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Dynamics of Holographic Entanglement

Entropy Following a Local Quench

Mukund Rangamania , Moshe Rozalib , Alexandre Vincart-Emardb

aCenter for Quantum Mathematics and Physics (QMAP)

Department of Physics, University of California, Davis, CA 95616 USA
bDepartment of Physics and Astronomy, University of British Columbia,

Vancover, BC V6T 1Z1, Canada

E-mail: mukund@physics.ucdavis.edu, rozali@phas.ubc.ca,

ave@phas.ubc.ca

Abstract: We discuss the behaviour of holographic entanglement entropy follow-

ing a local quench in 2+1 dimensional strongly coupled CFTs. The entanglement

generated by the quench propagates along an emergent light-cone, reminiscent of the

Lieb-Robinson light-cone propagation of correlations in non-relativistic systems. We

find the speed of propagation is bounded from below by the entanglement tsunami

velocity obtained earlier for global quenches in holographic systems, and from above by

the speed of light. The former is realized for sufficiently broad quenches, while the latter

pertains for well localized quenches. The non-universal behavior in the intermediate

regime appears to stem from finite-size effects. We also note that the entanglement

entropy of subsystems reverts to the equilibrium value exponentially fast, in contrast

to a much slower equilibration seen in certain spin models.ar
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1 Introduction

In recent years we have seen enormous progress in qualitative and quantitative under-

standing of out-of-equilibrium quantum dynamics. Theoretical and numerical methods

have been very effective to unearth the generic behaviour of a variety of observables in

such systems. Coupled with the rapid growth of experimental techniques in cold atom

and many-body systems to probe such dynamics, one can furthermore ratify our theo-

retical understanding. Motivated by these considerations we continue our explorations

of dynamics of strongly coupled non-equilibrium quantum systems using holographic

methods.
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One simple scenario of interest in many circumstances is a situation where we start

with a QFT in global equilibrium and deform it by turning on external sources for

relevant operators. The sources provide external dials which can serve to do work

on the system and drive it out of equilibrium. We could consider sources that act

homogeneously in space (but localized in time), which is often referred to as global

quench, or have it act locally in spacetime, which corresponds to a local quench. Both

types of protocols are well studied in literature in the past decade or thereabouts. In

either case we are considering deformations of the form

SQFT 7→ SQFT +

∫
ddxJ (x)O(x) , (1.1)

where O(x) is a (composite) operator of the QFT and J the classical source we dial.

The distinction at this level between local and global quenches is simply in the spacetime

support of the source J (x).

Much of the analytic progress in this front has been in 1+1 dimensional CFTs,

where the quench protocols of the form (1.1) can be incorporated into a Euclidean path

integral, and studied efficiently by computing correlation functions of the deforming

operator O(x) in the unperturbed state of the CFT, cf., [1, 2] for the original discussion

and [3] for a review.

Our primary interest is in exploring the dynamics of strongly coupled QFTs subject

to such protocols in higher dimensions. A natural framework to explore this question is

provided by the holographic AdS/CFT duality which maps the QFT problem onto the

dynamics of a gravitational system in asymptotically AdS spacetime. For concreteness

we will focus on 2+1 CFTs which are originally in global thermal equilibrium and

subject them to a quench by a local scalar operatorO of dimension ∆. The gravitational

problem then comprises of Einstein-Hilbert gravity coupled to a massive scalar, whose

mass m is related to the conformal dimension by the standard formula, viz., ∆ = 3
2

+√
9
4

+m2 `2
AdS.1 The initial global equilibrium state maps onto a planar Schwarzschild-

AdS4 black hole and the problem at hand involves analyzing the deformation of this

said black hole consequent to turning on a boundary source for the scalar field. This

then amounts to a gravitational infall problem. The pulse of scalar on the boundary

propagates into the bulk and dissipates through the black hole horizon. Of interest to

us are the observables in the interim process.

While there are many quantities that could be, and indeed have been [4–43], studied

in this context, we will for definiteness focus our attention on entanglement entropy.

While strictly not an observable, the entanglement entropy for a particularly chosen

1 We will only consider deformations by operators which are well separated from the unitarity

bound – our focus will be on conformally coupled scalars with ∆ = 2.
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spatial region of the QFT captures important aspects of the field theory dynamics.

Not only does it provide a measure of how correlations in the system evolve following

the quench, but it furthermore is also a simple quantity to compute in the holographic

context. The holographic entanglement entropy proposals of [44, 45] and their covariant

generalization [4] provide an extremely simple route to its computation. All we are

required to do is solve a classical problem of finding areas of extremal surfaces anchored

on the said region of interest.

In what follows we will explore how holographic entanglement entropy evolves

following a local quench. We will restrict our attention to a very specific scenario,

wherein we quench a CFT3 with a ∆ = 2 operator. The disturbance will be taken to

be localized in space and time – we pick exponential damping in space and an inverse

Pöschl-Teller switch on/off in time, cf., (3.1). We retain translational invariance in one

spatial direction, breaking homogeneity in the other. We study entanglement entropy

for strip-like spatial regions that are aligned with the symmetry we retain, so that the

problem of finding extremal surfaces can be mapped to effectively finding geodesics in

an auxiliary three dimensional spacetime. Of interest to us are how the entanglement

entropy growth is correlated with the position and size of the strip relative to the

quench location.

To appreciate the question, let us recall some well known facts. The classic analysis

of [1] of entanglement entropy growth following a global quench in CFT2 has spurred

lots of activity on the subject. While the two dimensional case can effectively be

described by a quasiparticle picture, since the entanglement growth is linear due to left

and right movers decoupling (following an initial quadratic ramp up [22, 28, 30]), the

holographic models present a much different picture in higher dimensions.2

The results of various analyses of global quenches have been beautifully encapsu-

lated in the ‘entanglement tsunami’ picture developed by Liu-Suh in [28, 30] and further

explored recently in [47]. Following an initial quadratic growth in time, the entangle-

ment entropy for any region grows linearly at a rate dictated by the tsunami velocity

vE. To define this quantity unambiguously the authors chose to normalize the local

value of entanglement entropy relative to the final thermal entropy expected for the

same region once equilibration is complete. This does leave a single parameter which

2 We note here that oftentimes global quenches are holographically modeled by considering a

Vaidya-AdS geometry (see [4, 46] for early discussions) that corresponds to infalling null matter in

the bulk, which does not accord a clean CFT interpretation. A more cleaner perspective is offered by

either solving the non-linear dynamics of gravity coupled to realistic matter like a scalar field, or more

simply by implementing an end of the world brane boundary state [25] explicitly in holography. The

results for the growth of entanglement entropy are however independent of the particularities of the

modeling.
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is the aforementioned velocity. It was found not only vE ≤ 1 as required by causality

with equality in d = 2 consistent with the CFT2 analysis, but one could further bound

it by a universal dimensional dependent constant v∗E(d).3 This upper bound on velocity

was attained holographically for matter that collapsed into a Schwarzschild-AdSd black

hole at late times.

Given this rather clear situation for global quenches, we are interested in ascertain-

ing the behaviour when we localize the quench protocol to a finite spatial domain. We

in principle could focus on deformations by sources delta-function supported at point.

This is natural when studying this problem in QFT as one can map the computation to

that of computing correlation functions on some background, however for our purposes

of carrying out numerical investigations we choose to smear out the source. We expect

firstly that the underlying locality of the QFT forces entanglement entropy to behave

causally; as explained in [48, 49] this means that the source makes its presence felt only

when it acts in the causal past of the entangling surface (the boundary of the region of

interest). This is indeed what one sees in explicit computations in CFT2. The entan-

glement entropy only starts changing after a time lag set by the time it takes for the

quench disturbance to propagate between the region of interest and its complement.

As long as the quench front is localized either in the region or in the complement, we

only have the initial state entanglement.

Previous analyses of holographic local quenches by [23] involved modeling the sys-

tem by the infall of a massive particle – this is effectively an eikonal approximation

wherein one is assuming that the wavepackets of the quench are tightly collimated.

Moreover, the authors chose to work with very heavy operators ∆ � 1 which could

then be approximated in terms of worldlines of a small black holes. The relevant ge-

ometry can be obtained by applying a suitable symmetry transformation to the global

Schwarzschild-AdS black hole and with it in hand properties of holographic entangle-

ment entropy were explored. This picture was further supported by field theory analysis

of such deformations at large central charge [50, 51]. Our aim to tackle this problem

from a different perspective by studying the entanglement evolution in a quenched grav-

itational background as explained above. We will recover most of the results mentioned

above in our analysis.

We can moreover explore quantitative features of the entanglement evolution. We

see that the propagation of entanglement is confined to a an effective light-cone. We

extract an entanglement velocity vE from this emergent causal structure. Unlike the

3 This statement as far as we are aware is robust for QFTs whose holographic duals are given

in terms of two derivative Einstein-Hilbert gravity coupled to sensible matter. There is a-priori no

reason for them to hold when the gravitational dynamics includes higher derivative corrections and

we in particular are not aware of any statement of this kind.
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case of the global quench, the velocity depends on the details of the quench. It appears

to grow monotonically with increase in the amplitude of the quench source as well

as with the increase of the initial temperature. For a certain range of parameters is

appears to track the tsunami velocity bound v∗E(3) of [28], while for others it reaches

close to the speed of light.

One can understand this behaviour qualitatively as follows: for well localized

quenches in large regions A one is in the eikonal limit. Here the growth of the en-

tanglement entropy is linear with an ‘entanglement velocity’ that is close to the speed

of light. On the other hand for regions which are confined within a broad quenching

pulse, the situation is nominally similar to a global quench experiment. As we are

collapsing scalar matter, we should expect that the behaviour in this domain is isomor-

phic that seen by [28], and indeed we recover the tsunami velocity.4 Away from these

limiting cases we see contamination from edge effects both from finite size of A and

the finite width of the quench source. We have not examined the detailed non-linear

effects that cause the velocity to grow from the tsunami bound towards the speed of

light, but display some examples which illustrate the pattern.

While our numerical results are constrained to probing small spatial regions relative

to thermal scale,5 we nevertheless are able to extract both this entanglement velocity

as well as examine the return to the equilibrium. In contrast to studies in lattice

models in low dimensions which display a logarithmic return of entanglement entropy

to its equilibrium value after the quench, we find that the holographic systems prefer

to equilibrate exponentially.

The outline of the paper is as follows. In §2 we describe the basic set-up for

holographic local quenches, describing the general methodology and the determination

of entanglement entropy from the gravitational background. In §3 we give the basic

numerical results for the quench spacetime and extremal surfaces therein. The key

statements regarding the behaviour of entanglement entropy in a locally quenched

CFT are then extracted in §4, where we describe the growth velocity vE and the return

to equilibrium. We end with some open questions in §5. Some details of the numerical

methods are collected in the Appendices.

4 There is a somewhat annoying fact that the tsunami velocity v∗E(3) = 0.687 in three spacetime

dimensions is mraginally lower than the speed of sound vs = 0.707, making it somewhat hard to

convincingly point to precise origin of the effect. We nevertheless feel confident that the analogy with

the global quench points to the tsunami velocity being the operative feature.
5 This constraint arises because our numerical solutions only determine the geometry to the exterior

of the apparent horizon. For small regions A the extremal surfaces stay in this domain, but for larger

regions, they do penetrate the apparent horizon – see [9, 53].
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2 Preliminaries: Holographic Local Quench

We are interested in the behaviour of entanglement entropy in a 2 + 1 dimensional field

theory that has been driven out of equilibrium locally by an inhomogeneous relevant

scalar operator. Holographically, this amounts to solving the gravitational dynamics of

a 3 + 1 dimensional asymptotically AdS spacetime and its consequences for the area of

extremal surfaces anchored on the boundary.

2.1 Metric Ansatz

In order to dynamically evolve a spacetime geometry following a local quench, it is

convenient to choose our metric ansatz to be a generalization of the infalling Eddington-

Finkelstein coordinates for black holes. We choose to work in an asymptotically AdS4

spacetime, dual to a 2 + 1 dimensional CFT,

ds2 = −2Ae2χ dt2 + 2 e2χ dt dr − 2Fx dtdx+ Σ2
(
eB dx2 + e−B dy2

)
, (2.1)

where r denotes the radial bulk coordinate, with the boundary lying at r = ∞, and

t is a null coordinate that coincides with time on the boundary. We have chosen our

quench to be localized in the x-direction and translationally invariant in the y direction.

Hence all the fields appearing above {A,χ, Fx,Σ, B} depend only on the coordinates

{r, t, x} with ∂y being an isometry.

This choice for the metric has many advantages: it provides us with coordinates

that remain regular throughout the entire domain as the spacetime equilibrates, it leads

to a characteristic formulation of our gravitational infall problem, and it comes with

a residual radial diffeomorphism that is of great computational help [54]. Indeed, the

metric (2.1) remains invariant under radial shifts,6

r → r = r + λ(xµ) . (2.2)

On physical grounds, we anticipate that the black hole’s horizon will grow locally as

the effects of matter from the boundary are felt in the interior of the bulk. Hence a

sensible gauge choice is to dynamically determine λ so that the coordinate location of

the black hole’s apparent horizon7 remains fixed. This keeps the calculational domain

simple.

6 For notational clarity, we use upper case Latin indices {M,N, ...} to represent bulk coordinates,

and lower case Greek indices {µ, ν, ...} to refer to boundary coordinates.
7 See Appendix A for further details about our numerical scheme
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Einstein’s equations in the presence of a scalar field are given by

RMN −
R

2
GMN −

d(d− 1)

2 `2
AdS

GMN = TMN

TMN = ∇MΦ∇NΦ +GMNLΦ, LΦ = −1

2

(
GMN∇MΦ∇NΦ +m2Φ2

)
.

(2.3)

For simplicity, we restrict our attention to m2 `2
AdS = −2 so that the asymptotic expan-

sion of the scalar field near the boundary is analytic in powers of 1/r:

Φ(r, t, x) =
φ0(t, x)

r
+
φ1(t, x)

r2
+ · · · (2.4)

We note that since t is a null coordinate, φ1(t, x) will have contributions coming from

both the source and the response of the scalar field, as will be explained below.

2.2 Asymptotic Geometry

In a theory of gravity on asymptotically AdS spacetimes, asymptotic analysis alone

is not sufficient to determine the bulk metric [55]. Indeed, the missing piece in the

asymptotic analysis is the boundary stress tensor, determined by solving the full bulk

equations:

Tµν ∼ g(3)
µν , (2.5)

where g
(3)
µν is the part of the metric undetermined by the equations of motion for d = 3.

While our infalling coordinate chart (2.1) differs from the standard Fefferman-

Graham chart typically used for asymptotic expansions, it is a straightforward exercise

to carry out an asymptotic analysis. Demanding that the field equations are obeyed in

the near-boundary r →∞ domain we find

A(r, t, x) =
(r + λ(t, x))2

2
− ∂tλ(t, x)− 1

4
φ0(t, x)2 +

a(3)(t, x)

r
+ · · · (2.6)

χ(r, t, x) =
c(3)(t, x)

r3
+ · · · (2.7)

Fx(r, t, x) = − ∂xλ(t, x) +
f (3)(t, x)

r
+ · · · (2.8)

Σ(r, t, x) = r + λ(t, x)− 1

4
φ0(t, x)2 + · · · (2.9)

B(r, t, x) =
b(3)(t, x)

r3
+ · · · . (2.10)
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One may also show that the explicit map to the Fefferman-Graham coordinates {τ, ρ, ξ}
takes the asymptotic form

τ(r, t, x) = t+
1

r
− λ(t, x)

r2
+ · · · , (2.11)

ρ(r, t, x) = r + λ(t, x)− 1

4

φ0(t, x)2

r
+ · · · , (2.12)

ξ(r, t, x) = x+O(r−3). (2.13)

Additional care needs to be taken when dealing with scalar fields in a theory of gravity

formulated in terms of null coordinates. Indeed, the falloff of scalar fields with m2`2
AdS =

−2 is known to behave in Fefferman-Graham coordinates as:

Φ(ρ, τ, ξ) =
φsource(τ, ξ)

ρ
+
φresponse(τ, ξ)

ρ2
+ · · · (2.14)

as we approach ρ→∞. By using the coordinate expansion above, we obtain

Φ(r, t, x) =
φsource(t, x)

r
+
φresponse(t, x) + ∂tφsource(t, x)− λ(t, x)φsource(t, x)

r2
+ · · · ,

(2.15)

thus confirming our earlier claim that φ1 = φresponse + ∂tφ0− λφ0 mixes the source and

the expectation value of the scalar.

2.3 Boundary Stress Tensor

In order to solve Einstein’s equations as efficiently as possible, we found it useful to use

the boundary stress tensor and its conservation equations to find and propagate the

undetermined fields a(3) and f (3) accurately in time (in our scheme, b(3) and c(3) need

to be read off from the solutions directly). For asymptotically AdS4 spacetimes, the

boundary stress tensor in the presence of a scalar field of mass squared m2`2
AdS = −2

can be expressed in the Brown-York form as

Tµν = Kµν −Kγµν + 2 γµν −
(
γRµν −

1

2
γRγµν

)
+

1

2
γµν φ

2, (2.16)

where we have introduced some boundary data: γµν is the induced metric on the

boundary, Kµν , K ≡ γµνKµν its extrinsic curvatures, and γRµν ,
γR its intrinsic cur-

vatures. Explicitly in terms of the asymptotic expansion coefficients we find that the

energy-momentum tensor takes the form

T00 = 2a(3) + 4c(3) + φ0φresponse, (2.17)

Ttx =
3

2
f (3) − 1

2
φ0∂xφ0 , (2.18)
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while the conservation equations in the presence of the scalar source φ0(x, t) read

∂tT00 = ∂xTtx + ∂tφ0 φresponse, (2.19)

∂tTtx =
1

2

(
∂xT00 − 3 ∂xb

(3) + ∂xφ0 φresponse − φ0 ∂xφresponse

)
. (2.20)

We take our initial state to be in thermal equilibrium, which translates to an initial

condition on the bulk metric, which is then the planar static Schwarzschild-AdS4 black

hole spacetime with temperature

T =
3M

1
3

4π
. (2.21)

The initial boundary stress tensor is then simply T µν = diag{1, 1
2
, 1

2
}. To model our

local quench, we simply need to specify a source function φ0(t, x) and let the system

evolve according to the Einstein equations, all while making sure that λ is gauge-chosen

to fix the location of the apparent horizon.

2.4 Holographic Entanglement Entropy

Once we have obtained solutions for the local quench, we can study the subsequent

dynamics of the entanglement entropy of a regionA on the boundary using the covariant

holographic entanglement entropy prescription [4]. The latter requires us to determine

extremal surfaces anchored on the entangling surface on the boundary.

For simplicity, we exploit the translational invariance, and restrict our attention to

a strip-region

A = {(x, y) | x ∈ (−L,L), y ∈ R} , ∂A = {(x, y) | x = ±L, y ∈ R} . (2.22)

The extremal surfaces EA anchored on ∂A are straightforwardly determined by solving

a set of ODEs. Using coordinates adapted to the ∂y isometry, we parameterize the

surface by coordinates y, τ . Consequentially, EA is then obtained by solving the geodesic

equations in an auxiliary three dimensional spacetime with metric g̃MNdX
N dXM =

gyy gMN dX
N dXM , with the restriction to y = constant understood, i.e., XM(τ) =

{t(τ), r(τ), x(τ)}. Equivalently we solve the Euler-Lagrange equations obtained from

the Lagrangian L = gyy gMNẊ
MẊN .

While we have phrased the determination of EA as a boundary value problem, it

is practical to switch to an initial value formulation. We parameterize the solutions by

specifying the turning point, or tip, of the geodesic in the bulk, XM
∗ (τ) = {t∗, r∗, x = 0},

and evolve towards the boundary using an ODE solver (for instance the Matlab solver

ode45 ) until both ∂A and a specified UV cutoff are reached.

– 9 –



To this end, we have chosen to transform our system of 3 second order ODEs into

a system of 6 first order ODEs in the variables{
t, Pt ≡ Σ2 ṫ, r, P+ ≡ e2χ

(
ṙ − A ṫ

)
, x, Px ≡ Σ2 ẋ− e−BFx ṫ

}
. (2.23)

With these new variables,8 L = 2P+Pt + P 2
x . The boundary conditions at the turning

point are

{t = t∗, Pt = 0, r = r∗, P+ = 0, x = 0, Px = ±1} . (2.24)

The conditions on Pt and P+ are a consequence that, because of symmetry, we expect

ṫ = ṙ = 0 at X∗, whereas the condition for Px has been chosen to normalize the action

by setting L = 1. The sign determines whether the geodesic will go towards the positive

or negative x-axis.

To translate from the length of the geodesic to the actual entanglement entropy

SA we pick an IR regulator Ly along the translationally invariant direction and a UV

cutoff ε. We choose to present the results for the regulated entanglement entropy by

subtracting off the corresponding answer in the unperturbed theory. There are two

natural regularizations we can use:

Regulator 1: We subtract the entanglement in the ‘instantaneous thermal state’ ob-

tained by taking the Schwarzschild-AdS4 metric with a horizon located at r+(x, t) =

M
1
3 + λ(t, x). This choice allows clean matching of the asymptotic coordinate chart.

Regulator 2: We alternately can choose to subtract of the vacuum entanglement entropy

for the same region, with a dynamical UV cut-off εvac(x, t). This gives

∆SA = Ly

[∫
dτ − 2

ε
− 2λ(t, x) +

4π

L

(
Γ(3

4
)

Γ(1
4
)

)2
]
. (2.25)

The two regulators differ by a finite amount that is invariant temporally, allowing us to

cross-check our numerical results. In what follows we will simply quote ∆SA normalized

by Ly.

3 The Quench Spacetime and Extremal Surfaces

We now turn to describing the results of solving Einstein’s equations sources by the

scalar field boundary condition. We then describe properties of the extremal surfaces

of interest in these geometries.

8 These definitions for the momenta ensure that all quantities are of order O(1) for numerical

stability.
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3.1 Numerical Solutions

We use the characteristic formulation of Einstein’s equations resulting from the null

slicing of spacetime outlined in [54] to numerically find the geometry. Even though

we start with a complicated set of PDEs, the characteristic formulation simplifies the

equations of motion into two categories: the equations for the auxiliary fields that are

local in time and reduce to a nested set of radial ODEs, and the equations for dynamical

quantities that encode the evolution of the geometry.

To numerically integrate the Einstein and Klein-Gordon equations, we discretize

the radial direction using a Chebyshev collocation grid. This choice of discretization

for the extra dimension is particularly well suited to find smooth solutions to boundary

value problems while ensuring their exponential convergence as the grid size is increased.

We opted to choose a rational Chebyshev basis to deal with the non-compact spatial

direction. The main advantage of working with a rational Chebyshev grid is that the

boundary conditions at x = ±∞ are already implemented behaviourally ; as long as the

solution decays at least algebraically fast or asymptotes to a constant, we can avoid

specifying the boundary conditions explicitly [56]. We use a grid of 41 points in both

directions. To propagate in time, we use an explicit fifth-order Runge-Kutta-Fehlberg

method with adaptive step size. We also avoid aliasing in both the radial and spatial

directions by applying a low-pass filter at each time step that gets rid of the top third

of the Fourier modes.

We chose the source function to be φ0(t, x) = f(x)g(t) with

f(x) =
α

2

[
tanh

(
x+ σ

4s

)
− tanh

(
x− σ

4s

)]
, g(t) = sech2

(
t− tq∆
tq

)
. (3.1)

With it, we can ramp up the scalar field to reach its maximum value α at time t = tq∆

before it vanishes again. The parameters {s, tq,∆} are chosen to facilitate the numerics,

whereas σ determines the width of the perturbation. In practice, we found s = 0.15,

tq = 0.25 and ∆ = 8 to give us satisfying accuracy for the late-time behaviour of the

scalar field while preserving a nicely localized shape for the pulse. So we therefore study

the quench protocols parametrized by two parameters: an amplitude α and a width σ.

Along with the initial temperature of the system which we take to be parametrized by

M , we have three parameters at our disposal.

φ0(x, t) =
α

2

[
tanh

(
5

3
(x+ σ)

)
− tanh

(
5

3
(x− σ)

)]
sech2 (4 t− 8) ,

Protocol parameters: {α, σ,M}
(3.2)

The evolution of the spacetime following our quench is fairly simple. The injection

of local excitation results in hydrodynamical evolution almost from the very beginning

– 11 –



(a) λ(t, x) (b) T00(t, x)

Fig. 1: Evolution profile of the (a) radial shift λ(x, t), and (b) T00(x, t) component of the stress tensor,

for α = 0.5, M = 0.1, σ = 2. The field λ determines the evolution of the entropy in our solution.

(cf., [5, 6] for analogous statements with spatial homogeneity). Since our perturbation

excites the sound mode of the system, we have the initial energy-momentum perturba-

tion dispersing at the speed of sound. The presence of shear viscosity results in entropy

production, manifested in the solution by the local growth of the horizon area element.
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Fig. 2: Evolution of the total energy on the boundary E =
∫
T00 dx after a quench described by

parameters α = 0.5, M = 0.1, σ = 2.

In Fig. 1a we display the spatial and temporal profile of the function λ(x, t), re-

lated to the area element of the horizon. We see that the initial perturbation indeed

results in entropy production, as expected. Curiously, the initial perturbation splits to
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two localized perturbations after some time; those follow the expected hydrodynamic

evolution. Fig. 1b shows the equivalent evolution of the energy density for the same

set of parameters. Finally, Fig. 2 shows that following the conclusion of the quench the

total energy is conserved. These features verify the intuitive picture of hydrodynamical

evolution following a local excitation of the system.

To quantify the entropy production, we can monitor the growth of the area of the

apparent horizon as a function of time. In order to express the result in physical units,

we need to convert from the natural time scale on the horizon to the time measured

in the boundary. Recall that our solutions for the metric components are obtained

on a slice of constant ingoing time coordinate t. We could, following [52], map the

horizon data along ingoing null geodesics to the boundary. We will refrain from doing

so explicitly and instead work directly in the chosen coordinates leaving implicit this

translation.9

0 2 4 6 8

0.0

0.5

1.0

1.5

t

Fig. 3: I The growth of the apparent horizon (in blue) as a function of boundary time, for α = 0.3 and

M = 0.1. We also overlay the plot for the total energy
∫
T00dx produced by quenching the system in red

for direct comparison.

Using the induced metric hab on a constant t slice we obtain the area element on the

horizon which can be integrated directly. Since the naive answer is infinite, we regulate

9 We also note that λ(t, x) is defined on a constant ingoing time slice, and as such the radial shifts

affect the horizon “instantaneously” rather than causally.
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it by removing the contribution from the initial equilibrium state (i.e. subtract off the

static Schwarzchild-AdS answer) to obtain:

∆Areah = Ly

∫
r=rh

(
Σ2
√

1 + 2λ′e−2χ−B − r2
h

)
dx (3.3)

The numerical results are expressed in Fig. 3, where we also show the total energy

for comparison. Notice the striking resemblance of the horizon’s area evolution with

that of the total energy injected into the system by the quenching scalar field. This

seems to indicate that the growth of the horizon is dictated by processes governed

by the speed of sound, such as energy and momentum transport. This is indeed the

intuition we would have from the hydrodynamic regime of slow variations and it is a

reassuring check of the set-up that this indeed is upheld.

3.2 Extremal Surfaces

Having the solution at hand we can compute the extremal surfaces as described in §2.4.

In Fig. 4 we display the radial depth of the turning point for the extremal surfaces, as

function of (boundary) time. Different points correspond to different extremal surfaces,

which contribute to entanglement entropy of surfaces of varying lengths. We have

plotted the radial depth both in the computational coordinate (in which the horizon is

at fixed radial distance) and in coordinates in which the horizon grows.

Since our calculational domain ends at the apparent horizon, we cannot probe

extremal surfaces that extend past into the trapped region. These are known to exist

in various explicit simulations (cf., [53] for a comprehensive survey in Vaidya-AdS

spacetimes). Pragmatically, this restricts our attention to small regions A. We will

nevertheless see that despite this restriction we can still extract interesting physical

features of SA using surfaces that lie outside the apparent horizon.

One of the interesting features to notice from Fig. 4 is that the geodesics never go

beyond their initial depth in the bulk when we consider their position in the ungauged

radial coordinate, i.e., where the radial depth is

U∗ ≡ u∗

1 + λ(t∗, x = 0)u∗
, (3.4)

with u∗ = 1/r∗ being the radial position of the tip in the coordinate system where the

apparent horizon is at a fixed coordinate locus.

4 Propagation of Entanglement Entropy

Armed with the numerical results for the spacetime geometry and the extremal surfaces

therein, we are now in a position to extract some physical lessons for the evolution of
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entanglement entropy following a local quench. We restrict our attention to regions

A centered around the source of the initial excitation which is taken to be w.l.o.g. at

x = 0. We will examine the behaviour of ∆SA as a function of the width L of the strip

and time t after the quench.

We note that the region of parameter space that we can explore numerically is

limited. The amplitude α of the scalar field cannot be too large, otherwise the time-

evolution of the quench solution does not converge. Similarly, the evolution code be-

comes unstable if the spatial discretization falls below a critical grid size, which has for

consequence that we cannot resolve quenches with width σ below a certain threshold.

The width L of the entangling surface is in turn constrained by the initial values we

can pick for M , which determines the position of the event horizon of the initial config-

uration: if M is taken to be large, then we cannot find extremal surfaces that go deep

enough in the bulk to probe larger regions A, whereas if M is taken too small, then it

becomes increasingly harder to quench the spacetime with a scalar source. We found

that using quenches with width σ = 2, together with M ranging from 0.005 and 0.2

and α between 0.1 and 0.5, yielded interesting results that remained mostly the same,

albeit delayed in time, as those with σ chosen larger.

Before proceeding we remind the reader that for regions A which are much wider

than the width of the quench source profile, there is a time delay before the entangle-

ment entropy starts to change. This is consistent with the causal properties one would

0 2 4 6 8

0.8

1.0

1.2

1.4

1.6

t

u 0

Fig. 4: Evolution of the geodesics’ radial depth for a quench; α = 0.5, M = 0.1, L = 0.8, σ = 2. The

blue data points represent the radial depth u∗ in the fixed, gauged coordinate system, whereas the red

data points represent the ungauged radial depth U∗.
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required of entanglement. Only when the quench can affect both the region and its

complement (by being in the past of the entangling surface) would we expect a change

in the entanglement for A. This is clearly borne out in our simulations and is used to

benchmark that we are on the right track.

4.1 An Emergent Light-cone

We first note that the entanglement generated by the local quench is linearly dispersing,

i.e., it traces an effective light-cone. This is quite reminiscent of the Lieb-Robinson

bound [57] in non-relativistic theories, where correlations follow an effective information

light-cone. The speed of entanglement propagation is then denoted by vE below.

The velocity vE we find is bounded from below. A-priori one might guess whether

the lower bound is given by the speed of sound, which is the speed in which the

initial pulse spreads, thereby further exciting the system and generating additional

entanglement on larger scales. The true speed is however a bit lower, as we shall see,

suggesting that the mechanism of entanglement propagation differs from that which

drives physical transport of energy and other conserved charges in the system.10

We therefore interpret the velocity vE as the speed in which the initial entangle-

ment, generated locally by the quench, propagates in time. The entanglement velocity

can be extracted from the emergent light-cone defined along the curve where ∆SA(t)

reaches a maximum for every L in the L− t plane. We remark that unlike the results

of [23], the height of this peak does not remain constant in our setup. Instead, we find

that the maximum value of SA(t) increases as we increase L.

This behaviour of the entanglement entropy can be quantified rather explicitly. We

find that dependence is strongest when the amplitude of the scalar field is varied. For

small sizes L, the maximum of SA increases linearly with L. If we denote the slope of

these curves by s, then we find the interesting relation

∂

∂L
SA(L, tmax, α) = s(α) ∼ α2 for small/intermediate regions. (4.1)

The actual scaling for the slopes obtained from our numerical data are:

• s(α) ∼ α1.92 for α = {0.1, 0.2, 0.3, 0.4, 0.5} and M = 0.1

• s(α) ∼ α2.0043 for α = {0.05, 0.1, 0.15, 0.2} and M = 0.01

10 A-priori this statement statement appears reasonable, since the propagation of energy in the

system is governed by the ability of the system to homogenize, which per se is not the same as becoming

quantum entangled. There is thus far no clear mechanism for intuiting entanglement transport in

quantum field theories, though the attempts of [47] suggest potentially interesting mechanisms for the

same.
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Fig. 5: Maximum of the entanglement entropy SA(t) as a function of L, for α = {0.1, 0.2, 0.3, 0.4, 0.5}
starting from the bottom, and M = 0.1. The slopes of these curves depend quadratically on the

amplitude α of the scalar field.

In the first case, the linear behaviour is shown in Fig. 5. In the second instance (not

pictured), while the linear nature breaks down when L is large, the slopes for small to

intermediate regions still depend quadratically on the amplitudes. The dependence on

temperature is less interesting. When the temperature M changes, the maximum of

the entanglement entropy shifts slightly, as can be seen in Fig. 6.

For general values of parameters, the entanglement velocity vE changes with pa-

rameters, always bounded from below by the tsunami velocity (4.2), and above by the

speed of light. We do however find two universal results which we now turn to.

4.1.1 Universal Behaviour at High Temperature

In the limit of an approximate global quench where the region A is contained within

the local quench, i.e., L . σ, and at high temperatures, we find a universal light-cone

velocity vE = 1 (to very high accuracy), regardless of the amplitude of driving scalar

field (including values well within the non-linear regime)11. This is depicted in Fig. 7.

We note that for some values of parameters, this universal behaviour can be affected

by edge effects of the local quench, and is seen for small enough surfaces only.

11 It is worth noting that previous results for global quenches could not have seen this feature since

the entanglement entropy saturates for strip geometries.
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Fig. 6: Maximum of the entanglement entropy SA(t) as a function of L, for a range of masses of the

initial black hole M = {0.005, 0.01, 0.02, 0.1}, starting from the top, and α = 0.1. Lowering the

temperature (decreasing M) slightly increases the maximum of SA(t). The same phenomena is observed

for α = 0.2.

As we decrease the black hole temperature, the velocity at the small surfaces be-

comes lower than 1. This confirms that vE = 1 is a high temperature effect only.

4.1.2 Wide Quench Profiles

An interesting feature of the emergent light-cone is the abrupt change of velocity as

the width of the region A, L, is increased. When the size of the region A becomes of

the same order as the width of the local quench, the curve traced by the peak of the

entanglement entropy goes from one linear regime to another, as shown in Figs. 8a, 8b,

and 8c.

Interestingly, for the first two data sets (for which α = 0.1, M = {0.005, 0.01, 0.02},
σ = 2), the light-cone velocities of vE = {0.678, 0.688, 0.706} are very close to the

tsunami velocity of a Schwarzschild-AdSd+1 black hole found in [28], given by

v∗E(3) =
(η − 1)

1
2

(η−1)

η
1
2
η

∣∣∣∣∣
d=3

=

√
3

2
4
3

= 0.687, with η =
2(d− 1)

d
. (4.2)

We note that temperature does not seem to have an effect on vE, which is consistent

with the above formula. For these parameters, the evolution is described by linear
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response to good approximation, and in that regime the tsunami velocity seems to

capture the spatial propagation of entanglement to very good accuracy.

This behaviour should be anticipated on physical grounds. When the region A
is completely immersed in the quench source, we are back to the case where we may

approximately think of the situation as a global quench problem. The fact that the

source is not homogeneous in Ac is irrelevant because all that matters is that the

excitations produced by the quench are in the causal past of the entangling surface ∂A.

With this in mind we immediately anticipate that the results for the Vaidya quench

explore in [28, 30] should apply and one see a linear growth with the tsunami velocity.

The story of the local quench however should be a lot richer than the homogeneous

global quench. For one, we can encounter an interplay between the size of A and the

width of the pulse. We also expect that the non-linearities of gravity will play a role

as we try to increase the amplitude. Indeed we see that velocity vE increases as we

increase the strength of the non-linearities in the bulk evolution – this is illustrated

in Figs. 9a and 9b (where the scalar field amplitude was doubled from 0.1 to 0.2).

This goes against the idea of the tsunami velocity as an upper bound on the speed

propagation of the entanglement propagation, at least when that evolution is spatially

resolved. Coupled with the earlier observation regarding the upper bound on vE ≤ 1,
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0.8
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L

Fig. 7: Position of the maximum of SA(t) in the L− t plane for a quench described by α = 0.5,

M = 0.1. The light-cone velocity extracted from the slope of this line is vLC = 1, and is independent of

the value of α.
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(a) M = 0.005, vE =

0.678(0.818)
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(b) M = 0.01, vE =

0.688(0.834)
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Fig. 8: Position of the maximum of SA(t) in the L− t plane for a quenches described by α = 0.1,

starting from different initial states parameterized by M shown above. The light-cone velocities for large

L for the three scenarios are also indicated, as are the corresponding values for small region sizes (in

parenthesis). While we give the values of the velocity vE for small regions, this data should be interpreted

with care, for we typically find that edge effects contaminate the data, and these slopes should not be

taken at face value in the small L regime.

3.0 3.5 4.0 4.5 5.0

0.5

1.0

1.5

2.0

tmax

L

(a) M = 0.01, vE = 0.764(0.887)
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(b) M = 0.02, vE = 0.776(0.934)

Fig. 9: Position of the maximum of SA(t) in the L− t plane for a quenches described by α = 0.2,

starting from different initial states parameterized by M shown above. The light-cone velocities for large

L for the three scenarios are also indicated. Conventions are the same as in Fig. 8.

we find it natural to conjecture that

v∗E(3) = 0.687 ≤ vE ≤ 1 (4.3)

The details of deviation from the two extreme limits appear to depend on various effects
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which we have not yet disentangled. While the upper bound follows form causality,

it is unclear at present whether the tsunami velocity encountered (herein and before)

is a fundamental bound on information processing in strongly coupled systems. It

would be interesting to come up with a model which allows us to explore the different

propagation velocities perhaps along the lines of [47].

4.2 Entanglement Decay

The process of return to equilibrium is characterized by universal behaviour and crit-

ical exponents. Therefore, an interesting quantity in our model is the decay of the

entanglement entropy after it has reached a local maximum. To our knowledge this is

the first time this decay has been calculated in either holographic theories or in higher

dimensional conformal field theories.
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Fig. 10: Exponential decay of the entanglement entropy evolution at late times; α = 0.5, M = 0.1,

L = 0.8. The fit parameters for the particular choice of quench parameters turns out to be a1 = 2.5335,

a2 = 0.5277, a3 = 0.6049, and a4 = 0.0454. Note that we evolve the solution for late but finite time,

which explains why a4 6= 0. In the infinite time limit we expect a4 = 0.

From our numerical data we find that the profile for the decay is best fitted by an

exponential damping

∆SA(t) ∼ a1e
−a2(t−a3) + a4 , (4.4)

where the parameters ai depend on the specifics of the sources chosen to implement

the quench protocol. In Fig. 10 we depict the behaviour for a particular simulation
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(parameters in the caption). Note also the time delay in the initial growth, which

illustrates the causality feature discussed earlier.

It is interesting to contrast our result for the exponential return to equilibrium

against a more slow return seen in some spin chain models. For instance, in [58] the

authors study free electrons in a half-filled chain and determined the growth and decay

of the entanglement entropy after a local quench. In that set-up they find a very slow

return to the unperturbed value. In two dimensions the decay is characterized by

SA(t) ∼ a1 log(t)+a2
t

as t → ∞. The parameters a1, a2.are again obtained by fitting and

depend on the specific details of the quench.

It is somewhat intriguing that the holographic computations relax much faster.

This is reminiscent of features of scrambling in black hole physics, which we comment

on in our discussion §5.

5 Conclusions and Future Directions

The main focus of the present paper was to describe the dynamics of the holographic

entanglement entropy following a local quench. While this problem has been studied

in the past using various known exact solutions to model the quench, we have carried

out a full numerical simulation of Einstein’s equations in the presence of a perturbing

external source on the boundary of AdS. Given the explicit numerical solution to the

quench geometry, we can study the dynamics of entanglement entropy by exploring the

behaviour of extremal surfaces that are anchored on the boundary.

The upshot of our analysis was a clear signal that entanglement entropy disperses

linearly, in a manner reminiscent of the Lieb-Robinson light-cone. The dispersion

velocity appears to depend on the details of the quench, though we were able to bound

the result between two interesting bounds that have been discussed in the literature

earlier. On the one hand we found that for wide quench profile, the propagation speed

saturated a putative lower bound, given by the entanglement tsunami velocity obtained

by [28] in the context of global quenches (modeled using the Vaidya-AdS spacetime).

On the other hand well localized quenches appear to propagate entanglement at the

speed of light. It is rather curious that we have results very similar to the Vaidya-AdS

quench, for the geometry we construct is not the same. This lends support to thesis of

[28, 30] that the holographic tsunami velocity ought to be a generic phenomenon.

The second aspect of holographic entanglement entropy which is interesting in

our study is the rather rapid reversion of result to the equilibrium value. In various

simulations we have tested, the reversion is exponentially fast, in contrast to the much

slower logarithmic decay seen in spin models. This suggests again, as has been suspected

in the past, that black holes are very efficient at information processing, cf., [59, 60].
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There are many other interesting areas for further investigation. It would be inter-

esting to study other quench protocols and other theories, including massive models,

primarily to extract a more detailed dependence of the entanglement velocity and the

rate of equilibration. A particularly interesting direction is the study of (global and

local) quenches past critical points, generalizing the results of [61] to higher dimensions.

It would also be interesting to study other non-local measures besides the entanglement

entropy, which are more sensitive to the spatial structure of entanglement in quantum

field theory, and to the differences between strongly coupled holographic CFTs and

CFTs of small central charge. In particular, the mutual information of disjoint inter-

vals would be interesting to calculate in our setup for local quenches. Finally, one can

make a direct connection to the study of entanglement entropy following a local quench

in two-dimensional CFTs, for which we have analytic results to explain the behaviour

at large central charge [50]. We hope to report on these results in the near future [62].
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A Apparent Horizons

In §2, we used the residual radial reparametrization freedom of the metric (2.2) to fix

the coordinate location of the black hole’s apparent horizon. Here we provide some

details on the process we used.

The notion of apparent horizon depends on the existence of trapped surfaces, which

in turn depend on a chosen foliation. Given a spacelike surface S, a trapped surface

on S corresponds to the region where both ingoing and outgoing future-directed null

geodesic congruences orthogonal to S have non-positive expansions. The apparent

horizon is then defined as the boundary of this trapped region, on which the geodesic

congruences have vanishing expansions.

In our case, a spacelike surface can be parametrized by the two orthogonal vector

fields spanning the x and y direction:

eMx = (0, 0, 1, 0), eMy = (0, 0, 0, 1). (A.1)

We now construct future-directed null geodesic congruences orthogonal to both ex
and ey. Ingoing geodesic congruences can be parametrized by the tangent null vector

field kM = (0,−1, 0, 0), whereas outgoing geodesic congruences have

NM = e−2χ

(
1, A+ e−2χ e

−B F 2
x

2 Σ2
,
e−B Fx

Σ2
, 0

)
. (A.2)

The normalization is chosen such that gMN k
M NN = −1. Since we are interested in

the rate of change of the cross-sectional area of null geodesic congruences along their

transverse directions, we need to define the transverse metric

hMN = gMN + kMNN +NMkN . (A.3)

With this in hand, we can calculate the expansion θ ≡ hMN∇MkN .12 This yields

a condition on the dynamics of the field Σ:[
d+Σ− e−B

2 Σ

(
Fx ∂xB − ∂xFx − e−2χ F 2

x

∂rΣ

Σ

)]
r=rh

= 0 , (A.4)

where d+ ≡ ∂t + A ∂r. In addition, taking a time derivative of this relation yields a

stationarity condition that ensures that the horizon condition holds for all times. One

can show that the resulting constraint can be expressed as a second order spatial ODE

that determines the value of A(r, t, x) at the apparent horizon.

12 The expansion for the ingoing geodesic congruences along n is always negative, so we need only

worry about the congruences along k.
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B Numerical Details: Integration Strategy and Boundary Con-

ditions

We use the characteristic formulation of Einstein’s equations resulting from the null

slicing of spacetime outlined in [54] (see also [63]) to numerically integrate our solution.

The clever idea behind this scheme is that both A(r, t, x) and time derivatives disappear

completely from the equations of motion if we replace the latter with d+ = ∂t+A ∂r, the

directional derivative along outgoing null geodesics. The equations thereby obtained

reduce to a set of nested radial ODEs that is much easier to tame than Einstein’s

equations in all their glory.

For numerical purposes, we need to change variables to u = 1/r to make the

domain compact, and redefine the fields appearing in the metric by subtracting the

known divergent pieces as u→ 0. We do so as follows:

Φ(u, t, x) ≡ φ(u, t, x)u,

Σ(u, t, x) ≡ 1 + λ(t, x)u

u
− 1

4
φ(u, t, x)2u,

B(u, t, x) ≡ b(u, t, x)u3,

χ(u, t, x) ≡ c(u, t, x)u3,

Fx(u, t, x) ≡ − ∂xλ(t, x) + fx(u, t, x),

d+Σ(u, t, x) ≡ (1 + λ(t, x)u)2

2u2
+ Σ̃(u, t, x),

d+Φ(u, t, x) ≡ Φ̃(u, t, x),

d+B(u, t, x) ≡ − 3

2
b(u, t, x)u2 +

(
B̃(u, t, x) +

1

2
∂ub(u, t, x)

)
u3,

A(u, t, x) ≡ (1 + λ(t, x)u)2

2u2
+ a(u, t, x)

(B.1)

We remark that the presence of a scalar source forces us to shift the field Σ by an

appropriate function of φ so that it satisfies our asymptotic analysis.

Given φ, λ, and b, we can proceed to solve for c, fx, Σ̃, Φ̃, and B̃ – in that order. The

prescription to find appropriate boundary conditions for these new fields is to expand

the equations of motion near u = 0 and verify their agreement with the asymptotic
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analysis conducted in §2.2. We have, after an appropriate normalization of the ODEs:

u

3
∂uc(u, t, x) + c(u, t, x) = gc(t, x) ⇒ c(u, t, x) =

Cc(t, x)

u3
+ gc(t, x),

−u
2

2
∂2
ufx(u, t, x)− u ∂ufx(u, t, x) + fx(u, t, x) = gfx(t, x)

⇒ fx(u, t, x) =
C

(1)
fx

(t, x)

u2
+ C

(2)
fx

(t, x) u+ gfx(t, x),

−u ∂uΣ̃(u, t, x) + Σ̃(u, t, x) = gΣ̃(t, x) ⇒ Σ̃(u, t, x) = CΣ̃(t, x) u+ gΣ̃(t, x),

−u ∂uΦ̃(u, t, x) + Φ̃(u, t, x) = gΦ̃(t, x) ⇒ Φ̃(u, t, x) = CΦ̃(t, x) u+ gΦ̃(t, x),

u

2
∂uB̃(u, t, x) + B̃(u, t, x) = gB̃(t, x) ⇒ B̃(u, t, x) =

CB̃(t, x)

u2
+ gB̃(t, x) .

• For c, we find that

gc(t, x) =
1

6
φ0(t, x)φ1(t, x)− 1

12
λ(t, x)φ0(t, x)2 (B.2)

agrees with the asymptotic expansion for Σ; spectral methods take care of making

the non-analytic part vanish: Cc(t, x) = 0.

• For fx, we find that gfx(t, x) = O(u2). As a result, we need to specify ∂ufx(u =

0, t, x) = f (3)(t, x) as a boundary condition, which in turn determines C
(2)
fx

(t, x).

Again, spectral methods ensure C
(1)
fx

(t, x) = 0.

• For Σ̃, we find

gΣ̃(t, x) = −1

8
φ0(t, x)2 +O(u) , (B.3)

which agrees with the asymptotic expansion for d+Σ. However, we do things a bit

differently to determine Σ̃ on the entire domain [63]. Indeed, in order to ensure

that the computational domain remains on a fixed rectangular grid, a condition

(A.4) on d+Σ was derived in Appendix A. We use this horizon condition as a

boundary condition for Σ̃(u = uh, t, x). As a consistency check, one can verify

that

∂uΣ̃(u = 0, t, x) =
1

2
T00(t, x)− 1

3
φ0(t, x)φ1(t, x)− 1

12
λ(t, x)φ0(t, x)2 (B.4)

is indeed satisfied at every time step.

• For Φ̃, we find

gΦ̃(t, x) = −1

2
φ0(t, x) +O(u2), (B.5)

– 26 –



thus we need to impose

∂uΦ̃(u = 0, t, x) = CΦ̃(t, x) = −φresponse(t, x) (B.6)

for Φ̃ to be in agreement with the asymptotic analysis for d+Φ.

• For B̃, things are a bit trickier. The shift above is the only one that reconciles

the expansion of d+B near the boundary with the value of gB̃(t, x) obtained from

its redefinition; every other choice leads to a contradiction between the equation

of motion and its expected behaviour, which requires

B̃(u = 0, t, x) =
1

4
(∂xφ0(t, x))2 − 1

4
(∂xf

(3)(t, x))2 . (B.7)

With those solutions in hand, the next step is to calculate ∂tλ. Since λ determines

the position of the apparent horizon, it makes sense to solve for its dynamics using in-

formation about the horizon for increased accuracy. To proceed, we need two equations:

the horizon condition (A.4), which determines a condition on d+Σ, and the stationarity

constraint, which ensures that the horizon condition is satisfied at all times. Rather

than using the field redefinition of d+Σ in the horizon condition, we use the definition

of d+ to express d+Σ as

d+Σ = ∂tλ+ A+ d+

(
−1

4
φ2

)
(B.8)

As a result of our knowledge of ahor(t, x) from the stationarity condition, we can calcu-

late ∂tλ, which in turn enables us to solve for a everywhere by using the last relation

above.

Now that we have solved for all the fields on a particular time slice, all that is

left to do is to propagate λ, T00, Ttx, φ and b forward in time (the last two from our

knowledge of d+Φ and d+B), and reiterate the procedure.
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