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Abstract

Background: Obstructive Sleep Apnea (OSA) is a highly prevalent condition that is associated 

with several comorbidities including cardiovascular disease (CVD). Recent studies have revealed 

mixed results as to whether standard OSA therapy reverses CVD in adult patients. Thus, many 

advocate for earlier recognition of OSA induced CVD, as early as childhood, to prompt treatment 

antecedent to the onset of irreversible CVD. Here we investigated if the serum level of miR-92a, a 

known biomarker for CVD, can be used to identify patients with OSA in both children and adults.

Methods: Consecutive snoring patients undergoing polysomnography were recruited for 

determination of circulating miR-92a, in addition to inflammatory and metabolic profiles. We 

assessed whether circulating miR-92a was associated with OSA severity.

Results: Using two separate cohorts of adults (n=57) and children (n=13), we report a significant 

increase in the serum level of miR-92a in patients with severe OSA (p=0.021) and further 

demonstrate a significant correlation (Spearman rank correlation 0.308, p=0.010) with serum 

miR-92a levels and the apnea hypopnea index (AHI), a primary measure of OSA severity. 

Stepwise regression analysis revealed that serum miR-92a levels were independently associated 

with AHI (ß=0.332, p=0.003), age (ß=0.394, p=0.002) and LDL cholesterol levels (ß=0.368, 

p=0.004).
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Conclusion: Our study is the first to establish that miR-92a is a useful biomarker for OSA 

severity in both children and adults. Given the canonical role of miR-92a on endothelial 

dysfunction, miR-92a may be useful to identify early onset CVD in OSA patients or stratify 

patient CVD risk to identify those that may benefit from earlier OSA treatment.
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Introduction

Obstructive Sleep Apnea (OSA) is highly prevalent in both children and adults and defined 

by recurrent episodes of soft tissue impingement into the oral pharynx leading to an 

intermittent cessation of normal ventilation during sleep. As a consequence, patients with 

OSA experience episodic oxyhemoglobin desaturation, hypercapnia, frequent arousals 

during sleep, and subsequent sleep fragmentation. Epidemiological studies suggest that at 

least 10% of adults and 2–3% of the children have OSA with clinical consequences [1–3]. 

However, despite a lower reported prevalence rate of OSA in children compared to adults, it 

does remain one of the more common childhood diseases [4–7]. Moreover, given the near 

doubling of childhood obesity in the US [8], the observed prevalence of OSA has increased 

even further with reports of OSA prevalence in up to 6% of children [9–13].

While some have suggested that adult and pediatric OSA are different diseases, the impact 

of obesity on the phenotype of pediatric OSA has made these two conditions more similar 

than different [14]. Further, the findings from recent multicenter studies have failed to show 

an improvement in adult OSA outcomes following CPAP therapy [15] which have led many 

investigators to suggest that diagnosis and therapy should be initiated far earlier in the 

disease course i.e. before its irreversible consequences have occurred. Thus, we and others 

have proposed that the study of pediatric and adult OSA be harmonized to identify unifying 

biomarkers applicable to both patient populations.

Of note, OSA is associated with cardiovascular disease (CVD) in both children and adults. 

Longitudinal studies of adult patients with severe OSA have shown a three-fold increase in 

the risk of all-cause mortality, and a higher cardiovascular mortality at 18-year follow-up, 

respectively [16,17]. OSA is strongly associated with hypertension [18], myocardial 

ischemia [19], arrhythmias [20], ischemic stroke [21,22], such that the cumulative impact of 

OSA may account for the reported increases in both fatal and nonfatal cardiovascular events 

in adult patients [23,24].

In children, recent studies have shown that OSA is also associated with CVD [25]. Recent 

studies have confirmed that OSA independently leads to blood pressure dysregulation, 

hypertension [26–28], and left ventricular dysfunction in young children [29]. Of relevance 

to this study, OSA is also associated with endothelial dysfunction (ED) [30–32] with OSA 

treatment reversing ED in non-obese children [30].

The vascular endothelium, which lines the luminal arterial wall, is an important tissue type 

that governs vascular health or diseases such as atherosclerosis [33,34]. As the frontline of 
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vascular integrity, ED represents a very early manifestation of CVD [33,34] and thus may be 

observed in both adult and pediatric populations. Parenthetically, ED associated with OSA is 

likely the result of initiation and propagation of inflammatory responses within the 

vasculature [35] such that assessment of ED should identify patients at high risk of OSA 

associated CVD.

The study of extracellular microRNA (miRs) have gained considerable traction for the 

identification of ED. Extracellular miRs are 21–23 nucleotide non-coding nucleic acids 

found in serum, plasma or other body fluids [36–38]. In studies of CVD, changes in 

extracellular levels and activities of several miRs have been linked to acute myocardial 

infarction and heart failure [39].

Our laboratory has shown an increased expression of miR-92a within serum samples 

isolated from patients with coronary artery disease or chronic kidney disease [40,41]. We 

have also shown that oxidative stress from angiotensin II, athero-prone flow, and oxidized 

low-density lipoprotein (oxLDL) stimulation induce miR-92a in endothelium signifying that 

miR-92a is a biologically plausible biomarker of ED. In animal studies, miR-92a is 

associated with dyslipidemia [42] and sterol regulatory element-binding protein 2 

(SREBP2), a key transcription factor involved in activation of genes in cholesterol 

biosynthesis, appears to also induce miR-92a [40,43] implying that an additional mechanism 

for miR-92a mediated CVD is through dyslipidemia. However, the link between OSA and 

dyslipidemia remains controversial, emphasizing the need for further study.

Given the association of OSA with both CVD and dyslipidemia [44–47], we therefore 

hypothesize that miR-92a is an important biomarker of OSA severity, independent of several 

confounding variables including age. Since miR-92a is known to illicit ED thereby 

indicating early onset CVD, we speculate that increased miR-92a expression may be a valid 

biomarker of OSA associated CVD in both clinical adult and pediatric OSA patients.

Materials and Methods

Patient selection and examination

Adults: Research was approved by the institutional ethics committee of Xi’an Number One 

hospital (IRB# xadyyy2018028). Adult patients were recruited and written consent was 

obtained prior to enrollment. Patients diagnosed with OSA met the published guidelines for 

the diagnosis and treatment of obstructive sleep apnea syndrome [48]. Patients were 

excluded if associated with pulmonary disease, e.g., chronic obstructive pulmonary disease, 

bronchial asthma, interstitial pneumonia, chronic respiratory failure. Patients who have 

received continuous positive airway pressure ventilation or related surgical treatment were 

also excluded. Other exclusions included patients with severe cardiovascular and 

cerebrovascular diseases, e.g., coronary heart disease, stroke, type 2 diabetes, etc.; moderate 

to severe liver or kidney dysfunction; chronic insomnia; acute or chronic infectious diseases; 

tumors, hematopathy, trauma, autoimmune diseases (e.g., rheumatoid arthritis, systemic 

lupus erythematosus, inflammatory bowel disease); and finally, patients with mental health 

disorders.
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Children: Study procedures were approved by the Institutional Review Board at University 

of California, San Diego (IRB# 170408). From February 2017-August 2019, consecutive 

children were approached for recruitment for participation in this study. Children with 

craniofacial syndromes, Down syndrome or other defined genetic abnormalities, 

neuromuscular or other congenital disorders or other systemic diseases were excluded. 

Children with identified central sleep apnea (central apnea index>5 event/hr) were also 

excluded from this study. Finally, children with hypertension, uncontrolled diabetes, or 

history of smoking including vaping (any smoking within the prior 6 mos. or >5 pack years 

total) were excluded.

miR isolation and detection—miR isolation was performed using Trizol LS reagent 

according to the manufacturer’s instructions. 500 uL of patient serum was used for the 

isolation and analysis of miR levels and 2 nM reference Caenorhabditis elegans miR-39 (cel-

miR-39) was added to the serum prior to the addition of three volumes of Trizol LS reagent. 

Following isolation, miRs were reverse transcribed with TaqMan™ MicroRNA Reverse 

Transcription Kit (Applied Biosystems. Cat# 4366597) according to the manufacturer’s 

instructions. Following traverse transcription, the levels of miR-92a were determined via 

qPCR using the Applied Biosystems™, TaqMan™ Universal Master Mix II, no UNG (Cat# 

4440040). Expression levels were determined using the Δ−Δct method using cel-miR-39 

spike in as a reference. Fold change values were then determined by dividing the expression 

level with the average of the expression level of the primary snoring for each site.

Polysomnography—Sleep studies were performed in adults were performed at Xi’an 

Number One hospital using the somnolab 2 system and in children at Rady Children’s 

Hospital using Nihon Koden (Tokyo, Japan) PSG equipment and software. The following 

parameters were measured: chest and abdominal wall movement by inductance 

plethysmography, heart rate by electrocardiography, air flow using nasal pressure and 

oronasal thermistor. In children, additional monitoring using a side-stream end-tidal 

capnograph (Nihon Koden) to provide breath-by-breath assessment of end-tidal carbon 

dioxide levels. Arterial pulse oxygen saturation (SpO2) was assessed by pulse oximetry, with 

simultaneous recording of the pulse waveform. The bilateral electrooculogram, 8 channels of 

electroencephalogram (2 frontal, 2 occipital, 2 temporal and 2 central leads), chin and 

anterior tibial electromyograms, and analog output from a body position sensor were also 

monitored. PSG was scored by board registered technologists (RPSGT) and interpreted by 

board certified sleep physicians according to the 2017 American Academy of Sleep 

Medicine Manual for the Scoring of Sleep and Related Events [49].

We reviewed all PSGs for the following parameters: apnea hypopnea index (AHI) (total 

number of apneas and hypopneas per hour of total sleep time (TST); the oxygen desaturation 

index (ODI) was defined as the number of desaturation events ≥ 3% per hour of TST; the 

lowest SaO2 or oxygen saturation nadir was the lowest observed oxygen saturation during 

sleep; and the %TST O2<90% was the percentage of TST with an observed oxygen 

saturation below 90%. In children, OSA was defined if the obstructive AHI was greater than 

1.5 events/hr; mild OSA consisted of obstructive AHI from 1.5–5 events/hr, moderate OSA 

with an obstructive AHI from 5–10 events/hr, and severe OSA with an obstructive AHI>10 
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events/hr. In adults, OSA was defined if the obstructive AHI was greater than 5 events/hr; 

mild OSA consisted of obstructive AHI from 5–15 events/hr, moderate OSA with an 

obstructive AHI from 15–30 events/hr, and severe OSA with an obstructive AHI>30 

events/hr.

Statistical analysis—Results are presented as means ± SD, unless stated otherwise. All 

numerical data were subjected to statistical analysis using paired t tests or analysis of 

variance followed by post hoc tests (Tukey) as appropriate. Chisquare analysis was 

performed on categorical data concerning demographic characteristics of the various groups. 

Finally, univariate correlation analyses (Spearman rank) and multivariate linear regression 

modelling were performed to explore the relationships between sets of variables. Statistical 

analyses were performed using SPSS version 26.0 (SPPS Inc., Chicago, IL). For all 

comparisons, a two-tailed P value less than 0.05 was considered to define statistical 

significance.

Results

Subject characteristics

In total, 84 patients were recruited (58 adults, 26 children). Successful identification of 

miR-92a from serum occurred in 70 patients (57 adults, 13 children). In fourteen patients (1 

adult, 13 children) levels of miR-92a was not quantifiable due to extraction error. A 

comparison of demographic, polysomnographic, inflammatory and metabolic markers of 

included versus excluded children did not reveal any statistically significant differences apart 

from total cholesterol levels (p=0.048) (Supplementary table). The average age ± SD of 

patients was 40.6 ± 17.9 years (range: 7.3–81.0 years). There were 17 females (24%). Of the 

70 patients, 34 were identified as obese based on BMI>30 kg/m2 for adults, or based on 

BMI>95th percentile for children (Table 1).

From polysomnography data, the average ± SD apnea hypopnea index was 20.4 ± 22.1 

events/hr (Table 1). In adults, where AHI>30 events/hr was used to define severe OSA, 17 of 

57 adults (30%) were found to have severe OSA. In children, using criteria where AHI>10 

events/hr to define severe OSA, 4 of 13 children (31%) had severe OSA (Table 1).

Serum investigations

Summary of serum data for metabolic and hepatic biomarkers can be found in Table 2. 

Comparing change in miR-92a levels using the delta CT method revealed a stepwise 

increase in logarithmic miR-92a across all OSA severities; with severe OSA having the 

largest increase in log2 miR-92a expression (p=0.021 from primary snoring patients) (Figure 

1).

Evaluating univariate correlation of all serum biomarkers and polysomnography parameters 

with delta log2 miR-92a revealed that AHI (Spearman rank correlation 0.308, p=0.010), and 

ODI (Spearman rank correlation 0.277, p=0.037) had statistically significant associations 

(Figure 2). Of inflammatory or metabolic markers associated with delta log2 miR-92a, only 

LDL cholesterol (Spearman rank correlation 0.270, p=0.025) and C-reactive protein (CRP) 
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(Spearman rank correlation 0.262, p=0.030) concentrations were significantly associated 

with delta log2 miR-92a.

Despite findings from the univariate analysis, we assessed the association of AHI and delta 

log2 miR-92a using a stepwise reverse linear regression model, in which, in addition to AHI, 

LDL cholesterol, CRP (based on borderline associations from univariate analysis), and other 

relevant biological covariates such as age, BMI, and sex (Table 3) were controlled for. 

Again, AHI remained significantly associated with delta log2 miR-92a (β=0.332, p=0.003). 

In this model, age (β=0.394, p=0.002) and LDL Cholesterol (β=0.368, p=0.004) also 

emerged as significantly associated with delta log2 miR-92a, while sex, BMI and CRP were 

unassociated.

Discussion

To our knowledge, our study is the first addressing OSA consequences using both pediatric 

and adult cohorts. Our study found that independent of age, BMI, and sex, the presence of 

OSA was associated with an increase in miR-92a expression, and in a severity dependent 

fashion. We believe that miR-92a may represent an important biomarker for OSA as it 

provides both mechanistic insights and a potential therapeutic target for subsequent studies.

Our selection to investigate miRNAs and specifically miR-92a expression was deliberate. 

Elevation of miR-92a has been found to prevent angiogenesis [50] impairing normal 

vascular responses to conditions such as ischemia. Further, miR-92a appears to be highly 

involved in the activation of the vascular endothelium in atherosclerotic plaque formation. 

Inhibition of miR-92a expression was also shown to reduce endothelial inflammation, and 

altered atherogenesis in a rodent model of atherosclerosis [51]. Oxidized LDL, which 

predisposes to atherosclerosis, enhances upregulation of miR-92a in endothelial cells 

through activation of the signal transducer and activator of transcription 3 (STAT3), 

promoting inflammation in endothelial cells and increased adhesiveness to circulating 

monocytes, a canonical component of atherosclerosis. This noncoding miRNA appears to 

also regulate endothelial cell activation by modulation of several transcription factors 

including Kruppel-like factor 2 (KLF2), Kruppel-like factor 4 (KLF4), Nuclear Factor – 

kappa B (NF-кB) and the suppressor of cytokine signaling 5 (SOCS5) [51–53]. Taken 

together, the effects of miR-92a in endothelial activation are likely centrally involved in ED 

and atherosclerosis development, rendering miR-92a as a useful biomarker for CVD. In this 

context, not surprisingly, miR-92a has been found to be elevated in patients with acute 

coronary syndrome and with unstable angina [54–56].

ED represents a very early manifestation of CVD [33] such that assays for ED, including 

measuring miR-92a levels, may measure pre-clinical CVD, a stage when CVD is most 

amenable to intervention. As such, a biomarker that identifies pre-clinical CVD is of 

paramount importance as it may be clinically actionable. The ideal biomarker of vascular 

susceptibility should also have sensitivity and specificity for disease, be a robust metric of 

disease severity, and should improve following therapy for disease [57–59]. Further, it would 

be on a causal pathway to important disease outcomes giving its scientific credibility.
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Here we present that miR-92a may be an ideal biomarker for OSA and possibly OSA 

induced CVD. OSA has been shown to induce ED in both children [30–32] and in adults 

[60]. Moreover, the treatment of OSA in young children and in adults leads to a reversal of 

ED [30,61]. Given the upregulation of miR-92a with severe OSA and its significant 

association with the AHI implies that OSA promotes ED through signaling cascades 

downstream of miR-92a. Thus, miR-92a also provides a possible mechanistic link between 

OSA and atherosclerosis. Our multivariate model revealed a significant association between 

miR-92a and LDL cholesterol which is expected given that in vivo studies have 

demonstrated that LDL cholesterol promotes miR-92a upregulation [62]. Notwithstanding, 

the association of OSA and miR-92a was independent of LDL cholesterol and BMI/obesity 

status, factors both known to increase the risk of atherosclerosis independently, 

strengthening the utility of miR-92a as a biomarker for OSA induced CVD.

However, it is important to acknowledge the limitations of our study. First, the study is 

limited by a small sample size, particularly in females and in children. Nonetheless, the 

inclusion of children further strengthened the statistical relationship, and also confirmed that 

utility of this biomarker across a broad age group. Future studies will aim to assess miR-92a 

in larger cohorts of both adults and children with an aim to increase the number of females 

in our cohort. A larger sample size could better delineate other factors that are associated 

with miR-92a beyond the AHI. Second, due to the logistics of our study, we were unable to 

assess for endothelial function specifically in patients using techniques such as flow 

mediated dilation; these studies could further evaluate the relationship between OSA, ED 

and miR-92a. However, using two diverse cohorts across separate geographical locations 

certainly adds to the external validity of this biomarker. Finally, we did not assess the effect 

of OSA treatment on miR-92a expression. While studies assessing treatment of OSA using 

continuous positive airway pressure (CPAP) are complex, this approach would better 

delineate the bidirectional relationship between OSA and miR-92a levels. However, we 

strongly believe that pilot data such as those which we report here are necessary before the 

risk and expense of a clinical trial can be justified or even properly designed.

Conclusion

The identification of a miR-92a as a valid biomarker in identifying OSA may also help to 

classify patients at risk for CVD. Knowing that increased miR-92a implies poor vascular 

health, this finding could help identify OSA patients that are susceptible to CVD. Recent 

focus has occurred regarding phenotypic clustering in OSA patients with only subsets being 

at major cardiovascular risk. Such studies have not included pediatric patients systematically 

to date. We would be supportive of use of biomarkers (such as miR-92a) to classify patients 

for research studies e.g. to enroll high risk patients into clinical trials with appropriately 

focused endpoints. Clinically, assaying for miR-92a in OSA patients could help clinicians 

identify at risk patients that could lead to strategies such as earlier aggressive treatment or 

determining which patients require closer monitoring and follow up.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

OSA Obstructive Sleep Apnea

CVD Cardiovascular Disease

ED Endothelial Dysfunction

miR Micro RNA

AHI Apnea Hypopnea Index

ODI Oxygen Desaturation Index

TST Total Sleep Time

O2 Sat Oxygen Saturation

%TST O2<90% Percent total sleep time with Oxygen Saturation Less than 

90%

BMI Body Mass Index

LDL Low Density Lipoprotein

HDL High Density Lipoprotein

CRP C-Reactive Protein

AST Aspartate Transaminase

ALT Alanine Transaminase
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Figure 1. 
Change in miR-92a expression across different OSA severities comparison of change in 

miR-92a expression across OSA severity groups. Severe OSA patients had significant 

elevations in miR-92a expression compared to patients with normal sleep studies (p=0.021). 

Data expressed as mean ± SEM.
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Figure 2. 
Relationship between the apnea hypopnea index and change in miR-92a expression. Pearson 

correlation 0.346, p=0.003. (TST-total sleep time).
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Table 3.

Multivariate linear regression analysis with Log2 MIR-92A.

Variables Standardize Beta p Value

AHI (/hr TST) 0.324 0.022

Age (y) 0.363 0.006

Sex 0.079 0.49

BMI (kg/m2) −0.147 0.205

LDL * (mg/dL) 0.338 0.011

CRP*(mg/L) 0.092 0.517

*
n=69
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