials). PSNR numbers
are shown on the top of reconstructed images. Third Row: Reconstruction
using the patterns trained on celebA dataset. Each image has 200×200 pixels
and the number of illumination patterns is T = 4. 159

10.7 Reconstruction quality of the test images vs noise level of the measurements
for different datasets. Here we show shaded error bar of ±0.25σ for each
dataset. We learn the illumination patterns (T = 4) on 128 noiseless training
images of corresponding datasets. 159
a Gaussian . 159
b Poisson . 159

10.8 Test results on images shifted to bottom right by 5 pixels. From left to right:
MNIST, F. MNIST, and CIFAR10. 161

10.9 Test results on images rotated by 90◦. From left to right: MNIST, F. MNIST,
and CIFAR10. 162

xviii

List of Tables

3.1 Average test accuracy of ITL for P-MNIST, R-MNIST, S-CIFAR100, and
S-miniImageNet with three layer MLP. Standard deviation of test accuracy
over five runs is shown in parenthesis for some of the experiments. [1ex] ∗

Orthog subspace does not use replay buffer for MNIST variations. [-1.5 ex] 29
3.2 Average forgetting results corresponding to Table 3.1 for different datasets

using different approaches. We report the forgetting in percentage unit (%).
We also report the standard deviation over 5 experiments for some methods. 30

3.3 Number of parameters and buffer size in ITL methods with 3-layer MLP. . 33
3.4 Number of parameters used by different zero-forgetting algorithms (HAT,

PackNet, and Ours) using 3-layer MLP. 33
3.5 Test accuracy for different rank choices of the proposed ITL approach and

multi-task baseline networks for P-MNIST and R-MNIST. Initial rank is rk,1
and rank increment/task is rk,t. [-1.0ex] . 34

3.6 Comparison of test accuracy and forgetting for split CIFAR-100 and split
miniImageNet datasets using ResNet18 architecture. 35

4.1 Reconstruction performance measured in terms of PSNR for different com-
pressive sensing problems. We show comparison with TVAL3D (3D extension
of TVAL3 [1]) and deep decoder [2]. The results are averaged over five exper-
iments with different random measurement matrices (or noise in the case of
denoising). 50

4.2 Generator structures and corresponding number of parameters for different
image sizes. h× w × c denote height , weight, and color channels, respectively. 52

4.3 Comparison of joint optimization with DCGAN and deep decoder in terms of
computational complexity and memory requirement. The memory requirement
is for each frame reconstruction. The average time consumption is calculated
for video sequences with 32 frames. 65

4.4 Effect of initial latent matrix for different inverse problems. We have drawn
latent matrix in way that the initial latent codes form a line. The results are
averaged over fifteen experiments with five different random measurement
matrices and three different initializations. We use same measurement matrices
and initializations for both approaches. 65

xix

4.5 Performance analysis between Video DIP and joint optimization when all
the frames in the video sequence are not close to each other. The results are
averaged over twelve experiments with four different random measurement
matrices and three different initializations. We use same measurement matrices
and initializations for both approaches. 66

5.1 Reconstruction quality (PSNR in dB) for image denoising and inpainting with
different comparing approaches. 82

5.2 Frechet Inception Distance (FID) values for images generated from noise. . 84
5.3 Training images representation performance (PSNR in dB). 84

6.1 Comparison of reconstruction PSNR among the different algorithms under
low noise setting (σn =

√
2/255). 93

6.2 Comparison of reconstruction PSNR for different noise levels and blurring
kernel strengths. 95

6.3 Reconstruction PSNR for the different agents. 96

9.1 PSNR for different training size . 133
9.2 PSNR of the Same Reference Tested on Different Datasets 134
9.3 Comparison with Existing Phase Retrieval Methods 137

10.1 PSNR (mean ± std) for random and learned illumination patterns tested on
different datasets. 150

10.2 Reconstruction PSNR (mean ± std) of different algorithms using random
patterns and our learned patterns. The number of patterns is 4 in each case.
Here we round the PSNR values to integers to fit the width of the page. We let
all the algorithms to run until convergence. *For Deep Model [3] experiments,
patterns are normalized to [−1, 1] range. **For Deep Model, the image size
for CelebA generator is 64×64. 155

10.3 Average runtime (sec) per image of different algorithms corresponding to the
performance reported in Table 10.2. The reported runtime corresponds to
the time required for convergence of each algorithm. **For Deep Model, the
image size for CelebA is 64×64. 155

10.4 Reconstruction PSNR (mean ± std) of illumination patterns learned and
tested on different datasets for K = 50. Every column corresponds to patterns
learned on a fixed dataset and tested on all. Random column reports the
performance of random illumination patterns. 158

10.5 Reconstruction PSNR (mean ± std) of different algorithms using random
patterns (best out of 5 trials) and our learned patterns at different Poisson
noise levels for MNIST and CIFAR10 dataset. The number of patterns is 4 in
each case. We let all the algorithms to run until convergence. Here we round
the PSNR values to integers to fit the width of the page. 160

xx

Chapter 1

Introduction

Deep networks have received considerable attention in signal processing, computer

vision, natural language processing etc for their ability to work as a robust generative and

discriminative models. Deep networks often have many redundant parameters which makes

it difficult to incorporate them in low cost devices. Applying different structures in the

network can potentially reduce the computational cost for the deployment of the network

and provide more control over it. In this thesis, we mainly explored different structures in

deep networks to enhance performance of the networks with reduced computational cost.

1.1 Continual Learning

Continual learning [4, 5] aims to train a single model on a sequence of different

tasks and perform well on all the trained tasks once the training is finished. While training

on new tasks, the old data from previous tasks are not usually provided to the model. This

scenario mimics the human learning process where they have the ability to acquire new

1

knowledge and skills throughout their lifespan. However, this setting is still challenging

to neural network models as a common phenomenon called ”catastrophic forgetting [6]” is

observed during this learning process. Catastrophic forgetting occurs when the data from

the new tasks interfere with the data seen in the previous tasks and deteriorate model

performance on preceding tasks.

1.1.1 Incremental Task Learning

In Chapter 3, we focus on task-incremental continual learning (ITL) in which data

for every task are provided in a sequential manner to train/update the network [7]. It has

been a popular continual learning setup even in the very recent literature [8, 9, 10, 11, 12, 13].

ITL finds its application in setups where task identity is available during inference; for

instance, tasks performed under different weather/light/background conditions and we know

the changes, or tasks learned on different data/classes where we know the task identity.

Let us denote the network function that maps input x to output for task t as

f(x;Wt), where Wt denotes the network weights for task t. We seek to update the Wt for

all t as we sequentially receive dataset for one task at a time. Suppose the training dataset

for task t is given as (Xt,Yt) drawn from a distribution Pt, where Xt denotes the set of input

samples and Yt denotes the corresponding ground-truth outputs. Our goal is to update

network weights from the previous task (Wt−1) to Wt such that

y ≈ f(x;Wt), for all (x, y) ∼ Pt. (1.1)

ITL setup above assumes that the task identity of test samples is known at the test time

and the corresponding network weights are used for inference. In Chapter 3, we propose an

2

approach to represent, learn, and update Wt using low-rank factors such that they can be

stored and applied with minimal memory and computation overhead.

1.2 Inverse Problems

Inverse problems comprises a broad category of problems that arise in different

aspects of science and engineering. In different problems we observe signals via different

modulations/ corruptions. It is called the measurement model. In inverse problems, we

want to recover the true signals given the observed corrupted/modulated signals. Based on

the nature of measurement model, inverse problems could be categorized into linear and

nonlinear inverse problems.

1.2.1 Linear Inverse Problems

In linear inverse problems, we deal with linear measurement models. The problem

can be formulated as the task of recovering a true signal x ∈ Cn from measurements y ∈ Cm

and given the measurement model A ∈ Cm×n, such that,

y = Ax+ η, (1.2)

where η ∈ Cm is the noise introduced during measurement acquisition process. Different

image and video recovery problems fall under the category of linear inverse problems such

as inpainting, denoising, deblurring, superresolution etc.

Usually m < n which makes the problem ill-posed i.e. we have infinitely many

solutions. We need to constraint the solution set to a smaller feasible set. Deep generative

prior is one such constraint where the underlying assumption is that the target signal can

3

be generated by a deep generative network. Often trained generative models are used

as a prior since their limited range force them feasible solution set to a smaller subset.

However, a trained generator cannot represent data which does not fall in the distribution

it has been trained on. In practice, it is difficult to have a trained generator for every

dataset. Following the work of Ulyanov et. al. [14], there has been different studies on using

untrained convolutional network as a generative prior. In Chapters 4, 5 and 6, we explore

the efficient implementation of untrained generative prior for solving different linear inverse

problems. We also impose low-rank matrix and tensor factorization on the input latent

space of the generator as structural constraints for improved performance with compressed

representation.

1.2.2 Nonlinear Inverse Problems

Nonlinear inverse problems comprise different nonlinear measurement model based

problems. One such class of problems is phase retrieval. In phase retrieval, we acquire

the magnitude of the signals available to us via measurement model. In this measurement

process we lose the phase/sign information which makes the problem ill posed. General

phase retrieval problems can be represented as

y = |Ax|+ η, (1.3)

where |.| operation computes the elementwise magnitude. We used Gaussian measurement

matrix for our experiments in Chapter 7 and Fourier measurement matrix in Chapter 8, 9

and 10. Fourier phase retrieval arises in different imaging applications where we observe

the power spectral density of the signal which is essentially the Fourier magnitude squared

4

of the true signal. The flipped and shifted versions of an image produces the same Fourier

magnitude. This phenomena is called the trivial ambiguities of Fourier phase retrieval which

makes Fourier phase retrieval even more challenging.

In Chapter 7, we develop an efficient procedure to apply trained generative prior for

phase retrieval problem. In Chapter 8, we demonstrate that having some side information

about the signal helps us avoid trivial ambiguities and achieve better convergence with

generative prior.

In Chapters 9 and 10, we discuss about two special applications of Fourier phase

retrieval- Holographic Imaging and Coded Diffraction Imaging. We use classical iterative

Alternating Minimization (AltMin) approach instead of generative prior for solving these

two problems. We fix the number of iterations for AltMin and formulated it as an unrolling

network structure with each layer of the network representing an iteration. We use such

unrolling network to design sensing parameters for the imaging problems which show robustly

superior performance with a very small number of iterations.

1.3 Organization

We discuss the background and related literature on continual learning and different

inverse problems as well as different factorization approaches in Chapter 2. In Chapter 3,

we present our work on incremental task learning with low-rank matrix factorization in

the network. In Chapters 4, 5 and 6, we explore untrained generative models for solving

different linear inverse problems and demonstrate the advantage of different low-rank matrix

and tensor structures in the network and formulation. Chapters 7, 8, 9 and 10 are focused

5

on phase retrieval, especially on Fourier phase retrieval which is a special class of nonlinear

inverse problems. In Chapters 7 and 8, we formulated an approach to use trained generative

priors for solving phase retrieval problems and demonstrated how side information from our

target signal helps us converge to a better solution. In Chapters 9 and 10, we formulate a

network structure by unrolling a fixed iteration alternating minimization process to design

sensing parameters for holographic and coded illumination imaging. We provide conclusion

of this thesis in Chapter 11 along with a discussion on future directions.

6

Chapter 2

Background and Related Works

2.1 Continual Learning

Continual learning or lifelong learning approaches aim to address the problem

of catastrophic forgetting by adapting the network or training process to learn new tasks

without forgetting the previously learned ones [15, 16, 17, 18, 19, 20, 21, 22, 23]. To overcome

this issue, different approaches have been proposed so far which can be divided into three

main categories: regularization-based approaches, memory and replay-based approaches,

and dynamic network architecture-based approaches.

2.1.1 Regularization-based approaches

Approaches in [24, 15, 16] update the whole model in each task but a regularization

term ℓreg is added to the total loss L = ℓcurrent+λℓreg to penalize changes in the parameters

important to preceding tasks thus preserving the performance on previous learned tasks. For

example, Elastic Weight Consolidation (EWC) [24] estimates the importance of parameters

7

using Fisher Information matrix; Variational Continual Learning (VCL) [15] approximates

the posterior distribution of the parameters using variational inference; Learning without

Forgetting (LwF) [16] regularizes the current loss with soft targets taken from previous tasks

using knowledge distillation [25]. GCL [26] mixes rehearsal with knowledge distillation and

regularization to mitigate catastrophic forgetting. A number of recently proposed methods

force weight updates to belong to the null space of the feature covariance [27, 28].

2.1.2 Memory-based approaches

Approaches in [29, 21, 7, 30, 28] usually use memory and replay/rehearsal mech-

anism to recall a small episodic memory of previous tasks while training new tasks thus

reduce the loss in the previous tasks. For example, iCaRL [29] is the first replay method,

which learns in a class-incremental way by selecting and storing exemplars closest to the

feature mean of each class; Meta-Experience Replay (MER) [21] combines experience replay

with optimization-based meta-learning to optimize the symmetric trade-off between transfer

and interference by enforcing gradient alignment across examples; AGEM [7] projects the

gradient on the current minibatch by using an external episodic memory of patterns from

previous experiences as an optimization constraint; ER-Ring [30] jointly trains new task

data with that of the previous tasks.

2.1.3 Dynamic network architectures

Approaches in [31, 32, 33, 34, 35, 8, 36] try to add new neurons to the model at

additional new tasks, thus the performances on previous tasks are preserved by freezing the

old parameters and only updating the newly added parameters. For example, Progressive

8

neural networks (PNNs) [31] leverage prior knowledge via lateral connections to previously

learned features; PackNet [32] iteratively assigns parameter subsets to consecutive tasks

by constituting binary masks. SupSup [33] also finds masks in order to assign different

subsets of the weights for different tasks. BatchEnsemble [34] learns on separate rank-1

scaling matrices for each task which are then used to scale weights of the shared network.

HAT [35] incorporates task-specific embeddings for attention masking. [37] also proposes

task-conditioned hypernetworks for continual learning. [38] proposes nonoverlapping sets of

units being active for each task. Piggyback [39] learns binary masks on an existing network

to provide good performance on new tasks. [40] proposes task specific convolutional filter

selection for continual learning. The mask-based methods listed above provide excellent

results for continual learning, but they require a significantly large number of parameters

to represent the masks for each task. A factorization-based approach was proposed in [41]

that performs automatic rank selection per task for variational inference using Indian Buffet

process. The method requires significantly large rank increments per task to achieve high

accuracy; in contrast, our method uses a learning-based approach to find rank-1 increments

and reuse old factors with the learned selector weights. ORTHOG-SUBSPACE [8] learns

tasks in different (low-rank) vector sub-spaces that are kept orthogonal to each other in

order to minimize interference.

Dynamic architecture approaches have the potential to achieve zero forgetting, using

task specific weights for testing data; however, this also requires storing the task specific

weights for all the tasks. Our proposed low-rank matrix factorization method falls under the

category of dynamic network architecture approaches where we store task specific factors

9

for every task. Since we are saving a low-rank factor per task, the parameter overhead for

our approach is very small compared to other dynamic architecture approaches.

2.2 Deep Generative Models

Deep generative models offer a new framework for compact representation of

images and videos. Generative adversarial networks (GANs) and variational autoencoders

(VAEs) are two popular classes of deep generative networks that learn a function that

maps vectors drawn from a certain distribution in a low-dimensional space into images in

a high-dimensional space [42, 43, 44, 45]. For compact representation of images, we seek

a generative model that can generate a variety of images with high fidelity using a very

low-dimensional latent code. Recently, a number of generative models have been proposed to

learn latent representation of an image with respect to a generator [46, 47, 48]. The learning

process usually involves gradient decent to estimate the best representation of the latent code,

where the gradients with respect to the latent code representation are backpropagated to the

pixel space [49]. In recent year, generative networks have been extensively used for learning

good representations for images and videos. Generative adversarial networks (GANs) and

variational autoencoders (VAEs) [42, 43, 44, 45] learn a function that maps vectors drawn

from a certain distribution in a low-dimensional space into images in a high-dimensional

space. An attractive feature of VAEs [43] and GANs [42] is their ability to transform feature

vectors to generate a variety of images from a different set of desired distributions.

10

2.2.1 Tensor Factorization Methods

Tensor factorization has been a very popular method for multidimensional data and

complex network compression [50, 51, 52]. Because of the favorable formulation of tensor

factorization, different components of factorization framework can be used as a knob to

generate novel/missing data. Recently different fields [53, 54] are utilizing the advantage of

such formulation of tensor factorization. In [55], authors show that tensor ring factorization

for GAN and VAE can lead to better convergence. They showed simple interpolation on

CelebA as well. However, they did not use tensor factorization for attribute mapping. [56]

used PARAFAC decomposition in the latent space of VAE to model audience reaction

to movies. They also used matrix completion to impute missing expressions. None of

those methods used tensor factorization on deterministic autoencoder because deterministic

autoencoders are not good at generation tasks due to holes in the latent space [57]. However,

[57] showed that using additional constraint such as implicit low-rank constraint, even

deterministic autoencoders can perform comparable generation as VAEs. Based on their

findings, we are using the strength of tensor factorization to compress the latent space of

the deterministic autoencoder using explicit low-rank constraints in order to use it as a

generative prior. We are also using it to factorize the representation of structured set of

images in the latent space to have better recovery performance.

2.3 Inverse Problems

Inverse problems comprise a wide variety of problems which can be broadly divided

into two categories- linear and nonlinear inverse problems. Most of the linear inverse

11

problems can be termed as compressive sensing since the information in the observed signal

is usually less than the true signal. Among different nonlinear inverse problems, we limit

our scope of study to phase retrieval problem which is very common in different sensing

applications.

2.3.1 Compressive Sensing

Compressive sensing refers to a broad class of problems in which we aim to recover

a signal from a small number of measurements [58, 59, 60]. The canonical compressive

sensing problem in (4.2) is inherently underdetermined, and we need to use some prior

knowledge about the signal structure. Classical signal priors exploit sparse and low-rank

structures in images and videos for their reconstruction [61, 62, 63, 64, 65]. However, the

natural images exhibits far richer nonlinear structure than sparsity alone. So, we focus on a

newly emerging family of generative priors that are usually learned from massive amount of

training data.

Deep Generative Models for Compressive Sensing

The generative model and optimization problems we use are inspired by recent work

on using generative models for compressive sensing in [66, 67, 68, 2, 69, 14, 49]. Compressive

sensing using generative models was first introduced in [66], which used a trained deep

generative network as a prior for image reconstruction from compressive measurements; the

reconstruction problem involves optimization over the latent code of the generator. Since

the generator is fixed, this approach works well only if the unknown image/video belongs to

the range of the generator used. Deep image prior (DIP) is a related method in which an

12

untrained convolutional generative model is used as a prior for solving inverse problems such

as inpainting and denoising because of their tendency to generate natural images [14]; the

reconstruction problem involves optimization of generator network parameters. Inspired by

these observations, a number of methods have been proposed for solving compressive sensing

problem by optimizing generator network weights while keeping the latent code fixed at a

random value [2, 68]. Both DIP [14] and deep decoder [2] update the network parameters

to generate a given image; therefore, the generator can reconstruct wide range of images.

One key difference between the two approaches is that the network used in DIP is highly

overparameterized, while the one used in deep decoder is underparameterized.

2.3.2 Phase retrieval

The classical problem of phase retrieval arises in numerous imaging applications

[70, 71], where only the magnitude of the light rays can be measured but not the phase.

As each linear observation loses its phase, the highly non-linear forward model makes it

challenging to recover the underlying signal.

Phase retrieval problems seek to recover real- or complex valued signals/images

from their quadratic or amplitude measurements. Fourier phase retrieval is a particular

instance of this problem that arises in optical coherent imaging, where we seek to recover an

image from its Fourier modulus [72, 73, 74, 71]. This problem has been extensively studied

over last five decades in optics, signal processing, and optimization [75, 70, 76, 77].

In general, infinitely many possible solutions exist for phase retrieval problems.

Classical methods for phase retrieval rely on prior knowledge about the support and positivity

of the images. In recent years, sparse, low-rank, and generative models with spectral

13

initialization have been proposed for various phase retrieval problems. Despite the progress,

phase retrieval with structured measurements, still remains a challenging problem.

Existing algorithms for solving phase retrieval can be broadly classified into convex

and non-convex approaches [78]. Convex approaches usually solve a constrained optimization

problem after lifting the problem. The PhaseLift algorithm [79] and its variations [80],

[81] belong to this class. On the other hand, non-convex approaches usually depend on

Amplitude flow [82, 83] and Wirtinger flow [84, 85, 86, 87]. We can also incorporate prior

knowledge about the signal structure (e.g., sparsity, support, or positivity) in the recovery

process constraints [88, 89, 90, 91, 92, 87, 82].

Furthermore, [92, 93, 78] used minimization (AltMin)-based approach and [94] used

total variation regularization to solve phase retrieval. Recently, various researchers have

explored the idea of replacing the sparsity priors with generative priors for solving inverse

problems. Some of the generative prior-based approaches can be found in [78, 95, 76, 96].

Holography

Digital holography is an interferometric imaging technique that does not require

the use of any imaging lens. Utilizing the theory of diffraction of light, a hologram can be

used to reconstruct three-dimensional (3D) images [97]. With this advantage, holography

can be used to perform simultaneous imaging of multidimensional information, such as 3D

structure, dynamics, quantitative phase, multiple wavelengths, and polarization state of light

[98]. In the computational imaging community, many attempts have been made in solving

holographic phase retrieval using references, among which [99] has been very successful.

Motivated by the reference design for holographic phase retrieval, we are trying to explore a

14

way to design references for general phase retrieval.

In recent papers [99, 100, 101, 102], authors tried to use side information with

sparsity prior to mitigate trivial ambiguities of Fourier phase retrieval. However, in those

studies, the reference and target signal are separated by some margin. If the separation

between target and reference is large enough, then the nonlinear PR problem simplifies to a

linear inverse problem [103, 99]. In our proposed approaches, we do not enforce any such

separation.

Coded Diffraction Imaging

Coded diffraction imaging is a physically realistic setup in which we can first

modulate the signal of interest and then collect the intensity measurements [81, 104]. The

modulation can be performed using a spatial light modulator or custom transparencies

[105, 73, 106]. The recovery problem involves solving a phase retrieval problem; the presence

of modulation patterns makes this a more tractable problem compared to classical Fourier

phase retrieval [81].

Data-Driven Approaches for Phase Retrieval

The use of deep learning-based methods to solve computational imaging problems

such as phase retrieval is becoming popular. Deep learning methods leverage the power of

huge amount of data and tend to provide superior performance compared to traditional

methods while also run significantly faster with the acceleration of GPU devices. A few

examples demonstrating the benefit of the data-driven approaches include [107] for robust

phase retrieval, [108] for Fourier ptychographic microscopy, and [109] for holographic image

15

reconstruction.

Unrolled Network for Inverse Problem

Unrolled networks, which are constructed by unrolled iterations of a generic non-

linear reconstruction algorithm, have also been gaining popularity for solving inverse problems

in recent years [110, 111, 112, 113, 114, 115, 116, 117, 118]. Iterative methods usually

terminate the iteration when the condition satisfies theoretical convergence properties, thus

rendering the number of iterations uncertain. An unrolled network has a fixed number of

iterations (and cost) by construction and they produce good results in a small number of

steps while enabling efficient usage of training data.

Learn to Sense

Deep learning methods have also been recently used to design the sensing system;

especially in the context of compressive sensing and computational imaging [119, 120, 121,

122, 123, 124, 125, 126, 127]. The main objective in these methods is similar to ours,

which is to select sensor parameters to recover best possible signal/image from the sensor

measurements. The sensor parameters may involve selection of samples/frames, design of

sampling waveforms, or illumination patters as we discuss in this work. In contrast to most

of the existing methods that learn a deep network to solve the inverse problem, our method

uses a predefined iterative method as an unrolled network while learning the illumination

patterns using a small number of training images. Unrolled network for solving non-linear

inverse problems has been used in [108, 111]. [108] proposes learning sensors for Fourier

ptychographic microscopy. [111] designs sensing patterns for coded illumination imaging.

16

One might find similarity between [111] and our problem formulation. In principle, the

sensor can be treated as the first layer of the network with some physical constraints on the

parameters [111]. However, the method in [111] uses an unrolled network to learn the sensing

parameters for quantitative phase imaging problem under the “weak object approximation”.

This approximation turns the original nonlinear problem into a linear inverse problem. This

assumption is only applicable where the target objects have a small scatter term (e.g.,

biological samples in closely index-matched fluid). In our setup, we do not make any such

assumptions on target object and solve the original nonlinear coded diffraction imaging

problem. This potentially makes our algorithm suitable for more general applications than

[111].

17

Chapter 3

Incremental Task Learning with

Low-rank Increment

3.1 Introduction

Deep neural networks have been extremely successful for a variety of learning and

representation tasks (e.g., image classification, object detection/segmentation, reinforcement

learning, generative models). A typical network is trained to learn a function that maps input

to the desired output. The input-output relation is assumed to be fixed and input-output

data samples are drawn from a stationary distribution [129]. If the input-output relations

or data distributions change, the network can be retrained using a new set of input-output

data samples. Since the storage, computing, and network capacity are limited, we may need

to replace old data samples with new samples. Furthermore, privacy concerns may also

force data samples to be available for a limited time [4, 129]. In such a training process, a

This work has been accepted to European Conference on Computer Vision 2022 [128]

18

Figure 3.1: An overview of our proposed method for continual learning via low-rank network

updates. We first represent (and learn) the weight matrix (or tensor) for each layer as a product of

low-rank matrices. To train a network for new tasks without forgetting the earlier tasks, we reuse

the factors from the earlier tasks and add a new set of factors for the new task. Our experiments

suggest that a rank-1 update is often sufficient for successful continual learning.

network often forgets the previously learned tasks; this effect is termed catastrophic forgetting

[6, 130].

We propose a new method for Incremental Task Learning (ITL) that updates

network weights using rank-1 (or low-rank) increments for every new task. Figure 3.1

provides an illustration of our proposed method. We represent the network weights for each

layer as a linear combination of several low-rank factors (which can be represented as a

product of two low-rank matrices and a diagonal matrix). To update the network for task t

without forgetting the earlier tasks, we freeze the low-rank factors learned from the previous

tasks, add a new trainable rank-1 (or low-rank) factor for every layer, and combine that

19

with the older factors using learnable selector weights (shown as a diagonal matrix). We use

a multi-head configuration that has an independent output layer for each task. As we are

learning separate diagonal matrices for every task, we can achieve zero forgetting during

inference. We present an extensive set of experiments to demonstrate the performance of our

proposed method for different benchmark datasets. We observe that our proposed method

outperforms the current state-of-the-art methods in terms of accuracy with small memory

overhead.

The main contributions of this work [128] are as follows.

(a) Represent layers as low-rank matrices: We represent and learn network weights

for each layer as a low-rank structure. We show that low-rank structure is sufficient to

represent all the tasks in continual learning setup.

(b) Reuse old factors for better performance with a small memory overhead:

We limit the number of parameters required for network update by reusing the factors

learned from previous tasks. We demonstrate that a rank-1 increment suffices to

outperform the existing techniques.

(c) Zero forgetting without replay buffer: Our method has zero forgetting that is

achieved using incremental rank update or network weights. In contrast, most of the

existing continual learning techniques require replay buffer or large memory overhead

to achieve zero forgetting.

Limitations. Our method shares same inherent limitation of ITL (i.e. the requirement of

task-id during inference). In addition, since we use all the previously learned factors for

inference, the later tasks require more memory and computation for inference. Nevertheless,

20

we show that using low-rank structure, our total memory requirement is significantly lower

than a single network. Furthermore, as we learn separate diagonal matrices for each task,

we can maintain high performance even if the network reaches full rank with a large number

of tasks.

3.2 Incremental Task Learning via Rank Increment

We focus on the incremental task learning setup in which we seek to train a network

for T tasks. The main difference between incremental task learning and regular learning is

that the training data for every task is only available while training the network for that

task. The main challenge in incremental task learning is to not forget the previous tasks as

we learn new tasks. Learning each task entails training weights for the network to learn the

task-specific input-output relationship using the task-specific training data.

We seek to develop an ITL framework in which we represent the weights of any layer

using a small number of low-rank factors. We initialize the network with a base architecture

in which weights for each layer can be represented using a low-rank matrix. We then add

new low-rank factors to each layer as we learn new tasks.

Let us assume the network has K layers and the weights for the kth layer and task

t can be represented as Wk,t. Let us further assume that the weights for the kth layer and

task t = 1 can be represented as a low-rank matrix

Wk,1 = Uk,1Sk,1,1V
⊤
k,1, (3.1)

where Uk,1, Vk,1 represent two low-rank matrices and Sk,1,1 represents a diagonal matrix. To

learn the network for task 1, we learn Uk,1, Vk,1, Sk,1,1 for all k. For task 2, we represent the

21

weights for kth layer as

Wk,2 = Uk,1Sk,1,2V
⊤
k,1 + Uk,2Sk,2,2V

⊤
k,2.

Uk,1, Vk,1 represent the two low-rank matrices learned for task 1 and frozen afterwards.

Uk,2, Vk,2 represent two low-rank matrices that are added to update the weights, and these

will be learned for task 2. Sk,1,2, Sk,2,2 represent the diagonal matrices, which will be learned

for task 2. We learn Sk,1,2, which is a diagonal matrix that assigns weights to factors

corresponding to task 1, to include/exclude or favor/suppress frozen factors from previous

tasks for the new tasks. We can represent the weights for the kth layer and task t as

Wlayer,task = Wk,t =
∑
i≤t

Uk,iSk,i,tV
⊤
k,i

=
∑
i<t

Uk,i︸︷︷︸
frozen

Sk,i,t V
⊤
k,i︸︷︷︸

frozen

+ Uk,tSk,t,tV
⊤
k,t, (3.2)

where Uk,i, Vk,i are frozen for all i < t and Uk,t, Vk,t and all the Sk,i,t are learned for task t.

The entire network for task t can be represented as Wt = {Uk,i, Sk,i,t, Vk,i}i≤t. To update

the trainable network parameters for task t, we solve the following optimization problem:

min
Uk,t,Sk,i,t,Vk,t

∑
(x,y)∈(Xt,Yt)

loss(f(x;Wt[Uk,t, Sk,i,t, Vk,t]), y)

for all k ≤ K and i ≤ t, (3.3)

where we use loss(·, ·) to denote the loss function and Wt[Uk,t, Sk,i,t, Vk,t] to indicate the

trainable parameters in Wt, while the rest are frozen. We sometimes call Sk,i,t a selector

weight matrix/vector to indicate that its diagonal entries determine the contribution of each

factor toward each task/layer weights.

22

Our proposed ITL algorithm works as follows. We train the low-rank factors for the

given task using the respective training samples. Then we freeze the factors corresponding

to the older tasks and only update the new factors and the diagonal matrices. In this

manner, the total number of parameters we add in our model is linearly proportional to the

rank of the new factors. To keep the network complexity small, we seek to achieve good

accuracy using small rank for each task update and layer. We summarize our approach in

Algorithms 1 and 2.

Note that we do not need to create the weight matrix Wk,t for any layer explicitly

since we can compute all the steps in forward and backward propagation efficiently using

the factorized form of each layer. The size of each layer is determined by the choice of the

network architecture. The rank of each layer for every task is a hyper-parameter that we

can select according to the tasks at hand. To keep the memory overhead small, we need to

use small values for rank increment. Let us denote the rank for Uk,t as rk,t, which represents

the increment rank for kth layer and task t. At the time of test, we can use an appropriate

number of factors depending on the task. For instance, if we want to predict output for task

1 then we use first rk,1 factors and for task 2 we use rk,1 + rk,2 factors. We can add new

factors in an incremental manner as we add new tasks in the ITL setup. In the extreme case

of rank-1 increments, rk,t = 1. In our experiments, we observed that rank-1 updates compete

or exceed the performance of existing ITL methods (see Table 3.1) and the performance of

our method improves further as we increase the rank (see Table 3.5). Any increase in the

rank comes at the expense of an increased memory overhead.

23

Algorithm 1 ITL with rank-1 increments (Training)

Input: Data (X1 and Y1) for the 1st task.

Set initial rank, r1.

Initialize weight factors Uk,1, Vk,1 at random and Sk,1,1 as an identity marix.

Learn Uk,1, Vk,1 and Sk,1,1. ▷ Optimization in (3.3)

for t = 2, 3, ..., T do

Input: Training data (Xt and Yt) for tth task.

Initialize low-rank update factors Uk,t, Vk,t.

Freeze the previous factors {Uk,i, Vk,i}i<t.

Initialize the diagonal entries of {Sk,i,t} as 1

for i = t and 0 for i < t.

Learn Uk,t, Vk,t and Sk,i,t

for i < t. ▷ Optimization in (3.3)

end for

3.3 Experiments and Results

We used different classification tasks on well known continual learning benchmarks

to show the significance of our proposed approach.

3.3.1 Datasets and Task Description

Experiments are conducted on four datasets: Split CIFAR100, Permuted MNIST,

Rotated MNIST, and Split MiniImageNet.

P-MNIST creates new tasks by applying a certain random permutation on the pixels of all

24

Algorithm 2 ITL with rank-1 increments (Inference)

Input: Test data x with task identity t.

Retrieve trained weights: Wt = {Uk,i, Vk,i, Sk,i,t} for all k and i ≤ t.

Output: Calculate the network output as f(x,Wt).

images in the original dataset. In our experiment, we generate 20 different tasks, each of

which corresponds to a certain but different permutation.

R-MNIST is similar to Permuted MNIST, but instead of applying a certain random

permutation on the pixels, it applies a certain random rotation to the images in the same

tasks. We create 20 different tasks, each corresponds to a certain but different version of

rotation from [0, 180] degree interval.

S-CIFAR100 splits the original CIFAR-100 dataset into 20 disjoint sets, each of which,

containing 5 classes, is considered as a separate task. The 5 classes in each task is randomly

chosen without replacement from the total 100 classes.

S-miniImageNet splits a subset of Imagenet dataset into 20 disjoint sets, each of which,

containing 5 classes, is considered as a separate task. The 5 classes in each task is randomly

chosen without replacement from the total 100 classes.

3.3.2 Training Details

Network. In the first set of experiments, we used a three layer (fully-connected) multilayer

perceptron (MLP) with 256-node hidden layers, similar to the network in [8]. We flattened

multi-dimensional input image to a 1D vector input. We used ReLU activation for all the

layers except the last one. We used Softmax for the muticlass classification tasks. We used

the same network for all the tasks with necessary modifications for input and output sizes.

25

Our approach can be used in convolutional networks as well. We report the results using

ResNet18 with our approach on S-CIFAR100 and S-miniImageNet dataset in Table 3.6.

Factorization and rank selection. We used the matrix factorization defined in (3.2)

in all our experiments. We empirically selected the rank for the first task,rk,1 as 11 based

on the experiments on a sample Rotated MNIST task and kept the same value for all the

experiments. We then performed rank-1 increment (rk,t) for each additional task. We

would like to point that AGEM and Orthog Subspace use first 3 tasks for hyperparameter

tuning. We did not tune our hyperparameters on the test data, rather we choose the

parameters which provides better convergence during training. We increment the weight

matrices by rank-1 per task; therefore, learning rate and the number of epochs are the only

hyperparameters in our experiments.

Optimization. We used orthogonal initialization for the low-rank factors, as described in

[131]. We used all one initialization for the additional factors of the selector matrices Sk,t,t.

We used Adam optimization to update the factors. We used the batch size of 128 for each

task.

Performance metrics. We use accuracy and forgetting per task, which are two commonly

used metrics in the continual learning literature [20, 8], to evaluate the performance of the

described methods. Let at,j be the test accuracy of task j < t after the model has finished

learning task t ∈ {1, ..., T} in a incremental manner. The average accuracy At after the

model has learned task t is defined as At =
1
t

∑t
j=1 at,j . On the other hand, forgetting is

the decrease in the accuracy of a task after its training, and after one or several tasks are

learned incrementally. We define the average forgetting Ft as Ft =
1

t−1

∑t−1
j=1(aj,j − at,j).

26

In Figure 3.2, we show the evolution of average accuracy At as t increases. We

also show the evolution of task-wise accuracy at,j in Figure 3.3, where (t, j) pixel intensity

reflects at,j . We report the average accuracy AT , the average accuracy after the model

has learnt every tasks incrementally, in Table 3.1. We report the forgetting FT after the

model has learnt all the tasks incrementally in Table 3.2. Note that our method performs

incremental task learning without forgetting.

3.3.3 Comparing Techniques

We compare our method against different state-of-the-art ITL methods. EWC

[24] is a regularization-based method that uses the Fisher Information matrix to estimate

posterior of previous tasks to preserve important parameters. ICARL [29] is a memory-based

method that uses exemplars and knowledge distillation [25] to retain previous knowledge.

AGEM [7] is a memory-based method built upon [132] that uses episodic memory to solve

an constrained optimization problem. ER-Ring [30] is another memory-based method that

jointly trains on new task data with that of the previous tasks. Orth. sub. [8] learn tasks

in different (low-rank) vector subspaces that are kept orthogonal to each other in order

to minimize interference. Other than the above mentioned approaches, we compared with

masked based approaches which, like our approach, also fall under dynamic architecture

category. HAT [35] that incorporates task-specific embeddings for attention masking.

PackNet [32] that iteratively assigns subsets of a single binary mask to each task. The

mask-based approaches utilize the redundancy of the network parameters to represent

different tasks with different masked versions of the same network weights. We also present

comparisons with some recent methods: IBP-WF [41], DER [26] and Adam-NSCL [27],

27

in terms of average accuracy for one experiment on two datasets.

In addition, we report results for two non-continual baseline methods: Parallel

learning and Multitask learning. Parallel learning trains independent (smaller) low-

rank networks of same size for each task. We report results for three such networks. Parallel

2 uses rank-2 layers, Parallel 4 uses rank-4 layers, and Parallel full uses a full-rank MLP.

Parallel 2 requires approximately the same number of parameters as the rank-1 ITL network

that we use in our experiments; Parallel 4 provides higher network capacity, while requiring

fewer parameters than the full-rank network. We can treat the performance of the Parallel

full approach as the upper limit that we can achieve using ITL methods. Finally, Multitask

learning has been used as a baseline in [8, 7]. In multitask learning, we have access to all

data to optimize a single network.

3.3.4 Results with Three-Layer MLP

Classification performance and comparison. We report classification results for

P-MNIST, R-MNIST, S-CIFAR100, and S-miniImageNet tasks in Table 3.1. We also show

the results for the comparing techniques. We observe that our method with rank-1 update

perform better than all the comparing methods (EWC, ICARL, AGEM, HAT, PackNet,

Orthog Subspace) on R-MNIST, S-CIFAR100 and S-miniImageNet tasks using significantly

fewer number of parameters. Our method performs close to Orthog Subspace on P-MNIST

tasks.

We also observe that the proposed rank-1 update outperforms non-continual Parallel

28

Table 3.1: Average test accuracy of ITL for P-MNIST, R-MNIST, S-CIFAR100, and S-miniImageNet

with three layer MLP. Standard deviation of test accuracy over five runs is shown in parenthesis for

some of the experiments.

∗ Orthog subspace does not use replay buffer for MNIST variations.

Method
Replay
Buffer

P-MNIST R-MNIST S-CIFAR100 S-miniImageNet

EWC [24] No 67.9 (±0.68) 44.5 (±1.09) 52.7 (±0.81) 29.3 (±1.08)
ICARL [29] Yes 85.4 (±0.01) 51.2(± 2.41) 56.9(±0.31) 39.9(±0.27)
AGEM [7] Yes 73.9 (±0.52) 53.4 (±1.80) 51.3(±1.54) 31.3(±0.89)
HAT [35] No 90.1(±1.60) 89.1(±2.51) 64.8 (±0.32) 47.0 (±0.88)
PackNet [32] No 90.0(±0.24) 88.4(±0.37) 63.7(±0.41) 45.1(±1.05)
Orth sub [8] Yes∗ 86.6 (±0.79) 80.2 (±0.41) 57.8 (±1.03) 38.1 (±0.67)
DER [26] Yes – – 48.21 33.19

Adam-NSCL[27] No – – 64.26 47.32

IBP-WF [41] No – – 53.22 40.52

Ours No 85.6 (±0.15) 91.1 (±0.12) 65.9 (±2.16) 54.7 (±2.87)
Parallel 2 (r=2) - 65.3 65.5 62.8 55.4

Parallel 4 (r=4) - 86.3 87.4 65.6 58.6

Parallel fullrank - 95.9 97.3 73.1 63.1

Multitask - 96.8 97.7 16.4 4.21

2 baseline that has similar number of parameters compared to our approach. We perform

similar to Parallel 4 baseline that uses nearly twice the number of parameters as our approach.

Parallel full acts as an upper limit with the network structure of our choice as it trains

independent full rank networks for every task. Multitask learning is another non-continual

baseline that uses all the data from all the tasks simultaneously. Table 3.1 suggests that our

ITL method can learn complex tasks such as CIFAR100 and miniImageNet classification

with a three layer MLP, whereas multitask learning (which is solving 100-class classification

problem) fails with such a simple network. We also tested Resnet18 network, which has

significantly more parameters than the network used in Table 3.1. The results for Resnet18

29

Table 3.2: Average forgetting results corresponding to Table 3.1 for different datasets using different

approaches. We report the forgetting in percentage unit (%). We also report the standard deviation

over 5 experiments for some methods.

EWC AGEM
Orthog
subspace

DER
Adam-
NSCL

Parallel fullrank,
HAT, PackNet
Ours, IBP-WF

P-MNIST 25.8 (±0.70) 19.6 (±0.64) 4.49 (±0.93) - - 0
R-MNIST 52.9 (±1.17) 44.2 (±1.85) 14.7 (±0.39) - - 0
S-CIFAR100 6.96 (±0.80) 21.5 (±2.89) 6.30 (±0.38) 10.6 8.5 0
S-miniImageNet 17.3 (±1.81) 18.8 (±1.40) 9.98 (±0.31) 20.11 11.23 0

are presented in Table 3.6.

We present the task-wise test performance for some of the comparing approaches on

P-MNIST, R-MNIST, S-CIFAR100 and S-miniImageNet datasets in Figure 3.2. We observe

that as we train new tasks, task-wise performance drops for the comparing approaches,

especially for P-MNIST and R-MNIST.

ICARL and AGEM require replay buffer (episodic memory) for each task. Although

Orthog Subspace did not use replay buffer for MNIST experiments, it requires replay buffer

in their algorithm and used it for S-CIFAR100 and S-miniImageNet experiments. EWC does

not require any replay buffer, but it suffers from high forgetting as shown in Figure 3.3. Our

proposed approach does not require a replay buffer, and it outperforms other approaches in

Table 3.1.

Accuracy vs forgetting. We report the average forgetting of different comparing ap-

proaches in Table 3.2. Our method, mask-based approaches (HAT and PackNet) and parallel

baselines have zero forgetting, whereas all other comparing methods exhibit some level of

forgetting. To better demonstrate the forgetting, in Figure 3.3, we show the accuracy for

the tasks along the entire training procedure. ith row (top-bottom) of the diagram denotes

30

Figure 3.2: Average test accuracy for different datasets (Permuted MNIST, Rotated MNIST,

Split CIFAR100, Split miniImageNet) along different tasks using different algorithms (AGEM,EWC,

Orthog. Subspace, ICARL and our approach). We use three layer MLP here. Parallel full-rank

results corresponds to the case when we train every task on separate full rank networks independently

(serves as an upper limit for ITL methods). We showed the average of 20 tasks.

the performance of i tasks on the test sets when we train the ith task. As expected, we can

observe that the training performance for the previously learned tasks usually drops with

the gradual training of the subsequent tasks specially for the regularization based approach,

EWC. However, our algorithm maintains the same performance for the past tasks as we do

not change any previously learned factors. Even orthogonal subspace approach observes

such forgetting over some tasks.

Memory complexity. Our method increments the rank of each layer for each task;

therefore, we compare the total number of parameters in the incrementally trained network

and the Parallel baselines. Note that if the number of parameters in two approaches is

same, we can train one small network per task independently. We report total number of

31

Figure 3.3: Evolution of task-wise test accuracy on P-MNIST (first row) and R-MNIST (second

row) datasets for EWC, Orthogonal Subspace, and Our approach. We can observe from the decrease

in the test accuracy that EWC and Orthogonal Subspace forget the previous tasks as they learn new

tasks. Our approach does not show any forgetting as we learn new tasks.

parameters and replay buffer size for different methods in Table 3.3. Since we used similar

fully connected network structure for all the tasks, we report results for Split CIFAR100

experiments. Although we increase the rank for every task, the increment is small enough

that even after 20 tasks our total parameter count remains smaller than all other methods.

We also report the number of parameters used by mask-based zero forgetting

algorithms (HAT and PackNet) to learn 20 different tasks on different datasets in Table 3.4.

We can observe that our approach outperforms HAT and PackNet for R-MNIST, S-CIAR100

and S-miniImageNet with a significantly smaller number of parameters. Even though all

32

Table 3.3: Number of parameters and buffer size in ITL methods with 3-layer MLP.

Ours IBP-WF EWC AGEM Ortho Sub DER Adam-NSCL Para. full.

params. 0.17M 0.23M 0.93M 1.76M 2.82M 0.88M 0.88M 19.7M

buffer size 0 0 1.71M 7.90M 9.01M 6.14M 0 0

Table 3.4: Number of parameters used by different zero-forgetting algorithms (HAT, PackNet, and

Ours) using 3-layer MLP.

Method P/R-MNIST S-CIFAR100 S-miniImageNet

HAT 0.33M 0.89M 5.51M

PackNet 0.26M 0.83M 5.50M

Ours 0.11M 0.17M 0.72M

the approaches use the same network, our approach uses rank-1 factors that require a

significantly smaller number of parameters for incremental learning of tasks. Note that

P-MNIST and R-MNIST experiments require the same number of parameters.

Effect of rank. In Table 3.5, we evaluate the effect of different rank selection for different

MNIST datasets using our ITL approach. We tested the initial rank (rank for the first task)

of 1, 6, and 11, keeping the rank increment to 1. We observed that the accuracy increase

as the initial rank increases, and we achieve nearly 90% accuracy with initial rank of 11.

We also tested different values of rank increment per task and observe that the accuracy

increases with larger rank increment. Nevertheless, rank-1 increment provides us comparable

or better performance than the comparing techniques as shown in Table 3.1.

3.3.5 Results with ResNet18

The proposed low-rank increments approach can be generalized to other type of

networks and layers as well. For example, convolutional kernels have four-dimensional weight

33

Table 3.5: Test accuracy for different rank choices of the proposed ITL approach and multi-task

baseline networks for P-MNIST and R-MNIST. Initial rank is rk,1 and rank increment/task is rk,t.

Setup 1 2 3 4 5

(rk,1, rk,t) (1,1) (6,1) (11,1) (11,2) (11,4)

P-MNIST 74.23 82.21 85.61 90.51 93.84

R-MNIST 81.57 89.39 91.09 92.76 94.12

parameters 0.09M 0.1M 0.11M 0.14M 0.2M

tensors as opposed to the two-dimensional weight matrices of fully connected layers. They

are usually formulated as a tensor of output and input channel (Cout, Cin), and the two

dimensions of the convolutional filters (H,W). We reshape the convolutional weight tensors

into matrices of size Cout × CinHW and perform similar low-rank updates per task as we

described for the MLP. We report the results for S-CIFAR-100 and S-miniImageNet datasets

with Resnet18 architecture. For each convolutional layers, we reshaped and decomposed the

convolution weight tensors into the same low-rank factors described in (3.2) and performed

low-rank updates per tasks. We report the results in Table 3.6. For most of the comparing

techniques, results from [8] are reported since we use the same architecture and dataset. For

missing comparisons, we trained the models using same procedure as outlined in [8].

Instead of using a fixed value for rank at each layer as we did in the MLP setup,

we used rank size that is proportional to the size of Cout,i at i
th convolutional layer because

the weights for different layers of ResNet18 are different in size. We select initial rank =

0.1Cout,i for the first task and incremental rank = 0.02Cout,i for the subsequent incremental

tasks.

The results in Table 3.6 show that the performance of every method improves

34

with the convolutional ResNet18 structure over the 3-layer MLP. Nevertheless, our method

outperforms the comparing approaches for both datasets. Adam-NSCL [27] gets better

results on CIFAR100, but it requires 11.21M parameters (compared to 1.33M parameters

required by our method).

Table 3.6: Comparison of test accuracy and forgetting for split CIFAR-100 and split miniImageNet

datasets using ResNet18 architecture.

Method S-CIFAR-100 S-miniImageNet
Accuracy Forgetting Accuracy Forgetting

EWC [24] 43.2 (±2.77) 26 (±2) 34.8 (±2.34) 24 (±4)
ICARL [29] 46.4 (±1.21) 16 (±1) 44.2 24.64
AGEM [7] 60.34 (±2.05) 11.0 (±2.88) 42.3 (±1.42) 17 (±1)
ER-Ring [30] 59.6 (±11.9) 14 (±1) 49.8 (±2.92) 12 (±1)
Ortho sub [8] 63.42 (±1.82) 8.37 (±0.71) 51.4 (±1.44) 10 (±1)
DER [26] 67.16 8.95 57.81 14.70
Adam-NSCL [27] 74.31 9.47 57.92 13.42
IBP-WF [41] 68.25 0 55.84 0
Ours 68.46 (±2.52) 0 59.26 (±1.15) 0

Parallel full-rank 92.7 0 94.5 0

Multitask learning 70.2 0 65.1 0

3.3.6 Effect of updating last few layers.

We performed an experiment on S-CIFAR-100 where we factorize last L layers of the

ResNet18 architecture keeping the rest of the network fixed at trained weights on Task 1. Up-

dating last L = {1, 2, 3, 4, 5} layers provide average accuracy of {34.38, 34.99, 53.41, 57.08, 65.03},

respectively. This result suggests that updating last few layers may suffice since the initial

layers merely work as a feature extractor.

35

(a) Layer 1 (b) Layer 2

Figure 3.4: TopK singular values of weight matrices corresponding to different tasks for S-CIFAR100

with MLP experiments.

3.3.7 Relationship between the newly learned rank-1 weights and the

fixed weights learned in the previous task

The newly learned rank-1 factors are not orthogonal to previous factors, but they

are linearly independent. To demonstrate this relation, we plot the top singular values for

weight matrices in two layers corresponding to 20 tasks in S-CIFAR100 in Fig. 3.4. The

rank of the weight matrices starts at 11 and increases by one for every task. We observed

similar trend in other tasks and layers. This suggests that the learned factors are linearly

independent of frozen factors.

36

3.3.8 Effect of task similarity

Our experiments suggest that a positive knowledge transfer allows low-capacity

models to perform well. We performed an experiment by selecting superclasses of CIFAR100

as separate tasks. If all classes in a task become similar (harder classification), the cross-task

similarity reduces. We observe ∼60% accuracy for rank-1 ITL and Parallel rank-2. If we

select tasks by sampling classes in each task at random, then cross-task similarity increases.

We observe ∼65% accuracy for rank-1 ITL.

37

Chapter 4

Low-rank Generative Networks for

Linear Inverse Problems

4.1 Introduction

Deep generative networks, such as autoencoders, generative adversarial networks

(GANs), and variational autoencoders (VAEs), are now commonly used in almost every

machine learning and computer vision task [42, 134, 135, 136]. One key idea in these

generative networks is that they can learn to transform a low-dimensional feature vector (or

latent code) into realistic images and videos. The range of the generated images is expected

to be close to the true underlying distribution of training images. Once these networks are

properly trained (which remains a nontrivial task), they can generate remarkable images in

the trained categories of natural scenes.

In this work [137, 138], we propose to use a deep generative model for compact

This work has been published in IEEE Transactions on Signal Processing [133].

38

representation and reconstruction of videos from a small number of linear measurements.

We assume that a generative network structure is available, which we represent as

x = Gγ(z) ≡ gγL ◦ gγL−1 ◦ · · · ◦ gγ1(z). (4.1)

Gγ(z) denotes the overall function for the deep network with L layers that maps a low-

dimensional (latent) code z ∈ Rk into an image x ∈ Rn and γ = {γ1, . . . , γL} represents all

the trainable parameters of the deep network. Gγ(·) as given in (4.1) can be viewed as a

cascade of L functions gγl for l = 1, . . . , L, each of which represents a mapping between

input and output of the respective layer. An illustration of such a generator with L = 5 is

shown in Figure 4.1.

We consider a general problem of recovering a video sequence from its linear

measurements. Suppose we are given a sequence of measurements for t = 1, . . . , T as

yt = Atxt + et, (4.2)

where xt denotes the tth frame in the unknown video sequence, yt denotes its observed

measurements, At denotes the respective measurement operator, and et denotes noise or

error in the measurements. Our goal is to recover the video sequence (xt) from the available

measurements (yt). The recovery problem becomes especially challenging as the number

of measurements (in yt) becomes very small compared to the number of unknowns (in xt).

To ensure quality reconstruction in such settings, we need a compact (low-dimensional)

representation of the unknown signal. Thus, we use the given generative model to represent

the video sequence as xt = Gγ(zt) and seek to recover the unknown sequence xt by optimizing

over xt, zt, and γ.

39

Figure 4.1: A candidate architecture we use in our experiments with one fully connected and four

fractionally strided convolutional layers. Generative model: x = Gγ(z) maps a vector z ∈ Rk into an

image x ∈ Rn.

We demonstrate that even if we do not have a pretrained generative network, we

can still reconstruct video frames from their corrupted measurements. We use a generative

model, as described in (4.1), to find compact representation of videos in the form of zt. To

reconstruct a video sequence from the compressive measurements in (4.2), we jointly optimize

over the latent codes zt and the network parameters γ. Since the frames in a video sequence

exhibit rich redundancies in their representation, we impose a low-rank constraint on the

latent codes to represent the video sequence with a more compact representation of the

latent codes. We observe that when we optimize over latent code alongside network weights,

the temporal similarity in the video frames is reflected in the latent code representation.

To exploit similarities among the frames in a video sequence, we also include low-rank

constraints on the latent codes. An illustration of different representations we use in this

chapter are shown in Figure 4.2.

Untrained generative priors have been studied for image reconstruction in Deep

Image Prior (DIP) [14] and Deep Decoder[2]. We observe two main limitations in the DIP

and deep decoder-based video recovery that we seek to address in this chapter. (1) The

40

(a) (b) (c)

Figure 4.2: An illustration of different generative priors discussed in the chapter: (a) Optimizing

latent codes can only reconstruct images in the range of the generative network. (b) Jointly optimizing

latent code and network weights enables recovery of a larger range of images. (c) Low-rank and

similarity constraints on latent code further regularize the problem and potentially explain other

structures in data.

latent codes in DIP and deep decoder methods are initialized at random and stay fixed

throughout the recovery process. Therefore, we cannot infer the structural similarities in

the images from the structural similarities in the latent codes. (2) Both of these methods

train one network per image. A näıve approach to train one network per frame in a video

will be computationally prohibitive, and if we train a single network to generate the entire

video sequence, then their performance degrades.

The key contributions of this work are as follows.

• Latent code optimization can only reconstruct a video sequence that belong to its range.

41

We demonstrate that by jointly optimizing the latent codes with the network weights,

we can expand the range of the generator and reconstruct images that the given initial

generator fails on. We show that even though the network has a very large number of

parameters, the joint optimization still converges to a good solution.

• Consecutive frames in a video sequence share lot of similarities. To encode similarities

among the reconstructed frames, we introduce low-rank constraints on the generator

latent codes. This enables us to represent a video sequence with a very small number

of parameters in the latent codes and reconstruct them from a very small number of

measurements.

4.2 Technical Approach

Let us assume that xt ∈ Rn for t = 1, . . . , T is a sequence of video frames that

we want to reconstruct from the measurements yt = Atxt + et as given in (4.2). The

generative model as given in (4.1) maps a low-dimensional representation vector, zt ∈ Rk, to

a high-dimensional image as xt = Gγ(zt). Thus, our goal of video recovery is equivalent to

solving the following optimization problem over zt:

yt = AtGγ(zt) + et, (4.3)

which can be viewed as a nonlinear inverse problem. Below we discuss three different

methods for solving this inverse problem.

(a) Latent code optimization: fixed γ, update zt.

(b) Joint latent code and generator optimization: update γ, zt

42

(c) Joint optimization with lowrank constraints: update both γ, zt with additional low-rank

constraints on zt.

Original
Frames

Latent
Optimization
(Generator1)

Joint
Optimization

Measured
Frames (80%
pixels missing)

Latent
Optimization
(Generator2)

Handwaving Archery Apply Eye MakeupHandclapping

Figure 4.3: Joint optimization versus latent code optimization. First row is the true images of

the videos sequences. The second row contains the masked samples of the sequences. In the third

row, we reconstruct frames with latent code optimization using a generator trained on some other

frames of the same video sequence (Generator1). In the fourth row, we use latent code optimization

with a generator trained on CIFAR10 dataset (Generator2). The fourth row is the reconstruction

with joint optimization of generator initialized with random weights. We can observe that latent

code optimization does not perform well (row 4) when we do not have generator pretrained on

similar distribution. However, joint optimization performs as good as as or better than latent code

optimization without any pretrained weights.

4.2.1 Latent Code Optimization

In latent code optimization, we assume that the function Gγ(·) approximates the

distribution of the set of natural images that contains our desired image. Thus, we can

restrict our search for the underlying video sequence, xt, within the range of the generator.

43

In other words, we fix the network parameters, γ, and update only the latent codes, zt. This

is the same problem studied in [66] for image compressive sensing using generative models.

Given a pretrained generator, Gγ , measurement sequence, yt, and the measurement

matrices, At, we solve the following optimization problem to recover the low-dimensional

latent codes:

minimize
z1,...,zT

T∑
t=1

∥yt −AtGγ(zt)∥22. (4.4)

The reconstructed video sequence can be computed as x̂t = Gγ(ẑt), where ẑ1, . . . ẑT denote

the solution of the problem in (4.4).

To solve the problem in (4.4), we use a gradient descent approach by foward- and

back-propagating the gradient w.r.t. zt through the fixed generator network.

The latent code optimization in (4.4) can solve the compressive sensing problem

with high probability if the solution belongs to the range of the generator [66]. Otherwise,

its solution is a poor estimate of the original image. Since the range of natural images is very

large, and it is difficult to represent all of them with a single or a few generators, the latent

code optimization application is limited to the case when a pretrained generator is available.

4.2.2 Joint Latent Codes and Generator Optimization

To jointly optimize the latent codes and generator parameters, we use the same

formulation as in (4.4) but optimize it over the zt and γ. The resulting optimization problem

can be written as

minimize
z1,...,zT ;γ

T∑
t=1

∥yt −AtGγ(zt)∥22. (4.5)

44

The reconstructed video sequence can be generated using the estimated latent codes

(ẑ1, . . . , ẑT) and generator weights (γ̂) as x̂t = Gγ̂(ẑt).

The joint optimization of latent code and network parameters offers the optimization

problem a lot of flexibility to generate a wide range of images. We initialize latent codes

with samples drawn from a Gaussian distribution and normalize them to have unit norm.

We initialize γ with random weights using the initialization scheme in [139]. Initilizing the

generator with a pretrained set of weights can potentially serve as a good initialization and

lead to good and faster convergence. We test both variants, but observe little difference

in performance; therefore, we use random initialization of parameters in this work. Each

iteration of joint optimization consists of two steps: 1) latent code optimization and 2)

network parameter optimization. After every gradient descent update of the latent codes, zt,

we update the model parameters with stochastic gradient descent. In all of our experiments

with joint optimization, we learn a single set of network weights for the entire sequence. We

note that it is possible to divide a longer video sequences into small segments and learn

different sets of network weights for each of them. At the end of our reconstruction process,

we have a single set of trained weights γ̂, reconstructed frames x̂t and their corresponding

optimal latent codes ẑt.

The range of any generator is quite limited and presumably depends on the types

of images used during training. To highlight this limitation, we perform an experiment to

reconstruct a video sequence from its masked version where 80% of the pixels are randomly

missing under three different scenarios. The results are summarized in Figure 4.3 using four

video sequences: ‘Handwaving ’ and ‘Handclapping ’ sequences from KTH video dataset and

45

‘Archery ’ and ‘Apply Eye Makeup’ sequence from UCF101 video dataset. We center, crop,

and resize all the frames to 64× 64 pixels. We only select the first 32 frames of the entire

video sequence for testing reconstruction performance. We show the reconstruction under

three different scenarios:

(a) In the first experiment, we train a generator using all but the first 32 frames of the

corresponding video sequences that we call Generator1. Then we used Generator1 as

a prior for the reconstruction of the 32 test frames from their masked measurements.

Since the training and test frames belong to the same video sequence and share lot of

similarities, we can recover the test frames using Generator1 in (4.4).

(b) In the second experiment, we use a generator pretrained on CIFAR10 dataset that

we call Generator2. We reconstruct the test frames using latent code optimization

with Generator2 as a prior. As CIFAR10 contains images from diverse categories, the

pretrained generator should have some generalization but it cannot reconstruct the

test frames with good quality.

(c) In the third experiment, we initialize the generator with a random set of weights

using the initialization technique in [139] and jointly optimize the latent codes and

network parameters. As we can observe from Figure 4.3, joint optimization with

random initialization provides similar or better reconstruction quality than the latent

code optimization with network pretrained on the target class of images.

The latent code optimization results presented in Figure 4.3 should not be surprising

for the following reasons: We are providing a measurements yt of a video sequence to the

generator Gγ(zt) that has k degrees of freedom for each zt; therefore, the range of sequences

46

that can be generated by changing the zt is quite limited for a fixed γ. The surprising

thing, however, is that we can also recover quality images by jointly optimizing the latent

codes zt and network weights γ while solving the compressive sensing problem. If we let γ

change while we learn the zt, then the network can potentially generate any image in Rn

because the network has very large degrees of freedom. Note that in our generator, the

number of parameters in γ is significantly larger than the size of xt, yt or zt. In other words,

we can overcome the range limitation of the generator by optimizing network parameters

alongside latent code to get a good reconstruction from compressive measurements as well

as good representative latent codes for the video sequence even though the network is highly

overparameterized.

4.2.3 Low Rank Constraint

As we optimize over the latent codes and the network weights in joint optimization,

the latent codes capture the temporal similarity of the video frames. To further exploit the

redundancies in a video sequence, we assume that the variation in the sequence of images

are localized and the latent codes sequence can be represented in a low-dimensional space

compared to their ambient dimension. Let us define a matrix Z with all the latent codes as

Z = [z1 z2 . . . zT],

where zt is the latent code corresponding to tth image of the sequence. To impose a low-rank

constraint, we solve the following constrained optimization:

minimize
z1,...,zT ;γ

T∑
t=1

∥yt −AtGγ(zt)∥22 s.t. rank(Z) = r. (4.6)

47

We solve (4.6) using a projected gradient descent method in which we project the

latent code estimates after every iteration to a manifold of rank-r matrices. To do that, we

compute Z matrix and its rank-r approximation using principal component analysis (PCA)

or singular value decomposition (SVD).

In this manner, we can express each of the latent codes in terms of r orthogonal

basis vectors u1, . . . , ur as

zi =

r∑
j=1

αijuj (4.7)

where αij is the weight of the corresponding basis vector. We can represent a video sequence

with T frames with r orthogonal codes, and the lowrank representation of latent codes

requires r×k+ r×T parameters compared to T ×k. This offers r(1T + 1
k) times compression

to our latent code representation. As we observe later, we use r = 4 for k = 256 and T = 32

which gives us compression of 0.14 in latent code representation.

4.3 Experimental Setup

In this section, we describe our experimental setup and empirical results. We focus

our experiments on three different compressive sensing problems: denoising, inpainting, and

spatial compression by random projection. We also show some empirical results for coded

flutter shutter problem where our algorithm is especially suitable. For a video sequence of T

frames, we generate T independent measurement matrices. For color images, we use the

same measurement matrix for each color channels. The total number of frames in each video

sequence is 32, unless stated otherwise. For the low-rank constraint, we select the mean of

48

Algorithm 3 Generative Models for Low Rank Representation and Recovery of Videos

Input: Measurements yt, measurement matrices At, A generator structure Gγ(·)

Initialize the latent codes zt and generator weights γ randomly and normalize zt with its

2-norm.

repeat

Compute gradients w.r.t. zt via backpropagation.

Update latent code matrix Z = [z1 · · · zT].

Truncate Z to a rank-r matrix via SVD or PCA.

Compute gradients w.r.t. γ via backpropagation.

Update network weights γ.

until convergence or maximum epochs

Output: Latent codes: z1, . . . , zT and network weights: γ

49

Table 4.1: Reconstruction performance measured in terms of PSNR for different compressive sensing

problems. We show comparison with TVAL3D (3D extension of TVAL3 [1]) and deep decoder [2].

The results are averaged over five experiments with different random measurement matrices (or noise

in the case of denoising).

Video Sequence
Rotating
MNIST

Handclapping Handwaving Walking
Apply
Eye

Makeup
Archery

Band
Marching

Denoising for additive Gaussian noise of 20dB SNR

TVAL3D 35.8 32.2 30.4 30.5 34.5 31.5 30.6

UP Deep Decoder 28.9 28.4 25.6 28.3 28.1 29.6 28.1

OP Deep Decoder 36.6 31.1 30 31 34.4 33 31.6

Joint Optimization 36.9 32.7 30.7 31.2 36.1 32.1 31.3

Joint Opt + Low Rank 36.8 32.3 30.8 30.7 36.4 32 31.7

Inpainting with 80% pixels randomly missing

TVAL3D 21.1 29.2 23.4 24.5 28.2 27.1 24.8

UP Deep Decoder 25.5 26.5 23.3 26.3 27.2 29 23.3

OP Deep Decoder 30.1 30.2 26.7 27.9 32.4 32.5 26.2

Joint Optimization 29.3 34.9 28.1 28.9 35.8 32 26.8

Joint Opt + Low Rank 29.5 34.3 27.3 27.8 36.6 30.4 27.6

Spatial compressive sensing with compression rate = 0.2

TVAL3D 29.8 32.1 28.9 28 33.9 28.4 27.8

UP Deep Decoder 30 27 24.9 26.7 26.2 27.6 22.5

OP Deep Decoder 35.2 32.9 30.6 29 33.1 31.2 27.4

Joint Optimization 35.3 35.6 29.7 28.9 36 29.3 27.8

Joint Opt + Low Rank 35.4 34.7 29 29.1 35.9 28.8 29.1

the latent matrix Z and top 3 principal components (i.e., we need 4 vectors to represent the

entire video sequence instead of 32.)

Choice of generator. We use the well-known DCGAN architecture [140] for

our generators, except that we do not use any batch-normalization layer because gradient

through the batch-normalization layer is dependent on the batch size and the distribution of

the batch. As shown in Figure 4.1, in DCGAN generator framework, we project the latent

code, z, to a larger vector using a fully connected network and then reshape it so that it can

work as an input for the subsequent deconvolutional layers. Instead of using any pooling

layers, the DCGAN architecture uses strided convolution [140]. All the intermediate strided

convolution layers are followed by ReLU activation. The last strided convolution layer is

50

followed by Tanh activation function to generate the reconstructed image x = G(z). In our

experiment, we use videos of different resolutions. To generate those videos, we use different

generators following the DCGAN framework. In Table 4.2, we report the detailed structure

of the generators we use in the experiments.

The latent code dimension for grayscale 64× 64 video sequence is 64. The latent

code dimension for color 64 × 64 video sequence is 256. The latent code dimension for

256× 256 video sequence is 512. We use Adam optimizer for generator weights optimization

and SGD for latent code optimization. The learning rate for latent code optimization was 10.

We use ADAM optimizer with β1 = 0.9 and β2 = 0.999 for network parameters optimization.

The initial learning rate for network parameter optimization was 0.0025. We decay the

learning rate for network parameter by 25% every 500 iterations.

Comparison with existing methods. We show comparison with classical total

variation minimization based TVAL3D (3D extension of TVAL3 [1]) algorithm and generative

prior based deep decoder [2] algorithm. As we mentioned earlier, deep decoder does not

optimize latent code, rather it uses fixed latent codes which are drawn from Gaussian

distribution.

We use two different deep decoder settings: underparameterized deep decoder (UP

deep decoder) and overparameterized deep decoder (OP deepdecoder). The UP deep decoder

was proposed in the original deep decoder paper [2], but we also report the results for OP

deep decoder because it shows better performance. We use default 6 layer architecture of

deep decoder. In the UP deep decoder, the number of parameters in UP deep decoder is

11,304 and 11,288 for RGB and grayscale images, respectively. The number of parameters

51

in OP deep decoder is 397,056 and 396,544 for RGB and grayscale images, respectively. We

need separate generator for every frame which increases the effective number of parameters

for the video sequence by a factor T for T frames. As T=32 for most of the experiments

reported in the work, the effective number of parameters for OP deep decoder is 12,705,792

and 12,689,408 for RGB and grayscale images, respectively. We report the qualitative

reconstruction results for OP deep decoder only because quantitative reconstruction results

for UP deep decoder are significantly worse. This effect is also recently observed in [141].

We also show some comparison with video extension of deep image prior [14]

algorithm. We discuss details of this approach later in the chapter.

Table 4.2: Generator structures and corresponding number of parameters for different image sizes.

h× w × c denote height , weight, and color channels, respectively.

Network Parameters

Output size 64× 64 64× 64× 3 256× 256× 3

FC + ReLU 524,288 2,097,152 4,194,304

Conv 1+ ReLU 2,097,152 2,097,152 2,097,152

Conv 2+ ReLU 524,288 524,288 524,288

Conv 3+ ReLU 131,072 131,072 131,072

Conv 4+ Tanh/ReLU
or ReLU

1,024 3,072 32,768

Conv 5+ ReLU - - 8,192

Conv 5+ Tanh - - 768

Total # params 3,277,824 4,852,736 6,988,544

Video datasets. We test all the methods on different synthetic and real video

sequences. In this work we report the results for one synthetic sequence which we refer to

as ‘Rotating MNIST ’. In this sequence, we resize one MNIST digit to 64× 64 and rotate

by 2◦ per frame for a total of 32 frames. We experiment on different real video sequences

from publicly available KTH human action video dataset [142] and UCF101 dataset [143].

52

In Table 4.1, we report our results for ‘Handclapping ’, ‘Handwaving ’ and ‘Walking ’ video

sequences from KTH dataset; ‘Archery ’, ‘Apply Eye Makeup’ and ‘Band Marching ’ video

sequences from UCF101 dataset. We center and resize every frame in KTH videos to 64× 64

and UCF101 videos to 256× 256 pixels.

Performance metric. We measure the performance of our recovery algorithms

in terms of the reconstruction error PSNR. For a given image x and its reconstruction x̂,

PSNR is defined as

PSNR(x, x̂) = 20 log10
max(x)−min(x)√

MSE(x, x̂)

where max(x) and min(x) are the maximal and minimal values in x, respectively, and MSE

is the mean squared error. Unless otherwise stated, all the results are averaged over 5

experiments using different measurement matrices or noise.

4.4 Results and Analysis

4.4.1 Sequence Size vs Performance

To evaluate the effect of sequence size on the performance of our method, we

perform joint optimization experiments with video sequences of different sizes. We report

our results for three different video sequences in Figure 4.4. We consider three different tasks.

The first task is video approximation, where we approximate the original video sequences

using a generator (i.e., At is an identity matrix for all t). We observe that as we increase

the size of the video sequence, the quality of approximated video sequences degrades. This

intuitively makes sense because a network with sufficient complexity should be able to

approximate a single image perfectly. However, as we increase the size of the video sequence

53

while keeping the same network structure, our algorithm has to find a new set of optimal

weights that can generate the entire sequence. The reduction in reconstruction performance

is more pronounced when every frame of the video is different. Our second task is image

inpainting with 80% randomly missing pixels and the third task is compressive sensing with

20% available measurements. In both cases, we have far fewer number of measurements

available than that in the approximation task. As the consecutive frames of a video sequence

are close to each other, the increased size of the video sequence actually helps by providing

more effective measurements to the generator. However, the generator capacity still remains

a barrier. On one hand, we have more (diverse) measurements available while optimizing

over a larger video sequence, which can provide a gain in the performance with a longer

sequence. On the other hand, we have to find a set of network parameters that can generate

all the (diverse) frames at once, which can cause a loss in performance with longer sequence.

We observe in our experiments that the recovery performance increases with the length of

the video sequence up to a certain point and then it saturates. We select the size of the

video sequences as 32 for our next experiments based on these results.

4.4.2 Denoising

We first explore the potential of joint optimization on the denoising problem. In

our denoising setup, the measurement matrix is identity and the noise, et, is drawn from

zero mean Gaussian distribution. We report the reconstruction results of different video

sequences for different algorithms in Table 4.1. We observe that joint optimization performs

significantly better than UP deep decoder and provides similar results as TVAL3D and OP

54

0 5 10 15 20 25 30 35

Size of sequence

10

15

20

25

30

35

40

45

50

55

60
P

S
N

R
 (

d
B

)

Video approximation

Inpainting (80% pixels missing)

Compressive measurements (20%)

(a) Handwaving

0 5 10 15 20 25 30 35

Size of sequence

10

15

20

25

30

35

40

45

50

55

60

P
S

N
R

 (
d

B
)

Video approximation

Inpainting (80% pixels missing)

Compressive measurements (20%)

(b) Handclapping

0 5 10 15 20 25 30 35

Size of sequence

24

26

28

30

32

34

36

38

40

42

P
S

N
R

 (
d
B

)

Video approximation

Inpainting (80% pixels missing)

Compressive measurements (20%)

(c) Apply Eye Makeup

Figure 4.4: Sequence size vs performance for video approximation and compressive sensing tasks.

Here the results corresponds to joint optimization. We can observe that increasing video length

improves compressive sensing performance for joint optimization. This effect diminishes with the

increased size of video sequences.

deep decoder. Note that we do not optimize over latent code for deep decoder. We also need

to train a separate network for each frame, which requires huge computational power and

memory. We report the memory and computational complexity comparison in Table 4.3. We

also observe that joint optimization with low-rank constraint provides similar performance.

We present some denoising results for different techniques with additive Gaussian

noise at 20dB SNR on different sequences in Figure 4.5. The performance curves in terms

of average PSNR over a range of SNR levels are presented in Figure 4.6. We observe that

reconstruction performance of joint optimization is better than classical TVAL3D. For large

noise, joint optimization shows better or comparable performance with the deep decoder.

However, for small noise, deep decoder seems to outperform joint optimization. In the case

of deep decoder, we learn a separate network for every frame, and as we observe in the

previous section that for a fixed generator, image approximation performance is better for

55

Original
Frames

Noisy Frames
(20 dB SNR)

TVAL3D

Deep Decoder

Joint
Optimization

Joint
Optimization
+ Low Rank
Constraint

Handwaving Archery Apply Eye MakeupHandclapping

Figure 4.5: Reconstruction of different video sequences using different algorithms for denoising

problem. Handclapping and Handwaving video sequences are 64 × 64 and Archery and Apply

Eye Makeup video sequences are 256× 256. The error bars are standard deviation intervals. The

deep decoder reconstruction here correspond to overparameterized deep decoder structure. All the

comparing algorithms show very good reconstruction quality.

single image. In the low noise regime, denoising problem is almost same as an approximation

problem. In the case of joint optimization, we are learning a single set of network parameters

for the entire video sequence; therefore, joint optimization has a limitation due to the

representation capacity of the generator network. We can also observe in Figure 4.6 that

the curves corresponding to UP deep decoder is flat, which is because of the fact that the

UP deep decoder has a certain representation capacity, and once that capacity is reached

for a single frame the results do not improve even if the noise level decreases.

56

20 25 30 35

Signal to Noise Ratio (dB)

20

25

30

35

40

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(a) Handclapping

20 25 30 35

Signal to Noise Ratio (dB)

15

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(b) Handwaving

20 25 30 35

Signal to Noise Ratio (dB)

20

25

30

35

40

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(c) Archery

20 25 30 35

Signal to Noise Ratio (dB)

15

20

25

30

35

40

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(d) Apply Eye Makeup

Figure 4.6: Reconstruction quality curves for denoising experiments with different algorithms

for different levels of signal to noise ratio. The curves also show standard deviation intervals. We

compare the performance for (a) Handclapping (b) Handwaving (c) Archery (d) Apply Eye Makeup

video sequences. All the comparing methods other than UP deep decoder performs similarly. The

curves suggest that UP deep decoder has reached its limit to generate the sequences.

4.4.3 Inpainting

Our second experiment is on inpainting problem where we randomly drop a fraction

of the pixels from each frame and reconstruct the original video sequence from available pixels.

We report the results for 80% missing pixels in Table 4.1. We observe that reconstruction

performance of joint optimization is significantly better than classical TVAL3D and deep

decoder. We also show some reconstructions of different video sequences from 20% available

pixels (80% pixels are randomly missing) in Figure 4.7. From this figure, we can observe that

57

Original
Frames

Measured
Frames (80%
pixels missing)

Deep Decoder

Joint
Optimization

Joint
Optimization
+ Low Rank
Constraint

TVAL3D

HandwavingHandclapping Archery

Figure 4.7: Some reconstruction results on inpainting problem. Handclapping and Handwaving

video sequences are 64× 64 and Archery sequence is 256× 256. The deep decoder reconstruction here

correspond to overparameterized deep decoder structure. The boxed regions are zoomed for details.

We can observe that joint optimization gives better reconstruction than the comparing algorithms in

terms of details.

even though the reconstruction results of deep decoder is similar to joint optimization in

terms of PSNR, deep decoder fails to reconstruct high frequency details reliably (see Archery

results). Since we optimize the generator using a number of frames in joint optimization,

the missing information in one frame may be available in a neighboring frame, and that can

potentially help the joint optimization perform better in reconstructing the high frequency

details as shown in Figure 4.7.

We also show inpainting performance for different fractions of missing pixels in

Figure 4.8. From the comparison with the other algorithms shown in Figure 4.8, we

can observe that joint optimization with/without low rank constraint outperforms other

comparing algorithms especially when we have very few number of measurements available.

58

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

15

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(a) Handclapping

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

15

20

25

30

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(b) Handwaving

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(c) Archery

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(d) Apply Eye Makeup

Figure 4.8: Inpainting performance for different available measurement rate for (a) Handclapping

(b) Handwaving (c) Archery (d) Apply Eye Makeup video sequences. Measurement rate represents

the available fraction of the total pixels. The error bars are standard deviation intervals. Other than

Archery sequence, joint optimization outperforms the other comparing methods especially at lower

measurement rate.

4.4.4 Compressive Sensing

In this section, we discuss our experiments on recovery of frames from their

compressive random projections. In these experiments, we use separable measurements,

Y = PXQ, where X,Y are reshaped versions of x, y as 2D matrices, P and Q are left and

right random projection matrix. In our experiment, we use P = QT , and select their size so

that the total number of measurements in Y is m. We draw each sample of P from N(0, 1√
m
)

distribution.

59

We summarize the results for this experiment in Table 4.1. We select m = 29× 29

for 64× 64 images and m = 114× 114 for 256× 256 images, which gives us a compression of

factor of approximately 20%. We observe from Table 4.1 that joint optimization with and

without low-rank constraint slightly outperforms TVAL3D. It performs similarly as deep

decoder with much lower memory requirement and computational complexity.

We show some reconstructions for compressive sensing with 20% compressive

measurements in Figure 4.9. We can observe that he reconstructions are comparable with

other algorithms. We also show reconstruction performance for different compression ratio

in Figure 4.10. We can observe from Figure 4.10 that joint optimization with or without low

rank constraint outperforms TVAL3D and UP deep decoder. However, it performs at par

with if not better than OP deep decoder.

4.4.5 Flutter Shutter

We also perform an experiment with a computational photography problem known

as coded flutter shutter [144, 145, 146, 147, 148] in which a low-speed camera is used to

capture a modulated high-speed video. A single observed frame can be modeled as coded

and multiplexed version of a number of frames in the sequence. Our goal is to recover

the individual frames from the multiplexed frame. Mathematically, we can formulate the

problem as

yp =

Mp+M−1∑
t=Mp

Atxt + ep, for p = 1, . . . , T/M, (4.8)

where we observe a single measurement frame for every M consecutive frames. Thus, we

have T
M measurement frames for the entire video sequence. We choose Ai in a similar manner

60

Original
Frames

Compressive
Frames (20%)

Deep Decoder

Joint
Optimization

Joint
Optimization
+ Low Rank
Constraint

TVAL3D

Handwaving Archery Apply Eye MakeupHandclapping

Figure 4.9: Some reconstruction results on spatial compressive sensing problem. Handclapping

and Handwaving video sequences are 64× 64 and Archery and Apply Eye Makeup video sequences

are 256× 256. The compressive frames from Handclapping and Handwaving are 29× 29 whereas

the compressive frames from Archery and Apply Eye Makeup video sequences are 114× 114. The

deep decoder reconstruction here correspond to overparameterized deep decoder structure. We can

observe that the reconstructions are similar for the comparing algorithms.

as the inpainting mask (i.e., 50% pixels are randomly missing). Our joint optimization can

solve this problem because we can jointly estimate multiple frames while solving a single

optimization problem. In contrast, if we train a separate network for every single frame (as

done in DIP and deep decoder), the recovery problem will not be as straightforward. To

estimate the video sequence from coded, multiplexed measurements, we solve the following

recovery problem:

minimize
z1,...,zT ;γ

T/M∑
p=1

∥yp −
Mp+M−1∑

t=Mp

AtGγ(zt)∥2. (4.9)

We present some reconstructed images for coded flutter shutter in Figure 4.11.

Because of the high memory and computational requirements, deep decoder is not suitable

61

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(a) Handclapping

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(b) Handwaving

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

22

24

26

28

30

32

34

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(c) Archery

0.1 0.15 0.2 0.25 0.3 0.35 0.4

Measurement Rate

20

25

30

35

P
S

N
R

 (
d

B
)

Joint Opt

Joint Opt+Low Rank

UP Deep Decoder

OP Deep Decoder

TVAL3D

(d) Apply Eye Makeup

Figure 4.10: Compressive sensing performance for different available measurement rate for (a)

Handclapping (b) Handwaving (c) Archery (d) Apply Eye Makeup video sequences. Measurement

rate (or compression ratio) represents the available fraction of the total measurements. The error bars

are standard deviation intervals. We can observe from the curves that joint optimization performs at

par with the other comparing methods.

for this problem. We present a comparison with TVAL3D reconstruction. Joint optimization

with and without low-rank constraints successfully recover fast motion that TVAL3D fails

to recover.

4.4.6 Rank of the Latent Matrix

In this section, we evaluate the performance of joint optimization with low-rank

constraints for different choice of the rank. We perform inpainting experiment with 80%

62

Measured
Frame

Joint
Optimization

Joint
Optimization
+ Low Rank
Constraint

Original
Frames

TVAL3D

Archery Band Marching

Figure 4.11: Some reconstructions for flutter shutter problem. Here we have a single measurements

for every 4 non overlapping frames. We can observe that TVAL3D suffers ghosting effect for the fast

changing parts of the videos such as the hand or leg movement. However, they perform similarly in

background details reconstruction.

missing pixels using different values of rank. We plot the reconstruction PSNR performance

curves for different video sequences in Figure 4.12. Rank-1 corresponds to using a fixed

(mean) vector as the latent code for all the frames, which would reconstruct the same frame

for the entire sequence. As we increase the rank of the latent code matrix, we observe that

reconstruction quality improves and rank-4 reconstruction gives us a good performance

for all the sequences. Note that for rank-4, we select the mean vector and top-3 principal

components to represent the entire sequence with 32 frames.

4.4.7 Computational Complexity

The computational complexity of our proposed methods vary with the choice of

the generator structure. We have chosen DCGAN generator structure for our experiments.

63

0 5 10 15 20 25 30

Rank of Latent Matrix

18

20

22

24

26

28

30

32

34

36

P
S

N
R

 (
d

B
)

Handclapping

Handwaving

Walking

Archery

Figure 4.12: Effect of different value of rank for low rank constraint in inpainting problem with

80% pixels randomly missing. We also show standard deviation interval for each point.

We compare the computational complexity of our algorithm with UP and OP deep decoder

[2]. The memory requirement mentioned here is for a single frame. The time consumption

is recorded for the inpainting of RGB video sequences with 32 frames from 80% missing

pixels. We report average time consumption over 5 experiments. The number of iterations,

measurement matrix and the videos sequences of the corresponding size were kept the same.

The experiments for this comparison were run on the same CPU equipped with Nvidia Titan

Xp GPU.

From the memory requirement and time consumption, it is evident that joint

optimization is much less complex and consumes much less memory compared to OP deep

decoder. Although the memory requirement and complexity of UP deep decoder comes

close to that of joint optimization, UP deep decoder reconstruction performance is poor

(Table 4.1, Figure 4.6,4.8,4.10).

64

Table 4.3: Comparison of joint optimization with DCGAN and deep decoder in terms of computa-

tional complexity and memory requirement. The memory requirement is for each frame reconstruction.

The average time consumption is calculated for video sequences with 32 frames.

Size 64× 64 256× 256

Memory Requirement
(Forward and Backpropagation)

UP Deep decoder 2.75 MB 44.03 MB

OP Deep decoder 66.48 MB 1239.75 MB

Joint Opt with DCGAN 2.06 MB 10.88 MB

Average time consumed
(Forward and Backpropagation)

UP Deep decoder 120 sec 710 sec

OP Deep decoder 180 sec 3042 sec

Joint Opt with DCGAN 14.2 sec 203 sec

Table 4.4: Effect of initial latent matrix for different inverse problems. We have drawn latent matrix

in way that the initial latent codes form a line. The results are averaged over fifteen experiments

with five different random measurement matrices and three different initializations. We use same

measurement matrices and initializations for both approaches.

Rotating
MNIST

Handclapping Handwaving Walking
Apply Eye
Makeup

Archery
Band

Marching
Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Inpainting
(80% missing)

28.6 30.1 31 34.1 23 26.8 23.8 26.5 34.8 37 30.5 31.9 28.8 29

Compressive
Measurements
(20%)

33.8 35.5 33.1 35.5 24.6 30.1 23.9 28.6 32.9 36.1 29.2 29.9 28.3 29.3

4.4.8 Comparison with Video DIP

In section 4.4.1, we have demonstrated that optimizing over a video sequence

improves reconstruction performance. However, as we have mentioned before, DIP [14]

trains one network per image which puts it at a disadvantage while comparing with joint

optimization. So, we made an extension of DIP for video sequence and refer to it as “Video

DIP”. In this approach, we draw entries in the latent matrix Z from a Gaussian distribution

65

Table 4.5: Performance analysis between Video DIP and joint optimization when all the frames in

the video sequence are not close to each other. The results are averaged over twelve experiments

with four different random measurement matrices and three different initializations. We use same

measurement matrices and initializations for both approaches.

Handclapping
+ Handwaving

Handclapping
+ Walking

Handwaving
+ Walking

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Video
DIP

Joint
Opt

Inpainting
(80% missing)

31.5 33.3 32 33 27.9 29.4

Compressive
Measurements
(20%)

29 32.7 29.4 32.4 26.5 29.6

and keep it fixed as we solve the following optimization:

γ̂ = argmin
γ

T∑
t=1

∥yt −AtGγ(zt)∥22 (4.10)

We use the same architecture for Video DIP as we use for joint optimization.

We observe that even if we extend DIP for video sequence, it still suffers from

two main drawbacks that we mentioned earlier. First drawback is the dependence on the

initialization of latent matrix as it remains fixed. If the initialization is bad, Video DIP will

fail to provide good reconstruction. We demonstrate this effect with an example. We force

the latent codes to fall on a line by fixing two of the latent codes z1 and zT , each drawn

from N(0, 1) and initialize the other latent codes by linear interpolating between z1, zT .

We expect Video DIP to perform worse in this case because we are forcing the network to

map frames to a line in a 2D plane whereas the videos contain much complex motions. We

report the reconstruction results for both Video DIP and joint optimization in Table 4.4.

We experiment on inpainting and compressive sensing with 20% available measurements.

66

Joint optimization performs better than Video DIP in all the cases.

The second drawback is that Video DIP does not assume or retain any similarity

structure in the latent code representation. This will in turn affect the reconstruction quality

if the frames in the videos are very different from one another. To demonstrate this effect, we

create a video sequence with 64 frames temporally concatenating 32 frames from two different

sequences one after another. In Table 4.5, we report average results of four experiments with

different measurement matrices. We perform experiments for inpainting and compressive

sensing problems. For both Video DIP and joint optimization, latent matrices are initialized

with elements drawn from N(0, 1) distribution. Since we initialize the latent matrix at

random, it is possible that similar latent codes are assigned to frames that are quite different.

As the latent codes are fixed in Video DIP, finding the network parameters that map very

different frames to latent codes that are very similar can be a challenging task. In contrast,

joint optimization method updates both the latent codes and network parameters; therefore,

it can adjust the latent codes so that similar latent codes are mapped to similar frames and

vice versa. From Table 4.5, it is evident that joint optimization is better suited for such

videos as it outperforms Video DIP in each case.

The latent codes obtained from joint optimization also reserve the similarities

among video frames. We demonstrate this property using a compressive sensing experiment,

where we capture 20% measurements of each frame with an independent random matrix.

We use 400 frames of ‘Handwaving ’ sequence for this experiment instead of 32 frames. In

the sequence, the handwaving action is repeated multiple times, each of which takes around

45 frames. We compute a cosine similarity matrix between all the image pairs, which is

67

100 200 300 400

Frame Number

100

200

300

400

F
ra

m
e

 N
u

m
b

e
r

(a) Original Frames

100 200 300 400

Frame Number

100

200

300

400

F
ra

m
e

 N
u

m
b

e
r

(b) Compressive Frames

100 200 300 400

Frame Number

100

200

300

400

F
ra

m
e

 N
u

m
b

e
r

(c) Latent Matrix of Video DIP

100 200 300 400

Frame Number

100

200

300

400

F
ra

m
e

 N
u

m
b

e
r

(d) Latent Matrix of Joint

Optimization

100 200 300 400

Frame Number

100

200

300

400

F
ra

m
e

 N
u

m
b

e
r

(e) Latent Matrix of Joint

Optimization + Low Rank Con-

straint

Figure 4.13: Pairwise cosine similarity between frames, measurements or latent codes for extended

Handwaving video sequence where Handwaving action is repeated in an interval of around 45 frames.

Blue indicates highest similarity whereas yellow indicates lowest similarity. We can observe that

the similarity pattern in the original frames are not maintained in the compressive frames. As the

Video DIP latent codes are drawn at random, we do not observe any similarity pattern in them (c).

However, the corresponding latent matrix for joint optimization (d) captures the similarity structure.

Low rank constraint (e) further enhances this similarity.

plotted in Figure 4.13(a). Since compressive measurements are independent of one another,

we do not expect any similarity between them, as seen in Figure 4.13(b). Latent codes

in Video DIP are also independent and randomly selected, and they do not reflect the

similarity structure of the video frames, as shown in Figure 4.13(c). We optimize the latent

68

20 40 60 80

Frame Number

20

40

60

80

F
ra

m
e

 N
u

m
b

e
r

(a) Original Frames

20 40 60 80

Frame Number

20

40

60

80

F
ra

m
e

 N
u

m
b

e
r

(b) Compressive Frames

20 40 60 80

Frame Number

20

40

60

80

F
ra

m
e

 N
u

m
b

e
r

(c) Latent Matrix of Video DIP

20 40 60 80

Frame Number

20

40

60

80

F
ra

m
e

 N
u

m
b

e
r

(d) Latent Matrix of Joint

Optimization

20 40 60 80

Frame Number

20

40

60

80

F
ra

m
e

 N
u

m
b

e
r

(e) Latent Matrix of Joint

Optimization + Low Rank Con-

straint

Figure 4.14: Pairwise cosine similarity between frames, measurements or latent codes for extended

mixed video sequence where 16 frames of 6 different video sequences (Handwaving, Handclapping,

Walking, Archery, Apply Eye Makeup, Band Marching in order) are concatenated in the temporal

dimension. Blue indicates highest similarity whereas yellow indicates lowest similarity. We observe

that adding low rank constraint further bolster the similarity observed in the frames of same video

sequences found by joint optimization.

codes in joint optimization, and they preserve the similarity structure as we can observe

from Figure 4.13(d). From Figure 4.13(e), we can observe that low rank constraint further

enhances the similarity structure in latent code matrix.

To further investigate the similarity structure in the latent codes obtained by joint

optimization, we perform another experiment in which we concatenate 16 frames from each

69

of the six different video sequences (‘Handwaving ’, ‘Handclapping ’, ‘Walking ’, ‘Archery ’,

‘Apply Eye Makeup’, and ‘Band Marching ’, in the same order) to create a new sequence

with 96 frames. We perform compressive sensing experiment on this video sequence with

20% measurements. The reconstruction PSNR for joint optimization is 29.12 dB, joint

optimization with low-rank is 27.9 dB, and Video DIP is 26.4 dB. The cosine similarity

matrices for the video frames, compressive measurements, latent codes for Video DIP, latent

codes for joint optimization, and latent codes for joint optimization with low-rank are

presented in Figure 4.14(a)–(e). We can distinguish the video sequences from the pairwise

similarity matrices of the latent codes we estimate with joint optimization. We observe that

the low-rank constraint improves the similarity matrix.

70

Chapter 5

Tensor Ring Autoencoders for

Linear Inverse Problems

5.1 Introduction

Low-rank tensor factorization is a powerful tool to represent multi-dimensional and

multi-modal data using a small number of low-dimensional factors (cores). Different fields

in science and engineering use low-rank tensor factorization to understand multidimensional

correlation structures in data [149]. Tensor factorization has also been recently used for

compressing data and neural network parameters [150, 151]. In contrast to deep generative

models, tensor factorization usually provides a linear low-dimensional representation of

data [152]. Tensor factors also provide a natural way to separate (or disentangle) different

dimensions or modes of data.

In various applications, such as face recognition, social network analysis, image and

This work has been submitted to British Machine Vision Conference 2022.

71

video completion, and brain signal processing, we often encounter structured datasets that

can be represented as tensors by aligning different modes of data along different dimensions of

tensors [153, 56]. Such structured datasets are often corrupted due to imperfect acquisition

[154, 155]. As a result, we do not have reliable entries for all the points in the tensor

structure. Images with different imperfections can be modeled as the following system of

measurements:

yi = Aixi + ηi, (5.1)

where yi is the ith observed measurement, Ai is the corresponding measurement matrix

(corruption model) and ηi is the corresponding measurement noise. As the problem in

(5.1) is ill-posed, we use different prior constraints on the solution set. One such constraint

is generative prior where the solution set is restricted to the range of trained/untrained

generative network.

In recent years, low-rank based tensor completion, which is a higher-order extension

of matrix completion, has received considerable attention for recovering data from imperfect

tensor structure. However, the low-rank assumption is not sufficient for the recovery of visual

data where the ratio of missing data is extremely high. We propose to learn an optimal

embedding space for tensor factorization to represent and recover the entire data tensor

given the available imperfect measurements.

Deep generative models provide an excellent mechanism to generate high-dimensional

data from low-dimensional codes or learn low-dimensional representation of high-dimensional

data. Examples of such deep generative models include generative adversarial networks

(GAN)[42], variational autoencoders (VAE) [43], and generative latent optimization (GLO)

72

[49]. We use an autoencoder structure to learn the embedding space for tensor factorization

(encoder) and generate estimated data from the tensor factorization (decoder). We map

different visual attributes to different factors (cores/ matrices) of tensor factorization. Such

mapping provides controlling knob for different features. Although it is an inherent advan-

tage of using tensor factorization, different attributes of visual data are so complex that we

cannot map them directly to different factors of multilinear tensor factorizations. Therefore,

we learn an encoder which provides a latent embedding space where tensor factorization can

be used to map different articulations using different tensor factors.

We can consider that we constrained the latent space of the autoencoder with low-

rank tensor factorization. Similarity in visual data often reflect in the similarity in the latent

space. Applying the low-rank tensor factorization in the latent space, we utilize this inherent

similarity in the structured datasets in our advantage to achieve better reconstruction. From

the reconstruction performance with and without tensor factorized latent space for highly

corrupted data has supports our claim.

5.1.1 Our Contributions

Given a corrupted (noisy, missing pixels etc) multi-attribute structured image

dataset, we use the structure in the latent space to recover the corrupted data in the self

supervised setup. In order to achieve that, we learned an ambient embedding space for

tensor factorization using an encoder. We recovered the corrupted data reliably given the

available information (i.e. the corrupted dataset, attribute labels of each data, measurement

matrices for the corruption). We can utilize the similarity in the structured image set with

73

T …
…

…
…

I1 I2 I3

R0=R3	

R1 R2

… … …I1 I2 I3

R1
R1

R2
R2

R3	

Expression 1 Expression I2

Expression

Person

Camera angle

Person 1

Person I1

…

…

Camera angle 1

Camera angle I3

Projection	onto	
tensor	factorization

Encoder Decoder

Latent	codes OutputInput

Tensor	factorization

……

Person 1

Person I1

Expression I2 Expression 1

Camera angle 1

Camera angle I3

E D
T

… …

… …

…

…

…

… …

… …

…

…

…

Measurement	matrices

Figure 5.1: General overview of our proposed tensor ring factorized autoencoder. We map a set

of images {X} to latent codes {Z} using an encoder E. We then perform tensor factorization on

the latent space codes using tensor factorization (shown as T block). Finally, we pass the factorized

representation though the decoder D to generate target images X̂.

tensor ring factorization in the latent space in order to achieve better recovery. In terms

of reconstruction quality, we outperform the other self supervised generative model based

recovery techniques as well as least square solution with tensor ring prior on the image space

which also use structural information.

5.2 Technical Details

Deterministic Autoencoder: Deterministic autoencoder [156] is a network that learns

self mapping using two different networks: one is called the encoder E(.) and the other

one is called the decoder D(.). Encoder maps the signal X ∈ Rn to the latent code z ∈ Rd

and the decoder maps the latent code z back to the input signal X. We can represent the

74

encoder and decoder mappings as

z = EγE (X) and X = DγD(z), (5.2)

where γE and γD are the encoder and decoder network parameters, respectively.

Tensor Factorization: Tensor factorization can represent multi-dimensional and multi-

modal data using a small number of low-dimensional factors. Instead of applying the tensor

factorization directly on the image/signal space, we factorize the low-dimensional latent

space. We seek two main goals with such factorization: 1) limit the degrees of freedom for

the latent space and 2) generate images by changing different attributes in a controllable

manner.

Suppose we have a generative model, Gγ(·), that maps a low-dimensional latent

code zi ∈ Rd to its respective Xi. We denote our entire target set of N latent codes as

{z1, z2, . . . , zN}, where each zi ∈ Rd. These latent codes can be factored into K different

attributes each of which has Ik variants for k ∈ {1, 2, . . . ,K}; therefore, we can write

N = I1 × I2 × . . .× IK . We will denote the latent code tensor with all the zi as TZ , which

is an I1 × I2 × . . .× IK × d tensor, and TZ (i1, . . . , iK , :) denotes one of the d-dimensional

latent codes.

We assume that the latent space have rank, r ≤ min{N, d}. Assuming the

similarities among attributes in the signal domain is reflected in the latent space, we can

represent the entire latent space using different types of tensor factorization. We use tensor

ring factorization in this work. Visual representations of these decompositions are depicted

in Figure 5.1. Brief description for tensor ring factorization is presented below. For detailed

discussion, we refer the readers to [149, 157].

75

Tensor Ring Factorization A tensor ring (TR) decomposition can represent a data

tensor TZ using K different 3-order tensor cores: C(1), . . . ,C(K), where C(k) ∈ RRk−1×Ik×Rk

and (R1, . . . , RK) denotes the multilinear rank with R0 = RK . All the entries in TZ can be

represented as

TZ (i1, . . . , iK) =
∑

R1,...,RK

K∏
j=1

C(j)(Rj−1, ij , Rj), (5.3)

which can also be represented as

TZ (i1, . . . , iK) = Trace[C(1)(:, i1, :) . . .C
(K)(:, iK , :)], (5.4)

where C(k)(:, ik, :) denotes ikth slice of C(k) that is an Rk−1 × Rk matrix and the trace

operation sums up all the diagonal entries.

The total number of elements in TZ is d
∏K

k=1 Ik. The total number of parameters

in TR factorization reduces to
∑K

k=1 IkRk−1Rk with R0 = RK . If we set all the Rk = R, then

the total number of parameters in TR factorization becomes R2
∑

k Ik, which is significantly

less than
∏

k Ik in TZ . In the above formulation, we ignored latent code dimension, d,

because we can consider one or multiple factors in TR factorization to represent the latent

space in implementation.

Image Recovery Using Tensor Factorized Autoencoder: With our proposed tensor-

based autoencoder, we can recover samples that were corrupted at the training time (e.g.,

missing blocks/views/frames in an image/video). To learn the tensor factors from corrupted

data, we formulate the loss function in (5.5) incorporating the measurement matrices for

the observed samples. Then we can minimize the loss function in (5.5) to learn TE (Y),γE

and γD.

76

lossAE,missing =
N∑
i=1

∥EγE (Yi)−TEγE
(Y)∥2+

λ1∥AiDγD(E(Yi))− Yi∥2 + λ2∥AiDγD(TE (Y))− Yi∥2.

(5.5)

Dual Input Loss: The three terms of the loss function in (5.5) are targetted

to minimize the mismatch between encoder output and factorization, encoder-decoder

measurement loss and factorization-decoder measurement loss respectively. λ1 and λ2 are

weights for different loss terms. The first term of the total loss in (5.5) measures the

mismatch between encoder output and factorization. It shows how well the learned weights

of the encoder can generate the factorized latent space. The second term of the total loss

in (5.5) evaluates how well the encoder output performs in terms of reconstruction. The

first term can only measure how well the encoder can factorize, but it is possible to find a

factorized representation that may not give a meaningful reconstruction. The third term in

(5.5) measures how well the decoder performs when given the latent codes formed by the

tensor factors. One might wonder about the necessity of the third term. If the first term

were perfectly zero, the third term would not be necessary. However, we cannot perfectly

learn a mapping where the missmatch between encoder output and factorization is zero.

That’s where the third term comes into play. Even though the output from the encoder and

the output from the tensor factors are very close, they may provide very different realizations

when passed through decoder depending on the direction of mismatch. So, we kept an extra

term to make sure that the latent represent from the tensor factorization also generates as

good images as encoder output does.

We present a pseudocode for the missing view recovery algorithm in Algorithm 4.

77

Algorithm 4 Learning Tensor Factorization using Autoencoder from Corrupted Data

Input: Available data Xi, attribute label of the data, measurement model A.

Initialize encoder and decoder weights and tensor cores randomly

for k = 1, 2, ...,K do ▷ K steps or until convergence

Calculate the loss function in (5.5).

Calculate gradients of loss w.r.t. training parameters in TE (X), E(.) and D(.) via

backpropagation.

Update them using gradient descent.

end for

Intermediate Output: Optimized TEγE
(X), EγE (.), and DγD(.).

Use optimized TE (X) and DγD(.) to estimate the missing views by X̂i = DγD(TE (X)).

Output: Xi

We illustrate the visual representation of our proposed algorithm in Figure 5.1.

5.3 Experiment and Results

Dataset: We used Small NORB [158], RaFD [159] and 3dShapes [160] datasets in our

experiments. In these datasets, images of different attribute variation is available. We select

25 toys with 3 lighting conditions, 3 elevations and 9 azimuth angles (2025 images) from

Small NORB dataset. We select 15 persons with 5 camera angles, 8 expressions and 3 eye

gazing (1800 images) from RaFD. We selected 4 object shapes, 5 floor colors and 5 floor

colors at 8 object scales (800 images) from 3dShapes dataset.

78

Original

Tensor
Ring (AE)

Corrupted
Images

Small NORB RaFD 3dShapes

LSTR

CSGM

Deep
Decoder

Small NORB RaFD 3dShapes
(a) Denoising (b) Inpainting

CSAE

Figure 5.2: Reconstruction results for (a) denoising and (b) inpainting on Small NORB, RaFD and

3dShapes datasets.

Setup: In our experiments, we used a fully convolutional autoencoder that maps each

image to a latent code z ∈ R16×4×4, which sets d = 256(16× 4× 4) in our experiments. Our

encoder comprises four convolutional layers (32,64,128,16 filters) and decoder comprises of

four transpose convolutional layers (256, 128,64,3 (rgb) /1 (grayscale) filters) each with 3× 3

filters with stride=2 followed ReLU activation except for the last layer (Sigmoid instead of

ReLU). We use low-rank tensor ring factorization in the latent space. We use the same rank

for all the cores of tensor ring. We empirically selected the lowest ranks for each dataset

that provide good performance. We reported results with rank=25 for Small NORB, 30

for RaFD and 15 for 3dShapes. We have initialized the cores and bases for different tensor

factorization using samples drawn from N(0, 0.1) distribution. We kept fixed seed for every

setup in order to achieve fair comparison. As we consider a batch of images correspond to

79

a slice of a tensor core, we could perform minibatch optimization which reduced memory

requirement during training. We have used Adam [161] optimization for network parameters

optimization and Stochastic Gradient Descent (SGD) for optimizing tensor factorization

parameters. The learning rate for Adam was selected to be 0.001 and SGD to be 1 (or 0.1).

We let the optimization run for enough iterations to converge. For autoencoder setup, we

set weight terms, λ1 and λ2 to be 1.

Comparison: We tried to solve the inverse/compressive sensing problems (e.g. denoising

and inpainting) without ground truth images. We show comparison with 4 different baselines

which also perform the same task.

CSAE: We use the encoder of a deterministic autoencoder to learn the latent space from the

corrupted measurements and pass the learned latent codes through decoder and measurement

matrices to match with the observed measurements. One can refer to the second term of

Eqn (5.5) as the objective this approach minimizes. Eventually we learn the original image

given the corrupted measurements without having the ground truth. We term it CSAE

(Compressive Sensing with Auto Encoder).

CSGM: We tried to solve the compressive sensing problems given that we have a trained

generative model with the learned distribution of the target data. It is similar to the work

of Bora et. al. [66]. We term it CSGM following [66].

LSTR: We utilize the attribute information of the structured dataset and use it as a prior

to minimize the least square measurement loss with SGD. We term it LSTR (Least Square

minimization with Tensor Ring).

Deep Decoder: Finally we use one of the self supervised generative prior based approaches

80

to solve the compressive sensing problems. We use Deep Decoder [2] for comparison.

We empirically demonstrate that our proposed Tensor Ring factorized Autoencoder

outperforms all the four baselines in terms of reconstruction quality since we are using the

advantages of both the structural information and generative priors.

Denoising: In this experiment, we added Gaussian noise of 20dB to all the images. We

report the average reconstruction quality (dB PSNR) for different comparing techniques in

Table 5.1. We also demonstrate some reconstructed images in Figure 5.2. We can observe

that utilizing the structure in latent space helps us outperform the other approaches. Deep

deocoder uses a single network per image recovery. So it cannot use information from the

other measurements of the structure. Although CSGM uses all the training data to train

the generator, it does not explicitly use the structural information. We also observe that

LSTR does not provide good reconstruction performance even though it is also using the

structural information because images usually do not have the tensor structure in their

representation. CSAE approach performs well as it learns the optimal embedding space

for solving the inverse problem using an encoder. However, it falls behind our proposed

approach since it does not use any structural information. By learning an embedding space

to apply tensor structure, we are utilizing the structural information to our advantage.

Image Inpainting: It is often observed in real scenario that some of the images of the

structured image set are corrupted instead of being completely unavailable. We perform a set

of experiments on different datasets where we missed a 16× 16 block from all the images at

81

random locations. We feed the structured image set to the AE based tensor factorized scheme.

Our tensor factorized autoencoder utilize the strength of the structured organization of the

dataset to better reconstruct the images with missing blocks. We report the reconstruction

results in Table 5.1. We also demonstrate some reconstructions in Figure 5.2. We can

observe that we outperform the other approaches especially in recovering the original details

of missing blocks as shown in Figure 5.2. Although Deep Decoder and CSAE perform very

close to our approach, they fail to recover reliable details in the missing blocks. Furthermore,

deep decoder is using a separate network for every image recovery. So, the memory and

parameter requirement for deep decoder is significantly higher than ours.

Table 5.1: Reconstruction quality (PSNR in dB) for image denoising and inpainting with different

comparing approaches.

LSTR
Deep
Decoder

CSGM CSAE
Tensor
Ring AE

Denoising

Small NORB 23.11 27.4 28.4 27.56 31.71

RaFD 20.3 25.14 26.67 29.66 32.1

3dShapes 20.13 28.06 28.63 33.52 35.97

Inpainting

Small NORB 24.7 35.1 28 33.49 35.29

RaFD 21.31 31.87 24.83 31.91 33.55

3dShapes 21.92 35.22 27.26 36.8 39.43

82

5.4 Performance as an Image Generator

5.4.1 Image Generation from Noise

Deterministic autoencoders are not usually considered to be good generative

models. It is necessary to have constraints on the latent space to derive such ability [45].

Recently, IRMAE [57] also demonstrated that deterministic autoencoder can be used as a

generative models with some simple modification (e.g. adding fully connected layers without

nonlinearity) in the bottleneck. We demonstrate that the decoder of the tensor factorized

autoencoders can generate high-quality images from random Gaussian noise. We sample

random latent codes from a multivariate Gaussian distribution using a covariance matrix

calculated from the latent codes of the training data. We show that we can generate class

specific images from noise distribution when we sample latent codes with class-specific

respective mean and covariance. We also report the noise generation results of baseline

autoencoder (vanilla autoencoder), IRMAE [57] and FactorVAE [162] in and Table 5.2.

FactorVAE also uses the disentanglement of different attributes/articulations for the image

generation. We can observe that despite deterministic autoencoders’ well-known inability to

generate images from noise [57], our tensor factorized deterministic autoencoders perform

significantly better than baseline autoencoder and at par with IRMAE and FactorVAE for

most of the cases.

83

Table 5.2: Frechet Inception Distance (FID) values for images generated from noise.

Small NORB RaFD 3dShape

Baseline AE 202.44 227.47 123.16

IRMAE 246.19 243.79 76.11

Factor VAE 201.7 78.16 94.05

Tensor Ring AE 173.62 114.10 97.78

5.4.2 Latent Space Interpolation

In this experiment, we analyze if we can interpolate between two image attributes by

linearly interpolating between the respective tensor slices in the latent space. We report such

interpolation results for 3dShapes dataset in Figure 5.3. We can observe that the baseline

autoencoder fails to generate smooth transition between shapes, but tensor factorization-

based models generate smooth transition with realistic images in the interpolation path. We

also show latent space interpolation results for FactorVAE[162], β VAE [163], and IRMAE[57]

in Figure 5.3.

Table 5.3: Training images representation performance (PSNR in dB).

Tensor Ring AE Image Space Tensor Ring Baseline AE

Small NORB 38.85 28.56 34.52

RaFD 33.7 21.27 32.49

3dShapes 40.3 33.37 37.05

5.4.3 Data fitting performance

We learn an ambient space for tensor factorization. We observed how tensor

factorized autoencoder performs in terms of clean data representation. We show comparison

84

(a) Interpolating object color. (b) Interpolating object shape.

Factor
VAE
Beta
DFC
VAE

IRMAE

Baseline
AE

Tensor
Ring AE

Figure 5.3: Interpolation in the latent space to change object shape/size using different generators.

Left and rightmost images are part of training set. The views in between are synthesized using linear

interpolation in latent space.

with image space tensor factorization and baseline autoencoder in terms of representation

performance (Table 5.3). We can observe that learning an ambient space significantly

improves tensor factorization performance. It also surpasses the unconstrainted baseline

autoencoder performance.

85

Chapter 6

Consensus Equilibrium to Combine

DIP with RED

6.1 Introduction

Image blurring is a common artifact that arises due to a variety of problems during

the image capturing stage, such as, motion/shaking of the camera, out-of-focus acquisition,

atmospheric aberrations, and low-light conditions. Image deblurring is the task of resolving

the blurring artifacts when the source of the blur is known. The problem can be formalized

as the task of recovering a true signal x from blurred measurements y and given the blurring

operator A, such that,

y = Ax+ η, (6.1)

This work has been published in IEEE International Conference on Acoustics, Speech and Signal
Processing 2021[164].

86

where η is the noise introduced during measurement acquisition process, which is assumed

to be additive white Gaussian noise (AWGN). The blurring operator A convolves a blurring

kernel with the true signal in the measurement model.

Image deblurring is an ill-posed problem when the operator A is rank deficient

and in the presence of noise. Therefore, there can be infinitely many solutions x that satisfy

equation (6.1). A general approach to solving ill-posed problems is to add a regularizer that

constrains the solution set to a small subset of the feasible space. We can write a general

regularized inverse problem as

min
x
∥y −Ax∥22 + λρ(x), (6.2)

where ρ(x) is the regularizing penalty function, and λ is a regularization parameter. The

choice of regularizer is specific to the type of signals x that are desired. In the case of

images, a wide variety of regularizers have been proposed to regularize reconstruction

in the denoising setting, i.e., when A is the identity operator. These include “classical”

prior models [165, 166, 167, 168, 169, 170, 171, 172], and deep learning models [173, 174].

Moreover, sophisticated denoiser models that leverage nonlocal self-similarity in images are

popular in state-of-the-art methods, such as, block-matching with 3D transform denoising

(BM3D) [166], nonlocal means (NLM) [165], and NCSR [175].

In the context of general inverse problems with rank deficient A, a relatively new

line of work has opted to replace explicit regularizing penalty functions ρ(x) with the deep

network-based models or the sophisticated denoisers. Of note, are the plug-and-play (PnP)

framework [176], and regularization by denoising (RED) [177]. The PnP framework tackles

problem (6.2) using proximal gradient descent and replaces the proximal mapping with

87

Figure 6.1: Consensus Equilibrium of model mismatch, RED, and DIP. The top images result from

the action of different agents that are combined to produce the CE solution.

respect to ρ(·) with a signal denoiser D(x). In a related manner, the RED technique assumes

that the regularizing penalty function is given by

ρ(x) = xT (x−D(x)). (6.3)

Note that the penalty function above is only valid when the denoiser is locally homogeneous

with a symmetric Jacobian [178]. Otherwise, RED assumes that ∇ρ(x) = x − D(x). We

will focus in this work on the RED approach although our formulation also extends to the

PnP framework.

In another line of work, untrained convolutional network architectures have been

used as image prior. Deep image prior (DIP) [179] and its variants [2, 133] utilize the

structural bias of convolutional networks towards producing natural images [180] in fewer

update iterations compared to modeling noise. Using x = G(z,θ) where G(z,θ) is a generator

network using latent code, z and network weights θ, we can write the DIP prior as

min
θ
∥y −AG(θ)∥22. (6.4)

88

These untrained models, however, are susceptible to modeling measurement noise as well

[179, 180] given enough optimization iterations.

In this work [164], we focus on an ensemble regularization framework, called

DeepRED [181], that combines the RED approach with a nonlocal means denoiser and the

deep image prior architecture. We recast the DeepRED problem in the context of Consensus

Equilibrium (CE) [182] and specify the set of equilibrium equations for each of the model

mismatch function, the RED denoiser, and the DIP denoiser that need to be satisfied by the

target reconstructed image, as illustrated in Fig. 6.1. Contrary to the DeepRED solution

that relies on an alternating direction method of multipliers (ADMM) algorithm, we use

a fixed-point algorithm to solve the set of equilibrium equations. We demonstrate that

the versatility provided by the CE framework leads to improved deblurring image quality

compared to DeepRED, especially under high noise and high blurring situations. We also

derive sufficient conditions for the generative prior network of DIP to guarantee convergence

of the fixed-point iteration.

In the next section, we provide further details on the two related works, namely,

DeepRED and consensus equilibrium. We then develop the CE formulation of the DeepRED

problem in Section 6.3 and set up the corresponding fixed-point problem that is solved

using the Mann iterations. A sufficient condition that guarantees convergence of the Mann

iterations is that the fixed-point operator be nonexpansive. To that end, we derive sufficient

conditions on the generative prior that guarantee that the corresponding fixed-point operator

is nonexpansive. Finally, we validate the performance of our proposed approach in Section 6.4

and demonstrate improved reconstruction quality over DeepRED, DIP, RED, and NCSR.

89

6.2 Related Work

The deep image prior powered by the RED framework, or DeepRED [181], combines

the representation power of the deep image priors with the superior denoising capabilities of

a nonlocal means denoiser. [181] proposed an ADMM algorithm for solving the augmented

Lagrangian of the DeepRED problem given by:

min
θ,x

1
2∥AG(θ)− y||22 + λ

2x
T (x−D(x))

+µ
2 ||x− G(θ)− u||22 −

µ
2∥ u∥

2
2,

(6.5)

where u denotes the scaled dual multiplier, and µ is a step size parameter. The above

formulation ties the inaccuracies of the measurement process to the rich parameterization of

the generative prior. Although this formulation works well for low noise and low blurring

scenarios, it suffers in the high noise setting as it tends to overfit the noisy measurements, a

behavior that has also been seen in DIP.

Consensus equilibrium [182] presents a multi-agent satisfaction framework that

generalizes consensus optimization to cover models and operators that are not associated

with explicit optimization problems. The CE framework extends the consensus optimization

objective

min
xi,z

N∑
i=1

µifi(xi) s.t. xi = z,

N∑
i=1

µi = 1, (6.6)

to defining a set of N vector-valued maps Fi : Rn → Rn. The CE of these maps is then

defined as any solution (x∗,u∗) ∈ Rn×nN that satisfies the equations

Fi(x
∗ + u∗

i) = x∗, i = 1, . . . N

N∑
i=1

µiu
∗
i = 0,

(6.7)

90

where u∗ :=
[
u∗T
1 , . . .u∗T

N

]T
. In the following sections, we derive the CE equations for the

DeepRED problem, setting up the corresponding fixed-point equations, and demonstrating

the improved performance over DeepRED’s ADMM implementation.

Other recent efforts on the image deblurring have been based on variants of the fast

iterative shrinkage/thresholding algorithm (FISTA) [183, 184], and on trained generative prior

[66]. While these methods demonstrate state-of-the-art performance on image deblurring,

they could be combined with our framework as additional mapping functions in the CE

formulation.

6.3 Consensus Equilibrium for DIP and RED

In this section, we describe a consensus equilibrium perspective for combining DIP

and RED to regularize linear inverse problems.

6.3.1 DeepRED as fixed-point CE

We begin with a reformulation of the DeepRED objective, which disentangles the

parameterization of the generative prior from the measurement process:

min
x,θ

µ1∥y −Ax||22 + µ2x
T (x−D(x)) + µ3||x− G(θ)||22. (6.8)

It can be seen from the above formulation that consensus is sought for three objectives:

f1(x,θ) = ∥y −Ax∥22

f2(x,θ) = xT (x−D(x))

f3(x,θ) = ∥x− G(θ)∥22,

91

where the measurement mismatch objective, f1(x,θ), and the RED objective, f2(x,θ), are

in fact independent of θ. Following the CE framework, we can now define three agents in

the form of proximal mappings with respect to each of the objectives fi as follows:

F1(v) = argmin
x

∥y −Ax∥22 + 1
2σ2 ∥v − x∥22

F2(v) = argmin
x

∥xT (x−D(x))∥22 + 1
2σ2 ∥v − x∥22

F3(v,θ) = argmin
x,ϕ

∥x− G(ϕ)∥22

+ 1
2σ2 (∥v − x∥22 + ∥ϕ− θ∥22)

(6.9)

Consensus equilibrium for these agents is defined as in (6.7), where the variables ui are slack

variables that relate to the dual multipliers in the consensus optimization setting.

The evaluation of F1 and F2 is relatively straightforward and is given by the

following equations

F1(v1) =

(
ATA+

1

2σ2
I

)−1 (
ATy +

v1

2σ2

)
F2(v2) =

2σ2D(v2) + v2

2σ2 + 1

(6.10)

The DIP agent, on the other hand, is a function of both the signal x and the generative

prior parameters ϕ. Its evaluation can be performed sequentially by first computing ϕ∗,

followed by the update for v3 using the following equations:.

ϕ∗ = argmin
ϕ
∥v3 − G(ϕ)∥22 +

2σ2 + 1

2σ2
∥ϕ− θ∥22

F3(v3) =
v3

2σ2 + 1
+

2σ2

2σ2 + 1
G(ϕ∗)

(6.11)

Notice that with the evaluation of ϕ∗ in (6.11), we solve for a regularized set

of generative prior parameters. This additional regularization helps in limiting the noise

overfitting behavior that is generally observed with DIP. The regularization also relaxes the

92

Gaussian Kernel (σk = 1.6) Uniform Kernel
Algorithm

Butterfly Leaves Parrots Starfish Average Butterfly Leaves Parrots Starfish Average

CE-DIP+RED 32.27 32.76 33.34 33.09 32.87 31.31 31.32 32.32 31.1 31.55

DeepRED 32.19 32.27 32.84 32.74 32.51 31.44 31.21 32.03 31.06 31.43

DIP 31.21 31.51 31.91 31.83 31.62 30.26 30.38 31.00 30.42 30.51

RED 31.66 31.93 33.33 32.49 32.35 30.41 30.13 31.83 30.57 30.74

NCSR Deblur 30.84 31.57 33.39 32.27 32.02 29.68 29.98 31.95 30.28 30.47

Blurred 22.81 22.12 26.96 25.83 24.43 19.07 18.28 23.87 22.56 20.94

Table 6.1: Comparison of reconstruction PSNR among the different algorithms under low noise

setting (σn =
√
2/255).

dependence on the heuristic of assigning an arbitrary number of iterations while updating ϕ

to limit the noise overfitting.

As in [182], we reformulate CE as a fixed-point problem. Denoting vi = x+ ui,

we have vµ :=
∑
i
vi = x. Further with F (v) = [F1(v1)

T , F2(v2)
T , F3(v3)

T]T and Hµ(v) =

[vT
µ ,v

T
µ ,v

T
µ]

T , where v = [vT
1 ,v

T
2 ,v

T
3]

T , the CE equations are rewritten as:

F (v) = Hµ(v). (6.12)

Due to the linearity of Hµ, we can use Corollary 3 of [182] to define the following equivalent

fixed-point problem:

(2Hµ − I)(2F − I)(v) = v, (6.13)

where I is the identity operator.

Next, define the operator T := (2Hµ − I)(2F − I). When T is nonexpansive and

has a fixed-point, the Mann iteration can be used to solve for the fixed-point of (6.13) as

follows:

vk+1 = (1− ρk)vk + ρkT (vk), (6.14)

where ρk ∈ (0, 1) is a step size parameter. Theorem 5.15 in [185] shows that when T is

nonexpansive, a step size sequence that obeys
∑

k∈K ρk(1 − ρk) = +∞ allows (6.14) to

93

Figure 6.2: Image deblurring performance of DeepRED and CE formulation under (a) the presence

of high noise (σn = 8/255,σk = 1.6) and (b) the presence of high blurring (σn =
√
2/255,σk = 2.4).

Figure 6.3: Reconstruction quality resulting from the combination of the three different agents.

converge weakly to a point in the fixed-point set of T . Examples of such sequence are the

constant step size ρk = ρ ∀k, and the p-series, ρk+1 = ρkk
−c for 0 < c < 1, which enjoys

faster convergence.

6.4 Experimental Validation

We follow an experimental setup similar to the that developed in [181], [177] and

[186]. Given a blurred and noisy image with a known degradation operator, the goal is to

94

(σk,
σn)

Algorithms Butterfly Leaves Parrots Starfish Average

(1.6,
8

255)

CE 28.59 28.79 30.66 29.63 29.42
DeepRED
(2000 iters)

28.69 28.23 30.1 28.71 28.93

DeepRED
(20000 iters)

22.47 24.1 22.81 22.59 23

Blurred 22.55 21.89 26.34 25.32 24.02

(1.6,
32
255)

CE 24.32 24.34 27.19 25.42 25.32
DeepRED
(250 iters)

25.18 23.83 27.02 25.1 25.28

DeepRED
(1000 iters)

22 22.12 23.64 21.99 22.44

Blurred 19.9 19.64 21.59 21.21 20.58

(2.4,√
2

255)

CE 28.33 27.93 30.43 29.39 29.02
DeepRED 22.12 21.37 26.41 25.2 23.78
Blurred 20.29 19.54 24.94 23.66 22.11

(3.2,√
2

255)

CE 25.62 24.4 28.1 27.21 26.33
DeepRED 19.47 18.76 24.4 23 21.41
Blurred 18.69 18.03 23.85 22.36 20.73

Table 6.2: Comparison of reconstruction PSNR for different noise levels and blurring kernel

strengths.

recover the sharp and noise-free original image. We consider blurring kernels with varying

blurring effect controlled by the parameter σk and add varying levels of i.i.d. Gaussian noise

with variance σn.

To evaluate the reconstruction, we used four images from the NCSR dataset [175]

(Butterfly, Leaves, Parrot and Starfish) similar to the selection in [181]. Each of these

images has 256× 256 pixels with RGB color channels. For fair comparison with [181], we

also use the same nonlocal means (NLM) denoiser. We tuned the parameters for a single

image (Butterfly) at low noise (σn =
√
2/255) and low-blur (σk = 1.6) setup. The step

size parameters were set to ρ0 = 0.9 and c = 0.1. We used σ = 1, 4, 20 for high, medium

and low noise setup, respectively. We used ADAM optimizer with learning rate 0.001,

95

β1 = 0.9, β2 = 0.999 to compute ϕ∗ in equation (6.11).

In the first set of experiments, we replicate the evaluation setup from [181]. Two

blurring kernels are used; one kernel is a 9× 9 pixel uniform blur, and the other is a 25× 25

pixel Gaussian blur of variance σk = 1.6. For both blurring cases, the measurement noise

variance is set equal σn =
√
2/255. The deblurring results are shown in Table 6.1 which

lists the reconstructed peak signal to noise ratio (PSNR) values for the different deblurring

algorithms, namely, DeepRED [181], DIP [179], RED [177] and NCSR Deblur [175]. Notice

that our proposed CE-based solution (CE-DIP+RED) achieves the best performance in

almost all cases, resulting in an average improvement over DeepRED of 0.36dB in PSNR for

the Gaussian blurring case and 0.12dB in the uniform blurring case. We can also observe

that for this experimental regime, DeepRED performs nearly as well as CE-DIP+RED and

outperforms the other three methods.

Weights on
Agents
(Mismatch,
RED,DIP)

Butterfly Leaves Parrots Starfish Average

Mismatch
(1,0,0)

21.71 21.85 22.98 22.65 22.3

Mismatch
+ RED
(0.5,0.5,0)

21.82 21.92 23.19 22.84 22.44

Mismatch
+ DIP
(0.5,0,0.5)

23.36 22.54 26.56 25.4 24.46

Mismatch
+RED+DIP
(0.5,0.1,0.4)

24.32 24.34 27.19 25.42 25.32

Blurred 19.9 19.64 21.59 21.21 20.58

Table 6.3: Reconstruction PSNR for the different agents.

96

The above experiment is considered a low-noise and low-blur regime. For a more

extensive evaluation, we test the performance of CE-DIP+RED and compare it to DeepRED

under higher noise and blurring regimes. The results are reported in Table 6.2. We can

observe that under the higher noise condition, the performance of DeepRED is less stable in

that it achieve a high PSNR in early iterations but converges to a solution with much lower

PSNR. This behavior is consistent with the analysis from [180] and [179] and is most likely

a result of the deep image prior overfitting the noise in the measurements. On the other

hand, our CE-DIP+RED does achieves a higher reconstruction PSNR at convergence and

does not succumb to the noise overfitting problem. A qualitative evaluation is also shown for

medium noisy measurements regime (σn = 8/255) in Figure 6.2. In the case of large blurring

artifacts, Table 6.2, also shows that our CE-DIP+RED significantly outperforms DeepRED.

Qualitative results are also shown for medium blurred images (σk = 2.4) in Figure 6.2.

Finally, we conduct an ablation study to realize the effect of each of the different agents on

the reconstruction quality. For these experiments, we used a Gaussian kernel with σk = 1.6

and measurement noise variance σn = 32/255. Table 6.3 shows the reconstruction PSNR

and demonstrates that the combination of all three agents results in the best reconstruction

performance. Moreover, the table shows that benefit of the generative prior over the NLM

denoiser. A qualitative comparison is also shown in Figure 6.3.

97

Chapter 7

Phase Retrieval with Deep

Generative Network

7.1 Introduction

The phase retrieval problem seeks to recover a real- or complex-valued unknown

signal x∗ ∈ Rn from its (possibly noisy) amplitude-only observations y ∈ Rm of the form:

yi = | ⟨ai, x∗⟩ |+ ei, i = 1, ...,m, (7.1)

We construct A = [a1 a2 ... am]T with i.i.d. Gaussian entries. For simplicity, we ignore the

noise ei. We consider a setting with m < n, thus in general, the inverse problem in (7.1) is

highly ill-posed.

A conventional approach for solving such a problem is by constraining the solution

to a setM⊆ Rn that captures some sort of known structure that x∗ is expected to obey.

This work has been published in IEEE International Conference on Acoustics, Speech and Signal
Processing 2019[78].

98

The resulting optimization can be written as

x̂ = argmin f(y; |A x|) (7.2)

s.t. x ∈M.

A common modeling assumption on x∗ is sparsity, which alleviates the ill-posed nature of

the inverse problem, and in fact, makes the accurate recovery of x∗ possible.

However, while being powerful from a computational standpoint, the sparsity prior

has somewhat limited discriminatory capability, and it is certainly true that nature exhibits

far richer nonlinear structure than sparsity alone. Thus, we focus on a newly emerging family

of priors that are learned from massive amounts of training data using generative networks

such as GAN [42]. A well-trained generator closely captures the notion of a signal (or image)

being ‘natural’ [187]. While such generative priors have been used successfully in solving

compressive sensing and other inverse problems [66], including phase retrieval [76, 96], the

optimal way to search for the solution within the range of generative prior has not yet been

understood well. Most of these methods rely on loss minimization through gradient descent

that often fails to search the entire solution space resulting in sub-optimal results. In this

work, we provide two algorithms that enable an improved way of searching the solution

space. Our work improves on the results of [76, 96] empirically.

In this work [78], we propose and analyze two phase retrieval algorithms: alternating

phase gradient descent (APGD), and alternating phase projected gradient descent (APPGD)

to leverage generative priors. We improve over the approaches of [76, 96] by combining the

gradient descent and projected gradient descent methods for generative priors [66, 69] with

AltMin-based non-convex optimization techniques used in sparse phase retrieval [92, 93].

99

Figure 7.1: Illustration of APPGD algorithm. It has two major steps: alternating minimization

and projection onto the range of the generator nework. In alternating minimization step, we update

phase and perform one gradient descent update using the updated phase. Starting from a random

vector, we perform phase update, gradient descent update step and projection step iteratively to reach

the final estimate.

We adopt a setting similar to [76, 96], and assume that the generator network (say,

G) well approximates the high-dimensional probability distribution of the setM, i.e., we

expect that for each vector x∗ inM, there exists a vector x = G(z) that is very close to x∗

in the support of the distribution defined by G.

M = { x ∈ Rn| x = G(z) for some z ∈ Rk},

With this assumption, the solution to (7.2) can be obtained by solving the following

optimization problem:

x̂ = argmin
x
∥ y − |A x|∥2 (7.3)

s.t. x = G(z),

where z is the latent code corresponding to image x. Unless otherwise stated, all norms

represented by ∥ · ∥ in this chapter are Euclidean norms.

100

Recent work in [76, 96] minimizes the objective in (7.3) directly over the latent

variable z using gradient descent, and sets x̂ as:

x̂ = G(argmin
z
∥ y − |AG(z)|∥2). (7.4)

We refer to this approach as the “gradient descent approach”. Given that the generative

models usually exhibit highly non-linear behavior, the above objective is highly non-convex.

Moreover, direct application of gradient descent over z limits the explorable solution space,

as at any stage it is not possible to explore the region outside the range of the generator.

If initialized incorrectly, gradient descent can get stuck in local minima. In practice such

algorithms require several restarts in order to provide good performance.

In phase retrieval problems, knowledge of phase and the signal is interdependent,

as given the phaseless measurements just knowing the phase often enables us to estimate the

signal. Thus, as alternative for solving (7.3), we can convert the phase retrieval problem to

a linear inverse problem by initializing with a random phase p and update the phase with

the solution of the linear inverse problem. Equation (7.5) describes this approach for the tth

iteration.

x̂t+1 = G(argmin
z
∥pt ⊙ y −AG(z)∥2) (7.5)

We refer this approach as the alternating phase gradient descent (APGD) approach.

We also propose a third approach, in which we use projected gradient descent (PGD)

to solve (7.5) directly in the ambient space based on [69]. Through iterative projections, we

are able to mitigate the effects of local minima and are able to explore the space outside the

range of the generator (G). In PGD, we update our estimate of x with the standard gradient

descent update rule, followed by projection of the output onto the span of generator, G. We

101

refer this approach as the alternating phase projected gradient descent (APPGD) approach.

We provide theoretical analysis of our methods, along with extensive experimental results.

7.2 Algorithm

In this section we describe the APPGD approach in details. At first, we train a

generator G : Rk → Rn that maps a latent vector z ∈ Rk to a high dimensional sample space

G(z) ∈ Rn. We assume that our generator network can closely approximate the probability

distribution of the set of natural images,M to which our original images x belong. With

this assumption, we can limit our search for x̂ only to the range of the generator function,

M. The generator G is assumed to be differentiable, and hence we use back-propagation for

calculating the gradients of the loss functions involving G for gradient descent updates.

In each iteration of the APPGD algorithm (Alg. 5), three steps are performed: a

phase update step, a gradient descent update step, and a projection step.

7.2.1 Phase update

The first step is to calculate the phase of A x. For real A and x, at the tth iteration,

we update the phase estimate:

pt = phase(A xt) := sign (A xt) .

After calculating the phase vector p, we can use an element-wise product between p and y

as an estimate of linear measurements and convert the phase retrieval problem into a linear

inverse problem.

102

7.2.2 Gradient descent update

The second step is simply an application of a gradient descent update rule on the

loss function f(·) which is given as:

f(x) := ∥ y ⊙ p−A x∥2.

Thus, the gradient descent update at the tth iteration is given by:

wt ← xt + ηAT (y ⊙ pt −A xt),

where η is the learning rate.

7.2.3 Projection step

In projection step, we aim to find an image from the span of the generator, M

which is closest to our current estimate wt. We define the projection operator PG as follows:

PG (wt) := G

(
argmin

z
Lin(z)

)
,

where Lin is the inner loss function defined as,

Lin(z) := ∥wt −G(z)∥2.

We solve the inner optimization problem by running gradient descent with Tin number of

updates on Lin(z). The learning rate ηin is chosen empirically for this inner optimization.

In each of the T iterations, we run Tin updates for calculating the projection.

Therefore, T × Tin is the total number of gradient descent updates required in our approach.

103

Algorithm 5 APPGD

1: Inputs: y, A, G, T , Output: x̂

2: Choose an initial point x0 ∈ Rn

3: for t = 1,. . . T do

4: pt−1 ← sign (A xt−1)

5: wt−1 ← xt−1 + ηAT (y ⊙ pt−1 −A xt−1)

6: xt ← PG(wt−1) = G (argmin z ∥wt−1 −G(z)∥)

7: end for

8: x̂← xT

7.3 Models and Experiments

In this section, we describe our experimental setup and report the performance

comparisons of the three approaches. We use two different generative models for the MNIST

and CelebA datasets. The generative model for CelebA follows the DCGAN framework

[140] except that we do not use any batchnorm layer since the gradient for this layer is

dependent on batch size and the distribution of the batch. The generator architecture for

MNIST experiments is shown in Fig. 7.1. We train our generators by jointly optimizing

generator parameters, γ and the latent code, z using SGD optimization by following the

procedure from [49]. We use the squared-loss function, l2(x, x̂) = ∥ x − x̂∥2 to train the

generators. We choose z from the standard normal distribution on Rk and then rescale it by

its Euclidean norm. We project z back to the unit norm ball after each gradient update.

In our experiments, we choose the entries of the matrix A independently from the

N (0, 1
m) distribution. Although we ignore the presence of noise, it is possible to replicate

104

O
ri

g
in

a
l

G
ra

d
ie

n
t

D
e

s
c

e
n

t
A

P
G

D
A

P
P

G
D

(a) Reconstruction results on MNIST

for three different approaches

with m = 60 measurements.

20 40 60 80 100 120 140 160 180 200

Number of measurements

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r(

p
e
r

p
ix

e
l)

Gradient Descent

APGD

APPGD

(b) Reconstruction error

(per pixel) for three

approaches on MNIST.

20 40 60 80 100 120 140 160 180 200

Number of measurements

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e
a
n
 S

S
IM

Gradient Descent

APGD

APPGD

(c) Mean SSIM for three

approaches on MNIST.

Figure 7.2: Comparison of three approaches on MNIST test set.

our experiments with additive Gaussian noise. For all the approaches we kept the number

of update steps fixed. We do not allow random restarts. For fair comparison, we initialize x

with the same random vector for all approaches and perform the same sign correction as in

[76] on them.

We have our first set of experiments with three different approaches on a generator

trained over the MNIST training dataset resized to 32 × 32 pixel. Considering that the

representation error is very small, we test three approaches on 10 images from the test set

of MNIST dataset and provide both quantitative and qualitative results. For APPGD, at

the gradient descent step we choose η = 0.9 because we need a meaningful output before

passing it to the projection step [69]. We can also perform gradient descent multiple times

at the first iteration before projecting it onto the range of generator so that we can start

from a good initial point. For all three approaches, we use learning rate ηin = 0.01. We use

T = 50 and Tin = 500 for APPGD and APGD approaches. For fair comparison, we use 2500

105

O
ri

g
in

a
l

A
P

P
G

D

(a) Reconstruction results on celebA dataset for APPGD with m =

1000 measurements.

500 1000 1500 2000 2500 3000 3500 4000

Number of measurements

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
e
c
o
n
s
tr

u
c
ti
o
n
 e

rr
o
r

p
e
r

p
ix

e
l

Gradient Descent

APGD

APPGD

(b) Reconstruction error (per pixel)

for three approaches on celebA.

500 1000 1500 2000 2500 3000 3500 4000

Number of measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e
a
n
 S

S
IM

Gradient Descent

APGD

APPGD

(c) Mean SSIM for three approaches

on celebA.

Figure 7.3: Comparison of three approaches on celebA test set and some reconstruction results for

our APPGD algorithm.

iterations for Gradient descent approach. We measure reconstruction error, ∥ x̂− x∗∥2, and

SSIM for comparison. In Fig. 7.2b, we show the reconstruction error comparisons and in Fig.

7.2c we show SSIM comparisons for increasing values of number of measurements. As the

input images are not chosen from the span of the generator itself, it is not possible to reach

zero error. However, we observe from 7.2b that APPGD can reach near zero error with only

60 measurements which is significantly less than the other two approaches. Fig. 7.2a depicts

reconstruction results for some of the selected MNIST images for three approaches.

106

For our second set of experiments, we train a generator for the CelebA dataset.

For training, we resize the celebA dataset composed of 202,599 colored images of celebrity

faces to 64× 64× 3 and kept 1
32 of the images apart. We do not use the aligned and cropped

version which includes only the faces in the images.

We experiment on a subset of 10 images from the held out test dataset and report

reconstruction results. We set the total number of updates to 1500, with T = 50 and

Tin = 300 for APGD and APPGD approaches. Learning rates for APPGD are set as η = 0.9

and ηin = 0.3. Learning rates for APGD and Gradient Descent approaches are set as

ηin = 0.003 (tuned to their best performance) for a fixed total number of updates. Image

reconstruction results from m = 1000 measurements with APPGD algorithm are displayed

in Fig. 7.3a. We show comparison of three approaches in terms of reconstruction error in

7.3b and in terms of SSIM in 7.3c. We observe that APPGD can achieve good reconstruction

with far fewer measurements than the other competing approaches.

107

Chapter 8

Generative Network with Side

Information for Phase Retrieval

8.1 Introduction

Fourier phase retrieval faces different trivial ambiguities because of the structure

of Fourier transformation. As a phase shift in the Fourier domain results in a circular shift

in the spatial domain, we will get the same Fourier amplitude measurements for any circular

shift of the original signal.

In particular, Fourier phase retrieval is highly sensitive to the initialization and

comes with inherent ambiguities about shift and flip on images. We can demonstrate shift

ambiguity using the following equation

y = |F x| = |(F x)ejθ1 | = |(F x)ejθ2 | (8.1)

This work has been published in Asilomar Conference on Signals, Systems, and Computers 2019[102].

108

Figure 8.1: Illustration of phase retrieval with side information. An image x is divided into a

known (s) and unknown part (q) such that x = [s q]. Fourier amplitude measurements of the image

are observed as |F (x)| ≡ |Fq+ b|. Alternating minimization algorithm uses the knowledge of the

known part to initialize the problem and enforces additional constraints on the signal estimate at

every iteration.

We can notice that the Fourier magnitude for different circular shifts (θ1 and θ2) has the

same Fourier magnitude measurements.

In recent papers [99, 100, 101], authors tried to use side information with sparsity

prior to mitigate these ambiguities. We use side information in combination with generative

prior to solve Fourier phase retrieval. We show that using side information provides significant

performance improvement in Fourier phase retrieval with generative prior.

In this work [102], we propose to use additional side information about the signal

to initialize and regularize the phase retrieval with generative prior. In particular, we assume

that a part of the signal is known a priori. An example is illustrated in Fig. 8.1. We use the

known part of the signal as an initial solution and incorporate the support knowledge as an

109

additional constraint while solving the phase retrieval problem.

Figure 8.2: Simulation results for Fourier phase retrieval with different side information. We form

an image by concatenating five MNIST digit images. We have concatenated different known 32× 32

image to that concatenated MNIST image as the first patch. We use a trained generative network

which is trained on MNIST digits as prior. We project each 32 × 32 digit onto the range of that

trained prior. The last column shows reconstruction without side information. We can observe that

side information gives significant performance boost.

8.2 Proposed Method

To solve the phase retrieval problem, we propose using the available side information

within the alternating minimization framework. Let us denote the signal of interest as

x∗ ∈ CN+Ns , where Ns values in x∗ on a support set σ are known a priori. If we assume

that set σ is the first Ns entries, we can write x∗ = [s∗ q∗], where s∗ ∈ CNs is the known

part and q∗ ∈ CN is the unknown part in x∗.

Suppose we are given M (possibly noisy) amplitude-only observations of x∗ as

y = |F x∗|+ e, (8.2)

where y ∈ RM
+ , F denotes a measurement operator, and e denotes noise in the measurements.

Our signal can be written as the following

x∗ = s∗ + q∗, (8.3)

110

where

s∗i =

x∗i , if i ∈ σ.

0, otherwise.

(8.4)

and

q∗
i =

0, if i ∈ σ.

x∗i , otherwise.

(8.5)

By separating the known and unknown parts, we can write equation 8.2 as

y = |F s∗ + Fq∗|+ e (8.6)

= |Fq∗ + b|+ e (8.7)

where b = F s∗ is known a priori.

Our goal is to recover x∗ (or q∗) from the measurements in equation 8.7. So, we

need to solve the following optimization

minimize
x

|| y − |F x|||22 s.t. xσ = s∗, x ∈M, σ ∈ S (8.8)

whereM denotes the set of constraints that we want to enforce on our estimate. We can

define these constraints to ensure that the nonzero values in the estimated signal are positive

and lie inside a known support [72]. We can also use some additional constraints such as

the signal belongs to a union of subspaces or the range of a neural network-based generative

model [188, 78].

Generator G : Rk → Rn maps a latent vector z ∈ Rk to a high dimensional sample

space x ∈ Rn such that x = Gγ(z) where γ represents all the trainable parameters of the

111

deep network. To solve the phase retrieval problem in equation 8.8, we can use either trained

[78] or untrained[95] generative network. In trained generative prior, we have γ fixed at

some trained value and optimize the latent codes to obtain the optimal latent representation

through backpropagation and gradient descent. For untrained generative prior, we fix the

latent code to some random value and optimize over the generator parameters to find the

best representation. One limitation with trained generative network is the unavailability of

pretrained network for a target image. Whether the main problem with untrained generative

prior is that finding a good convergence is more difficult. For trained generative prior, the

optimization is as follows

minimize
z, x

∥ y − |F x|∥22 s.t. xσ = s∗, x = G(z) (8.9)

To solve the phase retrieval problem in equation 8.9 using generative prior, we use an

alternating minimization framework that has three main steps: 1) update the phase of (F x),

2) update the estimate via gradient descent, and 3) project estimate onto G using patchwise

projection. We add one additional step to use side information. We replace the estimated

points in the known part using known pixels. This approach is similar to [78] and elaborated

in Algorithm 6.

The trained generators have certain range beyond which they fail to generate. It

is often observed that different parts of images can be approximated using the generator

well. So, we divide the signal (image) into some non overlapping patches such that most of

the patches can be well approximated using the trained generator. We define this operation

using DG(.).

DG(x) = [x1, x2, ... xi, ...] s.t. xi = G(zi) ∀i, i /∈ σ (8.10)

112

We then project each patch onto the range of the generator using patchwise projection PG(.).

PG(xi) = G(zi) (8.11)

We then concatenate the the projections accordingly to form the final estimate of the

projection step.

As the Fourier measurement matrix is complex valued, the estimation via gradient

descent may give us complex valued estimate. However, the signal x lies in the real space.

So, we impose realness constraint on the estimate before projection.

Figure 8.3: Simulation results for Fourier phase retrieval with and without side information. We

observed the reconstruction when we know different parts of the image. We have concatenated

4 different MNIST digits. Here 2nd to 5th columns correspond to the reconstructions where we

have prior knowledge of 1st, 2nd, 3rd and 4th digit (32× 32 image patch) respectively. 6th column

corresponds to the reconstruction without side information.

8.3 Experimental Setup

In this section, we discuss in details about our experimental setup including the

dataset, measurements acquisition, choice of generator, optimization parameters etc.

Dataset: We have used MNIST digits and CelebA dataset for our experiments.

113

Algorithm 6 Generative Fourier Phase Retrieval with Side Information

1: Inputs: y, F, G, T , s∗, σ, Output: x̂

2: Choose an initial point x0 ∈ Rn

3: for t = 1,. . . τ do

4: Phase update: pt−1 ← sign (F xt−1)

5: Gradient update:

6: ut−1 ← xt−1 + ηF T (y ⊙ pt−1 − F xt−1)

7: Imposing realness: vt−1 ← Re(ut−1)

8: Side information: vt−1
σ ← s∗

9: Divide into patches:

10: DG(v
t−1) = [vt−1

1 , vt−1
2 , ..., vt−1

i , ...]

11: Patchwise projection: wt−1
i ← PG(vt−1

i)

12: Concatenation of the projections:

13: xt ← [wt−1
1 ,wt−1

2 , ...,wt−1
i , ...]

14: Side information: xtσ ← s∗

15: end for

16: x̂← xτ

We have resized MNIST digits to 32× 32 shape. In our experiments, we have concatenated

different MNIST digits to form a larger image which demonstrates the advantage of side

information more visibly. We have also created some grayscale images of some characters

such as ’#’, ’&’ and ’@’ using photo editor and concatenated them as side information

to the MNIST digits in different experiments. We resized CelebA dataset to 64× 64 size.

We did not crop the celebrity faces before resizing meaning that our images consists of

114

considerable portion of background in addition to the faces. For some experiments with

celebrity images, we have created some images of name tags with the last names of the

corresponding celebrities using photo editor. Even though the name tags are basically

comprised of black background and white text, we used RGB version of them because

CelebA images are RGB. As we are concatenating different images together, we assume that

we know the region for each patch for patchwise projection.

Measurements: We take the magnitude of the 2D Fourier transform as the

measurements. We did not do any oversampling (i.e. M = N + Ns). For RGB images

(CelebA), we take three different sets of measurements for three different channels. For an

image X ∈ Rh×w×c, the measurement corresponding to cth channel is

Yc = |FhXcFw| (8.12)

where Fh and Fw are h and w point DFT matrices, respectively. In our experiments, we

consider our measurements noiseless.

Generator: We use generator architecture from DCGAN[140] as our generative

network except that we did not use batchnormalization. We have one trained generator on

MNIST training digits (32× 32) and another trained generator on CelebA dataset (64× 64)

using approach from [49]. The dimension of latent code for MNIST digit generator is 20 and

CelebA generator is 256.

Optimization: In our reconstruction process using projected gradient descent, we

optimize x and z starting with some initialization. We use zero phase initialization for x. In

zero phase initialization, we assume the initial phase of the given measurement as zero and

then take the real part of the inverse Fourier transform of the zero phase measurements as

115

initialization. The initial point, x0 can be written as the following

x0 = Re(F−1 y)

We randomly initialized z with samples drawn from N(0, 1) distribution. We then projected

the initial z on a unit norm ball. We used gradient descent to optimize x and z. In the

experiments with MNIST digits, we used 0.6 as the learning rate for x update and 0.1 as the

learning rate for z update in the projection step. In the experiments with CelebA dataset,

we used 0.9 as the learning rate for x update and 3 as the learning rate for z update in the

projection step. Furthermore, we used early stopping to halt the optimization in the earlier

projection step in the experiments with CelebA. The intuition behind this is that the earlier

steps of the gradient descent update does not give much meaningful estimation of x. Unlike

MNIST generator which is trained on sparse MNIST digits, CelebA generator is trained on

variety of images which gives it a wide range of generation capacity. If we optimize over the

latent code for enough iteration in the early stages of gradient descent, it may be able to get

a close projection of that initial estimates. But this will hurt the purpose of using generator

which is to guide the gradient descent to a meaningful solution.

8.4 Results and Discussion

In this section, we report the reconstruction performance of different Fourier

phase retrieval experiments with side information and demonstrate comparison with the

reconstructions without side information. In all of our experiments, we use projected gradient

descent with generative prior. The projection onto the range of the generator guides the

116

Figure 8.4: Reconstruction with known name tags as side information. We have concatenated

the last names of the corresponding celebrities as side information to the original image. Fourier

phase retrieval performance significantly increases with such side information. We have shown

reconstruction for different size and position of the name tags. In (a), (b) and (c) name tags are of

size 16× 64, 32× 64 and 64× 64 respectively. The target celebrity image is 64× 64. So the ratio

of side information to the unknown part is 1 : 4, 1 : 2 and 1 : 1 respectively. In (d), (e) and (f) we

placed the text on the bottom, middle and the top of the known name tag with size 64× 64.

reconstruction to some natural image output. We report two different experiments on

MNIST digits and two others on CelebA images.

In our first experiment we concatenated five MNIST test digits and a known image

patch of character (’#’, ’&’ or ’@’). Each digit and the known patch are of size 32× 32.

We also experiment with the case when we do not have any side information. We report

the reconstruction result in Fig. 8.2. From equation 8.1, we know different shifted versions

of the images will give us the same Fourier magnitude. So, the optimization problem with

side information will have different optimal point with the same minima. So, there is high

probability that the gradient descent step leads to some shifted version when we do not

have any side information. However, as we are dividing the estimate into fixed patches and

117

projecting onto the range of the generator, the generator will try to approximate each patch

with a digit as closely as possible. This will give us some reconstructions resembling some

digits but they will not necessarily be the target digit. We observe this phenomena in the

reconstruction without side information. However, when we have some side information, we

can rule out the trivial ambiguities which leads to a good solution. we can observe from

Fig. 8.2 that different characters as side information gave us very good reconstructions.

In our second set of experiments with MNIST digits, we concatenate four different

MNIST test digits. We then fix one of the position and we assume that we know the digit

in that position. We change the position of the known patch in the image and observe

Figure 8.5: Reconstruction when some part of the image is known. We have shown cases when

top-left, top-right, bottom-left, bottom-right 32× 32 patches of 64× 64 celebrity images are known.

We have also shown comparison with the reconstruction without any side information.

118

reconstruction performance. We demonstrate the reconstruction result for different set of

MNIST digits in Fig. 8.3. We also show comparison with the reconstruction without side

information. From Fig. 8.3, we can observe that knowing a part of the image always leads

to a better solution than the case when we do not have any knowledge about the image.

Most of the reconstructions without side information lead to reconstructions of wrong digits.

However, even without side information, one reconstruction (second row) reached a good

solution which is rare but not improbable.

In our setup with RGB Fourier phase retrieval, we encounter additional ambiguities

as the each channels now can be shifted independently without changing the Fourier

magnitude measurements. This ambiguity can lead to some visually meaningless solution

to be equally good as the original one. In our experiments with RGB CelebA images

we can observe such ambiguities much often. Furthermore, as we discussed before, the

CelebA generator can generate wide range of images which prevents generative network

from providing similar aid as MNIST digit generator in guiding the gradient descent to some

meaningful output. We mitigated this phenomena using early stopping in projection step

after the early gradient descent steps.

We report two different set of experiments with CelebA. In our first set of exper-

iments with CelebA, we assume that we know some part of that image. In Fig. 8.5, we

demonstrate the cases when we know top-left, top-right, bottom-left, bottom-right 32× 32

patches of the images. In this case as well, we show reconstruction without any known side

information. As we can observe, without side information the Fourier phase retrieval did not

give us any good reconstruction for color images. Furthermore, it faced some aforementioned

119

ambiguities and lead to some reconstructions which visually does not resemble any face.

However, with side information, we could avoid those ambiguities and reach to some good

reconstructions. We can also observe that the reconstructions are comparable for different

position of the known patch.

In our second experiment with CelebA images, we have concatenated an image

of text description at the bottom of a CelebA image. As we used the last name of the

corresponding celebrity as the text description, we can think of it as a name tag. We assume

that we know the name tag as the side information. In Fig. 8.4, we show reconstruction

for different size of name tags and different position of text in the name tag. We also

showed reconstruction without side information for comparison. Like before, Fourier phase

retrieval without side information faced the aforementioned ambiguities and resulted in bad

reconstruction. We experimented with three different size of name tags: 16× 64, 32× 64 and

64× 64. We can observe that the reconstruction performance improves with the increasing

size of the known name tag as the known and unknown part ratio also increases (1:4,1:2

and 1:1). We also changed the position of text (bottom, middle and top) in a 64× 64 name

tag. Changing the position of the name tag apparently does not have much effect on the

reconstructions.

120

Chapter 9

Unrolling Network to Learn

Reference for Phase Retrieval

.

9.1 Introduction

The problem of phase retrieval refers to the challenge of recovering a real- or

complex-valued signal from its amplitude measurements. This problem arises in diffraction

imaging, X-ray crystallography, and ptychography [72, 75, 189, 74, 70]. Fourier phase

retrieval is a special class of phase retrieval problems aimed at the recovery of a signal from

the amplitude of its Fourier coefficients. Let us assume that Fourier amplitude measurements

are given as

y = |Fx|+ η, (9.1)

This work has been published in European Conference on Computer Vision 2020[110]

121

where F denotes the Fourier transform operator, x denotes the unknown signal or image,

and η denotes the measurement noise. Our goal is to recover x given y.

Fourier phase retrieval is essential in many applications, especially in optical

coherent imaging. Classical methods for phase retrieval utilize the prior knowledge about

the support and positivity of the signals [72, 75]. Subsequent work has considered the case

where the unknown signal is structured and belongs to a low-dimensional manifold that

is known a priori. Examples of such low-dimensional structures include sparsity [82, 93],

low-rank [106, 190], or neural generative models [191, 95]. Other techniques like Amplitude

flow [192] and Wirtinger flow use alternating minimization [84]. Many of these newer

algorithms involve solving a non-convex problem using iterative, gradient-based methods;

therefore, they need to be carefully initialized. The initialization technique of choice is

spectral initialization, first proposed in the context of phase retrieval in [92], and extended

to the sparse signal case in [82, 93].

Fourier phase retrieval problem does not satisfy the assumptions needed for suc-

cessful spectral initialization and remains highly sensitive to the initialization choice. Fur-

thermore, Fourier amplitude measurements have the so-called trivial ambiguities about

possible shifts and flips of the images. Therefore, many Fourier phase retrieval methods test

a number of random initializations with all possible flips and shifts and select the estimate

with the best recovery error [107].

In this work [110], we assume that a known (learned) reference is added to the

signal before capturing the Fourier amplitude measurements. The main motivation for

this comes from the empirical observation that knowing a part of the image can often help

122

resolve the trivial ambiguities [99, 101, 102]. We extend this concept and assume that a

known reference signal is added to the target signal and aim to recover the target signal

from the Fourier amplitude of the combined signal. Adding a reference may not feasible

in all cases, but our method will be applicable whenever we can add a reference or split

the target signal into known and unknown parts. We can describe the Fourier amplitude

(phaseless) measurements with a known reference signal u as

y = |F (x+ u)|+ η. (9.2)

Similar reference-based measurements and phase retrieval problems also arise in holographic

optical coherence imaging [193].

Our goal is to recover the signal x from the amplitude measurements in (9.2). To do

that, we implement a gradient descent method for phase retrieval. We present the algorithm

as an unrolled network for a general system in Fig. 9.1. Every layer of the network implements

one step of the gradient descent update. To minimize the computational complexity of the

recovery algorithm, we seek to minimize the number of iterations (hence the layers in the

network). In addition, we seek to learn the reference u to maximize the accuracy of the

recovered signal for a given number of iterations. The learned u and reconstruction results

for different datasets are summarized in Fig. 9.2.

We present an iterative method to efficiently recover a signal from the Fourier

amplitude measurements using a fixed number of iterations. To achieve this goal, we first

learn a reference signal that can be added to the phaseless Fourier measurements to enable

the exact solution of the phase retrieval problem. We demonstrate that the reference learned

on a very small training set perform remarkably well on the test dataset.

123

Our main contributions can be summarized as follows.

• The proposed method uses a fixed number of gradient descent iterations (i.e., fixed

computational cost) to solve the Fourier phase retrieval problem.

• We formulate the gradient descent method as an unrolled network that allows us to

learn a robust reference signal for a class of images. We demonstrate that reference

learned on a very small dataset performs remarkably well on diverse and large test

datasets. To the best of our knowledge, this is the first work on learning a reference

for phase retrieval problems.

• We tested our method extensively on different challenging datasets and demonstrated

the superiority of our method.

• We demonstrate the robustness of our approach by testing it with the noisy measure-

ments using the reference that was trained on noise-free measurements.

In this work, we consider the reference signal to be additive and overlapping with

the target signal. To the best of our knowledge, there has not been any study on such

unrestricted reference design. While driven by data, our approach for reference design uses

training samples in a very efficient way. The number of training images required by our

network is parsimonious without limiting its generalizability. The reference learned by our

network provides robust recovery test images with different sizes. Apart from the great

flexibility, our unrolled network uses a well-defined routine in each layer and demonstrates

excellent interpretability as opposed to black-box deep neural networks.

124

layer1
...

xk

Reference

iterky xk

Iterative
Update

ReconstructionMeasurement

Iterative Phase Retrieval Process

x0

y u

Initialization

layer2 layerk

u

xk-1 A

B

y

A*

xk

+

-

αk

+

-

+

+

Inside of layerk

Proposed Unrolled Network with Reference

Figure 9.1: Our proposed approach for learning reference signal by solving phase retrieval using

an unrolled network. Unrolled network has K layers. Each layerk gets amplitude measurements y,

reference u, and estimate xk−1 as inputs, and updates the estimate to xk. The operations inside

layerk are shown in the dashed box on the right, where A and B are both linear measurement

operators, and A∗ is the adjoint operator of A.

9.2 Proposed Approach

We use the general formulation for the phase retrieval from amplitude measurements.

The formulation can be extended for phase retrieval with squared amplitude measurement

as well. In our setup, we model amplitude measurements of a target signal x and a reference

signal u as y = |Ax+Bu|, where A and B are linear measurement operators. Our goal is to

learn a reference signal that provides us the best recovery of the target signal. We formulate

this overall task as the following optimization problem:

minimize
x̂(u)

∥x− x̂(u)∥22 s.t. y = |Ax̂(u) +Bu|, (9.3)

125

where x̂(u) denotes the solution of the phase retrieval problem for a given reference u. Our

approach to learn u and solve (9.3) can be divided into two nested steps: (1) Outer step

updates u to minimize the recovery error for phase retrieval and (2) inner step uses the

learned u to recover target images by solving phase retrieval.

To solve the (inner step) of phase retrieval problem, we use an unrolled network.

Figure 9.1 depicts the structure of our phase retrieval algorithm. In the unrolled phase

retrieval network, we have K blocks to represent K iterations of the phase retrieval algorithm.

We minimize the following loss to solve the phase retrieval problem:

Lx(x, u) = ∥y − |Ax+Bu|∥22. (9.4)

Every block of the unrolled phase retrieval network is equivalent to one gradient descent

step for (9.4). For some value of reference estimate, u, we can represent the target signal

estimate after k + 1th block of the unrolled network as

xk+1 = xk − αk∇xLx(x
k, u), (9.5)

where ∇xLx(x
k, u) is the gradient of Lx with respect to x at the given values of xk, u. As

the loss function in (9.4) is not differentiable, we can redefine it as

Lx(x, u) = ∥y ⊙ p− (Ax+Bu)∥22, (9.6)

where p = ∠(Axk + Bu) = (Axk + Bu)/|Axk + Bu|. The expression of gradient can be

written as

∇xLx(x
k, u) = 2A∗[p⊙ (p∗ ⊙ (Axk +Bu)− y)], (9.7)

where A∗ denotes the adjoint of A. After K blocks, we get the estimate of the target signal

that we denote as x̂(u) = xK .

126

In the learning phase, we are given a set of training signals, {x1, x2, ..., xN}, which

share the same distribution as our target signals. We initialize x0 and u0 with some initial

(feasible) values. First we minimize the following loss with respect to u:

Lu(u) =
N∑
i=1

∥xi − x̂i∥22 =
N∑
i=1

∥xi − xKi ∥22. (9.8)

We can rewrite (9.8) using the gradient recursion in (9.5) as

Lu(u) =
N∑
i=1

∥xi − x0i +
K−1∑
k=0

αk∇xLx(x
k
i , u)∥22. (9.9)

We can then use gradient descent to to minimize Lu(u). We can represent the j + 1th

iteration of gradient descent step as

uj+1 = uj − β∇uLu(u
j). (9.10)

The expression for ∇uLu(u) can be written as

∇uLu(u) = 2

N∑
i=1

[
K−1∑
k=0

αkJu(x
k
i , u)

][
xi − x0i +

K−1∑
k=0

αk∇xLx(x
k
i , u)

]
, (9.11)

where Ju(x
k
i , u) = ∇u∇xLx(x

k
i , u) is a Jacobian matrix with rows and columns of the same

size as u and x, respectively. The measurement vector y = |Ax + Bu| is a function of u

during training. Since we model x̂(u) as an unrolled network, we can think of the gradient

step as a backpropagation step. To compute ∇uLu(u), we backpropagate through the entire

unrolled network. At the end of J th outer iteration, we will get our learned reference û = uJ .

Once we have learned a reference, û, we can use it to capture (phaseless) amplitude

measurements as y = |Ax∗ +Bû| for target signal x∗. To solve the phase retrieval problem,

we perform one forward pass through the unrolled network. Pseudocodes for training and

testing are provided in Algorithms 7,8.

127

Algorithm 7 Learning Reference Signal

Input: Training signals {x1, x2, ..., xN}, measurement operators, A and B

Initialize {x01, x02, ..., x0N}, u0.

for j = 0, 1, ..., J − 1 do

for i = 1, 2, ..., N do

yi = |Ax∗i +Buj |

for k = 0, 1, ...,K − 1 do

Lx(x
k
i , u

j) = ∥yi − |Axki +Buj |∥22

xk+1
i ← xki − αk∇xLx(x

k
i , u

j)

end for

end for

Lu(u
j) =

∑N
i=1 ∥x∗i − x0i +

∑K
k=1 αk∇xLx(x

k−1
i , uj)∥22

uj+1 ← uj − β∇uLu(u
j)

end for

Output: Optimal reference, û = uJ

In our Fourier phase retrieval experiments A = B = F , where F is the Fourier

transform operation. To implement similar method for squared amplitude measurements,

we can simply replace p = ∠(Axk +Buj) with p = Axk +Buj . In all our experiments, we

initialized x0 as a zero vector whenever û ̸= 0. We can also add additional constraints on

the reference while minimizing the loss function in (9.9). In our experiments, we used target

signals with intensity values in the range [0, 1]; therefore, we restricted the range of entries

in u to [0, 1] as well. We discuss other constraints in the experiment section.

128

Algorithm 8 Solving Phase Retrieval via Unrolled Network

Input: Measurements y, learned reference û, measurement operators, A and B

Initialize x0.

for k = 0, 1, ...,K − 1 do

Lx(x
k, û) = ∥y − |Axk +Bû|∥22

xk+1 ← xk − αk∇xLx(x
k, û)

end for

Output: Estimation of target signal x̂ = xK

9.3 Experiments

Datasets. We have used MNIST digits, EMNIST letters, Fashion MNIST, CI-

FAR10, SVHN, CelebA datasets, and different well-known standard images for our experi-

ments. We convert all images to grayscale and resize 28× 28 images to 32× 32. Although

there are tens of thousands training images in MNIST, EMNIST letters, Fashion MNIST,

CIFAR10, and SVHN dataset, we have used only a few (i.e.. 32) of them in training. We

have shown that the references learned on the small number of training images perform

remarkably well on the entire test dataset. MNIST, Fashion MNIST, and CIFAR10 test

datasets contain 10000 test images each; EMNIST letters dataset contains 24800 test images;

SVHN test dataset contains 26032 test images. We used 1032 images from CelebA and

center-cropped and resized all of them to 200× 200. We selected 32 images for training and

the rest for testing.

We present the results for these different datasets using references learned from 32

129

Reference 0 67 120

Hist.

0.0

0.5

1.0 GT
Re

c.

68.82 65.93 74.87 71.79

(a) MNIST

Reference 0 59 120

Hist.

0.0

0.5

1.0 GT
Re

c.

79.35 47.70 61.07 68.14

(b) EMNIST

Reference 0 58 120

Hist.

0.0

0.5

1.0 GT
Re

c.

66.09 49.49 51.70 68.73

(c) Fashion MNIST

Reference 0 58 120

Hist.

0.0

0.5

1.0 GT
Re

c.

58.91 56.43 58.99 55.39

(d) SVHN

Reference 0 42 120

Hist.

0.0

0.5

1.0 GT
Re

c.

47.21 52.40 29.83 35.73

(e) CIFAR10

Reference 0 39 120

Hist.

0.0

0.5

1.0 GT
Re

c.

34.25 35.66 50.40 36.36

(f) CelebA

Figure 9.2: Reconstruction results using learned references. Each block (a)-(f) shows results for

different dataset: (left) learned reference with a colorbar; (middle) sample original images and

reconstruction with PSNR on top; (right) histogram of PSNR over the entire test dataset (vertical

dashed line represents the mean PSNR).

images from the same dataset in Fig. 9.2. We present results for six standard images of size

512× 512 from [107] using a resized reference learned from CelebA dataset in Fig. 9.3.

Measurements. We simulated amplitude measurements of the 2D Fourier trans-

form. We performed 4 times oversampling in the spatial domain for both reference and

target signal. Unless otherwise mentioned, we consider our measurements to be noise-free.

We also report results for noisy measurements.

130

Gr
ou

nd
 T

ru
th

Barbara Peppers Cameraman Pillars of Creation Tadpole Galaxy Yeast
Ra

nd
om

 R
ef

.

18.15 17.31 18.13 23.97 27.32 25.85

Le
ar

ne
d

Re
f.

21.85 24.71 27.85 37.64 40.58 46.16

Figure 9.3: Phase retrieval results using learned and random references. First Row: Original

512 × 512 test images. Second Row: Reconstruction using random references with uniform

distribution between [0, 1] best result out of 100 trials. Third Row: Reconstruction using the

reference learned on CelebA dataset and resized from 200× 200 to 512× 512. (PSNR shown on top

of images).

9.3.1 Configurations of Reference (u)

The reference signal u, which we are trying to learn, has a number of hyper-

parameters that inherently affect the performance of the phase retrieval process. We

considered several constraints on u, including the support, size, range, position, and sparsity.

We tested reference signals with both complex and real values and found that u

has comparable results in the two domains. Since it is easy to physically create amplitude

or phase-only reference signals, we constrain u to be in the real domain; thus, u ∈ Rm×n

131

and m, n represent height and width, respectively. The height and width of u determine the

overlapping area between the target signal and the reference. We found that u with larger

size tends to have better performance, especially when the value of u is constrained to a

small range. The intensity values of u play a major role in its performance. If we constrain

the value of u to be within a certain range: u[i, j] ∈ [umin, umax], for all i, j, we observed

that bigger range of u yields better performance. This is because when u is unconstrained

then we can construct a u with a large norm. Consider the noiseless setting with quadratic

measurements |F (x+u)|2 = |Fx|2+ |Fu|2+2Re(Fx⊙Fu), the last term is the real value of

the element-wise product of target and reference Fourier transforms. We can remove |Fu|2

because it is known. If u is large compared to x, then we can also ignore the quadratic

term |Fx|2 and recover x in a single iteration if all entries of Fu are nonzero. To avoid this

situation and make the problem stable in the presence of noise, we restricted the values in

the reference u to be in [0,1] range.

9.3.2 Setup of Training Samples and Sample Size

We observed that we can learn the reference signal from a small number of training

images. In Table 9.1, we report test results for different reference signals learned on first N

images from MNIST training dataset for N = 32, 128, 512. We kept the signal and reference

strength (i.e., the range of the signal) equal for this experiment. We observe that increasing

the training size improves test performance. However, we can get reasonable reconstruction

performance on large test datasets (10k+ images) with reference learned using only 32

images.

132

Table 9.1: PSNR for different training size

Train/Test MNIST EMNIST F. MNIST SVHN CIFAR10

Training size=32 66.54 58.72 57.81 57.51 41.60
Training size=128 76.25 64.16 55.86 59.50 44.34
Training size=512 79.14 62.34 52.01 59.78 48.90

9.3.3 Generalization of Reference on Different Classes

We are interested in evaluating the generalization of our learned reference. (i.e.,

how the reference performs when trained on one dataset and tested on another). In the

comparison study, we took the reference u trained on each dataset and then tested them

on the remaining 4 datasets. The value range of the reference is between [0, 1], the number

of steps in the unrolled network is K = 50. We observed that when the datasets share

great similarity (e.g., MNIST and EMNIST are both sparse digits or letters), the reference

signal tends to work well on both datasets. Even when the datasets differ greatly in their

distributions, the reference trained on one dataset provides good results on other datasets

(with only a few dB of PSNR decrease in performance).

We also tested our method on shifted and rotated versions of test images. Results

in Fig. 9.4 demonstrate that even though the reference was trained on upright and centered

images, we can perfectly recover shifted and rotated images.

Our key insight about this generalization phenomenon is that the main challenge

in Fourier phase retrieval methods is initialization and ambiguities that arise because of

symmetries. We are able to solve these issues using a learned reference because of the

following reasons: (1) A reference gives us a good initialization for the phase retrieval

133

79.25 68.01 70.75 83.63 65.83 68.71

(a) MNIST

33.84 23.06 35.82 20.26 39.15 45.77

(b) CIFAR10

Figure 9.4: Test results on shifted/flipped/rotated images using the reference learned on upright-

centered (canonical) images. PSNR shown on top of images.

Table 9.2: PSNR of the Same Reference Tested on Different Datasets

Train/Test MNIST EMNIST F. MNIST SVHN CIFAR10

MNIST 66.54 55.12 40.87 41.87 31.72
EMNIST 72.84 58.72 52.18 55.42 48.16
F. MNIST 40.87 55.67 57.81 50.70 42.85
SVHN 41.87 46.76 49.60 57.51 51.54
CIFAR10 31.72 38.93 36.40 40.36 41.60

iterations. (2) The presence of a reference breaks the symmetries that arise in Fourier

amplitude measurements. Moreover, we are not learning to solve the phase retrieval problem

in an end-to-end manner or learn a signal-dependent denoiser to solve the inverse problem

[107, 109]. We are learning reference signals to primarily help a predefined phase retrieval

algorithm to recover the true signal from the phaseless measurements. Thus, the references

learned on one class of images provide good results on other images, see Table 9.2. This

study shows that the reference learned using our network has the ability to generalize to new

datasets, thus making our method suitable for real-life applications where new test cases

keep emerging.

134

9.3.4 Noise Response

To test the robustness of our method in the presence of noise, we added Gaussian

and Poisson noise at different levels to the measurements. Poisson noise or shot noise is

the most common in the practical systems. We model the Poisson noise following the same

approach as in [107]. We simulate the measurements as

y(i) = |z(i)|+ η(i) for all i = 1, 2, . . . ,m, (9.12)

where η(i) ∼ N (0, σ2) for Gaussian noise and η(i) ∼ N (0, λ|z(i)|) for Poisson noise with

z = Ax+Bu. We varied σ, λ to generate noise at different signal-to-noise ratios. Poisson

noise affects the larger measurements with higher strength than the smaller measurements.

As the sensors can measure only positive measurements, we kept the measurements positive

by applying ReLU function after noise addition. We can observe the effect of noise in Fig. 9.5.

Even though we did not add noise during training, we get reasonable reconstruction and

performance degrades gracefully with increased noise.

9.3.5 Random Reference versus Learned Reference

To demonstrate the advantage of the learned reference signal, we compared the

performance of learned reference and random reference on some standard images. The

results are shown in Fig. 9.3. The learned reference is trained using 32 images from CelebA

dataset which we resized to 200× 200. The test images used in Fig. 9.3 are 512× 512, so

we resized the learned reference from 200 × 200 to 512 × 512. For random reference, we

selected the entries of the reference uniformly at random from [0, 1]. We selected the best

result out of 100 trials for every test image with random reference. We can observe from

135

4035302520
Measurement Noise Level (SNR in dB)

15

20

25

30

35

40

45

50
Re

co
ns

tru
ct

io
n

Qu
al

ity
 (P

SN
R

in
 d

B) MNIST
EMNIST
Fashion MNIST
SVHN
CIFAR10

(a) Gaussian

20 25 30 35 40
Measurement Noise Level (SNR in dB)

15

20

25

30

35

40

45

50

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B) MNIST

EMNIST
Fashion MNIST
SVHN
CIFAR10

(b) Poisson

Figure 9.5: Reconstruction quality of the test images vs noise level of the measurements for different

datasets. We learned the reference using noise-free measurements.

the results that our learned reference significantly outperforms the random reference even

though the test image distribution is distinct from the training data. The number of steps

of the unrolled network is K = 50.

9.3.6 Comparison with Existing Phase Retrieval Methods

We have shown comparison with other approaches in Table 9.3. We selected

Kaczmarz [194] and Amplitude flow [86] for comparison using PhasePack package [104].

We also show Hybrid Input Output (HIO), which is similar to our phase retrieval routine

without any reference. We observe that our approach with learned reference can outperform

all other approaches on all the datasets. All the traditional phase retrieval methods suffer

from the trivial circular shift, rotation, and flip ambiguities, thus produce significantly worse

reconstruction than our method does. Our method uses a reference signal to simplify the

initialization and removes the shift/reflect ambiguities. To mathematically explain this

136

Table 9.3: Comparison with Existing Phase Retrieval Methods

Methods MNIST EMNIST F. MNIST SVHN CIFAR10

HIO 9.04 8.42 9.65 19.87 14.70
Amplitude Flow 9.99 9.79 11.90 20.25 15.04
Kaczmarz 11.81 11.47 13.44 19.48 15.01
Flat Reference 18.21 17.24 16.56 20.89 15.81
Random Reference 36.87 28.41 27.27 36.45 25.57
Learned Reference (Ours) 66.54 58.72 57.81 57.51 41.60

fact, a shifted or flipped version of x would not give us the same Fourier measurements as

|F (x+ u)| if u is chosen appropriately as we do with the learning procedure. As we showed

in Fig. 9.5, our method can perfectly recover the shifted and flipped versions of the images

using the reference that was trained with upright and centered images.

9.3.7 Effects of Number of Layers (K)

We tested our unrolled network with different numbers of layers (i.e., K) at training

and test time. The results are summarized in Fig. 9.6. We first used the same values of K for

training and testing. We observed that as K increases, the reconstruction quality (measured

in PSNR) improves. Then we fixed K = 1 or K = 10 at training, but used different values

of K at testing. We observed that if we increase K at the test time, PSNR improves up to a

certain level and then it plateaus. The PSNR achieved with reference trained with K = 10

is better than what the referenced trained with K = 1 provided. These results provide us a

trade-off between the reconstruction speed and quality. As we increase K, the reconstruction

quality improves but the reconstruction requires more steps (computations and time).

Finally, we learned a reference using K = 1 and tested it on different images with

137

1 10 20 30 40 50
Number of Steps (ie. K)

10

20

30

40

50

60

70
Re

co
ns

tru
ct

io
n

Qu
al

ity
 (P

SN
R

in
 d

B) MNIST
EMNIST
Fashion MNIST
SVHN
CIFAR10

(a) Training K=Testing K

0 50 100 150 200
Number of Steps (ie. K)

0

20

40

60

80

100

120

140

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B) MNIST

EMNIST
Fashion MNIST
SVHN
CIFAR10

(b) Training K=1

0 50 100 150 200
Number of Steps (ie. K)

0

20

40

60

80

100

120

140

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B) MNIST

EMNIST
Fashion MNIST
SVHN
CIFAR10

(c) Training K=50

Figure 9.6: Reconstruction PSNR vs the number of blocks (K) in the unrolled network at training

and testing. (a) K is same for training and testing (shaded region shows ±0.25 times std of PSNR).

(b) K = 1 and (c) K = 10, but tested using different K.

K = 1. To our surprise, our method was able to produce reasonable quality reconstruction

with this extreme setting. We present some single-step reconstructions of each data set in

Fig. 9.7.

9.3.8 Localizing the Reference

We also evaluated the effect of localizing the reference to a small region. For

example, the reference is constrained to be within a small block in the corner or the center

of the target signal. We restricted u to be an 8× 8 block and placed it in different positions.

We found that corner positions provide better results as shown in Fig. 9.8. As we bring

the reference support closer to the center, the quality of reconstruction deteriorates. This

observation is related to the method in [99, 101, 103], where if the known reference signal is

separated from the target signal, then the phase retrieval problem can be solved as a linear

inverse problem.

138

(a) (b)18.20 18.29 16.77 16.42 15.70 18.09 12.03 14.69 15.75 15.64 13.66 13.44

(c) (d)14.09 15.30 15.31 17.48 16.07 14.02 19.11 11.73 10.91 13.07 14.62 15.65

(e) (f)
17.66 14.32 14.25 15.90 15.68 17.37 13.85 12.93 14.67 12.63 14.48 18.38

Figure 9.7: Single step reconstruction with reference in range [0, 1]. Each of the 6 sets (a)-(f) has

the the ground truth in the first row. Second row is the reconstruction (PSNR values on top).

Note that signal recovery from Fourier phase retrieval is equivalent to signal recovery

from its autocorrelation. We can write the autocorrelation of target plus reference signals as

(x+u) ⋆ (x+u) = x⋆x+u⋆u+x⋆u+u⋆x. The first term is a quadratic function of x, the

second term is known, and the last two terms are linear functions of x. If the supports for x

and u are sufficiently separated, then we can separate the last two linear terms from the first

two quadratic terms and recover x by solving a linear problem. However, if x and u have a

significant overlap, then we need to solve a nonlinear inverse problem as we do in this work.

139

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Range of Reference (The Maximum Value)

0

20

40

60

80

100

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B) Middle

Top Left
Top Right
Bottom Left
Bottom Right

(a) MNIST

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Range of Reference (The Maximum Value)

10

20

30

40

50

60

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B) Middle

Top Left
Top Right
Bottom Left
Bottom Right

(b) CIFAR10

Figure 9.8: Performance of our method if the reference is an 8×8 block placed at different positions.

Fixing the minimum value at 0, we increased the maximum value of the reference we learn. We

observe that the small reference placed in the corners performs better than the ones placed in the

center.

140

Chapter 10

Unrolling Network to Learn Coded

Illumination Patterns

10.1 Introduction

The problem of signal recovery from nonlinear measurements arises in various

imaging and signal processing tasks [70, 71, 74, 73, 81]. Conventional methods for solving

such inverse problems use an iterative method to recover the signal from given measurements.

In this chapter, we present a framework to optimize over the measurement parameters to

improve the quality of signals recovered by the given iterative method. In particular, we

learn illumination patterns to recover the signal from coded diffraction patterns (CDP) using

a fixed-cost alternating minimization method.

Coded diffraction imaging is a specific instance of Fourier phase retrieval problems.

Phase retrieval refers to a broad class of nonlinear inverse problems where we seek to

Part of this work has been accepted to IEEE International Conference on Image Processing 2021 [195].

141

recover a complex- (or real-) valued signal from its phase-less (or sign-less) measurements

[196, 79, 72, 197, 70, 198]. In practice, these problems often arise in coherent optical imaging

where an image sensor records the intensity of the Fourier measurements of the object of

interest. In coded diffraction imaging, the signal of interest gets modulated by a sequence

of known illumination patterns/masks before observing the Fourier intensity at the sensor

[79, 197, 70]. Applications include X-ray crystallography [199, 74, 189], astronomy [200, 201],

microscopy [202, 105, 73, 203], speech processing and acoustics [204, 205, 206], and quantum

mechanics [207, 208].

We can model the sensor measurements for coded diffraction imaging as follows.

Let us denote the signal of interest as x ∈ Rn or Cn that is modulated by T illumination

patterns D = {d1, . . . , dT }, where dt ∈ Rn or Cn. The amplitude of sensor measurements

for tth illumination pattern can be written as

yt = |F(dt ⊙ x)|, (10.1)

where F denotes the Fourier transform operator and ⊙ denotes an element-wise product. We

note that real sensor measurements are proportional to the intensity of the incoming signal

(i.e., square of the Fourier transform). In practice, however, solving the inverse problem

with (non-square) amplitude measurements provides better results [209, 107]; therefore, we

use the amplitude measurements throughout the chapter.

To recover the signal x from the the observed measurements, we can solve the

following optimization problem:

min
x

T∑
t=1

∥yt − |F(dt ⊙ x)|∥22. (10.2)

142

Phase Retrieval as Fixed Unrolled Network Reconstructed
Images

d1

d2

dT

y1

y2

yT

...

...

F()

Learnable Sensing System
Ground Truth

Learned Patterns Measurements

...

Y

Initial Guess

layer2 layerK

*

()*

Estimation

D

x0 xK

D Y

xk-1 xk

...

x0 x1 x2 x3 x4 xK

Estimated Image at Every Layer in Unrolled Network

...

...

x̂=xKX

layer1

Figure 10.1: Pipeline of our proposed framework at inference time. Our framework mainly contains

two components: (1) a learnable sensing system that updates the illumination patterns during

training time, but at inference time the learned illumination patterns are fixed; (2) a fixed unrolled

network that runs phase retrieval process to recover the original signal x form measurements Y . The

number of layers in the network is fixed to K. Steps at every iteration are fixed and depicted as

an unrolled network (details can be found in Algorithm 10). We illustrate the steps of kth layer of

the unrolling network. Phase retrieval algorithm uses the measurements Y = {yt} and illumination

patterns D = {dt} to provide an estimate xK after K iterations. During training time, our goal is to

learn the illumination patterns D to minimize the error between the estimated xK and the ground

truth. More details can be found in section 10.2.

In recent years, a number of iterative algorithms have been proposed for solving the problem

in (10.2), which includes lifting-based convex methods, alternating minimization-based

nonconvex methods, and greedy methods [79, 80, 92, 78, 93].

Our goal is to learn a set of illumination patterns to optimize the recovery of an

alternating minimization (AltMin) algorithm for solving the problem in (10.2). The AltMin

method can be viewed as an unrolled gradient descent network, as shown in Fig. 10.1,

143

where we fix the steps at every iteration and the total number of iterations for AltMin.

One forward pass through the unrolled network is equivalent to K iterations of the AltMin

algorithm. We can increase or decrease the number of iterations for better accuracy or

faster run-time. To keep the computational complexity of the recovery algorithm low, we

keep the total number of iterations small (e.g., K = 50). At the training stage, we optimize

over the illumination patterns to minimize the error between the AltMin outputs after K

iterations and the ground truth training images. At the test time, we solve the problem in

(10.2) using K AltMin iterations with the learned illumination patterns (equivalent to one

forward pass). We evaluated our method on different image datasets and compared against

existing methods for coded diffraction imaging. We demonstrate that our proposed method

of designing illumination patterns for a fixed-cost algorithm outperforms existing methods

both in terms of accuracy and speed.

The key contributions of this work [195] are as follows.

• We learned illumination patterns for coded diffraction imaging using unrolled network

formulation of a classical AltMin method.

• We showed that with our designed patterns and unrolled AltMin method outperform

computationally complex algorithms and provide superior image reconstruction.

• Our algorithm requires only a small number of training images to learn the illumination

patterns. It is crucial in applications because finding training samples is difficult in

practice.

• The patterns learned on a given dataset generalize to different datasets and provide

robust reconstruction for shifted and flipped versions of the target samples.

144

• Our learned illumination patterns can also help other algorithms achieve better perfor-

mance even though they are not used for training.

10.2 Proposed Method

We use N training images (x1, . . . , xN) to learn T illumination patterns that provide

best reconstruction using a predefined (iterative) phase retrieval algorithm. Furthermore, to

ensure that the illumination patterns are physically realizable, we constrain their values to be

in the range [0, 1]. We use a sigmoid function over unconstrained parameters Θ = {θ1, . . . , θT }

to define the illumination patterns; that is, dt = sigmoid(θt) for all t = 1, . . . , T .

Our proposed method for learning illumination patterns can be divided into two

parts: The first (inner) part involves solving the phase retrieval problem with given coded

diffraction patterns using AltMin as an unrolled network (see block diagram in Fig. 10.1);

Second part is updating the illumination patterns based on backpropagating the image

reconstruction loss. These two parts provide optimized image reconstruction and illumination

patterns. Pseudocodes for both parts are listed in Algorithms 9,10.

Phase retrieval as alternating minimization (AltMin). Given measurements

Y = {y1, . . . , yT } and illumination patterns D = {d1, . . . , dT }, we seek to solve the CDP

phase retrieval problem by minimizing the loss function defined in (10.2) as

Lx =
1

2

T∑
t=1

∥yt − |F(dt ⊙ x)|∥22. (10.3)

Even though the loss function in (10.3) is nonconvex and nonsmooth with respect to x,

we can minimize it using the well-known alternating minimization (AltMin) with gradient

145

Algorithm 9 Learning illumination patterns

Input: Training set X with N images X = {x1, . . . , xN}.

Initialize: Initialize the optimization variables for T patterns as Θ = {θ1, . . . , θT } from

a uniform distribution.

for epoch = 1, 2, ...,M do ▷ M epochs

Generate illumination patterns dt = sigmoid(θt)

for all t

for n = 1, 2, ..., N do ▷ N samples

Yn = {y1,n, . . . , yT,n | yt,n = |F(dt ⊙ xn)|}

xKn (Θ)← solveCDP(Yn,D)

end for

LΘ =
∑N

n=1 ∥xn − xKn (Θ)∥22

Θ← Θ− β∇ΘLΘ ▷ Update Θ with stepsize β

end for

Output: Learned illumination patterns

D = {d1, . . . , dT | dt = sigmoid(θt)}.

descent [92, 85]. We define a new variable for the estimated phase of linear measurements

as pt = phase[F(dt ⊙ x)] and reformulate the loss function in (10.3) into

Lx,p =
1

2

T∑
t=1

∥pt ⊙ yt −F(dt ⊙ x)∥22. (10.4)

The gradient with respect to x can be computed as

∇xLx,p =

T∑
t=1

|dt|2 ⊙ x− d∗t ⊙F∗(pt ⊙ yt), (10.5)

146

Algorithm 10 solveCDP(Y,D) via alternating minimization using single-step gradient

descent

Input: Measurements Y = {y1, . . . , yt} and illumination patterns D = {d1, . . . , dT }.

Initialization: Zero initialization of estimate x0.

for k = 1, 2, ...,K do ▷ K iterations of AltMin

pk−1
t ← phase(F(dt ⊙ xk−1) for all t.

∇xLx,p =
2
T

∑T
t=1[|dt|2 ⊙ xk−1 − d∗t ⊙F∗(pk−1

t ⊙ yt)]

xk ← xk−1 − α∇xLx,p

Project xk onto feasible range.

end for

Output: Estimated signal xK .

where F∗ denotes the inverse Fourier transform and d∗t is the conjugate of pattern dt. We

can update the estimate at every iteration as

xk = xk−1 − αk−1∇xLx,p, (10.6)

where αk−1 denotes the step size. Another way is to directly solve for xk such that∇xLx,p = 0.

The closed-form solution is

xk = (

T∑
t=1

|dt|2)−1 ⊙ [

T∑
t=1

d∗t ⊙F∗(pk−1
t ⊙ yt)]. (10.7)

We compared these two strategies and found that single-step gradient descent tends to work

well in practice and the closed-form solution does not show advantage over the single-step

gradient descent. In our implementation, we used the former strategy (Algorithm 10) and

fixed a step size α for all iterations. The unrolled network has K layers that implement K

iterations of the gradient descent, and the final estimate is denoted as xK .

147

Choice of initialization is important, and our method can handle different types

of initialization. Zero initialization, where every pixel of the initial guess of x0 is 0, is the

simplest and cost-free method. Many recent phase retrieval algorithms [84, 86, 85, 210]

use spectral initialization, which tries to find a good initial estimate. However, it re-

quires computing the principal eigenvector of the following positive semidefinite matrix,∑T
t=1 diag(d

∗
t)F∗diag(|yt|2)Fdiag(dt). In our experiments, we observed that spectral initial-

ization does not provide a significant improvement in terms of image reconstruction, and

that our algorithm can perform very well using the overhead-free zero initialization.

Learning illumination patterns. To learn a set of illumination patterns that

provide the best reconstruction with the predefined iterative method (or the unrolled

network), we seek to minimize the difference between the original training images and their

estimates. In this regard, we minimize the following quadratic loss function with respect to

Θ:

LΘ =
1

2

N∑
n=1

∥xn − xKn (Θ)∥22, (10.8)

where xKn (Θ) denotes the solveCDP estimate of nth training image for the given values of

Θ. Note that for given real values of Θ = {θ1, . . . , θT }, we can define illumination patterns

as dt = σ(θt), where σ(·) is the sigmoid function. We can define sensor measurements for

xn as yt,n = |F(dt ⊙ xn)| = p∗t,n ⊙ F(dt ⊙ xn) for t = 1, . . . , T and n = 1, . . . , N , where

pt,n = phase[F(dt ⊙ xn)] is the phase of the original complex-valued signal.

We can use the recursive expression of the signal estimate in (10.6) and the gradient

in (10.5) to represent the estimate of xn at iteration/layer k with the given values of Θ as

xkn(Θ) = (1− α

T∑
t=1

|dt|2)xk−1
n (Θ) + α

T∑
t=1

d∗t ⊙F∗(pk−1
t,n ⊙ yt,n), (10.9)

148

where pkt,n = phase[F(dt ⊙ xkn(Θ))]. We can compute the gradient of the loss function in

(10.8) with respect to any θt in a recursive manner as follows.

∇θtLΘ =
N∑

n=1

Jθt(x
K
n (Θ))[xKn (Θ)− xn], (10.10)

where Jθt(x
K
n (Θ)) denotes the Jacobian matrix of the signal estimate with respect to θτ . We

can now write the product of the Jacobian matrix with a vector u as

Jθτ (x
K
n (Θ))[u] = Jθτ (x

K−1
n (Θ))[(1− α

T∑
t=1

|dt|2)⊙ u]

− 2α|dτ |2 ⊙ (1− dτ)⊙ xK−1∗
n (Θ)⊙ u (10.11)

+ αdτ ⊙ (1− dτ)⊙F∗(pKτ,n ⊙ yτ,n)⊙ u

+ αdτ ⊙ (1− dτ)⊙ xn ⊙F∗(pτ,n ⊙ pK∗
τ,n ⊙F(dτ ⊙ u)),

where Jθτ (x
0
n) = 0 for all n, τ . Here we assume initial estimate x0n = 0 and αk = α for

k = 1, . . . ,K. We also assume that the phase of the measurements or the signal estimates

do not change with small changes in Θ. The overall gradient of the reconstruction loss with

respect to the parameters Θ can be computed in a recursive manner (back-propagation)

using element-wise products and forward/inverse Fourier transform operations at every

iteration/layer.

We can use gradient descent to find the optimal Θ using equation (10.10). We can

update the estimate at every iteration of gradient descent as

Θm = Θm−1 − β∇ΘLΘ, (10.12)

where β denotes the learning rate for the gradient descent.

In practice, we can also compute the gradient using auto-differentiation. In our

experiments, we used Adam optimizer in PyTorch [161, 211] to minimize the loss function

149

Table 10.1: PSNR (mean ± std) for random and learned illumination patterns tested on different

datasets.

Dataset
2 Illumination Patterns 3 Illumination Patterns 4 Illumination Patterns 8 Illumination Patterns
Random Learned Random Learned Random Learned Random Learned

MNIST 14 ± 6 28 ± 9 20 ± 11 75 ± 19 32 ± 14 102 ± 10 61 ± 19 113 ± 11
F. MNIST 17 ± 4 26 ± 6 20 ± 6 49 ± 15 33 ± 9 94 ± 13 67 ± 14 111 ± 12
CIFAR10 15 ± 3 26 ± 4 20 ± 3 34 ± 10 30 ± 8 86 ± 18 64 ± 15 108 ± 18
SVHN 17 ± 3 28 ± 6 24 ± 4 45 ± 15 35 ± 7 93 ± 21 73 ± 15 118 ± 21
CelebA 13 ± 2 19 ± 3 14 ± 4 28 ± 2 23 ± 5 81 ± 4 43 ± 8 98 ± 15

in (10.8). A summary of the algorithm for learning the illumination patterns is also listed in

Algorithm 9.

10.3 Experiments

Datasets. We used MNIST digits, Fashion MNIST (F. MNIST), CIFAR10, SVHN,

and CelebA datasets for training and testing in our experiments. We used 128 images from

each of the datasets for training and another 1000 images for testing. To make the tiny-image

datasets uniform, we reshaped all of them to 32× 32 size with grayscale values. Images in

CelebA dataset have 218× 178 pixels, we first converted all the images to grayscale, cropped

178× 178 region in the center, and resized to 200× 200. We report the performance of our

method on images used in [107] in Fig. 10.6.

Measurements. We used the amplitude of the 2D Fourier transform of the images

modulated with T illumination patterns as the measurements. Unless otherwise mentioned,

we used noiseless measurements. We report results for measurements with Gaussian and

Poisson noise in Fig. 10.7.

150

Computing platform. We performed all the experiments using a computer

equipped with Intel Core i7-8700 CPU and NVIDIA TITAN Xp GPU. We learned the illu-

mination patterns using a PyTorch implementation, but we also implemented our algorithm

in Matlab to provide a fair runtime comparison with existing phase retrieval methods.

10.3.1 Setup and hyper-parameter search

The hyper-parameters include the number of iterations (K), step size α, and the

number of training samples N . We set the default value of K = 50, but we will show

later that K can be adjusted as a trade-off between better reconstruction quality and

shorter run time. We tested all methods for T = {2, 3, 4, 8} to evaluate cases where signal

recovery is hard, moderate, and easy. Through grid search, we found that it provides the

best results over all datasets when α = 4/T . We also studied the effect of the number of

training images and found that illumination patterns learned on 32 randomly selected images

provide good recovery over the entire dataset. The test accuracy improves slightly as we

increase the number of training samples. To be safe, we used 128 training images in all our

experiments. Unless otherwise mentioned, the images are constrained to be in [0, 1] range

for our experiments.

10.3.2 Comparison between random and learned illumination patterns

To demonstrate the advantages of our learned illumination patterns, we compare

the performance of learned and random illumination patterns on five different datasets. We

learn a set of T = {2, 3, 4, 8} illumination patterns on 128 training images from a dataset

151

G
T

R
a
n
d
o
m

Le
a
rn
e
d

H
is
t.

0 14031 101

Random

Learned

22.38 13.46 8.32 20.64

97.81 92.40 94.61 84.04

(a) MNIST

0 14031 92

Random

Learned

29.59 12.15 26.00 23.90

93.78 99.87 91.72 92.91

G
T

R
a
n
d
o
m

Le
a
rn
e
d

H
is
t.

(b) F. MNIST

0 12027 82

Random

Learned

19.73 28.32 21.44 22.25

91.14 83.07 43.48 76.75

G
T

R
a
n
d
o
m

Le
a
rn
e
d

H
is
t.

(c) CIFAR10

0 11021 78

Random

Learned

18.26 20.38 18.36 14.60

80.45 79.54 78.46 76.00

G
T

R
a
n
d
o
m

Le
a
rn
e
d

H
is
t.

(d) CelebA

Figure 10.2: Selected ground truth (GT) images, corresponding reconstructed images using random

and learned illumination patterns. PSNR is shown on top of every reconstruction. Below each

dataset, we show the histograms of the PSNRs of all images with random patterns (shown in blue)

and learned patterns (shown in orange). The dashed vertical line indicates the mean of all PSNRs.

We used T = 4 illumination patterns. Random illumination patterns are selected best out of 30 trials.

The learned illumination patterns are trained on 128 training images.

and test them on 1000 test images from the same dataset. For random patterns, we draw

T independent patterns from Uniform(0,1) distribution and test their performance on the

same 1000 samples that we used for the learned case. We repeat this process 30 times and

choose the best result to compare with the results for the learned illumination patterns.

The average peak signal-to-noise ratio (PSNR) over all 1000 test image reconstructions

is presented in Table 10.1, which shows that the learned illumination patterns perform

significantly better than the random patterns for all values of T . In addition to that, we

can observe a transition in the performance for T = 3, where random patterns provide poor

quality reconstructions and learned patterns provide reasonably high quality reconstructions.

Furthermore, the learned patterns provide very high quality reconstructions for T ≥ 4.

152

To highlight this effect, we show a small set of reconstructed images and histograms

of PSNRs of all the reconstructed images from learned and random illumination patterns

in Fig. 10.2 for T = 4 patterns. The result suggests that the learned illumination patterns

demonstrate consistently better performance compared to random illumination patterns.

We demonstrate the corresponding learned illumination patterns in Fig. 10.3.

Figure 10.3: Learned illumination patterns corresponding to the reported results for MNIST, F.

MNIST, CIFAR10 and CelebA in Table 10.2.

0 50 100 150 200
Number of Steps (ie. K)

0

50

100

150

Re
co

ns
tru

ct
io

n
PS

NR
 (d

B)

19
31

42 51 58 65 71 77
57

102

141
152 153 153 153 153Random

Learned

(a) MNIST

0 50 100 150 200
Number of Steps (ie. K)

0

50

100

150

Re
co

ns
tru

ct
io

n
PS

NR
 (d

B)

21
32 41 48 53 59 63 67

56

92

126
143 146 146 146 146Random

Learned

(b) F. MNIST

0 50 100 150 200
Number of Steps (ie. K)

0

50

100

150

Re
co

ns
tru

ct
io

n
PS

NR
 (d

B)

21 28 33 38 41 45 48 5053

82

109
128 135 136 137 137

Random
Learned

(c) CIFAR10

0 50 100 150 200
Number of Steps (ie. K)

0

50

100

150

Re
co

ns
tru

ct
io

n
PS

NR
 (d

B)

16 22 26 30 30 32 31 32
51

79
104

128
140 141 141 141

Random
Learned

(d) CelebA

Figure 10.4: Comparison of the reconstruction quality with random and learned illumination

patterns for different values of K = 1, . . . , 200. We plot the average PSNR in bright color and the

PSNR of randomly selected 100 samples in light shadows. Learned represents the reconstruction

PSNR with learned illumination patterns (shown in red), and Random represents PSNR for random

illumination patterns (shown in blue). The number of illumination patterns is T = 4. Random

illumination patterns are selected best out of 30 trials. The learned illumination patterns are trained

on 128 training images and number of iterations K = 50 during training.

153

10.3.3 Effect of number of iterations/layers (K)

Figure 10.4 shows the performance of the learned and random illumination patterns

as we increase K to 200 at test time using the patterns learned for K = 50. We observed

that with the learned patterns the image reconstruction process converges faster and is more

stable (smaller variance) compared to the case with random patterns. The red curve in

Fig. 10.4 has a steeper slope and narrower shades. Besides the default setting for K = 50, we

also learn the illumination patterns for different values of K. Figure 10.5 shows that we can

recover images in a small number of iterations if we use learned illumination patterns. We

also observe that we can perform better if we use more iterations in testing than in training.

We have chosen K = 50 for most of the experiments as a trade-off between computational

cost and reconstruction performance.

0 25 50 75 100 125 150 175 200
Number of Steps i.e. K

20

40

60

80

100

120

140

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B)

CIFAR
SVHN
Fashion MNIST

(a) Training K=10

0 25 50 75 100 125 150 175 200
Number of Steps i.e. K

20

40

60

80

100

120

140

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B)

CIFAR
SVHN
Fashion MNIST

(b) Training K=20

0 25 50 75 100 125 150 175 200
Number of Steps i.e. K

20

40

60

80

100

120

140

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B)

CIFAR
SVHN
Fashion MNIST

(c) Training K=Test K

Figure 10.5: Reconstruction quality vs number of iterations (layers) at test time (i.e., K is different

for training and testing with T = 4). We show error bar of ±0.25σ for each dataset. In (a) and (b),

we fixed K (K=10, 20) and tested using different K. In (c), we trained and tested using the same

number of layers.

154

Table 10.2: Reconstruction PSNR (mean ± std) of different algorithms using random patterns and

our learned patterns. The number of patterns is 4 in each case. Here we round the PSNR values to

integers to fit the width of the page. We let all the algorithms to run until convergence.

*For Deep Model [3] experiments, patterns are normalized to [−1, 1] range. **For Deep Model, the

image size for CelebA generator is 64×64.

MNIST F. MNIST CIFAR10 SVHN CelebA
Random Learned Random Learned Random Learned Random Learned Random Learned

HIO [196] 16 ± 9 37 ± 19 32 ± 14 61 ± 24 49 ± 20 99 ± 25 60 ± 22 114 ± 27 38 ± 5 102 ± 5
GS [75] 16 ± 9 37 ± 19 33 ± 15 61 ± 24 48 ± 20 99 ± 25 60 ± 22 114 ± 27 38 ± 4 102 ± 5

WirtFlow [84] 22 ± 16 48 ± 25 33 ± 14 51 ± 19 41 ± 10 57 ± 10 41 ± 10 58 ± 10 20 ± 2 39 ± 3
AmpFlow [86] 42 ± 32 74 ± 48 64 ± 38 109 ± 43 86 ± 37 138 ± 25 97 ± 33 144 ± 21 42 ± 8 138 ± 11
PhaseMax [210] 14 ± 4 24 ± 8 21 ± 4 45 ± 20 26 ± 4 97 ± 41 32 ± 5 115 ± 33 32 ± 2 148 ± 2

Ours - K=20 17 ± 6 49 ± 8 20 ± 6 49 ± 8 21 ± 6 49 ± 9 26 ± 5 55 ± 11 16 ± 4 46 ± 3
Ours - K=50 32 ± 14 102 ± 10 33 ± 9 94 ± 13 30 ± 8 86 ± 18 35 ± 7 93 ± 21 23 ± 5 81 ± 4
Ours - K=100 51 ± 19 186 ± 15 49 ± 11 162 ± 22 40 ± 10 139 ± 30 45 ± 10 149 ± 35 33 ± 4 132 ± 7

Deep Model [3]* 31 ± 2 32 ± 3 22 ± 4 22 ± 4 28 ± 3 25 ± 3 26 ± 3 28 ± 4 22 ± 3** 23 ± 2**

Table 10.3: Average runtime (sec) per image of different algorithms corresponding to the performance

reported in Table 10.2. The reported runtime corresponds to the time required for convergence of

each algorithm.

**For Deep Model, the image size for CelebA is 64×64.

Max iterations
Image size

32× 32 200× 200

HIO [196] 100 0.473 7.353
GS [75] 100 0.461 7.269
WirtFlow [84] 2000 0.459 10.90
AmpFlow [86] 2000 0.080 2.377
PhaseMax [210] 2000 0.563 10.84
Deep Model [3] 2000 8.422 10.55**
Ours - K=20 20 0.008 0.061
Ours - K=50 50 0.011 0.124
Ours - K=100 100 0.017 0.238

10.3.4 Comparision with existing methods

We compare our method with various existing methods using different datasets.

These existing methods fall into 4 categories:

155

• Hybrid input output (HIO) [196] and Gerchberg-Saxton (GS) [75] (alternating mini-

mization methods)

• Wirtinger Flow [84] and Amplitude Flow [212] (non-convex, gradient descent-based

methods)

• PhaseMax [210] (a convex method)

• Deep S3PR [3] (deep model-based method).

We compare the performance of our method with these methods in terms of reconstruction

quality and computation time.

For algorithms in [196, 75, 84, 212, 210], we used PhasePack [104] package. In our

comparison, we used 4 illumination patterns and restricted all the illumination patterns

in the range of [0, 1]. For all the PhasePack algorithms, we used the default spectral

initialization. We observed that different algorithms have different computational complexity

in each iteration. Thus, a comparison in terms of the number of maximum iterations in

all algorithms is not fair. To overcome this issue, we set the error tolerance (tol = 10−6)

and customize the maximum number iterations in each algorithm to have comparable

computations or performance. Specifically, we set the maximum iterations to be 100 for HIO

and GS, and 2000 for Wirtinger Flow, Amplitude Flow, and PhaseMax. For our proposed

method, we want to keep the number of iterations low (20, 50, 100). To make our runtime

comparable with PhasePack algorithms, we implemented our original Python code in Matlab.

For deep generative models, we used a modified version of the publicly available

code for [3]. The code only provided pretrained DCGAN models for MNIST and F. MNIST;

156

therefore, we trained our DCGAN models on the other datasets. This method is noticeably

time-consuming because it optimizes over the latent vector for the deep model and uses 2000

iterations for each image where each iteration requires a forward and backward pass through

the deep model. The patterns drawn from Uniform(0,1) range did not provide us good

reconstruction with Deep Model; therefore, we tested this method using random patterns

drawn uniformly from [−1, 1] range and learned patterns that we manually scaled to [−1, 1].

The reconstruction results for the Deep Model also directly depend on the quality of the

trained generative models. In our experiments, we were not able to generate images with

PSNR higher than 30dB using the generative models.

We tested all the methods using Random illumination patterns and the Learned

illumination patterns using K = 50 in our method. For the case of Random illumination, we

selected the best PSNR from 5 independent trials and report the average computation time

for each experiment. In all the cases, we tuned the parameters that provide best results.

The reconstruction PSNR (in dB) and run time (in seconds) per image is reported

in Table 10.2 and Table 10.3, respectively. We observe that our proposed method with

learned patterns performs significantly better than all other algorithms in terms of both

reconstruction quality and runtime. We also observed that if we increase the number of

iterations for other methods, their reconstruction quality improves beyond the numbers

reported in Table 10.2, but this happens at the expense of much longer computation time.

An interesting attribute of our learned patterns is that they can be used with

different algorithms. We observe in Table 10.2 that our learned patterns provide better

results compared to Random patterns with all the phase retrieval algorithms, even though

157

the patterns were not optimized for those algorithms.

10.3.5 Generalization of learned patterns on different datasets

To explore the generalizability of our learned illumination patterns, we use patterns

learned on one dataset to recover images from another. The results are shown in Table. 10.4.

As we can see in the table, the diagonal numbers are generally the best, and off-diagonal

numbers are generally better than the ones with random illumination patterns.

We have also tested the learned illumination patterns on several classical images.

Some results are shown in Fig. 10.6. We used illumination patterns learned on 128 celebA

images, but we can see that the learned illumination patterns perform better than the

randomly chosen illumination patterns for classical images which further supports the

generalizability of our learned illumination patterns.

Table 10.4: Reconstruction PSNR (mean ± std) of illumination patterns learned and tested on

different datasets for K = 50. Every column corresponds to patterns learned on a fixed dataset and

tested on all. Random column reports the performance of random illumination patterns.

4 Illumination Patterns 8 Illumination Patterns
Test \ Train

MNIST F. MNIST CIFAR10 SVHN Random MNIST F. MNIST CIFAR10 SVHN Random

MNIST 102 ± 10 66 ± 16 34 ± 15 48 ± 15 32 ± 14 113 ± 11 84 ± 13 56 ± 20 74 ± 19 61 ± 19
F. MNIST 84 ± 24 94 ± 13 50 ± 20 64 ± 19 33 ± 9 94 ± 23 111 ± 12 89 ± 20 108 ± 21 67 ± 14
CIFAR10 79 ± 27 87 ± 13 86 ± 18 96 ± 17 30 ± 8 84 ± 18 88 ± 17 108 ± 18 113 ± 17 64 ± 15
SVHN 56 ± 28 78 ± 16 72 ± 21 93 ± 21 35 ± 7 76 ± 19 95 ± 12 91 ± 24 118 ± 21 73 ± 15

158

Gr
ou

nd
 T

ru
th

Barbara Cameraman Couple Pollen Tadpole Galaxy Yeast

Ra
nd

om
17.01 17.22 21.01 20.71 19.30 24.56

Le
ar

ne
d

75.86 72.60 83.98 77.81 74.58 86.45

Figure 10.6: First Row: Ground truth images from image processing standard test datasets.

Second Row: Reconstruction using random illumination patterns with uniform random distribution

[0, 1] (we selected T = 4 patterns that provided best results on celebA test images in 30 trials).

PSNR numbers are shown on the top of reconstructed images. Third Row: Reconstruction using the

patterns trained on celebA dataset. Each image has 200× 200 pixels and the number of illumination

patterns is T = 4.

20 25 30 35 40
Measurement Noise Level (SNR in dB)

25

30

35

40

45

50

55

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B)

CIFAR10
SVHN
Fashion MNIST
MNIST

(a) Gaussian

20 25 30 35 40
Measurement Noise Level (SNR in dB)

25

30

35

40

45

50

55

Re
co

ns
tru

ct
io

n
Qu

al
ity

 (P
SN

R
in

 d
B)

CIFAR10
SVHN
Fashion MNIST
MNIST

(b) Poisson

Figure 10.7: Reconstruction quality of the test images vs noise level of the measurements for different

datasets. Here we show shaded error bar of ±0.25σ for each dataset. We learn the illumination

patterns (T = 4) on 128 noiseless training images of corresponding datasets.

159

Table 10.5: Reconstruction PSNR (mean ± std) of different algorithms using random patterns (best

out of 5 trials) and our learned patterns at different Poisson noise levels for MNIST and CIFAR10

dataset. The number of patterns is 4 in each case. We let all the algorithms to run until convergence.

Here we round the PSNR values to integers to fit the width of the page.

MNIST

Noise SNR 0 5 10 20 30 40
Random Learned Random Learned Random Learned Random Learned Random Learned Random Learned

HIO [196] 23±13 25±15 17±10 19±12 22±12 18±10 18±11 23±16 22±11 10±3 20±11 11±4
GS [75] 16±9 25±15 19±11 18±12 22±13 18±10 20±11 22±16 21±11 10±3 17±8 11±4

WirtFlow [84] 20±16 25±15 23±19 23±18 27±20 25±16 29±20 28±22 30±19 14±9 31±19 24±16
PhaseMax [210] 16±5 18±6 13±3 16±6 15±5 16±5 17±5 17±6 17±5 11±2 16±4 11±2
Ours - K=50 28±16 24±3 21±13 28±5 28±12 31±5 16±11 48±13 22±13 65±21 27±13 61±17

CIFAR10

Noise SNR 0 5 10 20 30 40
Random Learned Random Learned Random Learned Random Learned Random Learned Random Learned

HIO [196] 28±26 18±16 28±28 20±18 27±25 31±31 28±25 41±42 28±26 47±43 29±27 51±44
GS [75] 27±27 17±15 26±25 19±18 32±30 33±32 27±26 45±42 27±26 47±43 29±26 51±44

WirtFlow [84] 23±20 16±14 23±19 18±16 23±18 23±22 23±20 31±28 23±19 30±28 24±20 33±30
PhaseMax [210] 17±12 23±22 16±10 23±22 16±11 29±32 16±11 50±55 17±11 48±52 18±12 58±60
Ours - K=50 29±6 26±9 28±7 30±12 29±7 38±10 28±5 51±10 30±8 68±12 31±7 71±9

10.3.6 Noise response

To investigate the robustness of our method to noise, we train our illumination

patterns on noiseless measurements obtained from the training datasets. We then added

Gaussian and Poisson noise at different levels to the measurements from the test datasets.

Poisson noise or shot noise is the most common in the imaging systems, which we add

following the approach in [107, 213]. Let us denote the ith element of measurement vector

corresponding to tth illumination pattern, yt as

yt(i) = |zt(i)|+ ηt(i), for i = 1, 2, . . . ,m, (10.13)

where ηt(i) ∼ N (0, λ|zt(i)|) and zt = F(dt ⊙ x). We varied λ to generate noise at different

signal-to-noise ratio (SNR) levels. Poisson noise affects larger values in measurements

with higher strength than the smaller values. Since the sensors can measure only positive

measurements, we kept the measurements positive by applying ReLU function after noise

160

addition. We expect the reconstruction to be affected by noise as we did not use any denoiser.

We observe the effect of noise in Figure 10.7. Even though noise affects the reconstructions,

we can get reasonable reconstruction up to a certain level of noise. The relationship between

noise level and reconstruction performance also indicates that our phase retrieval system is

quite stable.

We ran another set of experiments where we learned different set of illumination

patterns at different noise level by introducing measurement noise during training. In

Table 10.5, we report results for MNIST and CIFAR10 dataset at different level of Poisson

noise introduced during training and testing. We show the performance of some comparing

approaches with our learned patterns and random patterns. For random patterns, we

reported the results for the best out of 5 runs. We can observe that even under the presence

of high noise (0-20dB), the learned illumination patterns using our approach performs

reasonably well. We observe performance boost with our learned patterns for 5dB or higher

SNR.

89.50 81.12 89.45 89.18 94.54 89.25 82.76 89.03 85.37 84.19

S
h
if
t

R
e
c.

80.10 96.04 61.68 88.50 86.11

Figure 10.8: Test results on images shifted to bottom right by 5 pixels. From left to right: MNIST,

F. MNIST, and CIFAR10.

161

100.22 88.24 113.96 90.60 104.90 82.04 71.62 76.16 65.23 71.06 82.39 70.91 87.74 88.42 91.69
R
o
ta
te

R
e
c.

Figure 10.9: Test results on images rotated by 90◦. From left to right: MNIST, F. MNIST, and

CIFAR10.

10.3.7 Mismatch in training and test images

In our final experiment, we tested illumination patterns trained on upright images

to recover shifted and rotated images. Our results in Fig. 10.8 and Fig. 10.9 show that the

learned patterns reliably recover images regardless of the position or orientation. This is not

surprising because we do not learn to represent images or solve the phase retrieval problem

using the training data; instead, we only learn the illumination patterns using a predefined

AltMin-based recovery algorithm. In contrast, data-driven methods that learn to solve the

inverse problem may suffer if the distribution of test images differ significantly from the

training images.

162

Chapter 11

Conclusion

The work presented in this thesis explores different structures in deep networks

and formulates efficient algorithms to utilize these structures for solving continual learning

and different linear and nonlinear inverse problems. The models used in these algorithms

are static and deterministic. The main focus of this work is to achieve good performance

with reduced computational complexity while applying deep networks for solving different

problems.

11.1 Continual Learning with Low-Rank Increment

We proposed a new incremental task learning method in which we update the

network weights using low rank increments as we learn new tasks. Network layers are

represented as a linear combination of low-rank factors. To update the network for a new

task, we freeze the factors learned for previous tasks, add a new low-rank (or rank-1) factor,

and combine that with the previous factors using a learned combination. The proposed

163

method offered considerable improvement in performance compared to the state-of-the-art

methods for ITL in image classification tasks. In addition, the proposed low-rank ITL

circumvents the use of memory buffer or large memory overhead while achieving zero

forgetting. The need for task identity knowledge is a general limitation of our and other

ITL methods. Such methods can be useful for incremental multitask learning where task

identity is available during inference but training data is only available in a short window.

11.2 Inverse Problems with Deep Networks

11.2.1 Solving Linear Inverse Problems with Untrained Generative Prior

We used untrained generative network as a prior to solve ill posed linear inverse

problems. Usually in the untrained generative priors, the latent codes are kept fixed at

random initialization where the network parameters are optimized to provide solution.

In our experiments, we observe that joint optimization of network weights and latent

codes performs remarkably well for compressive measurements. Even though the number of

measurements are extremely small compared to the number of parameters in the network, the

solution almost always converges to a good sequence. Introducing low-rank constraint in the

optimization, we get additional degree of compression with comparable performance. We show

comparison with classical and generative prior based techniques in terms of reconstruction

performance and computational complexity. We also demonstrate one application of joint

optimization in coded flutter shutter problem where its tractable memory requirement

and lower computational cost makes it more suitable than other generative prior based

approaches.

164

We extend this setup with tensor factorization replacing low-rank matrix factoriza-

tion in the latent space. We formulated a tensor ring factorized autoencoder to reconstruct

structured datasets from their corrupted versions utilizing the structural similarity between

the images in the dataset. We demonstrate that utilizing the structural information in the

latent space can significantly improve performance of generative prior based approaches.

Finally, we present a consensus equilibrium framework to incorporate untrained

generative prior with other denoiser based priors for solving image deblurring problem. We

show that we can achieve robust performance under the presence of high noise and blurring

using consensus equilibrium formulation.

11.2.2 Solving Phase Retrieval with Trained Generative Prior

We developed a projected gradient descent based approach to use trained generative

models as a prior to solve compressive phase retrieval problems. We show comparisons with

other generative prior based approaches and demonstrate that we can reconstruct images

with very low number of measurements. We then show that this approach can be benefited

more if we know some side information about the target signal. We show qualitative results

on Fourier phase retrieval problem which suggests that generative prior based approaches

can perform significantly better with side information.

11.2.3 Learning Sensing Parameters Using Unrolling Networks

We presented an unrolling network based framework for learning a reference signal

for holographic imaging and illumination patterns for coded diffraction imaging. Both of

these imaging problems are variations of Fourier phase retrieval problem. The reference signal

165

and the illumination patterns can be considered as the sensing parameters for corresponding

imaging problems. The sensing parameters are learned via backpropagation using a small

number of training images by formulating an iterative phase retrieval algorithm as a fixed

unrolled network. Once learned, the sensing parameters significantly improve the efficiency

of the signal reconstruction in the phase retrieval process. The number of iterations in

our algorithm provides a clear trade-off between reconstruction accuracy and run time.

The learned parameters generalizes to a broad class of datasets with different distribution

compared to the training samples. We demonstrated the robustness and efficiency of our

method through extensive experiments.

11.3 Future Directions

11.3.1 Continual Learning with Low-Rank Networks

Class Incremental Learning: We discussed about incremental task learning (ITL) setup

in our work. We can extend it to incremental class learning (ICL) setup where we do not have

access to task identity of a data during inference. It is a harder and more practical continual

learning scenario. We can extend our formulation for ICL setup by applying an approach for

task identification during inference and using the task specific factors accordingly. Different

approaches have been proposed for task identification in the literature [33, 41].

Low-rank Tensor Factorization based Network: We used low-rank matrix factor-

ization to factorize both fully connected layers and convolutional layers. Although matrix

factorization is intuitive for 2-d weights of fully connected layers, for 4-d weights of convolu-

166

tional layers, it is more intuitive to use tensor factorization instead. Tensor factorization can

potentially provide more compression and more expressive power than matrix factorization

for convolutional networks.

11.3.2 Inverse Problems with Structured Networks

Extended Applications: We discussed different applications for our proposed approaches

including phase retrieval, deblurring, denoising, inpainting etc. We can extend the proposed

formulations for other applications as well. For example, we showed the application of

unrolled networks in learning coded illumination patterns in Chapter 10. It can be extended

to Fourier ptychography which is another related Fourier phase retrieval problem. We can also

potentially introduce denoisers in between the layers of unrolling network to increase noise

robustness. In Chapter 5, we used tensor factorized network to recover corrupted images with

Gaussian noise or missing pixels. This formulation can be extended to hyperspectral imaging

or image super resolution setup which are practically more realistic setups. In Chapter 6,

we discussed consensus equilibrium for non-blind deblurring which can be extended to blind

deblurring scenario.

Novel Image Generation: We demonstrated image recovery from corrupted images in

Chapters 4, 5 and 6. In one extreme case, we can have some images entirely missing from the

training dataset. Using the structure in the dataset and generative prior we can potentially

try to recover the missing images given the available images. The tensor factorization based

formulation discussed in Chapter 5 can be helpful in this respect. If we can learn a network

which can disentangle different visual attributes successfully with different factors, we can

167

potentially generate novel images using the learnt factors with the given images. This

research direction has different potential applications including dataset augmentation, image

editing etc.

168

Bibliography

[1] Chengbo Li, Wotao Yin, Hong Jiang, and Yin Zhang. An efficient augmented lagrangian
method with applications to total variation minimization. Computational Optimization
and Applications, 56(3):507–530, 2013.

[2] R. Heckel and P. Hand. Deep decoder: Concise image representations from untrained
non-convolutional networks. Proc. Int. Conf. Learning Representations (ICLR), 2018.

[3] Christopher A Metzler and Gordon Wetzstein. Deep s 3 pr: Simultaneous source
separation and phase retrieval using deep generative models. In ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 1370–1374. IEEE, 2021.

[4] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Greg Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting
in classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

[5] Daniel L Silver and Robert E Mercer. The task rehearsal method of life-long learn-
ing: Overcoming impoverished data. In Conference of the Canadian Society for
Computational Studies of Intelligence, pages 90–101. Springer, 2002.

[6] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. In Psychology of learning and motivation,
volume 24, pages 109–165. Elsevier, 1989.

[7] Arslan Chaudhry, Ranzato Marc’Aurelio, Marcus Rohrbach, and Mohamed Elho-
seiny. Efficient lifelong learning with a-gem. In International Conference on Learning
Representations, ICLR, 2019.

[8] Arslan Chaudhry, Naeemullah Khan, Puneet Dokania, and Philip Torr. Continual
learning in low-rank orthogonal subspaces. Advances in Neural Information Processing
Systems, 33, 2020.

[9] Julio Hurtado, Alain Raymond-Saez, and Alvaro Soto. Optimizing reusable knowledge
for continual learning via metalearning. Advances in Neural Information Processing
Systems, 34, 2021.

169

[10] Danruo Deng, Guangyong Chen, Jianye Hao, Qiong Wang, and Pheng-Ann Heng.
Flattening sharpness for dynamic gradient projection memory benefits continual
learning. Advances in Neural Information Processing Systems, 34, 2021.

[11] Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. Efficient continual learning
with modular networks and task-driven priors. In International Conference on Learning
Representations, 2021.

[12] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual
learning. In International Conference on Learning Representations, 2021.

[13] Haiyan Yin, Ping Li, et al. Mitigating forgetting in online continual learning with
neuron calibration. Advances in Neural Information Processing Systems, 34, 2021.

[14] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In Proc.
IEEE Conf. Comp. Vision and Pattern Recog. (CVPR), pages 9446–9454, 2018.

[15] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational
continual learning. In International Conference on Learning Representations, 2018.

[16] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on
pattern analysis and machine intelligence, 40(12):2935–2947, 2017.

[17] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong
learning with a network of experts. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3366–3375, 2017.

[18] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
Tuytelaars. Memory aware synapses: Learning what (not) to forget. In Proceedings of
the European Conference on Computer Vision (ECCV), pages 139–154, 2018.

[19] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample
selection for online continual learning. Advances in Neural Information Processing
Systems, 32:11816–11825, 2019.

[20] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.
Riemannian walk for incremental learning: Understanding forgetting and intransigence.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 532–
547, 2018.

[21] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu,
and Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and
minimizing interference. In International Conference on Learning Representations,
2019.

[22] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne.
Experience replay for continual learning. Advances in Neural Information Processing
Systems, 32:350–360, 2019.

170

[23] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient
descent for continual learning. In International Conference on Artificial Intelligence
and Statistics, pages 3762–3773. PMLR, 2020.

[24] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neural networks. Proceedings
of the national academy of sciences, 114(13):3521–3526, 2017.

[25] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. NeurIPS, 2014.

[26] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara.
Dark experience for general continual learning: a strong, simple baseline. Advances in
neural information processing systems, 33:15920–15930, 2020.

[27] Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null
space of feature covariance for continual learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 184–193, 2021.

[28] Shixiang Tang, Dapeng Chen, Jinguo Zhu, Shijie Yu, and Wanli Ouyang. Layerwise
optimization by gradient decomposition for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9634–9643,
2021.

[29] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert.
icarl: Incremental classifier and representation learning. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[30] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan,
Puneet K Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic
memories in continual learning. arXiv preprint arXiv:1902.10486, 2019.

[31] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James
Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive
neural networks. arXiv preprint arXiv:1606.04671, 2016.

[32] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single
network by iterative pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7765–7773, 2018.

[33] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mo-
hammad Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks in superposition.
Advances in Neural Information Processing Systems, 33, 2020.

[34] Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach
to efficient ensemble and lifelong learning. In International Conference on Learning
Representations, 2020.

171

[35] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming
catastrophic forgetting with hard attention to the task. In International Conference
on Machine Learning, pages 4548–4557. PMLR, 2018.

[36] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning
with dynamically expandable networks. In International Conference on Learning
Representations, 2018.

[37] Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe.
Continual learning with hypernetworks. In International Conference on Learning
Representations, 2019.

[38] Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman. Alleviating catastrophic
forgetting using context-dependent gating and synaptic stabilization. Proceedings of
the National Academy of Sciences, 115(44):E10467–E10475, 2018.

[39] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single
network to multiple tasks by learning to mask weights. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 72–88, 2018.

[40] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone Calderara, Rita Cucchiara,
and Babak Ehteshami Bejnordi. Conditional channel gated networks for task-aware
continual learning. In Proceedings of the IEEE/CVF conference on Computer Vision
and Pattern Recognition, pages 3930–3939, 2020.

[41] Nikhil Mehta, Kevin Liang, Vinay Kumar Verma, and Lawrence Carin. Continual
learning using a bayesian nonparametric dictionary of weight factors. In International
Conference on Artificial Intelligence and Statistics, pages 100–108. PMLR, 2021.

[42] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. Adv. in Neu-
ral Inf. Proc. Sys. (NIPS), pages 2672–2680, 2014.

[43] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[44] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for
deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[45] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE Trans. Pattern Anal. Machine Intell., 35(8):1798–
1828, 2013.

[46] Zachary C Lipton and Subarna Tripathi. Precise recovery of latent vectors from
generative adversarial networks. arXiv preprint arXiv:1702.04782, 2017.

[47] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A. Efros. Generative
visual manipulation on the natural image manifold. In Proc. European Conf. Comp.
Vision (ECCV), 2016.

172

[48] A. Creswell and A. A. Bharath. Inverting the generator of a generative adversarial
network. IEEE Transactions on Neural Networks and Learning Systems, pages 1–8,
2018.

[49] P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam. Optimizing the latent space of
generative networks. In Proc. Int. Conf. Machine Learning, 2018.

[50] Femke van Belzen and Siep Weiland. A tensor decomposition approach to data
compression and approximation of nd systems. Multidimensional Systems and Signal
Processing, 23(1-2):209–236, 2012.

[51] Wenqi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. Wide
compression: Tensor ring nets. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9329–9338, 2018.

[52] Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Tensor decomposition for
compressing recurrent neural network. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[53] Xinyu Chen, Zhaocheng He, and Lijun Sun. A bayesian tensor decomposition approach
for spatiotemporal traffic data imputation. Transportation research part C: emerging
technologies, 98:73–84, 2019.

[54] Sriram Krishnaswamy and Mrinal Kumar. Tensor decomposition approach to data
association for multitarget tracking. Journal of Guidance, Control, and Dynamics,
42(9):2007–2025, 2019.

[55] Maxim Kuznetsov, Daniil Polykovskiy, Dmitry P Vetrov, and Alex Zhebrak. A prior
of a googol gaussians: a tensor ring induced prior for generative models. In Advances
in Neural Information Processing Systems, pages 4104–4114, 2019.

[56] Zhiwei Deng, Rajitha Navarathna, Peter Carr, Stephan Mandt, Yisong Yue, Iain
Matthews, and Greg Mori. Factorized variational autoencoders for modeling audience
reactions to movies. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2577–2586, 2017.

[57] Li Jing, Jure Zbontar, et al. Implicit rank-minimizing autoencoder. Advances in
Neural Information Processing Systems, 33, 2020.

[58] Emmanuel J Candes, Yonina C Eldar, Deanna Needell, and Paige Randall. Com-
pressed sensing with coherent and redundant dictionaries. Applied and Computational
Harmonic Analysis, 31(1):59–73, 2011.

[59] David L Donoho. Compressed sensing. IEEE Transactions on information theory,
52(4):1289–1306, 2006.

[60] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE
transactions on information theory, 51(12):4203–4215, 2005.

173

[61] Marco F Duarte, Mark A Davenport, Dharmpal Takhar, Jason N Laska, Ting Sun,
Kevin F Kelly, and Richard G Baraniuk. Single-pixel imaging via compressive sampling.
IEEE signal processing magazine, 25(2):83–91, 2008.

[62] Richard Baraniuk and Philippe Steeghs. Compressive radar imaging. In Radar
Conference, 2007 IEEE, pages 128–133. IEEE, 2007.

[63] Fei Yang, Hong Jiang, Zuowei Shen, Wei Deng, and Dimitris Metaxas. Adaptive low
rank and sparse decomposition of video using compressive sensing. In Proc. IEEE Int.
Conf. Image Processing (ICIP), pages 1016–1020. IEEE, 2013.

[64] Jianing V Shi, Aswin C Sankaranarayanan, Christoph Studer, and Richard G Baraniuk.
Video compressive sensing for dynamic mri. BMC neuroscience, 13(1):P183, 2012.

[65] Chen Zhao, Siwei Ma, Jian Zhang, Ruiqin Xiong, and Wen Gao. Video compressive
sensing reconstruction via reweighted residual sparsity. IEEE Transactions on Circuits
and Systems for Video Technology, 27(6):1182–1195, 2017.

[66] A. Bora, A. Jalal, E. Price, and A. Dimakis. Compressed sensing using generative
models. Proc. Int. Conf. Machine Learning, 2017.

[67] Anna C Gilbert, Yi Zhang, Kibok Lee, Yuting Zhang, and Honglak Lee. Towards
understanding the invertibility of convolutional neural networks. In Proceedings of the
26th International Joint Conference on Artificial Intelligence, pages 1703–1710. AAAI
Press, 2017.

[68] D. Van Veen, A. Jalal, E. Price, S. Vishwanath, and Alexandros G. Dimakis. Com-
pressed sensing with deep image prior and learned regularization. arXiv preprint
arXiv:1806.06438, 2018.

[69] V. Shah and C. Hegde. Solving linear inverse problems using gan priors: An algorithm
with provable guarantees. Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing
(ICASSP), 2018.

[70] Y. Shechtman, Y. Eldar, O. Cohen, H. Chapman, J. Miao, and M. Segev. Phase
retrieval with application to optical imaging: a contemporary overview. IEEE Signal
Processing Mag., 32(3):87–109, 2015.

[71] A. Maiden and J. Rodenburg. An improved ptychographical phase retrieval algorithm
for diffractive imaging. Ultramicroscopy, 109(10):1256–1262, 2009.

[72] J. R. Fienup. Phase retrieval algorithms: a comparison. Applied optics, 21(15):2758–
2769, 1982.

[73] John M Rodenburg. Ptychography and related diffractive imaging methods. Advances
in imaging and electron physics, 150:87–184, 2008.

[74] R. Millane. Phase retrieval in crystallography and optics. JOSA A, 7(3):394–411,
1990.

174

[75] R. W. Gerchberg. A practical algorithm for the determination of phase from image
and diffraction plane pictures. Optik, 35:237–246, 1972.

[76] P. Hand, O. Leong, and V. Voroninski. Phase retrieval under a generative prior. In
Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS), pages 9154–9164, 2018.

[77] Seyedehsara Nayer, Praneeth Narayanamurthy, and Namrata Vaswani. Phaseless pca:
Low-rank matrix recovery from column-wise phaseless measurements. In International
Conference on Machine Learning, pages 4762–4770, 2019.

[78] R. Hyder, Viraj S., C. Hegde, and M.S. Asif. Alternating phase projected gradient
descent with generative priors for solving compressive phase retrieval. In Proc. IEEE
Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), pages 7705–7709. IEEE,
2019.

[79] E. Candes, T. Strohmer, and V. Voroninski. Phaselift: Exact and stable signal recovery
from magnitude measurements via convex programming. Comm. Pure Appl. Math.,
66(8):1241–1274, 2013.

[80] D. Gross, F. Krahmer, and R. Kueng. Improved recovery guarantees for phase retrieval
from coded diffraction patterns. Appl. Comput. Harmon. Anal., 42(1):37–64, 2017.

[81] E. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval from coded diffraction
patterns. Appl. Comput. Harmon. Anal., 39(2):277–299, 2015.

[82] G. Wang, L. Zhang, G. B. Giannakis, M. Akcakaya, and J. Chen. Sparse phase retrieval
via truncated amplitude flow. IEEE Trans. Signal Processing, 66:479–491, 2018.

[83] G. Wang and G. Giannakis. Solving random systems of quadratic equations via
truncated generalized gradient flow. In Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS),
pages 568–576, 2016.

[84] E. Candes, X. Li, and M. Soltanolkotabi. Phase retrieval via wirtinger flow: theory
and algorithms. IEEE Trans. Inform. Theory, 61(4):1985–2007, 2015.

[85] H. Zhang and Y. Liang. Reshaped wirtinger flow for solving quadratic system of
equations. In Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS), pages 2622–2630, 2016.

[86] Y. Chen and E. Candes. Solving random quadratic systems of equations is nearly as
easy as solving linear systems. In Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS),
pages 739–747, 2015.

[87] T. Cai, X. Li, Z. Ma, et al. Optimal rates of convergence for noisy sparse phase
retrieval via thresholded wirtinger flow. Ann. Stat., 44(5):2221–2251, 2016.

[88] H. Ohlsson, A. Yang, R. Dong, and S. Sastry. Cprl–an extension of compressive sensing
to the phase retrieval problem. In Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS),
pages 1367–1375, 2012.

175

[89] X. Li and V. Voroninski. Sparse signal recovery from quadratic measurements via
convex programming. SIAM J. on Math. Analysis, 45(5):3019–3033, 2013.

[90] S. Bahmani and J. Romberg. Efficient compressive phase retrieval with constrained
sensing vectors. In Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS), pages 523–531,
2015.

[91] K. Jaganathan, S. Oymak, and B. Hassibi. Recovery of sparse 1-d signals from the
magnitudes of their fourier transform. In Proc. IEEE Int. Symp. Inform. Theory
(ISIT), pages 1473–1477. IEEE, 2012.

[92] P. Netrapalli, P. Jain, and S. Sanghavi. Phase retrieval using alternating minimization.
In Proc. Adv. in Neural Inf. Proc. Sys. (NeurIPS), pages 2796–2804, 2013.

[93] G. Jagatap and C. Hegde. Fast, sample-efficient algorithms for structured phase
retrieval. In Advances in Neural Information Processing Systems, pages 4917–4927,
2017.

[94] H. Chang, Y. Lou, M.K. Ng, and T. Zeng. Phase retrieval from incomplete magnitude
information via total variation regularization. SIAM Journal on Scientific Computing,
38(6):A3672–A3695, 2016.

[95] Gauri Jagatap and Chinmay Hegde. Algorithmic guarantees for inverse imaging with
untrained network priors. In Advances in Neural Information Processing Systems,
pages 14832–14842, 2019.

[96] F. Shamshad and A. Ahmed. Robust compressive phase retrieval via deep generative
priors. arXiv preprint arXiv:1808.05854, 2018.

[97] IS Park, RJC Middleton, Charles R Coggrave, Pablo D Ruiz, and Jeremy M Coupland.
Characterization of the reference wave in a compact digital holographic camera. Applied
optics, 57(1):A235–A241, 2018.

[98] Tatsuki Tahara, Xiangyu Quan, Reo Otani, Yasuhiro Takaki, and Osamu Matoba.
Digital holography and its multidimensional imaging applications: a review. Microscopy,
67(2):55–67, 2018.

[99] D.A. Barmherzig, J. Sun, P. Li, T.J. Lane, and E. Candès. Holographic phase retrieval
and reference design. Inverse Problems, 2019.

[100] Z. Yuan and H. Wang. Phase retrieval with background information. Inverse Problems,
35(5):054003, may 2019.

[101] M. Guizar-Sicairos and J.R. Fienup. Holography with extended reference by autocor-
relation linear differential operation. Optics express, 15(26):17592–17612, 2007.

[102] R. Hyder, C. Hegde, and M.S. Asif. Fourier phase retrieval with side information using
generative prior. In Proc. Asilomar Conf. Signals, Systems, and Computers. IEEE,
2019.

176

[103] Fahimeh Arab and M Salman Asif. Fourier phase retrieval with arbitrary reference
signal. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1479–1483. IEEE, 2020.

[104] Rohan Chandra, Ziyuan Zhong, Justin Hontz, Val McCulloch, Christoph Studer, and
Tom Goldstein. Phasepack: A phase retrieval library. Asilomar Conference on Signals,
Systems, and Computers, 2017.

[105] Jianwei Miao, Tetsuya Ishikawa, Qun Shen, and Thomas Earnest. Extending x-ray
crystallography to allow the imaging of noncrystalline materials, cells, and single
protein complexes. Annu. Rev. Phys. Chem., 59:387–410, 2008.

[106] G. Jagatap, Z. Chen, S. Nayer, C. Hegde, and N. Vaswani. Sample efficient fourier
ptychography for structured data. IEEE Transactions on Computational Imaging,
6:344–357, 2020.

[107] Christopher A Metzler, Philip Schniter, Ashok Veeraraghavan, and Richard G Baraniuk.
prdeep: Robust phase retrieval with a flexible deep network. In Proc. Int. Conf.
Machine Learning, 2018.

[108] Michael Kellman, Emrah Bostan, Michael Chen, and Laura Waller. Data-driven design
for fourier ptychographic microscopy. International Conference for Computational
Photography, pages 1–8, 2019.

[109] Yair Rivenson, Yibo Zhang, Harun Günaydın, Da Teng, and Aydogan Ozcan. Phase
recovery and holographic image reconstruction using deep learning in neural networks.
Light: Science & Applications, 7(2):17141–17141, 2018.

[110] Rakib Hyder, Zikui Cai, and M Salman Asif. Solving phase retrieval with a learned
reference. In Proc. European Conf. Comp. Vision (ECCV), 2020.

[111] Michael R Kellman, Emrah Bostan, Nicole A Repina, and Laura Waller. Physics-based
learned design: optimized coded-illumination for quantitative phase imaging. IEEE
Transactions on Computational Imaging, 5(3):344–353, 2019.

[112] Steven Diamond, Vincent Sitzmann, Felix Heide, and Gordon Wetzstein. Unrolled
optimization with deep priors. arXiv preprint arXiv:1705.08041, 2017.

[113] Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In
Proceedings of the 27th International Conference on International Conference on
Machine Learning, pages 399–406, 2010.

[114] Shenlong Wang, Sanja Fidler, and Raquel Urtasun. Proximal deep structured models.
In Advances in Neural Information Processing Systems, pages 865–873, 2016.

[115] Kerstin Hammernik, Teresa Klatzer, Erich Kobler, Michael P Recht, Daniel K Sodick-
son, Thomas Pock, and Florian Knoll. Learning a variational network for reconstruction
of accelerated mri data. Magnetic resonance in medicine, 79(6):3055–3071, 2018.

177

[116] Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep admm-net for compressive
sensing mri. In Advances in neural information processing systems, pages 10–18, 2016.

[117] Ulugbek S Kamilov and Hassan Mansour. Learning optimal nonlinearities for iterative
thresholding algorithms. IEEE Signal Processing Letters, 23(5):747–751, 2016.

[118] Emrah Bostan, Ulugbek S Kamilov, and Laura Waller. Learning-based image recon-
struction via parallel proximal algorithm. IEEE Signal Processing Letters, 25(7):989–
993, 2018.

[119] Ali Mousavi and Richard G Baraniuk. Learning to invert: Signal recovery via deep
convolutional networks. arXiv preprint arXiv:1701.03891, 2017.

[120] Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix Yu, Daniel Holtmann-Rice, Dmitry
Storcheus, Afshin Rostamizadeh, and Sanjiv Kumar. Learning a compressed sensing
measurement matrix via gradient unrolling. In Proc. Int. Conf. Machine Learning,
2019.

[121] Alexander W. Bergman, David B. Lindell, and Gordon Wetzstein. Deep Adaptive
LiDAR: End-to-end Optimization of Sampling and Depth Completion at Low Sampling
Rates. Proc. IEEE ICCP, 2020.

[122] Jie Wang, Qinhua Gao, Xiaorui Ma, Yunong Zhao, and Yuguang Fang. Learning to
sense: Deep learning for wireless sensing with less training efforts. IEEE Wireless
Communications, 2020.

[123] Cagla Deniz Bahadir, Adrian V Dalca, and Mert R Sabuncu. Learning-based optimiza-
tion of the under-sampling pattern in mri. In International Conference on Information
Processing in Medical Imaging, pages 780–792. Springer, 2019.

[124] Tomer Weiss, Ortal Senouf, Sanketh Vedula, Oleg Michailovich, Michael Zibulevsky,
and Alex Bronstein. Pilot: Physics-informed learned optimized trajectories for acceler-
ated mri. MELBA, pages 1–23, 2021.

[125] Hemant Kumar Aggarwal and Mathews Jacob. J-modl: Joint model-based deep
learning for optimized sampling and reconstruction. IEEE Journal of Selected Topics
in Signal Processing, 14(6):1151–1162, 2020.

[126] Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun, Stephen Boyd, Wolfgang
Heidrich, Felix Heide, and Gordon Wetzstein. End-to-end optimization of optics and
image processing for achromatic extended depth of field and super-resolution imaging.
ACM Transactions on Graphics (TOG), 37(4):1–13, 2018.

[127] Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Heidrich, and Gordon Wetzstein.
Hybrid optical-electronic convolutional neural networks with optimized diffractive
optics for image classification. Scientific reports, 8(1):1–10, 2018.

[128] Rakib Hyder, Ken Shao, Boyu Hou, Panos Markopoulos, Ashley Prater-Bennette, and
M Salman Asif. Incremental task learning with incremental rank updates. In Proc.
European Conf. Comp. Vision (ECCV), 2022.

178

[129] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54–71,
2019.

[130] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed by
learning and forgetting functions. Psychological review, 97(2):285, 1990.

[131] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlin-
ear dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120,
2013.

[132] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. Advances in neural information processing systems, 30:6467–6476, 2017.

[133] Rakib Hyder and M Salman Asif. Generative models for low-dimensional video
representation and reconstruction. IEEE Transactions on Signal Processing, 68:1688–
1701, 2020.

[134] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[135] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,
2017.

[136] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene
dynamics. In Proc. Adv. in Neural Inf. Proc. Sys. (NIPS), pages 613–621, 2016.

[137] Rakib Hyder and M. Salman Asif. Generative Models for Low-Dimensional Video
Representation and Reconstruction. IEEE Transactions on Signal Processing, 68:1688–
1701, 2020.

[138] R. Hyder and M. S. Asif. Generative models for low-rank video representation and
reconstruction from compressive measurements. In IEEE International Workshop on
Machine Learning for Signal Processing, (accepted) 2019.

[139] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[140] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. Proc. Int. Conf. Learning Representa-
tions (ICLR), 2016.

[141] Reinhard Heckel. Regularizing linear inverse problems with convolutional neural
networks. arXiv preprint arXiv:1907.03100, 2019.

179

[142] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a
local svm approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, volume 3, pages 32–36. IEEE, 2004.

[143] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

[144] Ramesh Raskar, Amit Agrawal, and Jack Tumblin. Coded exposure photography:
motion deblurring using fluttered shutter. In ACM transactions on graphics (TOG),
volume 25, pages 795–804. ACM, 2006.

[145] Yasunobu Hitomi, Jinwei Gu, Mohit Gupta, Tomoo Mitsunaga, and Shree K Nayar.
Video from a single coded exposure photograph using a learned over-complete dictionary.
In 2011 International Conference on Computer Vision, pages 287–294. IEEE, 2011.

[146] Ashok Veeraraghavan, Dikpal Reddy, and Ramesh Raskar. Coded strobing photography:
Compressive sensing of high speed periodic videos. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(4):671–686, 2010.

[147] Amit Agrawal, Mohit Gupta, Ashok Veeraraghavan, and Srinivasa G Narasimhan.
Optimal coded sampling for temporal super-resolution. In Proc. IEEE Conf. Comp.
Vision and Pattern Recog. (CVPR), pages 599–606. IEEE, 2010.

[148] Guangming Shi, Dahua Gao, Xiaoxia Song, Xuemei Xie, Xuyang Chen, and Danhua
Liu. High-resolution imaging via moving random exposure and its simulation. IEEE
Transactions on Image Processing, 20(1):276–282, 2010.

[149] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009.

[150] D Bacciu and DP Mandic. Tensor decompositions in deep learning. In 28th European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, ESANN 2020, pages 441–450. ESANN (i6doc. com), 2020.

[151] Yuwang Ji, Qiang Wang, Xuan Li, and Jie Liu. A survey on tensor techniques and
applications in machine learning. IEEE Access, 7:162950–162990, 2019.

[152] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E
Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and
machine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[153] Daniel Vlasic, Matthew Brand, Hanspeter Pfister, and Jovan Popovic. Face transfer
with multilinear models. In ACM SIGGRAPH 2006 Courses, pages 24–es. ACM, 2006.

[154] Stuart Perry. Image and video noise: An industry perspective. In Denoising of
Photographic Images and Video, pages 207–234. Springer, 2018.

[155] Zhou Xue, Jingyu Yang, Qionghai Dai, and Naiyao Zhang. Multi-view image denoising
based on graphical model of surface patch. In 2010 3DTV-Conference: The True
Vision-Capture, Transmission and Display of 3D Video, pages 1–4. IEEE, 2010.

180

[156] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[157] Tatsuya Yokota and Andrzej Cichocki. Tensor completion via functional smooth
component deflation. In 2016 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pages 2514–2518. IEEE, 2016.

[158] Yann LeCun, Fu Jie Huang, and Leon Bottou. Learning methods for generic object
recognition with invariance to pose and lighting. In Proceedings of the 2004 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2004.
CVPR 2004., volume 2, pages II–104. IEEE, 2004.

[159] Oliver Langner, Ron Dotsch, Gijsbert Bijlstra, Daniel HJ Wigboldus, Skyler T Hawk,
and AD Van Knippenberg. Presentation and validation of the radboud faces database.
Cognition and emotion, 24(8):1377–1388, 2010.

[160] Chris Burgess and Hyunjik Kim. 3d shapes dataset.
https://github.com/deepmind/3dshapes-dataset/, 2018.

[161] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[162] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Proceedings of the
35th International Conference on Machine Learning, pages 2649–2658, 2018.

[163] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual
concepts with a constrained variational framework. Iclr, 2(5):6, 2017.

[164] Rakib Hyder, Hassan Mansour, Yanting Ma, Petros T Boufounos, and Pu Wang.
A consensus equilibrium solution for deep image prior powered by red. In ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1380–1384. IEEE, 2021.

[165] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image
denoising. In 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 2, pages 60–65. IEEE, 2005.

[166] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. Image
denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transactions
on image processing, 16(8):2080–2095, 2007.

[167] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisserman.
Non-local sparse models for image restoration. In 2009 IEEE 12th international
conference on computer vision, pages 2272–2279. IEEE, 2009.

[168] Michael Elad and Michal Aharon. Image denoising via sparse and redundant represen-
tations over learned dictionaries. IEEE Transactions on Image processing, 15(12):3736–
3745, 2006.

181

[169] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268, 1992.

[170] Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. An
iterative regularization method for total variation-based image restoration. Multiscale
Modeling & Simulation, 4(2):460–489, 2005.

[171] Yair Weiss and William T Freeman. What makes a good model of natural images?
In 2007 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8.
IEEE, 2007.

[172] Xiangyang Lan, Stefan Roth, Daniel Huttenlocher, and Michael J Black. Efficient belief
propagation with learned higher-order markov random fields. In European conference
on computer vision, pages 269–282. Springer, 2006.

[173] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaus-
sian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions
on Image Processing, 26(7):3142–3155, 2017.

[174] Dong Yang and Jian Sun. Bm3d-net: A convolutional neural network for transform-
domain collaborative filtering. IEEE Signal Processing Letters, 25(1):55–59, 2017.

[175] Weisheng Dong, Lei Zhang, Guangming Shi, and Xin Li. Nonlocally centralized
sparse representation for image restoration. IEEE transactions on Image Processing,
22(4):1620–1630, 2012.

[176] S. Venkatakrishnan, C. Bouman, and B. Wohlberg. Plug-and-play priors for model
based reconstruction. In 2013 IEEE Global Conf. on Signal and Inf. Processing, pages
945–948. IEEE, 2013.

[177] Yaniv Romano, Michael Elad, and Peyman Milanfar. The little engine that could:
Regularization by denoising (red). SIAM Journal on Imaging Sciences, 10(4):1804–
1844, 2017.

[178] E. T. Reehorst and P. Schniter. Regularization by denoising: Clarifications and new
interpretations. IEEE Transactions on Computational Imaging, 5(1):52–67, 2019.

[179] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 9446–9454, 2018.

[180] Reinhard Heckel and Mahdi Soltanolkotabi. Denoising and regularization via exploiting
the structural bias of convolutional generators. In International Conference on Learning
Representations, 2019.

[181] Gary Mataev, Peyman Milanfar, and Michael Elad. Deepred: Deep image prior
powered by red. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, pages 0–0, 2019.

182

[182] Gregery T Buzzard, Stanley H Chan, Suhas Sreehari, and Charles A Bouman. Plug-
and-play unplugged: Optimization-free reconstruction using consensus equilibrium.
SIAM Journal on Imaging Sciences, 11(3):2001–2020, 2018.

[183] Md Zulfiquar Ali Bhotto, M Omair Ahmad, and MNS Swamy. An improved fast
iterative shrinkage thresholding algorithm for image deblurring. SIAM journal on
imaging sciences, 8(3):1640–1657, 2015.

[184] Praveen Kumar Pokala and Chandra Sekhar Seelamantula. Projected improved fista
and application to image deblurring. In 2020 IEEE International Conference on Image
Processing (ICIP), pages 1043–1047. IEEE, 2020.

[185] Heinz H Bauschke, Patrick L Combettes, et al. Convex analysis and monotone operator
theory in Hilbert spaces, volume 408. Springer, 2011.

[186] Noam Yair and Tomer Michaeli. Multi-scale weighted nuclear norm image restoration.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3165–3174, 2018.

[187] D. Berthelot, T. Schumm, and L. Metz. Began: Boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[188] M.S. Asif and C. Hegde. Phase retrieval for signals in union of subspaces. In 2018
IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages
356–359. IEEE, 2018.

[189] R. Harrison. Phase problem in crystallography. JOSA a, 10(5):1046–1055, 1993.

[190] Z. Chen, G. Jagatap, S. Nayer, C. Hegde, and N. Vaswani. Low rank fourier pty-
chography. In 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6538–6542, April 2018.

[191] G. Jagatap, Z. Chen, C. Hegde, and N. Vaswani. Sub-diffraction imaging using fourier
ptychography and structured sparsity. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 6493–6497, April 2018.

[192] Gang Wang, Georgios Giannakis, Yousef Saad, and Jie Chen. Solving most systems of
random quadratic equations. In Advances in Neural Information Processing Systems,
pages 1867–1877, 2017.

[193] David D Nolte. Optical interferometry for biology and medicine, volume 1. Springer
Science & Business Media, 2011.

[194] Ke Wei. Solving systems of phaseless equations via kaczmarz methods: A proof of
concept study. Inverse Problems, 31(12):125008, 2015.

[195] Zikui Cai, Rakib Hyder, and M Salman Asif. Data-driven illumination patterns for
coded diffraction imaging. In 2021 IEEE International Conference on Image Processing
(ICIP), pages 2818–2822. IEEE, 2021.

183

[196] James R Fienup. Reconstruction of an object from the modulus of its fourier transform.
Optics letters, 3(1):27–29, 1978.

[197] Kishore Jaganathan, Yonina C Eldar, and Babak Hassibi. Phase retrieval: An overview
of recent developments. arXiv preprint arXiv:1510.07713, 2015.

[198] Baurzhan Muminov and Luat T Vuong. Small-brain neural networks rapidly solve
inverse problems with vortex fourier encoders. arXiv preprint arXiv:2005.07682, 2020.

[199] James D Watson and Francis HC Crick. Molecular structure of nucleic acids: a
structure for deoxyribose nucleic acid. Nature, 171(4356):737–738, 1953.

[200] C Fienup and J Dainty. Phase retrieval and image reconstruction for astronomy. Image
recovery: theory and application, 231:275, 1987.

[201] Robert A Gonsalves. Perspectives on phase retrieval and phase diversity in astronomy.
In Adaptive Optics Systems IV, volume 9148, page 91482P. International Society for
Optics and Photonics, 2014.

[202] DL Misell. A method for the solution of the phase problem in electron microscopy.
Journal of Physics D: Applied Physics, 1973.

[203] Lei Tian, Xiao Li, Kannan Ramchandran, and Laura Waller. Multiplexed coded
illumination for fourier ptychography with an led array microscope. Biomedical optics
express, 5(7):2376–2389, 2014.

[204] Lawrence Rabiner. Fundamentals of speech recognition. Fundamentals of speech
recognition, 1993.

[205] Radu Balan, Pete Casazza, and Dan Edidin. On signal reconstruction without phase.
Applied and Computational Harmonic Analysis, 20(3):345–356, 2006.

[206] Kishore Jaganathan, Yonina C Eldar, and Babak Hassibi. Stft phase retrieval: Unique-
ness guarantees and recovery algorithms. IEEE Journal of selected topics in signal
processing, 10(4):770–781, 2016.

[207] John V Corbett. The pauli problem, state reconstruction and quantum-real numbers.
Reports on Mathematical Physics, 1(57), 2006.

[208] Hans Reichenbach. Philosophic foundations of quantum mechanics. Courier Corpora-
tion, 1998.

[209] Li-Hao Yeh, Jonathan Dong, Jingshan Zhong, Lei Tian, Michael Chen, Gongguo
Tang, Mahdi Soltanolkotabi, and Laura Waller. Experimental robustness of fourier
ptychography phase retrieval algorithms. Optics express, 23(26):33214–33240, 2015.

[210] Sohail Bahmani and Justin Romberg. Phase retrieval meets statistical learning theory:
A flexible convex relaxation. In Artificial Intelligence and Statistics, pages 252–260,
2017.

184

[211] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Proc. Adv. in Neural
Inf. Proc. Sys., pages 8024–8035, 2019.

[212] Gang Wang, Georgios B Giannakis, and Yonina C Eldar. Solving systems of random
quadratic equations via truncated amplitude flow. IEEE Transactions on Information
Theory, 64(2):773–794, 2017.

[213] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and Karen Egiazarian. Practical
poissonian-gaussian noise modeling and fitting for single-image raw-data. IEEE
Transactions on Image Processing, 17(10):1737–1754, 2008.

[214] Qi Xu, Ming Zhang, Zonghua Gu, and Gang Pan. Overfitting remedy by sparsifying
regularization on fully-connected layers of cnns. Neurocomputing, 328:69–74, 2019.

[215] Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. Incremental
multi-domain learning with network latent tensor factorization. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 10470–10477, 2020.

[216] Jean Kossaifi, Aran Khanna, Zachary Lipton, Tommaso Furlanello, and Anima Anand-
kumar. Tensor contraction layers for parsimonious deep nets. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages
26–32, 2017.

[217] Timur Garipov, Dmitry Podoprikhin, Alexander Novikov, and Dmitry Vetrov. Ul-
timate tensorization: compressing convolutional and fc layers alike. arXiv preprint
arXiv:1611.03214, 2016.

[218] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana
Ramabhadran. Low-rank matrix factorization for deep neural network training with
high-dimensional output targets. In 2013 IEEE international conference on acoustics,
speech and signal processing, pages 6655–6659. IEEE, 2013.

[219] Huanrui Yang, Minxue Tang, Wei Wen, Feng Yan, Daniel Hu, Ang Li, Hai Li, and
Yiran Chen. Learning low-rank deep neural networks via singular vector orthogonality
regularization and singular value sparsification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition workshops, pages 678–679, 2020.

[220] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmoham-
madi, and Sanjeev Khudanpur. Semi-orthogonal low-rank matrix factorization for
deep neural networks. In Interspeech, pages 3743–3747, 2018.

[221] Shuang Xu, Chunxia Zhang, and Jiangshe Zhang. Bayesian deep matrix factorization
network for multiple images denoising. Neural Networks, 123:420–428, 2020.

[222] Cho-Jui Hsieh, Kai-Yang Chiang, and Inderjit S Dhillon. Low rank modeling of signed
networks. In Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 507–515, 2012.

185

[223] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and
Chelsea Finn. Gradient surgery for multi-task learning. Advances in Neural Information
Processing Systems, 33, 2020.

[224] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD
Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

[225] Lomonaco Vincenzo and Davide Maltoni. Core50: a new dataset and benchmark for
continuous object recognition. arXiv preprint arXiv:1705.03550v1, 2017.

[226] Mart́ın Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adver-
sarial networks. In ICML, pages 214–223, 2017.

[227] Ta-Chu Kao, Kristopher T Jensen, Alberto Bernacchia, and Guillaume Hennequin.
Natural continual learning: success is a journey, not (just) a destination. Advances in
Neural Information Processing Systems, 34, 2021.

[228] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning.
arXiv preprint arXiv:1904.07734, 2019.

[229] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. In Proc. Adv. in Neural Inf. Proc. Sys. (NIPS), pages
2172–2180, 2016.

[230] Charilaos Christopoulos, Athanassios Skodras, and Touradj Ebrahimi. The jpeg2000
still image coding system: an overview. IEEE transactions on consumer electronics,
46(4):1103–1127, 2000.

[231] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C
Courville. Improved training of wasserstein gans. In Proc. Adv. in Neural Inf. Proc.
Sys. (NIPS), pages 5767–5777, 2017.

[232] Roy R Lederman and Ronen Talmon. Learning the geometry of common latent
variables using alternating-diffusion. Applied and Computational Harmonic Analysis,
44(3):509–536, 2018.

[233] Rongqun Lin, Yongbing Zhang, Haoqian Wang, Xingzheng Wang, and Qionghai Dai.
Deep convolutional neural network for decompressed video enhancement. In Data
Compression Conference (DCC), 2016, pages 617–617. IEEE, 2016.

[234] Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yueting Zhuang. Hierarchical
recurrent neural encoder for video representation with application to captioning. In
Proc. IEEE Conf. Comp. Vision and Pattern Recog. (CVPR), pages 1029–1038, 2016.

[235] Atul Puri and Alexandros Eleftheriadis. Mpeg-4: An object-based multimedia coding
standard supporting mobile applications. Mobile Networks and Applications, 3(1):5–32,
1998.

186

[236] Shibani Santurkar, David Budden, and Nir Shavit. Generative compression. In 2018
Picture Coding Symposium (PCS), pages 258–262. IEEE, 2018.

[237] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and
Russell Webb. Learning from simulated and unsupervised images through adversarial
training. In Proc. IEEE Conf. Comp. Vision and Pattern Recog. (CVPR), pages
2242–2251. IEEE, 2017.

[238] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning
of video representations using lstms. In Proc. Int. Conf. Machine Learning, pages
843–852, 2015.

[239] Gary J Sullivan, Pankaj N Topiwala, and Ajay Luthra. The h. 264/avc advanced
video coding standard: Overview and introduction to the fidelity range extensions.
In Applications of Digital Image Processing XXVII, volume 5558, pages 454–475.
International Society for Optics and Photonics, 2004.

[240] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions
on consumer electronics, 38(1):xviii–xxxiv, 1992.

[241] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross,
and Alexander Sorkine-Hornung. A benchmark dataset and evaluation methodology
for video object segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 724–732, 2016.

[242] D. Needell and J. Tropp. Cosamp: iterative signal recovery from incomplete and
inaccurate samples. Comm. of the ACM, 53(12):93–100, 2010.

[243] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM
review, 43(1):129–159, 2001.

[244] A. Lacoste, T. Boquet, N. Rostamzadeh, B. Oreshki, W. Chung, and D. Krueger.
Deep prior. arXiv preprint arXiv:1712.05016, 2017.

[245] M. Cucuringu and H. Tyagi. On denoising modulo 1 samples of a function. In Proc.
Int. Conf. Art. Intell. Stat. (AISTATS), 2018.

[246] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM J. on Sci. Computing, 31(2):890–912, 2008.

[247] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse
reconstruction, June 2007.

[248] J. Bioucas-Dias and G. Valadão. Phase unwrapping via graph cuts. IEEE Trans.
Image Processing, 16(3), 2007.

[249] A. Hooper and H. Zebker. Phase unwrapping in three dimensions with application to
InSAR time series. J. of the Optical Soc. of America A, 24(9):2737, 2007.

187

[250] Mihai Cucuringu and Hemant Tyagi. Provably robust estimation of modulo 1 samples
of a smooth function with applications to phase unwrapping. Journal of Machine
Learning Research, 21(32), 2020.

[251] V. Shah, M. Soltani, and C. Hegde. Reconstruction from periodic nonlinearities, with
applications to hdr imaging. In Proc. Asilomar Conf. Signals, Systems, and Computers,
pages 863–867. IEEE, 2017.

[252] F. Lang, T. Plötz, and S. Roth. Robust multi-image HDR reconstruction for the
modulo camera. In Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 10496
LNCS, pages 78–89, 2017.

[253] X. Li. Compressed sensing and matrix completion with constant proportion of corrup-
tions. Const. Approx., 37(1):73–99, 2013.

[254] L. Jacques, J. Laska, P. Boufounos, and R. Baraniuk. Robust 1-Bit compressive
sensing via binary stable embeddings of sparse vectors. IEEE Trans. Inform. Theory,
59(4):2082–2102, 2013.

[255] J. Rhee and Y. Joo. Wide dynamic range cmos image sensor with pixel level adc.
Electron. Lett., 39:360–361, 2010.

[256] K. Sasagawa, T. Yamaguchi, M. Haruta, Y. Sunaga, H. Takehara, H. Takehara,
T. Noda, T. Tokuda, and J. Ohta. An implantable cmos image sensor with self-reset
pixels for functional brain imaging. IEEE Trans. on Electron Devices, 63(1):215–222,
2016.

[257] T. Yamaguchi, H. Takehara, Y. Sunaga, M. Haruta, M. Motoyama, Y. Ohta, T. Noda,
K. Sasagawa, T. Tokuda, and J. Ohta. Implantable self-reset cmos image sensor and
its application to hemodynamic response detection in living mouse brain. Japanese J.
of Appl. Physics, 55(4S):04EM02, 2016.

[258] S. Kavusi and A. El Gamal. Quantitative study of high-dynamic-range image sensor
architectures. In Sensors and Camera Systems for Sci., Indust., and Digi. Photography
Applications V, volume 5301, pages 264–276. Intl. Soc. for Optics and Photonics, 2004.

[259] R. Vershynin. Introduction to the non-ptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

[260] J. Laska, M. Davenport, and R. Baraniuk. Exact signal recovery from sparsely
corrupted measurements through the pursuit of justice. In Proc. Asilomar Conf.
Signals, Systems, and Computers, pages 1556–1560, 2009.

[261] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proc. of the IEEE, 86(11):2278–2324, 1998.

[262] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural photo
editing with introspective adversarial networks. arXiv preprint arXiv:1609.07093,
2016.

188

[263] Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial
network. arXiv preprint arXiv:1609.03126, 2016.

[264] Parikshit Shah and Venkat Chandrasekaran. Iterative projections for signal identifica-
tion on manifolds: Global recovery guarantees. In Proc. Allerton Conf. Communication,
Control, and Computing, pages 760–767. IEEE, 2011.

[265] Emmanuel J Candès et al. Compressive sampling. In Proceedings of the international
congress of mathematicians, volume 3, pages 1433–1452. Madrid, Spain, 2006.

[266] Emmanuel J Candes, Justin K Romberg, and Terence Tao. Stable signal recovery
from incomplete and inaccurate measurements. Communications on pure and applied
mathematics, 59(8):1207–1223, 2006.

[267] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild.
In Proceedings of the IEEE International Conference on Computer Vision, pages
3730–3738, 2015.

[268] David L Donoho. De-noising by soft-thresholding. IEEE transactions on information
theory, 41(3):613–627, 1995.

[269] Zongben Xu and Jian Sun. Image inpainting by patch propagation using patch sparsity.
IEEE transactions on image processing, 19(5):1153–1165, 2010.

[270] Weisheng Dong, Lei Zhang, Guangming Shi, and Xiaolin Wu. Image deblurring and
super-resolution by adaptive sparse domain selection and adaptive regularization.
IEEE Transactions on Image Processing, 20(7):1838–1857, 2011.

[271] Michal Aharon, Michael Elad, and Alfred Bruckstein. rmk-svd: An algorithm for
designing overcomplete dictionaries for sparse representation. IEEE Transactions on
signal processing, 54(11):4311–4322, 2006.

[272] Antonin Chambolle. An algorithm for total variation minimization and applications.
Journal of Mathematical imaging and vision, 20(1):89–97, 2004.

[273] Tony F Chan, Jianhong Shen, and Hao-Min Zhou. Total variation wavelet inpainting.
Journal of Mathematical imaging and Vision, 25(1):107–125, 2006.

[274] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[275] Kuldeep Kulkarni, Suhas Lohit, Pavan Turaga, Ronan Kerviche, and Amit Ashok.
Reconnet: Non-iterative reconstruction of images from compressively sensed mea-
surements. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 449–458, 2016.

[276] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. A deep learning approach to
structured signal recovery. In Communication, Control, and Computing (Allerton),
2015 53rd Annual Allerton Conference on, pages 1336–1343. IEEE, 2015.

189

[277] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convolutional neural network for
image deconvolution. In Advances in Neural Information Processing Systems, pages
1790–1798, 2014.

[278] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[279] Raymond Yeh, Chen Chen, Teck Yian Lim, Mark Hasegawa-Johnson, and Minh N
Do. Semantic image inpainting with perceptual and contextual losses. arXiv preprint
arXiv:1607.07539, 2016.

[280] C. Dong, C.C. Loy, K. He, and X. Tang. Image super-resolution using deep convo-
lutional networks. IEEE transactions on pattern analysis and machine intelligence,
38(2):295–307, 2016.

[281] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative adversarial network.
arXiv preprint arXiv:1609.04802, 2016.

[282] Brendan Kelly, Thomas P Matthews, and Mark A Anastasio. Deep learning-guided
image reconstruction from incomplete data. arXiv preprint arXiv:1709.00584, 2017.

[283] JH Rick Chang, Chun-Liang Li, Barnabas Poczos, BVK Vijaya Kumar, and Aswin C
Sankaranarayanan. One network to solve them all–solving linear inverse problems
using deep projection models. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5888–5897, 2017.

[284] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image super-resolution
using very deep convolutional networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1646–1654, 2016.

[285] A. Bhandari, F. Krahmer, and R. Raskar. On unlimited sampling. Proc. Sampling
Theory and Applications (SampTA), pages 31–35, 2017.

[286] H. Zhao, B. Shi, C. Fernandez-Cull, S. Yeung, and R. Raskar. Unbounded high dynamic
range photography using a modulo camera. In Intl. Conf. on Comp. Photography
(ICCP), 2015.

[287] J. Bioucas-Dias and G. Valadao. Phase unwrapping via graph cuts. IEEE Trans.
Image Proc., 16(3):698–709, 2007.

[288] U. Kamilov, V. Goyal, and S. Rangan. Message-passing de-quantization with applica-
tions to compressed sensing. IEEE Trans. Sig. Proc., 60(12):6270–6281, 2012.

[289] J. Laurent and C. Valerio. Time for dithering: fast and quantized random embeddings
via the restricted isometry property. CoRR, abs/1607.00816, 2016.

[290] M. Soltani and C. Hegde. Stable recovery of sparse vectors from random sinusoidal
feature maps. arXiv preprint arXiv:1701.06607, 2017.

190

[291] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde. Model-based compressive sensing.
IEEE Trans. Inform. Theory, 56(4):1982–2001, 2010.

[292] B. Recht, M. Fazel, and P. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

[293] M. Soltani and C. Hegde. Fast algorithms for demixing sparse signals from nonlinear
observations. arXiv preprint arXiv:1608.01234, 2016.

[294] Salman Asif, Ali Ayremlou, Aswin Sankaranarayanan, Ashok Veeraraghavan, and
Richard Baraniuk. Flatcam: Thin, lensless cameras using coded aperture and compu-
tation. IEEE Trans. on Comp. Imaging, 2017.

[295] J. Laurent, D. Hammond, and J. Fadili. Dequantizing compressed sensing: When
oversampling and non-gaussian constraints combine. IEEE Trans. Inform. Theory,
57(1):559–571, 2011.

[296] T. Tirer and R. Giryes. Image restoration by iterative denoising and backward
projections. IEEE Trans. Image Processing, 28(3):1220–1234, 2019.

[297] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn denoiser prior for image
restoration. In Proc. IEEE Conf. Comp. Vision and Pattern Recog. (CVPR), pages
3929–3938, 2017.

[298] Paul Hand and Vladislav Voroninski. Compressed sensing from phaseless gaussian
measurements via linear programming in the natural parameter space. arXiv preprint
arXiv:1611.05985, 2016.

[299] Tatiana Latychevskaia. Iterative phase retrieval for digital holography. JOSA A,
36(12):D31–D40, 2019.

[300] Milen Shishkov, Brett Eugene Bouma, and Guillermo J Tearney. System and method
for optical coherence imaging, Apr. 29 2008. US Patent 7,366,376.

[301] Heinz H Bauschke, Patrick L Combettes, and D Russell Luke. Phase retrieval, error
reduction algorithm, and fienup variants: a view from convex optimization. JOSA A,
19(7):1334–1345, 2002.

[302] Jian Sun, Huibin Li, and Zongben Xu. Deep ADMM-Net for compressive sensing MRI.
In Proc. Adv. in Neural Inf. Proc. Sys., pages 10–18, 2016.

[303] Radu Balan. On signal reconstruction from its spectrogram. In 2010 44th Annual
Conference on Information Sciences and Systems (CISS), pages 1–4. IEEE, 2010.

[304] Christopher A Metzler, Felix Heide, Prasana Rangarajan, Muralidhar Madabhushi
Balaji, Aparna Viswanath, Ashok Veeraraghavan, and Richard G Baraniuk. Deep-
inverse correlography: towards real-time high-resolution non-line-of-sight imaging.
Optica, 7(1):63–71, 2020.

191

[305] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing. arXiv preprint arXiv:1912.10557,
2019.

[306] Dong Liang, Jing Cheng, Ziwen Ke, and Leslie Ying. Deep mri reconstruction: Unrolled
optimization algorithms meet neural networks. arXiv preprint arXiv:1907.11711, 2019.

[307] Maryam Fazel, E Candes, Benjamin Recht, and P Parrilo. Compressed sensing and
robust recovery of low rank matrices. In 2008 42nd Asilomar Conference on Signals,
Systems and Computers, pages 1043–1047. IEEE, 2008.

[308] Tom Goldstein and Christoph Studer. Phasemax: Convex phase retrieval via basis
pursuit. IEEE Transactions on Information Theory, 64(4):2675–2689, 2018.

[309] Ramina Ghods, Andrew S Lan, Tom Goldstein, and Christoph Studer. Phaselin:
Linear phase retrieval. In 2018 52nd Annual Conference on Information Sciences and
Systems (CISS), pages 1–6. IEEE, 2018.

[310] Emrah Bostan, Reinhard Heckel, Michael Chen, Michael Kellman, and Laura Waller.
Deep phase decoder: self-calibrating phase microscopy with an untrained deep neural
network. Optica, 7(6):559–562, 2020.

[311] Yinhao Ren, Zhe Zhu, Yingzhou Li, and Joseph Lo. Mask Embedding in Conditional
GAN for Guided Synthesis of High Resolution Images. arXiv preprint arXiv:1907.01710,
2019.

[312] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. CVAE-GAN:
Fine-Grained Image Generation through Asymmetric Training. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2745–2754, 2017.

[313] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang, Zhe Gan, Xiaolei Huang, and
Xiaodong He. ATTNGAN: Fine-Grained Text-to-Image Generation with Attentional
Generative Adversarial Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1316–1324, 2018.

[314] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A
Efros. Context Encoders: Feature Learning by Inpainting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2536–2544, 2016.

[315] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-Image
Translation with Conditional Adversarial Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1125–1134, 2017.

[316] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2223–2232, 2017.

[317] Ryan Dahl, Mohammad Norouzi, and Jonathon Shlens. Pixel Recursive Super Resolu-
tion. In Proceedings of the IEEE International Conference on Computer Vision, pages
5439–5448, 2017.

192

[318] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala. Deep Painterly Har-
monization. In Computer Graphics Forum, volume 37, pages 95–106. Wiley Online
Library, 2018.

[319] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. Video-to-Video Synthesis. In Advances in Neural Information
Processing Systems, pages 1144–1156, 2018.

[320] Xiaodan Liang, Lisa Lee, Wei Dai, and Eric P Xing. Dual-Motion GAN for Future-Flow
Embedded Video Prediction. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1744–1752, 2017.

[321] Joost van Amersfoort, Wenzhe Shi, Alejandro Acosta, Francisco Massa, Johannes Totz,
Zehan Wang, and Jose Caballero. Frame Interpolation with Multi-scale Deep Loss
Functions and Generative Adversarial Networks. arXiv preprint arXiv:1711.06045,
2017.

[322] Piotr Bojanowski, Armand Joulin, David Lopez-Pas, and Arthur Szlam. Optimizing the
Latent Space of Generative Networks. In Proceedings of the International Conference
on Machine Learning, pages 599–608, 2018.

[323] Yedid Hoshen, Ke Li, and Jitendra Malik. Non-Adversarial Image Synthesis with
Generative Latent Nearest Neighbors. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5811–5819, 2019.

[324] Ke Li and Jitendra Malik. Implicit Maximum Likelihood Estimation. arXiv preprint
arXiv:1809.09087, 2018.

[325] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. MOCOGAN: De-
composing Motion and Content for Video Generation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1526–1535, 2018.

[326] Jiawei He, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal. Prob-
abilistic Video Generation using Holistic Attribute Control. In Proceedings of the
European Conference on Computer Vision, pages 452–467, 2018.

[327] Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal Generative Adversarial
Nets with Singular Value Clipping. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2830–2839, 2017.

[328] Tianfan Xue, Jiajun Wu, Katherine Bouman, and William Freeman. Visual Dynamics:
Stochastic Future Generation via Layered Cross-Convolutional Networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2018.

[329] Simon Niklaus, Long Mai, and Feng Liu. Video Frame Interpolation via Adaptive
Separable Convolution. In Proceedings of the IEEE International Conference on
Computer Vision, pages 261–270, 2017.

193

[330] Piotr Bojanowski and Armand Joulin. Unsupervised Learning by Predicting Noise.
In Proceedings of the International Conference on Machine Learning, pages 517–526,
2017.

[331] Christoph Feichtenhofer, Axel Pinz, and Richard Wildes. Spatiotemporal Residual
Networks for Video Action Recognition. In Advances in Neural Information Processing
Systems, pages 3468–3476, 2016.

[332] Christoph Feichtenhofer, Axel Pinz, and Richard P Wildes. Spatiotemporal Multiplier
Networks for Video Action Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4768–4777, 2017.

[333] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved Techniques for Training GANs. In Advances in Neural Information
Processing Systems, pages 2234–2242, 2016.

[334] Mathieu Aubry, Daniel Maturana, Alexei A Efros, Bryan C Russell, and Josef Sivic.
Seeing 3D Chairs: Exemplar part-based 2D-3D Alignment using a Large Dataset of
CAD Models. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3762–3769, 2014.

[335] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri. Actions as
Space-Time Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(12):2247–2253, 2007.

[336] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Networks.
arXiv preprint arXiv:1411.1784, 2014.

[337] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical
Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv preprint
arXiv:1412.3555, 2014.

[338] Haibin Ling and Kazunori Okada. Diffusion Distance for Histogram Comparison. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, pages 246–253, 2006.

[339] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet.
Are GANs created equal? A Large-scale Study. In Advances in Neural Information
Processing Systems, pages 700–709, 2018.

[340] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the Inception Architecture for Computer Vision. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–2826,
2016.

[341] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-scale Image Recognition. arXiv preprint arXiv:1409.1556, 2014.

194

[342] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet:
Large-Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211–252, 2015.

[343] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses for Real-time Style
Transfer and Super-Resolution. In European Conference on Computer Vision, pages
694–711. Springer, 2016.

[344] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning Spatiotemporal Features with 3D Convolutional Networks. In Proceedings of
the IEEE International Conference on Computer Vision, pages 4489–4497, 2015.

[345] Yong-Hoon Kwon and Min-Gyu Park. Predicting Future Frames using Retrospective
Cycle-GAN. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1811–1820, 2019.

[346] William Lotter, Gabriel Kreiman, and David Cox. Deep Predictive Coding Networks
for Video Prediction and Unsupervised Learning. arXiv preprint arXiv:1605.08104,
2016.

[347] Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. Towards Understand-
ing the Dynamics of Generative Adversarial Networks. arXiv preprint arXiv:1706.09884,
2017.

[348] Shane Barratt and Rishi Sharma. A Note on the Inception Score. arXiv preprint
arXiv:1801.01973, 2018.

[349] Xu Cheng, Cameron Dale, and Jiangchuan Liu. Statistics and Social Network of
YouTube Videos. In Proceedings of the International Workshop on Quality of Service,
pages 229–238, 2008.

[350] Tsun-Hsuan Wang, Yen-Chi Cheng, Chieh Hubert Lin, Hwann-Tzong Chen, and Min
Sun. Point-to-Point Video Generation. In Proceedings of the IEEE International
Conference on Computer Vision, 2019.

[351] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
Differentiation in PyTorch. In NIPS AutoDiff Workshop, 2017.

[352] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan
Schaal, Sergey Levine, and Google Brain. Time-Contrastive Networks: Self-Supervised
Learning from Video. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1134–1141, 2018.

[353] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FACENET: A Unified
Embedding for Face Recognition and Clustering. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 815–823, 2015.

195

[354] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The Elements of Statistical
Learning, volume 1. Springer Series in Statistics New York, 2001.

[355] L Theis, A van den Oord, and M Bethge. A Note on the Evaluation of Generative
Models. In Proceedings of the International Conference on Learning Representations,
pages 1–10, 2016.

[356] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss Functions for Neural
Networks for Image Processing. arXiv preprint arXiv:1511.08861, 2015.

[357] Sebastian Ruder. An Overview of Gradient Descent Optimization Algorithms. arXiv
preprint arXiv:1609.04747, 2016.

[358] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu
Sebe. Animating Arbitrary Objects via Deep Motion Transfer. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2377–2386,
2019.

[359] Tian Qi Chen, Xuechen Li, Roger B Grosse, and David K Duvenaud. Isolating sources
of disentanglement in variational autoencoders. In Advances in Neural Information
Processing Systems, pages 2610–2620, 2018.

[360] Elliot Creager, David Madras, Joern-Henrik Jacobsen, Marissa Weis, Kevin Swer-
sky, Toniann Pitassi, and Richard Zemel. Flexibly fair representation learning by
disentanglement. In International Conference on Machine Learning, pages 1436–1445,
2019.

[361] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-level variational
autoencoder: Learning disentangled representations from grouped observations. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[362] Xianxu Hou, Linlin Shen, Ke Sun, and Guoping Qiu. Deep feature consistent variational
autoencoder. In 2017 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 1133–1141. IEEE, 2017.

[363] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[364] Tatsuya Yokota and Andrzej Cichocki. Tensor completion via functional smooth
component deflation. In 2016 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pages 2514–2518. IEEE, 2016.

[365] Kenan E Ak, Joo Hwee Lim, Jo Yew Tham, and Ashraf A Kassim. Attribute
manipulation generative adversarial networks for fashion images. In Proceedings of the
IEEE International Conference on Computer Vision, pages 10541–10550, 2019.

[366] Abhishek Aich, Akash Gupta, Rameswar Panda, Rakib Hyder, M Salman Asif, and
Amit K Roy-Chowdhury. Non-adversarial video synthesis with learned priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 6090–6099, 2020.

196

[367] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space
of gans for semantic face editing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 9243–9252, 2020.

[368] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong. Disentangled and
controllable face image generation via 3d imitative-contrastive learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5154–5163, 2020.

[369] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4401–4410, 2019.

[370] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. In International Conference on
Learning Representations, 2018.

[371] Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang
Yang. Hologan: Unsupervised learning of 3d representations from natural images.
In Proceedings of the IEEE International Conference on Computer Vision, pages
7588–7597, 2019.

[372] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled representation learning gan for
pose-invariant face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1415–1424, 2017.

[373] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational infer-
ence of disentangled latent concepts from unlabeled observations. In International
Conference on Learning Representations, 2018.

[374] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output represen-
tation using deep conditional generative models. In Advances in neural information
processing systems, pages 3483–3491, 2015.

[375] Tejas D Kulkarni, William F Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep
convolutional inverse graphics network. In Advances in neural information processing
systems, pages 2539–2547, 2015.

[376] Narayanaswamy Siddharth, Brooks Paige, Jan-Willem Van de Meent, Alban Desmaison,
Noah Goodman, Pushmeet Kohli, Frank Wood, and Philip Torr. Learning disentangled
representations with semi-supervised deep generative models. In Advances in Neural
Information Processing Systems, pages 5925–5935, 2017.

[377] Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann,
and Yann LeCun. Disentangling factors of variation in deep representation using
adversarial training. In Advances in neural information processing systems, pages
5040–5048, 2016.

197

[378] Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Lo-
catello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard
Scholkopf, and Stefan Bauer. On the transfer of inductive bias from simulation to
the real world: a new disentanglement dataset. In Advances in Neural Information
Processing Systems, pages 15740–15751, 2019.

[379] Moshe Blank, Lena Gorelick, Eli Shechtman, Michal Irani, and Ronen Basri. Actions
as space-time shapes. In Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 2, pages 1395–1402. IEEE, 2005.

[380] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high
fidelity natural image synthesis. In International Conference on Learning Representa-
tions, 2018.

[381] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in neural information processing systems, pages 6626–6637,
2017.

[382] Xin Geng, Kate Smith-Miles, Zhi-Hua Zhou, and Liang Wang. Face image modeling
by multilinear subspace analysis with missing values. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 41(3):881–892, 2010.

[383] Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative
image models using a laplacian pyramid of adversarial networks. In NIPS, 2015.

[384] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. Image-to-image
translation with conditional adversarial networks. Proc. IEEE Conf. Comp. Vision
and Pattern Recog. (CVPR), pages 5967–5976, 2016.

[385] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. ArXiv,
abs/1411.1784, 2014.

[386] M Salman Asif, Felix Fernandes, and Justin Romberg. Low-complexity video compres-
sion and compressive sensing. In 2013 Asilomar Conference on Signals, Systems and
Computers, pages 579–583. IEEE, 2013.

[387] Michael Iliadis, Leonidas Spinoulas, and Aggelos K. Katsaggelos. Deep fully-connected
networks for video compressive sensing. ArXiv, abs/1603.04930, 2016.

[388] Angshul Majumdar and Aditay Tripathi. Asymmetric stacked autoencoder. 2017
International Joint Conference on Neural Networks (IJCNN), pages 911–918, 2017.

[389] Antonia Creswell and Anil Anthony Bharath. Denoising adversarial autoencoders.
IEEE transactions on neural networks and learning systems, 30(4):968–984, 2018.

[390] Yong Li, Wenrui Dai, Junni Zou, Hongkai Xiong, and Yuan F Zheng. Structured
sparse representation with union of data-driven linear and multilinear subspaces
model for compressive video sampling. IEEE Transactions on Signal Processing,
65(19):5062–5077, 2017.

198

[391] Wenrui Dai, Yong Li, Junni Zou, Hongkai Xiong, and Yuan F Zheng. Fully decom-
posable compressive sampling with joint optimization for multidimensional sparse
representation. IEEE Transactions on Signal Processing, 66(3):603–616, 2017.

[392] João FC Mota, Nikos Deligiannis, Aswin C Sankaranarayanan, Volkan Cevher, and
Miguel RD Rodrigues. Adaptive-rate reconstruction of time-varying signals with
application in compressive foreground extraction. IEEE Transactions on Signal
Processing, 64(14):3651–3666, 2016.

[393] C. A. Metzler, A. Maleki, and R. G. Baraniuk. From denoising to compressed sensing.
IEEE Transactions on Information Theory, 62(9):5117–5144, 2016.

199

