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Abstract— This paper studies distributed platoon control with
virtual path constraints. Using transverse feedback lineariza-
tion, the control approach decouples the platoon’s dynamics into
components tangential and transversal to the path. A platoon
controller exclusively in the tangential subsystem controls
the platoon’s formation tangentially along the path, while a
feedback control law in the transversal component stabilizes
the platoon to remain on the path. As an application of the
theory, a human-robot interaction experiment is performed on
a platoon of quadrotors. The platoon leader implements an
admittance controller, which allows the platoon to respond to
human-applied forces. The path constraints limit the platoon’s
movement to only be along the path, ensuring safety to the
interacting human.

I. INTRODUCTION

This paper explores a distributed control methodology for
a path-constrained robotic platoon. A platoon is a single file
queue of robots in which each robot follows its preceding
neighbor, with the foremost robot leading the trajectory of
the platoon. The path constraints limit the platoon’s range
of motion to only be tangential to a given, virtual path in
three dimensional space. Transverse feedback linearization
(TFL) [1–5] is used to separate the control of the platoon
tangentially along the path, from stabilization of the platoon
onto the path. As a result, the dynamics are decoupled, which
allows for independent controllers.

The control methodology builds upon the works of [1–6]
by extending path-constrained control to a robotic platoon.
The path-constrained approach can be more advantageous
than trajectory-tracking methods, such as those presented
in [7, 8], because of better regulation of spatial errors
transversal to the path, time-invariance of the controller, and
applicability to general mechanical systems, such as highway
vehicles, robotic arms, and flying robots as long as their
dynamics satisfy certain TFL assumptions [2–4, 9]. The path
can also be selected to satisfy the particular application’s
safety requirements, as long as an appropriate diffeomor-
phism is defined [1–4]. Previous literature has explored
different classes of paths, such as spline-interpolated paths
[1, 10], elliptical paths [2], and paths containing segments
without curvature [11].

While platoons have been studied extensively in literature
[12–19], little has been investigated in the area of platoon
control with virtual path constraints. Traditionally, platoon
control is applied to highway vehicular systems that assume
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straight roads and thus do not consider transversal spatial
errors [12, 13, 18]. However, this paper extends platoon
control using path constraints, which enable curved paths
and safety guarantees through regulating transversal errors.

Furthermore, human-robot interaction (HRI) with a
quadrotor platoon is explored as an application of the
proposed path-constrained platoon control. An admittance
controller is implemented on the platoon leader to allow
a human to interact with the platoon, while the virtual
path constrains the platoon and thus guarantees safety to
the human. While [20] studied human interaction with a
quadrotor via admittance control and [19] studied human
interaction with a platoon using gradient tracking, neither
did so in context of virtual path constraints.

Path-following via TFL is combined with platoon control
in the tangential dynamics to result in a distributed control
scheme that allows a platoon to satisfy virtual path con-
straints. Additionally, the control methodology was verified
through a HRI experiment enabled by path-constrained ad-
mittance control on the platoon leader. To our knowledge,
neither undertaking had previously been explored in litera-
ture.

This paper is organized as follows: Section II describes
the TFL theory for a path-constrained platoon. Section III
then describes application details, such as the quadrotor
model, virtual path, and admittance control on the platoon
leader. Finally, Section IV describes experimental results and
Section V concludes the paper.

II. PATH-CONSTRAINED PLATOON CONTROL

This section presents the general path-constrained platoon
control methodology based on results from [1–5, 21], feed-
back linearization theorems from [9], and platoon-control
design from [12, 13]. Consider a platoon consisting of
identical robots with arbitrary initial positions. Let each
platoon member be indexed by the superscript (i), where
i = 0 corresponds to the platoon leader. Let the dynamics of
the ith platoon member be

ẋ(i) = f(x(i)) + g(x(i))u(i), (1)

where x(i) ∈ Rn is the ith member’s state, u(i) ∈ Rm is the
vector of control inputs, and f(·) : Rn → Rn, g(·) : Rn →
Rn×m are smooth functions. Furthermore, let the output of
the robots’ dynamics be

y(i) = h(x(i)), (2)

where h(·) ∈ Rn → Rm is a smooth function. It is assumed
that the system is square in that the number of inputs is equal
to the number of outputs, and that m ≥ 2.
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Now consider a given virtual path in the output space
parameterized by a smooth curve, σ(·) : R → Rm. If the
path is closed, then σ(θ + θL) = σ(θ) for some finite θL.
Assume that the path is an embedded submanifold of Rm
with dimension 1 and that there exists a smooth function
s(·) : Rm → Rm−1 such that 0 is a regular value and
that σ(R) = s−1(0) [4, 5, 10, 11]. Define the path as
γ := s−1(0). Furthermore, let Γ∗ with dim(Γ∗) > 0 be
the largest invariant set contained within the submanifold
(s ◦ h)−1(0), which is also called the lift of γ to Rn [1, 4,
5]. It is assumed that Γ∗ is non-empty. Additionally, assume
that g(·) has rank m in a neighbourhood U of Γ∗. From
literature, Γ∗ is called the path-following manifold [1–5].

The objective of path-constrained platoon control is to de-
sign a feedback control scheme that attracts and constrains a
platoon to the virtual path. The platoon’s trajectory along the
path is determined by the platoon leader, which implements
a controller specific to the application. These requirements
can be more formally expressed as the following objectives.

Objective 1 (Decoupling): Find a transformation T (·) :
x(i) → col(η(i), ξ(i)) defined on U for each platoon member,
i = 0, 1, . . . , that decouples the robot’s dynamics to those
tangential to the path, η̇(i) (also known as the tangential
subsystem), and those transversal to the path, ξ̇(i) (also
known as the transversal subsystem) [2, 4, 5]. Additionally,
let the tangential and transversal subsystems be indepen-
dently controlled by auxiliary control variables, v(i)‖ and v(i)t ,

respectively, and find the mapping from v(i) = col(v
(i)
‖ , v

(i)
t )

to u(i). The goal of having each subsystem’s output only be
affected by a corresponding set of inputs is known as the
Noninteracting Control Problem of [9].

Objective 2 (Platoon Formation): Let the platoon con-
troller exist solely in the tangential subsystem. Find a control
law for v(i)‖ that ensures each follower, i, where i = 1, 2, . . . ,

maintains a given constant relative spacing d
(i)
ref , measured

tangentially along the path, from its preceding member, i−1.
Note that the platoon control law is not applicable to the
leader, i = 0.

Objective 3 (Path Attractiveness): For any initial condi-
tion x(i)0 within U and for every member of the platoon, i =
0, 1, . . . , the closed loop control law should drive the robot’s
position to the path asymptotically: infp∈γ ‖y(i)(t)−p‖ → 0
as t→∞.

Objective 4 (Path Invariance): The closed loop control
law should ensure that each platoon member, i = 0, 1, . . . ,
remains on the path if it starts on it. In other words, if
y(i)(0) ∈ γ, then y(i)(t) ∈ γ, ∀ t > 0.

TFL is well-suited to satisfy these objectives for the path-
constrained platoon because it decouples the control of the
tangential and transversal subsystems [2, 4, 5]. Path attrac-
tiveness and invariance can be achieved by an appropriately-
designed feedback control law in the transversal subsystem
[5]. In the tangential subsystem, a platoon control law similar
to the one in [12] will be implemented to achieve the desired
platoon member spacing requirements.

The approach described above requires a few extra defi-

nitions to be made. Let

$(y(i)) :=

∫ arg infθ ‖y(i)−σ(θ)‖

0

∥∥∥∥dσ(τ)

dτ

∥∥∥∥dτ + kL, (3)

where $(·) : Rm → R is a mapping from a platoon
member’s position to the arc-length of the closest point on
the path. Note that if the path is closed and has a closed
arc-length of L, then the mapping is unwrapped by the kL
term, where k ∈ Z counts the number of full cycles already
made around the path by the robot. Otherwise kL = 0 for
non-closed paths.

Now using s(·) and $(·), define a virtual output of system
(1) with real output (2) as:

ŷ(i) :=

[
π(x(i))
λ(x(i))

]
:=

[
$ ◦ h(x(i))
s ◦ h(x(i))

]
. (4)

Let rj be the relative degree as defined in [9] of the jth

element of ŷ(i). Note that rj does not depend on (i) as all
robots in the platoon have the same dynamics. Assume that

m∑
j=1

rj = n (5)

on U , so that system (1) with virtual output (4) is feedback
linearizable [2–5, 9]. Note that the validity of this assumption
is determined by [5, Theorem 3.2]. Then, by taking the
time derivative of each element of ŷ(i) by the number of
times corresponding to the relative degree rj and stacking
the results, the following is obtained:

d r1 ŷ
(i)
1 /dtr1

d r2 ŷ
(i)
2 /dtr2
...

d rm ŷ
(i)
m /dtrm

 =


Lr1f π(x(i))

Lr2f λ1(x(i))
...

Lrmf λm−1(x(i))

+


Lg1L

r1−1
f π(x(i)) · · · LgmL

r1−1
f π(x(i))

Lg1L
r2−1
f λ1(x(i)) · · · LgmL

r2−1
f λ1(x(i))

...
. . .

...

Lg1L
rm−1
f λm−1(x(i)) · · · LgmLrm−1f λm−1(x(i))

u(i)

:=


D1(x(i)) + E1,1:m(x(i))u(i)

D2(x(i)) + E2,1:m(x(i))u(i)

...
Dm(x(i)) + Em,1:m(x(i))u(i)


:= D(x(i)) + E(x(i))u(i),

:= col(v
(i)
‖ , v

(i)
t )

:= v(i), (6)

where Lab c(x) is the ath Lie derivative of c(x) along b.
Lab c(x) is recursively defined as Lab c(x) = LbL

a−1
b c(x),

where Lbc(x) = dc(x)
dx b(x). The matrix E(x(i)) is known as

the decoupling matrix for the MIMO system [5, 9]. Note that
E(x(i)) is non-singular on U [9]. Equation (6) is then a chain



of integrators with vector control input v(i). Through defining
α(x(i)) := −E−1(x(i))D(x(i)) and β(x(i)) := E−1(x(i)),
the auxiliary control input maps to the original control input
through

u(i) = α(x(i)) + β(x(i))v(i). (7)

By defining the diffeomorphism T (·) : x(i) → (η(i), ξ(i)) as

[
η(i)

ξ(i)

]
:=


col(π, . . . , Lr1−1f π)(x(i))

col(λ1, . . . , L
r2−1
f λ1)(x(i))
...

col(λm−1, . . . , L
rm−1
f λm−1)(x(i))

, (8)

the path-following manifold in the new coordinates is
T (Γ∗) = {(η(i), ξ(i)) : ξ(i) = 0}, for any i = 0, 1, . . . .
Furthermore, the dynamics in the new coordinates are in
Brunowský normal form [2, 5]:

η̇(i) = A‖η(i) +B‖v
(i)
‖ , (9)

ξ̇(i) = Atξ(i) +Btv
(i)
t , (10)

where (A‖, B‖) and (Aξ, Bξ) are controllable. Equation
(9) describes the dynamics that are tangential to the path,
and is therefore defined as the tangential subsystem [4, 5].
Likewise, equation (10) describes transversal dynamics and
is defined as the transversal subsystem [4, 5]. These results
satisfy Objective 1.

Stabilizing the origin of the transversal subsystem en-
sures that the robot’s position remains on the path-following
manifold [4, 5]. This can be accomplished by an appro-
priate feedback control law, such as v

(i)
t = −Ktξ(i) so

that At − BtKt is Hurwitz. This controller would drive
trajectories towards ξ(i) = 0 for all platoon members,
satisfying Objective 3. Since the origin of the transversal
subsystem can be made a stable equilibrium by the closed
loop controller, Objective 4 is also satisfied.

In the tangential subsystem, the distributed platoon con-
troller regulates the positions, η(i), of each follower robot
to track its constant reference spacing, d(i)ref . Note that the
platoon leader does not have any spacing requirements.
Assume that each robot of the platoon can communicate
its instantaneous tangential state η(i) and control input v(i)‖
to its immediate follower. Define δ(i) := η(i−1) − η(i)

as the ith robot’s spacing state, where i = 1, 2, . . . , and
q(i) := v

(i−1)
‖ − v

(i)
‖ as the ith robot’s control input that

accounts for the feed-forward control term from its preceding
neighbour. Using equation (9), the dynamics of this system
are

δ̇(i) = A‖δ(i) +B‖q(i), (11)

d(i) := C‖δ(i) :=
[
1 0 . . .

]
δ(i), (12)

where the system’s output, d(i), is the physical spacing of the
robot as shown in Fig. 1. The objective of platoon control
is to make this spacing approach a desired d(i)ref . An integral
term is included in the controller for robustness to ensure
zero steady state error:

ρ̇(i) := d(i) − d(i)ref . (13)

i = 0

i = 1

i = 2

leader

follower

follower

η
(0)
1 (t)

η
(1)
1 (t)

η
(2)
1 (t)

d(1)(t)

d(2)(t)

Fig. 1. While constrained to the path-following manifold, the platoon is
led by the leader. d(i)(t), i = 1, 2, . . . is the spacing of the ith robot from
its preceding neighbour. η(i)1 (t), i = 0, 1, . . . is the absolute arc-length
position of the ith robot along the path. Each robot in the platoon is able to
communicate its instantaneous tangential state η(i) and control input v(i)‖
to its immediate follower.

Furthermore, let the robot’s control be a state feedback:

q(i) = −K‖1δ(i) −K
‖
2ρ

(i), (14)

and let the point (δ
(i)
ss , q

(i)
ss , ρ

(i)
ss ) satisfy the steady state

equations:

0 = A‖δ(i)ss +B‖q(i)ss , (15)

q(i)ss = −K‖1δ(i)ss −K‖2ρ(i)ss , (16)

0 = C‖δ(i)ss − d(i)ref . (17)

By defining ζ(i) := col(δ(i)−δ(i)ss , ρ(i)−ρ(i)ss ) and substituting
equations (14) to (17) into equation (11), the closed loop
dynamics become

ζ̇(i) =

[
A‖ −B‖K‖1 −B‖K‖2

C‖ 0

]
ζ(i). (18)

The platoon gains, K‖1 and K
‖
2 , are then chosen such that

the matrix describing the closed-loop system is Hurwitz.
Stabilizing each follower’s ζ(i) state to the origin ensures that
all outputs, d(i), i = 1, 2, . . . track their reference spacing
distances, d(i)ref . This satisfies Objective 2.

III. EXPERIMENTAL SETUP

A. Quadrotor Dynamics

At the Flying Machine Arena (FMA) [22], the path-
constrained platoon control scheme is implemented onto
quadrotors due to their agility in three-dimensional space.
A cascaded control structure, as shown in [1, Fig. 1], is
used to simplify the control of each quadrotor. For each
quadrotor, the structure consists of a body-rate controller,
an attitude controller, and the path-constrained platoon con-
troller designed in this paper. For more details about the
design and implementation of the cascaded control structure,
readers should refer to [1, 22].

Within certain bandwidth limits described by [22], the cas-
caded control structure allows each quadrotor to be modeled
as a double integrator in each of the three inertial frame axes



[22]. The quadrotor’s dynamics in the form of equation (1)
are

ẋ(i) =

[
03×3 I3×3
03×3 03×3

]
x(i) +

[
03×3
I3×3

]
u(i). (19)

In the FMA, every quadrotor’s position is measured with a
motion-tracking camera system [22], so the system’s output
in the form of equation (2) becomes

y(i) =
[
I3×3 03×3

]
x(i). (20)

B. Circular Path

To demonstrate the control scheme, a circle of radius R
and parallel to the ground is chosen as the virtual path for
its simplicity and non-triviality. The inertial frame coordinate
system is defined with the origin at the circle’s center.

In order to perform TFL, let s(·), as introduced in Section
II, be a mapping of the system’s output defined in equation
(20) to the normal and binormal distances from the circle.
Then, the virtual output functions π(x(i)) and λ(x(i)) are

π(x(i)) = R arctan
(
x
(i)
2 /x

(i)
1

)
+ kL, (21)

λ(x(i)) =

[√(
x
(i)
1

)2
+
(
x
(i)
2

)2 −R
x
(i)
3

]
, (22)

where L = 2πR is the circle’s circumference and k ∈ Z
is the number of full revolutions already made around the
circle. Then, using equation (19), the diffeomorphism defined
in equation (8) for this particular system is

T (x(i)) =



R arctan
(

x2

x1

)
+ kL

R(x1ẋ2−x2ẋ1)
x2
1+x2

2√
x2
1 + x2

2 −R
x1ẋ1+x2ẋ2√

x2
1+x2

2

x3

ẋ3


x=x(i)

. (23)

Using T (x(i)), the inertial frame coordinate system is trans-
formed into the path coordinate system, (η(i), ξ(i)), as shown
in Fig. 2. The system dynamics in the path coordinates
become decoupled chains of integrators:

η̇(i) =

[
0 1
0 0

]
η(i) +

[
0
1

]
v
(i)
‖ , (24)

ξ̇(i) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ξ(i) +


0 0
1 0
0 0
0 1

 v(i)t . (25)

The auxiliary control input, v(i) = col(v
(i)
‖ , v

(i)
t ), is then

mapped to the original control input, u(i), for i = 0, 1, . . .

x2

x1

x3

ξ
(i)
3η

(i)
1

ξ
(i)
1

x1 x1 x2

x2

Fig. 2. The inertial frame coordinate system is transformed to the path
frame coordinate system through diffeomorphism T (x(i)). Note that η(i)1 ∈
R, where i = 0, 1, . . . , is the unwrapped arc-length along the circular path.

ith platoon member
i = 0, 1, ...

Transversal
Path Controller

Platoon or Leader
Controller

Tangential

Cascaded Quadrotor ControllerTFL

T (x(i))
Diffeomorphism

To
(i+ 1)th member

From (i− 1)th member, i ≥ 1

Fig. 3. The control methodology results in the overall distributed
control scheme for a single quadrotor. The platoon leader implements an
application-specific controller in its tangential subsystem, while the platoon
followers implement the platoon control scheme.

through equation (7), where

α(x(i)) =


2R(x2ẋ1−x1ẋ2)(x1ẋ1+x2ẋ2)

(x2
1+x2

2)
2

(ẋ2
1+ẋ2

2)(x
2
1+x2

2)− 1
2 (x1ẋ1+x2ẋ2)

(x2
1+x2

2)
3
2

0


x=x(i)

, (26)

β(x(i)) =


−Rx2

x2
1+x2

2

Rx1

x2
1+x2

2
0

x1√
x2
1+x2

2

x2√
x2
1+x2

2

0

0 0 1


x=x(i)

. (27)

The transversal dynamics of each quadrotor in the platoon
are stabilized to ξ(i) = 0, i = 0, 1, . . . , using PID controllers,
while all robots except for the platoon leader implement
the platoon control law (14) in their tangential dynamics.
The leader is independent of the platoon, and implements an
application-specific controller. The overall control scheme is
shown in Fig. 3.

C. Admittance Control on Leader

Human-robot interaction is a well-suited application of
TFL due to the safety provided by path constraints. An
admittance controller is implemented in the tangential dy-
namics of the platoon leader. The controller allows the



quadrotor to change its apparent mechanical admittance so
that it reacts to external forces in the same way as a mass-
damper system, with user-specified values for the mass and
damping coefficient. Since humans naturally expect that
a mass will move when force is applied and then slow
down due to friction, the admittance controller emulates an
interaction analogous to a mass submerged in a viscous fluid.

Based on the approach described in [20], the admittance
controller consists of two components: a reference generator
and a position controller. The reference generator is respon-
sible for creating the virtual trajectory that a mass-damper
system with user-specified values would take under the
influence of human-applied forces. The position controller
then ensures that the quadrotor’s position tracks the virtual
trajectory, so that from the perspective of the interacting
human, the quadrotor appears to behave with the specified
mechanical properties.

1) Reference Generation: The reference signal ηref(t)
is defined to be the position of the virtual mass-damper
system with mass m = 2.0kg and damping coefficient
b = 0.2. Note that the actual mass of the leader quadrotor is
only about 0.5kg. The dynamics of the reference signal are
driven by fhuman(t), which is defined as the instantaneous
force applied by the human on the platoon leader quadrotor,
resulting in the following equation of motion:

mη̈ref(t) + bη̇ref(t) = fhuman(t). (28)

Since there are no force sensors on the quadrotors, the
human-applied force is estimated using a Kalman filter
implemented only in the leader’s tangential subsystem based
on the approach taken in [20]. The force is modeled as
driven entirely by Gaussian noise: ḟhuman(t) ∼ N (0, σ2

f ),
where σ2

f is a tuning parameter [20]. The leader’s tangential
dynamics, as given in equation (24), are augmented to
include fhuman as part of the state. The measured position
of the quadrotor along the path is obtained by transforming
equation (20) into path coordinates. A linear Kalman filter is
then implemented with discretized versions of the augmented
dynamics and measurement equation in order to estimate the
human-applied force, fhuman, at each sampling time step.
Note that the resulting Kalman filter is only implemented in
the leader’s tangential subsystem, unlike the implementation
in [20].

2) Position Tracking: The platoon leader’s position along
the path, η(0)(t), is controlled to track the reference signal,
ηref(t), using the auxiliary control variable, v(0)‖ . Define the
error signal of the platoon leader as the difference between
the reference trajectory and the leader’s position along the
path:

e(0)(t) := ηref(t)− η(0)1 (t). (29)

Then, the error can be stabilized with a PID controller:

v
(0)
‖ (t) = k

(0)
P e(0)(t)+k

(0)
I

∫ t

0

e(0)(τ)dτ+k
(0)
D ė(0)(t), (30)

where k(0)P , k(0)I , and k(0)D are appropriately tuned PID gains.
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Fig. 4. The flight test shows the 3D trajectories of the platoon members
converging to the circle with radius 2.0m and the platoon simultaneously,
while the platoon leader tracks a constant speed reference of 1.5m/s
along the path. The circular path is offset 4.0m from the ground. The
attractive property of the path results in asymptotic convergence, whereas
the invariance property ensures every quadrotor remains on the path for all
time.

Using the admittance controller, the platoon leader re-
sponds to human-applied forces analogous to a point mass
in a damping medium. Simultaneously, the entire platoon is
constrained to the path at all times, ensuring safety to the
interacting human.

IV. EXPERIMENTAL RESULTS

A. Path and Platoon Convergence Experiment

The desired path was set as a circle of radius 2.0m at a
height of 4.0m from the ground. Three quadrotors, placed
arbitrarily on the ground, were used to demonstrate the
simultaneous convergence of the quadrotors to the platoon
formation and the platoon to the path. Note that the platoon
leader did not implement the admittance controller described
in subsection III-C, but rather tracked a constant speed
reference of 1.5m/s along the path. Fig. 4 shows the flight
paths of the quadrotors converging to the virtual path and
Fig. 5 shows the tangential subsystem positions of the
platoon members. Qualitative observations are that the path’s
invariance and attractive properties are satisfied, and that the
control scheme is satisfactory.

B. Path-Constrained Human Interaction Experiment

In this experiment, the circle’s height was reduced to
2.0m to allow a user to interact with the platoon leader.
The leader’s admittance controller was tuned to emulate the
virtual mass-damper dynamics of equation (28). The lower
plot in Fig. 6 shows the estimated force applied by the human
and a threshold-filtered force, similar to the approach in [20].
The upper plot shows the resulting displacement along the
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Fig. 5. The platoon leader tracks a constant velocity of 1.5m/s along the
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their constant reference spacing of 2.5m for the duration of the experiment.
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Fig. 6. In the tangential dynamics, the quadrotor platoon responds to
human-applied forces. Shown in the bottom plot, the raw estimated forces
are filtered to extract the human-applied forces, using the approach described
in [20]. These filtered forces then drive the leader’s position reference
generation of equation (28), resulting in the instantaneous positions of the
platoon members shown in the upper plot.

path of the quadrotors in the platoon. The constant spacing
between the quadrotors demonstrates the platoon maintaining
its formation while the leader responds to human-applied
forces and guides the platoon.

V. CONCLUSION

This paper demonstrates how TFL simplifies the control
architecture for a platoon with virtual path constraints. Sta-
bilizing the transversal subsystem of each platoon member
allows each robot to remain on the path. In the tangen-
tial subsystem, the platoon leader implements an admit-
tance controller, while the rest of the platoon members
implement platoon controllers to regulate their spacing re-
quirements. Experiments explored human-platoon interac-
tion, which demonstrated how the path constraints guarantee
safety to the human. For future work, exploring different
applications for different mechanical systems and more
general paths, such as spline-interpolated paths of [10] or
paths described using parallel transport frames [11], would
support broader utility of platoon control with virtual path
constraints.
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