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TORUS KNOTS AND THE RATIONAL DAHA

EUGENE GORSKY, ALEXEI OBLOMKOV, JACOB RASMUSSEN, AND VIVEKSHENDE

ABSTRACT. We conjecturally extract the triply graded Khovanov–Rozansky homology of the
(m,n) torus knot from the unique finite dimensional simple representation of the rational DAHA
of type A, rankn − 1, and central characterm/n. The conjectural differentials of Gukov,
Dunfield and the third author receive an explicit algebraic expression in this picture, yielding a
prescription for the doubly graded Khovanov–Rozansky homologies. We match our conjecture
to previous conjectures of the first author relating knot homology toq, t-Catalan numbers, and
of the last three authors relating knot homology to Hilbert schemes on singular curves.

1. INTRODUCTION

Given a knotK and an integerN , Khovanov and Rozansky construct adoubly graded
vector spaceHN,K categorifying the quantumslN invariant ofK (in the fundamental repre-
sentation) [KR08a]. In particular, its Poincaré polynomial PN,K(q, t) specializes att = −1
to the slN knot polynomialPN,K(q). They also construct atriply gradedvector spaceHK

whose Poincaré polynomialPK(a, q, t) specializes att = −1 to the HOMFLY polynomial
PK(a, q) [KR08b]. While the HOMFLY polynomial collects the data of the slN polynomi-
als,PK(q

N , q) = PN,K(q), this does not holdfor the Poincaré series of the categorifications:
PK(q

N , q, t) 6= PN,K(q, t). However, there is a spectral sequenceHK → HN,K constructed
by the third author [Ras06], which establishes part of a richer conjectural pictured advanced in
[DGR06]. In all known cases, the spectral sequence converges after the first differential.

LetK be a(n,m) torus knot. While these are among the simplest of all knots, no rigorous
calculation of the invariantsPK or PN,K has been carried out even whenn = 3 (except the
caseN = 2, where the answer was computed in [Tur08]). By contrast, an explicit formula for
PK was given by Jones [Jon87]. Some recent works [DMMSS11, AS11, Che11, ORS12] give
conjectural formulas1 for PK with various differing (often physical) motivations; in all tested
cases the formulas agree both with each other and the actual values ofPK . However thus far
there has been no prescription for eitherPN,K or the differential recoveringHN,K from HK .

We describe here conjectures which recover the homologies of the torus knots – bothHK and
HN,K – from the simple representations of the rational Cherednikalgebras of type A [EG02].
Taking h to be then − 1 dimensional reflection representation ofSn, recall that forc ∈ C
the rational Cherednik algebraHc contains as subalgebrasC[h], C[h∗], andC[Sn], and these
together generate it. Permutationsσ ∈ Sn interact withC[h] andC[h∗] via σh = σ(h)σ. The
elements ofh andh∗ are subject to the following commutation relation:

[y, x] = 〈y, x〉 − c
∑

s∈S
〈y, αs〉〈α

∨
s , x〉 · s for y ∈ h andx ∈ h∗.

HereS is the set of transpositions, andαs, α
∨
s are the root and coroot corresponding tos ∈ S.

1 None of these are given in closed form. In [ORS12] the answer takes the form of a sum over diagrams whose
evaluation requires times measured in minutes for e.g. a(13, 20) torus knot.
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One generally restricts attention to the categoryO of finitely generated representations in
which h acts locally nilpotently. Among these are thestandard modules, constructed from
an irreducible representationτ of Sn by lettingP ∈ C[h∗] act onτ by the scalarP (0), and
then inducingMc(τ) := Hc ⊗C[h∗]⋊W τ . These have a unique simple quotientLc(τ), and
these quotients account for all simples [DO03]. For mostc, the mapMc(τ) → Lc(τ) is an
isomorphism, and it is known [BEG03a] thatLc(τ) is finite dimensional if and only ifc = m/n
with m,n relatively prime integers and moreoverτ is the trivial representation ifm > 0 and
the sign representation otherwise. We denote this representation simplyLm/n.

As the commutation relations inHc preserve the difference betweenh∗-degree andh-degree,
the algebraHc is graded by this difference. In fact the grading is internal: there is an element
h ∈ Hc which acts semisimply and whose eigenvalues give the grading. It can be shown that
h acts semisimply and with integer eigenvalues on every module in categoryO, so these all
acquire a grading compatible with that of the algebra. We cannow state:

Proposition 1.1. The HOMFLY polynomial of the(n,m) torus knot is given by:

P(n,m) = a(n−1)(m−1)
n−1∑

i=0

a2i tr(qh; HomSn(Λ
ih, Lm/n))

The left hand side has been calculated by Jones [Jon87] and the right hand side by Berest,
Etingof, and Ginzburg [BEG03a]; in Section 3 we show they agree.

To recover the HOMFLY homology we need an additional grading. The algebraHc does
not admit a second grading, but itdoesadmit a filtration in whichSn occupies filtration degree
zero andh, h∗ both occupy filtration degree1.

Conjecture 1.2.Lm/n admits a filtration. . .Fi−1 ⊂ Fi ⊂ Fi+1 . . . compatible with the filtra-
tion ofHm/n (in particular gFi ⊂ Fi for g ∈ Sn) and the grading induced byh so that

HT (m,n)
∼= HomSn(Λ

∗h, grF Lm/n) =: HF
m/n.

The homology groupHT (m,n) is triply graded, and so isHF
m/n: it has one grading from the

degree in the exterior algebraΛ∗V ; one grading from the elementh; and one from the filtration
F . Roughly speaking, these correspond respectively to the gradings measured bya, q, andt in
the polynomialPK ; a precise statement appears at the end of the introduction.

For the filtrationF we havethreecandidates arising from different descriptions ofLm/n.

• Falg is the most explicit. Inside the polynomial ringC[x1, . . . , xn] we consider the
ideal a generated by symmetric functions of positive degree, and the filtration by its
powers. The spaceLm/n is a quotient ofC[x1, . . . , xn] on whichHm/n acts bySn-
twisted differential operators, and so also carries a filtration by powers ofa. There is a
certain non degenerate pairing(·, ·)m/n onLm/n. Up to a shift by the grading,Falg is
the filtration dual to that arising from powers ofa.

• F ind comes from relations betweenLc for varying values ofc. Specifically, ifm > n,
there is a way to buildLm/n from L(m−n)/n which induces a filtration on the former
from one on the latter. Moreover, althoughLm/n andLn/m are rather different (having
in particular different dimensions), their “spherical” parts are canonically isomorphic,
and the whole representation may be reconstructed from its spherical part. Thus using
the Euclidean algorithm we may induce a filtration on anyLm/n starting from the trivial
filtration on the one dimensional spaceL1/r.

• F geom comes from the realization ofLm/n as the cohomology of a certain Hitchin fibre
[OY??]; it measures the difference between the homologicaldegree and the grading.
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These various filtrations offer different advantages. The filtration Falg is the most easily
computable in any given case. The inductive filtrationF ind is defined so as to interact well
with results of Gordon and Stafford [GS05, GS06] which give formulas for the (triply graded)
Poincaré series ofHF ind

m/n in terms of equivariant Euler characteristics of coherent sheaves on
the Hilbert scheme of points onC2. This yields structural predictions and in some cases ex-
plicit formulas as in [DMMSS11] and [ORS12, Conj. 8]. In particular, whenm = n + 1 the
representationL(n+1)/n is known to be isomorphic to the space of diagonal harmonics intro-
duced and studied by M. Haiman [Hai94, Hai02a] and in this case we find certain well known
q, t-symmetric polynomials appearing as the coefficients ofa in PT (m,n). These polynomials
were conjectured to model knot homology in [Gor10].

The geometric filtrationF geom is defined so that, with this choice of filtration, Conjecture
1.2 can be derived from the main conjecture of [ORS12] relating the HOMFLY homology to
Hilbert schemes of points on singular curves. The basic point is that the representationLm/n

can be realized geometrically [Yun11, OY??] as the cohomology of a certain parabolic Hitchin
fibre corresponding to a spectral curve with singularityxm = yn; we will explain this further
in Section 9. This fibre admits an affine cell decomposition which is expected to be related to
the combinatorial models for diagonal harmonics.

The filtrationF ind will be defined in Section 4 as the minimal filtration satisfying certain
properties. After we verify these forFalg andF geom, we will concludeF ind ⊂ Falg and
F ind ⊂ F geom. Numerical evidence leads us to believe:

Conjecture 1.3. The three filtrationsFalg,F ind,F geom are the same.

We turn to the evidence supporting Conjecture 1.2. Proposition 1.1 asserts the conjecture
holds at the level of Euler characteristics. Whenn = 2 the HOMFLY homologyHT (2,m) was
calculated in in [Kho07], and forn = 3 a formula forPT (3,m) was conjectured in [DGR06]; we
will check in Section 5 that these match the prediction of Conjecture 1.2.

At present there are no systematic calculations ofHT (n,m) for largern. We can however
check that certain structural properties which are known orconjectured for the HOMFLY ho-
mology are manifestly present in theHm/n. The first nontrivial check comes from the fact
that althoughT (m,n) andT (n,m) are the same knots, the algebrasHm/n andHn/m are not
isomorphic, and the representationsLm/n andLn/m do not even have the same dimension as
vector spaces. Nevertheless, it is possible to check that

Proposition 1.4.Hm/n
∼= Hn/m as triply-graded groups

as would be expected from the conjecture. The coincidence ofq-gradings for these spaces was
proved earlier in [CEE07] ata = 0, and in [Gor11] for generala. The filtrationF ind is only
really defined form/n > 1 so in this case we declare the above statement to hold by definition.
The other two filtrations make sense for allm/n and the conjecture predicts a coincidence of
filtrations under the identificationHm/n

∼= Hn/m. ForFalg this follows from [Gor11], and for
F geom it follows from the geometric construction [OY??] ofLm/n.

It was conjectured in [DGR06] that, for any knotK, the triply graded homologyHK ad-
mits an involution generalizing theq → q−1 symmetry of the HOMFLY polynomial. The
corresponding “Fourier transform”Φ on Lm/n is well known (we recall it in Section 2) and,
consequently,Hm/n has the desired symmetry.

A second conjecture in [DGR06] states that the groupHK should be equipped with differen-
tialsdN : HK → HK for all N ∈ Z. These differentials are supposed to be mutually anticom-
muting. ForN > 0, the differentials should recover theslN homology viaH(HK , dN) = HN,K .
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A weakened form of this statement, with the single differential replaced by a spectral sequence,
was proved in [Ras06]. It is thus natural to look for such differentials onHm/n.

Proposition 1.5. For all N ∈ Z, there are mutually anticommuting differentialsdN : Hm/n →
Hm/n. The behaviour of these maps with respect to the triple grading is compatible with that
predicted by[DGR06]. Moreover, the involutionΦ : Hm/n → Hm/n exchangesdN and±d−N .

Conjecture 1.6. For N > 0, we haveH(Hm/n, dN) = HN,T (m,n).

As m → ∞, the lowq-degree terms ofHT (n,m) stabilize [Sto07] (cf. [DGR06], [RO10].)
More precisely, we define

HT (n,∞) = lim
m→∞

HT (n,m)

(aq−1)(m−1)(n−1)

Here the powers ofa, q should be interpreted as shifting thea, q gradings, and the shifts are
arranged so that the unique term inHT (n,m) with homological grading0 is in (a, q) bigrading
(0, 0) after the shift.

In analogy with this construction, we consider the limit

H∞/n = lim
m→∞

Hm/n.

In this limit, the representation theory of the DAHA simplifies considerably, and we find that
H∞/n is the tensor product of an exterior algebra with a polynomial algebra, as predicted by
[DGR06] (see also [Gor10]):

H∞/n
∼= Λ∗(ξ1, . . . , ξn−1)⊗ C[u1, . . . , un−1].

Proposition 1.7. The differentialdN onH∞/n obeys the graded Leibnitz rule, must vanish on
ui by grading considerations, and is given onξi by the formula

dN(ξi) =
∑

i1+...iN=i

ui1ui2 . . . uiN .

Equivalently, introducing the following elements ofC[ξi, uj, t]/t
N ,

ξ = ξ1t+ ξ2t
2 + . . .+ ξn−1t

n−1 and u = u1t + u2t
2 + . . .+ un−1t

n−1,

the formula is expressed bydNξ = uN .

This gives the following conjecture, which is stripped of all explicit mention of the DAHA.

Conjecture 1.8. The stable reducedslN homology ofT (n,∞) is

H(Λ∗(ξ1, . . . , ξn−1)⊗ C[u1, . . . , un−1], dN)

wheredN is defined as above.

WhenN = 2, thesl(2) homology is isomorphic to the original Khovanov homology. Thanks
to Bar-Natan, Morrison and Shumakovitch ([BN07],[BM],[KhoHo]), there are extensive com-
putations of Khovanov homology for torus knots. Conjecture1.8 agrees with this data as far
as we are able to compute it. For example, Conjecture 1.8 correctly predicts the reduced Kho-
vanov homology ofT (6, 25) in q–degree≤ 50; the total dimension of the group in question is
793, with 267-dimensional part ofq–degree≤ 50. The Poincaré series of the stable homology
turns out to be related to the Rogers-Ramanujan identity. For more details and a discussion of
the unreduced Khovanov homology, see [GOR12].
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In Section 9, we explain the relation of Conjecture 1.2 to [ORS12, Conj. 2]. This previous
conjecture proposes that ifL is the link of a plane curve singularity, then theunreducedHOM-
FLY homologyHL is given as the direct sum of the cohomologies of certain nested Hilbert
schemes of points. We show here that these cohomologies may be extracted from the cohomol-
ogy of a parabolic Hitchin fibre where the spectral curve carries the desired singularity. The
argument involves Springer theory, both the usual kind and the global Springer theory of Z.
Yun [Yun11], and various support theorems [Yun11, MY11, MS11, OY??] which build upon
the work of Ngô [Ngo10].

Taking the singularity to be of the formxm = yn puts us in the situation of the present
article. In this case, Yun and the second author have constructed the action of the rational
Cherednik algebra on (a factor of) the cohomology of a parabolic Hitchin fibre with this spectral
curve [OY??]; they show that the resulting representation isLm/n. In the process one takes the
associated graded of the perverse filtration on the cohomology, yielding the grading onLm/n.
There is a filtrationF geom compatible with the algebra action which comes from the difference
between the cohomological grading and the perverse grading. With this choice of filtration,
Conjecture 1.2 is shown to be equivalent to the special case of [ORS12, Conj. 2] where the
singularity isxm = yn.

It should be remarked however that we have no direct construction of thedN in terms of
the nested Hilbert schemes of [ORS12]. More importantly, wehave no construction of them
at all for the links of singularities without aC∗ action; this action plays a crucial role in the
construction by [OY??] of the rational DAHA representation. On the other hand the original
physical ideas [OV00, GSV05] leading to the prediction in [DGR06] of the differentials did not
depend on such an action. Recently there has been an explicitphysical derivation of [ORS12,
Conj. 2] along these lines [DSV12, DHS12]; in this construction it is the nested Hilbert schemes
rather than the Hitchin fibres which appear. This suggests two challenges: on the one hand, to
explain on physical grounds the appearance of the Hitchin fibres, and on the other, to construct
the differentials directly in terms of the nested Hilbert schemes.

Grading conventions.
The groupHK is triply graded; that is

HK
∼=
⊕

v∈Z3

Hv
K .

To express this grading in the more conventional form

HK
∼=
⊕

i,j,k∈Z
Hi,j,k

K

we must pick a basis forZ3, or equivalently, projectionsp1, p2, p3 : Z3 → Z in the direction of
the basis vectors. We will refer to any such projection as agradingonH.

Two of these three projections arise naturally from the requirement that the graded Euler
characteristic ofH is the HOMFLY-PT polynomial:

PK =
∑

v∈Z3

(−1)π(v)ap1(v)qp2(v) dimHv
K .

We refer to these as thea-grading andq-grading. With our normalization of the HOMFLY-PT
polynomial, these gradings are always even whenK is a knot. Their (conjectured) relation
to the triple grading on the groupsHF

m/n = ⊕i HomSn(Λ
ih, grLm/n) is easily described. The
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q-grading istwicethe internal grading onLm/n, while thea-grading is

a = µ(K) + 2i = (n− 1)(m− 1) + 2i.

There are several natural choices for the third grading onHK . Some are described below:

(1) Homological grading: This is the homological grading defined by Khovanov and
Rozansky in [KR08b], and is equal to one half of the gradinggrh used in [Ras06]. We
will refer to it as theh-grading. With respect to this grading, the Poincaré polynomial
of HT (2,3) is a2q−2h1 + a4q0h−1 + a2q2h−1.

(2) t-grading This is the gradingt = −h + a/2. It gives the homological grading on
Khovanov homology and the negative of the homological grading on slN homology
[Ras06]. IfK is an algebraic knot, the conjecture of [ORS12] matches thet-grading
with the homological grading on the cohomology of the compactified Jacobian for those
groups with minimala-grading (a = µ(K)).

(3) δ-grading: This is the gradingδ = a + q + 2h = 2a + q − 2t. It is preserved under
the conjectured symmetry ofHK [DGR06] and is constant with value−σ(K) if K is a
two-bridge knot [Ras06]. (Our convention for the signatureis that positive knots have
negative signature.)

(4) filtration grading: If K is an algebraic knot, we define thefiltration gradingto be

f = (δ − a+ µ(K))/2 = (q + µ(K))/2 + h.

For torus knots, we conjecture that this grading coincides with the grading induced by
the filtrationF• onHm/n.
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2. THE RATIONAL CHEREDNIK ALGEBRA

In this section we review the definition and basic propertiesof the rational Cherednik algebra,
or rational DAHA, as defined in [EG02]. All of the material in this section is well known, and
we discuss only typeAn, and only topics which are immediately relevant to our purposes. More
complete introductions can be found in [Che05] and [EM10].

2.1. Dunkl Operators. Our starting point is the ringR = C[x1, . . . , xn]. It will be convenient
to writeXi for the operator onR which multiplies a polynomial byxi. The symmetric group
Sn acts onR by permuting thexi’s. Clearly

[Xi, Xj] = 0 and sXis
−1 = Xs(i).

The same relation holds for the operators∂/∂xi of partial differentiation with respect to the
xi. TheDunkl operators[Du89]Di : R → R deform the partial derivatives in such a way that
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the relations continue to hold. Fixingc ∈ C, the Dunkl operators are defined by

Di(p) =
∂p

∂xi
+ c
∑

j 6=i

sijp− p

xi − xj

wheresij is the transposition that exchangesi andj. A calculation shows

[Di, Dj] = 0 and sDis
−1 = Ds(i).

The operatorsXi andDj do not commute, but their failure to do so can be expressed in a
nice form. It is convenient to consider the vector spaces

h = span〈D1, D2, . . . , Dn〉 and h
∗
= span〈X1, X2, . . . , Xn〉.

Elements ofh andh
∗

are clearly linear operators acting onR. We can identifyh andh
∗

with
the Cartan subalgebra and dual Cartan subalgebra forgln, where the Weyl groupW = Sn acts
on operators by conjugation. In particular, there is a pairing 〈·, ·〉 : h× h

∗
→ C defined by

〈Di, Xj〉 = δij

Then forv ∈ h, w ∈ h
∗
, it can be verified that

[v, w] = 〈v, w〉 − c
∑

s∈S
〈v, αs〉〈α

∨
s , w〉 · s

whereS ⊂ Sn is the subset of all transpositions (these act by reflectionson h andh
∗
), and

αs andα∨
s are the corresponding roots and coroots. Explicitly, we have αsij = Xi − Xj and

α∨
sij

= Di −Dj.

2.2. The algebra. The rational Cherednik algebraHc associated togln is defined to be the
associative algebra overC generated byh, h

∗
, andSn, subject to relations analogous to the

ones considered in the previous subsection. That is, for anyx, x′ ∈ h
∗
, anyy, y′ ∈ h, and any

s ∈ Sn, we have:

[x, x′] = 0 sxs−1 = s(x)(1)

[y, y′] = 0 sys−1 = s(y)(2)

and [y, x] = 〈y, x〉 − c
∑

s∈S
〈y, αs〉〈α

∨
s , x〉 · s(3)

wheres(x), s(y) indicate the action ofSn onh
∗

andh.

2.2.1. Triangular decomposition.The relations ensure that any element ofHc can be written
in the form

∑
α Pα(y) · σα · Qα(y) for some polynomialsPα, Qα and elementsσα ∈ Sn. In

other words, the multiplication mapC[h]⊗C[Sn]⊗C[h∗] → Hc is surjective. The same is true
for other orderings of the factors. In fact, the map above is an isomorphism; this is the “PBW
theorem” for Cherednik algebras [EG02].

2.2.2. Grading. Consider the free noncommutative algebraA = C〈xi, yj, Sn〉; there is a sur-
jective mapA→ Hc with kernel given by the above relations. The free algebra has aZ-grading
in which the elementsx ∈ h

∗
have degree1, the elementsy ∈ h have degree−1, and the ele-

ments ofSn have degree0. From Equations 1, 2, 3 we see this grading descends toHc.
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2.2.3. Internal grading andsl2. In fact, the grading is internal, i.e., given as eigenvaluesof the
adjoint action of a certain element. Specifically,h = 1

2

∑
i(xiyi + yixi) ∈ Hc has the property

[BEG03a, Lem. 2.5] that[h, P ] = deg(P ) · P for any homogeneousP ∈ Hc. This element is
included in asl2 triple. Letx2 :=

∑
i x

2
i andy2 :=

∑
i y

2
i . Then evidently[h,x2] = 2x2 and

[h,y2] = −2y2; one can calculate that[x2,y2] = −4h. Soh,x2/2,−y2/2 form ansl2 triple.
Note thissl2 commutes withSn.

2.2.4. Filtration. The free algebraA carries an increasingN-filtrationC[Sn] = G0 ⊂ G1 ⊂ · · ·
in whichGiA is spanned as a vector space by elements which can be written as products of at
mosti of thex’s andy’s, and an arbitrary number of elements ofSn. Evidently this filtration
descends to a filtration, again denotedG•, onHc.

2.2.5. Fourier transform.There is a mapΦ : Hc → Hc which acts on generators by carrying
xi → yi, yi → −xi, and preserving elements ofSn. By inspection of the relations it gives
a well defined algebra isomorphism; by construction it reverses the grading and preserves the
filtration. It is shown in [BEG03a, Sec. 3] that in fact thesl2 described above exponentiates to
anSL2(C) action by algebra automorphisms onHc; Φ is among these.

2.3. The sln version. We will generally work with Cherednik algebraHc associated tosln,
rather than thegln algebra described above; in particular, the representationLm/n appearing in
Conjecture 1.2 is a representation ofHc rather thanHc.

Let h ⊂ h andh∗ ⊂ h
∗

be the Cartan and dual Cartan forsln; they are respectively generated
by the differencesyi − yj andxi − xj . The algebraHc is generated byx ∈ h∗, y ∈ h, and
s ∈ Sn, subject to the relations in equations (1)-(3). Sinceh andh∗ areSn–invariant subsets of
h andh

∗
, we can viewHc as an explicit subalgebra ofHc. As such, it inherits both the grading

and the filtration described above; evidently it is preserved by the Fourier transformΦ.
Note that the elementsh,x2,y2 ∈ Hc do not lie in Hc. Denotex := 1√

n

∑
xi andy :=

1√
n

∑
yi. Then the followingareelements ofHc which play the corresponding roles:

h := h−
xy + yx

2
, x2 := x2 − x2, y2 := y2 − y2.

In fact, there is very little difference betweenHc andHc. WritingD ⊂ Hc for the subalgebra
generated byx, y. Then it is straightforward to see thatD is isomorphic to the algebra of
differential operators in one variable, thatD commutes withHc, and that the multiplication
mapD ⊗Hc → Hc is an isomorphism.

2.4. Representations.By construction, the algebraHc acts onR. That is, the basis elements
xi ∈ h

∗
act as multiplication byxi, and likewise theyi ∈ h act by the Dunkl operatorsDi. This

is thepolynomial representationof Hc, and is denoted byM c.
The subringR ⊂ R generated by differencesxi−xj is a polynomial ring onn−1 variables.

It is preserved by the action ofSn, and by differencesDi −Dj of Dunkl operators. It follows
thatHc acts onR. We writeMc for this polynomial representation ofHc.
M c carries a grading by the eigenvalues ofh, which differs by from the usual polynomial

grading by a shift. Ifη ∈ Hc andp ∈M c are homogenous, then fromhηp = ([h, η]+ ηh)p we
seedeg(ηp) = deg(η)+deg(p). Writing p(x) ∈ Hc for the polynomial viewed as an element of
Hc rather thanM c, we havep = p(x) · 1 hencedeg(p) = deg(p(x))+deg(1) wheredeg(p(x))
is just its degree as a polynomial, and we computedeg(1) = h · 1 = n(1 + (1 − n)c)/2.
In the case of interest we will havec = m/n and soh · 1 = (n + m − mn)/2. Similarly
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Mc acquires a grading by the eigenvalues ofh, which differs from the polynomial grading by
h · 1 = (n(1 + (1− n)c)− 1)/2. Whenc = m/n this is−(m− 1)(n− 1)/2.

Lemma 2.1.LetV ⊂ R be a vector subspace annihilated by all Dunkl operators, andconsider
the idealI = C[h] · C[Sn] · V ⊂ R. ThenHc · I = I.

Proof. Recall the multiplication mapC[h] ⊗ C[Sn] ⊗ C[h∗] → Hc is surjective. SinceV is
annihilated by the Dunkl operators, hence by all nonconstant elements ofC[h∗], it follows that
Hc · V = C[h] · C[Sn] · V = I, and henceHc · I = Hc ·Hc · V = I. �

It follows that the quotientMc/I defines a representation ofHc.

Example.Supposen = 2, and writeu = x1 − x2 so thatMc = C[x1 − x2] = C[u]. S2 has a
unique nontrival elements, which sendsu to−u. If k is even, we compute

D1(u
k) = kuk−1 + c

(−u)k − uk

u
=

{
kuk−1 k even

(k − 2c)uk−1 k odd

SinceD2(u
k) = −D1(u

k) (in general, it’s easy to show that
∑
Di = 0 when restricted toR),

we see that the Dunkl operators have a nontrivial kernel if and only if c = k/2, wherek is an
odd integer. In this caseHk/2 has a finite dimensional representation of the formC[u]/(uk).

An important result of Berest, Etingof, and Ginzburg says that for c > 0, all finite dimen-
sional irreducible representations ofHc arise in this way:

Theorem 2.2. [BEG03b]Hc has finite dimensional representations if and only ifc = m/n,
wherem andn are integers and(m,n)=1. In this case,Hm/n has a unique (up to isomorphism)
finite dimensional irreducible representationLm/n. For c = m/n > 0, Lc = Mc/Ic, whereIc
is an ideal generated by homogenous polynomials of degreem.

The fact thatIc must be a graded ideal follows from considering the action ofh. In any case
Lm/n carries a grading by the eigenvalues ofh, which is the image of the grading onMm/n.
According to Conjecture 1.2, this grading should correspond to theq-grading on the HOMFLY
homologyHT (m,n).

It can be shown that set of polynomials of degreem in Im/n is a copy of the standardn− 1
dimensional representation ofSn. Explicit formulas for these polynomials are given in [Du98]
and [EC03].

2.5. Projectors and the Spherical Subalgebra.Let Vλ be the irreducible representations of
the symmetric groupSn; recall they are labelled by partitionsλ of n. As for any finite group,
any representationW of Sn decomposes canonically as a direct sum intoisotypiccomponents:
W =

⊕
λWλ whereWλ is non-canonically isomorphic to a direct sum ofVλ. The decompo-

sition is encoded by a decomposition of the identity1 ∈ C[Sn] into idempotents1 =
∑

λ eλ
which act by projectioneλW =Wλ.

The algebraHc contains the group ringC[Sn]. Letting the group ring act onHc by right
multiplication, we can decompose

Hc =
⊕

λ

Hc,λ

SimilarlyC[Sn] acts on representations ofHc, so we can decompose

Lm/n =
⊕

λ

eλLm/n

where, as aSn representation,eλLm/n is a direct sum of irreducibles of typeλ.
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Two projectors which are of particular importance are the ones corresponding to the trivial
and alternating representations:

e =
1

|Sn|

∑

s∈Sn

s e− =
1

|Sn|

∑

s∈Sn

sign(s)s

The algebraeHce is thespherical subalgebraof Hc referred to in the introduction, andeLm/n

is thespherical representation. Similarly,e−Hce− ande−Lm/n are known as theantispherical
Cherednik algebra and representation.

2.6. Symmetries.

2.6.1. Fourier transform.SinceLm/n is finite dimensional, thesl2 ⊂ Hc exponentiates to
a SL2(C) action. In particular the Fourier transformΦ will act on Lm/n. Evidently for any
h ∈ Hc andp ∈ Lm/n we haveΦ(h)Φ(p) = Φ(hp). In particular ifh = h is the grading
element,Φ(h) = −h ensures thatΦ reverses the grading onLm/n. SinceΦ commutes withSn,
it preserves all isotypic componentseλLm/n.

2.6.2. Spherical - Antispherical.

Proposition 2.3. ([BEG03b, Prop. 4.6]) There is an isomorphismeHce ∼= e−Hc+1e− which
respects the natural filtrations and gradings on both algebras.

LetW ∈ C[h] denote the Vandermonde determinant. Multiplication byW transforms sym-
metric polynomials into anti-symmetric ones.

Proposition 2.4. ([Hec91];[BEG03a, Prop. 4.11]) IdentifyLm/n andL(m−n)/n, as above, with
the appropriate quotients ofC[h]. Multiplication byW gives an isomorphism

mW : eL(m−n)/n
∼
−→ e−Lm/n.

This isomorphism corresponds to the “top-row / bottom row” symmetry of the HOMFLY
polynomial described in [Kal08]. An analogous symmetry forthe HOMFLY homology of
algebraic knots was conjectured in [Gor10] and [ORS12].

2.6.3. Interchangingn andm. Write hn for the standardn − 1 dimensional representation of
Sn. Then we have

Proposition 2.5. For each1 ≤ k ≤ max(m,n), there is a grading-preserving isomorphism

HomSn(Λ
khn, Lm/n) ∼= HomSm(Λ

khm, Ln/m).

In particular, the proposition implies thatHomSn(Λ
khn, Lm/n) = 0 for m < k ≤ n.

Proof. Consider the zero-dimensional schemeMm,n defined by the coefficients inz-expansion
of the following equation2

(4) (1 + z2e2 − z3e3 + . . .+ (−1)nznen)
m = (1 + z2ẽ2 − z3ẽ3 + . . .+ (−1)mznẽm)

n

The main result of [Gor11] is an explicit isomorphism of graded vector spaces

2 This scheme appears in [FGS99] and is the moduli space of genus zero maps to a rational curve containing the
singularityxm = yn. The length of this scheme is shown there to be equal to the Euler number of the compactified
Jacobian of the curve. The comparison of the grading onLm/n and the perverse grading on the cohomology of this
compactified Jacobian (see Section 9 and [MS11, MY11, OY??])gives a one-parameter refinement of this result.
The additional conjectural comparison ofFgeom andFalg, when restricted toeLm/n, is a bigraded refinement of
this result, which in some form had been conjectured by L. Göttsche.



TORUS KNOTS AND THE RATIONAL DAHA 11

(5) HomSn(Λ
khn, Lm/n) ∼= Ωk(Mm,n).

In particular,ek andẽk are identified with the elementary symmetric polynomials onhn and
hm respectively. The right hand side of (5) is symmetric inm andn, which gives the result. �

This symmetry corresponds to the identity of torus knotsT (n,m) = T (m,n).

Remark.In [CEE07, Prop. 9.5] there is a (rather more sophisticated)construction of an iso-
morphismeLm/n = eLn/m; the techniques there may extend to give the above result.

Example.Let us prove Proposition 2.3 using (5). One can rewrite (4) toget the isomorphism

eLm/n = C[Mm,n] ∼= C[e2, . . . , en]/(f1, . . . , fn−1),

where
fi = Coefm+i[(1 + e2z

2 + . . .+ (−1)nenz
n)

m
n ].

On the other hand, we have

e−Lm/n = Ωn−1(Mm,n) ∼= C[e2, . . . , en]/

(
∂fi
∂ej

)
.

The isomorphismeL(m−n)/n = e−Lm/n follows from the identity

∂fi
∂ej

= (−1)j
m

n
Coefm+i−j [(1 + e2z

2 + . . .+ (−1)nenz
n)

m−n
n ].

Lemma 2.6. Let pk =
∑
xki denote the power sum. The following identity holds:

y2(pk) = (1 + c)k(k − 1)pk−2 − kc
k−2∑

i=0

pipk−2−i.

Proof. We haveyapk = kxk−1
a , so

y2(pk) =
∑

a

ya(kx
k−1
a ) = k(k − 1)pk−2 − kc

∑

a6=b

xk−1
a − xk−1

b

xa − xb
=

k(k − 1)pk−2 − kc

(
k−2∑

i=0

pipk−2−i − (k − 1)pk−2

)
. �

Suppose that we have two sets of variablesx1, . . . , xn andx̃1, . . . , x̃m and letpk andp̃k denote
the power sums inxi andx̃i respectively. Suppose furthermore that these sets of variables are
related by the equation (compare with (4))

(6)

[
n∏

i=1

(1− zxi)

]m
=

[
m∏

i=1

(1− zx̃i)

]n

By taking the logarithmic derivative inz one immediately gets the identity

mpk = np̃k

Definition 2.7. Let us define a bidifferential operator on symmetric functions:

〈f, g〉x =
∑

i

∂f

∂xi
·
∂g

∂xi
.
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Lemma 2.8. For symmetricf andg we have

〈f, g〉x =
m

n
〈f, g〉x̃.

Proof. We have

〈pk, pl〉x =
∑

i

klxk+l−2
i = klpk+l−2,

so

〈p̃k, p̃l〉x =
m2

n2
· klpk+l−2 =

m

n
· klp̃k+l−2 =

m

n
〈p̃k, p̃l〉x̃.

Since〈·, ·〉 is a first order differential operator in both arguments, we conclude that

〈f, g〉x =
m

n
〈f, g〉x̃. �

Theorem 2.9. Consider the HamiltoniansHc
2 := y2 for c = m/n andc = n/m as operators

oneLm/n = eLn/m. Then

H
m/n
2 =

m

n
· H̃n/m

2 .

Proof. By Lemma 2.6 we have

H
m/n
2 (pk) =

m+ n

n
k(k − 1)pk−2 − k

m

n

k−2∑

i=0

pipk−2−i,

so
H

m/n
2 (p̃k) =

m

n
H

m
n
2 (pk) =

m

n
H̃

n/m
2 (p̃k).

The following identity is true for symmetric polynomialsf andg:

(7) H2(fg) =
∑

i

Di(Di(f)g + fDi(g)) = H2(f)g + fH2(g) + 2〈f, g〉x.

Now the theorem follows from (7) and Lemma 2.8, since it was already checked for the gener-
atorspk. �

Corollary 2.10. (cf. [CEE07], Proposition 8.7) The actions of the spherical subalgebras
eHm/ne andeHn/me onLm/n andLn/m are proportional.

Proof. It is well known (e.g. [BEG03a], Propositions 4.10 and 4.11)that the spherical subal-
gebraeHce is generated byHc

2 andpk. �

3. EULER CHARACTERISTIC

Definition 3.1. LetL be a representation ofSn. The Frobenius character ofL is the following
symmetric function:

ch(L) =
1

n!

∑

σ∈Sn

TrL(σ)p
k1(σ)
1 . . . pkr(σ)r ,

wherepi are power sums, andki(σ) is the number of cycles of lengthi in a permutationσ.

It is well known that the Frobenius character of an irreducible representation ofSn labelled
by the Young diagramλ is given by the Schur polynomialsλ. As always we denote byh the
(n− 1)-dimensional reflection representation ofSn. The following lemma is well known.
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Lemma 3.2. For σ ∈ Sn acting in the reflection representationh,

(8) det(1− qσ) =
1

1− q

∏

i

(1− qi)ki(σ)

Proof. Indeed, one has to prove that in the definingn-dimensional representation

det(1− qσ) =
∏

i

(1− qi)ki(σ).

This is easy to check by reduction ofσ to a single cycle. �

Proposition 3.3. For any representationL of Sn,

(9)
n−1∑

k=0

(−u)k dimHomSn(Λ
kh, L) =

1

1− u
ch(L; pi = 1− ui).

Proof. By orthogonality of characters, one has
n−1∑

k=0

(−u)k dimHomSn(Λ
kh, L) =

n−1∑

k=0

(−u)k〈Λkh, L〉 =

1

n!

∑

σ∈Sn

n−1∑

k=0

(−u)k TrL(σ) TrΛkh(σ).

Now we can use the identity (8):
n−1∑

k=0

(−u)k TrΛkh(σ) = det h(1− uσ) =
1

1− u

∏

i

(1− ui)ki.

�

Definition 3.4. LetFm/n(q; pi) denote the graded Frobenius character ofLm/n. LetPm,n(a, q)
denote the reduced HOMFLY polynomial for the the(m,n) torus knot.

Proposition 3.5. The generating function forFm/n(q; pi) for givenm is:

(10) Fm(q; pi) :=
∞∑

n=0

znFm/n(q; pi) =
1

[m]q

m−1∏

i=0

∏

j

1

1− qi+
1−m

2 zxj
,

where[m]q =
qm/2−q−m/2

q1/2−q−1/2 is a normalizedq-integer.

Remark.While we have been consideringLm/n only for coprimem andn, we will see in the
proof that the formula for the Frobenius characterFm/n makes sense for any natural numbern.

Proof. Let δm,n = (m−1)(n−1)
2

. The q-graded character ofLm/n was computed in [BEG03b]
(Theorem 1.6):

TrLm/n
(σ · qh) = q−δm,n

deth(1− qmσ)

deth(1− qσ)

(8)
= q−δm,n

1− q

1− qm

∏

i

(
1− qmi

1− qi

)ki(σ)

.

Therefore

Fm/n(q; pi) =
1

n!

∑

σ∈Sn

q
n(1−m)

2

[m]q

∏

i

(
1− qmi

1− qi
pi

)ki(σ)

.
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Now

Fm(q; pi) =
1

[m]q
exp

( ∞∑

k=1

(1− qmk)pkz
kq

k(1−m)
2

(1− qk)k

)
=

1

[m]q

m−1∏

i=0

exp

( ∞∑

k=1

pkq
ikzkq

k(1−m)
2

k

)
=

1

[m]q

m−1∏

i=0

∏

j

1

1− qi+
1−m

2 zxj
. �

Theorem 3.6. The representationLm/n has a following decomposition into irreducible repre-
sentations:

(11) Lm/n =
1

[m]q

⊕

|λ|=n

sλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 )Vλ

whereVλ is an irreducible representation ofSn labelled by the Young diagramλ.

Proof. We have to prove the identity

Fm/n(q; pi) =
1

[m]q

∑

|λ|=n

sλ(xi)sλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 ).

It follows from (10) and the Cauchy identity
∏

i,j

1

1− xiyj
=
∑

λ

sλ(xi)sλ(yj)

with

yj =

{
zqj+

1−m
2 , 0 ≤ j < m

0 , j ≥ m
. �

Remark.The polynomialsλ(q
1−m

2 , q
3−m

2 , . . . , q
m−1

2 ) is theq-character of the representation of
Lie algebrasl(m) labelled by the diagramλ. In particular, it vanishes ifλ has more thanm
rows. It is useful to use the hook formula (e.g. [Ais97],[Res87])

(12) sλ(q
1−m

2 , . . . , q
m−1

2 ) =
∏

(i,j)∈λ

[m+ i− j]q
[hij ]q

,

wherehij is the hook length for a box(i, j) in λ.

The identity (11) can be also deduced from the Propositions 2.5.2 and 2.5.3 of [Hai94].

Example.Letλ be a hook-shaped diagram withk+1 rows. The corresponding representation of
Sn isΛkh, and the corresponding representation ofsl(m) by hook formula (12) has a character

sλ(q
1−m

2 , . . . , q
m−1

2 ) =
[m+ n− k − 1]q!

[n]q · [k]q! · [n− k − 1]q![m− k − 1]q!
.

Therefore the multiplicity ofΛkh in Lm/n is

[m+ n− k − 1]q!

[m]q · [n]q · [k]q! · [n− k − 1]q![m− k − 1]q!
.

This matches the formula for the coefficient of(−1)kaµ+2k for the HOMFLY polynomial ob-
tained in [Gor10] (Theorem 3.1) and [BEM11] (Equation 3.46). In particular, it is symmetric
in m andn.

We obtain the following result.
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Theorem 3.7.Theq-graded character ofHm/n coincides with the HOMFLY polynomial of the
(m,n)-torus knot:

a(m−1)(n−1)
n−1∑

i=0

(−a2)i dimq HomSn(Λ
ih, Lm/n) = Pm,n(a, q).

4. FILTRATIONS ON Lm/n

In this section, we construct two filtrations onLm/n, which we call thealgebraicandinduc-
tivefiltrations. We conjecture that these two filtrations are identical.

We begin with some remarks regarding filtrations. LetV, V ′ be vector spaces supporting
increasing filtrationsFi andF ′

i . ThenV⊕V ′ is filtered by(F⊕F ′)i(V⊕V ′) = Fi(V )⊕F ′
i(W ),

andV ⊗ V ′ carries the tensor product filtration

(F ⊗ F ′)k(V ⊗ V ′) =
∑

i+j=k

FiV ⊗ F ′
jV

′

A map f : V → V ′ is compatible with the filtration iff(FiV ) ⊂ F ′
iV

′. If A is a filtered
algebra, then a filtration on anA-moduleV is compatible with that onA if the multiplication
mapA ⊗ V → V is compatible with the filtrations. IfV, V ′ are respectively right and left
filteredA-modules, thenV ⊗A V

′ carries a tensor product filtration. IfV is a graded vector
space, we require each stepFiV of a filtration to be spanned by homogeneous elements; in this
casegrFV carries a bigrading.

Specifically, for a filtrationF onLm/n to be compatible with the algebra filtrationG onHc,
we must haveσFi ⊂ Fi for anyσ ∈ Sn andxαFi, yαFi ⊂ Fi+1. For it to be compatible with
the grading, we must havehFi = Fi.

SinceC[Sn] = G0Hc, such a filtration will satisfyFi =
⊕

eλFi. Note in particulare−Lm/n

will be a filtered module overe−Hce−. Forc > 1, the natural mapHce− ⊗e−Hce− e−Lm/n →
Lm/n is known to be [GS05, BE08] an isomorphism. The map is evidently filtered, i.e. ifF−

is the filtration on the left hand side thenF−,i ⊂ F i. We may ask this to be an equality.3

Proposition 2.4 asserts that, forc > 0, multiplication by the Vandermonde determinant fixes
compatible isomorphismseHce = e−Hc+1e− andeLm/n = e−L(m+n)/n. We may ask that the
filtrations on both sides agree, fixing the isomorphism defined in Proposition 2.4. In [CEE07], it
is shown that there is a canonical isomorphismeLm/n

∼= eLn/m; that the images of the algebras
eHm/n andeHn/m in the endomorphisms of this space agree as filtered algebras; and that the
sl2 factors have the same image (see section 2.6.3 for more details). Thus it is natural to ask
that the two filtrations on this space agree as well. From the point of view of our Conjecture
1.2 at least the dimensions of the associated bigraded spaces must be the same.

4.1. The inductive filtration. The above desiderata uniquely specify a filtration. The idea
of the following construction is due to Etingof and Ginzburg. Whenm ≡ 1 (mod n), this
construction appears explicitly in section 7 of [BEG03b] (c.f. [GS05]).

Theorem 4.1. ConsiderLm/n for m > n andeLm/n for m > 0. There is a unique system of
filtrations on these modules compatible with the algebra filtrations onHm/n such that:

(1) For the one dimensional moduleseL1/n, the filtration is0 = F−1 ⊂ F0 = eL1/n.
(2) The canonical isomorphismseLm/n = eLn/m and eLm/n = e−L(m+n)/n preserve

filtrations.

3We could, but will not, ask the same to hold for the restriction toeLm/n. Indeed, both these conditions cannot
hold simultaneously.
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(3) Form > n the isomorphismLm/n = Hm/ne−⊗e−Hm/ne−
e−Lm/n preserves filtrations.

We denote the resulting filtrationF ind. It is preserved by thesl2 action.
If F ′ is a family of filtrations satisfying (1) and (2) and compatible with the action ofHc,

thenF ind
i Lm/n ⊂ F ′

iLm/n for all m,n, i.

Proof. Consider the partial order on non-integer positive fractions in lowest termsn/m gener-
ated by the relationsm/n ≺ (m+ n)/n andm/n ≻ n/m if n < m. The Euclidean algorithm
implies this is a strict partial order with minimal elements1/n to which every other pair is
connected by a finite chain of the above relations. We construct F ind by induction. Its value
on the minimal elements1/n is prescribed by condition (1) above. Ifm < n then we need
only provide a filtration oneLm/n = eLn/m; the RHS is defined by induction. Otherwise we
have by (2) and (3) the following isomorphisms of filtered modules. As the RHS is defined by
induction, the LHS is determined as well.

Lm/n = Hm/ne− ⊗e−Hm/ne−
e−Lm/n = Hm/ne− ⊗e−Hm/ne−

eL(m−n)/n

The filtration thus constructed is preserved by thesl2 action since the same holds for the filtra-
tions on all objects used in its construction.

A similar induction establishes the final statement. Indeed, supposeF ind
• Lm/n ⊂ F ′

•Lm/n.
LetF ′′

•L(n+m)/m be the filtration induced fromF ′
•Lm/n; evidentlyF ind

• L(n+m)/m ⊂ F ′′
•L(n+m)/m.

The second equality in the equation is still an equality of filtrations by condition (2), and from
the first we seeF ′′

•L(n+m)/m ⊂ F ′
•L(n+m)/m sinceF ′ was assumed to be compatible with the

algebra structure. �

Definition 4.2. We defineF ind onHm/n = HomSn(Λ
∗V, Lm/n) in the following way:

(1) For m > n it is obtained by the restriction ofF ind onto the corresponding isotypic
components

(2) For m < n it is obtained by the isomorphismHm/n ≃ Hn/m.

Proposition 4.3. If f ∈ Lm/n is a homogeneous element of degreed, thenf /∈ F ind
−d−1Lm/n.

Proof. Follows from the inductive construction. �

Proposition 4.4. LetW be the Vandermonde determinant andm/n > 1 so that the image of
W is nonzero inLm/n. Let h be an element of degree−d. Thenh ∈ C[h].W if and only if
h ∈ F ind

d Lm/n \ F ind
d−1Lm/n.

Proof. We first check the “only if” direction. For degree reasons thegiven elements cannot lie
in the smaller step of the filtration. It suffices to establishthe result for1 andW , since it will
follow for C[h].W . By Proposition 2.4,W is the image of1 under the map identifyingeLm/n =
e−Ln+m

n
, and the identificationeLm/n = eLn/m takes1 to 1. To deduce the result from the

inductive construction it remains to note that forc > 1 there is a homogeneous polynomialp
such thatp(y).W = 1.

In the “if” direction, assumeh ∈ F ind
d Lm/n. By definition we may writeh = q(y)p(x)v with

v ∈ F ind
d−deg q−deg pe−Lm/n We havedeg v = deg h+ deg q − deg p = −d + deg q − deg p. By

the proposition we must haved−deg q−deg p ≥ d−deg q+deg p, so certainlyp is constant.
It remains to showv is proportional toW . But we have an equality of filtered graded spaces
e−Lm/n = eL(m−n)/n; if m−n < n we pass toeLn/(m−n). Let us writev′ for the image ofv in
this space; andW ′ for the Vandermonde in this space; then by induction we havev′ = r(y).W ′

for somer(y). As the only such elements are scalars, we seev is proportional toW . �
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FIGURE 1. Algebraic filtration (red) and filtration by powers ofa (green) onL 4
3
.

4.2. The algebraic filtration. Let a ⊂ C[h∗] = Mc be the ideal generated by symmetric
polynomials of positive degree; its powers give adecreasingfiltration onMc and hence onLc.

The filtrationF ind constructed above evidently differs from the filtration by powers ofa: the
former is increasing and preserved by thesl2 action; the latter is is decreasing and not preserved
by sl2. Nonetheless we will conjecture that they carry the same information.

Denote byLm/n(i) the component of gradingi. We introduce a modified decreasing filtration

F iLm/n =
∑

j

(
aj ∩

⊕

k<2j−i

Lm/n(k)

)

Proposition 4.5. The (decreasing) filtrationF i is compatible with the filtration onHc in the
sense thatSn · F iLm/n = F iLm/n and(h⊕ h∗) · F i ⊂ F i−1. Moreover,F iLm/n is preserved
by sl2.

Proof. The fact thath∗F i ⊂ F i−1 is obvious from the definition. Recall from [Du89] that ifg
is a symmetric polynomial, andf is any polynomial, we have

(13) Di(fg) = Di(f)g +Di(g)f.

From this it follows thatDia
n ⊂ an−1, and hence thathF i ⊂ F i−1.

The filtration is evidently preserved byx2 andh. Let us see it is preserved byy2. Since
y2 decreases degree by2, we must show that(

∑
D2

r)a
k ⊂ ak−1. The result is vacuous for

k = 0, 1, so we assumek ≥ 2. Considerf = gσ1 . . . σk, whereσi are symmetric polynomials
of positive degree. By (13) we have

(
∑

r

D2
r)(gσ1 . . . σk) =

∑

r

Dr (Dr(g)σ1 . . . σk + gDr(σ1)σ2 . . . σk + · · ·+ gσ1 . . .Dr(σk))

EvidentlyDr(Dr(g)σ1 . . . σk) ∈ ak−1. The remaining terms are all of the same sort; we expand
the second term to obtain
∑

r

Dr(gDr(σ1))σ2 . . . σk + gDr(σ1)Dr(σ2)σ3 . . . σk + gDr(σ1)σ2Dr(σ3)σ4 . . . σk + · · ·
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The first term inside the sum is evidently inak−1. The remaining terms are the products of
something inak−2 times something which, upon summing overr, becomes symmetric. �

To obtain theincreasingfiltration conjecturally equivalent toF ind, we take the orthogonal
complement with respect to Dunkl’s bilinear form [Du91]. Recall this is defined on the poly-
nomial representation ofHc by the formula

(f, g)c = [Φ(f) · g] |x=0,

whereΦ, as above, denotes the Fourier transform onHc (see section 2.2.5). Whenc is clear
from context we omit it from the notation. One can show [DO03,DJO94] that the form is
symmetric and(yf, g) = (f,Φ(y)g). Its kernel onC[h] coincides with the defining ideal of
Lc, hence it defines a nondegenerate symmetric bilinear form onLm/n [DO03, BEG03b]. It is
preserved up to a scalar by the isomorphismeLc = e−Lc+1 due to the equality(Wf,Wg)c+1 =
(W,W )c+1(f, g)c, wheref, g are symmetric andW is the Vandermonde determinant [DJO94,
Cor. 4.5] (see also [Hec91]). It follows from Corollary 2.10that the isomorphismeLm/n =
eLn/m is isometric with respect to the Dunkl forms. For any subspaceV ⊂ Lm/n we writeV ⊥

for its orthogonal complement with respect to the Dunkl form.

Definition 4.6. The algebraic filtration onLm/n isFalg
i Lm/n := (F iLm/n)

⊥.

Proposition 4.7. The filtrationFalg givesLm/n the structure of a filteredHm/n-module. It is
preserved by thesl2 action.

Proof. EvidentlyFalg is preserved by the action ofSn. Considerf ∈ Falg
j . Then for any

g ∈ F j+1 andx ∈ h∗, we have(xf, g) = (f,Φ(x)g) = 0 sinceΦ(x)g ∈ F j by Proposition
4.5. ThusxFalg

j ⊂ Falg
j+1. The same argument showshFalg

j ⊂ Falg
j+1, and that the filtration is

preserved by thesl2 action. �

Theorem 4.8.We have an inclusion of filtrationsF ind
i Lm/n ⊂ Falg

i Lm/n.

Proof. Since we have shown thatFalg is compatible with the filtration onHm
n

, it remains
to verify the first two conditions of Theorem 4.1. The first is atrivial consequence of the
definition. Since the isomorphismeLm/n = eLm+n

n
preserves the grading and orthogonality

under the Dunkl form, checking that it preservesFalg is equivalent to checking that it preserves
the filtration by powers ofa. This follows from the fact that the map is explicitly given by
multiplication by the Vandermonde determinant. To check thatFalg is preserved byLm/n =
Ln/m, note that the equality is according to [Gor11] an isomorphism of rings; the maximal
ideal in each case is the image ofa. It remains to observe that the isomorphism also preserves
orthogonality under the Dunkl form. �

Proposition 4.9. If f ∈ Lm/n is a homogeneous element of degreed, thenf /∈ Falg
−d−1Lm/n.

Proof. Since the Dunkl pairing makes components of different degrees orthogonal, it is equiv-
alent to show thatf ∈ F−d−1. From the definition this contains the spacea0 ∩ Lm/n(d) of all
elements of degreed. �

Corollary 4.10. LetW be the Vandermonde determinant andm/n > 1 so that the image of
W is nonzero inLm/n. Let h ∈ C[h].W be an element of degree−d. Thenh ∈ Falg

d Lm/n \

Falg
d−1Lm/n.

Proof. We have just seen the elements in question cannot lie in the smaller piece of the filtration.
From Proposition 4.4 we haveh ∈ F ind

d Lm/n ⊂ Falg
d Lm/n. �
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FIGURE 2. The generators ofLn/2 arranged according toa (vertical) andq
(horizontal) gradings. The action of multiplication byu and the Dunkl operator
on the top row are indicated by red and blue arrows, respectively.

Corollary 4.11. Letm > n. Then onC[h] ·W ⊂ Lm/n we haveFalg = F ind. Equivalently
C[h] ·W = a⊥.

Proof. The first statement follows by comparing Proposition 4.4 to the previous corollary. The
second follows by unwinding the definitions. �

Remark.Since both filtrations are preserved bysl2 they must agree onC[x2] · C[h] ·W .

Motivated by Corollary 4.11 and numerical evidence, we formulate the following

Conjecture 4.12.For c > 1 we have the identity of filtrationsFalg = F ind.

5. EXAMPLES

In this section we calculate the groupsHm/n in a few examples, and see that they agree
either with the known behavior of the HOMFLY-PT homology, orthe conjectured behavior as
described in [DGR06]. The examples we consider are the(2, n) and(3, n) torus knots, and the
(n,m) torus knot in the limit asm → ∞. We also discuss a variant of conjecture 1.2 which
describes the unreduced homology.

5.1. The (2, n) torus knot. As described in example 2.4, we haveLn/2
∼= C[u]/(un). Then

Ln/2 = eLn/2 ⊕ e−Ln/2, with eLn/2 ande−Ln/2 are spanned by even and odd powers ofu
respectively.

Proposition 5.1. Hn/2
∼= Ln/2. Theq grading onLn/2 is given byq(uk) = 2k − (n − 1).

Elements ofeLn/2 havea-gradingn − 1 and filtration grading(n − 1)/2, while elements of
e−Ln/2 havea-gradingn + 1 and filtration grading(n− 3)/2.

Proof. S2 has only two representations: the trivial representationΛ0h and the alternating rep-
resentationΛ1h. Both are one-dimensional, which impliesHomSn(Λ

∗h, Ln/2) ∼= Ln/2. The
action of the nontrivial element ofS2 takesu → −u, so the even powers ofu are ineLn/2 and
the odd powers ine−Ln/2. By definitioneLn/2 hasa-grading0 + µ(K) = n− 1, ande−Ln/2

hasa-grading2 + µ(K) = n + 1. The normalizedq-grading isq(uk) = 2k − (n − 1). These
gradings are illustrated in Figure 5.1 and give the HOMFLY polynomial ofT (2, n).

We compute the filtrationF indLn/2, starting with the one-dimensional representationL1/2,
which has filtration0. From the figure, it is clear that any generator in the bottom row (spher-
ical DAHA) can be reached from an element of the top row (antispherical DAHA) either by
multiplying by u or by applying the Dunkl operator. The filtration grading of elements of the
top row ofLn/2 is the same as the filtration grading of elements in the bottomrow of L(n−2)/2,
so by induction we conclude that the filtration grading of generators in the top row ofLn/2 is
(n − 3)/2, and that all generators in the bottom row have filtration grading (n − 1)/2. This is
equivalent to all generators havingδ-gradingn − 1 = −σ(T (2, n)). Finally, it is easy to see
thatF ind = Falg in this case. �
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Observe that the action ofu and the Dunkl operators on the top row matches the action of
the differentialsd1 andd−1 on HOMFLY-PT homology, as described in [DGR06]. This is not
a coincidence; in section 7 we use the action of the DAHA to construct differentials onHm/n.

5.2. The (3, n) torus knot. In the description ofHn/3 we will use the identification (5):
HomSn(Λ

∗h, Lm/n) ∼= Ω•(M3,n), where

M3,n = SpecC[u2, u3]/(fn+1, fn+2); fi = Coef i[(1 + u2z
2 + u3z

3)
n
3 ].

The ring of functionsC[M3,n] was computed in [GM12].

Lemma 5.2([GM12]). The ringC[M3,n] has a monomial basis consisting of monomials

(14) ua2u
b
3, a+ 3b ≤ n− 1.

Proof. Let us consider the casen = 3k + 1, the casen = 3k + 2 is analogous. The defining
equationsp3k+2 andp3k+3 has degrees3k + 2 and3k + 3 respectively. One can check that
p3k+3 has non-zero coefficient atuk+1

3 andp3k+2 has non-zero coefficient atuk3u2. The syzygy
between leading monomials shows that the leading monomial in

p3k+5 := u2p3k+3−λu3p3k+2 = u2(c1u
k+1
3 +c2u

k−1
3 u32+ . . .)−

c1
d1
u3(d1u

k
3u2+d2u

k−2
3 u42+ . . .)

is uk−1
3 u42. The syzygy between leading monomials inp3k+2 andp3k+5 has a form

p3k+8 := u3p3k+5 − λu32p3k+2,

and its leading monomial isuk−2
3 u72 etc.

Using this process, we can eliminate the monomials

uk+1
3 , uk3u2, u

k−1
3 u42, u

k−2
3 u72, . . . u

3k+1
2 .

In the quotient we get the monomials (14). �

Proposition 2.3 yieldsΩ2(M3,n) ∼= C[M3,n−3]. Finally, the defining equations ofΩ1(M3,n)
can be obtained by applying the de Rham differential to the equations from the proof of Lemma
5.2. We arrive at the following result.

Theorem 5.3.The spaceHn/3 has the following monomial basis:

a = 0: ua2u
b
3, a+ 3b ≤ n− 1.

a = 1: ua2u
b
3du2, a+ 3b ≤ n− 1, a < n− 1; ua2u

b
3du3, a+ 3b ≤ n− 4.

a = 2: ua2u
b
3du1 ∧ du2, a+ 3b ≤ n− 4.

To compute the dimensions of the associated graded vector space determined by the filtration
FalgLm/n, we work with the dual filtrationF i given by powers ofa. One can check that the
filtration level of any of the monomial basis elements above is given by2 degu −q/2, and that
corresponding Hilbert polynomial agrees with the Poincar´e polynomial ofHT (3,n) predicted by
[DGR06], [Gor10] and [ORS12].

5.3. Wedge products inHm/n. Before going on, we recall some basic facts about the repre-
sentation theory ofSn. The permutation representationh of Sn has a basisx1, . . . xn. Sup-
poseV is a representation ofSn. Givenϕ ∈ HomSn(h, V ), we writeϕ(xi) = ϕi. Viewing
HomSn(h, V ) as(h

∗
⊗ V )Sn , we can writeϕ =

∑
i ϕix

∗
i . More generally, we can view

HomSn(Λ
∗h, V ) ∼= (Λ∗h

∗
⊗ V )Sn.
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FIGURE 3. Monomial bases inC[M3,n] for n = 4, 5 and7

Thus givenϕ ∈ HomSn(Λ
ih, V ) andψ ∈ HomSn(Λ

jh,W ), we can form

ϕ ∧ ψ ∈ HomSn(Λ
i+jh, V ⊗W ).

Similarly, if α ∈ HomSn(h, V ), we can use the natural isomorphismh ∼= h
∗

given by the
Killing form to form α¬ψ ∈ HomSn(Λ

j−1h, V ⊗W ).
Next, we consider the reflection representationh ⊂ h of Sn. There is a natural projection

πh : h → h. Any ϕ ∈ HomSn(h, V ) inducesϕ = ϕ ◦ πh ∈ HomSn(h, V ). Conversely,
it is easy to see thatϕ ∈ HomSn(h, V ) is induced by someϕ if and only if

∑
i ϕi = 0.

More generally,ϕ ∈ HomSn(Λ
kh, V ) inducesϕ ∈ HomSn(Λ

kh, V ) via the natural projection
πk : Λ∗h → Λ∗h, andϕ ∈ HomSn(Λ

kh, V ) is induced by someϕ if and only if 1h¬ϕ = 0,
where1h ∈ HomSn(h, 1) denotes the homomorphism to the trivial representation.

5.4. Stable homology of torus knots.The stable homologyof then-stranded torus knot is
defined to be

HT (n,∞) = lim
m→∞

(a−1q)(n−1)(m−1)HT (n,m).

The multiplications bya andq denote degree shifts which act by the given multiplication when
we take the Poincaré polynomial. This limit exists by a theorem of Stosic [Sto07]. In [DGR06],
it was conjectured that

HT (n,∞)
∼= Λ∗(ξ1, . . . , ξn−1)⊗ C[u1, . . . , un−1],

whereξi has(a, q, t) grading(2, 2i, 2i+ 1), andui has(a, q, t) grading(0, 2i+ 2, 2i).
Let us compute the analogous limit forHm/n.

Lemma 5.4. lim
m→∞

(a−1q)(n−1)(m−1)Hm/n
∼= HomSn(Λ

∗h,C[h∗]).
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Proof. Lm/n
∼= Mm/n/I whereI is generated by polynomials of degreem. It follows that in

q–degrees< 2m,Hm/n
∼= HomSn(Λ

∗h,Mm/n) = HomSn(Λ
∗h,C[h∗]). �

To compute the Poincaré series of the limit, we recall some well-known facts about the action
of Sn on the polynomial representationMm/n = C[h∗]. First, the ring of invariants under this
action is a polynomial ring inn− 1 variables:

C[h∗]Sn ∼= C[u1, . . . , un−1]

whereui has degreei+1. The ring of coinvariantsC[h∗]Sn is defined to be the quotientC[h∗]/I
whereI is the ideal generated by all symmetric polynomials of positive degree. Then

(15) C[h∗] ∼= C[h∗]Sn ⊗ C[h∗]Sn

as representations ofSn. Moreover,C[h∗]Sn is isomorphic to the regular representation ofSn.
In particular, it contains

(
n−1
k

)
copies ofΛkh.

More explicitly, if for eachui we letdui ∈ HomSn(h,C[h
∗]) be given by

dui =
∑

j

∂ui
∂xj

x∗j ,

thenHomSn(h,C[h
∗]Sn) is generated by thedui’s. In addition, we can composedui1∧· · ·∧duij ,

which isa priori an element ofHomSn(Λ
∗h,C[h∗]⊗j) with the multiplication mapC[h∗]⊗j →

C[h∗], to get an element ofHomSn(Λ
∗h,C[h∗]), which we will again denote bydui1∧· · ·∧duij .

HomSn(Λ
∗h,C[h∗]Sn) is generated by these wedge products.

The limits of the filtrationsF ind andFalg will be considered more carefully in section 8.
For now, we just describe the dual filtrationF i on C[h∗] given by powers of the ideala =
(u1, . . . , un−1). Let aSn = (u1, . . . , un−1) ⊂ C[h∗]Sn. Then under the isomorphism of equa-
tion (15), ak corresponds toC[h∗]Sn ⊗ (aSn)k. Thus the filtrationF i is induced by a multi-
plicative gradingf ∗ onHomSn(h,C[h

∗]), with respect to whichui is homogenous with grading
f ∗(ui) = (1 + i) − 2 anddui is homogenous withf ∗(dui) = 0. Consulting the discussion of
gradings in the introduction and recalling thatf ∗ = −f (sinceF i is dual to the filtration we
want), we see thatf ∗ is related to thet-grading by

t = f ∗ + (a + q)/2.

Putting these results together and writingξi = dui, we have

Proposition 5.5. HomSn(Λ
∗h, grC[h∗]) ∼= Λ∗(ξ1, . . . , ξn−1) ⊗ C[u1, . . . , un−1] whereξi has

(a, q, t) bigrading(2, 2i, 2i+ 1) andui has(a, q, t) bigrading(0, 2i+ 2, 2i).

5.5. Unreduced Homology. There is an unreduced versionHK of the HOMFLY homology,
whose graded Euler characteristic is the unnormalized HOMFLY polynomial:

χ(HK) =
a− a−1

q − q−1
PK .

The relation betweenH andH which categorifies this formula is rather uninteresting:

HK
∼= H∗(C∗)⊗ C[X ]⊗HK ,

but there are spectral sequences relatingHK to the unreducedslN homologyHN,K analogous
to those of [Ras06] which are not easily derived from the reduced versions. With this in mind,
we formulate a version of Conjecture 1.2 which describes theunreduced homology.

Recall from section 2.3 thatHc
∼= D ⊗Hc, whereD is the algebra of differential operators

in one variable. The decompositionh ∼= h⊕1 induces an isomorphismC[h
∗
] ∼= C[u1]⊗C[h∗],
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whereu1 = x1+ . . .+xn, and the action ofHc onC[h
∗
] respects this decomposition. It follows

thatHm/n acts onLm/n := C[u1]⊗ Lm/n. We define aq-grading onC[u1] by the requirement
thatq(uk1) = −1+2k, and an increasing filtrationF ′

i = 〈1, u1, . . . , ui1〉. Taking tensor products

with the grading and filtrations onLm/n gives aq-grading onLm/n, as well as filtrationsF
ind

andF
alg

. Finally, the decompositionh ∼= h⊕ 1 induces an isomorphismΛ∗h ∼= Λ(ξ0)⊗ Λ∗h.
Combining these observations, we see that

HomSn(Λ
∗h, grF Lm/n) ∼= Λ∗(ξ0)⊗ C[u1]⊗HF

m/n.

Thus Conjecture 1.2 is equivalent to

Conjecture 5.6.HT (n,m)
∼= HomSn(Λ

∗h, grF Lm/n).

There is a natural injection

ι : HomSn(Λ
∗h, grF Lm/n) → HomSn(Λ

∗h, grF Lm/n)

given by
ι(ϕ)(xi) = ιC[h∗](ϕ(πh(xi)))

whereιC[h∗] : C[h∗] → C[h] is the inclusion, andπh : h → h is the projection. Similarly, there
is a projection

π : HomSn(Λ
∗h, grF Lm/n) → HomSn(Λ

∗h, grF Lm/n)

given by
π(ϕ)(x̃i) = πC[h∗](ϕ(ιh(x̃i))).

6. CHARACTER FORMULAS

In this section we use the following notations:a(c), l(c), a′(c) andl′(c) denote respectively
arm, leg, co-arm and co-leg for a boxc in a diagramµ, µt denotes the conjugate diagram and

n(µ) =
∑

c∈µ
l(c) =

∑

c∈µ
l′(c) =

∑

i

(i− 1)µi.

As above,sλ denotes the Schur polynomial corresponding to a Young diagramλ.

6.1. Macdonald polynomials. We will work in the ringΛ of symmetric polynomials in the
infinite number of variables. As above, letpk denote the power sums, and it is well known
thatΛ = C[p1, p2, . . .]. Let 〈·, ·〉 denote the standard inner product onλ such that the Schur
polynomials form the orthonormal basis inΛ.

Definition 6.1. We define the following homomorphisms ofΛ[q, t]:

ϕ1−q : pk → (1− qk)pk, ϕ 1
1−q

: pk →
1

1− qk
pk;

ϕ1−t : pk → (1− tk)pk, ϕ 1
1−t

: pk →
1

1− tk
pk.

The following theorem is a definition of themodified Macdonald polynomials.

Theorem 6.2(e.g. [Hai02b]). There is a homogeneousQ(q, t)-basis{H̃µ} ofΛwhose elements
are uniquely characterized by the conditions:

(1) ϕ1−q(H̃µ) ∈ Q(q, t){sλ : λ ≥ µ},

(2) ϕ1−t(H̃µ) ∈ Q(q, t){sλ : λ ≥ µt},

(3) 〈H̃µ, s(n)〉 = 1.
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Hereµ is an integer partition, andλ ranges over partitions of the same integerλ = µ = n,
with ≥ denoting the dominance partial ordering on partitions.

For experts, we recall below in Proposition 6.10 the relation of H̃µ to the standard Macdonald
polynomialsPµ.

Corollary 6.3. The polynomials for transposed partitions are related as

(16) H̃µt(q, t) = H̃µ(t, q).

Example.The polynomialsH̃µ for |µ| = 3 have the form:

H̃3 = s3 + (q + q2)s1,2 + q3s111,

H̃111 = s3 + (t+ t2)s1,2 + t3s111,

H̃12 = s3 + (q + t)s1,2 + qts111,

Proposition 6.4 ([GH96],Corollary 2.1). The coefficients of̃Hµ at Schur polynomials corre-
sponding to the hook-shaped partitions are given by the formula

(17)
n−1∑

k=0

ak〈H̃µ, sn−k,1k〉 =
∏

c 6=(0,0)

(1 + aqa
′

tl
′

).

Proof. By (9) we have

n−1∑

k=0

(−1)kak〈H̃µ, sk+1,1n−k−1〉 =
1

1− a
H̃µ(pi = 1− ai).

Now (17) follows from the evaluation formula for the Macdonald polynomials ([Mac79]). �

Corollary 6.5.
〈H̃µ, s1n〉 = qn(µ

t)tn(µ).

We will need the following result.

Theorem 6.6([GH96],Theorem 2.4). The elementary symmetric polynomial has the following
expansion in the basis̃Hµ:

en =
∑

µ

(1− t)(1− q)Πµ(q, t)Bµ(q, t)∏
(qa − tl+1)(tl − qa+1)

·Hµ,

where
Πµ =

∏

c 6=(0,0)

(1− qa
′

tl
′

), Bµ =
∑

qa
′

tl
′

,

Definition 6.7. Following [GH96], let us define an operator∇ by the formula

∇H̃µ = qn(µ
t)tn(µ)H̃µ.

Lemma 6.8. The following equation holds:

〈∇f, s1n〉 = 〈f, sn〉

Proof. Follows from the definition of∇ and Corollary 6.5. �
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The ringΛ has a canonical involutionω defined by the equationω(pi) = (−1)ipi. It is well
known (e.g [Mac79]) that

ω(sλ) = sλt .

Let us describe the action ofω on the polynomials̃Hµ.

Theorem 6.9([GH96],Theorem 2.7). The following equation holds:

ω
(
H̃µ(x; q, t)

)
= qn(µ

t)tn(µ)H̃µ(x; 1/q, 1/t).

We finish this subsection by recalling the relation ofH̃µ to the standard Macdonald polyno-
mialsPµ. Theintegral formMacdonald polynomials are defined by the formula

Jµ(x; q, t) =
∏

(1− qatl+1)Pµ(x; q, t).

Proposition 6.10. ([GH96]) LetHµ(x; q, t) = ϕ 1
1−t

(Jµ(x; q, t)), then

H̃µ(x; q, t) = tn(µ)Hµ(x; q; 1/t).

6.2. Diagonal Harmonics and Procesi Bundle.Consider the diagonal action ofSn on the
ring of polynomials in two groups of variablesC[x1, . . . , xn, y1, . . . , yn]. The space of its coin-
variants

DHn := C[x1, . . . , xn, y1, . . . , yn]/(C[x1, . . . , xn, y1, . . . , yn])
Sn

is called the space ofdiagonal harmonics. It carries two natural gradings (x-degree andy-
degree) compatible with the action ofSn. The following results were conjectured in [Hai94]
and proved in [Hai02a]:

Theorem 6.11.The dimension of the spaceDHn equals(n + 1)n−1. The dimension of its
anti-invariant part is equal to then-th Catalan number:

dim(DHn)
ε = cn =

1

n + 1

(
2n

n

)
.

The key geometric tool from [Hai02a] is the interpretation of DHn as a space of sections of
a certain sheaf over a punctual Hilbert scheme. LetHilbn(C2) denote the Hilbert scheme ofn
points ofC2, and letπ : Hilbn(C2) → SnC2 denote the Hilbert-Chow morphism. Theisospec-
tral Hilbert schemeXn is thereducedfibre product appearing in the following commutative
diagram.

Xn
ρn
−→ Hilbn(C2)

↓ ↓
(C2)n −→ SnC2

The central fact in the theory is thatXn is normal, Cohen-Macaulay, and Gorenstein [Hai01].

Definition 6.12. Following [Hai02a], we define the following bundles onHilbn(C2):

(1) T is the tautological rankn bundle:TI = OC2/I;
(2) T0 = T/(1) is a quotient ofT by the trivial line subbundle;
(3) O(1) = ΛnT is the tautological line bundle;
(4) P = ρ∗OXn is theProcesi bundle. Its rank isn!, and its fibres carry theSn action.

Let Zn ⊂ Hilbn(C2) denote the punctual Hilbert scheme. The following theorem is a main
result of [Hai02a]:

Theorem 6.13([Hai02a]). The following isomorphisms hold:
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(1) H i(Zn, P ⊗ T k) = 0 for all k, n andi > 0.
(2) DHn = H0(Zn, P ⊗ T ).
(3) (DHn)

ε = H0(Zn,Λ
nT ).

Theorem 6.14([Hai01]). LetIµ denote the monomial ideal inC[x, y] corresponding to a Young
diagramµ. LetJµ denote the defining ideal of the scheme-theoretic fibreρ−1

n (Iµ) inside(C2)n.
ThenRµ = C[x1, . . . , xn, y1, . . . , yn]/Jµ is the fibre of the Procesi bundle at a pointIµ ∈
Hilbn(C2), and the following properties hold:

(1) dimRµ = n!

(2) The(C∗)2-equivariant Frobenius character ofRµ is H̃µ(q, t).

Lemma 6.15. Let Vn denote, as above, the reflection representation ofSn. Then we have the
following identity in the equivariantK-theoryK(C∗)2

0 (Hilbn):

HomSn(Λ
kV, P ) = ΛkT0.

Proof. Let us first remark that all bundles in question are(C∗)2–equivariant, and thus all com-
putations can be localized to the fixed pointsIµ. The generating function for the graded char-
acters of the left hand side equals

∑

k

ak dimq,tHomSn(Λ
kV, P |Iµ) =

∑

k

ak〈sn−k,1k , chRµ〉 =

∑

k

ak〈sn−k,1k , H̃µ〉 =
∏

c 6=(0,0)

(1 + aqa
′

tl
′

).

The last equation follows from (17).
On the other hand,dimq,t T0|Iµ =

∑
c 6=(0,0) q

a′tl
′

, so
∑

k

ak dimq,tΛ
kT0|Iµ =

∏

c 6=(0,0)

(1 + aqa
′

tl
′

). �

6.3. From Cherednik algebras to Hilbert schemes.

Proposition 6.16. The bigraded Frobenius characters of the finite dimensionalDAHA repre-
sentations satisfy the following properties;

(1) chq,t Lc+1 = ∇ chq,tLc,
(2) chq,t L−c = ω chq,tLc.

Proof. The first statement is [GS05, Lem. 4.4]. The second follows from the identity

L−c = Lc ⊗ ε

proved in [BEG03b]. �

Proposition 6.17.The following bigraded Frobenius characters can be computed explicitly:

chq,t L(kn+1)/n = ∇khn =
∑

µ

qkn(µ
t)tkn(µ)(1− t)(1− q)Πµ(q, t)Bµ(q, t)∏

(qa − tl+1)(tl − qa+1)
·Hµ,

chq,t L(kn−1)/n = ∇ken =
∑

µ

q(k+1)n(µt)t(k+1)n(µ)(1− t)(1− q)Πµ(q, t)Bµ(q
−1, t−1)∏

(qa − tl+1)(tl − qa+1)
·Hµ.

The functionsBµ andΠµ are defined in Theorem 6.6.
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Proof. By Conjecture 6.16 we have

chq,tL(kn+1)/n = ∇k chq,tL1/n, chq,t L(kn−1)/n = ∇kω
(
L1/n

)
.

The representationL 1
n

is a trivial 1-dimensional representation ofSn, and its character ishn.
Now the statements follow from Theorems 6.6 and 6.9. �

We finish this section by mentioning the relation to the recent work on “extended super-
polynomials” introduced by S. Shakirov, A. Morozov et al. Inthe series of papers ([MMS12],
[MMSS12], [DMMSS11]) they assigned to a(m,n) torus knot a polynomial in variablesq, t, pi
specializing to HOMFLY-PT polynomial forq = 1 andpi = 1−ai

1−ti
. For generalt, the polyno-

mials are supposed to compute the Poincaré polynomials of the HOMFLY homology of the
corresponding knot.

LetPm,n(a, q, t) denote the Poincaré polynomial for thereducedHOMFLY homology of the
(m,n) torus knot (“superpolynomial”) and letHm,n(q, t; pi) denote the “extended superpolyno-
mial” from [DMMSS11] (unfortunately, the authors of [DMMSS11] do not give any definition
of this polynomial).

The following formula is proposed in [DMMSS11]:

(18)
1− a

1− t
Pm,n(a, q, t) = Hm,n

(
q, t; pi =

1− ai

1− ti

)
.

It follows from (9) that

Pm,n(a, q, t) =
1

1− a
chLm/n(pi = 1− ai).

Therefore it is natural to define the “extended superpolynomial” by the formula:

Hm,n(x; q, t) =
1

1− t
ϕ1−t chLm/n, chLm/n =

1

1− t
ϕ 1

1−t
Hm,n(x; q, t).

This equation can be compared with (6.10), what allows one torecast the formulas forHm,n

in terms of the standard Macdonald polynomials. Such formulas were previously conjectured
in [DMMSS11], where∇ was denoted byeŴ .

7. DIFFERENTIALS

In this section, we construct a family of differentials on the groupsHm/n. The definition
of these differentials was motivated by the main conjectureof [DGR06], which states that the
homologyH(K) should admit a family of differentialsdN , such that forN > 0, the homology
of H(K) with respect todN is thesl(N) homology ofK. More precisely, we have

Conjecture 7.1. [DGR06] For eachN ∈ Z, there are mapsdN : H(K) → H(K) with the
following properties:

(1) (Grading)dN lowersa-grading by2 and q-grading by2N . For N 6= 0, dN lowersδ
grading by|N | − 1, whiled0 lowersδ-grading by 2.

(2) (Symmetry)H(K) admits an involutionι with the property thatιdN = d−N ι.
(3) (Anticommutativity)dNdM = −dMdN for k, l ∈ Z. In particular,d2N = 0.
(4) (Homology) ForN > 0, H(H(K), dN) ∼= HN(K), where the latter group denotes

the reducedsl(N) homology ofK defined by Khovanov and Rozansky in[KR08a].
Moreover,H(H(K), d0) is isomorphic to the knot Floer homologŷHFK(K).
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In [Ras06], it is proved that forN > 0, there are spectral sequences withE1 termH(K)
which converge toHN(K). ForN > 0, the conjecture is more or less equivalent to the state-
ment that these spectral sequences converge at theE2 term.

For all N in Z, we will construct mapsdN : HF
m/n → HF

m/n satisfying the analogues of
properties (1)-(3) in the conjecture. We are unable to provethe analogue of property (4), but
we will show thatH(HF

m/n), d1)
∼= Z ∼= H1,T (n,m). In the next section, we give an explicit

description of the limitlimm→∞H(HF
m/n, dN). Whenk = 2, it is possible to compare this

description with with previously known calculations of theKhovanov homology and see that
they agree [GOR12].

7.1. Definitions. Recall thatHF
m/n = HomSn(Λ

∗h, grF Lm/n) whereF is a decreasing filtra-
tion onLm/n with the property thatGi · Fj ⊂ Fi+j . Givenϕ ∈ HomSn(Λ

kh, grF Lm/n), we
want to definedN(ϕ) ∈ HomSn(Λ

k−1h, grF Lm/n). To do so, we first define maps

∂N : HomSn(Λ
kh, Lm/n) → HomSn(Λ

k−1h, Lm/n)

with the property that forN 6= 0, dN(Fi) ⊂ Fi+N . We will then takedN to be the induced map
on associated graded groups.

Observe thatHomSn(Λ
kh, h ⊗ Λk+1h) is one-dimensional, sinceh ⊗ Λk+1h has a unique

summand isomorphic toh. Consider the maph⊗Λk+1h → Λkh given by contraction. Dualizing
and using the fact thath∗ ∼= h gives an explicit generatorfk of HomSn(Λ

kh, h⊗ Λk+1h).

Definition 7.2. Let Sn act onHm/n by conjugation. Givenα ∈ HomSn(h,Hm/n) andφ ∈
HomSn(Λ

kh, Lm/n), we define∂αφ ∈ HomSn(Λ
k−1h, Lm/n) to be the following composition:

Λk−1h
fk−1
−−→ h⊗ Λkh

α⊗φ
−−→ Hm/n ⊗ Lm/n

·
−→ Lm/n

where the final map is given by the action ofHm/n onLm/n.

Equivalently, if we letµ : Hm/n ⊗ Lm/n → Lm/n be the multiplication map, then∂α(ϕ) =
µ(α¬ϕ). From now on, we will abuse notation and just writeα¬ϕ for the right-hand side,
leaving theµ understood.

If the image ofα is contained inGi, and the image ofϕ is contained inFj , then the image of
∂α(ϕ) will be contained inFi+j. This leads to the following

Definition 7.3. Suppose the image ofα ∈ HomSn(h,Hm/n) is contained inGi but not inGi+1.
Then we define

dα : HomSn(Λ
kh, grF∗ Lm/n) → HomSn(Λ

k−1h, grF∗+i Lm/n)

to be the map on associated graded groups induced by∂α.

Observe thatdα depends only on the image ofα in the associated graded group
HomSn(h,Gi/Gi−1). The following result is immediate from the definition:

Proposition 7.4. (Grading) Supposeα ∈ HomSn(V,Gi) is homogeneous of gradingk. Then
dα : HF

m/n → HF
m/n raises filtration grading byi, shifts the polynomial grading byk, and

lowers the exterior grading by1.

The symmetryΦ : Hm/n → Hm/n commutes with the action ofSn, so givenα ∈ HomSn(h,Hm/n),
we can defineΦ(α) = Φ ◦ α ∈ HomSn(h,Hm/n). We have

Proposition 7.5. (Symmetry)Φ ◦ dΦ(α) = dα ◦ Φ.
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Proof. ∂α(Φ(ϕ)) is given by the following composition:

Λk−1h
fk−1
−−→ h⊗ Λkh

α⊗Φ(ϕ)
−−−−→ Hm/n ⊗ Lm/n

·
−→ Lm/n.

SinceαΦ(ϕ) = Φ(Φ(α)ϕ), this is the same as

Λk−1h
fk−1
−−→ h⊗ Λkh

Φ(α)⊗ϕ
−−−−→ Hm/n ⊗ Lm/n

·
−→ Lm/n

Φ
−→ Lm/n.

Thus∂α ◦ Φ = Φ ◦ ∂Φ(α). �

Now supposeβ is another element ofHomSn(h,Hm/n). We consider conditions under which
dα anddβ anticommute. We say that an element ofHm/n is pure monomialof filtration i if it
can be expressed as a product of at mosti elements ofh ∪ h∗. (In particular, no elements ofSn

are used in the product.) An element ofHm/n is pure polynomialof filtration i if it is a sum of
pure monomials of filtrationi.

Lemma 7.6. If α andβ are pure polynomial of filtrationi andj, then the commutator[α, β] is
contained inGi+j−2.

Proof. Without loss of generality, we may assumeα andβ are pure monomials. By repeatedly
applying the relation

[x, yz] = [x, y]z + y[x, z],

we see that it is enough to prove the statement in the case whereα andβ are pure monomial of
degree 1. In this case, the claim follows immediately from the defining relations forHm/n. �

More generally, we say thatα ∈ HomSn(h,Hm/n) is pure polynomial of filtrationi if every
element in the image ofα is pure polynomial of filtrationi.

Proposition 7.7. (Anticommutativity) Supposeα, β ∈ HomSn(h,Hm/n) are pure polynomial.
Thendαdβ = −dβdα.

Proof. If α =
∑
αie

∗
i , andβ =

∑
βie

∗
i , we define a two-form

[α, β] =
1

2

∑

i,j

[αi, βj ] e
∗
i ∧ e

∗
j

Then we have

∂α∂β(ϕ) + ∂β∂α(ϕ) = α¬(β¬ϕ) + β¬(α¬ϕ)

= [α, β]¬ϕ.

Now α and β are pure polynomial, of filtration (let us say)i and j. Then by the lemma,
[αi, βj ] ∈ Gi+j−2. But ∂α and∂β raise filtration grading byi andj respectively, so passing to
associated gradeds, we see thatdαdβ + dβdα = 0. �

Remark.The construction of [Ras06] can be adapted to yield spectralsequences starting at
H(K) and converging to the unreducedsl(N) homology. In the latter case, the image of the
reducedH(K) in H(K) will usually not be a subcomplex with respect to the differentials in the
spectral sequence. However it is true that the kernel of the natural projectionH(K) → H(K) is
preserved, and the resulting spectral sequence on the quotient agrees with the spectral sequence
on reduced homology constructed in [Ras06].

The construction above can also be adapted to the unreduced case. If we chooseα ∈

HomSn(h,Hm/n), we get a differential∂α : H
F
m/n →: H

F
m/n, where as in section 5.5H

F
m/n =
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HomSn(Λ
∗h, grF Lm

n
). It is easy to see that ifα ∈ HomSn(h,C[h

∗
]), the kernel of the pro-

jectionH
F
m/n → HF

m/n is preserved bydα, and that the induced differential onHF
m/n is dπ(α),

whereπα ∈ HomSn(h,C[h
∗]) is obtained by composingα with the inclusionh → h and the

projectionC[h
∗
] → C[h∗].

We can now establish the proposition about differentials stated in the introduction.

Proof. (of Proposition 1.5) In order to construct the differentialsdN , we see that it is enough to
choose homomorphisms̃αN : h → Hm/n with the following properties:

(1) α̃N is homogenous of degreeN .
(2) α̃−N = Φ(αN).
(3) α̃N is pure polynomial of filtration|N | (for N 6= 0) or 2 (for N = 0).

ForN > 0, we see that the image of̃αN must be contained in the homogenous polynomials of
degreeN in C[h∗], We choosẽαN = π(αN ), whereαN =

∑
i x

N
i x

∗
i .

To defined0, we must chooseβ0 : h → Hm/n which is of degree1 in the xi and theyi
separately. Up to lower order terms in the filtration, there is essentially a unique choice: it is
given by

(β0)i = x̃iỹi −
1

n

∑

j

x̃j ỹj,

where

x̃i = xi −
1

n

∑

j

xj and ỹi = yi −
1

n

∑

j

yj.

Finally, to see thatd0 = −Φ ◦ d0 observe thatΦ(β0) is given by the a similar formula, but with
x’s andy’s reversed and an additional factor of−1. Using the commutation relation, we see
that−Φ(β0) andβ0 agree modulo elements ofG0, so they induce the same map on associated
gradeds. �

Remark.It is clear from the above construction that we have considerable latitude in our choice
of α̃N . In section 8.4, we will show that in the limit asm → ∞, anychoice ofα̃N gives rise
to the same differential up to multiplication by scalars. Itis unclear to us whether this property
continues to hold for finitem.

In contrast, different choices of homogenousα of degreeN on the unreduced homology
can give genuinely different differentials. Asm → ∞, there is some evidence (discussed in
the next section) thatα = αN is the correct choice. Consequently, we have chosen to take
α̃N = π(αN) in the reduced case.

7.2. The exterior derivative. The differentials of the previous section were constructedby
contraction withα ∈ HomSn(h,Hm/n). We now consider the dual construction, in which we
take wedge product withα. Let gk : Λk+1h → h ⊗ Λkh be dual to the map given by wedge
product.

Definition 7.8. For ϕ ∈ HomSn(Λ
kh,C[h

∗
]), we define∇cϕ to be the following composition:

Λk+1h −→ h⊗ Λkh
α1⊗ϕ
−−−→ Hc ⊗ C[h

∗
] −→ C[h

∗
]

whereα1 : h → Hc is given byα1(ei) = Di.

Under the identificationHomSn(Λ
∗h,C[h

∗
]) ∼= (Λ∗h

∗
⊗C[h

∗
])Sn, ∇c(φ) = µ(α1∧φ) where

µ denotes the multiplication map. As before, we will omitµ from the notation. Suprisingly,
the value of∇c(ϕ) does not depend onc.
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Lemma 7.9.∇c(ϕ) = ∇0(ϕ).

Proof. Let pr ∈ C[h
∗
] denote the symmetricr-th power function. Then it is easy to see that the

statement holds forpr and∇cpr = rαr−1. Since these elements generateHomSn(Λ
∗h,C[h

∗
]),

the claim follows from Lemma 5.5 of [Gor11], where it is shownthat if ϕ1, . . . , ϕk are in
HomSn(h,C[h

∗
]), then

∇c(ϕ1 ∧ . . . ∧ ϕk) =

k∑

i=1

(−1)i−1ϕ1 ∧ . . . ∧ ∇cϕi ∧ . . . ∧ ϕk.

�

From now on we will omit thec from our notation, and simply write∇(ϕ). If we view
HomSn(Λ

kh,C[h
∗
]) as the space ofSn invariant polynomialk-forms onh, the lemma says that

∇(ϕ) is the exterior derivative ofϕ.
From now on we will omit thec from our notation and simply write∇(ϕ). If we letc = m/n,

we see that∇ descends to a well-defined map∇ : HomSn(Λ
∗h, Lm

n
) → HomSn(Λ

∗h, Lm
n
).

Moreover, it is easy to see that∇ preservesHomSn(Λ
∗h,C[h∗]) ⊂ HomSn(Λ

∗h,C[h
∗
]), and

thus descends to a well-defined map∇ : Hm/n → Hm/n.
Next, we consider how∇ affects the filtration. We start with a preparatory result.

Lemma 7.10. Supposeϕ ∈ HomSn(Λ
kh, Lm/n). Thenϕ ∈ (ai)⊥ if and only if ∂−j1 ◦ . . . ◦

∂−jk(ϕ) ∈ (ai)⊥ for all sequencesj1, . . . , jk.

Proof. If ϕ ∈ (ai)⊥, Proposition 7.4 implies that∂−j1 ◦ . . .◦∂−jk(ϕ) ∈ (ai)⊥. For the converse,
let W = imϕ ⊂ Lm/n . The Dunkl pairing defines anSn equivariant homomorphismW ⊗
Lm/n → C. The space of possible homomorphisms is parametrized byHomSn(Λ

kh, Lm/n),
which we can view as a quotient ofHomSn(Λ

kh,C[h]). The latter space is spanned by elements
of the formuα̃−j1 ∧ . . .∧ α̃−jk , whereu ∈ C[h]Sn . The corresponding homomorphism is given
byu∂−j1 ◦ . . .◦∂−jk . Thus if∂−j1 ◦ . . .◦∂−jk(ϕ) ∈ (ai)⊥ for all sequencesj1, . . . , jk, ϕ ∈ (ai)⊥

as well. �

Lemma 7.11.∇(Falg
i ) ⊂ Falg

i−1.

Proof. We need to show that ifϕ ∈ HomSn(Λ
kh, Lm/n) is in (ai)⊥, then∇ϕ ∈ (ai−1)⊥. By the

previous lemma, it suffices to check that∂−j1 ◦ . . . ◦ ∂−jk+1
(∇ϕ) ∈ (ai−1)⊥ for all sequences

j1, . . . , jk+1. We compute

∂−j1 ◦ . . . ◦ ∂−jk+1
(∇ϕ) =

k+1∑

i=1

(−1)i−1(αji¬α1) · ∂−j1 ◦ . . . ∂−ji−1
◦ ∂−ji+1

◦ . . . ◦ ∂−jk(ϕ).

Nowαji¬α1 ∈ C[h]Sn, so ifx ∈ ai−1, we have

(∂−j1◦. . .◦∂−jk+1
(∇ϕ), x) =

k+1∑

i=1

(−1)i−1(∂−j1◦. . . ∂−ji−1
◦∂−ji+1

◦. . .◦∂−jk(ϕ),Φ(αj1¬α1)x).

SinceΦ(αj1¬α1)x ∈ ai, all the terms on the right-hand side vanish. �

Lemma 7.12.Supposeϕ ∈ HomSn(Λ
kh,C[h

∗
]) is homogenous of degreer. Then

(∇ ◦ ∂1 + ∂1 ◦ ∇)φ = (r + k)ϕ.
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Proof. Viewing ∇ as exterior differentiation, and∂1 as contraction withα1, we see that∇ ◦
∂1 + ∂1 ◦ ∇ = Lα1 is the Lie derivative with respect toα1. Now

Lα1(φ ∧ ψ) = Lα1(φ) ∧ ψ + φ ∧ Lα1(ψ),

so if the statement holds forφ andψ, it holds forφ ∧ ψ as well. Whenφ = pr andφ = ∇pr =
rαr−1, the lemma is easily verified. SinceHomSn(Λ

∗h,C[h∗]) is generated by these elements,
the lemma holds in general. �

Since∇ and∂1 both preserveHomSn(Λ
kh,C[h∗]) ⊂ HomSn(Λ

kh,C[h
∗
]), the formula of the

lemma also holds forφ ∈ Hm/n. By Lemma 7.11,∇ reduces filtration level by 1. If we let
∇̃ : HFalg

m/n → HFalg

m/n be the associated graded map, we see that

∇̃ ◦ d1 + d1 ◦ ∇̃ = (r + k)Id.

Corollary 7.13. H(HFalg

m/n , d1) is one-dimensional and is generated by1 ∈ eLm/n.

The analogous result for the HOMFLY homology was conjectured in [DGR06] and proved
in [Ras06].

8. STABLE sl(N) HOMOLOGY

We have already observed in section 5 that asm → ∞, the groupHm/n has a well-defined
limit

H∞/n := lim
m→∞

(a−1q)(n−1)(m−1)Hm/n = HomSn(Λ
∗h,C[h∗])

and that this limit is the tensor product of an exterior algebra with a symmetric algebra:

H∞/n
∼= Λ∗(ξ1, . . . , ξn−1)⊗ C[u1, . . . , un−1].

In this section, we show that the algebraic and inductive filtrations onLm/n tend to a limiting
filtration

. . .Fi−1L∞/n ⊂ FiL∞/n ⊂ Fi+1L∞/n . . .

onL∞/n. The associated filtration onH∞/n is induced by a grading. We will show that there is
a preferred choice of isomorphism

ρ : Λ∗(ξ1, . . . , ξn−1)⊗ C[u1, . . . , un−1] → H∞/n

which makesH∞/n into a graded ring with homogenous generatorsξ1, . . . , ξn−1, u1, . . . , un−1

with respect to the filtration gradingf defined by

f(ξi) = −i f(ui) = 1− i,

and thatFiH∞/n is the subspace spanned by all homogenous elements with filtration grading
≤ i.

The elementsui are determined up to scalars by the relations

Pi(uk) = 0 for i 6= k + 1 and Pk+1(uk) 6= 0,

wherePk is an appropriately scaled version of the quantum Olshanetsky-Perelomov Hamil-
tonian

∑
iD

k
i . The ξi satisfy (i + 1)ξi = ∇ui. Using the calculation of the action of the

O-P Hamiltonians in [Gor11], we give an explicit expressionfor theui in terms of elementary
symmetric functions. This, in turn, allows us to compute theaction ofdN on ξi.
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Normalizations: Throughout this section, we use the rescaled Dunkl operators

Di =
1

c

∂

∂xi
+
∑

j 6=i

sij − 1

xi − xj
, Di =

∑

j 6=i

sij − 1

xi − xj
.

However, we do not rescale the∇ operator; it is still given by

∇ϕ =

(∑ ∂

∂xi
x∗i

)
∧ ϕ.

The vector spaceL∞/n is naturally a module over algebraH∞/n first studied in [EG02]. It
has the same generators asHc with relations:

[v, w] =
∑

s∈S
〈v, αs〉〈α

∨
s , w〉 · s.

As it is shown in [EG02] (or [O04] for more elementary proofs)the spherical algebraeH∞/ne

is the algebra of regular functions on so called Calogero-Moser spaceCMn andH∞/n =
EndeH∞/ne

(H∞/ne) with H∞/ne forming vector bundle of rankn! overCMn.
The algebraeHce is a quantization ofeH∞/ne induced by the Poisson bracket{·, ·} defined

by:
{f, g} := lim

c→∞
c(f̃ g̃ − g̃f̃),

wheref̃ , g̃ are lifts of elementsf, g ∈ eH∞/ne to eHce.
It is shown in [EG02] (or [O04] for more elementary proofs) the spherical algebraeH∞/ne

is the algebra of regular functions on the Calogero-Moser spaceCMn. Moreover,H∞/n =
EndeH∞/ne

(H∞/ne) andH∞/ne forms a vector bundle of rankn! overCMn. The algebras
eHce give a deformation quantization ofeH∞/ne, and this structure is recalled by a Poisson
bracket on the latter.

It has the same generators asHc with relations:

[v, w] =
∑

s∈S
〈v, αs〉〈α

∨
s , w〉 · s.

We will also use rescaled versions of theq-grading,a-grading, and filtration. As indicated
above, we shift theq-grading onHm/n up by a factor ofµ = (m−1)(n−1), and thea-grading
down by the same amount. In addition, we shift the filtration on Hm/n down by a factor of
µ/2. The net result is that the image of the element1 ∈ C[h∗] in Lm/n has rescaledq-grading,
a-grading, and filtration level all equal to0.

8.1. More about L∞/n. In this section, we discuss the action of Dunkl operators on the repre-
sentationL∞/n = C[h∗] and describe a natural filtration onH∞/n. In the next section, we will
show that this filtration coincides with the limit of bothFalgLm/n andF indLm/n asm→ ∞.

Our starting point is the following lemma, whose proof is immediate from the definition:

Lemma 8.1. If f ∈ eL∞/n = C[h∗]Sn, andg ∈ L∞/n, thenDi(fg) = fDi(g).

Corollary 8.2. If f ∈ eL∞/n andξ ∈ H∞/n, then∂α(fξ) = f∂αξ.

Corollary 8.3. LetW : eL∞/n → e−L∞/n andW̃ : e−L∞/n → eL∞/n be multiplication by

W (x) andW (y) respectively, whereW denotes the Vandermonde determinant. ThenW ◦ W̃

andW̃ ◦W are both multiplication by a nonzero constantν.

Remark.The constant isν = (−1)(
n
2)n!(n−1)! . . . 1!, although we will not need this fact here.
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Proof. Every element ofe−L∞/n can be written asfW (x), wheref ∈ eL∞/n. Thus the claim
follows from the lemma together with the fact thatW (y) · W (x) is the stated constant, for
which see [DH98, Thm. 2.6] or [GW06, Eq. 0.4]. �

Lemma 8.4. (Kostant decomposition) The mapρ : C[h]Sn ⊗ C[h∗]Sn → L∞/n given by

φ(f(y)⊗ g(x)) = g(x)(f(y) ·W (x))

is a linear isomorphism.

Proof. The graded dimensions of the two spaces agree, so it suffices to showρ is injective.
Consider the pairingC[h]Sn ⊗ C[h]Sn → C given by

(f1, f2) = f1(y)f2(y) ·W (x).

Up to a factor ofν, this is the same as taking the projection off1f2 onto the 1–dimensional
subspace of top degree inC[h]Sn . It is well-known that this is a nonsingular pairing, so given
a basisfi of C[h]Sn, we can find a dual basisf i with the property that(fi, f j) = δji . It follows
that if

h =
∑

gi(x)(fi(y) ·W (x)) = 0,

thenf i(y) · h = gi(x) = 0. Thusρ is injective. �

Next, we consider an analog of the Kostant decomposition forHomSn(Λ
∗h, L∞/n). The

following lemma follows from dualityΦ(∂i) = ∂−i and the Vandermonde formula:

Lemma 8.5. W̃ = ∂−1 ◦ ∂−2 ◦ . . . ◦ ∂−n.

We define∂ hW (x) ⊂ HomSn(Λ
∗h, Lm/n) to be the space spanned by the images ofW (x)

under repeated applications of operators of the form∂α, whereα ∈ HomSn(h,C[h]) is poly-
nomial in the Dunkl operators.∂ hW (x) is analogous to the spaceC[h] ·W (x) ⊂ L∞/n ap-
pearing in the Kostant decomposition. IfI = {i1, . . . , ik} ⊂ {1, . . . , n− 1} = I, we write
∂−I = ∂−i1 ◦ . . . ◦ ∂−ik .

Lemma 8.6. The set{∂−I(W (x)) | I ⊂ I} is a basis for∂ hW (x).

Proof. Any α ∈ HomSn(h,C[h]) can be written asα =
∑

i fiαi, wherefi ∈ C[h]Sn . Note that
if fi is an invariant polynomial with vanishing constant term, thenfi(y) ·W (x) = 0, since it is
an alternating polynomial inC[h∗] with degree strictly than that ofW (x). Thus

∂αW (x) =
∑

i

∂i(fi ·W (x)) =
∑

i

fi(0)∂i(W (x)).

It follows that elements of the form∂−I(W (x)) span∂ hW (x). To see that they are linearly
independent, observe that∂−I(∂−JW (x)) is nonzero forJ = I/I and is zero otherwise. �

Corollary 8.7. ∂ hW (x) = HomSn(Λ
∗h,C[h] ·W (x)).

Lemma 8.8.∇(∂ hW (x)) = 0.

Proof. We show that∇(∂−IW (x)) = 0 by induction on the size ofI. WhenI is empty, the
claim is trivial. In general, we use the identitye¬(α ∧ β) = (e¬α) ∧ β + (−1)|α|α ∧ (e¬β) to
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write

∇(∂−IW ) = α1 ∧ (αi1¬(∂−I′W ))

= (αi1¬α1) ∧ (∂−I′W )− αi1¬(α1 ∧ ∂−I(W ))

= pi1+1(y) · (∂−I′W )− ∂i1(∇(∂−I′W ))

= ∂−I′(pi1+1(y) ·W )− ∂i1(∇(∂−I′W ))

= 0.

The first term in the next-to-last line vanishes becausepi1+1(y)·W is an antisymmetric function
of degree strictly less than that ofW , and the second term vanishes by the induction hypothesis.

�

Definition 8.9. Let ξi = (−1)iν−1∂−I/{i}W (x) ∈ HomSn(h
∗, L∞/n).

Proposition 8.10. Among elements ofHomSn(h
∗, L∞/n), ξi is uniquely characterized by the

properties that 1)∂αξi = 0 for all polynomialsα ∈ C[h] with degree less thani; and 2)
∂−i(ξi) = −1.

Proof. It is easy to see thatξi satisfies the given properties. For the converse, recall that
as a module overC[h∗]Sn , HomSn(h

∗, L∞/n) is freely generated by elements ofq-grading
2, 4, . . . , 2(n− 1). Observe that iffi ∈ C[h∗]Sn , then

∂−i

(
∑

j<i

fj(x)ξj

)
= 0,

soξi is not contained in the span ofξj for j < i. By inducting oni, we see thatξ1, . . . , ξn−1

generateHomSn(h, L∞/n). Thus we can write any other element ofq-grading2i as

ξ =
∑

j≤i

fj(x)ξj .

Then∂−jξ = fj(x), so condition 1) implies thatfj = 0 for j < i. �

Corollary 8.11. The set{ξ1, . . . , ξn−1} is a basis forHomSn(h,C[h
∗]) overC[h∗]Sn.

Definition 8.12. Letui = ∂1(ξi) ∈ eL∞/n.

To provide a characterization of theui analogous to that of Proposition 8.10, we consider the
operatorsHk : eLm/n → eLm/n given byHk(x) = pk(y)·x. TheHk are known as the quantum
Olshanetsky-Perelomov Hamiltonians ([EM10],[OP83]). From the expressionDi =

1
c

∂
∂xi

+Di

and the fact thatDi vanishes on any symmetric polynomial, it is clear see thatHk → 0 as
c → ∞. We consider a normalized version of these operators which captures their leading
order behavior inc.

Definition 8.13. The normalized Olshanetsky-Perelomov HamiltonianPk : eL∞/n → eL∞/n

is given byPk = limc→∞ cHk.

ExpandingDk
i to first order in1/c, we see that

Pk(f) =
∑

i

Dk
i

(
∂f

∂xi

)
= ∂−k+1(∇f).

Combining the formula above with Corollary 8.2, we see thatPk satisfies the Leibniz rule:

Lemma 8.14. If u, v ∈ C[h∗]Sn , thenPk(uv) = Pk(u)v + uPk(v).
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Proposition 8.15. Among elements ofeL∞/n, ui is uniquely characterized by the properties
that

(1) Pk(ui) = 0 for k 6= i+ 1
(2) Pi+1(ui) = −(i+ 1).

Proof. By Lemmas 7.12 and 8.8,∇(ui) = (i + 1)ξi. The fact thatui satisfies properties
1) and 2) follows from Proposition 8.10. Conversely, ifu is homogenous of degreei + 1
and satisfies 1) and 2), then∇u/(i + 1) satisfies properties 1) and 2) of Proposition 8.10, so
∇u/(i+ 1) = ξi. �

Remark.From the discussion at the beginning of the section we see that operators could be
constructed in terms of the Poisson bracket:

Pk(f) = {pk(y), f} mod (p2(y), . . . , pn(y)).

In particular, the previous proposition states that coordinatesui, 1 ≤ i ≤ n − 1 are (up to
some factors) canonically dual to the coordinatespi(y), 2 ≤ i ≤ n along the locus of the
Calogero-Moser space defined by equationspi(y) = 0.

Corollary 8.16. C[h∗]Sn is generated byu1, . . . , un−1.

Proof. It suffices to show thatui is not contained in the ring generated byu1, . . . , ui−1. For
u ∈ C[u1, . . . , ui−1], we can use the Leibnitz rule to see thatPi+1(u) = 0. SincePi+1(ui) 6= 0,
the claim is proved. �

Combining Corollaries 8.11 and 8.16, we see that

HomSn(Λ
∗h, L∞/n) ∼= Λ∗(ξ1, . . . , ξn)⊗ C[u1, . . . , un].

Remark.Note that the operatorsPk can be viewed as acting onC[h
∗
]. In this case,P1 acts

nontrivially. It is easy to see thatC[h∗] ⊂ C[h
∗
]Sn is the kernel ofP1, so we could equally well

view theui as being elements ofC[h
∗
]Sn characterized by the condition thatPk(ui) = 0 for

k 6= i+ 1, (k = 1, . . . , n). We have

HomSn(Λ
∗h, L∞/n) ∼= Λ∗(ξ0, ξ1, . . . , ξn)⊗ C[u0, u1, . . . , un].

whereu0 = x1 + . . .+ xn andξ0 = ∇u0 =
∑
e∗i .

We now turn our attention to the filtration.

Definition 8.17. The filtration gradingf oneL∞/n is the multiplicative grading determined by
the condition andf(ui) = 1− i. Equivalently, ifa is a monomial in theui , then

f(a) = 2 degu(a)−
1

2
q(a).

LetF sph
i ⊂ eL∞/n be the subspace generated by homogenous elements with filtration grad-

ing ≤ i. TheF sph
i define an increasing filtration oneL∞/n. In the next subsection, we will

show that this filtration agrees with the limits of both the algebraic and the inductive filtrations
oneL∞/n.

SupposeGsph is a filtration oneL∞/n. By Proposition 2.3, its push-forward to the antispher-
ical representatione−L∞/n is given bymW (G)i = W (x) · Gi+n(n−1)/2. We say thatGsph is
stableif when we form the filtration induced onL∞/n byψ(Gsph), its restriction toeL∞/n will
again beGsph. If the limit of the inductive filtrations oneLm/n exists, its restriction toeL∞/n

is clearly stable.
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Next, we consider the limit of the algebraic filtration. LetP alg(eLm/n) be the Hilbert polyno-
mial of the filtrationFalg restricted toeLm/n. If Gsph is the limit of these filtrations, the Hilbert
series ofGsph should agree with the limit of theP alg(eLm/n). This limit is easily computed:

Lemma 8.18.P alg(eL∞/n) := lim
m→∞

P alg(eLm/n) =
n−1∏

i=1

(
1− q2i+2t1−i

)−1
.

Proof. The filtrationF iC[h∗]Sn =
∑

j

(
aj ∩

⊕
k<2j−iC[h

∗]Sn(k)
)

of the ring of symmetric

functions by powers of its maximal ideal has Hilbert series

n−1∏

i=1

(
1− q2i+2ti−1

)−1
.

Thus the claim follows from the fact that

(1) eLm/n(k) = C[h∗]Sn(k) for all m > k

(2) the filtrationFalg
i eLm/n(k) is dual toF ieLm/n(k) under the Dunkl pairing.

�

In fact, these two conditions are enough to characterize thefiltration Gsph.

Proposition 8.19.SupposeGsph is an increasing filtration oneL∞/n which is stable and whose
Hilbert series is given byGsph. ThenGsph = F sph.

Proof. It is easy to see that the Hilbert series ofF sph is given byP alg(eL∞/n). Thus it is
enough to show thatF sph

i ⊂ Gsph
i .

We claim thatui, which is an element ofF sph
1−i, is contained inGsph

1−i as well. To see this,
write ui = ∂1(∂I/i(W (x)). It is clear fromP alg(eL∞/n) that1 ∈ Gsph

0 , so by stability ofG,
W (x) ∈ G−n(n−1)/2. It follows that in the induced filtration, the level ofui is≤ −n(n−1)/2+
1 + |I/i| = 1− i. SinceG is stable,ui ∈ G1−i.

We will show by induction onk thatF sph
i (2k) ⊂ Gsph

i (2k). Whenk = 0, this is clear. In
general, ifu ∈ eL∞/n is a monomial in theui with q(u) = 2k we can writeu = uiu

′ for some
ui. By Corollary 8.2,u = ∂1(∂I/i(W (x)u′)). Then by the induction hypothesis,u′ ⊂ Gsph

f(u′),

and the same argument as above shows thatu ⊂ Gsph
f(u′)+1−i = Gsph

f(u). �

To describe the corresponding filtration on all ofL∞/n, we use the Kostant decomposition:

Definition 8.20. We define a gradingf on L∞/n by declaring that ifa = g(x)h(y) · W (x),
whereg ∈ C[h∗]Sn is a monomial in theui, andh ∈ C[h]Sn is q-homogenous, thena is f -
homogenous with

f(a) = f(g(x))− q(h(y) ·W (x))/2 = 2 degu(g)− q(a)/2.

Let Fi ⊂ L∞/n be the subspace generated by homogenous elements with grading ≤ i.
ClearlyFi∩eL∞/n = F sph

i . We say that a filtrationG of L∞/n is stableif the filtration induced
onL∞/n bymW (Gsph) agrees withG.

Proposition 8.21. SupposeG is an increasing filtration onL∞/n which is stable and whose
restriction toeL∞/n agrees withF sph. ThenG = F .
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Proof. Let us showFi ⊂ Gi. Supposea = g(x)h(y) · W (x), whereh(y) ∈ C[h]Sn is q-
homogenous of degree2k andg(x) ∈ C[h∗] is a monomial in theui. SinceGsph agrees with
F sph, g(x)W (x) ∈ Gf(g)−n(n−1)/2. This impliesa ∈ Gf(g)−n(n−1)/2+k = Gf(a).

Conversely, supposea ∈ Gi. Write a =
∑

j gj(x)hj(y) ·W (x), wheregj is q-homogenous
andhj is a monomial in theui, and choosej for which f(gj) − q(hj(y) ·W )/2 is maximal.
Let q(hj(y) · W ) = 2k. We can findh q-homogenous of degree2k so thathjh ≡ W (y)

mod C[h]Sn
+ . Theneh · a ∈ Gsph

i+k = F sph
i+k has a nonzero coefficient ofgj , sof(gj) ≤ i + k. It

follows that
f(gj(x)hj(y) ·W (x)) = f(gj)− q(hj(y) ·W )/2 ≤ i

soa ∈ Fi. �

Definition 8.22. We define a gradingf onH∞/n by declaring that ifϕ = g(x)∂−IW (x), where
g ∈ C[h∗]Sn is a monomial in theui, thena is f -homogenous with

f(ϕ) = f(g(x))− q(∂−IW (x))/2 = 2 degu(g)− q(ϕ)/2.

From Corollary 8.7, we deduce

Corollary 8.23. The filtration induced byFL∞/n onH∞/n is the same as the increasing filtra-
tion defined usingf .

8.2. The limiting filtration. Our goal in this section is to prove the following

Theorem 8.24.The limitslimm→∞FalgLm/n andlimm→∞F indLm/n both exist and are equal
toFL∞/n.

In fact, we will prove slightly more:

Proposition 8.25. For any fixedk, there exists someM so thatF ind
i Lm/n(k) = Falg

i Lm/n(k)
wheneverm ≥M .

Note that in both cases, it suffices to prove the result under the additional hypothesis that
m ≡ r mod n for an arbitrary value ofr. Our starting point is the following

Lemma 8.26.limm→∞ FalgLm/n exists. Its restriction toeL∞/n has Hilbert seriesP alg(eL∞/n).

Proof. SinceFalg is compatible with theq-grading, it suffices to show thatlimm→∞ Falg(k)
exists for any fixed value ofk. Takingm > k, we may identifyLm/n(k) = L∞/n(k) =
C[h∗](k), so the filtrations in question all have the same underlying spaceVk. Moreover, the
filtrationFd(k) defined by powers of the maximal ideal is independent ofm.

For each value ofc > k/n, the Dunkl pairing defines a nonsingular pairing onVk. Alter-
nately, we may think of it as defining a nonsingular pairing onVk ⊗ C(c), which we view as
a vector space over the ring of rational functions inc. Let {vi} be a basis forVk. Then by
row-reduction, we can find a basisαj =

∑
aijvi overC(c) for (Fd(k)⊗ C(c))⊥. This defines

a rational map fromP1 to the Grassmanian ofr-planes inVk, wherer = dimFd(k). Any
rational map ofP1 to a projective variety extends to all ofP1, so the limit asc→ ∞ exists. The
last statement follows immediately from Lemma 8.18. �

We are now ready to start the proof of Theorem 8.24. As usual, we begin with the case of
the spherical representation.

Proposition 8.27.For eachk andr, the following statements hold:
(1) There existsM such that for allm > M such thatm ≡ r mod n, F indeLm/n(≤ k) =

FalgeLm/n(≤ k).
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(2) limm→∞FalgeLm/n(≤ k) = F sph(≤ k).

Proof. By induction onk. Whenk = 0, the statement follows immediately from Propo-
sition 4.4. Now suppose the statement holds fork − 1. We have already shown in Theo-
rem 4.8 thatF ind

i eLm/n ⊂ Falg
i eLm/n. Thus to prove statement (1), it suffices to show that

dimF ind
i eLm/n(k) = dimFalg

i eLm/n(k) whenm is large.
Recall that the filtration oneLm/n is induced by the filtration oneL(m−n)/n via the isomor-

phismmW : eL(m−n)/n → e−Lm/n and the relation

β ∈ Fm/n
i if and only if β = aφ(α) wherea ∈ Gj , α ∈ F (m−n)/n

k , andi+ j = k.

We say thata ∈ eLm/n is reachable at filtration leveli from eL(m−n)/n(≤ k) if we can
find b ∈ F ind

i1
eL(m−n)/n andβ ∈ Hm

n
of filtration level i2 with i1 + i2 − n(n − 1)/2 ≤ i

anda = β ·mW (b). LetF≤k
i eLm/n be the set of elements which are reachable at leveli from

eL(m−n)/n(≤ k). By construction,F≤k
i eLm/n ⊂ F ind

i eLm/n.
The proof of Proposition 8.19 amounts to showing that the dimension of the subspace of

eL∞/n(k) which is reachable at leveli from eL∞/n(≤ k − 1) is equal to the dimension of
Falg

i eLm/n(k) for m large. Now by the induction hypothesis, we know that asm → ∞,
F ind

i eLm/n(≤ k − 1) → FieL∞/n(≤ k − 1). Moreover, asm → ∞, the action ofHm
n

on
C[h∗] tends to the action ofH∞

n
onC[h∗]. Since the property that that the image of a subspace

under a linear map has dimension at leastj is an open condition, it follows that whenm is
large,

dimF ind
i eLm/n(k) ≥ dimF≤k−1

i eLm/n ≥ dimF≤k−1
i eL∞/n = dimFalg

i eLm/n(k).

We conclude that statement (1) holds fork.
To show that statement (2) holds, letGsph(≤ k) = limm→∞ FalgeLm/n(≤ k). (The limit

exists by Lemma 8.26.) By statement (1)Gsph is also the limit ofF indeLm/n, so it is stable.
Finally, by proposition 8.19, we conclude thatGsph(≤ k) = F sph(≤ k). �

We can now prove the analogous results for all ofLm/n.

Proof. (of Proposition 8.25) As in the proof of the last proposition, it suffices to show that
dimF ind

i Lm/n(k) ≥ dimFalg
i Lm/n(k) for largem. To compute the right-hand side of this

inequality, we use the isomorphismL∞/n
∼= C[h]Sn ⊗C[h∗]Sn provided by the Kostant decom-

position. It is easy to see that under this isomorphism,ak maps toC[h]Sn ⊗ (C[h∗]Sn
+ )k. Thus

the Hilbert series of the decreasing filtrationF iL∞/n is given by

Q(q2t)P ak(eLm/n) =
n∏

i=2

1− q2iti

(1− q2t)(1− q2iti−2)

whereQ(q2) = [n!]q2 is the Hilbert polynomial ofC[h]Sn . The Hilbert polynomial of the
dual filtrationFalgL∞/n is obtained by replacingt with t−1 in this series. It is clear from
Definition 8.20 that this is also the Hilbert polynomial of the filtrationFL∞/n. In summary,
we have seen that whenm is large relative tok, dimFalg

i Lm/n(k) = dimFiL∞/n(k).
The proof of Proposition 8.21 shows that ifa ∈ FiL∞/n(k), thena is reachable at filtration

level i from eL∞/n(≤ k + n(n − 1)/2). Since we already know thatF indeLm/n(≤ k) →
FeL∞/n(≤ k) asm → ∞, the same argument as in the proof of Proposition 8.27 shows that
whenm is large,

dimF ind
i Lm/n(k) ≥ dimFiL∞/n(k) = dimFalg

i Lm/n(k)



40 E. GORSKY, A. OBLOMKOV, J. RASMUSSEN, AND V. SHENDE

which is what we wanted to prove. �

Proof. (of Theorem 8.24) By Lemma 8.26,G := limm→∞FalgLm/n exists. Proposition 8.25
implies thatG = limm→∞F indLm/n, soG is stable. Then by Proposition 8.21,G = F . �

If I = {i1, . . . , ik} ⊂ I, we writeξI = ξi1 ∧ . . . ξik .

Proposition 8.28.The set{ξI | I ⊂ I} is a basis for∂hW (x).

Proof. The set ofξI ’s has the correct cardinality, and they are linearly independent, since
ξI ∧ ξJ = 0 unlessJ = I/I, and is a nonzero multiple ofW in that case. Thus it suffices
to prove thatξI is contained in∂hW (x). From Corollary 8.23, we see that∂hW (x)(2k) =
F−kH∞/n(2k). We prove by induction on|I| that ξI ∈ F−k(2k)H∞/n, where2k = q(ξI)
. When |I| = 1, this is clear. In general, writeξI = ξi1 ∧ ξI′. Then by the induction hy-
pothesisξI′ ∈ F−k′(2k

′), whereq(ξI′) = 2k. Thenui1ξI′ ⊂ F−k′+1−i1 . We proved in
lemma 7.11 that∇(Falg

i Hm/n) ⊂ ∇(Falg
i Hm/n). SinceFiH∞/n is the limit of theFalg

i ,
∇(Falg

i H∞/n) ⊂ ∇(Falg
i H∞/n). Thus∇(ui1ξI′) = ξi1 ∧ ξI′ = ξI is inF−k′−i1 = F−k. �

Remark.It seems natural to conjecture thatξI is a scalar multiple of∂−I/I .

It follows that the filtrationFH∞/n is induced by a multiplicative gradingf onH∞/n
∼=

Λ∗(ξ1, . . . , ξn−1)⊗ C[u1, . . . , un−1], wheref(ui) = 1− i andf(ξi) = −i.

8.3. Determining uk. Recall thatuk ∈ eL∞/n is characterized by the fact thatPi(uk) = 0 for
i 6= k+1 andPk+1(uk) = −(k+1), wherePk : L∞/n → L∞/n is the normalized Olshanetsky-
Perelomov Hamiltonian. The symmetric polynomialsuk can be written explicitly as a sum of
elementary symmetric polynomials. Ifλ is a partition ofk, andλ′ is its dual partition, we define

Fn(λ) =
1

nλ′
1(n− 1)λ

′
2 . . . (n− k + 1)λ

′
k

=
∏

i

(n− λi)!

n!
.

Moreover, we define constantsak(λ) to be the coefficients of the expansion of thekth symmet-
ric power function in terms of elementary symmetric functions:

pk =
∑

λ⊢k
ak(λ)eλ.

Then we have

Proposition 8.29.uk =
∑

λ⊢(k+1)

ak+1(λ)Fn(λ)eλ.

Proof. The action ofHk onel ∈ eLm/n was calculated in Theorem 5.10 of [Gor11]. It is given
by

Hk(el) = −
(
−
m

n

)k−1

(n + 1− l) . . . (n+ k − l)el−k.

Passing to the limitm → ∞, we see that the action of the rescaled HamiltonianPk on el ∈
eL∞/n is given by

Pk(el) = (−1)k(n + 1− l) . . . (n+ k − l)el−k.

Therefore if

el = (−1)lel
(n− l)!

n!
,

then

(19) Pk(el) = el−k.
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Consider the generating function

E(z) =
n∑

k=0

ekz
k =

n∑

k=0

(−1)k
(n− k)!

n!
ekz

k,

then (19) impliesPk(E(z)) = zkE(z). SincePk obeys the Leibniz rule, we get

(20) Pk(lnE(z)) =
Pk(E(z))

E(z)
=
zkE(z)

E(z)
= zk.

On the other hand, it is well known (e.g. [Mac79]) that
∞∑

k=1

∑

λ⊢k

zk

k
ak(λ)eλ =

∞∑

k=1

zk

k
pk = − ln

(
n∑

k=0

(−1)kekzk

)
,

therefore

(21) U(z) =
∞∑

k=0

uk
zk+1

k + 1
=

∞∑

k=1

∑

λ⊢k

zk

k
ak(λ)

∏

i

eλi

(n− λi)!

n!
= − lnE(z).

From (20) and (21) we concludePk(ul) = −(k + 1) · δlk. �

Corollary 8.30. lim
n→∞

nk−1uk(n) = pk.

8.4. Computing dN . In this section, we determine the action ofdα on HF
∞/n, whereα ∈

HomSn(h,C[h
∗]) ⊂ HomSn(h,H∞

n
). Before we go on, we pause to consider the dependence

of dα on the choice ofα. Suppose thatα ∈ HomSn(h,C[h
∗]) is q-homogenous of degreeN .

The set of all such polynomials has a basis consisting of monomials of the formuλξi, where
|λ|+ i = N . It is immediate from the definition of∂α that∂uλξi = uλdξi. Multiplication byuλ
shifts the filtration level by2l(λ) − lλ|, so the net shift in filtration level isi + 2l(λ) − |λ| =
N−2(|λ|−l(λ)). Unlessuλ is a power ofu0, this is strictly less thanN , so it will not contribute
to the map on associated graded groups. Thus when we work withreduced homology, there is
an essentially unique choice ofdN up to scale.

We now return to the calculation. Our first step is to observe thatdα satisfies a Leibniz rule:

Lemma 8.31.Considerdα : HF
∞/n → HF

∞/n, whereα ∈ HomSn(h,C[h
∗]). We have

dαϕ ∧ ψ = (dαϕ) ∧ ψ + (−1)|ϕ|ϕ ∧ (dαψ).

Proof. Sinceα ∈ HomSn(h,C[h
∗]), we have

α¬(ϕ ∧ ψ) = (α¬ϕ) ∧ ψ + (−1)|ϕ|ϕ ∧ (α¬ψ)

from which it follows that

∂αϕ ∧ ψ = (∂αϕ) ∧ ψ + (−1)|ϕ|ϕ ∧ (∂αψ).

Since the filtrationF is induced by a multiplicative grading, the analogous statement for asso-
ciated gradeds also holds. �

Thus it suffices to computedαξi. For the moment, we work with unreduced homology.
Suppose thatα, β ∈ HomSn(h,C[h

∗
]) are given byxi 7→ αi, xi 7→ βi. We defineα·β ∈ C[h

∗
]Sn

by α · β =
∑

i αiβi andα ∗ β ∈ C[h
∗
] by xi → αiβi respectively. We clearly have

Lemma 8.32.α · (β ∗ γ) = (α ∗ β) · γ.



42 E. GORSKY, A. OBLOMKOV, J. RASMUSSEN, AND V. SHENDE

If αj ∈ HomSn h,C[h
∗
] is given byxi 7→ xji , then we can compute

Proposition 8.33.α1 ∗ ξk =
∑k

i=0 uiξk−i + (n− k − 1)ξk+1.

Proof. Since∂ek
∂xi

= ei−1(x1, . . . , x̂i, . . . , xn), one has

xi
∂ek
∂xi

= ek −
∂ek+1

∂xi
,

therefore

xi
∂ek
∂xi

= ek + (n− k)
∂ek+1

∂xi
,

and

(22) zxi
∂E(z)

∂xi
= zE(z) + (n + 1)

∂E(z)

∂xi
−
∂2E(z)

∂z∂xi
.

By (21)E(z) = exp(−U(z)), so we can rewrite (22) as

zxi
∂U(z)

∂xi
= −z + (n+ 1)

∂U(z)

∂xi
−
∂2U(z)

∂z∂xi
+
∂U(z)

∂xi
·
∂U(z)

∂z
.

By expanding inz, we get the equation

xi
k + 1

∂uk
∂xi

= −δk0 +
(n− k − 1)

k + 2

∂uk+1

∂xi
+

k∑

j=0

uj
k + 1− j

·
∂uk−j

∂xi
,

thus we can use the equation∇ui = (i+ 1)ξi:

xi(ξk)i = −δk0 + (n− k − 1)(ξk+1)i +
k∑

j=0

uj · (ξk−j)i.

�

We can now prove the main result of this section.

Theorem 8.34.dαN
(ξk) =

∑

j1+...+jN=k

uj1 . . . ujN , where the sum runs overji ≥ 0.

Proof. We have
dαN

(ξk) = [αN · ξk],

where[·] denotes the equivalence class in the associated graded group. By Lemma 8.32

αN · ξk = (α1 ∗ αN−1) · ξk = α1 · (αN−1 ∗ ξk).

By repeatedly applying Proposition 8.33, we find that

αN−1 ∗ ξk =
∑

j1+...+jN=k

uj1 . . . ujN−1
ξjN + . . .

where the terms which are omitted all have lower filtration grading. To finish the proof, we
need only recall thatα1 · ξj = ∂1ξj = uj. �

Corollary 8.35. dα̃N
(ξk) =

∑

j1+...+jN=k

uj1 . . . ujN , where the sum runs overji ≥ 1.

Proof. This is an immediate consequence of the remarks following Proposition 7.7. �
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9. THE GEOMETRIC FILTRATION

Given a pointp on a planar curveC, letC [d]
m be the space of colengthd ideals which requirem

generators atp. Letwt(X) denote the weight polynomial (aka the virtual Poincaré polynomial).
Consider the following series:

(23) Z(C) =
∑

d,m

q2dwt(C
[d]
m )

m∑

k=0

(
m

k

)

t2
a2ktk

2

In [ORS12] we proposed the following

Conjecture 9.1. LetC be a locally planar curve, smooth away from a single pointp. Then the
unreduced HOMFLY homology is given by:

P link(C,p) = (aq−1)µ−1(1− q2)1−b(1− q2t2)(1 + q2t)−2g̃Z(C)

whereg̃ is the geometric genus ofC, b is the number of analytic local branches atp, andµ is
the Milnor invariant of the singularity.

In this section we use Springer theory to relate the above conjecture to Conjecture 1.2.

9.1. From Hilbert schemes to Hitchin fibres. For this subsection we fixg = gln. Let B be
the space of complete flags, andg̃ ⊂ g × B be the locus where the matrix preserves the flag.
The maps : g̃ → g is called the Grothendieck simultaneous resolution, and its restriction to
the nilpotent matrices,s|N : Ñ → N is called theSpringer resolution. As Lusztig observed
[Lus81], s : g̃ → g is small, soRs∗Cg̃ is the IC extension of its restriction to the open dense
locusgrs of regular semisimple elements. The fibre over such elementsis naturally aSn-torsor,
and so the local systemRs∗Cg̃|grs carries anSn action. Then functoriality of IC gives an action
of Sn on the cohomology of every fibre. These are theSpringer representations, which have
many other equivalent constructions [Spr76, Spr78, Slo80,KL80, BM81, Hot81].

The flag manifoldB carries tautological bundlesLi for i = 1, . . . , n; the fibre ofLi at a
given flagF beingFi/Fi−1. The cohomologyH∗(B) is the quotient of the algebra generated
by the Chern classesxi = c1(Li) by the ideal generated by the elementary symmetric functions
in thexi; the action ofSn is by permuting theci. The fibresBγ := s−1(γ) are similarly well
understood; we restrict attention to the case of nilpotentγ. As for B, theBγ are stratified by
linear spaces [Spa76]. The inclusionBγ → B inducesH∗(B) → H∗(Bγ); this map is known
to be surjective, and moreover can be described as the quotient by a certain explicit ideal of
functions in thexi depending only on the conjugacy class ofγ [dCP81]. In particular if we
stratifyN by conjugacy classes, the homology sheaves ofRπ∗CÑ aretrivial local systems on
each stratum.

To a nilpotent matrixγ, assign the partitionj(γ) ⊢ nwhose entries are the sizes of the Jordan
blocks; e.g.,j(0) = (1n). Since allH∗(Bγ) with j(γ) = π are canonically isomorphic, we will
sometimes denote this space asH∗(Bπ). Our convention for partitions is as in [Mac79]: a par-
tition µ has partsµ1 ≥ µ2 ≥ · · · ; we writeℓ(µ) for the number of parts,n(µ) :=

∑
(i − 1)µi,

andµ′ for the transposed partition. Recall that irreducible representations ofSn are indexed by
partitions ofn; in our conventionV(n) is the trivial representation, and more generallyV(1k,n−k)

is the k-th exterior power of the standard representation. Writing Sπ := Sπ1 × · · · × Sπk
, it

was shown (apparently first in unpublished work of Macdonald) thatH∗(Bγ) = IndSn
Sj(γ)

1. The
decomposition into irreducible representations ofSn is given by the Kostka numbers [FH91,
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Cor. 4.39]:Kλµ = dimHomSn(Vλ, Ind
Sn
Sµ
). TheKλµ are combinatorially the number of semi-

standard tableaux onλ with µk k’s. It is easy to seeK(1k,n−k),µ =
(
ℓ(µ)−1

k

)
, whereℓ(µ) is the

number of parts ofµ.
The Kostka numbers admit a refinementK̃λµ(x) such thatK̃λµ(1) = Kλµ. These have many

interpretations, see [Mac79] and the references thereof; in particular [Lus81, HS77]:

K̃λµ(t
2) =

∑
ti dimHomSn(Vλ,H

i(Bµ))

The K̃λµ(x) also admit a combinatorial expressioñKλµ(x) =
∑

T∈SST (λ,µ) x
n(µ)−c(T ), where

SST (λ, µ) are the same tableaux counted byKλµ andc(T ) is a certain complicated statistic
called thecharge[LSc79] (or see [Mac79, III.6]).

Lemma 9.2. LetN (m) be the locus of nilpotent matrices with kernel of dimensionm. Leth be
the standard representation of the symmetric group. ThenHomSn(Λ

kh, Rs∗C|N (m)) is a direct
sum of constant sheaves. The fibre is pure with Poincaré seriestk(k+1)

(
m−1
k

)
t2

.

Proof. It is known [Spa76] that all the Springer fibersBγ are paved by linear spaces, from
which the purity of the weight filtration follows. Moreover [dCP81] the cohomology of the
fibers is given explicitly as anSn-equivariant quotient ofH∗(B) by an ideal which (1) de-
pends only on the partition and (2) increases as the partition increases in the dominance order.
In particular allH∗(Bγ) for γ ∈ N (m) have a canonical surjectiveSn-equivariant map onto
H∗(B(n−m,1m)). HenceHomSn(Λ

kh, Rs∗C|N (m)) maps surjectively to the constant local sys-
tem with fibreHomSn(Λ

kh,H∗(B(n−m,1m))). As all fibres have cohomology with the same total
dimensionK(n−k,1k),µ =

(
m−1
k

)
, the map is an isomorphism.

We are now reduced to computing one fibre, so it will suffice to show

K̃(n−k,1k),(n−m,1m)(t
2) = tk(k+1)

(
m− 1

k

)

t2

By [LSc79], this is a straightforward combinatorial exercise; or see [Mac79, p. 362, ex. 2].�

Remark.It follows that

K̃(n−k,1k),µ(t
2) = tk(k+1)

(
ℓ(µ)− 1

k

)

t2

this is also easy to see directly from the combinatorial description of theK̃(x).

We will need the slightly stronger statement:

Lemma 9.3. Let s/G : [g̃/G] → [g/G] be the (stacky) adjoint quotient of the simultaneous
resolution. ThenHomSn(Λ

kh, R(s/G)∗C|N (m)/G) is a direct sum of constant sheaves. The
fibre is pure with Poincaŕe seriestk(k+1)

(
m−1
k

)
t2

.

Proof. By definition, we should show that the result of Lemma 9.2 holds wheng, N , B, etc.,
are replaced by torsors arising from some not-necessarily-trivial rank n bundle. But note that
although the bundle of flag varieties is not trivial, its cohomology forms a trivial local system
because it is generated by Chern classes of tautological bundles. Now the argument of Lemma
9.2 applies. �

We recall basic properties of the Hitchin fibration [Hit87, BNR89, Ngo06]; for a good intro-
duction see [DM95]. Fix a smooth base curveX, and a line bundleL of degree at least2g(X).
Then moduli space of Higgs bundlesMX = MX,L,n parameterizes pairs(E, φ : E → E ⊗L)
whereE is a rankn vector bundle overX. We writeMX,ℓ for the component whereE has
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some fixed degreeℓ. Let AX = AX,L,n be the vector space parameterizing curves in the total
space ofL projecting with degreen toX; we write[C] ∈ A to denote the point corresponding
to a curveC. Then theHitchin fibration is the maph : MX → AX which takes(E, φ) to the
“spectral” curve cut out by the characteristic polynomial of φ. We restrict attention to the locus
A♥

X ⊂ AX of integral spectral curves. Over this locus all Higgs bundles must be simple, since
a sub-bundle would give rise to a sub-spectral curve. The restrictionMℓ|A♥

X
→ A♥

X is a proper
flat map between smooth varieties. Henceforth we omit the♥.

Let [C] ∈ AX be a spectral curve. The fibreMX,ℓ,[C] := h−1([C]) can be identified with

the moduli spaceJ
ℓ′

(C) of torsion free rank one sheaves of degreeℓ′ = ℓ +
(
n
2

)
degL onC:

such a sheaf pushes forward to a rankn bundle onX, which comes equipped with a Higgs field
induced from the tautological sectionC → L|C .

Fixing a pointx ∈ X yields an evaluation mapev : MX,ℓ → [g/G] which takes the conju-
gacy class ofφx. TheparabolicHitchin system is given bỹMX = MX ×[g/G] [g̃/G]. In other

words,M̃X parameterizes triples(E, φ : E → E⊗L, a complete flag inEx preserved byφx).
Evidently the fibre product is compatible with the map toAX . We denote the projection also
ass : M̃X → MX . By pullback we obtain the action ofSn onRs∗CM̃X

. We writeNX for the

preimage underev of the nilpotent coneN , andÑX for the preimage of̃N under the projection
to the second factor.

LetM(m)
X ⊂ MX be the locus where thedimEx/φxEx = m, and similarlyN (m)

X . Consider
some(E, φ) ∈ N (m)

X ; note in particular the spectral curveCa has a single point overx which
moreover is on the zero section ofL. Let z be a local coordinate onX nearx, andy a vertical
coordinate along the line bundle, andf(z, y) the defining equation of the spectral curve. IfF
is the torsion free sheaf onC such thatπ∗F = E, then

dimF/(z, y)F = dim(F/zF )/y(F/zF ) = dimEx/φxEx = m

Lemma 9.4.HomSn(Λ
kh, Rs∗C|N (m)

X
) is a trivial local system whose fibre is pure with Poincaré

seriestk(k+1)
(
m−1
k

)
t2

.

Proof. By pullback from Lemma 9.3. �

LetHX,ℓ denote the space of triples(E, φ, σ)where(E, φ) ∈ MX,ℓ, andσ ∈ PH0(X,E). Its
fibreHX,ℓ,[C] over a fixed (integral) spectral curve[C] ∈ A parameterizes torsion free sheaves
with a section; sinceC is locally planar and hence Gorenstein we haveHX,ℓ,[C]

∼= C [ℓ′] [PT10,
Appendix B] where as beforeℓ′ = ℓ+

(
n
2

)
degL. Let H̃X,ℓ = HX,ℓ×[g/G] [g̃/G] be the parabolic

version, andH(m)
X,ℓ the locus whereφx is nilpotent anddimEx/φxEx = m.

AssumeC is nonsingular away from its fibre overx andφx is nilpotent. In [ORS12] we
used the notationC [ℓ′]

m to denote the locus in the Hilbert scheme of points where the ideal sheaf
requiresm generators; we have seen above that this may be identified with H̃(m)

X,ℓ,[C].
We have the binomial identity

r∑

i=0

(
r

i

)

t2
Aiti(i−1) =

r−1∏

i=0

(1 + t2iA)

which we may use in conjunction with the analogue forH̃ of Lemma 9.4 to conclude

Z(C) = (1 + a2t)
∑

d′,k

q2d
′

(a2t)kwtHomSn(Λ
kh,H∗(H̃X,ℓ,[C]))
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Thus we have exchanged explicit mention of the number of generators of ideals for taking
isotypic components with respect to the Springer action on aparabolic object.

We now recall from [MY11, MS11] how to replace the Hilbert schemes with Hitchin fibres.
As always we work over the locusA♥ of integral spectral curves. SinceMX,ℓ is smooth
andh is proper, the decomposition theorem of Beilinson, Bernstein, and Deligne [BBD82]
implies thath∗CMX,ℓ

splits as a direct sum of shifted semisimple perverse sheaves. From the
support theorem of Ngô [Ngo10], we know that moreover theseconstituents are all IC sheaves
associated to the local systems of cohomologies of fibres on the smooth locush of h. In
particular, at the fibre over some fixed spectral curveC we obtain a decomposition

Hi(MX,ℓ,[C]) ∼=
⊕

j

Hi(IC(Rjh∗C)[−j − dimA− g]|[C])

On the RHS the restriction of the IC sheaf to a point gives somecomplex, and we are just taking
its cohomology as a complex. We will denote byHi;j(MX,ℓ,α) thej-th summand on the RHS.4

Let f : HX,ℓ → MX,ℓ be the forgetful map. It is shown in [MY11, MS11] thatHX,ℓ is
nonsingular, and that the shifted perverse summands ofh∗f∗CHX,ℓ

all have support equal to
AX . Consequently we may compareh∗f∗CHX,ℓ

andf∗CMX,ℓ
along the common smooth locus

of both maps (ie, the locus of smooth spectral curves), take IC sheaves to get a comparison over
all of AX , and then restrict to the (singular) spectral curve of interest. Thus in [MY11, MS11]
it is proven that:

(1− q2)(1− q2t2)
∞∑

ℓ′=0

q2ℓ
′

H∗(HX,ℓ,[C]) =

2g∑

i=0

q2iH∗;i(MX,0,[C])

The equality is an equality of mixed Hodge structures, wheret indicates the inverse Tate twist
(i.e., it becomes multiplication byt after taking weight polynomial). We have chosen degree0
on the right for specificity, but the choice is arbitrary.

The analogous equality holdsSn-equivariantly in the parabolic case. Over the open locus
Ars where the spectral curve consists ofn distinct points overx this is clear: the maps̃H → H

andM̃X → MX are justSn torsors. Therefore it suffices to show thath∗f∗CH̃ andf∗CM̃
are the intermediate extensions of their restrictions toArs. This fact is established forf∗CM̃
by Yun [Yun11], and a combination of the arguments there withthe appropriateSn enrichment
of the arguments in [MY11] yields the result forh∗f∗CH̃ (see [OY??] for details). Thus we
conclude:

Theorem 9.5.Let the reduced curveC appear as a spectral curve in the Hitchin system. Then,

Z(C) :=
∑

d,m

q2dwt(C
[d]
m )

m∑

k=0

(
m

k

)

t2
a2ktk

2

=
1 + a2t

(1− q2)(1− q2t2)

2g∑

i=0

q2i(a2t)kwt(HomSn(Λ
kh,H∗;i(M̃X,0,[C])))

Thus the conjecture of [ORS12] for thereducedhomologyof a knotreads

4 Because the general fibres are abelian varieties, one can produce a canonical isomorphism. Moreover,any
family of compatified Jacobians with smooth total space willinduce the same isomorphism, so the decomposition
depends only on[C] and not the way in which it appears as a spectral curve.
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Plink(C,x) = (1 + q2t)−2g̃(aq−1)µ
2g∑

i=0

q2i(a2t)kwt(HomSn(Λ
kh,H∗;i(M̃X,0,[C])))

and whenC is rational, which may always be arranged,

Plink(C,x) = (aq−1)µ
µ∑

i=0

q2i(a2t)kwt(HomSn(Λ
kh,H∗;i(M̃X,0,[C])))

In other words, the cohomological degree on the Hitchin fibreshould match the grading
µ/2− h on the HOMFLY homology.

9.2. From Hitchin fibers to Cherednik algebras. In this section we discuss the results of
[OY??], where the representationsLn/m of the rational Cherednik algebra (of type A) are con-
structed in the cohomology of certain Hitchin fibers associated toG = SLn. The difference
between theSLn case and theGLn case discussed previously is mild and will be explained
below. As before fix a smooth curveX and line bundleL; letG be any reductive group. Then
for a schemeS, theS-points of the Hitchin moduli stackMX,G is the groupoid of Hitchin pairs
(E , ϕ) where:

• E is aG-torsor overS ×X
• ϕ ∈ H0(S ×X,Ad(E)⊗OX

L), Ad(E) = E ×G g

If we choose a pointx ∈ X then by means of evaluation map atx we can define the parabolic
version of the stack̃MX,G := MX,G×g/G g̃/G. (This space is often denotedMpar

X,G.) As in the
case of moduli spaces from the previous section, the moduli stacks from above come equipped
with the natural maph to the Hitchin baseAX,G

Whendeg(L) ≥ 2gX the restriction of the moduli stackMX,G andM̃X,G onA♥ is a smooth
Deligne-Mumford stack [Ngo06, Yun11]. The moduli spacesMX,ℓ andM̃X,ℓ considered in
the previous section are open substacks ofMX,GLn andM̃X,GLn . There is an embedding of
the Hitchin basesAX,SLn → AX,GLn and we can consider the mapMX,GLn |AX,SLn

→ Pic(X)
which takes the determinant of the bundleE; the fiber over zero givesMX,SLn. In particular
whenX = P1 the fibers ofGLn andSLn Hitchin maps are identical, so the results on the
Hitchin fiber from the previous section hold for theSLn Hitchin fibers.

Now we restrict our attention to the caseX = P1,G = SLn and we omit these objects in the
notations for the Hitchin stacks. Let us fix homogeneous coordinates[ξ : η] and0 = [0 : 1],
∞ = [1 : 0]; we also fixx = 0 in the definition ofM̃. LetL = O(d), d ≥ m/n, and consider
the curveC cut out by the sectionξmηdn−m ∈ H0(P1, L⊗n). C is smooth outside of the fibers
over the points0 and∞, where it has singularities given respectively by the equationsyn = xm

andyn = xm−nd. By the product formula [Ngo06] we can express (topologically) this Hitchin
fibre as the product of affine Springer fibers

M̃[C] ∼ S̃pn,m × Spn,nd−m

HereSpa,b is the affine Springer fiber with spectral curveya = xb in the affine Grassmannian
for SLa, and as always the tilde denotes the parabolic version, which sits inside the affine flag
manifold [KL88].

If Cm,n is a rational spectral curve (for a Hitchin system with some other line bundleL)
with a unique singularity of the typexm = yn, then according to Laumon [Lau06] there is
a homeomorphismM[Cm,n] ∼ Spn,m; the left hand side is just the compactified Jacobian of
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Cm,n. Introducing parabolic structure at the point on the base curve beneath the singularity we
have similarlyM̃[Cm,n] ∼ S̃pn,m.

As explained in the previous section the cohomology of the Hitchin fiber carries a natural
filtration P coming from the perverset-structure onDb

c(A). This filtration is centered at zero,
but in the notation of the previous section we had put a shift so that

Hi;j(MX,[C]) = GrPj−g(C)H
i(MX,[C]).

In [Yun11] it is shown that the perverse filtration is compatible with the product formula in
the sense that one can induce a local version of this filtration on the cohomology of the local
factorsSpn,m. Thus we can construct the associate graded space

GrP H∗(S̃pn,m) =
⊕

i

P≤i H
∗(S̃pn,m)/P≤i−1H

∗(S̃pn,m).

In [Yun11] the action of the trigonometric DAHA is constructed on the equivariant cohomol-
ogy of the Hitchin systemRh∗CM̃ with respect to the scaling action on the Hitchin base, which
is induced by scaling the line bundleL. However, taking a non-equivariant fibre (i.e. the fibre
over any spectral curve other than a multiple of the zero section) comes at the cost of losing the
interesting non-commutative structure. The virtue of taking the baseP1 and the fibre over curve
C introduced above is there is a secondC∗ action onMP1 coming from scalingP1, and in the
fibreMP1,[C] there remains aC∗ action coming from balancing the scaling onP1 and onL to
preserveC. The basic idea of [OY??] is that the representations of therational DAHA can be
constructed by using thisC∗ action in the constructions of [Yun11], specializing the equivariant
parameter to1, and passing to the associated graded with respect to the perverse filtration.

Theorem 9.6. [OY??]The vector spaceGrP H∗(S̃pn,m) carries geometrically constructed en-
domorphisms endowing it with the structure of a module overHm/n; it is the irreducible rep-
resentationLm/n. The perverse degree is the internal grading.

Specializing the equivariant cohomologyH∗
C∗(S̃pn,m) = H∗(S̃pn,m)[ω] atω = 1 means

Hk
C∗(S̃pn,m) =

⊕

i

Hk−2i(S̃pn,m)ω
i →

⊕

i

Hk−2i(S̃pn,m)

so operations which respect the degree in equivariant cohomology will now only respect the
filtration indicated on the RHS. We saw in the previous section that the cohomological grading
on S̃pn,m should correspond to the gradingµ/2 − h on the HOMFLY homology. The rela-
tion betweenh and the filtration grading explained in the introduction suggests the following
definition:

F geom
i Lm/n =

⊕

k−j+(m−1)(n−1)≤i

GrPk Hj(S̃pn,m).

The cohomological degree is always bounded below by the dimension(m−1)(n−1)/2 plus the
perverse degree, so this is an increasing filtration which must stabilize ati = (m−1)(n−1)/2.

Proposition 9.7. [OY??]The filtrationF geom is compatible with the filtration onHm/n.

We conclude:

Theorem 9.8.Conjecture 1.2 withF = F geom is implied by Conjecture 2 of[ORS12].

The affine Springer fibres enjoy certain relations. Denotingby Sp
(c)
a,b the sublocus where

the endomorphism has kernel of rankc at the central pointx. Then there is an identification
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Sp
(n)
n,n+m → Spn,m given by replacing the bundleE by the kernel of the mapE → φxEx,

the line bundleL by L(x), and the automorphismφ by φ/t where t is some local coor-
dinate atx. On the other hand we have seen in the previous section thatH∗(Sp(n)

n,n+m) =

tn(n−1) HomSn(Λ
nhn,H

∗(S̃pn,n+m)). Composing these equalities gives the geometric incar-
nation of the identificationeLm/n = e−L(n+m)/n, and it will be shown in [OY??] that this
identification is compatible with the algebra actions. Similarly there is (at least topologically)
an identificationSpn,m ∼ Spm,n – both spaces are identified with the compactified Jacobian
of the same singularity – and it will be shown that the algebraactions are compatible with this
identificationeLm/n = eLn/m. Thus from Theorem 4.1 we conclude:

Proposition 9.9.F ind ⊂ F geom.

We have conjectured these filtrations always agree. As evidence we have the following result:

Theorem 9.10.F indeL(mn+1)/n = F geomeL(mn+1)/n.

Proof. Since we have an inclusion of filtrations we need only comparethe associated graded
dimensions of the given spaces. For the inductive filtration, according to [GS05, GS06] this
amounts to computing a certain specialization of the (generalized)q, t-Catalan numbers; the
desired specialization is computed in [GH96, Thm. 4.4] and is given by the sum over Young
diagrams contained in the triangle of sidesmn + 1, n weighted with the area. It is shown in
[GM12, Cor. 1.2] that the same formula gives the Poincaré series of the compactified Jacobian
of the relevant singularity, i.e., the associated graded dimensions ofF geom. �

9.3. Fixed points and parking functions. Letm andn be two coprime integers.

Definition 9.11. We call a functionf : {1, . . . , n} → {1, . . . , m} a m
n

–parking function, if for
everyk one has

|f−1([1, k])| ≥
kn

m
.

The set of allm
n

–parking functions will be denoted asPFm
n
.

PFm
n

has a natural action ofSn by permutation of elements in the source.

Proposition 9.12.The number ofm
n

–parking functions equals tomn−1.

Proof. The proof is analogous to the casem = n+ 1. There aremn functions from{1, . . . , n}
to {1, . . . , m}, consider the action of the cycle(1, . . . , m). One can check that in every orbit
there is precisely onem

n
–parking function. �

Let us draw ”parking function diagrams”, generalizing the similar pictures from [Hag08].
Consider am×n rectangle and lattice path below the diagonal in it. Let us write numbers from
1 to n above this path such that

(i) In every column there is exactly one number
(ii) In every row the numbers are decreasing from left to right

Parking function diagrams are in one-to-one correspondence with the parking functions,
where a function corresponding to a diagram is justy-coordinate.

Example.Consider a3
4
–parking function

(
1 2 3 4
1 3 1 2

)

Its diagram is shown in Figure 4.
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2

4

3 1

FIGURE 4. Example of a3
4
–parking function

LetΓ = Γm,n = {am+bn : a, b ∈ Z≥0} denote the integer semigroup generated bym andn.
Recall that ([LS91], [Pio07]) the compactified JacobianSpn,m admits the torus action, whose
fixed points correspond to the semi-modules overΓm,n. It was shown in [GM11] that such
semi-modules are in 1-to-1 correspondence with the Young diagrams in them× n rectangleR
below the diagonal.

Let us label the boxes ofR with integers, so that the shift by1 up subtractsn, and the shift
by 1 to the right subtractsm. We normalize these numbers so thatmn is in the box(0, 0) (note
that this box is not in the rectangleR, as we start enumerating boxes from1). In other words,
the numbers are given by the linear functionf(x, y) = kn− kx− ny.

One can see that the labels of the boxes below the diagonal arepositive, while all other
numbers inR are negative. Moreover, numbers below the diagonal are exactly the numbers
from the complementZ≥0\Γ, and each such number appears only once.

Definition 9.13. ([GM11]) For a 0-normalizedΓ–semi-module∆, letD(∆) denote the set of
boxes with labels belonging to∆ \ Γ.

Definition 9.14. ([LW09]) LetD be a Young diagram,c ∈ D. Let a(c) and l(c) denote the
lengths of arm and leg forc. For each real nonnegativex define

h+x (D) = ♯

{
c ∈ D

a(c)

l(c) + 1
≤ x <

a(c) + 1

l(c)

}
.

The following theorem is the main result of [GM11].

Theorem 9.15.The dimensions of cells in the compactified Jacobian can be expressed through
theh+ statistic:

dimC∆ =
(k − 1)(n− 1)

2
− h+n

m
(D(∆)).

One can see that under this correspondence am
n

–parking function diagram corresponds to a
flag ofΓm,n-semimodules

∆1 ⊃ ∆2 ⊃ . . . ⊃ ∆m ⊃ ∆m+1 = ∆1 +m

such that|∆i \∆i+1| = 1. According to [LS91], such flags parametrize the fixed points of the
natural torus action iñSpn,m. Therefore we arrive at the following

Proposition 9.16.The varietỹSpn,m admits a torus action with a finite number of fixed points.
These fixed points are in 1-to-1 correspondence with them

n
–parking functions.

It was shown in [LS91] that̃Spn,m admits an algebraic cell decomposition with affine cells
corresponding to the fixed points of the torus action. We planto compute the dimensions of
these cells and compare them with the combinatorial statistics of [HHLRU05] and [Arm10] in
the future.
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We finish with the combinatorial conjecture from [ORS12] describing the character ofHm/n.

Definition 9.17. Consider a diagramD corresponding to a semigroup module∆. Let Pm

denote the numbers in the SE corners,Qi denote the numbers in theES corners. Then

β(Pm) =
∑

i

χ(Pi > Pm)−
∑

i

χ(Qi > Pm).

Example.Consider a semigroup generated by5 and6, and a module

∆ = {0, 1, 2, 5, 6, . . .}.

Its diagram has a form:

19

14

9

13

8

7 1

2

4

3

−5

−2

−9

−10−4

We have
{Pi} = {−5,−4, 3, 4}, {Qj} = {−10,−9,−2}.

Therefore

β(−5) = 3− 1 = 2, β(−4) = 2− 1 = 1, β(3) = 1, β(4) = 0.

Conjecture 9.18.The triply graded character ofHm/n can be computed as a sum over Young
diagrams inm× n rectangle below the diagonal:

(24) Pm,n(a, q, t) =
∑

D

q
2|D|+2h+

n
m

(D)
t2|D|

r∏

j=1

(1 + a2q−2β(Pj)t).

For a = 0 this conjecture gives a refinement of Theorem 9.15, providing a combinatorial
description of the perverse filtration on the cohomology of the compactified Jacobian. It was
shown in the Appendix A.3 of [ORS12] that form = n + 1 the formula (24) agrees with the
combinatorial statistics describing theq, t–multiplicities of hooks in the diagonal harmonics,
conjectured in [EHKK03] and proved in [Hag04].

The authors wrote a computer program calculating the right hand side of (24), its output is
available by request. In all known examples the results agree with the ones of [AS11], [Che11]
and [DMMSS11], obtained by completely different methods.
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