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Abstract

Individuals at clinical high-risk (CHR) for psychosis are characterized by attenuated psychotic 

symptoms. Only a minority of CHR individuals convert to full-blown psychosis. Therefore, there 

is a strong interest in identifying neurobiological abnormalities underlying the psychosis risk 

syndrome. Dynamic functional connectivity (DFC) captures time-varying connectivity over short 

time scales, and has the potential to reveal complex brain functional organization. Based on 

resting-state functional magnetic resonance imaging (fMRI) data from 70 healthy controls (HCs), 

53 CHR individuals, and 58 early illness schizophrenia (ESZ) patients, we applied a novel group 

information guided ICA (GIG-ICA) to estimate inherent connectivity states from DFC, and then 

investigated group differences. We found that ESZ patients showed more aberrant connectivities 

and greater alterations than CHR individuals. Results also suggested that disease-related 

connectivity states occurred in CHR and ESZ groups. Regarding the dominant state with the 

highest contribution to dynamic connectivity, ESZ patients exhibited greater impairments than 

CHR individuals primarily in the cerebellum, frontal cortex, thalamus and temporal cortex, while 

CHR and ESZ populations shared common aberrances mainly in the supplementary motor area, 

parahippocampal gyrus and postcentral cortex. CHR-specific changes were also found in the 
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connections between the superior frontal gyrus and calcarine cortex in the dominant state. Our 

findings show that CHR individuals generally show an intermediate functional connectivity pattern 

between HCs and SZ patients but also have unique connectivity alterations.

Keywords

fMRI; dynamic functional connectivity; connectivity state; ICA; schizophrenia; clinical high-risk

1. Introduction

In many patients with schizophrenia, a prodromal phase is evident before the onset of the 

full syndrome, characterized by attenuated psychotic symptoms and deterioration in 

functioning. Clinical criteria have been developed to identify individuals exhibiting these 

putatively prodromal symptoms (Klosterkotter et al., 2001; Miller et al., 2003; Yung et al., 

2005), and individuals meeting these criteria have been shown to be at clinical high risk 

(CHR) for development of a full-blown psychotic disorder (Cannon et al., 2008; Fusar-Poli 

et al., 2012). Among CHR individuals, a subset (about 35%) converts to full-blown 

psychosis within 2.5 years of initial recruitment into longitudinal study protocols (Cannon et 

al., 2008; Fusar-Poli et al., 2012). CHR individuals are generally in some clinical distress 

and help-seeking, underscoring the fact that they are currently symptomatic and not simply 

at risk for future psychosis. The neural substrates associated with the CHR syndrome are just 

beginning to be characterized, and research efforts are underway (Borgwardt et al., 2013; 

Cannon et al., 2008; Fusar-Poli et al., 2012; Yung et al., 2003) to elucidate brain 

abnormalities underlying this syndrome as well as to improve identification of which CHR 

individuals will later develop a psychotic disorder.

There has been research using structural and functional imaging data (Dutt et al., 2015; Jung 

et al., 2010; Smieskova et al., 2013) to study CHR individuals. Both task-based and resting-

state functional magnetic resonance imaging (fMRI) data have been employed to investigate 

functional activation and connectivity in CHR individuals (Anticevic et al., 2015; Fryer et 

al., 2013; Fusar-Poli et al., 2011; Jung et al., 2012; Morey et al., 2005; Pauly et al., 2010; 

Schmidt et al., 2013; Shim et al., 2010; Wang et al., 2016; Yoon et al., 2015). Reported 

differences using fMRI in CHR individuals, relative to healthy controls (HCs), have mainly 

involved the prefrontal, temporal, anterior cingulate and cerebellar regions that also showed 

abnormalities in patients with first episode psychosis (Fryer et al., 2013; Jung et al., 2012; 

Morey et al., 2005; Yoon et al., 2015). Functional connectivity (FC) derived from resting-

state fMRI reflects the functionally integrated relationship between spatially separated brain 

regions, and may provide biomarkers for mental disorders (Bassett and Bullmore, 2009; 

Calhoun and Adali, 2012; Sporns, 2014; van den Heuvel and Hulshoff Pol, 2010; Zhang and 

Raichle, 2010). Most previous FC studies including CHR individuals (Anticevic et al., 2015; 

Jung et al., 2012; Shim et al., 2010; Wang et al., 2016; Yoon et al., 2015) have investigated 

networks seeded from a priori defined regions of interest (ROIs) (e.g., thalamus (Anticevic 

et al., 2015), superior temporal gyrus (Yoon et al., 2015), posterior cingulate cortex (Shim et 

al., 2010) and cerebellum (Wang et al., 2016)) by computing connectivity between a specific 

ROI and other voxels in whole brain. To our knowledge, no prior work has investigated 
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whole-brain pair-wise FCs in CHR individuals using resting-state fMRI data. Moreover, the 

above mentioned research employed static FC (SFC) analyses, which assume that FC is 

unchanging across the scan acquisition period. However, recent studies have provided 

evidence that FC can be time-varying over periods of tens of seconds, evident during a few 

minutes of scans (Allen et al., 2014; Calhoun et al., 2014; Di and Biswal, 2015; Hutchison et 

al., 2013). Here we report the first study to examine whole-brain dynamic FC (DFC) in CHR 

individuals and patients in the early stages of schizophrenia using resting-state fMRI data.

DFC can be captured using a sliding time-window method (Hutchison et al., 2013). 

Different connectivity states, reflecting specific configurations of connected regions, can be 

revealed by post-hoc analyses of DFC (Calhoun et al., 2014; Damaraju et al., 2014; Du et 

al., 2017; Du et al., 2015; Du et al., 2016; Rashid et al., 2014; Yu et al., 2015), so alterations 

in connectivity states among different clinical populations might provide unique or 

additional biomarkers of disorders not detectable with SFC measures. There has been 

considerable work using DFC analyses to investigate impairments in schizophrenia-

spectrum disorders and mood disorders (Damaraju et al., 2014; Du et al., 2017; Du et al., 

2016; Rashid et al., 2014) as well as classifying individual patients based on DFC measures 

(Rashid et al., 2016). Researchers have applied clustering (Allen et al., 2014; Du et al., 

2016), principal components analysis (PCA) (Leonardi et al., 2013), Fisher discrimination 

dictionary learning (FDDL) (Li et al., 2014), and spatial and temporal independent 

components analysis (ICA) (Miller et al., 2016; Yaesoubi et al., 2015) to extract connectivity 

states. These methods typically estimate connectivity states with discrepant patterns due to 

their different assumptions (Calhoun et al., 2014). Clustering approaches may fail to 

converge when working on “noisy” data that do not necessarily have desirable distributions. 

A more serious shortcoming of clustering is that the method always can yield a partition 

with any given number of clusters, regardless if the used features show patterns indicating 

clusters. Most previous decomposition-based work (Leonardi et al., 2013; Li et al., 2014; 

Miller et al., 2016; Yaesoubi et al., 2015) has focused on group-level connectivity states that 

are common across subjects.

To overcome some of the methodological limitations of the traditional DFC approaches, we 

have developed a novel group information guided ICA (GIG-ICA) (Du and Fan, 2013; Du et 

al., 2017; Du et al., 2015) framework to analyze DFC. Guided by the group-level 

connectivity states, our method can extract the subject-specific connectivity states using a 

multiple-objective optimization framework. The subject-specific states are directly 

comparable across subjects, which benefits the exploration of disease biomarkers. In our 

previous work (Du et al., 2017) using the proposed method, we detected group differences 

among a spectrum of symptomatically-related disorders including bipolar disorder with 

psychosis, schizoaffective disorder and schizophrenia, suggesting that our dynamic 

connectivity analysis method is able to identify potential biomarkers that were not evident 

using the conventional static connectivity analysis. Both hypo-connectivities and hyper-

connectivities were observed for those diagnoses, and interestingly the connections’ 

strengths had reasonable associations with the symptom scores. In the present study, we 

applied the method to the resting-state fMRI data of HCs, CHR individuals and early illness 

schizophrenia (ESZ) patients, aiming to find DFC characteristics that differentiate these 
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groups. We hypothesized that CHR subjects would share several of DFC alterations apparent 

in ESZ, but would show intermediate changes between the HC and ESZ groups.

2. Materials and methods

2.1. Materials

Resting-state fMRI data from 70 HCs, 53 CHR individuals, and 58 ESZ patients were 

analyzed. Table 1 shows the demographic and clinical information. There are no significant 

differences among the three groups on age or gender (p-value = 0.7 for gender examined by 

Chi Square test; p-value = 0.2 for age examined by analysis of variance). CHR individuals 

were recruited from the University of California, San Francisco’s (UCSF) Prodromal 

Assessment, Research, and Treatment Clinic. Individuals recruited to the CHR group met 

the Criteria of Prodromal Syndromes (COPS) based on a Structured Interview for Prodromal 

Syndromes (SIPS) (Miller et al., 2003). The COPS comprises three non-mutually exclusive 

syndromes (McGlashan et al., 2010): Attenuated Positive Symptom Syndrome (APSS), 

Brief Intermittent Psychotic Syndrome (BIPS), and/or Genetic Risk and Deterioration 

Syndrome (GRD). The majority (92.5%) of CHR subjects met COPS criteria for APSS. 

Supplementary Table S1 shows the number and percentage of CHR subjects with each 

syndrome. Clinical ratings of symptom severity in CHR individuals were obtained using the 

Scale of Prodromal Symptoms (SOPS), an embedded scale within the SIPS. Most of the 

CHR subjects (41/53; 77%) were antipsychotic medication-naive at the time of scanning. 

ESZ patients within mean ± standard deviation = 2.08 ± 1.37 years of illness onset were 

recruited from an early psychosis clinic at UCSF and from community clinics. Diagnosis of 

schizophrenia or schizoaffective disorder in ESZ participants was verified using the 

Structured Clinical Interview for DSM-IV (SCID) (Ventura et al., 1998), and symptom 

severity was assessed using the Positive and Negative Syndrome Scale (PANSS) (Kay et al., 

1987). Most ESZ patients (53/58; 91%) were taking antipsychotic medication at the time of 

testing. HCs were recruited from the community and did not meet criteria for any Axis I 

diagnosis based on the SCID. Written informed consent was obtained from study 

participants under protocols approved by the Institutional Review Board at UCSF.

All brain images were acquired on a 3T TIM TRIO scanner at the UCSF Neuroimaging 

Center. Resting-state scans were acquired using high-speed whole-brain echo-planar 

imaging (EPI) sequences. Rest scans lasted six minutes, during which 180 functional images 

were obtained (32 axial slices, 3.5 mm slice thickness, 1.05 mm inter-slice gap, TR = 2 s, TE 

= 29 ms, flip angle = 75°, FOV = 24 cm, 64 × 64 matrix). Participants were instructed to rest 

with eyes closed and stay awake.

FMRI data of each subject were preprocessed using the Data Processing Assistant for 

Resting-State fMRI (DPARSF) toolbox (Yan and Zang, 2010) based on Statistical 

Parametric Mapping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm). The first 10 volumes were 

discarded, and then the remaining images were slice-time corrected and realigned for head-

motion correction. For each subject, the translation of head motion was less than 4 mm and 

the rotation of head motion did not exceed 4 degrees in all axes through the whole scanning 

process. The mean and standard deviation of the summarized head motion measures across 

subjects are reported for each group in Table 1. Analysis of variance (p < 0.05) showed no 
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significant group difference in either the maximum translation motion displacement or the 

maximum rotation motion displacement. Subsequently, the images were spatially 

normalized to the Montreal Neurological Institute (MNI) EPI template, resliced to 3 mm × 3 

mm × 3 mm voxels, and smoothed with a Gaussian kernel with a full-width at half-

maximum (FWHM) of 6 mm. Detrending and band-pass filtering (0.01Hz–0.08Hz) (Auer, 

2008; Cordes et al., 2001; Zuo et al., 2010) were then performed to remove higher frequency 

physiological noise and lower frequency scanner drift. Finally, nuisance covariates including 

six head motion parameters, white matter signal, cerebrospinal fluid signal, and global mean 

signal (Fox et al., 2005) were regressed out, and then residual images were saved for 

subsequent analyses. Note: the white matter signal, cerebrospinal fluid signal and global 

mean signal used as covariates were obtained after the detrending and band-pass filtering 

processing.

2.2. Methods

Firstly, time-varying functional connectivity was estimated using a sliding time-window 

method, and then inherent connectivity states can be computed using our proposed 

decomposition-based method. The overall framework of estimating dynamic connectivity 

and connectivity states is shown in Fig. 1. Detailed procedures are explained in the following 

subsections. Finally, we investigated group differences based on the individual-subject’s 

connectivity states, aiming to reveal potential biomarkers.

2.2.1. Estimating dynamic functional connectivity—As shown in Fig. 1A, using the 

sliding time-window method, we computed whole-brain DFC for each subject based on 116 

ROIs from the automated anatomical labeling (AAL) template (Tzourio-Mazoyer et al., 

2002). The index (ID) and name of each ROI can be found in supplementary Table S2. For 

the averaged time-series within each ROI, we segmented it using a sliding time-window that 

was created by convolving a rectangle (width = 20 TRs) with a Gaussian (σ = 3 TRs) (Allen 

et al., 2014; Zalesky and Breakspear, 2015). The window length was 40 s (2 s × 20), which 

has extensively evaluated and shown to be suitable for capturing dynamics in FCs (Abrol et 

al., 2016; Allen et al., 2014; Damaraju et al., 2014; Zalesky and Breakspear, 2015). The 

window slid in steps of 1 TR, resulting in 151 short time-series for each ROI. Afterwards, 

regarding each window, a 116 × 116 connectivity matrix was calculated based on the 

associated short time-series of all ROIs (Allen et al., 2014; Damaraju et al., 2014). Each 

connectivity matrix reflecting the temporal correlations among ROIs within one window was 

estimated from a regularized inverse covariance matrix (Du et al., 2017; Smith et al., 2011) 

using a graphical LASSO framework (Friedman et al., 2008). LASSO imposed sparsity by 

placing an L1 norm penalty on the inverse covariance matrix to decrease noise effect of short 

time series. After obtaining the regularized inverse covariance matrix, its corresponding 

covariance matrix was calculated and then transformed into a correlation matrix, 

representing the functional connectivity matrix. Thus, for each subject, 151 connectivity 

matrices were obtained, reflecting time-varying functional connectivity between paired 

ROIs. Due to the symmetry of connectivity matrix within each window, the upper half 6670 

unique elements can reflect connectivity strengths among 116 ROIs. Taking the kth subject 

for an example, its dynamic connectivity can be denoted by a window-by-connectivity 

matrix Xk (size: 151 × 6670). We then performed a r-to-z Fisher transformation on Xk.
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2.2.2. Estimating functional connectivity states—Previous work (Allen et al., 2014; 

Calhoun et al., 2014; Du et al., 2017; Leonardi et al., 2013; Miller et al., 2016) has shown 

that multiple connectivity states exist in the time-varying connectivity. In the study, we 

sought to investigate whether HC, CHR and ESZ groups showed differences in the 

connectivity states; and if true, whether these changes showed a progressive trend from the 

healthy condition to psychosis risk to early schizophrenia. Our recently proposed dynamic 

connectivity analysis method (Du et al., 2017) was applied to estimate the connectivity 

states. In our method, the connectivity states are decoded by the independent components 

(ICs), and the loadings of ICs represent the fluctuations of connectivity states. Considering 

there are probably connectivity states with group-specific patterns among the three groups, 

we extracted connectivity states for each group. The following processing steps were 

implemented for each group separately.

We concatenated the window-by-connectivity matrices of all subjects along the window 

direction and obtained a matrix X= [X1;…;Xk;…;XN], (k = 1,…,N), where N was the 

number of subjects. As shown in Fig. 1B, we performed ICA (Amari et al., 1996; Bell and 

Sejnowski, 1995) using ICASSO technique (Ma et al., 2011) on the whole dynamic 

connectivity matrix (i.e., X) to compute the reliable group-level connectivity states (GSs). 

Before ICA, subject-level PCAs and a following group-level PCA (Erhardt et al., 2011) were 

used to reduce the dimensionality of the window direction. Thus, we had X = A·S, where S 
= [S1;…; Sl;…;SM] included all group-level ICs. Sl can represent information of the lth GS. 

Although it is hard to determine an optimal setting for the number of components, many 

prior studies (Damaraju et al., 2014; Du et al., 2017; Miller et al., 2016; Yaesoubi et al., 

2015) suggested five connectivity states to estimate in dynamic connectivity analysis. So, 

consistent to previous work, M was set to 5 in this study. Using this setting, the mean of 

preserved variances was 76% in subject-level PCAs (Erhardt et al., 2011) and reliable 

performance of ICASSO with 20 ICA runs was achieved (see supplementary Fig. S1). Each 

GS (i.e., one row of S) was z-scored to zero mean and unit variance for consequent 

processing. According to ICA, A= [A1;…;Ak;…;AN] included the mixing coefficient 

matrices of all subjects. Ak represented the temporal fluctuations of all connectivity states 

for the kth subject, and each column of Ak reflected the subject-specific fluctuation (SF) of 

one state for the kth subject.

Afterwards, we assessed the contribution of each GS to the dynamic connectivity. The 

contribution of the lth GS was measured using sum(abs(al))/∑l = 1
M sum(abs(al)), where al was 

the lth column of A. The measure reflected the percentage of the loading of each GS in all 

GSs’ loading sum. Consequently, the first-rank GS was identified as the dominant GS (e.g., 

Sl), which included the most information across entire dynamic connectivity stream of all 

subjects.

Subsequently, based on the identified dominant GS and the individual-subject’s Fisher-

transformed dynamic connectivity matrix (e.g., Xk), we estimated the corresponding 

dominant subject-specific state (SS) using a multiple-objective function optimization (see 

the following formula (1)). Fig. 1C shows the schematic drawing of the step. In the 

procedure, the independence of the dominant SS as well as the correspondence between the 
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dominant SS and the dominant GS were simultaneously optimized, resulting in accurate 

individual-level connectivity states that can be directly comparable across subjects. The 

optimization can directly yield Z-scored individual-level states with zero mean and unit 

variance.

max
J Sl

k = E G Sl
k − E G ν 2

F Sl
k = E[SlSl

k]
(1)

s . t . wl
k = 1.

In (1), Sl
k = (wl

k)T · Xk
∼

 represents the estimated dominant SS of the kth subject, where Xk
∼

 is 

the whitened Xk; wl
k is the unmixing column vector. The first function is for optimizing the 

independence measure of Sl
k. In our method, J Sl

k , the negentropy of Sl
k, is used to reflect 

independence of Sl
k. Here, ν is a is a Gaussian variable with zero mean and unit variance; G 

(·)is a nonquadratic function. The second function F Sl
k  is used to measure the similarity 

(i.e., correspondence) between Sl. and Sl
k. E[ ] denotes the expectation of variable. By 

derivation (Du and Fan, 2013), E[SlSl
k] equals to Pearson correlation between Sl and Sl

k. To 

solve the multiple-objective function optimization, a linear weighted sum method was 

applied to combine the two objectives (Du and Fan, 2013). After the optimization, the 

dominant subject-specific states were obtained.

Derived from the above mentioned analyses, each of the group-level and individual-subject 

connectivity states is denoted by a Z-scored component (size: 1 × 6670). We then converted 

each component to a 116 × 116 symmetric matrix, so each element of the symmetric matrix 

reflects the relationship between one pair of ROIs. It is worth pointing out that the positive 

and negative values in the symmetric matrix of each GS should be interpreted along with the 

state’s loadings (i.e., SFs) due to the ambiguity of the signs of components (i.e., states). If 

one state’s SF values are positive, it means that its contribution to time-varying connectivity 

is positive. So, the positive/negative values in the state (i.e., the positive/negative values in 

the symmetric matrix) reflect the positive/negative connectivity strengths between ROIs. If 

one state’s SF values have both positive and negative values, the values in the symmetric 

matrix don’t directly correspond to the connectivity strengths. In that case, the positive (or 

negative) value in SF means that the state (or anti-state) exists in the corresponding 

window’s functional connectivity.

2.2.3. Investigating group differences in the functional connectivity states—In 

the section, we focus on investigating group differences in the connectivity states, aiming to 

explore whether CHR individuals tend to be intermediate between HC subjects and ESZ 

patients and what measures could be employed as potential biomarkers for CHR and ESZ.
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Similar to our previous work (Du et al., 2017), we matched results among the three groups 

in order to compare the corresponding states. The detailed matching method is described in 

the supplementary materials. After that, we visualized each of GSs using the BrainNet 

Viewer toolbox (Xia et al., 2013) to reflect the related connectivity pattern among ROIs. 

Next, to assess the relationship (similarity or disparity) of the matched GSs across the three 

groups, we computed Pearson correlation coefficient between any pair of GSs, resulting in a 

correlation matrix (size: 3 × 3). The upper triangular elements of the correlation matrix 

include rHC–CHR, rHC–ESZ, and rCHR–ESZ. Here, rHC–CHR denotes the correlation between 

the GS of HC group and the GS of CHR group. Then, we took the mean of the absolute 

correlations in the similarity matrix as the overall similarity measure of the matched GSs.

Furthermore, we examined if the inter-group relationships of GSs are statistically significant 

using multiple permutation runs. For each group, we generated 100 permutations, each of 

which randomly included 85% samples of the original subjects. In each permutation run, the 

group-level ICA (shown in Fig. 1B) was applied to analyze the selected subjects’ dynamic 

connectivity, resulting in new GSs of the group. For each group, we then matched the new 

GSs from each permutation run with the GSs obtained from the original samples using a 

greedy search rule. So, the new GSs from each permutation run were re-sorted to provide 

correspondence across the three groups. Regarding each of 100 runs, a 3 × 3 correlation 

matrix associated with one state can be computed, representing the inter-group relationship 

of GSs in the run. Finally, for each state, we investigated if rHC–CHR, rHC–ESZ, and rCHR–ESZ 

had significant differences by performing two-tailed two-sample t-tests between rHC–CHR 

and rHC–ESZ, between rCHR–ESZ. and rHC–CHR, as well as between rCHR–ESZ and rHR–ESZ 

based on the values from 100 permutation runs. Significant level was set to p < 0.01 with 

Bonferroni correction (i.e., p < 0.01/15).

Due to the importance of the dominant state (with the most contribution to the dynamic 

connectivity), we investigated its group differences in detail. First, we averaged the 

dominant SSs across subjects for each group to see if the connectivity patterns are disparate 

(or consistent) across groups. Then, analysis of covariance (ANCOVA) with age and gender 

as covariates was performed on each connection’s strengths in the dominant SSs to 

investigate the group difference of three groups. Afterwards, based on each connectivity 

showing group differences identified by ANCOVA (p < 0.05 with Bonferroni correction), we 

applied a two-tailed two-sample t-test (p < 0.05 with Bonferroni correction) to assess 

differences in connectivity strength between any pair of groups. Finally, for each connection 

with significant group difference, Pearson correlation coefficients between the connectivity 

strengths and symptom severity scores (shown in Table 1) were computed for the CHR and 

ESZ groups, respectively, in order to explore the associations between potential biomarkers 

and clinical symptoms. The correlation analyses were restricted to the subjects rated within a 

month of the scan session. The significance level was set to p < 0.05 (without correction) for 

correlation analyses.

In our work, the connectivity states were estimated from each group’s time-varying 

connectivity, separately. Since this strategy may raise concerns on whether the identified 

group differences were due to the grouping, we performed a permutation test (including 

1000 permutation runs) to verify the effectiveness. Regarding each of 1000 permutations, we 
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performed the following three steps. (1) We generated three dummy groups by randomly 

rearranging all subjects of the original three groups (i.e., HC, CHR and ESZ groups). Each 

of the dummy group had the same number of subjects with the original group. (2) Consistent 

with the processing on the original groups, we first estimated the group-level states by 

performing ICA on the dynamic connectivity of each dummy group, and then identified the 

dominant group-level state, finally computed the corresponding dominant subject-specific 

states. (3) We employed ANCOVA on each FC’s strengths of the dominant subject-specific 

states for the three dummy groups. While performing ANCOVA, the used age and gender 

information of each subject was the subject’s real information. After the 1000 permutation 

runs, we summarized the permutation test’s result by calculating the occurring frequency of 

the case where the p-value obtained from ANCOVA using rearranged groups (i.e., the 

dummy groups) was smaller than the corresponding p-value obtained from ANCOVA using 

the original (i.e., real) groups. The frequency (i.e., the tail probability computed from 1000 

permutations) reflects the significance level of the identified group difference. Smaller tail 

probability corresponds to lower possibility of false positives of the identified group 

difference. (4) In order to identify FCs showing significant group differences in the 

permutation test, we further performed a step-down minP method proposed by Westfall & 

Young (Ge et al., 2003; Peter H. Westfall and Young, 1993) for multiple comparison 

corrections based on the p-values from 1000 permutations. After obtaining the adjusted p-

values for all FCs, FCs with significant group differences can be identified.

3. Results

3.1. Group differences in the group-level functional connectivity states

After the state matching, the corresponding group-level connectivity states of the three 

groups are shown in the matrix form (size: 116 × 116) in Fig. 2. Together, we also display 

the rendered connectivity patterns of those states. As expected, the dominant GS had the 

highest contribution (49%, 45% and 47% for the HC, CHR and ESZ groups, respectively) to 

the dynamic connectivity, while each of the other four states’ contributions were around 

10%. Similarity measures between the matched GSs were computed to investigate their 

relationship between the three groups. The similarity matrices shown in the last row of Fig. 2 

indicate that the dominant GSs were very consistent across groups (similarity measure = 

0.94), however, the remaining four GSs were discrepant (similarity measures = 0.64, 0.59, 

0.55 and 0.44, respectively). Furthermore, the correlation matrices indicate that compared to 

the HC group, the CHR and ESZ groups had greater inter-group similarity in the non-

dominant states, indicating that these states could be disease-related.

As mentioned in the method section, we further calculated GSs and their relationships across 

groups by implementing 100 permutation runs. Based on the correlation matrices associated 

with one state (e.g., GS 1) from 100 permutation runs, we averaged those matrices to yield a 

mean correlation matrix. Fig. 3 shows that each mean correlation matrix showed a quite 

similar pattern with that in Fig. 2. Also, we examined the differences in the inter-group 

similarity (e.g., the difference between rCHR–ESZ and rHC–CHR) of GSs by performing two-

sample t-tests on the values from 100 runs. The statistical results are summarized in Table 2. 

The results support that there were no differences among rCHR–ESZ, rHC–CHR and rHC–ESZ 
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for GS 1. Regarding GS 2, GS 3, GS 4, and GS 5, both the difference between rCHR–ESZ and 

rHC–CHR and the difference between rCHR–ESZ and rHC–ESZ were statistically significant. 

The difference between rHC–CHR and rHC–ESZ was not significant for GS 2, GS 4 and GS 5, 

but significant for GS 3. The results suggest that CHR and ESZ groups showed more 

similarity in GS 2, GS 4 and GS 5 than any other pairs. GS 3 was different in all the three 

groups, while CHR and ESZ were relatively closer. The results support our above conclusion 

that the non-dominant states could be disease-related.

For each state, the associated SFs across all windows of all subjects are demonstrated in Fig. 

4. It illustrates that the dominant state had relatively higher values of SFs for most windows. 

Since the dominant state only had positive SFs (Fig. 4), the positive/negative values in the 

dominant state (i.e., the positive/negative values in the matrix of GS 1) reflected the positive/

negative connectivity strengths between ROIs. For the dominant state, the positive 

connectivities (reflecting positive correlations among ROIs) primarily involved connections 

within the default mode network, the sensory-motor network, the vision-related network and 

within-cerebellum connections, while negative connectivities linking cerebellar crus and 

other cortices (including rolandic, insula, Heschl’s gyrus and superior temporal lobe). For 

each of the non-dominant states, both positive and negative values occurred in SFs (Fig. 4). 

Hence, the positive/negative values of the non-dominant states didn’t directly reflect the 

connectivity strengths.

3.2. Group differences in the dominant subject-specific functional connectivity state

Regarding the dominant individual-level connectivity state of each subject, we averaged 

them in each group. The matrices and rendered view of the mean dominant SSs (Fig. 5A–C) 

show that the three groups showed a similar pattern in terms of the most important 

connectivity state, with the CHR group being intermediate between HC and ESZ groups. 

Furthermore, 30 FCs (see Fig. 5D and the supplementary Table 3) with significant group 

difference were identified by comparing the dominant SSs across the three groups using 

ANCOVA. Those aberrant connections mainly lay within cerebellum, between temporal 

cortex and cerebellum, between frontal cortex and thalamus, between supplementary motor 

area and parahippocampal gyrus, between supplementary motor area and temporal cortex, 

between postcentral and temporal cortex, between parahippocampal gyrus and temporal 

cortex, and between Hesch1’s gyrus and cerebellum.

Among the 30 FCs showing significant group difference, the mean connectivity strength of 

the CHR group fell in between the HC and ESZ groups for 25 FCs (see Fig. 6A), indicating 

that high risk stage tended to show an intermediate trend in connectivity between healthy 

condition and disease phase. Two-sample t-test results (Fig. 6A) further suggest that 16 FCs 

in the ESZ group showed significant alterations compared to both the HC and CHR groups, 

indicating that ESZ patients had greater connectivity abnormality than CHR individuals in 

these FCs. The 16 FCs were associated with the cerebellum, temporal cortex, frontal gyri, 

and thalamus. Furthermore, 12 FCs involving the supplementary motor area, 

parahippocampal gyrus, temporal cortex, postcentral gyrus, cerebellum, frontal gyri and 

thalamus were significantly different between the HC group and the other two groups, 

suggesting that the CHR and ESZ groups showing similar changes in these FCs. For the 
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remaining two FCs linking the medial part of the superior frontal gyrus and calcarine cortex, 

the CHR group differed from both the HC and ESZ groups, reflecting a CHR-specific 

change. Therefore, our results generally show that the ESZ patients had the greatest number 

and most severe changes, while CHR individuals tended to fall intermediately between the 

ESZ and HC groups. Additionally, the CHR group exhibited a distinct FC alteration not 

evident in the ESZ group.

Several FCs’ strengths were associated with the symptom scores. The FC linking right 

supplementary motor area and left parahippocampal gyrus as well as the FC linking right 

parahippocampal gyrus and right temporal pole (superior temporal gyrus) showed a 

decreasing trend across HC, CHR and ESZ groups; meanwhile the two FCs were negatively 

correlated with SOPS positive symptom severity scores in the CHR group (Fig. 6B). The 

connection between right temporal pole (middle temporal gyrus) and left cerebellum 

exhibited increasing strength from the HC to the CHR to the ESZ groups, while its 

connectivity strength was positively correlated with PANSS negative symptom severity 

scores in the ESZ group (Fig. 6B). The results support the clinical relevance of the 

connectivity-based measures.

As described in section 2.2.3, we also performed a permutation test to examine the validity 

of the identified group differences. Fig. 7A shows all connections’ p-values obtained by 

performing ANCOVA on each connection’s strengths in the dominant subject-specific states 

based on the original samples of the three groups. Fig. 7B and C display all connections’ 

associated −log10 (p) values and p-values (i.e., the frequencies or tail probabilities) that were 

computed based on ANCOVA results of the dominant state from 1000 permutations. By 

comparing Fig. 7A with Fig. 7B (and C), we found that the statistical results were quite 

comparable between the original ANCOVA and the permutation test. As shown in Fig. 7C, 

the identified 30 FCs presenting group differences among the original three groups showed 

zero (i.e., < 0.001) p-values in the permutation test. It can be observed from Fig. 7D that the 

adjusted p-value map (using the step-down minP method proposed by Westfall & Young) 

based on 1000 permutations had a similar pattern with the p-value map using the original 

groups. Fig. 7E shows the 30 FCs reflecting a group effect using the original groups after 

Bonferroni correction (p < 0.05). Fig. 7F and G show the FCs with significant group 

differences after correcting the adjusted p-values in the permutation test, resulting in 357 

FCs using p < 0.05 and 58 FCs using p < 0.01. Importantly, Fig. 7 E–G demonstrate that all 

the 30 functional connections showing group differences using the original method were 

found to be significantly different among groups using the permutation test (after multiple 

comparison corrections). In summary, our results support that the 30 connectivities shown in 

Fig. 6D were driven by diseases rather than grouping.

4. Discussions and conclusion

Clinical high risk individuals have an increased risk of developing a psychotic disorder. 

Measures identified from neuroimaging data are expected to reveal the neural mechanism of 

CHR and schizophrenia. Recently, dynamic functional connectivity (Calhoun et al., 2014) 

has shown sensitivity in investigating disease biomarker for schizophrenia (Damaraju et al., 

2014; Du et al., 2017; Du et al., 2016; Rashid et al., 2016; Rashid et al., 2014; Yu et al., 
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2015). The current study is the first to examine DFC in a CHR sample, although prior SFC-

based work (Dutt et al., 2015; Smieskova et al., 2013) has observed aberrant connectivity in 

CHR individuals. By applying the GIG-ICA method (Du et al., 2017; Du et al., 2015) to 

whole-brain DFC derived from resting-state fMRI data, we investigated group differences 

among HC, CHR and ESZ groups.

We found that multiple FCs in the dominant state altered in CHR and ESZ groups. The 

primary abnormal FCs included the connections within cerebellum, between temporal cortex 

and cerebellum, between frontal cortex and thalamus, between supplementary motor area 

and parahippocampal gyrus, between supplementary motor area and temporal cortex, 

between postcentral and temporal cortex, between parahippocampal gyrus and temporal 

cortex, and between Hesch1’s gyrus and cerebellum. Our findings are in agreement with 

previous studies using task-related or resting-state fMRI data, which also observed 

abnormalities in CHR and schizophrenia groups in the frontal lobes (Allen et al., 2011; 

Anticevic et al., 2015; Fusar-Poli et al., 2011; Morey et al., 2005; Wang et al., 2016; Yoon et 

al., 2015), temporal lobes (Allen et al., 2011; Yoon et al., 2015), cerebellum (Anticevic et 

al., 2015; Broome et al., 2010b; Pauly et al., 2010; Wang et al., 2016), thalamus (Anticevic 

et al., 2015; Seiferth et al., 2008), hippocampus (Allen et al., 2011; Seiferth et al., 2008), 

postcentral gyrus (Broome et al., 2010a), sensory motor cortex (Anticevic et al., 2015) and 

Heschl’s gyrus (Anticevic et al., 2015). While cerebellum dysfunction has been suggested to 

be relevant to certain characteristics in some neuropsychiatric disorders (Konarski et al., 

2005) including SZ (Andreasen and Pierson, 2008; Collin et al., 2011; Guo et al., 2015; 

Mouchet-Mages et al., 2007; Shevelkin et al., 2014; Yeganeh-Doost et al., 2011), our 

findings also underscore the cerebellar abnormality (Buckner, 2013; Yeganeh-Doost et al., 

2011) of resting-state brain connectivity in CHR and ESZ individuals. Importantly, our 

previous studies using the similar dynamic connectivity analysis framework (Du et al., 2017; 

Du et al., 2015) also revealed significant group differences in cerebellum-related 

connectivity among bipolar disorder with psychosis, schizoaffective disorder and 

schizophrenia.

Interestingly, our results from the dominant connectivity state suggest that ESZ patients 

showed greater connectivity changes than CHR individuals, and in general CHR individuals 

had an intermediate FC pattern between HCs and ESZ patients. Measured by the mean 

connectivity strength, most of the identified FCs (25 of 30 FCs) in the CHR group fell in 

between those of the HC and ESZ groups. This may reflect large abnormalities in the subset 

of CHRs who are destined to transition to psychosis, with other CHRs showing normal FC 

patterns, or it may reflect attenuated FC abnormalities across most CHR individuals that 

worsen to the levels seen in ESZ patients during the transition to psychosis and its 

immediate aftermath. Unfortunately, the absence of sufficient clinical follow-up data in our 

CHR sample prevents us from distinguishing these possibilities.

Examined by two-sample t-tests, the ESZ group exhibited significant alterations compared 

to both HC and CHR groups in some FCs, which primarily involved the within-cerebellum 

connections, the connections between frontal gyri and thalamus, as well as the connections 

between temporal gyri and cerebellum. So, these abnormalities may not be apparent until 

early in the course of schizophrenia. Measured by the mean connectivity strength, the 
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within-cerebellum connections as well as the connections between the frontal gyri and the 

thalamus showed a decreased trend from the HC group to the CHR group to the ESZ group, 

while the connections between the temporal gyri and the cerebellum increased across the 

three groups. Previous work (Anticevic et al., 2015) also showed hypoconnectivity in CHR 

individuals between thalamus and prefrontal areas, which is more prominent in those who 

converted to full-blown illness. Especially, five cerebellar crus related connections linking 

the cerebellar crus and the temporal lobe showed negative strengths in HC and CHR groups, 

but showed significant impairments (loss of negative connectivity) in ESZ group tested by 

two-sample t-tests. Habas et al (Habas et al., 2009) have shown that cerebellar crus I and II 

make a significant contribution to parallel cortico-cerebellar loops that are involved in 

executive control, salience detection, episodic memory and self-reflection. Our findings is 

also consistent with misconnection in a cortico-cerebellar-thalamo-cortical (CCTC) network 

(Andreasen, 1999), underlying the pathophysiology of schizophrenia.

Furthermore, CHR and ESZ groups shared common impairments with respect to 12 

connections that were mainly associated with the supplementary motor area, 

parahippocampal gyrus, temporal cortex, postcentral gyrus, cerebellum, frontal gyrus, and 

thalamus. In these connections, 9 connections showed a deceasing trend in strength in the 

CHR and ESZ groups than the HC group, while 3 connections had an increasing trend in the 

CHR and ESZ groups compared to the HC group. Specifically, compared to the HC group, 

CHR and ESZ groups showed enhanced negative connectivity strengths between the right 

middle frontal gyrus (including orbital part) and the right thalamus, and diminished positive 

connectivity strengths between the left/right parahippocampal gyrus and the right temporal 

pole. In addition, CHR and ESZ groups also had enhanced negative functional connectivity 

strengths between the right supplementary motor area and left parahippocampal gyrus as 

well as between the right supplementary motor area and the left temporal pole (middle 

temporal gyrus). These abnormalities may reflect the vulnerability to develop psychosis 

irrespective of whether a psychotic disorder has actually developed.

Additionally, the CHR group also exhibited a group-specific abnormality in the connections 

between the medial part of the superior frontal gyrus and the calcarine cortex. Furthermore, 

FC-symptom correlations supported the clinical relevance of three connections. Two 

hypoconnectivities (with decreasing strength across the HC, CHR and ESZ groups) between 

right supplementary motor area and left parahippocampal gyrus and between right 

parahippocampal gyrus and right temporal pole were negatively correlated with SOPS 

positive symptom scores in CHR individuals. One hyperconnectivity (with increasing 

strength from the HC group to CHR group to ESZ group) linking right temporal pole and 

left cerebellum was positively correlated with PANSS negative symptom scores in ESZ 

patients.

Moreover, since DFC can discover multiple inherent connectivity states, our findings 

suggested that the non-dominant group-specific connectivity states including GS 2, GS 3, 

GS 4 and GS 5 showed a more similar pattern between the CHR group and ESZ group than 

between the HC group and CHR (or ESZ) group, indicating that these states could be 

disease-related.
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In our study, we applied GIG-ICA to dynamic connectivity of each group separately in order 

to estimate the group-specific connectivity states. Our results using the permutation test 

support that the identified group differences in the dominant state are valid. In the 

supplementary materials, we also report the results obtained from performing GIG-ICA on 

the temporally concatenated dynamic connectivity of all subjects of the three groups to 

estimate the group-level and then subject-level connectivity states. Fig. S3A–B indicate that 

the five reliable group-level connectivity states estimated from all subjects of the three 

groups showed comparable patterns with the states estimated from seprate group. 

Furthermore, the p-values in ANCOVA of all connections (Fig. S3C) had a similar pattern to 

the p-values that were calculated based on the dominant SSs obtained from performing 

separate GIG-ICA on each group. Among the FCs with group differences (p < 0.0005) 

shown in Fig. S3D, 24 FCs were overlapping with the 30 FCs identified using the separate 

GIG-ICA one each group. The ANCOVA results of the 24 FCs are included in Table S4. For 

each of the 24 FCs, the inter-group differences between any pair of groups (supplementary 

Fig. S4) were highly consistent to that found using the separate GIG-ICA.

The present work has several limitations. (1) We lack sufficient clinical follow-up of CHR 

individuals to permit evaluation of whether DFC abnormalities predict conversion to 

psychosis. However, our framework can be potentially applied for individual-subject 

classification (or prediction) in future work where the clinical follow-up data of CHR 

subjects are available. One possible strategy is to use features from the dominant state that 

shows a comparable pattern across subjects. Based on the altered connectivities in the 

dominant connectivity state, a classifier/model can be built using converted and unconverted 

CHR subjects’ data. Then, for a new/testing CHR subject, the related dominant subject-

specific connectivity state can be computed from the individual-subject’s dynamic 

connectivity patterns. Finally, the new CHR subject with features from its dominant state can 

be classified by the well-trained model. The other alternative strategy is to employ all states, 

similar to the previous work (Rashid et al., 2016) from our group. In this strategy, two 

groups of the group-level connectivity states (including all the dominant and non-dominant 

states) from both converted CHR group and unconverted CHR group can be used as the 

common regressors. By representing each window-related connectivity matrix as a linear 

combination of the common regressors and then averaging the beta-values across all 

windows, each subject will have same number of features. So, these features can be used to 

train a classifier based on the training subjects and yield the classification labels for testing 

subjects. We will investigate this issue in the future when more data are available. (2) The 

fMRI data used in our study was relatively short (i.e., six minutes). Some work (Leonardi et 

al., 2013) used data from a longer scanning to investigate dynamics; however, many studies 

have already shown that different connectivity states can be robustly and replicably captured 

in a similarly short period such as five minutes (Abrol et al., 2016; Calhoun et al., 2014; 

Damaraju et al., 2014; Miller et al., 2016; Rashid et al., 2014; Yaesoubi et al., 2015; Yu et 

al., 2015). (3) The number of ICs in the framework was adjustable, and a change in this 

parameter may influence the states and the identified biomarkers. We selected the number of 

ICs according to previous work (Du et al., 2017; Miller et al., 2016; Yaesoubi et al., 2015), 

which preserved enough variance from each subject’s DFC and resulted in reliable GSs 

under multiple ICA runs. However, other settings may deserve study. (4) We used the 
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canonical AAL template-defined ROIs to compute the whole-brain FC, as the template 

provides clear parcellation and explicit description on whole-brain regions. In the future, we 

will also consider using ROIs obtained from ICA (Allen et al., 2014; Sohn et al., 2015; 

Yaesoubi et al., 2015), clustering techniques (Craddock et al., 2012; Du et al., 2012; Thirion 

et al., 2014), and previous fMRI studies (Du et al., 2016). (5) In light of the relatively small 

sample sizes available for this study, we included CHR individuals who were treated with 

antipsychotic medication at the time of testing. Given that only a minority of CHR 

individuals were taking antipsychotic medication, this was unlikely to confound our results. 

Nonetheless, we also performed the same DFC analyses using the unmedicated CHR 

individuals to explore. Results in supplementary materials showed that the patterns remain 

consistent with the findings described above. In addition, data of CHR individuals with 

different syndromes were analyzed. Due to the unbalanced number in different syndrome-

related groups, we cannot investigate if CHR subjects with different syndromes have 

significant different brain connectivity. We plan to explore this issue when more data are 

available. (6) The association relationship (correlations) between connectivity strengths and 

symptom scores cannot pass correction for multiple comparisons probably due to the small 

sample size. So, the association results should be validated in future. (7) Similar to a 

previous functional connectivity study in CHR individuals (Shim et al., 2010), we regressed 

out the global mean signal when preprocessing, since global signal is assumed to reflect a 

combination of resting-state fluctuations, physiological noise (e.g. respiratory and cardiac 

noise), and other noise signals with non-neural origin. Regressing out global mean has been 

shown to facilitate the detection of localized neuronal signals and improve the specificity of 

functional connectivity analysis (Chai et al., 2012; Fox et al., 2005; Fox et al., 2009; Van 

Dijk et al., 2010), although it could result in increased negative correlations (Murphy et al., 

2009). Considering that regressing out global mean is a controversial issue (Hayasaka, 

2013), we will investigate its impact in the future. (8) Since the non-dominant group-level 

states were not very corresponding across the three groups (as shown in Fig. 2, Fig. 3 and 

Table 2), estimating and comparing the associated non-dominant subject-specific states 

should be carefully conducted. In fact, the non-dominant states may only be comparable 

between the CHR group and ESZ group, but not comparable between the HC group and 

CHR (or ESZ) group, due to that they may be disease-related. Hence, we do not include 

analyses on the non-dominant subject-specific states in the present study.

By applying a novel DFC method, we found widespread connectivity alterations in both 

CHR and ESZ groups, and ESZ patients generally showed more connectivity differences 

with larger changes relative to controls than CHR individuals. The functional abnormalities 

are generally consistent with the CCTC network postulated to underlie the core cognitive 

deficit of schizophrenia. Furthermore, the CHR group also showed group-specific 

impairments, indicating that some connections’ alterations differentiated CHR and ESZ 

groups. An important future research direction is to examine the extent to which the aberrant 

FCs identified in CHR individuals are predictive of subsequent transition to a full-blown 

psychotic disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The schematic drawing of analysis steps. A: Estimation of dynamic functional connectivity 

(DFC) of individual subject (e.g., the kth subject) using a sliding time-window method based 

on regions of interests (ROIs). For each subject, a window-by-connectivity matrix (e.g., Xk) 

is obtained to reflect its DFC. B: Computation of group-level connectivity states. For each 

group, the window direction-concatenated dynamic connectivity matrix X from all N 

subjects was decomposed by ICA to obtain M group-level states (GSs) and the subject-

specific fluctuations (SFs) of these states. C: Computation of individual-subject’s 

connectivity states. Based on the dominant group-level state (i.e., Sl) and individual-

subject’s dynamic functional connectivity matrix (e.g., Xk), the dominant subject-specific 

state (SS, e.g., Sl
k) of each subject can be computed.
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Fig. 2. 
The corresponding group-level connectivity states (GSs) in matrix form, rendered form, and 

their inter-group correlations for healthy control (HC), clinical high-risk (CHR) and early 

illness schizophrenia (ESZ) groups. Each rendered GS is another view of the associated GS 

matrix, shown using the BrainNet Viewer toolbox with the same sparsity. The red and blue 

lines represent positive and negative values, respectively. The first column corresponds to the 

dominant GS. The last row shows the correlation matrix of three matched GSs from three 
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groups. The overall similarity between the matched GSs is also shown along with each 

correlation matrix.
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Fig. 3. 
The mean correlation matrix of the matched GSs across 100 permutation runs for each state. 

The overall similarity between the matched GSs is also shown along with each correlation 

matrix.
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Fig.4. 
Values of subject-specific fluctuations (SFs) in the concatenated windows of all subjects for 

each state.
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Fig. 5. 
A–C: The functional connectivity matrix of the mean dominant subject-specific FC state 

(SS) across subjects and its visualized pattern for the healthy control (HC), clinical high-risk 

(CHR) and early illness schizophrenia (ESZ) group, respectively. In A–C, the red and blue 

lines represent the positive and negative strengths, respectively. D: Left: Statistical map 

(−log10 (p) values) obtained by performing analysis of covariance (ANCOVA) with age and 

gender as covariates on each connection in the dominant SSs of three groups. Right: The 

visualized pattern of the 30 FCs showing significant group difference (p < 0.05 with 
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Bonferroni correction, i.e., p < 0.05/6670). The thickness of the line reflecting one edge 

reflects the associated F-value. The colors of the nodes and edges in the subfigure D are 

organized by their modules in the AAL template provided by the BrainNet Viewer software. 

Nodes belonging to the same module and edges linking such nodes are shown using the 

same color. Edges linking two nodes belonging to different modules are shown in grey color.
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Fig. 6. 
A: Two-sample t-test results of the identified 30 FCs in the dominant subject-specific FC 

state (SS). The result of each FC is shown in one sub-figure, the title of which denotes the 

associated two regions of interest (ROIs). For each of the 30 FCs, connectivity strengths of 

all subjects in one group are shown using one boxplot. Any pair of groups showing a 

significant difference (two-sample t-test, p < 0.05 with Bonferroni correction) is denoted 

using a blue line with a star (*) between them. P-values of two-sample t-tests (HC vs. CHR, 

HC vs. ESZ and CHR vs. ESZ) are also shown in the title. B: Significant correlations (with p 
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< 0.05) between the FC strengths and the symptom scores for the clinical high-risk (CHR) or 

early illness schizophrenia (ESZ) group.
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Fig. 7. 
A: p-value map obtained from performing ANCOVA on each FC’s strengths in the dominant 

subject-specific states of the original/real three groups. B: All FCs’ associated −log10 (p) 

map from the permutation test, where the p values (i.e., the frequencies or tail probabilities) 

were computed based on ANCOVA results of the dominant state from 1000 permutations. C: 

All FCs’ associated p-value map from the permutation test. D: Adjusted p-value map of the 

dominant sate for the permutation test using the step-down minP method. E: p-values of the 

identified 30 FCs using the original three groups after Bonferroni correction (p < 0.05). F: 

Adjusted p-values of the identified 58 FCs showing group difference after correction with p 

< 0.05 based on the adjusted p-values. G: Adjusted p-values of the identified 357 FCs 

showing group difference after correction with p < 0.01 based on the adjusted p-values.
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