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Abstract of the Thesis

Predicting Music Revenue: A hierarchical linear

modeling approach with sensitivity analyses

by

Alex Phillip Whitworth

Master of Science in Statistics

University of California, Los Angeles, 2015

Professor Yingnian Wu, Chair

The music industry has undergone enormous change since the introduction of of

Napster in 1999. In 1999, 100% of industry revenue was from physical sales; in

2014, United States music industry revenue was 32% physical, 37% digital down-

loads, 27% streaming, and 4% other minor categories. In this thesis, I present the

first models in the music industry that predict monthly revenue at the album level

across both revenue stream and geography within the music industry, which are

based on a hierarhical linear modeling framework. In addition to the predictive

models, I present several sensitivity analyses to examine interesting properties of

the data. Specifically, the sensitivity analyses address the effects of data missing-

ness, design imbalance, and the impact of outliers on the predictive results.
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CHAPTER 1

Introduction

The music industry has undergone enormous change since the 1999 introduc-

tion of Napster, which allowed consumers to share large quantities of music online

anonymously. Although the Recording Industry Association of America (RIAA)

successfully sued and closed Napster in 2000, other successful file sharing services

such as Kazaa quickly emerged in its place. While Napster was the first suc-

cessful entrant onto the digital music scene, it merely marks the beginning of a

period of industry transformation. Apple launched their iTunes Music Store in

2003, becoming the first major entrant into legal downloading services and find-

ing major success. Apple sold their billionth song via iTunes in February 2006

and their five billionth song in June 2008.1 Apple’s success made it clear that

digital music was now a major source of industry revenue, making up a third of

United States recorded music sales in 2008.2 The digital deluge continued with

the launch of Spotify in 2008.3 Spotify, and other competing services, offers online

music streaming services to consumers and has become a major source of indus-

try revenue as well.4 In 2014, music industry revenue in the United States was

32% physical sales, 37% digital downloads, 27% streaming, and 4% other minor

1Van Buskirk, Eliot, ”iTunes Store May Capture One-Quarter of Worldwide Music by 2012.”
(http://archive.wired.com/entertainment/music/news/2008/04/itunes_birthday). Ac-
cessed: 2015-04-22

2RIAA Year-End Shipment Statistics. (http://76.74.24.142/
1D212C0E-408B-F730-65A0-C0F5871C369D.pdf). Accessed: 2015-04-22

3”We’ve only just begun.” (https://news.spotify.com/us/2008/10/07/
weve-only-just-begun/). Accessed: 2015-04-22

4Friedlander, Joshua P. ”News and Notes on 2014 RIAA Music Industry Shipment and Rev-
enue Statistics.” (http://riaa.com/media/D1F4E3E8-D3E0-FCEE-BB55-FD8B35BC8785.pdf).
Accessed: 2015-04-21
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categories.

The impact of music file sharing services has been studied closely in the empir-

ical literature with special attention paid to the relationship beween file sharing

and legal music purchases (Peitz and Waelbroeck. (2006), Waldfogel (2010), Bakos

et al. (1999), Hong. (2007), Oberholzer-Gee and Strumpf (2007)). The literature

has focused primarily on the the displacement of music sales by digital downloads,

individuals’ purchase and stealing activities, and variations in these phenomenon

across geography and time. Given the recency of streaming services, the literature

lacks a similar discussion of the effects of streaming on music sales or on the sub-

stitution effects of streaming on digital and physical sales. None of these studies

dispute the fact that digital and streaming are now a major source of music rev-

enue, and most industry commentators expect streaming to soon constitute the

largest portion of industry revenues.5

This transition from exclusively physical sales to an environment in which

digital and streaming sales play an increasingly important role presents two major

challenges to the music industry. In a trend that started with digital downloads,

individual songs have been decoupled from albums. Consumers are no longer

forced to purchase a full album when they are only interested in one or two hit

tracks. This has led to the first challenge facing the industry: the revenue from

each individual transaction is worth increasingly less revenue to the music industry.

This trend has accelerated with streaming services, where consumers are able to

effectively rent songs each time they listen to them for a very small amount of

money, paid for via either advertising or a monthly subscription fee. Digital and

streaming services have also quickly eroded the importance of the prior, physical,

distribution regime and replaced it with new distribution channels. These new

distribution channels introduce additional barriers to industry participants who

5Table (A.1) in the appendix shows a detailed look at music industry revenue in the United
States over time.
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wish to gather detailed data about their customers and revenue composition, which

is the second major challenge facing the industry.

These two trends have created a much more elaborate operating environment

for the music industry, where the number of music consumers has rapidly in-

creased, the value of each individual transation has decreased, and the data about

both consumers and revenue has both multiplied and become much more difficult

to obtain. It is therefore of critical interest to companies within the music indus-

try to leverage their existing data, in order to gain more insight into both their

revenue and their consumers. In this thesis, I examine the former of these, pre-

senting the first models which predict, at the album level, monthly revenue across

major revenue streams–physical, digital, and streaming–and across geographies.

The rest of this thesis is composed as follows: Chapter 2 presents the modeling

framework; Chapter 3 describes the data used in this study; Chapter 4 outlines

the modeling approach, discusses sensitivity analyses affecting the results, and

discusses the model results; and Chapter 5 concludes.
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CHAPTER 2

Hierarchical Models

Hierarchical, or nested, data structures arise naturally in many data collection

regimes. The most frequently cited examples are when individuals are observed

over time (longitudinal studies), or when stratified samples are used, such as

when sampling students within classrooms within schools. Data organized in

this manner are no longer independent observations. Any statistical model used

must therefore accommodate to this more general covariance structure, where

observations within the same sample unit may be correlated.

Hierarchical models, also commonly called mixed models, were developed to

appropriately handle such data structures. These models incorporate parameters

that estimate both the overall trend–the fixed effects–and the correlated covariance

structure–the random effects. These models therefore represent an explicit trade-

off; practicioners have increased flexibility in modeling both random and fixed

effects but accept increased complexity in the statistical modeling process.

The problems associated with parameter estimation have been extensively dis-

cussed in the literature. Practictioners typically employ either a maximum likeli-

hood (ML) or restricted maximum likelihood (REML) approach, although Monte

Carlo methods are also available.1 In addition to estimation, many diagnostic

methods have been developed as extensions of diagnostic methods for the classical

linear model (Hilden-Minton (1995), Hodges (1998), Loy (2013), Ronald Chris-

tensen and Johnson. (1992), Snijders and Berkhof (2008), Zewotir and Galpin.

1For a thorough treatment to estimation techniques, please see Goldstein (2011), Pinheiro
and Bates. (2000), and Raudenbush and Bryk (2002).
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(2005)). As with classical linear models, these methods are chiefly based on resid-

ual analysis and include methods for assessing the adequacy of model assumptions

and methods for influence diagnostics.

The remainder of this chapter provides a summary of hierarchical models. I

first discuss an illustrative example from a Bayesian perspective and then present

the general two-level hierarchical model. Finally, I include a brief discussion of

residual and influence analysis for hierarchical models. In the most common case,

when the estimation technique is linear, the literature refers to these models as

hierarchical linear models (HLM) or multilevel models (MLM), although these

terms are often used for binomial and count data as well. For consistency, I use

the term HLM going forward.

2.1 Illustrative Example

In this section, I present an example of hierarchical models to fix understand-

ing. To do so, I consider a study of educational achievement within a strati-

fied sample; that is, where observations of student achievement are nested within

classrooms. Formally, the study consists of observed student achievement yij

with observations indexed by i = 1, . . . , nj within classrooms and with class-

rooms indexed by j = 1, . . . , J . This model has many parameters of interest,

notably: (i) the parameters describing classroom achievement within each class-

room, θ = (θ1, . . . , θJ); and (ii) the hyperparameters describing overall student

achievement φ = (µ, τ 2). To gain a full understanding of student achievement

at each level of our hierarchy, I wish to estimate all of these parameters and to

provide meaningful interpretations.

Before estimating θ and φ, some distributional assumptions must be made.

Additionally, some assumptions about the exchangeability of both students and

classrooms must also be made. Firstly, considering distributions, while hierar-

5



chical models exist in general form, here it is useful to consider the case where

educational achievement is normally distributed. Given that most educational

achievement data (SAT-V, SAT-M ACT, IQ, etc) has been shown to be nor-

mally distributed, this assumption is reasonable. Importantly, normality can be

assumed for illustrative purposes here without any loss of generality. It is also

important to consider assumptions regarding the exchangeability of both students

and classrooms. One possibility is to view both students and classrooms as iden-

tical replications of one another. Under this assumption, all students are regarded

as independent samples within a common population of students and all class-

rooms as independent samples within a common population of classrooms. A

second possibility is to consider students as independent samples but to consider

classrooms so different that the results from any one classroom provide no in-

formation about the results of the others. A third, more general possibility is

to regard students within a given classroom and all classrooms as exchangeable

but not necessarily either identical or completely unrelated. This third possibility

represents a continuum between the first two extremes, and it is this exchangeable

model that forms the basis of the analysis presented here.

To fully specificy this normal model, I assume that student achievement and

classroom achievement have common variance. Defining ȳ.j = 1
nj

∑nj

i=1 yij and

σ2
j = σ2

nj
as the sample mean and variance for each classroom respectively gives

ȳ.j|θj ∼ N(θj, σ
2
j ) (2.1)

θj|φ ∼ N(µ, τ 2) (2.2)

The joint density P (φ, θ, y), joint posterior P (φ, θ|y), and conditional posterior

6



P (θ|φ, y) are

P (φ, θ, y) = π(φ)
J∏
j=1

N(θj|φ)N(ȳ.j|θj) (2.3)

P (φ, θ|y) ∝ π(φ)
J∏
j=1

N(θj|φ)N(ȳ.j|θj) (2.4)

P (θj|φ, yj) ∝ N(θj|φ)

nj∏
i=1

N(ȳ.j|θj) (2.5)

where π(φ) is the prior distribution for φ, (Y ⊥ φ)|θ, and (θk ⊥ θl)|φ for all k 6= l.

It is therefore clear that

θj|φ, y ∼ N(θ̂j, Vj)

where

θ̂j =

1
θ2j
ȳ.j + 1

τ2
µ

1
θ2j

+ 1
τ2

and Vj = (
1

θ2
j

+
1

τ 2
)−1. (2.6)

This solution is still incomplete because it depends on the unknown hyperpa-

rameters φ = (µ, τ 2). For the normal distribution, the marginal likelihood of the

hyperparameters has a particularly simple form. The marginal posterior density

can be written

P (µ, τ |y) ∝ π(φ)
J∏
j=1

N(ȳ.j|µ, σ2
j + τ 2)

Further, the marginal posterior density for the hyperparameters can be fac-

tored [P (µ, τ |y) = P (µ|τ, y)P (τ |y)]. I specify a uniform density on µ|τ . Therefore

µ|τ, y ∼ N(µ̂, Vµ)

where

7



µ̂ =

∑J
j=1(σ2

j + τ 2)−1ȳ.j∑J
j=1(σ2

j + τ 2)−1
and V −1

u =
J∑
j=1

1

σ2
j + τ 2

(2.7)

and, additionally,

P (τ |y) ∝ π(τ)V 1/2
µ

J∏
j=1

(σ2
j + τ 2)−1/2exp

(
− (ȳ.j − µ̂)2

2(σ2
j + τ 2)

)
. (2.8)

A prior distribution on τ must still be specified to complete this illustration.

The simplest specification is to use a diffuse noninformative prior density for τ ,

which requires an examination of the resulting posterior distribution to ensure it

has a finite integral. Alternatively, if an appropriate ‘best guess’ and upper bound

are determined for τ , a reasonable prior distribution can be constructed from the

scaled inverse-χ2 family, where the ’best guess’ is matched to the mean of the

scaled inverse-χ2 and the upper bound is matched to an upper percentile.

2.1.1 A three-level Model

I next briefly discuss an extension of this illustration to three levels (higher

level higherarchies are also possible) with observations yijk where school districts,

for example, are indexed by k = 1, . . . , K. In this stratified sampling regime, ob-

servations of student achievement are nested within classrooms, which are further

nested within school districts. Here, there may be some characteristics of school

district that influence student achievement, such as socioeconomic status, which

are of interest. Therefore, in the three-level model, a third set of parameters is

added to our list of parameters of interest: (iii) the parameters describing school

district achievement, γ = (γ1, . . . , γK). The three-level model is thus parameter-

ized:
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ȳ.jk|θjk ∼ N(θjk, σ
2
jk)

θjk|γk ∼ N(γk, α
2
k)

γk|φ ∼ N(µ, τ 2)

where α2
k = α

nk
represents the school district sample variance with common vari-

ance parameter α assumed and nk the number of sampled classrooms within each

school district. The total number of obserations in this three-level study would

therefore be N =
∑K

k=1

∑nk

j=1

∑nj

i=1 yijk. The joint density, joint posterior density,

and conditional densities can be found in a similar fashion to that outlined above.

2.1.2 Extension to Covariates

I also consider an extension of this model that includes covariates at the student

and classroom level.2 In this formulation of the hierarchical model, educational

achievement is considered to be a function of student-level and classroom-level

attributes. It is therefore assumed that classroom-level effects are non-exchangable

and depend on specific features of the classroom. In this case, multiple parameters

can vary by group. For example, one might consider gender, prior test scores,

and highest level of parental education at level-1 and teacher’s education level,

classroom prior test score average, and a factor variable describing classroom

management style at level-2.

This model is formally described as consisting of observed educational achieve-

ment yij with student achievement indexed by i = 1, . . . , nj within classrooms and

with classrooms indexed by j = 1, . . . , J as above. In addition, there is a matrix of

explanatory variables for each classroom, Xj, with fixed effects parameter vector

2Covariates at higher levels can also be included . Here, I revert back to the two-level model
for simplicity.
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β where there are q1 coefficients in the regression model. It is also important to

model variances between groups. To do so, a vector of random effects for each

classroom, Zu, is added–with uj the vector of random effects parameters to be

estimated. This model is parameterized as

yij ∼ N(Xj(βj + Zu ⊗ uj), σ2
y) (2.9)

βj ∼ N(µ,Σβ) (2.10)

uj ∼ N(0,Σu) (2.11)

where ⊗ is the usual Kronecker product and Σβ = Z̃uΣuZ̃u. Here Z̃u is defined

as the square matrix with the elements of Zu on the diagonal. One advantage of

this model is that separate prior distributions are assigned to uj and Σu, which

induces a rich structure of uncertainty modeling. This model is an example of the

scaled inverse-Wishart model. For a nonimformative model, the analyst can set

Σu ∼ Inv-Wishartq1+1(I) along with indepedent prior distributions on the uj’s.

Or, if necessary, the analyst can add informative priors to the uj’s.

2.2 The General two-level Model

With that illustration of hierarchical models from a Bayesian perspective con-

cluded, I now direct attention to the general two-level HLM. In the general two-

level model, consider the observed response vector Y with individual responses yij

where observations are indexed by i = 1, . . . , nj within groups and with groups

indexed by j = 1, . . . , J . Following the notation of Goldstein (2011) and Loy

(2013), the two level HLM can be specified as follows
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Yj = Xjβ + Zuuj + εj (2.12)

where Yj is the nj × 1 vector of responses within the j th group; Xj is an nj × q1

matrix of explanatory variables for each group; β is a q1 × 1 vector of unknown

fixed parameters; Zu is the matrix of random effects; uj is the q2 × 1 vector of

random parameters; and εj is the nj×1 vector of random errors. The random error

vector εj is composed of individual and group error terms, εj = εij +uj where εij is

the ith element of εj and represents the error for the ith individual of group j. uj

is the group level error which is fixed within each group. It is commonly assumed

that uj ∼ N(0,Ωu), εij ∼ N(0,Ωe), Cov(uk, εl) = 0 ∀ k and l, and Cov(uk, ul) = 0

∀ k 6= l where Ωe and Ωu are positive definite. Succinctly, in the standard model,

the level-1, or individual, and the level-2, or group, errors are assumed to be

independent. Further, the group errors are assumed to be independent across

groups. It is often convenient for estimation to use the scaled covariance matrices

where it is assumed that observations have within group homoscedastic errors

Ωe = σ2
eRj and group variances are homoskedastic Ωu = σ2

uD.

Note than, in a special case where the scale parameters are equal σ2
e = σ2

u,

these assumptions imply Yj ∼ N(Xjβ, σ
2Vj) where Vj = Rj + ZuDZ

T
u . Further,

defining ξ = Zuuj + εj, the marginal model can be defined as Yj = Xjβ + ξ. If

R and D are known and σ2
e = σ2

u, then the marginal model is just a linear model

with weight matrix σ2V −1.

In the general case, εj = εij+uj implies Vj = Vj(1)+Vj(2) where Vj(1) = ZT
u ΩeZu

and Vj(2) = ZT
j ΩuZj. The overall covariance matrix V is therefore block-diagonal

with the j th block of V , Vj = ⊕jσ2
e + Vj(2) where ⊕ is the direct-sum operator.

For known β, let Y ∗ = (Y −Xβ)(Y −Xβ)T and Y ∗∗ = vec(Y ∗) where vec is the

vector stacking operator. Therefore, E(Y ∗) = V and E(Y ∗∗) = Z∗u where Z∗ is
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the design matrix for the random parameters.

The best least unbiased predictors (BLUPs) in the two-level model are

β̂ = (
J∑
j=1

XT
j VjXj)

−1

J∑
j=1

XT
j VjYj (2.13)

û = (Z∗TV ∗−1Z∗)−1Z∗TV ∗−1Y ∗∗ (2.14)

where V ∗ = V ⊗ V . In practice, if V is unknown, V̂ is used. The iterative gen-

eralised least squares (IGLS) procedure iterates between (2.13) and (2.14). At

convergence, assuming multivariate normality, the estimates are maximum like-

lihood (ML). The IGLS procedure produces biased estimates in general, which

can be important in small samples. A simple modification (using E(Y ∗) =

V − X(XTV −1X)−1) is used to obtain restricted maximum likelihood (REML)

estimates, which are unbiased.

Following Hilden-Minton (1995), note that Y − Xβ̂ = V −1QY where Q =

V − V X(XTV X)−1XTV . Keeping consitent notation, it is possible to partition

Q into J × J blocks of the form

Qij =
{ Vi − Pii i = j

−Pij i 6= j

where Pij = VjXj(
∑J

j=1X
T
j VjXj)

−1XT
i Vi. Additionally, the variances of the pa-
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rameter estimates are

V ar(β̂) = σ2(
M∑
j=1

XT
j VjXj)

−1 (2.15)

V ar(ûj − uj) = σ2[D −DXT
j QjjXjD] (2.16)

Cov(β̂, ûj − uj) = (
J∑
j=1

XT
j VjXj)

−1XT
j VjXjD (2.17)

Cov(ûk − uk, ûl − ul) = σ2[DXT
k QklXlD] (2.18)

for all k 6= l.

2.3 Residuals

One of the key characteristics of the HLM is that it allows for uncertainty at

both the individual and group levels. Considering Equation (2.12), this leads to

multiple errors in the model:

• the conditional error, εij

• the random effects, uj

• the composite, or marginal, error Zuuj + εij.

Each type of error is of diagnostic interest, although none is directly observ-

able. That is, these errors are confounded. For diagnostic purposes, the analyst

would ideally like a residual term for each unobserved error that depends solely

on the specific error term of interest. However, since residuals in HLM are con-

founded, this is impossible. This makes the analyst’s life considerable more dif-

ficult. Residual terms can still be defined and analyzed; but, in contrast to the

classical regression model, the presence of uncertainty at both the individual and

group level leads to multiple residual terms. Defining the residuals from Equation
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(2.12) and using the estimated covariance matrices D̂ and V̂j, gives

ε̂ij = eij = Ŷj − (Xj)iβ̂ − (Zu)iûj (2.19)

ûj = dj = D̂ZT
u V̂j

−1
(Yj −Xjβ̂) (2.20)

cij = Ŷij − (Xj)iβ̂ (2.21)

for the conditional, random, and composite residuals respectively. These are

termed emperical bayes (EB) residual estimates; and, since c, d, e are defined

in terms of BLUPs, it is clear that they are BLUPs for Zuuj + εij, uj, and εij

respectively.3

Naturally, given that the residual terms are defined as BLUPs, the question

arises–why should one care if a residual is confounded? While d and e are unbiased

predictors for uj and εij, this is not true conditionally. It can be shown that

dj|εij has bias ZDZTQε, and e|uj has bias RQZuj (Hilden-Minton (1995)). This

conditional dependency may lead analysts to inappropriately change the functional

form of the model or to remove a few, truly concordant cases without just cause.

As with least squares, residual plots and analyses are crucial in assessing the

validity of the assumptions of the HLM, and, if they have been violated, how

they have been violated. To minimize the impact of confounding and following

the advice of Hilden-Minton (1995) and Loy (2013), an upward residual analysis

is preferred during the model-checking process. That is, it is preferred to first

examine the level-1 residuals, and, after concluding that an appropriate model

has been speficied at this level, proceed to level-2. In the case of a three-level or

higher model, the residual analysis continues to proceed up the hierarchy. I use

this upward residual procedure for model checking in this thesis.

3Alternatively, if the level-1 sample sizes are large enough, unconfounded level-1 residuals
may be found via individual least squares regression for each group.
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Another complication to consider is heterogeneity of group variance, that is to

consider Ωej = σ2
jRj and Ωuj = σ2

jDj. Heterogeneity of group variance is related

to residual analysis since, under the assumption of heterogeneity, it is often useful

to work with standardized residuals. To define the standardized residuals recall

that the variance matrix for the j th group Vj is Vj = Vj(1) +Vj(2) where the level-1

variance is V2(1) = ZTΩeZ and the level-2 variance is V2 is a block diagonal matrix

with the jth block Vj(2) = ZT
j ΩuZj. Since the residuals are defined in terms of

the variance matrix, or more accurately its estimate V̂ with j th group V̂j , and

following Loy (2013), the following formulation for Vj(2) can be used to standardize

the level-2 residuals.

Vj(2) = D̂Zu(V̂
−1
j − V̂ −1

j Xj(
J∑
j=1

XT
i V̂

−1
j Xj)

−1XT
j V̂

−1
j )ZuD̂ (2.22)

Note that this formulation is only preferred for model checking. For inferen-

tial claims, the conditional variance, V ar(ûj − uj), is preferred (Laird and Ware

(1982)).

2.4 Influence Analysis

As with the classical linear model, not all observations have the same impact

on parameter estimation. In the case of HLMs, this extends to higher order

observations–groups–as well. Some observations, or groups, may have excessive

impact. Observations, or groups, with excessive impact on parameter estimation

are termed influential. An extensive literature exists for influence analysis in

classical linear models (Cook and Weisberg, 1982; Chatterjee and Hadi, 1986;

etc). More recently, influence analysis has been studied for HLMs (Loy (2013),

Ronald Christensen and Johnson. (1992), Zewotir and Galpin. (2005)). In this
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section, I review some of the key generalization of influence measures to HLMs.

For additional detail, readers are encouraged to review Loy and Hofmann (2013)

and Zewotir and Galpin (2005).

One influence measure that is of interest is leverage. High leverage points

are observations, or groups, that greatly influence the fitted values. In ordinary

regression, the leverage values are defined to be the the diagonal elements of the

hat matrix, H = X(XTX)−1XT . In HLM, leverage must be defined for both

fixed and random effects. Assuming a fixed covariance structure Vj, the leverage

at level j is denoted H = ∂ŷj/∂yj. And the leverage of group j is the sum of the

fixed and random effects H1j and H2j where

H1j = Xj(X
T
j V

−1
j Xj)

−1XT
j V

−1
j (2.23)

H2j = ZjDZ
T
j V
−1
j (I −H1j). (2.24)

In practice, V̂ and D̂ are substituded for V and D respectively.

Another common method to assess influence is to observe the change in pa-

rameter estimates after the ith unit is deleted. Cook’s distance is one common

measure used to do this in ordinary least squares. Applied to HLMs, Cook’s dis-

tance can be extended to measure influence on the fixed effects and random effects

as follows:4

CDi(β) = (β̂(i) − β̂)T (XV̂ −1XT )(β̂(i) − β̂) (2.25)

CDi(θ) = (θ̂ − θ̂(i))
T V̂ ar(θ̂)(θ̂ − θ̂(i)) (2.26)

4I follow common convention and use the subscript (i) to denote deletion of the ith observation
or group. For example, X(i) denotes X where the ith observation, or row, has been deleted.
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where θ denotes the vector of variance components, that is, the vector containing

σ2
e and the unique elements of D. Large values of the Cook’s distance indicate that

an observation, or group, is influential. Note that, since the estimated covariance

matrix V is used, there is no exact reference distribution for (2.25). The use of a

bootstrap distribution is recommended Loy (2013).

Computational methods are not discussed in this thesis. Readers with a partic-

ular interest in computation methods are encouraged to read Christensen (1992)

and Zewotir (2005), where they are discussed thoroughly. Pinheiro and Bates.

(2000) is also an excellent reference for computational methods for the general

HLM.
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CHAPTER 3

Data

The data in this thesis comes from a longitudinal study conducted for a music

company in Beverly Hills, CA (the Client). The study focuses on monthly music

sales at the album level from January 2012 to May 2014.1 Sales are differentiated

by nine primary geographical markets (geographies) and three primary sources of

revenue (revenue streams). This is therefore a three-level HLM where monthly

sales are nested within albums, which are nested within geographical markets. I

provide separate models for each source of revenue. That is to say that, for this

study, I am particularly interested in predicting future monthly revenue at the

album level across geographies and separately within each revenue stream.

The raw data is stored in the Client’s database as individual revenue line-

items for each sale, where each sale is uniquely identified by an associated universal

product code (UPC). Importantly, UPCs may not be equated to albums. Different

UPCs exist for different formats and versions of the same album.2 For example, a

specific artist’s album titled “Greatest Hits” would have three distinct UPCs for

versions on vinyl, on CD, and for a special, boxed-set edition, also on CD. There

may be additional UPCs for different e-audio formats and distinct international

versions. The database contains over 13,000 distinct UPCs, which are associated

with almost 10,000 album titles and over 4,000 artists with sales over the January

1The data only includes catalog albums–those that were released over two years ago–and not
new releases. Sales of new releases are affected by many factors outside this study, such as the
popularity of an artist’s last album and marketing.

2To simplify the data structure, albums are grouped into five main formats (CD, E Audio,
Vinyl, Super Audio, and Other). Additionally, album versions are collapsed by title.
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2012 to May 2014 timeframe. The line-item data was aggregated to revenue at

the album level to create the final dataset, which has monthly sales nested within

albums nested within geography.

One of the most interesting features of the data concerns the availability of

data at the second and third levels of the hierarchy. Various level-2 attributes are

associated with each album, the most important of which are format, as described

above, artist, and release and reissue dates. Additional fields are calcuated to

examine a holiday sales effect, if any, by album. Noticeably, the data are missing

information on marketing expenditures and any notable exogenous events such as

an artist death or other highly publicized events that might be associated with

increased or decreased sales. In addition, no level-3 attributes, such as income per-

capita, are specified. Quite simply, the level-2 and level-3 observed variables do

not provide complete information on the level-2 and level-3 units. The potential

effects of these missing variables are described later with other interesting features

of the data.

3.1 Data Summary

The principal revenue streams are: physical sales, which are physical units

(CDs, vinyl, etc) sold to retailers; digital sales, such as iTunes downloads; and

streaming, where fractional revenue is earned whenever a user plays a song on

streaming services such as Spotify and Pandora. It is worth emphasizing that, for

the Client, this represents two different distribution methods. For physical sales,

the Client has business to business (B2B) sales to retailers; and, for digital and

streaming sales, there is no retailer–the sales are direct to consumer (DTC).

The geographies of interest for this study and their associated revenue are

summarized in Table (3.1) below. As can be seen, the United States accounts
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for the vast majority of the Client’s sales.3 This may be due to many factors,

including: the established distribution networks and business focus of the Client;

the catalog composition, which is heavy on US-based artists; or cultural tastes

in music and spending patterns that differ by geography. But, as noted above,

variables on cultural differences and spending information are exogenous to the

model, and therefore these relationships cannot be adequately examined.

Geography Total Physical Digital Streaming
Canada 4.87% 47% 49% 4%
CMG 3.83% 100% 0% 0%
iTunes Europe 1.04% 0% 100% 0%
Japan 8.45% 77% 22% 1%
Licensed Territories 4.49% 48% 33% 19%
United Kingdom 4.51% 41% 43% 16%
France 2.49% 53% 28% 19%
Germany 3.54% 73% 24% 2%
United States 66.79% 43% 48% 8%

Table 3.1: Summary of revenue by geography and revenue stream (January 2012
to April 2014). Percentage of overall revenue by geography and revenue-stream
percentage within geography are provided. Revenue is for catalog albums only;
new release revenue is not included.

In addition to large concentrations of revenue by geography, extreme concen-

trations of revenue exist when looking at revenue by either artist or album. In

general, music is a business that exhibits the traits of the economics of superstars

as outlined in Rosen (1981). Rosen notes that markets dominated by superstars,

which he defines as “markets where a relatively small number of people earn an

enormous share of the overall market revenue,” exhibit two key features. Firstly,

they exhibit a close connection between personal economic rewards and personal

market share. Secondly, market size and reward tend to be highly skewed towards

the most talented. As Rosen notes, from a consumer perspective, “lesser talent

3I note that the Client’s revenue composition in the United States differs markedly from the
composition of the overall industry. This may reflect differences between the Client’s music
catalog and the overall music industry. It may also partially reflect the focus of this study on
older albums instead of new releases.
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[is] often a poor substitute for greater talent.” This phenomenon leads to markets

where “small differences in talent become magnified in larger earnings differences,

with greater magnification of the earnings-talent gradient increas[ing] sharply near

the top of the [talent] scale.”What Rosen is describing is markets where consumers

have a strong preference for the absolute best talent available and, more impor-

tantly, where economies of scale allow individuals who possess this top talent to

easily satisfy extremely broad segments of the market. In the music business, the

cost of producing an additional digital copy of a song or CD is essentially 0. Music

is therefore a non-rival good, meaning that one individual listening to a song does

not exclude anyone else from listening to the same song. The economics of super-

stars phenomenon is evident in the data, which can be seen Figures (A.1), (A.2),

(A.3) and (A.4) in Appendix A.1. In these figures, I have ranked both albums

and artists by their aggregate log-revenue for each revenue stream individually

and total revenue. I compare these rankings to the aggregate revenue associated

with each rank. This results in a comparison of aggregate log-revenue across each

revenue stream by both album and artist revenue-rank, which clearly shows the

concentrations of revenue associated with markets dominated by superstars.

Lastly, turning to distributions, the variable on revenue in the dataset is

roughly log-normally distributed but exhibits some deviation from log-normality

at both level-1 and level-2, where revenue is somewhat over-dispersed. This is due

to the extreme concentrations of revenue by album. The data is positively skewed

at level-2, while, at level-1, the data has an extremely long, thin tail. The vast ma-

jority of monthly revenue falls into the $0 - $99 range; however, some albums have

some months with very high revenue as can be seen in Table (A.2) in Appendix

A.1. Within the physical revenue stream, note that there are two tails. That is,

some albums also have some months with extreme negative revenue, where neg-

ative revenue represents refunds to retailers for unsold units. Since both digital

and streaming revenue come from direct to the consumer distribution channels,
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there are no returns and therefore no months with negative revenue.

3.2 Interesting Features of the Data

In this section, I explore some of the interesting features of the data, particu-

larly as they relate to HLMs. Most of these features arise from the fact that this

is an observational study and not a designed experiment. The data are therefore

highly imbalanced, and there is missing data, as mentioned above, on several key

features of interest. I additionally discuss the possibility of cross-classification and

issues of missingness that are related to both data collection and data preparation.

The first feature of note in the data is the lack of level-2 covariates. At level-2,

the data are missing information on the amount spent on marketing for either

specific albums or larger batches of albums such as those within a single genre or

from a specific artist. These are potentially important missing variables and may

have some bias on the parameter estimates. One potential mitigating effect on the

importance of these missing variables is that this study is focused on older catalog

albums–albums that were released at least two years ago–and many of which were

released over ten years ago. Most marketing efforts are focused on new releases,

which have more variable revenue and more easily influenced fans. It may be the

case that there is very little to no marketing effort on these albums at all, although

I do not have data to either confirm or disprove this. Additionally, older catalog

albums tend to have stable fan bases. Consumers have largely decided whether

they like an album or not by the time it has been out for a long time.

The other important level-2 attribute that is missing is key events related

to the album, such as the death of the album’s artist(s), a highly public event

for the album’s artist(s), or the release of a new hit from the album’s artist(s).

Any of these events may lead to a substantial increase in interest for the work of

these artists and therefore sales of their music. The most famous example of this
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phenomenon was the death of Michael Jackson in 2009. In the five years since his

death, Michael Jackson sold 13.2M albums, far more than in the five years prior

to his death (3.9M albums).4 Another example would be the release of a new hit

album from an old artist, which leads to a dramatic increase in sales of their older

work. Unfortunately, this dataset doesn’t capture these data attributes. These

missing variables may lead to some bias in parameter estimates.

The data is also missing level-3 covariates. At level-3, the particular covariates

of interest include information capturing the consumer behavior of each geography,

such as income per-capita, disposible income per-capita, information on differing

musical preferences by geography, and consumer sentiment. To address this prob-

lem, I have decided to build two-level models instead of three-level models. This

choice represents a trade-off, where I lose the richness of variance estimates which

might provide insight into cross-geography purchasing behavior in order not to in-

troduce a source of bias with unknown magnitude into the modeling process. But,

since the missing covariates also mean that I am not able to estimate the fixed-

effects parameters related to differences in consumer behavior across geography or

to interpret their signifigance, this seems like a reasonable trade-off. In general,

it is preferable to acknowledge shortcomings in the data, and therefore in the po-

tential insight the data can provide, than to introduce bias into the estimates of

parameters on which one does have data.

The next interesting feature of the data to consider is the hierarchical classi-

fication of monthly sales. As noted above, the data has been aggregated at the

album level where albums have 1 of 5 main album-formats: CD, E Audio, Vinyl,

Super Audio, and Other. One might therefore consider the data cross-classified at

level-2 with level-2 variance partitioned by both album and album-format (Gold-

4Hughes, Jason. ”Michael Jackson Has Sold More Albums Since His
Death Than Over The Last 13 Years of His Life.” (http://www.thewrap.com/
michael-jackson-has-sold-more-albums-since-his-death-than-the-last-13-years-of-his-life/).
Accessed: 2015-04-16
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stein (1994)). But this would be a naive interpretation of the data for two reasons.

Firstly, the data is highly imbalanced between formats. Looking at the United

States geography alone, which is by far the largest and most significant geography

for the Client, it is clear that the vast majority of sales are within the CD format,

as is shown in Tables (3.2), (3.3), and (3.4) below.5 Given the design imbalance,

it is unlikely that sufficient sample size exists to provide accurate estimates of any

cross-classified variance structure.

An additional, and more important, reason that cross-classification would be

a naive interpretation is that the nature of these formats make it likely that they

represent distinct consumer preferences, which should be considered distinct level-

2 variance partitions. Specifically, vinyl, which is an analog music medium, was

the primary music-storage medium during the early part of the twentieth century.

Its sales rapidly declined after the introduction of the CD, a digital music medium,

in the 1980s. By the early 1990s, vinyl had been almost completely replaced by

CDs; however, vinyl has seen a resurgence as a niche market for audiophiles and

music connoisseurs.67 Super Audio, which is a CD with a higher bit-rate and

purported better sound quality, has found a niche market for audiophiles in a

similar fashion.8

Since cross-classified variance structures are uncorrelated by definition, this

would not capture the reality where album format represents distinct consumer

preferences. Instead, I consider the combination of album title and album format

to be a unique specification for level-2 units. This allows for different parameter

estimates for monthly sales of vinyl, super audio, CD, and other audio formats

5The same pattern is observed across all geographies and revenue streams.
6”The Death of the Vinyl LP?” (http://mistervideo.net/

the-death-of-the-vinyl-lp/). Accessed: 2015-04-16
7Kornelis, Chris. ”Why CDs May Actually Sound Better Than Vinyl.” (http://www.

laweekly.com/music/why-cds-may-actually-sound-better-than-vinyl-5352162). Ac-
cessed: 2015-04-16

8Del Colliano, Jerry. ”The Symbolism of Losing Tower Records.” (http://www.avrev.com/
news/1006/19.tower.shtml). Accessed: 2015-04-16
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for the same album title. It also allows for different hyperparameter estimates for

monthly sales globally within a given audio format.9 It should be expected that

different audio formats have different estimates for monthly sales. Audiophiles and

music connoisseurs are willing to pay the higher prices that vinyl and super audio

formats command, which should be reflected in their hyperparameter estimates.

CD E Audio Super Audio Vinyl
92.4% 0% 5.0% 2.6%

5% 1 0 0 0
25% 21 0 0 0
50% 27 0 0 0
90% 30 0 0 0
95% 30 0 6 0
99% 30 0 29 28
100% 30 0 30 30

Table 3.2: Summary of album formats for physical sales within the United States.
Percentage of total observations by format is provided first. The distribution of
observations within level-2 units by format is also presented.

CD E Audio Super Audio Vinyl
91.9% 7.5% 0.5% 0.1%

5% 1 0 0 0
25% 19 0 0 0
50% 29 0 0 0
90% 29 3 0 0
95% 29 17 0 0
99% 29 29 0 0
100% 30 30 29 28

Table 3.3: Summary of album formats for digital sales within the United States.
Percentage of total observations by format is provided first. The distribution of
observations within level-2 units by format is also presented.

9In this case, the term ”globally” refers to within a specific model. Specifically, by ”globally”,
I mean within a specific geography and revenue stream.
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CD E Audio Super Audio Vinyl
93.8% 5.4% 0.5% 0.3%

5% 0 0 0 0
25% 26 0 0 0
50% 29 0 0 0
90% 29 0 0 0
95% 29 10 0 0
99% 29 29 0 0
100% 30 30 29 29

Table 3.4: Summary of album formats for streaming sales within the United
States. Percentage of total observations by format is provided first. The dis-
tribution of observations within level-2 units by format is also presented.

Returning to design imbalance, it is known to effect the standard errors of

parameter estimates as described in Maas and Hox (2004) and (2005). This is pri-

marily because parameter estimates for HLMs have asymptotic properties, which

translates to the requirement that sample sizes be sufficiently large for these prop-

erties to hold. The simulation studies in the literature to-date suggest that the

number of level-2 units is far more important than total sample size or design im-

balance between groups. In particular, Maas and Hox note that level-2 variances

only appear to be underestimated when the number of groups is ”substantially

lower than 100” (Maas and Hox. (2004), Maas and Hox. (2005)). Since all of but

wo of my models have over one hundred groups, and most have several hundred

or more groups, this should not present a problem with the estimates. I note that

the study is also imbalanced within formats. I investigate the effects of design

imbalance more thoroughly in the simulation studies in Chapter 4.

A final feature of interest in the data concerns data missingness and is related

to the motivation behind the origin of this study. A little background is thus

required to properly discuss this feature. This study was motivated by the need

to provide the Client with insight into the revenue data provided by the Client’s

distributor. In the current business environment, the Client receives monthly rev-

enue data from their distributor but has no guarantee that the provided data is
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either accurate or complete. One desired piece of insight is a method for detecting

revenue anomalies and errors, which is one of the key challenges facing music in-

dustry participants outlined in Chapter 1. The lack of data transparency impacts

missingness in two ways. Firstly, it may be the case that there is an unknown error

in the data reporting provided to the Client. This represents a potential exoge-

nous source of missingness on the dataset. The second way in which missingness

may be affected has to do with how the modeling process was designed to address

the detection of revenue anomalies. Revenue is considered to be anomalous when

it is either substantially below or substantially above expectations. Within the

modeling process, therefore, data cleaning was done to exclude observations with

excessively high or excessively negative monthly revenue. In general, this was

done heuristically. QQ-plots were created from the monthly revenue data for each

model, and any observations that were deemed to be severe outliers or otherwise

deviations from log-normality were excluded. This represents a potential endoge-

nous source of missingness on the dataset. In addition to these two sources of

missingness, there may be some missingness due to the revenue reporting process.

Specifically, whenever a UPC records exactly $0 sales in a given month, the dis-

tributor may not report this $0 monthly revenue. Such a dataset may be said to

have zero-deflation, where there are many more true zeros than are observed.

These three possibilities for the generating mechanism for missingness have

different implications. If all missingness is related to either data-reporting errors

or from data cleaning, the data is Missing Completely At Random (MCAR). But,

missingness due to non-reporting of $0 revenue, or zero-deflation, is not MCAR.

Data that is Not Missing At Random (NMAR) is problematic for both inferential

and predictive claims. However, in the case of NMAR, the degree of missingness

is also unclear: that is how many months are missing. Specifically, the possibility

of data being NMAR is confounded by the possibility of its being MCAR.10 To

10A fourth possibility for missingness exists. If an album was released in the last few years, it
may have moved to ”catalog” status within the study period. This missingness pattern is termed
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investigate the impact of missingness, sensitivity analyses on the robustness of

predictive results to all these potential sources of missingness are examined in

Chapter 4.

Missing At Random (MAR) and is not problematic for estimation purposes.
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CHAPTER 4

Model Results, Sensitivity Analyses, and

Discussion

In this chapter, I describe the modeling approach and results. In addition, I

present the results of sensitivity analyses examining the effects of missing data, de-

sign imbalance, and outliers at level-2. Firstly, turning to the models, I have built

separate models for each of the revenue streams–physical, digital, and streaming.

As discussed above, separate models were built for each geography in order to

cope with the lack of covariates at level-3.

All models were built in R v3.1 (2015) with HLMs built in the lme4 package

(R Core Team (2015), Bates et al. (2014)). While lme4 does provide shrinkage

estimators for the level-2 parameters, it is not able to fit heteroskedastic or other

complex covariance structures.1 This is concerning because of the extreme concen-

tration of revenue within each geography to the top albums as shown in Figures

(A.1), (A.2), (A.3) and (A.4) in Appendix A.1. Given the software inflexibility,

I have separated each geography into tiers by artist revenue such that artists are

tiered within each geography roughly by the variance in their monthly album

revenue.2 While the tiering approach should adequately address the concern of

heteroskedastic variance across albums, the skew in the revenue concentration does

1The nlme package in R does allow for complex covariance structures; however, nlme does
not support downstream package development. Therefore, diagnostic methods are less flexible
in nlme. As with any project involving a choice of modeling software, a trade-off is involved in
this project. lme4 provides the most complete suite of tools for this work.

2Tiers were created based on natural breaks in aggregated artist revenue within each geog-
raphy from January 2013 - April 2014.

29



still leave the possibility of outlier level-2 units, particularly at the highest artist

tier. Simulation results which examine the robustness of parameter estimates to

outliers are discussed in this Chapter.

Generally speaking, the intraclass correlation (ICC), a measure of proportional

partition of variance at level-2 (or level-3), is very high across all revenue streams,

geographies, and artist tiers. This result is consistent with other empirical studies

of longitudinal data. Given the sparsity of level-2 and level-3 covariates, I used

a heuristic approach for model selection. Specifically, model selection was done

by starting with a full model and applying backward selection to prune predic-

tors such that the overall model fit was significantly improved at the α = 0.05

level. After model fitting, diagnostic tests involving residual analysis and influence

analysis were performed. In particular, the HLMdiag package was instrumental

for many of these calculations (Loy and Hofmann (2014)). Any level-1 or level-2

units that were highly influential were removed. In the remainder of this chapter,

I present the predictive results and discuss the results of the sensitivity analyses.

4.1 Sensitivity to Zero-Deflation

In Chapter 3, I discussed three possibilities for the missing data generating

mechanism: errors in the data reporting process, exclusion of revenue anomalies

during the modeling process, and zero-deflation. In this section, I investigate

the possibility of zero-deflation, which would indicate the data is NMAR; and,

examine the impact of missingness on predictive accuracy.

To do this, I conducted a sensitivity analysis where I randomly imputed a

percentage (15%, 30%, 50%, and 70%) of missing data for each album and format

type to zero. I then refit the HLMs on each of these augmented datasets and

examined out-of-sample prediction accuracy. Prediction accuracy was compared

for both the augmented data and the non-augmented data. Since the literature
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does not have a consensus on a single best measure of predictive accuracy, I have

assessed prediction accuracy with a variety of metrics. Specifically, I use:

1. Root Mean Squared Error (RMSE):
√

1
n

∑n
i=1(yi − ŷi)2

2. Mean Absolute Error (MnAE): 1
n

∑n
i=1 |yi − ŷi|

3. Weighted Mean Absolute Error (WMnAE): 1∑n
i=1 wi

∑n
i=1 wi|yi − ŷi|

where the weights are the log of the absolute predicted values where a small
constant has been added to upweight very small predicted values (wi =
log(|ŷi|+ 2))

4. Maximum Absolute Error (MxAE): Rather than being concerned with
the average deviation, this metric is concerned with the maximum error in
the test observations. maxi∈n|yi − ŷi|

5. Classification Rate: Here, I calculate the 95% prediction interval yi,P I =
ŷi ± z.975SE(ŷi) and classify observations as either within the prediction
interval or outside it. The classification rate is then 1

n
1(yi∈yi,PI) where 1 is

the indicator function.

The results of this analysis are shown below in Tables (4.1), (4.2), and (4.3).

For brevity, only the United States models are shown. Results were similar across

all geographies and revenue streams. These tests make it clear that the baseline

models, without zero imputation, perform best across a variety of prediction met-

rics. Based on these results, I am confident that the data does not violate Missing

At Random (MAR) assumptions.
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Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 1
Baseline 2,471 105.87 302.49 426.04 16,765.89 96.24%
Imp-15% 2,471 221.32 356.20 433.67 16,859.64 96.33%
Imp-30% 2,471 213.28 349.86 431.17 16,864.96 96.12%
Imp-50% 2,471 206.90 345.30 432.10 16,871.84 96.12%
Imp-70% 2,471 198.53 339.49 430.88 16,876.55 95.92%
Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 2
Baseline 2,276 21.31 158.90 209.27 28,060.11 97.34%
Imp-15% 2,276 24.42 158.12 207.66 28,045.88 97.12%
Imp-30% 2,276 23.73 158.30 207.60 28,038.10 97.16%
Imp-50% 2,276 24.51 158.48 207.71 28,039.29 97.16%
Imp-70% 2,276 26.32 158.21 206.96 28,023.96 97.03%
Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 3
Baseline 5,912 13.51 74.04 87.07 4,148.52 95.98%
Imp-15% 5,912 16.10 74.20 86.94 4,138.30 95.71%
Imp-30% 5,912 16.76 74.45 87.11 4,133.27 95.52%
Imp-50% 5,912 17.64 74.50 86.99 4,128.04 95.48%
Imp-70% 5,912 18.68 74.58 87.04 4,120.40 95.25%

Table 4.1: Summary of prediction accuracy for sensitivity analysis for zero-defla-
tion by artist tier. Results for the United States geography and physical revenue
stream shown.

Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 1
Baseline 2,421 85.02 141.97 212.02 8,188.17 96.65%
Imp-15% 2,421 127.07 161.10 251.52 8,189.14 96.15%
Imp-30% 2,421 138.36 166.01 263.36 8,189.43 95.79%
Imp-50% 2,421 143.23 167.16 267.17 8,189.67 95.53%
Imp-70% 2,421 146.75 166.58 269.20 8,189.92 95.29%
Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 2
Baseline 2,502 48.44 67.46 73.94 5,889.59 89.13%
Imp-15% 2,502 53.83 64.71 79.49 5,896.57 99.00%
Imp-30% 2,502 54.76 65.58 80.81 5,897.10 99.167%
Imp-50% 2,502 56.99 66.50 82.14 5,898.27 99.08%
Imp-70% 2,502 56.99 66.50 82.14 5,898.27 99.08%
Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 3
Baseline 6,239 11.11 20.39 21.48 2,246.73 95.70%
Imp-15% 6,239 14.90 20.43 24.26 2,231.95 99.42%
Imp-30% 6,239 15.70 20.71 24.49 2,233.78 99.36%
Imp-50% 6,239 16.38 20.98 24.78 2,234.82 99.37%
Imp-70% 6,239 17.85 21.72 25.81 2,236.51 99.36%

Table 4.2: Summary of prediction accuracy for sensitivity analysis for zero-defla-
tion by artist tier. Results for the United States geography and digital revenue
stream shown.
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Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 1
Baseline 2,167 170.54 216.98 399.19 10,968.02 96.49%
Imp-15% 2,167 202.24 225.47 411.61 11,541.01 91.62%
Imp-30% 2,167 207.34 235.12 415.69 11,621.24 91.45%
Imp-50% 2,167 214.58 229.59 418.41 11,780.75 91.08%
Imp-70% 2,167 216.29 230.24 419.01 11,818.69 90.91%
Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 2
Baseline 2,272 75.39 95.05 110.44 5,916.90 86.13%
Imp-15% 2,272 87.14 96.45 114.31 5,918.67 89.13%
Imp-30% 2,272 88.79 97.04 115.10 5,919.33 88.81%
Imp-50% 2,272 91.09 97.10 116.66 5,920.21 88.45%
Imp-70% 2,272 93.83 99.18 118.49 5,920.84 87.49%
Imputed Percentage N RMSE MnAE WMnAE MxAE Classification Rate
Tier 3
Baseline 6,696 27.02 32.54 37.46 2,243.20 95.96%
Imp-15% 6,696 29.58 32.97 36.77 2,246.29 92.27%
Imp-30% 6,696 29.84 32.99 36.80 2,246.25 91.97%
Imp-50% 6,696 30.03 33.11 37.04 2,246.24 91.63%
Imp-70% 6,696 30.57 33.17 37.08 2,246.25 90.96%

Table 4.3: Summary of prediction accuracy for sensitivity analysis for zero-de-
flation by tier. Results for the United States geography and streaming revenue
stream shown.
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4.2 Sensitivity to Design Imbalance

The maximum likelihood estimates commonly used in HLM analysis (ML or

REML) are asymptotic. This roughly translates into the assumption that sample

sizes must be sufficiently large for properties of assymptotic consistency and nor-

mality to hold. An obvious question is what constitutes an acceptable lower limit

for sample sizes. Simulation studies in the literature have shown that the number

of observations per level-2 unit is far more important than the total sample size.

In addition, it has been shown that the number of level-2 units is very important

for efficient estimates. In general, one hundred level-2 units are suggested as a

minimum, although Kreft and De Leeuw (1998) note that the smallest acceptable

number is 30. In simulation studies, Maas and Hox (2005) show that ”[level-2]

variances are estimated too small when the number of [units] is substantially lower

than 100.” With 30 units, they show that standard errors are about 15% too small

and, with 50 units, about 9% too small. Maas and Hox (2005) also investigate the

impact of level-2 units being non-normally distributed about the hyperparameter

mean, finding that non-normality has little-to-no effect on fixed effects but does

affect the variance components. They note that while the variance estimates are

unbiased, their standard errors are not unbiased in all simulated conditions.

While many simulation studies in the literature have investigated the issue

of sufficient sample size for both level-1 observations and level-2 units, I have

not found simulation studies investigating the effect of design imbalance on the

bias and efficiency of estimators. The effects of design imbalance are particularly

important for this study, where it is substantial.3 In this section, I present a

simulation study to examine the effect of design imbalance.

3See Tables (3.2), (3.3), and (3.4) for the design imbalance of the United States geography.
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To do so, I use a simplistic two-level model with a single explanatory variable

at level-1 and no explanatory variables at level-2, which is designed to mimic

simplified conditions of the models. Random intercepts are included for the level-

2 units, defined by the unique combination of album title and album format.

Unique hyperparameter fixed effects for each of the four different types of album

formats and for the single explanatory variable are included. I also include a

random slope for the single explanatory variable, a binary variable modeling the

increase in album revenue during holiday months. Ten percent of level-2 units are

simulated to have a valid significant holiday effect, while the other 90% have a

small random effect. The model is provided by Equations (4.1), (4.2), (4.3), and

(4.4) below.

βj ∼ N(µ,Σβ) (4.1)

yij ∼ N(Xj(βj + Zu ⊗ uj), σ2
y) (4.2)

µ =



µ01

µ02

µ03

µ04

µ05


∼ N


φ =



φ01

φ02

φ03

φ04

φ05


,



τ01 0 0 0 0

0 τ02 0 0 0

0 0 τ03 0 0

0 0 0 τ04 0

0 0 0 0 τ05




(4.3)

uj ∼ N(0,Σu) (4.4)

Here Xj is the matrix of explanatory variables for the j th group, βj is the

vector of level-2 parameters for each album format and increased album revenue

during holiday months. The hyperparameter vector µ describes overall monthly al-

bum revenue with the associated variances Σβ. The hyperparameter for increased
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holiday revenue during holiday months µ05 is a mixture distribution where 10% of

level-2 units have significant increases in revenue during holiday months and 90%

of level-2 units do not. In all cases, the hyperparameter for the mean is fixed:

φ = [4.4, 3.2, 1.5, 4, 0.5] where 10% of level-2 units have φ05 = 4.4. The diagonal

elements of Σβ are [1, 1, 1, 1, 0.5]. Zu is the design matrix for random effects and

the random effects uj are normally distributed about zero.

There are several conditions, listed below, that I am interested in. I use 1,000

datasets for each test condition.

1. I first create a balanced case where there are 100 groups for each album

format and each group has 30 observations. This case is used as a baseline.

2. I vary group size for a single album format, looking at cases where one

album-format has group sizes of 10, 15, and 20.

3. I vary group size for two album-formats, looking at group sizes of 10 and 20.

4. I investigate the case where group size varies within a single album-format.

Within this format, level-2 units have group sizes of 10, 15, 20, and 30.

5. I investigate the case where group number is imbalanced by album-format.

In this case, two album-formats have 100 level-2 groups, while the other two

have 10, 30, 50, and 70 in different cases.

6. I investigate the case where both group size and group number vary. Here,

two album-formats have group numbers of 30 and 50 and group sizes of 20

and 15. The other album-formats have group number of 100 and group size

of 30. This presents four cases.4

4The results with a group number of 50 are similar to those with a group number of 30. The
results with a group number of 50 are not shown for brevity.
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7. I investigate the case where I vary group size both within a single format and

between formats, and, simultaneously, vary group number between formats.

8. Lastly, I examine results where group number is small with varying group

size. I look at the case where group number is either 40 or 80, which is either

balanced between formats or imbalanced. In conjunction with the varying

group numbers, I use group sizes of 10, 20, and 30.

To indicate the accuracy of parameter estimates, the percentage bias is used.

For a given parameter θ, the percentage bias is defined θ̂−θ
θ
× 100%. Since I am

primarily interested in the level-2 parameter estimates for predictive purposes,

I calculate the 2.5th, 50th, and 97.5th percentiles of percentage bias at level-2

for each simulation and then average across all simulations in a given simulated

condition. Level-3 percentage bias is also calculated for each dataset and the 2.5th,

50th, and 97.5th percentiles of percentage bias in a given simulated condition is

reported. To give an estimate of estimation efficiency at level-2, I use Mean

Squared Error (MSE), where MSE(θ̂) is defined MSE(θ̂) = V ar(θ̂) + (θ̂− θ)2. As

with percentage bias, I report the average 2.5th, 50th, and 97.5th percentiles of

level-2 MSE in each simulated condition.

The results of these simulations are presented in Appendix A.2. Looking at

the results of the baseline case (Table A.3), it is clear that the largest range for

percentage bias comes from the Other format, which has a hyperparameter mean

φ03 that is the most different from the other hyperparameter means. While albums

with the Other format are the least common in the true data, this does suggest that

estimation accuracy suffers when estimating heterogeneous variance structures,

which are not currently estimated in lme4. The MSE for all the hyperparameter

means in the baseline case are near 1, although underestimated by 1%. This
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indicates that there is very litle bias and accurate estimation of the true variance

parameter at baseline. I also note that the MSE for the holiday fixed effect is

substantially higher than the true values, indicating that the mixture distribution

of parameters is poorly estimated. HLMs do not have estimation techniques for

parameters with a mixture distribution.

Looking at the results for cases where there is design imbalance between the

group sizes of the audio formats (cases 2 and 3 above) and where there is design

imbalance within a single audio format (case 4), there is little change in estimation

efficiency at a group size of 20, although a group size of either 10 or 15 does increase

the range of percentage bias in level-2 units. Specifically, while the 50th percentile

level-2 unit estimate is still unbiased, the range of percentage bias roughly doubles

as group size moves from 30 observations to 10 observations. The smaller group

size also appears to impact variance estimates, which are underestimated by 2%

(group size of 20) or 3% (group size of 10). This same pattern is observed regardless

of whether group size is imbalanced in a single audio-format or with two audio-

formats. Consistent with the literature, group size does not appear to have an

effect on the level-3 parameter estimates. The number of level-2 units is more

important than the total sample size or sample size per group for level-3 estimates.

Moving to the results of cases where there is design imbalance in group number

(case 5), a different pattern emerges. While the lower group number has little

affect on the level-2 percentage bias or MSE, it does substantially increase the

range of level-3 bias. Once again, the median estimate is relatively unbiased; but,

when group size is 10, instead of 100, the range of level-3 bias roughly triples.

The change in the range of level-3 bias narrows as group number increases. At 70

groups, the difference is minor.

Cases 6 and 7 look at design imbalances where both group size and group
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number are imbalanced. A similar pattern to the prior simulations emerges. As

group number decreases from 100, the range of percentage bias at level-3 increases,

although the median estimate is still unbiased. As group size decreases from 30,

the range of percentage bias at level-2 increases, although the median estimate is

still unbiased. In all cases, the variance estimates are slightly underestimated. A

similar pattern is clear in case 8, when there are few total groups across all formats.

The decrease in group number leads to an increasing range of potential bias at

level-2 and the decrease in group size leads to an increasing range of potential bias

at level-3.

The overall conclusion from these simulations is clear. A large sample size at

both level-2 and level-3 is preferred. As group number decreases from 100, the

range of percentage bias at level-3 increases. And, as group size decreases from 30,

the range of percentage bias at level-2 increases. In all cases, the variance estimates

are slightly underestimated, and the median bias in level-2 and level-3 parameter

means is negligible. These results increase my confidence in the robustness of the

predictive results for this study, where I have well over 100 groups in all but 2

models and where the majority of groups are of size 30.

4.3 Sensitivity to Outliers

In this section, I present a simulation study examining the robustness of pa-

rameter estimates to level-2 outliers. One possible problem with using the lme4

package in R is that it does not offer full flexibility for estimating complex covari-

ance structures of the level-2 (or higher) parameters. Despite the artist tiering

approach taken to reduce the possibility of heteroskedastic variance of level-2 units,

the possibility of outlying level-2 units still exists. These outlying units may in-
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troduce bias into the parameter estimates. As Maas and Hox (2004) note, when

assumptions of normality and large samples are not met, parameter estimates

have been shown to have a small downward bias, and level-2 variance components

estimates may be underestimated.

As above, I use a simplistic two-level model with a single explanatory variable

at level-1 and no explanatory variables at level-2, conforming to Equations (4.1),

(4.2), (4.3), and (4.4) reprinted here.

βj ∼ N(µ,Σβ)

yij ∼ N(Xj(βj + Zu ⊗ uj), σ2
y)

µ =



µ01

µ02

µ03

µ04

µ05


∼ N


φ =



φ01

φ02

φ03

φ04

φ05


,



τ01 0 0 0 0

0 τ02 0 0 0

0 0 τ03 0 0

0 0 0 τ04 0

0 0 0 0 τ05




uj ∼ N(0,Σu)

This formulation is similar to that above. In this formulation, however, each

of the first 4 elements of the hyperparameter φ is a mixture distribution where

some proportion of level-2 units comes from an outlying mean φk,b s.t. φk,b =

3φk,a, k = 1, 2, 3, 4. In all cases, the hyperparameter for the mean is again fixed:

φ.a = [4.4, 3.2, 1.5, 4, 0.5] where 10% of level-2 units have φ05 = 4.4, and outlying

level-2 units have means 3 times greater than φ.a. The diagonal elements of Σβ

are [1, 1, 1, 1, 0.5]. I use 1,000 datasets in each test condition and use percentage-

relative-bias and MSE to evaluate the simulations, as I did previously.
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I am once again interested in several test cases. Along with a baseline case, I

test cases where: (i) all album formats have the same percentage of level-2 units

as outliers (5%, 10%, 15%, and 20% outliers); (ii) where only a single format has

a percentage of level-2 units as outliers (5%, 10%, and 20%); and (iii) two cases

where all album formats have some various percentages of outliers. In one case,

these are 5%, 10%, 5%, and 15%; and, in another case 1%, 10%, 5%, and 1%.

The results of these simulations are presented in Appendix A.3.

Looking at the results, increasing the percentage of outliers from 0% up to

20% has very little effect on the level-2 percentage bias. This is encouraging as

it suggests that the predictive results will be robust to any outlying level-2 units.

Somewhat surprisingly, outliers seem to have a substantial effect on the efficiency

of the estimates for holiday effects. This may indicate that, in the presence of

outliers, the holiday effect is confounded with the effects of outliers. More trou-

bling, however, the MSE and level-3 percentage biases are greatly increased by

the presence of outliers. Some of this increase is to be expected. After all, if

φ0k, k = 1, 2, 3, 4 is truly a mixture distribution but is being estimated as a single

parameter, it should be expected that the hyperparameter estimate is upwardly

biased. The degree of upward bias can be roughly calculated. Excluding super-

scripts for convenience, it is expected that

φa <φ̂ < φb such that

φ̂ ≈ Aφa + 3Bφb

where A ∈ {.80, .85, .90, .95, .99}, B ∈ {.01, .05, .10, .15, .20} and A + B = 1.

This implies that for every 1% increase in the percentage of level-2 outliers, a 2%
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increase in level-3 percentage bias is roughly expected.5 Looking at Appendix A.3,

this matches the observed pattern of level-3 percentage bias at the 50th percentile

across all cases where outliers are present.

Taken together, these results suggest that the presence of outliers at level-2

should not have a substantial effect on the main predictive results, which are based

on the parameter estimates at level-2. But the presence of outliers will tend to

introduce substantial upward bias to the hyperparameter estimates. Since it is

these hyperparameters which are used to make predictions for out-of-sample level-

2 units–that is, unique combinations of album title and audio format which were

not included in the training dataset–there is some concern about the predictive

accuracy for these new units. In practice, it may be best to simply identify these

new units and monitor their predicted and actual future revenue more closely.

4.4 Predictive Results

Now satisfied that the data, and predictive results, are robust to missing data,

design imbalance, and outlying level-2 units, I proceed to evaluating the models’

predictive performance. To assess predictive performance, I use out-of-sample

monthly revenue observations from May 2014 to August 2014. The five metrics

described above for evaluating data missingness (see section (4.1)) are used here

to produce a consensus evaluation of prediction accuracy.6 I again use multiple

metrics since a consensus “best” predictive metric does not exist in the literature.

As can be seen, the models do a fairly good job of prediction with a RMSE

typically less than $125 per month, MnAE typically less than $160 per month,

5This relationship is dependent on the fact that φb = 3φa. If the relationship between φa
and φb were to change, this relationship would also change.

6Several of the models from smaller non-US geographies have very few out-of-sample observa-
tions for the test period. In these cases, I use a random sample of 20% of in-sample observations.
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and accurate classification rate of roughly 96%. Models that have noticably higher

predictive error are the physical revenue models for: tier-1 artists in Japan, CCR,

tier-1 artists in the UK, and tier-1 artists in the Licensed Territories (LT). In each

of these cases, the revenue is highly concentrated by album. That is, these models

exhibit both level-2 heterogeneity and level-2 outliers.
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N RMSE MnAE WMnAE MxAE Classification Rate Sampled
US physical tier1 2471 105.87 302.49 426.04 16765.89 96.24 FALSE
US physical tier2 2276 21.31 158.90 209.27 28060.11 97.34 FALSE
US physical tier3 5912 13.51 74.04 87.07 4148.52 95.98 FALSE
US digital tier1 2421 85.02 141.97 212.02 8188.17 96.65 FALSE
US digital tier2 2502 48.44 67.46 73.94 5889.59 89.13 FALSE
US digital tier3 6239 11.11 20.39 21.48 2246.73 95.70 FALSE
US streaming tier1 2421 170.54 216.98 399.19 10968.02 96.49 FALSE
US streaming tier2 2502 75.39 95.05 110.44 5916.90 86.13 FALSE
US streaming tier3 6239 27.02 32.54 37.46 2243.20 95.96 FALSE
CCR physical 192 381.49 877.65 1187.80 29601.59 94.27 FALSE
CCR digital 253 214.56 406.75 581.72 9118.12 89.72 FALSE
CCR streaming 169 115.67 329.02 658.22 10150.28 93.49 FALSE
CAN physical tier1 106 56.29 448.64 506.40 5648.13 90.57 FALSE
CAN physical tier2 612 7.96 42.23 52.55 1172.42 94.77 FALSE
CAN physical tier3 799 12.76 86.57 129.07 5200.92 99.75 FALSE
CAN digital tier1 365 116.61 128.86 171.25 9116.40 88.77 FALSE
CAN digital tier2 664 12.29 18.63 34.80 1076.81 95.03 FALSE
CAN digital tier3 1098 8.73 11.17 14.83 744.95 95.90 FALSE
CAN streaming tier1 329 15.83 19.96 26.68 325.96 92.40 FALSE
CAN streaming tier2 2710 1.01 1.31 2.18 124.35 96.90 FALSE
JAP physical tier1 398 1568.74 1633.62 1912.34 34978.79 80.49 TRUE
JAP physical tier2 508 16.59 119.01 128.58 469.93 92.59 TRUE
JAP physical tier3 642 211.78 443.98 445.51 10400.82 95.45 TRUE
JAP digital tier1 123 120.08 146.92 189.33 1884.44 97.56 TRUE
JAP digital tier2 319 24.14 33.63 52.64 1232.18 98.75 TRUE
JAP digital tier3 884 14.40 20.22 25.95 973.69 98.19 TRUE
JAP streaming tier1 88 6.56 8.38 11.24 100.68 98.86 TRUE
JAP streaming tier2 277 1.04 1.43 2.46 37.76 99.64 TRUE
JAP streaming tier3 681 1.29 1.71 2.26 45.23 98.97 TRUE
CMG physical tier1 194 143.44 393.20 459.98 5146.25 92.78 FALSE
CMG physical tier2 314 52.14 144.06 158.93 3082.61 96.18 FALSE
CMG physical tier3 362 62.60 149.99 172.27 2807.12 93.65 FALSE
FRA physical1 243 265.02 279.90 284.45 6147.20 93.85 TRUE
FRA physical2 360 24.24 67.34 73.05 598.02 97.01 TRUE
FRA digital 287 21.92 31.00 55.89 1012.73 100.00 TRUE
GER physical1 530 28.48 89.76 116.84 1607.23 96.60 TRUE
GER physical2 515 16.02 53.30 66.29 736.52 97.48 TRUE
GER digital 678 9.36 15.19 23.16 280.66 98.97 TRUE
GER streaming 749 0.47 0.75 0.94 9.38 100.00 TRUE
LT physical1 51 369.04 1031.12 1052.35 5923.75 90.20 TRUE
LT physical2 643 18.36 86.26 99.28 1401.57 90.51 TRUE
LT digital 997 29.35 37.12 58.25 927.17 98.50 TRUE
LT streaming 812 24.07 31.88 47.02 665.51 99.14 TRUE
iEUR digital 1132 0.19 10.83 14.78 151.74 99.20 FALSE
iEUR streaming 1632 0.18 0.21 0.29 15.12 99.02 FALSE
UK physical1 396 639.26 725.39 770.65 3210.37 57.14 TRUE
UK physical2 350 78.19 160.22 167.93 774.97 94.44 TRUE
UK digital 1882 10.95 22.85 37.72 2057.66 99.57 TRUE
UK streaming 426 5.47 5.53 18.54 159.26 89.20 FALSE

Table 4.4: Summary of predictive results for all models. The first column, “N”,
indicates the number of observations used in the evaluation. The final column,
“Sampled”, indicates whether the 20% random sample of in-sample observations
were used.
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CHAPTER 5

Concluding Remarks

In this thesis I note two key challenges facing the music industry as its revenue

model continues to transition from that of purely physical sales to an environment

with multiple revenue channels dominated by digital mediums. These challenges

require successful music industry participants to gain a deeper understanding of

their data, particularly the data about their customers and revenue. I presented

what I believe are the first models predicting monthly revenue at the album level

across both geographies and revenue streams within the music industry. Finally,

I discussed the impact of several interesting aspects of the data and how they im-

pact the robustness of predictive results, specifically focusing on data missingness,

design imbalance, and extreme concentrations of revenue by albums.

This works suggests several areas of additional research. Firstly, these models

could be improved by collecting, and including, currently missing information on

level-2 and level-3 attributes of the data such as the amount spent on marketing

per album and geography, significant events by each album’s artists, consumer

music preferences by geography, and consumer income and spending patterns by

geography. These variables would allow modeling of some of the major sources

of uncertainty surrounding the models presented in this thesis. They would also

allow analysts to gain a deeper understanding of the mechanics underlying music

industry revenue, particularly how it varies across geographies for a particular
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album or artist.

Secondly, the modeling framework presented in this thesis focuses on a hierar-

chical linear modeling (HLM) approach. Alternative approaches, such as Dirich-

let Process Mixture Models, could be evaluated and their predictive performance

compared to the HLM results. Different modeling approaches have different un-

derlying assumptions. It may be the case that a different set of assumptions, such

as the non-parametric assumptions underlying Dirichlet Process Mixture Models,

would produce a better fitting set of models.

A third avenue of further research is methodological and specific to the lme4

software package in R used in this thesis. Specfically, future versions of the lme4

package should focus on providing flexible estimation techniques for complex co-

variance structures including level-2 heterogeneity Ωej = σ2
jRj and Ωuj = σ2

jDj

and correlation of residual terms. For instance, the nlme package includes estima-

tion for AR1, ARMA, CAR1, and several spatial correlation structures of HLMs.

Work that advances the lme4 package and provides estimation for the covariance

structures available in nlme would prove fruitful to future analysts.
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APPENDIX A

Appendix

A.1 Appendix A: Data Summary

Year Total Physical Digital Streaming Other
1990 $13,659 100% 0% 0% 0%
2000 $19,692 100% 0% 0% 0%
2005 $14,897 91.1% 4.1% 1.4% 3.4%
2008 $9,651 65.7% 19.5% 3.7% 11.1%
2010 $7,615 52.2% 32.1% 6.6% 9.1%
2014 $6,972 32.6% 37% 26.8% 3.7%

Table A.1: Summary of music industry revenue in the United States at retail
value for selected years and by revenue stream. Revenue is reported in millions of
dollars and is inflation adjusted to chained 2013 dollars. Source: RIAA.
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Figure A.1: Total Log10 revenue across all geographies by revenue stream and
artist by artist rank. Panels, clockwise from top left: (1) Digital Revenue, (2)
Physical Revenue, (3) Total Revenue, (4) Streaming Revenue.
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Figure A.2: Total Log10 revenue across all geographies by revenue stream and
album by album rank. Panels, clockwise from top left: (1) Digital Revenue, (2)
Physical Revenue, (3) Total Revenue, (4) Streaming Revenue.
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Figure A.3: Total Log10 revenue in USA geography by revenue stream and artist
by artist rank. Panels, clockwise from top left: (1) Digital Revenue, (2) Physical
Revenue, (3) Total Revenue, (4) Streaming Revenue.
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Figure A.4: Total Log10 revenue in USA geography by revenue stream and album
by album rank. Panels, clockwise from top left: (1) Digital Revenue, (2) Physical
Revenue, (3) Total Revenue, (4) Streaming Revenue.
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A.2 Appendix B: Simulation Results - Design Imbalance

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.2% 0.1% 6.3% 0.98 0.99 1.08
Level-2 (E Audio) -8.7% 0.0% 8.7% 0.98 0.99 1.09
Level-2 (Other) -18.6% 0.2% 18.1% 0.98 0.99 1.08
Level-2 (SACD) -6.8% 0.1% 7.0% 0.98 0.99 1.08
Holiday Fixed Effect 2.23 2.28 2.93
Level-3 (CD) -4.3% 0.1% 4.6%
Level-3 (E Audio) -6.5% 0.0% 6.7%
Level-3 (Other) -12.4% 0.3% 12.6%
Level-3 (SACD) -4.8% 0.1% 4.9%

Table A.3: Bias and efficiency statistics from the baseline case.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -7.5% 0.1% 7.6% 0.97 0.99 1.12
Level-2 (E Audio) -8.6% 0.0% 8.7% 0.98 1.00 1.09
Level-2 (Other) -18.6% -0.2% 18.1% 0.98 0.99 1.08
Level-2 (SACD) -6.9% 0.0% 7.0% 0.98 0.99 1.08
Holiday Fixed Effect 2.23 2.29 2.94
Level-3 (CD) -4.5% 0.2% 5.0%
Level-3 (E Audio) -6.1% 0.0% 6.4%
Level-3 (Other) -13.9% 0.3% 12.8%
Level-3 (SACD) -4.9% 0.2% 4.7%

Table A.4: Bias and efficiency statistics from the case where the CD album format
has 20 observations per level-2 group. All other album formats have 30 observa-
tions per level-2 group.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -8.8% 0.1% 9.1% 0.96 0.98 1.17
Level-2 (E Audio) -8.7% 0.0% 8.6% 0.98 0.99 1.09
Level-2 (Other) -18.5% -0.2% 18.2% 0.98 0.99 1.08
Level-2 (SACD) -6.9% 0.0% 7.0% 0.98 0.99 1.08
Holiday Fixed Effect 2.22 2.28 2.95
Level-3 (CD) -4.9% 0.1% 4.6%
Level-3 (E Audio) -5.9% 0.1% 5.8%
Level-3 (Other) -13.5% -0.2% 12.0%
Level-3 (SACD) -4.9% 0.1% 5.0%

Table A.5: Bias and efficiency statistics from the case where the CD album format
has 15 observations per level-2 group. All other album formats have 30 observa-
tions per level-2 group.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -10.0% 0.1% 10.3% 0.95 0.97 1.22
Level-2 (E Audio) -8.6% 0.0% 8.6% 0.98 0.99 1.09
Level-2 (Other) -18.5% -0.2% 18.1% 0.98 0.99 1.08
Level-2 (SACD) -6.9% 0.0% 7.0% 0.98 0.99 1.08
Holiday Fixed Effect 2.22 2.28 2.95
Level-3 (CD) -4.4% 0.2% 4.7%
Level-3 (E Audio) -6.0% 0.1% 6.1%
Level-3 (Other) -12.8% -0.2% 14.5%
Level-3 (SACD) -4.7% 0.1% 4.7%

Table A.6: Bias and efficiency statistics from the case where the CD album format
has 10 observations per level-2 group. All other album formats have 30 observa-
tions per level-2 group.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -7.6% 0.1% 7.7% 0.97 0.98 1.12
Level-2 (E Audio) -10.4% 0.0% 10.3% 0.97 0.98 1.12
Level-2 (Other) -18.5% -0.2% 18.1% 0.98 0.99 1.08
Level-2 (SACD) -6.9% 0.0% 7.0% 0.98 0.99 1.08
Holiday Fixed Effect 2.21 2.28 3.01
Level-3 (CD) -4.4% 0.1% 4.8%
Level-3 (E Audio) -5.9% 0.2% 6.3%
Level-3 (Other) -12.8% -0.2% 14.7%
Level-3 (SACD) -4.7% 0.1% 4.6%

Table A.7: Bias and efficiency statistics from the case where the CD and E Audio
album formats have 20 observations per level-2 group. All other album formats
have 30 observations per level-2 group.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -10.0% 0.1% 10.4% 0.94 0.97 1.21
Level-2 (E Audio) -13.9% 0.0% 13.9% 0.94 0.97 1.21
Level-2 (Other) -18.5% -0.2% 18.1% 0.98 0.99 1.08
Level-2 (SACD) -6.9% 0.0% 7.0% 0.98 0.99 1.08
Holiday Fixed Effect 2.21 2.30 3.07
Level-3 (CD) -4.4% 0.3% 4.7%
Level-3 (E Audio) -6.2% 0.2% 6.0%
Level-3 (Other) -13.7% -0.4% 13.1%
Level-3 (SACD) -5.0% 0.0% 4.5%

Table A.8: Bias and efficiency statistics from the case where the CD and E Audio
album formats have 10 observations per level-2 group. All other album formats
have 30 observations per level-2 group.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -8.6% 0.0% 8.6% 0.97 0.98 1.16
Level-2 (E Audio) -13.9% -0.2% 13.9% 0.94 0.97 1.21
Level-2 (Other) -18.6% -0.2% 18.2% 0.97 0.98 1.08
Level-2 (SACD) -6.9% 0.0% 6.9% 0.98 0.99 1.08
Holiday Fixed Effect
Level-3 (CD) -4.4% -0.1% 4.5%
Level-3 (E Audio) -6.5% 0.0% 6.0%
Level-3 (Other) -13.8% 0.0% 12.7%
Level-3 (SACD) -4.9% 0.0% 4.8%

Table A.9: Bias and efficiency statistics where group size is imbalanced between
within a single format. In this case, the CD format has 25 level-2 groups with 10,
15, 20, and 30 observations each. All other formats have 30 observations in all
level-2 groups.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.2% 0.0% 6.3% 0.98 0.99 1.08
Level-2 (E Audio) -8.6% 0.0% 8.6% 0.98 0.99 1.08
Level-2 (Other) -14.8% -0.2% 14.4% 0.99 1.00 1.06
Level-2 (SACD) -5.2% 0.0% 5.3% 0.98 0.99 1.06
Holiday Fixed Effect 1.55 1.60 2.15
Level-3 (CD) -4.5% 0.3% 4.8%
Level-3 (E Audio) -5.7% 0.0% 5.8%
Level-3 (Other) -41.2% -1.0% 39.7%
Level-3 (SACD) -15.3% -0.6% 15.4%

Table A.10: Bias and efficiency statistics where group number is imbalanced be-
tween album formats. In this case, CD and E Audio have 100 groups while Other
and Super Audio have 10 groups. All formats have 30 observations in all level-2
groups.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.2% 0.0% 6.4% 0.98 0.98 1.07
Level-2 (E Audio) -8.6% 0.0% 8.6% 0.98 0.99 1.08
Level-2 (Other) -17.3% -0.2% 16.9% 0.96 0.97 1.06
Level-2 (SACD) -6.4% 0.0% 6.4% 0.98 0.99 1.07
Holiday Fixed Effect 1.82 1.87 2.42
Level-3 (CD) -4.4% 0.0% 4.5%
Level-3 (E Audio) -6.2% 0.0% 6.0%
Level-3 (Other) -24.1% -0.5% 24.3%
Level-3 (SACD) -9.1% 0.1% 9.2%

Table A.11: Bias and efficiency statistics where group number is imbalanced be-
tween album formats. In this case, CD and E Audio have 100 groups while Other
and Super Audio have 30 groups. All formats have 30 observations in all level-2
groups.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.3% 0.0% 6.4% 0.98 0.99 1.08
Level-2 (E Audio) -8.6% 0.0% 8.7% 0.98 0.98 1.08
Level-2 (Other) -17.9% -0.2% 17.4% 0.98 0.99 1.07
Level-2 (SACD) -6.6% 0.0% 6.6% 0.98 0.99 1.07
Holiday Fixed Effect 1.99 2.04 2.60
Level-3 (CD) -4.4% 0.1% 4.5%
Level-3 (E Audio) -6.3% -0.1% 6.2%
Level-3 (Other) -19.7% 0.1% 19.6%
Level-3 (SACD) -6.9% 0.1% 7.0%

Table A.12: Bias and efficiency statistics where group number is imbalanced be-
tween album formats. In this case, CD and E Audio have 100 groups while Other
and Super Audio have 50 groups. All formats have 30 observations in all level-2
groups.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.2% 0.0% 6.3% 0.98 0.99 1.08
Level-2 (E Audio) -8.6% 0.1% 8.6% 0.98 0.99 1.09
Level-2 (Other) -18.4% -0.2% 18.4% 0.99 1.00 1.08
Level-2 (SACD) -6.8% 0.0% 6.9% 0.98 0.99 1.08
Holiday Fixed Effect 2.12 2.17 2.72
Level-3 (CD) -4.3% 0.2% 4.9%
Level-3 (E Audio) -6.1% -0.1% 6.0%
Level-3 (Other) -16.1% -0.1% 15.3%
Level-3 (SACD) -5.7% 0.2% 6.1%

Table A.13: Bias and efficiency statistics where group number is imbalanced be-
tween album formats. In this case, CD and E Audio have 100 groups while Other
and Super Audio have 70 groups. All formats have 30 observations in all level-2
groups.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.3% 0.0% 6.4% 0.97 0.98 1.07
Level-2 (E Audio) -8.6% 0.0% 8.6% 0.97 0.98 1.07
Level-2 (Other) -21.0% -0.3% 20.2% 0.95 0.96 1.08
Level-2 (SACD) -7.7% 0.0% 7.8% 0.96 0.98 1.10
Holiday Fixed Effect 1.81 1.86 2.49
Level-3 (CD) -4.3% 0.2% 4.9%
Level-3 (E Audio) -6.1% -0.1% 6.0%
Level-3 (Other) -16.1% -0.1% 15.3%
Level-3 (SACD) -5.7% 0.2% 6.1%

Table A.14: Bias and efficiency statistics where group number and group size
are imbalanced between album formats. In this case, CD and E Audio have 100
groups of size 30 while Other and Super Audio have 30 groups of size 20.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.3% 0.0% 6.4% 0.98 0.99 1.08
Level-2 (E Audio) -8.6% 0.0% 8.6% 0.99 1.00 1.09
Level-2 (Other) -24.3% -0.3% 23.8% 0.97 1.09 1.15
Level-2 (SACD) -9.0% 0.0% 9.2% 0.95 0.97 1.14
Holiday Fixed Effect 1.81 1.87 2.51
Level-3 (CD) -4.3% 0.0% 4.2%
Level-3 (E Audio) -6.0% 0.1% 6.4%
Level-3 (Other) -24.6% 0.1% 24.9%
Level-3 (SACD) -9.7% 0.0% 9.9%

Table A.15: Bias and efficiency statistics where group number and group size
are imbalanced between album formats. In this case, CD and E Audio have 100
groups of size 30 while Other and Super Audio have 30 groups of size 15.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -8.4% 0.0% 8.6% 0.96 0.97 1.15
Level-2 (E Audio) -8.7% 0.0% 8.7% 0.97 0.98 1.07
Level-2 (Other) -21.4% -0.2% 20.7% 0.96 0.97 1.11
Level-2 (SACD) -6.4% 0.0% 6.4% 0.98 0.99 1.8
Holiday Fixed Effect
Level-3 (CD) -4.6% 0.1% 4.5%
Level-3 (E Audio) -6.1% 0.0% 6.1%
Level-3 (Other) -23.1% 0.0% 24.4%
Level-3 (SACD) -8.7% 0.3% 9.3%

Table A.16: Bias and efficiency statistics where group number and group size
are imbalanced between album formats. In this case, CD and E Audio have 100
groups Other and Super Audio have 30 groups. CD has 25 groups of size 10, 15,
20, 30 each; E Audio has 100 groups of size 30; Other has 15 groups of 15 and 30
each; and SACD has 30 groups of size 30.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -8.5% 0.1% 8.6% 0.97 0.98 1.16
Level-2 (E Audio) -8.6% 0.0% 8.6% 0.98 0.99 1.08
Level-2 (Other) -22.4% -0.3% 21.4% 0.96 0.98 1.11
Level-2 (SACD) -6.6% 0.0% 6.8% 0.98 0.99 1.08
Holiday Fixed Effect
Level-3 (CD) -4.3% 0.0% 4.2%
Level-3 (E Audio) -6.0% 0.1% 6.4%
Level-3 (Other) -24.6% 0.1% 24.9%
Level-3 (SACD) -9.7% 0.0% 9.9%

Table A.17: Bias and efficiency statistics where group number and group size
are imbalanced between album formats. In this case, CD and E Audio have 100
groups Other and Super Audio have 50 groups. CD has 25 groups of size 10, 15,
20, 30 each; E Audio has 100 groups of size 30; Other has 25 groups of 15 and 30
each; and SACD has 50 groups of size 30.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -8.4% 0.1% 8.6% 0.97 0.99 1.16
Level-2 (E Audio) -11.6% 0.0% 11.6% 0.97 0.98 1.16
Level-2 (Other) -22.6% -0.3% 21.6% 0.97 0.98 1.13
Level-2 (SACD) -6.7% 0.1% 6.7% 0.98 0.99 1.08
Holiday Fixed Effect
Level-3 (CD) -4.5% 0.0% 4.7%
Level-3 (E Audio) -6.0% 0.1% 6.5%
Level-3 (Other) -18.4% -0.4% 19.8%
Level-3 (SACD) -7.1% 0.2% 7.0%

Table A.18: Bias and efficiency statistics where group number and group size
are imbalanced between album formats. In this case, CD and E Audio have 100
groups Other and Super Audio have 50 groups. CD and E Audio have 25 groups
of size 10, 15, 20, 30 each; Other has 25 groups of 15 and 30 each; and SACD has
50 groups of size 30.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -4.7% 0.0% 4.8% 0.99 1.00 1.06
Level-2 (E Audio) -6.5% 0.0% 6.5% 0.99 1.00 1.06
Level-2 (Other) -14.6% -0.1% 14.4% 0.95 0.97 1.03
Level-2 (SACD) -5.2% 0.0% 5.3% 0.98 1.00 1.06
Holiday Fixed Effect 2.24 2.29 2.77
Level-3 (CD) -14.2% 0.1% 14.7%
Level-3 (E Audio) -21.2% 0.2% 20.0%
Level-3 (Other) -41.2% 0.7% 43.2%
Level-3 (SACD) -14.9% 0.0% 16.6%

Table A.19: Bias and efficiency statistics with small group number and balanced
group size. In this case, all album formats have 10 groups with group size of 30.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.7% 0.0% 5.8% 0.96 0.98 1.07
Level-2 (E Audio) -7.9% 0.1% 8.2% 0.97 0.99 1.08
Level-2 (Other) -17.8% -0.3% 17.1% 0.96 0.97 1.06
Level-2 (SACD) -6.3% 0.1% 6.4% 0.98 1.00 1.09
Holiday Fixed Effect 2.24 2.32 3.08
Level-3 (CD) -13.5% 0.2% 14.0%
Level-3 (E Audio) -20.8% -0.3% 19.7%
Level-3 (Other) -41.2% -0.3% 39.4%
Level-3 (SACD) -15.6% -0.5% 14.9%

Table A.20: Bias and efficiency statistics with small group number and balanced
group size. In this case, all album formats have 10 groups with group size of 20.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -7.6% 0.1% 8.0% 0.95 0.98 1.15
Level-2 (E Audio) -10.6% 0.1% 10.9% 0.95 0.98 1.15
Level-2 (Other) -24.1% -0.4% 22.8% 0.97 1.00 1.17
Level-2 (SACD) -8.6% 0.0% 8.7% 0.93 0.96 1.13
Holiday Fixed Effect 2.24 2.41 4.25
Level-3 (CD) -14.8% 0.3% 15.5%
Level-3 (E Audio) -22.0% 0.5% 20.2%
Level-3 (Other) -43.7% -0.7% 41.8%
Level-3 (SACD) -15.8% 0.1% 15.6%

Table A.21: Bias and efficiency statistics with small group number and balanced
group size. In this case, all album formats have 10 groups with group size of 10.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.4% 0.1% 5.6% 0.98 0.99 1.07
Level-2 (E Audio) -7.6% 0.0% 7.6% 0.97 0.98 1.06
Level-2 (Other) -16.8% -0.3% 16.1% 0.98 0.99 1.07
Level-2 (SACD) -6.0% 0.1% 6.2% 0.98 0.99 1.07
Holiday Fixed Effect 2.24 2.29 2.81
Level-3 (CD) -9.2% 0.1% 10.1%
Level-3 (E Audio) -13.8% -0.2% 14.8%
Level-3 (Other) -31.6% 0.2% 28.4%
Level-3 (SACD) -11.3% -0.1% 11.5%

Table A.22: Bias and efficiency statistics with small group number and balanced
group size. In this case, all album formats have 20 groups with group size of 30.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.6% 0.0% 6.8% 0.96 0.97 1.09
Level-2 (E Audio) -9.1% 0.0% 9.2% 0.97 0.98 1.10
Level-2 (Other) -20.0% -0.4% 19.5% 0.96 0.98 1.09
Level-2 (SACD) -7.3% 0.1% 7.4% 0.96 0.98 1.09
Holiday Fixed Effect 2.23 2.31 3.12
Level-3 (CD) -10.8% 0.0% 9.8%
Level-3 (E Audio) -13.6% 0.1% 14.1%
Level-3 (Other) -29.5% -0.1% 32.4%
Level-3 (SACD) -11.3% -0.1% 10.5%

Table A.23: Bias and efficiency statistics with small group number and balanced
group size. In this case, all album formats have 20 groups with group size of 20.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -8.8% 0.0% 9.1% 0.95 0.97 1.18
Level-2 (E Audio) -12.4% 0.0% 12.4% 0.95 0.97 1.18
Level-2 (Other) -27.3% -0.4% 26.1% 0.94 0.97 1.17
Level-2 (SACD) -9.8% 0.0% 10.0% 0.94 0.97 1.18
Holiday Fixed Effect 2.21 2.37 4.34
Level-3 (CD) -10.6% 0.2% 10.3%
Level-3 (E Audio) -13.8% 0.2% 14.2%
Level-3 (Other) -31.4% 0.8% 32.0%
Level-3 (SACD) -11.1% 0.2% 11.4%

Table A.24: Bias and efficiency statistics with small group number and balanced
group size. In this case, all album formats have 20 groups with group size of 10.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -4.7% 0.1% 4.8% 0.97 0.98 1.04
Level-2 (E Audio) -6.6% 0.0% 6.6% 0.98 0.99 1.06
Level-2 (Other) -17.1% -0.2% 16.8% 0.98 0.99 1.08
Level-2 (SACD) -6.4% 0.1% 6.5% 0.98 0.99 1.07
Holiday Fixed Effect 2.46 2.52 3.03
Level-3 (CD) -14.7% 0.2% 13.3%
Level-3 (E Audio) -20.3% 0.4% 19.2%
Level-3 (Other) -23.3% 0.2% 24.4%
Level-3 (SACD) -8.5% 0.3% 8.9%

Table A.25: Bias and efficiency statistics with small group number (80), which
are imbalanced between format and balanced group size. In this case, CD and E
Audio have 10 groups with group size of 30. Other and SACD have 30 groups
with group size of 30.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.6% 0.0% 5.7% 0.98 0.99 1.08
Level-2 (E Audio) -7.9% 0.0% 8.1% 0.95 0.97 1.06
Level-2 (Other) -20.3% -0.5% 19.6% 0.96 0.98 1.09
Level-2 (SACD) -7.2% 0.1% 7.5% 0.95 0.97 1.08
Holiday Fixed Effect 2.40 2.48 3.27
Level-3 (CD) -14.3% 0.2% 14.0%
Level-3 (E Audio) -18.9% 0.3% 20.4%
Level-3 (Other) -30.6% -0.4% 30.5%
Level-3 (SACD) -11.2% -0.1% 10.1%

Table A.26: Bias and efficiency statistics with small group number (60) and group
number (20). Groups size is imbalanced between format and group sizes are
balanced. In this case, CD and E Audio have 10 groups with group size of 20.
Other and SACD have 20 groups with group size of 20.
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A.3 Appendix C: Simulation Results - Outliers

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.7% 0.0% 5.9% 4.54 4.55 4.64
Level-2 (E Audio) -7.9% 0.0% 7.9% 2.91 2.93 3.02
Level-2 (Other) -17.1% 0.2% 16.7% 1.43 1.44 1.53
Level-2 (SACD) -6.4% 0.0% 6.4% 3.94 3.95 4.05
Holiday Fixed Effect 4.70 4.75 5.30
Level-3 (CD) -4.3% 0.1% 4.6%
Level-3 (E Audio) 1.0% 9.6% 20.6%
Level-3 (Other) 0.4% 9.7% 20.4%
Level-3 (SACD) 0.2% 9.4% 20.2%

Table A.27: Bias and efficiency statistics from the case where all album formats
have 5% level-2 units as outliers.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.3% 0.0% 5.4% 7.86 7.87 7.96
Level-2 (E Audio) -7.3% 0.0% 7.3% 4.65 4.66 4.75
Level-2 (Other) -15.7% 0.1% 15.3% 1.81 1.82 1.92
Level-2 (SACD) -5.8% 0.0% 5.9% 6.65 6.67 6.76
Holiday Fixed Effect 7.03 7.08 7.63
Level-3 (CD) 7.4% 19.8% 32.3%
Level-3 (E Audio) 7.6% 19.9% 34.5%
Level-3 (Other) 2.4% 19.7% 38.1%
Level-3 (SACD) 7.0% 19.4% 33.2%

Table A.28: Bias and efficiency statistics from the case where all album formats
have 10% level-2 units as outliers.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -4.8% 0.0% 5.0% 10.81 10.82 10.91
Level-2 (E Audio) -6.7% 0.0% 6.7% 6.18 6.19 6.29
Level-2 (Other) -14.6% 0.1% 14.2% 2.15 2.16 2.25
Level-2 (SACD) -5.4% 0.0% 5.5% 9.10 9.11 9.21
Holiday Fixed Effect 9.16 9.21 9.76
Level-3 (CD) 15.7% 29.8% 44.8%
Level-3 (E Audio) 15.5% 29.9% 45.2%
Level-3 (Other) 9.7% 29.2% 49.2%
Level-3 (SACD) 14.1% 29.9% 44.7%

Table A.29: Bias and efficiency statistics from the case where all album formats
have 15% level-2 units as outliers.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -4.5% 0.0% 4.6% 13.30 13.31 13.41
Level-2 (E Audio) -6.2% 0.0% 6.3% 7.52 7.53 7.62
Level-2 (Other) -13.5% 0.1% 13.2% 2.45 2.46 2.55
Level-2 (SACD) -5.0% 0.1% 5.1% 11.23 11.24 11.33
Holiday Fixed Effect 11.06 11.11 11.66
Level-3 (CD) 24.6% 39.7% 57.3%
Level-3 (E Audio) 23.3% 40.0% 57.4%
Level-3 (Other) 18.2% 39.5% 61.2%
Level-3 (SACD) 24.1% 39.8% 56.0%

Table A.30: Bias and efficiency statistics from the case where all album formats
have 20% level-2 units as outliers.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.8% 0.0% 5.8% 4.57 4.58 4.68
Level-2 (E Audio) -8.6% 0.0% 8.7% 0.99 1.00 1.10
Level-2 (Other) -18.5% 0.2% 18.2% 1.00 1.01 1.10
Level-2 (SACD) -6.9% 0.0% 7.0% 0.99 1.00 1.10
Holiday Fixed Effect 3.42 3.47 4.01
Level-3 (CD) 1.3% 9.7% 20.6%
Level-3 (E Audio) -6.3% 0.1% 6.3%
Level-3 (Other) -14.4% 0.0% 14.4%
Level-3 (SACD) -4.6% 0.0% 4.7%

Table A.31: Bias and efficiency statistics from the case where the CD album
formats has 5% level-2 units as outliers. All other album formats have no outlying
level-2 units.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.3% 0.0% 5.3% 7.89 7.90 7.99
Level-2 (E Audio) -8.7% 0.0% 8.7% 1.00 1.01 1.11
Level-2 (Other) -18.6% -0.2% 18.2% 1.01 1.02 1.11
Level-2 (SACD) -6.9% 0.0% 7.0% 1.00 1.01 1.10
Holiday Fixed Effect 4.61 4.67 5.21
Level-3 (CD) 8.5% 19.7% 33.9%
Level-3 (E Audio) -6.3% 0.1% 6.4%
Level-3 (Other) -14.3% 0.0% 13.7%
Level-3 (SACD) -4.6% 0.0% 4.8%

Table A.32: Bias and efficiency statistics from the case where the CD album
formats has 10% level-2 units as outliers. All other album formats have no outlying
level-2 units.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -4.5% 0.0% 4.6% 13.18 13.20 13.29
Level-2 (E Audio) -8.7% 0.0% 8.7% 1.01 1.02 1.11
Level-2 (Other) -18.6% -0.1% 18.2% 1.01 1.02 1.11
Level-2 (SACD) -6.9% 0.0% 7.0% 1.01 1.02 1.11
Holiday Fixed Effect 6.85 6.91 7.45
Level-3 (CD) 23.8% 39.0% 56.7%
Level-3 (E Audio) -6.3% 0.0% 6.4%
Level-3 (Other) -14.2% 0.0% 13.7%
Level-3 (SACD) -4.6% 0.0% 4.8%

Table A.33: Bias and efficiency statistics from the case where the CD album
formats has 20% level-2 units as outliers. All other album formats have no outlying
level-2 units.

Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -5.7% 0.0% 5.9% 4.56 4.57 4.67
Level-2 (E Audio) -7.3% 0.0% 7.3% 4.65 4.66 4.76
Level-2 (Other) -17.1% -0.1% 16.7% 1.43 1.44 1.54
Level-2 (SACD) -5.4% 0.0% 5.4% 9.08 9.09 9.18
Holiday Fixed Effect 6.84 6.90 7.45
Level-3 (CD) 1.0% 9.6% 20.6%
Level-3 (E Audio) 7.4% 19.9% 34.5%
Level-3 (Other) -5.7% 9.6% 26.6%
Level-3 (SACD) 14.1% 29.9% 44.6%

Table A.34: Bias and efficiency statistics from the case where album formats have
5%, 10%, 5%, and 15% level-2 units as outliers respectively.
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Parameter Percentage Bias MSE
(Q 2.5%) (Q 50%) (Q 97.5%) (Q 2.5%) (Q 50%) (Q 97.5%)

Level-2 (CD) -6.1% 0.0% 6.3% 1.73 1.74 1.84
Level-2 (E Audio) -7.3% 0.0% 7.3% 4.61 4.62 4.71
Level-2 (Other) -17.1% -0.2% 16.7% 1.42 1.43 1.53
Level-2 (SACD) -6.8% 0.0% 6.9% 1.62 1.63 1.73
Holiday Fixed Effect 3.56 3.62 4.16
Level-3 (CD) -3.3% 1.8% 8.6%
Level-3 (E Audio) 7.5% 19.9% 34.5%
Level-3 (Other) -5.7% 9.7% 26.6%
Level-3 (SACD) -3.6% 1.9% 8.6%

Table A.35: Bias and efficiency statistics from the case where album formats have
1%, 10%, 5%, and 1% level-2 units as outliers respectively.
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