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ABSTRACT OF THE DISSERTATION

Semi-Parametric Inference for a Semi-Supervised Two-Component Location-Shifted
Mixture Model

by

Bradley Mark Lubich

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, June 2023
Dr. Daniel R. Jeske, Chairperson

In a randomized clinical trial (RCT) with a control group vs. treatment group design,
mixture models (Lindsay, 1995; G. McLachlan and Peel, 2000) can be a good choice for
the treatment group response distribution in anticipation that there might be a sub-
population of the treated population whose responses have the same distribution as the
control group. It is well known that such sub-populations of ‘non-responding’ treated
patients exist in oncology trials (Spear et al., 2001; Manegold et al., 2016). Although it
would be ideal to identify a-priori the features that characterize individuals who will
respond (a ‘responder’) to the treatment and those who will not (a ‘non-responder’), this
dissertation considers inference when such information has yet to be ascertained. Post-
hoc sub-group analyses are known to lead to an inflated rate of false discoveries (Lagakos
et al., 2006). Assessing the existence of subgroups with mixture model inference before
proceeding with identifying subgroups based upon biomarkers can decrease the false
discovery rate among sub-group analyses. Jeske and Yao (2020) demonstrated that

ignoring the heterogeneity of treatment effects could result in an under-powered

vi



experiment and have the risk of missing some useful treatments. When heterogeneity is
indeed present and treatment effects are sub-population specific, the average treatment
effect obtained by the standard methods can lead to incorrect conclusions. Hence, the use
of mixture models to represent the response distribution within the treatment group is
compelling and it is desirable to describe the nature of this sub-population specific effect
via inference on the corresponding parameters from the mixture distribution. This
dissertation explores four methods of point estimation for the parameters. Two of the
methods are also used to construct confidence bounds (both intervals and regions) for the
parameters. Simulation is used to assess the performances of the various methods and
make a recommendation. The recommended methods are illustrated on an example blood

pressure data set.
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Chapter 1

Introduction

1.1 Research Direction

In a randomized clinical trial (RCT) with a control group vs. treatment group design,
mixture models (Lindsay, [1995; G. McLachlan and Peel, |2000) can be a good choice
for the treatment group response distribution in anticipation that there might be a
sub-population of the treated population whose responses have the same distribution
as the control group. It is well known that such sub-populations of ‘non-responding’
treated patients exist in oncology trials (Spear et al., 2001; Manegold et al.,[2016). Al-
though it would be ideal to identify a-priori the features that characterize individuals
who will respond (a ‘responder’) to the treatment and those who will not (a ‘non-
responder’), this dissertation considers inference when such information has yet to be
confirmed. Post-hoc sub-group analyses are known to lead to an inflated rate of false
discoveries (Lagakos et al., [2006). Assessing the existence of subgroups with mixture
model inference before proceeding with identifying subgroups based upon biomark-
ers can decrease the false discovery rate among sub-group analyses. A group fMRI
example motivated a recent call for more attention to be given to mixture alterna-

tives for comparing two (alternative) treatments (by a hypothesis test), stating that



medical applications, psychiatric-genetics and personalized medicine are important
applications where mixtures are plausible alternatives (Rosenblatt and Benjamini,
2018). Jeske and Yao (2020) demonstrated that ignoring the heterogeneity of treat-
ment effects could result in an under-powered experiment and have the risk of missing
some useful treatments. When heterogeneity is indeed present and treatment effects
are sub-population specific, the average treatment effect obtained by the standard
methods can lead to incorrect conclusions. Hence, the use of mixture models to rep-
resent the response distribution within the treatment group is compelling and it is
desirable to describe the nature of this sub-population specific effect via inference on

the corresponding parameters from the mixture distribution.

Two Distinct Subpopulations

< | d
o
Non-
© 4 Responder
1-6
oo
o
g,
o
o

Figure 1.1: Two distinct sub-populations that make up a mixture distribution.

Denote the cumulative distribution functions (CDFs) associated with a response
from the control group and the treatment group by F and G, respectively. Mean

shift alternatives of the form G(u) = F(u — ¢) are frequently used. This dissertation



assumes, without loss of generality, that § > 0 and uses a mixture model for the

responses from the treatment group of the form

Gu)=(1—-0)F(u) +0F(u—9). (1.1)

where 6 € (0,1] and F' € F representing the set of all CDFs. Also, (0,§) = (0,0) is in
the parameter space and represents a non-existent treatment effect. In this context,
the treatment effect is represented by the pair (6,6) and the average treatment effect
is A = 06. The parameter 6 represents the proportion of responders in the treated
population, while 0 represents the effect size of the treatment for the responders.
(Note that when # = 1 the model simplifies to a pure mean shift). While it is
common to impose that F' belongs to a particular parametric family (e.g. Normal),
this dissertation aims to limit distributional assumptions with the goal of distribution-
robust inference on (6, 0).

While each individual is either a responder or non-responder, the component mem-
bership of a randomly sampled individual is an unobserved random variable. Let
Z=27..,7Z, w Bernoulli(6) represent component membership (0 for non-responder,
1 for responder) for each patient in the treatment group. Let Y = Yj,..., Y, repre-
sent the (observed) response from the random sample of treated patients. Thus,
the treatment data consists of n pairs - (Y, Z) = (Y1,7Z1), ..., (Yo, Z,) - where Y;
is observed and Z; is a latent variable. The conditional distributions representing
the sub-population responses are Y;|(Z; = 0) ~ F(u) and Y;|(Z; = 1) ~ F(u — 9).
Therefore Y; marginally follows G in . Let X = X4, ..., X,, represent the patient
responses in the control group. Control patients do not respond to the treatment
(since they do not receive it) so the distribution for these untreated patients is F'(u).
By randomization in the RCT X and Y are independent random samples with a

total sample size denoted N = m + n.



The rest of the dissertation is organized as follows. The remainder of Chapter 1
explores mixture models more broadly and further motivates the research direction
by showing how it contributes to the existing literature. Chapter 2 explores various
estimators for the treatment effect. Chapter 3 discusses confidence bounds (intervals
and regions) corresponding to two of the estimates from chapter 2, method of moments
and pseudo-likelihood. Chapter 4 compares the performance of the estimators and
confidence bounds via extensive simulation studies and provides recommendations.
Chapter 5 concludes by demonstrating the utility of the recommended methods on

an example blood pressure data set and discusses future work.

1.2 Survey of Mixture Models

Mixture models are also known as ‘latent class models’ or ‘unsupervised learning
models’. Sometimes they are used as a means of flexibly modeling data that is difficult
to model parametrically. For example, kernel density estimation (KDE) is one very
popular non-parametric estimation technique for estimating a density. This technique
is actually a special case of mixture modeling. Another application of mixtures is
for modeling a population that is thought to be comprised of multiple distinct sub-
populations. Inference in these scenarios may focus on both sub-population features
as well as the percentage of the population from each sub-population. The number
of distinct sub-populations modeled by a mixture distribution may be pre-specified

or learned from the observed data.



1.2.1 Basic Definitions and Notation

A mixture distribution G is defined by a distribution function
Glu) = mF;(u) (1.2)
j=1

where 0 < 7; <1 forall j € {1,...,c}, > 7, m; = 1 and F} is a distribution function
forall j € {1,...,c}. Each Fj is called a component distribution, while each 7; is called
a component probability and c¢ is the number of components in the mixture model,
which may be known or unknown. Let bolded symbols represent vectors. Thus,
F(u) = [Fi(u), ..., Fe(u)] (or just F). Since ) °_, m; = 1, all component probabilities
are defined by specification of ¢ — 1 of the m; values. By convention, consider the
first ¢ — 1 to be the parameter vector @ = [mq,...,m._1] (then 7, = 1 — Zj: ;).
If ¢ is finite, then G is said to be a finite mixture model. When G(u)s have a
d

corresponding probability density function (pdf), g(u) = d—G(u), it may also be
u

written in analogous form to (1.2]) as shown below

o) = £-Glw) = = S m ()

du
- d
= Z%’@Fj(u)
7j=1

= > miw) (13

where each f; is the pdf of the corresponding distribution function Fj.



1.2.2 Parametric Specifications

Component distributions Fj(u) are often chosen to be from some parametric family,
F(u;7y;), which is indexed by a euclidean parameter vector «;. Commonly the same
family is chosen for all j € {1,...,c}, though this need not be the case (Grimlund,
1989). Most commonly, this family is chosen to be the Normal family of distributions
(Fraley et al., [2012; G. J. McLachlan and Rathnayake, 2014; Maleki et al., 2019).
When the random variable is multivariate, the multivariate normal family is com-
monly used for mixture modeling (NAKAMURA and KONISHI, [1999; Dolan et al.,
2004; He et al., [2006; Boldea and Magnus, [2009). Other distributions such as the
gamma distribution (Young et al., 2019), t-distribution (Burgess-Hull, 2020), and

skewed t-distribution (Lin et al., 2007) have been studied as well.

1.2.3 Infinite Mixture Models

Infinite mixture models also exist where 7 is generalized to be a probability measure

H over a parameter vector v such that the infinite mixture distribution is defined by

Glu) = / f(u;7)dH (), (1.4)

where f(u;~y) is the family of densities indexed by the parameter v and H () is called
the mixing distribution. When H (7) is discrete with finite support (|1.4]) simplifies to
(1.2) with finite c.



1.2.4 Framework for Interpretation of Sub-populations

A useful framework for working with mixture distributions is to note that a mixture
distribution has the same distribution as the sum of independent variables as follows.
Let Z; = [1,0,...,0] with probability m, Z; = [0,1,...,0] with probability m,...,
Z; = [0,0,...,1] with probability ., independently for all ¢ € {1,...,n}. That is,
let Z; % Categorical () for i € {1,...,n}. Let z;; be the jth element of Z;. Let
X, ~ F; independently for all j € {1,...,c} and for all i« € {1,...,n}. Also let

iid

X, = [Xin, ... Xio] and let X, be independent of Z;. Then Y; € Z;XT % G(y).

See the proof below

Py, <y)? P(Z:X] <y)

_p (L_Jl{zj — 10X < y)}>
_ ilp(zm = 1)P(Xi; < ylziy = 1)
- Z_; P(z; =1)P(Xi; <)
DL

= G(y)

where the steps hold by definition, the multiplication and addition rules, independence

of X;. and Z;, the definitions of Z; and X, ;, and the definition of G in (1.2).



1.2.5 Mixture of Regression Models

Mixture models can also be used to model the distribution of responses (or errors)
in the context of models that include covariates, ;. For example, let there be c
unobserved groups in the population where the ith observation comes from subgroup

J, indicated by z;; = 1. Then
Yi(X,Z=j)=XIB+e, (1.5)
where ¢; “ ¢(0, 0]2) and ¢ is the normal density. So marginally,
ViIX ~ 3wl XT5,.0%) (1.6
j=1

Various extensions exist where each Y; is multivariate (Soffritti and Galimberti,
2011), ¢; is non-normal (Zeller et al., 2016) or even estimated non-parametrically

(Hunter and Young, 2012; Hu et al., [2017).



1.2.6 Supervision, Clustering and Classification

The data setup for mixture modeling can be classified according to the availability
of Z; for all observations Y; for i € {1,..., N}. In the machine learning literature,
data settings where no component labels are known are called unsupervised. Data
settings where all component labels are known are called supervised. Data settings
where a subset of available observations are of known component origin is called semi-
supervised. Within the supervised (or semi-supervised) framework it is important to
distinguish between types of supervision for accurate modeling (Hosmer Jr, [1973).
The data scenarios are listed below.

e Unsupervised

e Supervised

— Stratified Random Sampling
— Simple Random Sampling

e Semi-Supervised
— Stratified Random Sampling
— Simple Random Sampling
Clustering is the act of grouping unsupervised observations into unique groups,
called clusters. If the number of clusters, ¢, is known, the mixture model approach
to clustering corresponds to fitting a mixture distribution with ¢ clusters. However,
sometimes the number of clusters is not known and thus the mixture modeling ap-
proach then considers ¢ as a parameter rather than a known quantity (NAKAMURA
and KONISHI, [1999; G. J. McLachlan and Rathnayake, [2014). The two most com-
mon mixture model approaches (G. J. McLachlan et al., 2019) to selecting ¢ are
maximizing a penalized log-likelihood and carrying out hypothesis tests using a Like-
lihood Ratio Test (LRT). For a classic and visual approach to selecting the number

of components, silhouette diagrams may be used (Rousseeuw, |1987).



In a supervised setting, the observations are classified into pre-specified groups,
indicated by the observed Z. If the observations are randomly sampled from the
overall population, then Z4, ..., Z, « Categorical(m) and inference about 7 can be
made directly from Z,, ..., Z,,. However, if stratified sampling is implemented from
the sub-populations, then the membership labels Z1, ..., Z,, ¢ Categorical(m) and
thus do not provide direct information about 7. In such a case, information is only
available about the conditional distributions of Y;|(Z = j) and thus standard methods
like ANOVA or regression may be implemented to conduct statistical inference about
the parameters. In a machine learning context, classification of future observations
into class membership is often the goal in any form of supervised setting. It should
be noted that while an additional sample of observations from is necessary
for inference on 7 (Ilagan and Falk, 2022), classification techniques using mixture
models (or other techniques) may still provide satisfactory classification metrics such
as sensitivity P(C' = j|z;; = 1) and specificity P(C' # j|z; # 1). Furthermore,
posterior predictive probabilities P(z;; = 1|C' = j) may still be useful without this
information if components are well-separated.

Lastly, the semi-supervised setting describes when n; observations have compo-
nent labels and ny observations do not have component labels (ny + ny = n). The
same discussion about stratified versus simple random sampling above applies to the
supervised labels Zi, ..., Z,,. Section [1.2.8 shows that while the sampling method
alters how the maximum likelihood estimates are computed, even in the stratified
scenario, Y1, ..., Y, may still be utilized for inference on 7 since (Z;,Y;) consists of
an observation from Y;|(z;; = 1) even when Z; 4 Bern(m;).

Besides mixture modeling, many other methods exist in the machine learning liter-
ature for clustering (Rokach and Maimon, |2005; Saxena et al., 2017) and classification

(Soofi and Awan, 2017; Dogan and Birant, [2021) problems.
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1.2.7 Identifiability

For notational purposes, let 7;, 7 represent two different choices of the value of the
same (jth) component probability. Also let m; and mgo represent two arbitrary but
distinct component probabilities. Analogous notation is used for F'.

One characteristic issue that arises in modeling data with a mixture distribution

is identifiability.

Definition 1.2.1 A distribution G(u;T) is identifiable if T # 7' = G(u;T) #

G(u; ") where T is the parameter vector of G.

Mixture models carry an inherent identifiability issue called label-switching. For
any mixture model (1.2), if Fi1 = F},, F}; = Fio and mp = 7}y, The = 7, then
G(u; ) = G(u; ") where 7 = (7, F'). This means that the model is non-identifiable
by the definition of identifiability, but only because of switching the labels of (741, Fi1)
and (72, Fr2). In settings where the component labels {1,2,...,c¢} are arbitrary in
their interpretation, as in the unsupervised setting where clustering is the goal, this
kind of non-identifiability is not problematic. Thus the definition of identifiability in
an unsupervised mixture setting is modified to satisfy Definition up to a per-
mutation in labels. However, if the various components have distinct interpretations,
then this label-switching is an issue. In such scenarios supervised or semi-supervised
data is a solution to the label-switching issue.

For an example of label-switching, consider the following normal mixture model

G(“Q 1, pa, 0'%77727 H2, U%) = Wl(b(u; M1, U%) + 7T2(I)(u; Ha, U%)v (17)

where ®(u) is a normal CDF and thus in this context T = (7, y1, 0%, ma, io, 03).

Consider that G(u;.2,5,1,.8,10,4) = G(u;.8,10,4,.2,5,1), so strictly speaking, the
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model is not identifiable. However, the only difference is what label (1 or 2) is given
to the component that has the smaller mean, mixing proportion, and variance. In
scenarios where the aspects of the component distributions ought to match with
particular labels, additional restrictions (such as m < ... < m. or p; < ... < p.) may
be imposed.

Another manner in which identifiability breaks down for is by failing to ensure
that each component distribution F} is a ‘true component’ of G. This occurs when
m; = 0 for one or more j € {1,...,c}, or when at least two Fjy, Fjo are non-distinct.

There are other (less trivial) ways in which non-identifiability of the model can
arise. Without any further restrictions on F' (other than that each element be dis-
tinct), it is not possible to guarantee identifiability of G. Consider the following
example where the component distributions, F} are distinct with positive component
probabilities m; > 0 but the model is non-identifiable. Let ¢ = 2, and Fj(u) ~
(1—w)N(0,1)+w;N(2,1) and Fo(u) ~ (1 —wq)N(0,1) +wyN(2,1) where w; # ws.
If mowy +mwe = p for any p € [0, 1], then G(u) = (1—p)N(0,1)+pN(2,1). For exam-
ple, if (wy = 4,wy = .7, m = 4,1 = .6) or (W] = .5,wy = .8, 1y =11/15, 7}, = 4/15)
then p = .58. Analogous non-identifiable cases for ¢ > 2 abound as well.

These examples highlight the need for further restriction on the mixture model in
order to ensure identifiability. One common way to do this is to specify a parametric
family for the component distributions. If ¢ is known and finite, then each of F}, ..., F,
can have a specified family (perhaps the same family, perhaps different). Titterington
et al. (1985) showed that with many common families for F'; G becomes identifiable
barring label-switching with a notable exception being the uniform distribution.

To see why is not identifiable if all f; (or more than one) follow a uniform

distribution, consider the following example. Let ¢ = 2 and choose the following
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two sets for the parameters (m; = 1/4, m = 3/4, fi = U1y, fo = Uyp) and
(m) =1/3, , =2/3, f, = Ui-11), fr = Uc-1,7)) then g(u) = g (u) for all u |D thus

showing that g is not identifiable.

12/24

3/4

Nonidentifiable Mixture

9/24 4 ——

Density

3/24 1

0/24 -

- 4/24

- 1/24

X

- 12/24 12/24 1

0 u< —1
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— —1<u<l1
214 (1.8)
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Figure 1.2: Nonidentifiable Mixture of Uniforms. The plot on top represents f;
in grey, fo in light green, and ¢ in dark green. The bottom plot with fi, f5,¢" is

analogous.

1.2.8 The EM Algorithm

Maximum Likelihood Estimation is a stalwart approach for statistical inference dating

back to the origin of the field of Statistics (Edgeworth, [1908; Wilks, 1938). Maximum
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Likelihood Estimation involves finding the parameter value 7 that maximizes the
likelihood function for a given set of data Y7, ...,Y,, sampled from the model. Since
the log is a bijective function that is easier to work with (and the maximizer of the log-
likelihood function is the same as that of the likelihood function) attention is given
to maximizing the log-likelihood function. An observed random sample Y7,...,Y,
from (1.3), where each Fj(y;~;) has a parametric family indexed by +;, provides an

(observed) log-likelihood function

lobs(T;Y) = Zlog {Zﬂ']f](yvza’y_j)} . (19)

Analytical maximization of ([1.9) is not feasible due to the component summation.
However, the latent variable framework from section [1.2.4 makes maximization of the
complete log-likelihood possible. The unobserved Zy, ..., Z,, contain the information

missing from ((1.9) for the complete data log-likelihood

(T3 Y,2) = 305 22, {log (m5) + log (f3(Vii ;) (1.10)

i=1 j=1

where 7 = (m,~) (and v = [v1, ..., Ve))-

The missing data setup of the mixture model lends itself naturally to implemen-
tation of the Expectation Maximization (EM) algorithm for maximizing (1.9). Such
an algorithm was originally discussed by Day (1969) for the two-component location-
shifted (possibly multivariate) normal mixture models. The EM algorithm was then
formalized by Dempster et al. (1977), which finds a local maximum of the observed
log likelihood by iterating back and forth between ‘Expectation” and ‘Maximiza-
tion” steps computed from the complete log-likelihood . The algorithm begins

at step k = 0 with an initial estimate of the parameter 7(®) = (7(® ~(®) Then the
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‘E’-step is performed by computing the conditional expectation of ([1.10) given Y and

&) as below

Qriv®) = Ez [l.(m; Y, Z)[Y .7 =7®]. (1.11)
This reduces to
Z ZE[z”\YZ] {log (’/Tj(-k)) + log (fj(ES’VJ('k)))} (1.12)
i=1 j=1

by the linearity of expectation. Note that since z; ; is an indicator variable, E|z; ;|y;] =

P(z; = 1ly;), and by Bayes’ rule

i fir (Yis Yi7)
> i1 7 fi(Yis i)

EI? =P (ZiJ = ”yi,ﬂ'(k_l),’v(k_l)) for all

Thus, the ‘E’ step reduces to computing p
1,].

Next, the ‘M’ step proceeds by maximizing Q(7; 7*~1) over 7 to give an updated
value, 7(%). Note, that maximizing Q(7; T(k_l)) can often be done analytically (in
particular with f; all from exponential families) and is more feasible than trying to
directly maximize l,s(7;Y ). These ‘E’ and ‘M’ steps are repeated for increasing k

until Ly (7®); Y') reaches a (local) maximum. The key property of the EM algorithm
for maximizing (1.9)) is that

lobs(‘r(k); Y) Z lobs(T(k_l); Y) (114)

for all £ € {0,1,2,...}. This non-decreasing property ensures that 7®*) must converge
to a local maximum of l,,s(7;Y). When there are multiple local maxima (which is

common with 1} type models), starting the algorithm at various 7(®) can uncover
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multiple local maximizers and the value of l,s(7;Y) can be computed at each to
determine which is the largest. While there is no guarantee that this identifies the
global maximizer, the chance of obtaining the global maximizer increases in scenarios
where a vast array of starting values is computationally feasible or there are computa-
tionally inexpensive estimates (like method of moments) that may provide an initial

value close to the global maximizer.

1.2.9 Semi-Parametric Modeling

In contrast to modeling with parametric assumptions on the component dis-
tributions as described in section [I.2.2, much recent work has been done on semi-
parametric modeling of where the component distributions are estimated non-
parametrically. See Xiang et al. (2019) for a recent review. Without parametric
specification of the component densities, additional assumptions must be present for
identifiability to hold. Chang and Walther (2007a) assume log-concave components
for location-shifted distributions, but this is insufficient to ensure identifiability. Bor-
des, Mottelet, et al. (2006) showed that for two-component location shifted mixture
with symmetric component densities, the model is identifiable. Bordes et al. (2007)
and Hunter et al. (2007) consider estimation of the component probabilities and lo-
cation parameters for such a model. Another two-component model was motivated
to detect differentially expressed genes under two or more conditions in microarray
data where one component is known and the other is symmetric with finite third
moment (Bordes, Delmas, et al., 2006). Estimation for this model has since been
further explored (Bordes and Vandekerkhove, 2010; Hohmann and Holzmann, 2013;

Xiang et al., 2014; Patra and Sen, [2016).
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1.3 Model Preliminaries

1.3.1 Identifiability

Consider the special mixture model of interest in this dissertation and note that
it is a special case of where ¢ = 2, my = 0, Fi(u) = F(u), and Fy(u) =
F(u — 0). The restrictions that 6§ € (0,1] and § > 0 or (6,0) = (0,0) alone
are insufficient to ensure identifiability of . To see why, consider the follow-
ing example that produces two distinct triplets (F,6,0) and (F,6',0") such that
G(u; F,0,6) = G(u; F',0',0") for all w € R. Let (F,0,5) = (N(0,1),.7,1.5) and let
(F',0,0) = (BN(=2,1) + .TN(—.5,1),1,2). Then G(u; F,0,0) = G(u; F',0',d") =
3N(0,1) + .7N(1.5,1). Thus in an unsupervised setting - where there is no control
data X % F.but only Y % G - the model is not identifiable.

As mentioned in sections [1.2.2 and [1.2.9, it is common to restrict F' by imposing

parametric assumptions or shape constraints to achieve identifiability. However, in the
semi-supervised setting, data from X % F is available and thus F (a sub-model of G)
is identifiable. Consequently in this semi-supervised setting, model is identifiable
so long as there is no distinct pair of parameters (6,6), (¢',d') that produce the same
equation for G in model [for the same F|. Yakowitz and Spragins (1968) showed
that finite location-shifted mixture distributions are identifiable for any F'. Thus the

model is identifiable in this semi-supervised setting without any constraints on F'.

1.3.2 Parametric Inference with Treatment Data Only

To motivate the need for semi-parametric inference on (1.1)) with control data, con-
sider first the inference problem with only treatment data and parametric assump-

tions on F. Recall that (Y1, Z1), ..., (Yn, Z,) represent the n paired observations for
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the randomly sampled individuals who are given the treatment under consideration.
Y1, ..., Y, represent the observed response of each individual and 71, ..., Z,, represent
the unobserved sub-population to which each of the n sampled individuals belongs
(each individual is either a non-responder or a responder). Let Z; ~ Bernoulli(0),
Yi|(Z: = 0) ~ F(u), Y;|(Z = 1) ~ F(u — ). Therefore, Y1, ..., Y, 4 G in (L.1).

Consider the MLE of 7 = (6, uo, pt1, o) with the correct assumption that F(u) ~
N(uo,0%) and F(u — ) ~ N(p1,02%) [0 = pg — po > 0] by implementation of the EM
algorithm. The algorithm is defined by

0.) Initialize: 7(©

1.) E-step: Compute Q(7|7*~Y) = EzllogL.(T; (Y, Z))|Y, 7*~1)]

2.) M-step: Maximize Q(7|7®*~1) over T to give an updated value 7*),
where alternation between 1.) and 2.) repeats until convergence of 7(*®) occurs. Since
the only random variables from logL.(7; (Y, Z)) in 1.) are 7y, ..., Z,, it is useful to
define p\*) = E[Z;]Y, 7=,

Based on the solutions to the expectation and the maximization steps, the initial-

ization and k' steps of the algorithm are

0. Initialize: 7@ = (9©, 4\ u(g ) o2 (60 = 1V — 0]
*) k— 1 f(k 1)( — 5= 1))

v (1_9(k 1)f(k 1(1) 4+ Qtk— l)fkfl (yi_é(kfl))

1. E-step: p
2. M-step:
(k)
gk — > i1 Pi

n
n k
,u(k) _ Zi:l(l —pg ))yi
(U n k
Zi:l(é)_ pi )>
(k) _ > i Pi Vi
Hy Zn lp(-k)
w oy (K k k k
oo _ i (=) i = ™)+ 9P = )
n
Notice that since F(u) ~ N(u;ug,0?), each update of (No ,02*) uniquely defines

f),
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Consider the simulation to assess the performance of @ on 1000 independent
data sets when n = 100, F' ~ N(0,1), § = .7,6 = 2. The simulation results are
obtained using the Mclust package in R. Notice from the top panel in Figure E
that the mixture model has (6, §) such that the separation between the sub-population
component distributions is not substantial enough to produce a bimodal mixture
distribution. However, the effect size is two standard deviations (K = /0 = 2/1 = 2)
and a moderate percentage of the population (# = 70%) is a responder. A treatment
with 70% responders may be of interest, and for most medical applications it is not
feasible to demand an effect size more than two standard deviations. Thus it is
desirable to perform inference on a mixture model even if the mixture distribution is

not bimodal.

Population Distribution (Mixture)

0.0

Figure 1.3: Data Collection for Simulation Setting. Observations come from mixture
represented by dark green curve. n =100, F' ~ N(0,1),0 = .7,§ = 2.

19



NormMLE NormMLE

50

>
2 F 2 outliers
S o 2 o not plotted
O N [}
: 3 1]
L o ] .\I“” ||H” | g
00 02 04 06 08 10 0 1 2 3 4

A
)

8
Figure 1.4: Normal Maximum Likelihood Estimate found by EM Algorithm. n =
100, FF'~ N(0,1), 0 =.7, § = 2.

Figure M displays the distributions of # and & and shows that the estimators are
useful. The estimator typically indicates that between 50% to 90% of the population
responds to the treatment and the magnitude of the response for the responders is

between 1.5 and 2.5 units.

1.3.3 Semi-parametric Inference with Treatment Data Only

As stated in section [I.1], this dissertation aims to conduct inference that is robust to
distributional assumptions. An existing method for estimating (6,¢) is an EM-like
algorithm (Bordes, Mottelet, et al., 2006) where F' is estimated non-parametrically,
which can be implemented using the mixtools package in R. First define F§ to be
a symmetric distribution function around 0 with density fs, f(u) = fs(u — po) and
fu—0) = fs(u— pq) where § = g — pp > 0. The symmetry of f; is necessary for

model identifiability. The algorithm is as follows
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0. Tnitialize: 7 = (0O, ;i 1", £) (6@ = i — "]
* o= fk=1) (g, — §(k=1))

(1= 0D fED) () 4 OR=D) fE=D) (g — §=1))

1. E-step: p
2. ‘M’-step:
n (k)

o) — > i1 Di

n
M(()k) _ Z?:l(l - py(;k))yi
(1 =)
w Sy
S Z?:l pgk)
=

Now f, is itself a parameter to be estimated and is no longer uniquely determined

by a set of euclidean parameters - as is the case when assuming a particular para-
metric family for the component distribution. Since finding the particular fs(k) to
maximize Q(7|T*~V) is a difficult task, the method of estimation opts rather to
estimate f, by kernel density estimation using a simulation technique to ‘complete
the data’ as follows

(a) Simulate 70

7

~ Bernoulli(pgk))

(b) 3 = g — p

(€) Py = s (M

(k) k)
K Jo ' (u) + fo (—u)
(@) 19 (w) = .
In step (a), each observation is randomly assigned to either the ‘non-responder’ com-

ponent or the ‘responder’ component according to its current probability of compo-
nent membership. In step (b) each observation is ‘recentered’ by subtracting the
current estimate of the center of its respective component assignment. (Note that if
all simulation assignments and the center estimates are correct, then y, ..., y, %4 F,.)
In step (c), a kernel density estimate is fit on all the ‘recentered’ data providing a pre-
liminary estimate of f;. In step (d), an additional symmetrization step is performed

to ensure a symmetric estimate of f;. (A deterministic version of the algorithm (Be-
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naglia et al., [2009) exists as well where the p;s are used directly to assign weighted
observations to the group instead of simulating full membership in one group. The
deterministic version performs similarly to the stochastic version.) Consider a sim-
ulation to assess the performance of @ on 1000 independent data sets under the

same sampling scheme as in Figure [1.3

EM_Like EM_Like

0 outliers
not plotted

Frequency
0 20 40

D>
o>

Figure 1.5: EM-like Algorithm with Only Treatment Data. n = 100, F ~
N(0,1), 0 =.7, § = 2.

As is very clear from Figure|[1.5, the simulation study shows that the performance
of the EM-like estimator is unsatisfactory in this scenario. Particularly 5 dramatically
underestimates §. By comparing Figure [1.4 and Figure [1.5, it appears that the
increased flexibility in allowing F' to be any symmetric distribution comes at a steep
price. The flexibility in F' makes it difficult to identify separate sub-populations when
the separation between the components is not pronounced enough to obviously see
them in the resulting mixture - even though the model is theoretically identifiable
(Bordes, Mottelet, et al., [2006). To verify that the EM-like algorithm can work in

some situations, consider a larger effect size, K = 4 (see Figure .
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Population Distribution (Mixture)

0.0

Figure 1.6: Data Collection for Simulation Setting with Large Shift. Observations

come from the mixture distribution represented by dark green. n = 100, F ~
N(0,1),06 =.7,0 =4
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Figure 1.7: EM-like Algorithm with Only Treatment Data. n = 100, F ~
N(0,1), 0=.7, 6§ =4
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As seen from the simulation with a larger effect size, the bias in § decreases sub-
stantially to something more reasonable, and the variance of 0 decreases as well.
However, as previously noted, in many applications of interest it may not be reason-
able to assume that the effect size is so large. So for more realistic effect sizes, where
the resulting mixture is not so prominently bimodal, it appears that the loss of infor-
mation about F' that results from relaxing the normality assumption makes inference
about (6,6) problematic. Therefore, consider another way of obtaining information
about F' - control data.

Recall that the ‘non-responder’ sub-population is a subset of individuals who -
when given the treatment - do not respond. Thus individuals given a control inter-
vention have the same response distribution as individuals who do not respond to the
treatment. This dissertation aims to show that when a sample X1, ..., X,, Y (u)

from a control group is available, this information proves useful for inference on (6, J)

without restricting F' to be from some known parametric family.

1.3.4 Situating the Research in the Literature

Sections [1.2.2 and [1.2.9 surveyed a host of related literature that exists regarding

mixture models where the component distributions are estimated both parametrically
and non-parametrically. The specific setup, scope, and focus of the related work can
be characterized as in List [1.1 below. The bolded (and italicized) elements describe

how this dissertation research fits into the broader landscape.
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e Number of components — None

— Unknown e Assumption between Fjs

— Known — Same Specified Family
x c—= 2 — Location-shifted
%« ¢> 2 and ¢ finite — Scaled (same location)
« Infinite — Location-Scale

e Data Dimension — Linear Log-ratio

— Univariate — None
— Multivariate e Data Collection from
e Data Type(s) — G (with Z; known)
— Categorial — G (with Z; unknown)
— Numeric — All Fjs
— Mixed — Some Fjs
— No Fjs

e Assumption on Fjs

' e Primary Inference Objective
— Parametric

-G
~ Fjs

— Symmetric

— Log-Concave

— Certain Finite Moments — Euclidean parameters

— p; and z; prediction

Unimodal

List 1.1: Summary of Mixture Modeling Scenarios

The assumptions on F' vary from method to method in this dissertation, but
typically have only restrictions that seem broadly applicable to modeling medical
outcomes - such as F’ unimodal with reasonably well-behaved tails. The next chapter

presents various approaches to distribution-robust point estimation of (6, ).
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Chapter 2

Estimation Methods

2.1 Normal Maximum Likelihood Estimator using
the EM Algorithm

While model (1.1)) does not assume that F' ~ Normal, an estimation approach that

utilizes a normality assumption may still provide distribution-robust performance.

Particularly, as discussed in sections [1.3.2 and [1.3.3, relaxing the normality assump-

tion (by imposing only a symmetric assumption on F') dramatically deteriorates per-
formance of the EM-like estimator in the absence control data. If control data is
sparse, then it may be the case that an erroneous distributional assumption (i.e.
assume F' ~ Normal when F' o4 Normal) could result in better inference on (6, 9)
than methods that impose no assumptions on F'. Thus, adapting the standard EM
approach for finding the normal maximum likelihood estimate to the context with
additional control data could be beneficial. This estimator provides a benchmark for
performance comparisons with other estimators presented in this chapter that have

less stringent assumptions on F'.
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Consider use of the EM algorithm to find the MLE assuming F' ~ N(u, o) where
the available data is X < F and Y % G from 1} The log-likelihood is then

lobs(pt,0,0,0; X,Y) :Zlog{f(xj;u,a)} + (2.1)
j=1

Zlog{(l —0)f(ys; 1, 0) + 0f(yi — 05, 0)}

and the complete log-likelihood is

Lo, 0,0.0: X, Y, Z) =3 _log {f(wjipr,0)} + (22)
> log {(1 = 2) f(yis 11,0) + 2:f (yi — 6 1, 0)}

Let k£ be the iterating index for the EM algorithm. Based on the solutions to the

expectation and the maximization steps, implementation of the algorithm is as follows

0. Initialize: 7(® = (9, ,u(()o), ugo), o2”) [6©) = M§°) — uéo)]
(k) 0D f1 (y; — 5¢)

1. E-step: p;”’ = (1 — 0k=1) fE=1(y,) 4 =1 fl=1)(y, — (-1)
2. M-step:
(a) OW = > i1 Pi
n
m n (k)
(b) (k) Zj:l zj + i (L=p; )y
Ko~ = n 1— (k)
m 4+ > (1=p)
(k)
(c) M(k) _ > i1 Pi Y
oy W
1
(k) m k
(@) 0*" = —— 5 (; — g )?

n k k k k
m+n2i:1{(1—p§ Ny — 1?2 + (g — ))2}-
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Notice that the control data contributes direct information to the updates of
,u(()k) and 2" which uniquely determine f%*)(u). As mentioned in section @,
best practice is to run the algorithm with multiple starting values and compare the
observed log-likelihood at all convergent points, choosing the one with the largest

observed log-likelihood as the point estimate. The choice of starting value for im-

plementation using NormEM2loc() (see section |A.10| of the Appendix) initializes

with the E-step by selecting a percentage of the largest observations in the treat-
ment group to assign as responders (0%, 20%, 40%, 60%, 80%,100%). The Y; val-

) = 1 are in the group with larger mean, while the Y; values as-

ues assigned pz(»o
signed pgo) = (0 are in the group with smaller mean. This is equivalent to selecting
0 ¢ {0,.2,.4,.6,.8,1} with u(§0>,u§°),a2‘°’ computed using equations (b)-(d) (ac-
cording to the component membership assignment). By definition of the parameter

space, if either § =0oro =0 then @ = (0,0). For a data set simulated from

m = 100, n = 100, F ~ N(0,1), § = .7, § = 2 (as shown in Figure [2.1), the R

output from NormEM?2loc() is displayed in Figure 2.2, This output displays a ma-
trix with six rows representing the points of convergence from the six different initial
values. The convergent point that achieves the highest log likelihood is indicated by a
1 in row 6 of the last column (labeled ‘max.LL’). The iterations for the EM algorithm

for this run are graphically displayed in Figure [2.3.
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Figure 2.1: Data Collection with Control and Treatment Data.

Population Distribution (Mixture)

<
o
Non-
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N
g u
=
© T T T T T
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100, F ~ N(0,1), 0 =.7, § = 2.

> NormEM2loc(dat = c(x,y), 1
theta-hat delta-hat

1.0000000
0.6229026
0.6223531
0.6223889
0.6223790
0.6223921

1

PR R R

.104254
.944586
.945575
.945510
.945528
.945504

m

100, n =

= c(rep(1,100),rep(NA,100)), est.only = FALSE, plot = TRUE)
mu2-hat iter max.LL

Log-1lik sigma-hat

-327.
-320.
-320.
-320.
-320.
-320.

3165
1353
1353
1353
1353
1353

1.243144
1.019475
1.019263
1.019277
1.019273
1.019278

0.
0.
0.
Q.
0.
Q.

mul-hat
1926203
1391034
1393299
1393152
1393194
1393139

1.296874
2.083689
2.084905
2.084825
2.084847
2.084818

2
21
16
20
23
32

Figure 2.2: Normal EM Output with six initial values.
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Figure 2.3: Plotting Output of EM Algorithm for Normal MLE.

The point with the highest log-likelihood, indicated by the last column ‘max.LL’,

is the estimate — (0,0) = (.62,1.95), & = 1.02, A = 04 = 121, K = 4/

1.91.

Figure @ shows that multiple starting values for this data set — () ¢

{0,.2,.4,.6,.8} — converge to this estimate (with negligible discrepancies). The plots

in Figure [2.3 show the path toward the estimate and verify that the log-likelihood

is non-decreasing.
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2.2 Method of Moment Estimation

Note that much of section below is identical to content from previously published
work (Lubich et al., 2022).

Recall that Xy, ..., X, % F and Yi,... Y, “ G from where X and Y are
independent for a total sample size of N = m +n. Denoting the mean of F' and G by
px and py, respectively, then py = px + A (see proposition and therefore a
(modified) method of moment estimator for A is A = (Y — X), where t, =t if ¢ > 0

and 0 otherwise. The + operator restricts A to remain in the parameter space. Jeske

and Yao (2020) further proposed method of moment estimators for the parameters in

model (1.1]) of the form

A=Y -X), (2.3)
5 (5 =5%): "
6= {1+ (7_7)i+€N} (2.4)
~ Ao o (S% — S%)+
5_5_(3/ X)+{1+(?_Y)2++EN}, (2.5)

where (X, S%) are the sample mean and variance of the control group observations,
(Y, S2) are the same for the treatment group observations, and ey is a small positive
number that bounds the denominators away from zero. If ey = 0,(1) as suggested
in Lubich et al. (2022), then the method of moment estimators and are
consistent. By definition of the parameter space, if either  =0ors =0 then

(0,8) = (0,0). Another nice property of the estimators is that they do not require

any parametric assumptions about the distribution F'.
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2.2.1 Moments

Here the formulas for some moments of G are stated in terms of (F, 6, §). These results
are utilized to derive the variance of and , which is displayed in section
223. Let pux = E[X],0% = E[(X = px)?), ptaex = E[(X = px)?], and prae =
BI(X — ux)1). Similaxly, let uy = E[Y], 0% = BI(Y = jiy)?), psey = EI(Y — iy},

and gy, = E[(Y — py)?]. Let Fy be the set of all CDFs with finite £ moment.

Proposition 2.2.1 For (F,0,6) € (Fy4, (0,1],RT), the moments of Y ~ G can be

found in terms of (F,0,d) and are as follows

y = pux + 00 (2.6)
oy = o% +0(1 —0)5 (2.7)
Hzey = fizex +0(1 —0)3° [1 — 20] (2.8)
[taey = facy +0(1—0)6* [(1—6)(1 —36) +6 + 60% /6] . (2.9)

Equations — are proved in section of the Appendix. Notice that each
moment of Y ~ G can be written in terms of the corresponding moment of X ~ F
plus a term that depends on (#,0). Equation (2.6) implies that the average effect is
given by A = 06 = E[Y]— E[X]. The even central moments of ¥ — and -
can be minimized by letting § become arbitrarily small or letting # approach either 0
or 1 (since the additional terms are non-negative). Such cases characterize a scenario
where the treatment group’s response distribution approaches (a potentially shifted
version of) the control group’s response distribution. The difference pise, — pi3., may
be positive or negative, and is 0 when 6 € {.5,1} or as 6 approaches 0.

The bounding parameter ey is chosen to be of the form ey = S%ay [where ay =

o(1)] so that f retains its invariance to location-scale transformations of the data. To
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see how this § maintains the location-scale invariance, consider the estimates on the
data X’ = bX + c and Y’ = bY + c. Recall that S%, = b*S% and X’ = bX + ¢ (and

similarly for Y”).

+

. (5%, — S2,), }—1
Y — X2 + S%,ay

{ -1
:{1+ (PSS, }
{

(bY + ¢ —bX — )2 4+ b25%ay
b2(S2 — 52, }1
b (? 7) bQSg(CLN

—_
+

(?< %) +)52 GN} =0(X,Y). (2.10)

I
—N—
—_

_|_

Similarly, K = §/Sy — the estimate of K = ¢ /o x, which is the magnitude of the
effect size for the responders relative to natural variability — is also location-scale

invariant. To see this, again consider this estimate on (X', Y”). First,

v vt 7 Vv (512// - 52/) }

(XY = (V= X7), 41+

( )= )+{ Y - X')2 4+ S52,ay
(S2 —S%), }

Y — X) +S§(QN

b(?_7>+{1+(

= b3(X,Y),

which implies that

-~

o(X",Y")/Sx

= bE(X, Y)/bSx

R(X',Y")

3(X,Y)/Sx = K(X,Y). (2.11)
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2.2.2 Simulation for Tuning Parameter ay

This section shows the results of a simulation study for the tuning parameter ay
and recommends a simple function of N that produces near-optimal results for the
simulation settings. Recall ey = S%ay for invariance properties, so ay uniquely
defines the bounding parameter ey. It is desirable to approximate an optimal ay
with a simple closed-form solution when using the estimators and ([2.5). As
such, the factorial design of the simulation is intended to cover a broadly applicable
set of sample sizes and region of the parameter space.

The sample size settings under consideration are N € N = {60, 120, 240, 480,
960, 1920, 3840, 7680, 15360} such that m = n = N/2. For each sample size, 1000
data sets are generated for the 6 x 3 x 4 = 72 combinations with parameter values

e F' € {Normal, Laplace, Skewed Right Normal (SkRNorm), Skewed Right Laplace

(SkRLap), Skewed Left Normal (SkLNorm), Skewed Left Laplace (SkLLap)}

— All distributions are from the 5 parameter skewed generalized T distri-
bution with A = 0 for symmetric distributions, A = .5 for right skewed
distributions and A = —.5 for left skewed distributions. Distributions from
the generalized Normal family have parameters p = 2 and ¢ = oo, while
those from the generalized Laplace family have parameters p = 1 and
q = oo.

— pux =0and ox =1 for all F.

e {2, .5 8}

e €{51,2,3}
where the choices of F' correspond to those described in detail in section of the
Appendix. Henceforth all F' in simulations are standardized to have pux = 0 and

ox = 1 unless otherwise stated.
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With these 72 combinations of (F,6,9) in hand, consider first for a fixed N, a
criterion to decide what choice of ay produces the best overall performance across
the parameter space. Under each of the settings above, the estimates and
are computed with a comprehensive array of 190 choices for ay € A ranging from
.0001 to 2.3. A is chosen to include a range wide enough to sufficiently capture the
optimal ay for each N and to ensure that the grid is dense enough around each

optimal ay to identify it with sufficient precision. See A below.

.0001 .001 .00125 .0015 .00175 .002 .00225 .0025 .00275 .003
00325 .0035 .00375 .004 .00425 .0045 .00475 .005 .00525 .0055
00575 .006 .00625 .0065 .00675 .007 .00725 .0075 .00775 .008
00825 .0085 .00875 .009 .00925 .0095 .00975 .010 .0105 .011
0115 .012 .0125 .013 .0135 .014 .0145 .015 .0155 .016
0165 .017 .0175 .018 .0185 .019  .0195 .02 021 .022
023 024 .025 .026 027 .028 .029 .03 031 .032
033 034 035 .036 037 .038 .039 .04 .041 .042
.043 .044 .045 .046 047 .048 .049 .05 0525 .0550
0575 .0600 .0625 .0650 .0675 .0700 .0725 .0750 .0775 .08
0825  .085  .0875 .09 0925 .095  .0975 10 1025 105
1075 A1 A125 0 115 1175 12 125 13 135 14
145 15 .16 A7 A8 19 20 21 22 23
24 25 .26 27 28 29 30 32 34 .36
38 40 42 44 .46 A8 .50 525 %) YY)
.6 625 .65 675 T 725 75 V) .8 825
.85 875 9 925 .95 975 1 1.05 1.1 1.15
1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65
1.7 1.75 1.8 1.85 1.9 1.95 2.0 2.1 2.2 2.3

Table 2.1: A
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Determine a winning ay for each N by minimizing the following summary com-

parative performance metric.

~

M(ay) = S(0ay)S(Bay)

72 _ v _ 1/72
B H MSE(,,) H MSE(day) (2.12)
765 min MSE(@;N) Fo6 minMSE(gaN) . .

any€eA any€EA

(The performance metric 1} does not include A because the method of moment
estimate of A is invariant to en, and thus ay.) This process is repeated for each
N € N with M(ay) computed for all ay € A. For each N € N, the chosen winner

is ayy = argminM (ay). Figure [2.4 below displays each a} for N € N found via

anN

simulation as a blue dot along the curve of the M (an).

The set of a¥ for the nine N € A indicate that the optimal scaling factor is of

the form
k1
an = <5 (2.13)
ki and ks, for the curve fit are chosen to minimize
M (k1 /N*2
I ](wl/_* ) (2.14)

over a grid of k; € {5,10,15,...,100} and ky € {.05,.10,...,2.0}. These grid points
are chosen to be wide enough to capture the optimal (ki, ks). (M (k;/N*2) for each
N € N is found by interpolation — see vertical line segments in Figure @) The
resulting optimum occurs at (ki, k2) = (20,.95). Figure [2.5 shows the good fit of

ay = 20/N% to the simulated optima.
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Figure 2.4: Loss for each N € N with minimizers, a};, indicated by the blue dots.
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Figure 2.5: Curve fit for ay
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2.2.3 Consistency and Asymptotic Normality

This section states propositions that § and 0 in (2.4) and (2.5) are consistent and

asymptotically normal estimators of # and 9§, respectively.

Proposition 2.2.2 (Consistency of Moment Estimator) For any

(F,0,5) € (Fa, (0,1, R*), 6 B 0 and 5 5 6.

Proposition is proved in section of the Appendix. Proposition [2.2.3

is proved in section of the Appendix and is stated here for the case of m = n.

Proposition 2.2.3 (Normality of Moment Estimator) For any
(F? 97 6) S (F47 (07 1)7R+)

V(6 —0) = N(0,07),

V(6 = 8) = N(0,03),

2 2 —4 2 22 2 2
- 4(oy — o%) 4oy — 0%)
02:(1+M> Y TOX) (52 42y DAY TOX)

0 (MY _ ’uX)Q (MY - ,LLX)G ( X Y) (,MY _ MX)5 (,LL3 X 3 y)

+

(py — ,MX)4 (2'15)

2 2 2
o2 — o2 oy — 0 M3ex T H3e
1 Y X ) 0_2 + 0_2 + 2 (1 _ Y X ) ( X Y)
( (uy — px)? (7 +ov) (by —1x)?) \ py — px
(:u4CX - ) (/1’4CY - 0.;1/)

(MY - ,MX)

(ftaex — 0%) + (ttaey — oF) }

(2.16)
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Figure 2.6: Illustration of asymptotic normality for distributions of 0 and 0 for F ~
Laplace, ox = 1, 8§ = .5, 6 = 2 and sample sizes m = n € {25,50,100,500}. Blue
curve represents approximate distribution based on Proposition |2.2.3.

Figure illustrates how fast  and & converge in distribution to normal. For
the selected parameter settings, there is lack of normality due to the bounding of
) < 1 in the top left plot of the figure, which subsides as the sample sizes increase.
Also note the elimination of the positive bias in 9 and negative bias in 5 as the sample

sizes increase.
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2.3 Semi-parametric EM-like Algorithm

A generalization of the Normal EM algorithm was proposed by Bordes et al. (2006)
for estimating the mixing proportions and mean parameters of location-shifted mix-
tures that does not assume that the common component distribution is normally
distributed, but operates only on treatment data. They showed that this EM-like al-
gorithm produces comparable results to Normal EM when F' is Normal and superior
results when F' is far from normal so long as the mixing proportions are moderate
and the components are well separated. This algorithm performs poorly when the
components are not well separated as shown in section [1.3.3. Here the algorithm is
adapted to incorporate information from the control data that allows for improved
performance when the components are not well separated.

This EM-like algorithm has 6 total variations to consider based upon three differ-

ent inputs variables to the function ssSpEMloc (which can be found in section [A.10

of the Appendix) as shown in Table [2.2.

EM-like Algorithm Variations

Version all.data.f stochastic symmetric
1 TRUE TRUE TRUE

2 TRUE TRUE FALSE

3 TRUE FALSE TRUE

4 TRUE FALSE FALSE

5 FALSE FALSE TRUE

6 FALSE FALSE FALSE

Table 2.2: Table of Semi-Parametric EM-like Algorithm Settings

The first option in the algorithm is ‘all.data.f’. When this option is TRUE, (X,Y)

is used to estimate f at each step; whereas when it is FALSE, only X is used to
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estimate f. When ‘all.data.f = TRUE’, there is an option for how to incorporate the
weights (component membership probabilities p;, for treatment observations Y;) into
the estimation of f at each iteration via the ‘stochastic’ argument. If ‘stochastic =
TRUE’ then each p; is used to simulate whether the corresponding Y; came from the
non-responder component or the responder component. If ‘stochastic = FALSE’, then
each p; is used to provide a weighted assignment of each Y; to the two components
when updating f Finally, if ‘symmetric = FALSE’ a regular kernel density estimate
is used to estimate f, while in the ‘symmetric = TRUE’ case a symmetrization step

is added to make this estimate (denoted fs) symmetric about the mean of f (denoted

~

Ho)-

To initialize, begin by using k-means (Hartigan and Wong, [1979) clustering on
the treatment data to cluster the data into two groups. The Y; values assigned
pgo) = 1 are in the group with larger mean, while the Y; values assigned pgo) =0
are in the group with smaller mean. This full group membership assignment is used
for the initialization. Let 6 = ugk) - u(()k). Let K(-) represent the standard normal
kernel (used for kernel density estimation) and let h represent the chosen bandwidth.
Thereafter a case-by-case description of the iterations between E and ‘M’ steps is
presented below. (The ‘M’ step does not truly maximize the complete log-likelihood
which is why it is surrounded by quotation marks. The updating equations for py and
(1 maximize the log-likelihood when F' ~ Normal, but not in general. Furthermore,

the updating equations for f are based on a kernel density estimate which also does

not maximize the log-likelihood function.) By definition of the parameter space, if

cither § = 0 or 0 = 0 then @ = (0,0) for all versions.

41



1.) all.data.f = TRUE, stochastic = TRUE, symmetric = TRUE

) o= £ (y; — 561

1. E-step: p;"’ =
2. M (1 =000 £ () 000 £y, — 600
. ‘M’-step:
n (k)
(a) 60 = i1 Pi
n
m n (k)
b u® — Do+ 2 (L —p )y
(b) py = (k)

m+2?:1 (1-p")

(c) M(k) _ Zi:lpi Yi
1 Zn (k)
i=1Pi

(d) fs(k)(u) = Steps i. — iv. below

(k)

i. Simulate z;7 ~ Bernoulli(pl(»k))

ii. g =y — zMs®

(2 K3

LK (=) ) + S K (= g)/h)

i, ) (u)

(m+n)h
v fs(k)(u): [ (u) f2 (21 )
The quantities pgk), 6k, u(()k), ,ugk), 5% are updated in the same manner as the

Normal EM algorithm, while f, is found by using simulated ‘re-centered’ data. If all
9%k =g, ,u(()k) = 1o, and ,ugk) = {1, then yji(k) P f(u). The estimates for the parameters

(6, o, p11) [6 = pu1 — o] are computed by taking the average of (6®), 1t 1ty over

~

all the iterations. The estimate of f is found by using the last iteration, f(u) =

fumaxiter’ (/) where the number of iterations is pre-specified by the ‘maxiter’ argument.

2.) all.data.f = TRUE, stochastic = TRUE, symmetric = FALSE

Version 2 of the algorithm is identical to Version 1 with the exception that f*~1 is
used in the E-step (instead of fﬁk_l)) and thus the symmetrization step iv. is not

necessary.

42



3.) all.data.f = TRUE, stochastic = FALSE, symmetric = TRUE

In Version 3, the p;s are not used to simulate complete data but rather are used
directly to provide a weighted assignment of each Y; into the ‘non-responder’ and

‘responder’ components.
—1) p(k=1 _
(k) i 1)fs( )(?Jz' — o 1))

1. E-step: pik =
. (1_9(k71))fs(k*1)(yi) + e(kq)fs(k*l)(yi_(g(kq))
. ‘M’-step:
n (k)
(a) OW) = > i1 Pi
n
m n (k)
b k) _ Zj:l zj + i (L= )y
(b) ' = (k)

m+Z?:1 (1 — b )
n (k)
(k) Zi:l D; "Yi
<C> Myt = n (k)

> i1 Di .
o b S (152

)52
(e) P (u) = ZJ;(lk)(U) + f;’f)(2 L

The estimates for the parameters (0, po, i1, f)[0 = 1 — po] are the final iteration
of the corresponding values. The convergence criterion is when |[§%*) — 9*~1| and

| [L(()k) — [L(()k_l)| and | pgk) — ugk_l)| are all less than a pre-specified € > 0.

4.) all.data.f = TRUE, stochastic = FALSE, symmetric = FALSE

Version 4 of the algorithm is identical to Version 3 except that the updating equation
for pl(-k) uses f*~1 instead of f§’“‘1) and thus the symmetrization step in (e) is not

necessary.
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5.) all.data.f = FALSE, stochastic = FALSE, symmetric = TRUE

Version 5 does not use all of the data to estimate f but only observations of known
component origin, X ~ F. The motivation for only using control data is that this
‘pure’ data may provide stability to the algorithm by preventing a dramatic change the
estimate of f over the iterations due to inappropriate influence of the Y;s. Therefore,

f only needs to be estimated once from the control data.

o Jipg=——
m
~ m uU— T
o F sy (M50
s F(w) + F(2f0 — w)
P ’ (k=1) F. (k=1)
ek—l ; i_&k—l
1. E—step:pgk): ST foly klA) =
2. M-step: (1 —0®=0) fo(yi) + 0F=D fo(y; — d*=D)
(a) ek — Zi:l D;
n
(k) _ 2im1Pi Yi
(b) py = 1—(,€)

> i1 Di
The estimates for the parameters (6, u1, f,d) are the final iteration of the cor-
responding values. The convergence criterion is satisfied when |§%*) — §(*=D| and

|uék) — u((]k_l)| and |u§k) — ugk_1)| are all less than a pre-specified € > 0.

6.) all.data.f = FALSE, stochastic = FALSE, symmetric = FALSE

~

Version 6 is the same as Version 5 except f(u) is used in the E-step instead of ]?S(u)

(and thus f,(u) need not be computed).
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2.3.1 Illustration of EM-like Algorithm Versions

The plots in Figures [2.7 - below describe how the algorithm proceeds for
each of the 6 versions on the same data set generated from m = 100,n = 100, F' ~
N(0,1),6 = .7,6 = 2. Each page includes a 2 x 3 grid of plots of the same variety.
The top left plot shows the initial KDE of the mixture (following the k-means ini-
tialization). The top center plot shows the final KDE of f The top right plot shows
the final KDE of the mixture g using the estimates of (j?, é\, A). The bottom left plot
shows the iterations of #*). The bottom center plot shows the iterations of uék) (in

black) and ,ugk) (in red). The bottom right plot shows the iterations of 5,
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Figure 2.7: EM-like Version 1 on a data set generated from m = 100,n = 100, F' ~

N(0,1),0 = .7,6 = 2.
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Figure [2.13| shows a plot of all the estimates of (0, ) 5. for the six versions

of the EM-like algorithm on the same data set. The red bulls-eye symbol represents
the true (6,0). Figure illustrates that the different versions of the algorithm
provide distinct but similar estimates of the treatment effect that are also similar to

those found by methods that assume (correctly in this case) that F' ~ Normal.

EM-like Estimates on the Same Data Set

0.71
9 0.70 -
0.69 6 5
0.68
0.67

0.66 -

0.65 —— T T T T T

1.94 1.96 1.98 2.00 2.02 2.04
5

Figure 2.13: Point Estimates for all 6 versions of EM-like Algorithm on a data set
generated from m = 100,n = 100, F ~ N(0,1),6 = .7,0 = 2. Numbers on the
plot represent the estimates of the corresponding EM-like versions. N represents
the estimate using the EM algorithm with a Normality assumption as described in
section 2.1} N, represents the EM algorithm with a Normality assumption using only
treatment data as described in section [I.2.8.
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Recall from Figure E (copied in the figure below for comparison) that point
estimation using this EM-like algorithm under this parameter setting (with F ~
N(0,1) and (6,0) = (.7,2)) is unsatisfactory without control data. Figure

below shows the improvement in distribution-robust inference on (6,9) by including

m = 100 control observations into the algorithm.
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Figure 2.14: EM-like algorithms on 1000 data sets generated from m = 100,n =
100, F ~ N(0,1),0 = .7, = 2. The estimators displayed on the top plots do not use
the m = 100 control observations, while the estimators on the bottom plots do. Both

algorithms use Version 1.
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2.3.2 Simulation for Determining Preferable Versions

The concluding pages of this section compare the relative performances of the 6 ver-

sions of the EM-like algorithm by comparing results across a wide variety of simulation

—

settings. Performance comparisons should keep in mind that obtaining (6, 6) ke 1
of primary interest and obtaining ]?is of secondary interest.

The joint distribution of @ characterizes how well a method estimates (6, 9).
The marginal distributions of 0 and 0 give vital information to the effectiveness of the

estimate, but do not fully define the joint distribution. To supplement the marginal

—

distributions, the distribution of A=04 provides additional information about (6, d).
The parameter A = 6§ is of particular interest because it represents the average

treatment effect in 1} Therefore, the distributions of 5, 3, and A together give a

—

comprehensive understanding of the effectiveness of (6,0) in estimating (6, ).

—

To compare the performance of (6,9) .. under the 6 different variations, con-
sider the simulation study that generates 1000 data sets under each following factorial
combinations of settings in List [2.1.

e m =n € {25,50,100, 500}

e [’ € {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

e {2, .5 8}

o 5¢c {5123}

List 2.1: There are 4 sample size settings and 72 unique (F, 6, 9) triples for a total of
288 combinations of (m = n, F,0,0). The choices of F' correspond to those described
in section of the Appendix.

Table @ below displays scores for 79\, SandA =06 (let T represent an estimator

for a generic parameter 7). These scores for estimator i are the geometric average

of \/ MSE(T;)/ mkinM SE(7;) across all 72 combinations of (F,6,0) (where k indexes

o4



the candidate estimators, here k € {1,...,6})

Y 1/72
~ MSE(T;)
) — Y ) 2.1
() H minM SE(7y) (2.17)
F,0,6 L

The score represents the average relative loss in performance of each estimator com-
pared to an ‘oracle’ estimator (that chooses the optimal algorithm version given
the true parameters). For example, estimator ¢ with a score of S (gz) = 1.10 has

-~

MSE();) that is on average 10% larger than the oracle estimator. A score of
S (;5\@) = 1 means that Version ¢ has the smallest \/ M SE (3\) for each of the 72 simu-
lation settings, so smaller scores (closer to 1) are preferred. Table @ also presents
the geometric average of S (5), S (3\), and S (3) as a summary score for each estimation
method. Each of the 4 sample sizes are shown separately in the table. Figures
- display the same scores in Table [2.3 in 4 plots corresponding with the 4

columns of the table. The lowest (and near lowest) scores are highlighted in yellow.
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m=n| Version | S(0) | S@) | S(A) | {S(6)S(3)S(A)}/3
EM-like 1 1.104 1.084 | 1.056 1.081
EM-like 2 | 1.105 | 1.106 | 1.051 1.087
25 EM-like 3 1.263 1.126 1.080 1.154
EM-like 4 1.306 1.148 1.098 1.181
EM-like 5 | 1.123 | 1.038 | 1.033 1.064
EM-like 6 1.096 1.079 1.018 1.064
EM-like 1 | 1.147 | 1.143 | 1.064 1.117
EM-like 2 1.125 1.149 1.056 1.109
50 EM-like 3 1.326 1.192 1.093 1.200
EM-like 4 | 1.350 | 1.192 | 1.109 1.213
EM-like 5 1.143 1.074 | 1.034 1.082
EM-like 6 1.130 1.112 1.025 1.088
EM-like 1 1.224 1.234 | 1.083 1.178
EM-like 2 1.132 1.193 1.053 1.125
100 EM-like 3 1.396 1.254 | 1.114 1.249
EM-like 4 1.346 1.209 1.105 1.216
EM-like 5 1.161 1.117 | 1.035 1.103
EM-like 6 1.157 | 1.145 1.029 1.109
EM-like 1 1.566 1.521 1.186 1.414
EM-like 2 | 1.158 | 1.219 | 1.046 1.139
500 EM-like 3 1.731 1.559 1.215 1.486
EM-like 4 1.311 1.177 | 1.085 1.187
EM-like 5 1.272 1.346 1.080 1.228
EM-like 6 | 1.223 | 1.227 | 1.052 1.164

Table 2.3: Scores for Estimators of 6,9, A.
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A few trends from Table [2.3 and Figures - emerge. One trend is
that the estimators that assume f is symmetric (1, 3, 5) perform comparably to or
better than their symmetry-agnostic counterparts (2, 4, 6 respectively) for sufficiently
small sample sizes, while for sufficiently large sample sizes the symmetry-agnostic
versions dramatically outperform those with a symmetry assumption. The symmetry
assumption allows for a decreased variability in ]? (even if f is not symmetric) which
is particularly beneficial for small samples leading to more stable @ However, for
large sample sizes the inconsistency of ffor non-symmetric f results in substantially
biased ]/”\ and thus poor estimates. A second trend is that the versions where f is
computed only based only on control data (5 and 6) perform the best overall for small
to moderate sample sizes while for larger sample sizes the iterative methods are more

~ -~

efficient. Again, the stability of f(X) [as opposed to f(X, Y )] aids in smaller sample
size settings. The discrepancies in performance of @\5) EMlikes and @ EMlike6 10T
small sample sizes are minor and version 6 has the advantage of being able to capture
skew in f if it exists. For larger sample sizes, the stochastic symmetry-agnostic
version (2) performs the best. Note that if (0, po, 111) were known, only the stochastic
versions return an f-distributed sample at each iteration from which f is updated
(Bordes et al., |2007) - the deterministic versions do not have this property. Since
version 2 (and not 1) has a consistent ffor all continuous f, it is not surprising that
version 2 displays superior performance for sufficiently large samples. While Benaglia
et al. (2009) indicate that the deterministic version consistently performs slightly
better than the stochastic versions for 6 > 3oy in the case of no control data, these
results show that in the presence of control data and smaller d, the stochastic version
indicates superior performance - particularly in estimating the mixing proportion. In
light of these observations, a simple robust recommendation for m EMiike 15

e If m = n < 250, use version 6

o If m =n > 250, use version 2.
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Parameter Specific Performance Comparison

To understand how the relative performances of the estimators depend upon (F, 0, 6),
the plots on the following pages in Figures - compare the 2 recommended

versions (2, 6) of the EM-like estimator. Under each of the 288 simulation settings

either \/MSE )/mmMSE \/MSE /mmMSE(ék) is plotted for each es-
timator ¢ € {2,6}. Each plot has 72 columns of dots representing the 72 settings
of (F,0,0). Each column has 2 dots representing the 2 versions of the algorithm.
Figure displays the color key for the 2 recommended versions of the EM-like
estimator. The best performing estimator under each column’s setting has a value
of 1 while higher scores represent a relative loss in performance. For example, a dot
at 2 represents an estimator that has twice the v MSE as the best estimator under
that simulation setting. There are four separate plots for each of the four sample size

settings for f and another four plots for § for a total of eight plots.
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Figure 2.17: Color Key for EM-like Algorithm Versions
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Figure 2.19: Dot Plots comparing the performances of version 2 and version 6 of the
EM-like estimator of # for moderate to large sample sizes.
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Figure 2.21: Dot Plots comparing the performances of version 2 and version 6 of the
EM-like estimator of § for moderate to large sample sizes.
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Figures - show that for § in small sample size settings, version 6 is

superior to version 2 — particularly when either 8 > .5 and F' is symmetric or skewed
right, or when 6 = .2 and F is skewed left. This means that é\EMlikQG prefers 6 in
the direction of the skew relative to EMmiike2- Also of note is that version 6 performs
better for heavier (Laplace) tailed distributions in small sample sizes. However, for )
in larger sample size settings version 2 performs better overall. In particular version
2 is preferred for symmetric or light (Normal) tailed distributions while version 6
retains efficiency for skewed Laplace distributions.

Figures - show that for 0 in small sample size settings, version 6 is
superior to version 2 with a notable exception when F' is skewed left and ¢ is small.
Version 6 also shows uniformly superior performance for F' ~ Laplace and generally
superior performance for heavier (Laplace) tailed distributions for small sample sizes.
However, for larger sample sizes version 2 performs better overall than version 6, most

notably when F' ~ Laplace.

Figures |2.18|and [2.20|together show that for @ in small sample size settings,

version 6 prefers large effect sizes for a small subset of the population while version 2

prefers a smaller effect size for a larger subset of the population. Figures and

2.21|show that for @ in large sample size settings, version 6 is mostly preferable

for the skewed left Laplace distribution with # < .5 while version 2 is mostly preferred

for symmetric distributions.
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2.4 Pseudo-Likelihood Estimator

The likelihood of the model (1.1)) when both control and treatment data are present
is

L(f,0,6:X,Y) = [T U ] 11— 0)f(w:) + 6y — 0)]. (2.18)

j:l =1

.

The maximum likelihood estimate of (f,6,4) is (f*,0*,*) such that L(f,0,; X =
x,Y = y) is maximized at L(f = f*,0 = 0,0 = 6*; X = x,Y = y). Since the set of
possible f is a large space to search over, joint maximization of (f,0,4) is difficult.
Since the control data provides direct information about f, replacing f with f in
(2.18) provides a pseudo-likelihood function, E(G,é;X ,Y'), that can be maximized

with respect to (6,6) alone.

-~

L(0,6: X,Y) = L(},0,6; X,Y)

ﬁ[ f[[ y)+0fw—-o]. (219

=1 =

h<

.
[y

Thus a dense grid search in a region of plausible (6,d) can be used to find the
maximum of the pseudo-likelihood. The estimate of the treatment effect for this

pseudo-likelihood estimator is

—

(0,0) p,; = arg max L0.0;X =2,Y =y). (2.20)
(0,6)

For the grid search, the factorial combination of § € {.01,.02,...,1} and § €
{.1S8x, .25, ...,6Sx} along with the null case (0,0) is used in the function psl.inf()
which can be found in section of the Appendix. Recalling that K = 6/0 (and
K; = §;/Sx) the grid points of ¢ correspond with K; € {.1,...,6}. An effect size of
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K =6 is a utopianly high value as such a case corresponds to virtually no overlap in
the responder and non-responder components - thus essentially reducing the estima-
tion problem to the trivial case where the component labels (Z1, ..., Z,,) are observed.
For rare data sets where the grid search suggests that it is plausible that m PsL
could be beyond K; = 6, the grid can extended to include K; € {6.1,6.2, ..., 12} when

“finite.area = FALSE’.

2.4.1 Defining Options for f

This section considers how to obtain ]/”\, an estimate of f. Clearly making use of
X1, ., X % f is indispensable. However, Yi,...,Y, “ (1—=0)f(u)+ 0f(u—9) also
contains information about f and could be considered in the estimation of f While
there may be some loss of information by excluding treatment data Y in estimation,
this provides a computational advantage in estimation such that the estimate of f
is not based upon (#,0) which relinquishes the need for recursive estimation of the
parameters. Furthermore the estimator of f considered here is based only upon X to
retain the purity of the estimate of f upon which (6, 0) are determined from (2.19)).

~

Now consider the manner of obtaining f(X), keeping in mind that obtaining
(0,0) p,; is of primary interest, while estimating f is of secondary interest. To decide
on a choice of f, consider the performance of (6,9)p,,; under four different options

for f

The first option for J?is kernel density estimation using a standard normal kernel
and a default bandwidth formula. Kernel density estimation is a commonly used tech-
nique for estimating a density nonparametrically and the two factors that determine

the kernel density estimation are the selections of kernel and bandwidth. Density

estimation with the normal kernel is common practice and there exist rule of thumb

68



formulas for the bandwidth when using the standard normal kernel (Silverman, [1986).

The formula given by Silverman is

h = 0.9min (SX, %) m~o, (2.21)

which has some optimality properties when the true distribution is normally dis-
tributed, and yet the IQR portion of the formula provides some robustness for non-
normally distributed data.

The second option for fis a kernel density estimate based on a T'(df = 3) kernel,
while the third option for ]?is also a kernel density estimate based on a T'(3) kernel
but standardized to have variance 1. Use of a T'(3) kernel is not as common as the
normal kernel is, but it is motivated here to possibly induce stability in the estimates
@ pop- DBecause of the uncommon nature of 7'(3) kernels there is not a default
bandwidth designed for this kernel in the literature, so trying the formula derived for
standard normal kernels on both a regular 7'(3) kernel and the standardized
T'(3) kernel effectively reduces to two different bandwidth selections for the T'(3)
kernel. These bandwidth selections fully define the second and third options for f,
respectively.

The fourth and final option for fis a modification of the maximum likelihood esti-

mate for a large class of densities: log-concave densities. First, consider the definition

of concave down.

Definition 2.4.1 A univariate density function f is concave down if f(mx + (1 —

my) >wf(x)+ (1 —m)f(y) forallz,y € R and 0 < 7 < 1.

Proposition 2.4.1 If f(x) is twice differentiable, then f(x) is concave down if and
only if f"(x) <0 for all x € R.

69



Definition 2.4.2 A univariate density function f is said to be log-concave if log(f)

18 concave down.

Proposition 2.4.2 Iflog(f) is twice differentiable, then f is log-concave if and only

d2

if wlog(f(@) <0 for all x € R.

A list of distributions categorized by their log-concave status is found below in Table

2.4

Log-concave

Log-concave (if)

Not Log-concave

Normal
Exponential
Uniform
Logistic
Extreme Value

Laplace

Wishart (n > p+1)

Dirichlet (all params > 1)

Gamma (shape param > 1)

X2 (df > 2)

Beta (both params > 1)

Weibull (shape param > 1)

T
Cauchy
Pareto

Log-normal

F

Table 2.4: List of Distributions by their log-concave status.

Note that all of the parameter conditions in the second column of Table [2.4

correspond to the exponent in the pdf being positive. Furthermore, all log-concave

distributions are unimodal (Samworth, 2018)).

The log-concave density maximum likelihood estimate - ]?LCMLE - is nicely sum-

marized in Chang and Walther (2007b):

Given data Xy, ..., X,, i.i.d. from f, the MLE fof f under the restriction

~

that f be log-concave exists uniquely and has support [ Xy, X(]. log(f)

is a piecewise linear function whose knots are a subset of {X7,..., X,,}.
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The MLE can be computed e.g. using the Iterative Convex Minorant Al-
gorithm described in Jongbloed (1998). The resulting algorithms for com-
puting the log-concave MLE f as given in Walther (2002) and Rufibach
(2006) provide as output f(Xi), ¢ =1,...,n. This is all that is needed for
an EM-type algorithm; of course one can easily compute the entire density

fby linearly interpolating between log <f(X(i))) and log (J?(X(Z-H))) and

then exponentiating.

This can be easily implemented using the logConDens() function from the logcondens
package in R (Diimbgen and Rufibach, [2011)). It uses the ‘Active Set Algorithm’ to
perform the computation which is described in Diimbgen and Rufibach (2009) and
is faster than the Iterative Convex Minorant Algorithm. To motivate the need for a

modification to ]?LCMLE(X ), consider that
]/C;;CMLE(X) =0 for all z € {(—00, X(1)) U (X(m),0)} . (2.22)

Note that P(Y(l) < X(l)) > 0 and that Y(l) < X(l) - Y(l) -0 < X(l) for all o > 0.

This means that if y) < z(;) then

-~ ~

(1=0)f(ya) +0f(yay —6) =0 for all 0 > 0, (2.23)

which implies that

logL =10.6) =3 log () ) + 3 tog (1 = )F(w) + 67y = 9)) = —00 (224)

~

for all 6 > 0 (which contains the whole parameter space). In such a case [(6, ) cannot

be maximized and thus (6,0),,; does not exist. Furthermore, the relative frequency
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of this behavior does not diminish as m — 0o, n — oo nor does it diminish for
increasing . To see this, consider the following.

Recalling the complete data framework of the mixture model described in section
[1.2.4, the fraction of observations that are generated from f(u) is (1 — ). Thus an
expected (1 — @)n of the treatment observations are generated from f(u). There are
also m control observations generated from f(u). Each of these observations is equally
likely to be the minimum value (there is also a smaller probability that one of the
treatment observations from f(u — §) is the smallest value). Therefore, if ]?LCMLE is

used

n(l—0)
P(Y, X)) 2 ————
Yy < Xw) 2 m+n(l—0)
r(1—0)
= h —
e where r = n/m
, — Too(l —0)
> .
=l P((0.6)p,, DNE) 2 2=, (2.25)

where 7o = lim,, ;,_,oo /M. This lower bound of the limit (2.25) is only 0 if 6 = 1 or
Too = 0.
To avoid this issue caused by f with unbounded support, consider instead the

modified log-concave estimate of f below

kiexp(aix) r < xn)

~ m—2 ~

fmro(x) = frempe(x) YIS [$(1),$(m)] (2.26)
koexp(asx) T > T

The constants (kq,aq, ko, az) in (2.26)) can be chosen so that each exponential tail

has area 1/m while ensuring that f,,.c(z) is continuous at x(1y and Z(,). Note that
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continuity is achieved by ensuring

m— 2~

ii_m J?mLC(fL’) = fremie(rq)) (2.27)
x ﬁ(l)

. -~ m— 92 ~

lim frro(r) = fremre(Tm))- (2.28)

z—=F ()

To solve for the appropriate ki,a; in (2.26), the following two equations must be

satisfied
set T — 2~
krexp(aix () < - Jfremre(zay) (2.29)
ne k set 1
/ kiexp(aix)de = —lexp(alx(l)) = (2.30)
— 00 aq m
Rearranging (12.29) means that
m—2~
ki = frempe(zay) exp(—aiz()) (2.31)
so substituting k; into (2.30) gives
1m—2~ 1
a_lmm Jrempe(zay) exp(—ai1zqy)exp(airay) = - (a1 > 0) (2.32)
and rearranging provides
ar = (m — 2>J/C\LCMLE($(1))- (2.33)

Similarly, to solve for the appropriate ks, as in (2.26)), the following two equations

must be satisfied

set T — 2~
koexp(as(m)) et Jfrempe(Tom)) (2.34)

> k Se
/ keexp(agx)dr = —iewp(agx(m)) < (ag < 0). (2.35)
Z(m)

1
(05} m
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Rearranging (12.34) means that

m— 2~
ky = fLCMLE(-’fU(m)) €$P(—a2i€(m)) (2-36)

so substituting ko into (2.35)) gives

-2 7 m - m 1
_ (m = 2) frempe(@m))exp(—aztm)) exp(as®(m)) = — (2.37)
m Qg m

and rearanging provides

ay = —(m — 2) fronrne (T m)- (2.38)

Note also that because this density estimate has area 1/m in each tail, it has the

following connection with the emperical cdf of the control data F},(z)

- - 1
Forc(zqy) = Fu(za)) = — (2.39)

- = m — 1
re(Tam)) x_>1_T£l(m) (2(m)) p- ( )

See Figure below for an example of fALCMLE(a:) and meC(x) for a random

sample of fifty observations from a Skewed Right Laplace distribution.
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Log-Concave Density MLE with Modification

o _
© A
I\LCMLE(X)

© T meC(X)
o

>

z

S © |

()]

0.2
yd

Figure 2.22: Log Concave Density Maximum Likelihood Estimate with Modifica-
tion. Fifty i.i.d observations are drawn from a skewed generalized T distribution with
parameters (u=0,0 = 1,A=.5,p=1,¢g = 00).

Even with a fairly small sample size, m = 50, the modification to the MLE is minor
and achieves tail behavior of a distribution that is not bounded by X(;) and X,,).
Thus, to avert the possibility of an unbounded 1’ the fourth option for ]?is fm LC

as defined above. For a summary of all candidate f, see Table E below.
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f Variations

f Kernel Bandwidth

fipENorm || Normal 0.9min SX,IQ%;ZLX) m—1/5
frpersna | T(3) 0.9min SX,]Q%)ZX) m=1/5
fKDE.TB.Adj T(3) 371/20.9min (SX, —1621]%3(4)()) m~1/5
Jmrc N/A N/A

Table 2.5: Candidate fs

2.4.2 Simulation for Selecting ]?

—

To compare the performance of (6,0) ., with the four different choices of fpresented
in Table [2.5, consider a simulation study that generates 1000 data sets under each
following factorial combinations of settings in List [2.1. Recall that provides
the score to compare robust performance across (F,0,d) of estimator ¢ among a set
of candidate estimates (indexed by k, here k € {1,...,4}). Table [2.6 below displays
scores for é\, 5 and A = 0 65. The score represents the average relative loss in perfor-
mance of each estimator compared to an ‘oracle’ estimator (that choose the optimal

f given the true parameters). For example, an estimator with a score of S (3) =1.05

~

has a 1/ MSE(J) that is on average 5% larger than the oracle estimator. Table 2.6

-~ ~ ~

also presents the geometric average of S(A), S(#),and S(4) as a summary score for

each estimation method. The smallest scores are highlighted in yellow. Figures

- display the scores graphically.
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m=n| f Variation | S@) | S©) | S(A) | {S(A)S(H)S(6)}/3

Normal 1.081 | 1.133 | 1.033 1.082

25 T(3)na 1.149 | 1.051 | 1.024 1.073
T(3) aqj 1.016 | 1.053 | 1.020 1.030

mod LogCon | 1.059 | 1.056 | 1.026 1.047
Normal 1.111 | 1.232 | 1.051 1.129

50 T(3)na 1.204 | 1.077 | 1.040 1.105
T(3) agj 1.028 | 1.076 | 1.024 1.042

mod LogCon | 1.049 | 1.058 | 1.017 1.041
Normal 1.151 | 1.363 | 1.070 1.189

100 T(3)na 1.273 | 1.111 | 1.048 1.140
T(3) agj 1.050 | 1.110 | 1.022 1.060

mod LogCon | 1.047 | 1.070 | 1.009 1.042
Normal 1.200 | 1.626 | 1.123 1.299

500 T(3)na 1.421 | 1.231 | 1.074 1.234
T(3) agj 1.089 | 1.143 | 1.025 1.084

mod LogCon | 1.029 | 1.061 | 1.004 1.031

Table 2.6: Scores for Estimates of A, 0, 9.
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Figure 2.23: Pseudo-Likelihood Scores for 6 and &
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Figure 2.24: Pseudo-Likelihood Score for A and an Overall Summary Score
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For some of the smallest sample sizes, one of the kernel density estimates with a
T'(3) kernel sometimes show the best performance, but for moderate to large sample
sizes mec produces better estimation. A secondary advantage of meC is that it
provides a unimodal density estimate while T'(3) 44 is almost certain to produce a
multimodal estimate of f. Therefore, mec is recommended for pseudo-likelihood

point estimation.

Parameter Specific Performance Comparison

The plots on the following pages in Figures - compare the two best

estimator versions under each of the 288 simulation settings by plotting either

VMSE(@rs,,)/MSE(Burc) or \/ MSE(3rs,,)/MSE(urc). Each plot has fixed
sample sizes and displays one estimator (@\ or A). Each plot displays the ratio for
each of the 72 (F,0,6). The axes determine (6, ). At each coordinate, the results for
all 6 F's are shown as a 2 x 3 grid with row representing tail behavior and column
representing skew behavior. The ratio is displayed at each grid location with a colored
background to facilitate pattern recognition. Figure displays the color key for

the T'(3) 44; and Log-Concave options for 7.

T3_Adj preferred mLC preferred

1/2 2/3 34 7/8 1 87 413 32 2
MSE;(T3_Adj)
MSE,(mLC)

Figure 2.25: Color Key for Candidate f
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IMSE;(8)/MSE,(8) form= 25, n=25
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Figure 2.26: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of # for small sample sizes.
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MSE;(8)/MSE,(8) form = 100, n =100
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Figure 2.27: Heat Grids comparing the performance of Pseudo-likelihood Estimator

Variations of 8 for moderate to large sample sizes.
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\/ MSE; (5)/MSE,(5) form= 25,1 =25
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Figure 2.28: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of ¢ for small sample sizes.
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IMSE (3)/MSE,(5) form = 100, n =100
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Figure 2.29: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of ¢ for moderate to large sample sizes.

84




Figures - indicates that the T'(3) 44 variation of 0 is slightly preferred

in small sample sizes, showing improvement with the heavier (Laplace) tailed distri-
butions. As the sample sizes increase, the mLC' version shows superior performance
for larger § while 7'(3) 44; shows superior performance for smaller §. Across all sample
sizes, the T'(3) a4; version favors smaller 6 for the heavier (Laplace) tailed distributions
and small 6. Also across all sample sizes T'(3) 44 favors larger 6 for lighter (Normal)
tailed distributions and small §.

Figures - indicate that the discrepancies between § for the 2 versions
are minor for small sample sizes, though it appears that when # = .8 and heavy
(Laplace) tailed distributions are present 7'(3)aq4; is preferred for skewed left distri-
butions and the log-concave version is preferred for right skewed ones. As the sample
sizes increase, the T'(3)44 version becomes increasingly preferable for § = .5 and
lighter (Normal) tails, while the log-concave version becomes preferred for nearly all
other scenarios.

Considering the pair @ psp» the colored grids corroborate the fact that the
T'(3) aq; variation is slightly preferred with very small sample sizes. The grids also
reveal that the only setting for which @T(?))Adj is consistently preferred is when F'
has Gaussian tails, 6 = .5 and § > .8 (which is the smallest effect size of the setting
closest to the traditional model that assumes F' ~ Normal with a pure shift). The
primary pattern revealed in the grids is that all other settings eventually give way
to comparable or preferential performance of @mLC' In particular, @mLC is

uniformly preferred if ¢ is large enough, where the lower bound for “large enough”

decreases as the sample sizes increase.
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Chapter 3

Confidence Bounds

A point estimate of (6, §) does not quantify the uncertainty surrounding the treatment
effect. Confidence bounds can provide information about this uncertainty. This
chapter first considers confidence bounds corresponding to the method of moment
estimator, with confidence intervals for # and ¢ in section and confidence regions
for (0, 9) in section Then confidence bounds for the pseudo-likelihood method are
considered, with confidence regions in section and confidence intervals in section

B.4

3.1 Method of Moment Confidence Intervals

Most of this section is identical to previously published work (Lubich et al.,|2022).
Consider confidence intervals that are based on the method of moment estimators

in and ([2.5). Section [3.1.1 considers asymptotic intervals that are based on the

asymptotic properties of the moment estimators. Section [3.1.2 considers bootstrap

intervals constructed from bootstrap sampling distributions.
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3.1.1 Asymptotic Moment Intervals

Consider first asymptotic confidence intervals that rely on the consistency and asymp-

totic normality of éMoM and gMOM presented in Propositions |2.2.2 and |2.2.3. These

propositions ensure that for sufficiently large (m,n) — here considering m = n —
Ortons ~ N(6,02/n) and dyons ~ N(8,02/n), where <~ means ‘is approximately dis-
tributed as’. Therefore the proposed asymptotic 100(1 — «)% confidence intervals for

6 and 0, respectively, are

Clonr(8) = (0= 2a/250/v/0, 8+ 20120/ V) (3.1

OIMOM((S) - (8\_ ZQ/Z/O-\(;/\/E> /5\_{— Zoe/285/\/ﬁ) ) (32)

where z,2 = ®71(1 — a/2). The standard errors, gy and 75, are found by plug-
ging in the sample moments as estimates for the population moments found in the
asymptotic variance formulas and making the same alterations as in the estimators.
That is, (uy — px) is substituted with (Y — X), + ey and (03 — 0%) is substituted
with (S} — S%),. Finally, the boundaries of the asymptotic confidence interval are
truncated at the edges of the parameter space when necessary.

In addition to the confidence intervals for # and ¢, the natural asymptotic confi-
dence interval for A = 0§ can be considered as well. Recalling that A MoM = (?—7)+,

a 100(1 — a)% confidence interval for A is given by

~ /52 S22 /52  S?
Clyom(A) = (AMOM — Za/2 24+ 22 Aponr + Za/2 = 4 —Y> ) (3.3)
m n m n

where the lower bound is truncated at 0 as needed. The central limit theorem ensures
that this has the desired coverage probability. For most distributions, 30 observations

per group is ample for satisfactory approximation of the asymptotic distribution (Diez
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et al.,[2012) so long as the overall effect size A is large enough so the probability that

AMOM = 0 is small.

3.1.2 Bootstrap Moment Confidence Intervals

Bootstrapping is a general approach to constructing confidence intervals that does
not depend on knowledge of the (asymptotic) distribution of an estimator. Boot-
strapping involves repeatedly resampling the observed data with replacement and
computing a statistic for each resample to provide a bootstrap sampling distribu-
tion of the statistic. This bootstrap sampling distribution can be used for inference.
For a more information on bootstrapping, see Efron and Tibshirani (1994). Boot-
strap confidence intervals are motivated as an alternative to asymptotic confidence
intervals since they may possibly provide better performance, particularly when the
sample sizes are small and the asymptotic approximations are imprecise. Consider
constructing bootstrap intervals for 8 and 0 from model using ﬁMoM and ZS\MOM
as the statistics respectively. Implementation of bootstrap intervals in this context
involves the following general steps

(a) Randomly sample from Xi,..., X, and Yi,...,Y,, independently with replace-

ment B=1000 times.

(b) For each of these 1000 bootstrap samples, calculate (/9\;) and gb to obtain bootstrap

sampling distributions.

(c) Determine the bounds of the confidence intervals for § and 6 by using the

bootstrap sampling distributions.

Multiple methods for step (¢) may be considered. Let T represent the method
of moment estimate for a generic parameter (either 6 or ). Percentile Bootstrap
Intervals select percentiles of the bootstrap distribution, ?lfo”) and ?b(QQ), such that

a; + (1 — ay) = a and use 7, 7)) as the 100(1 — @)% confidence interval.
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Centered Bootstrap Percentile Intervals use the percentiles in a different manner,
2T — /T\b(ag),Q? - ?b(al)], for a 100(1 — @)% confidence interval. Another method of
bootstrap intervals is called BC, (Bias-Corrected accelerated) that typically pro-
duces better results than the aforementioned approaches (Efron, |1987). Consider
implementation of the BC, confidence intervals
1. Randomly sample from Xi,..., X, and Yi,....,Y,, independently with replace-
ment B=1000 times.
2. For each of these 1000 bootstrap samples, calculate @, and S\b to obtain bootstrap
sampling distributions.
3. Calculate the acceleration (a) and bias (zp) correction terms for both 6 and &

based on (3.4) and ({3.5]), respectively.

4. Calculate the percentiles of the bootstrap distributions to use for the confidence
interval based on ([3.6)) and (3.7)).
Typically (Efron, 1987) in step 3, 2o is calculated as zg = @~ (# {7, <7} /B)

and ,
o= Z?:l (?b - ?(*i))
n — ~ 2 ’
6{> "1y (To — 7o) 132

where # is the counting operator and 7(_;) is the estimate with the ith observation

(3.4)

removed. However, this formula for zy can fail for 0 or 0 because of the bounded nature
of the parameter space, and thus the estimators. There is non-zero probability that
5= 0, in which case zy = —o0. Consider the following proposed adjustment for the

discrete nature of the bootstrap sampling distributions by taking

—— <{#(ﬁ<?)+%#(ﬁ=?)}/3>- (3.5)
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Step 4 remains unchanged, letting

20 T Ra/2
- & 3.6
= (a2 30
20 + Za/2
ay, =D 2o+ , 3.7
( 0 1—a(zg—|—za/g)> (3.7)

~ar) ~(aw)

giving the BC, interval [7,°",7,""].

3.1.3 Performance Comparison of Moment Intervals

In the following pages, Tables [3.1 and [3.2 present coverage probabilities of the
asymptotic and BC, method of moment confidence intervals for 6 and ¢, respectively,
for the following combinations of the parameters

e m =n € {25,50,100, 500}

e F' € {Normal, Logistic, Laplace}

e 0 {58}

o 6 c{1,3}
based upon a simulation of 1000 data sets per setting.

For each setting, the distribution of F'is standardized to have mean 0 and standard
deviation 1. Note that 0 = 1 represents a small shift in the component distributions
which often results in a unimodal mixture while § = 3 results in a bimodal mixture.

Lastly, Table [3.3 presents average lengths for the asymptotic method.
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Parameters Interval Method
Asymptotic | BC, | Asymptotic | BC,
F 0 o m=n=25 m =n = 50
Normal 0.5 1 0.88 0.77 0.87 0.81
Normal 0.5 3 0.90 0.94 0.93 0.94
Normal 0.8 1 0.94 0.83 0.95 0.80
Normal 0.8 3 0.90 0.92 0.93 0.94
Logistic 0.5 1 0.95 0.76 0.95 0.80
Logistic 0.5 3 0.91 0.95 0.92 0.94
Logistic 0.8 1 0.94 0.82 0.94 0.84
Logistic 0.8 3 0.88 0.91 0.90 0.94
Laplace 0.5 1 0.88 0.78 0.87 0.86
Laplace 0.5 3 0.92 0.94 0.94 0.95
Laplace 0.8 1 0.92 0.81 0.92 0.82
Laplace 0.8 3 0.92 0.93 0.93 0.92
m =n = 100 m = n = 500

Normal 0.5 1 0.91 0.84 0.93 0.94
Normal 0.5 3 0.94 0.95 0.95 0.95
Normal 0.8 1 0.95 0.80 0.96 0.92
Normal 0.8 3 0.94 0.94 0.94 0.95
Logistic 0.5 1 0.95 0.86 0.97 0.95
Logistic 0.5 3 0.93 0.95 0.95 0.96
Logistic 0.8 1 0.94 0.80 0.95 0.92
Logistic 0.8 3 0.93 0.94 0.94 0.96
Laplace 0.5 1 0.89 0.85 0.93 0.95
Laplace 0.5 3 0.94 0.96 0.95 0.95
Laplace 0.8 1 0.94 0.82 0.95 0.93
Laplace 0.8 3 0.93 0.93 0.95 0.94

Table 3.1: Coverage Probabilities of Asymptotic and BC, 95% Confidence Intervals
for . Simulated coverage estimates have margin of error ranging from .01 to .03 at
99% confidence depending on coverage. For all F', ox = 1.
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Parameters Interval Method
Asymptotic | BC, | Asymptotic | BC,
F 0 o m=n=25 m =n = 50
Normal 0.5 1 0.99* 0.88 0.99 0.87
Normal 0.5 3 0.96 0.93 0.95 0.94
Normal 0.8 1 0.96 0.91 0.97 0.93
Normal 0.8 3 0.94 0.92 0.96 0.94
Logistic 0.5 1 0.98 0.89 0.99 0.87
Logistic 0.5 3 0.94 0.92 0.95 0.94
Logistic 0.8 1 0.95 0.94 0.96 0.92
Logistic 0.8 3 0.94 0.93 0.94 0.94
Laplace 0.5 1 0.98 0.89 0.99 0.88
Laplace 0.5 3 0.95 0.92 0.96 0.93
Laplace 0.8 1 0.97 0.93 0.97 0.92
Laplace 0.8 3 0.94 0.90 0.96 0.94
m =n = 100 m = n = 500

Normal 0.5 1 0.99 0.80 0.96 0.94
Normal 0.5 3 0.95 0.94 0.95 0.95
Normal 0.8 1 0.97 0.91 0.96 0.91
Normal 0.8 3 0.94 0.94 0.95 0.95
Logistic 0.5 1 0.99 0.85 0.97 0.95
Logistic 0.5 3 0.95 0.94 0.94 0.96
Logistic 0.8 1 0.96 0.91 0.96 0.90
Logistic 0.8 3 0.94 0.94 0.96 0.95
Laplace 0.5 1 0.99 0.85 0.98 0.94
Laplace 0.5 3 0.94 0.94 0.96 0.94
Laplace 0.8 1 0.98 0.91 0.97 0.92
Laplace 0.8 3 0.95 0.95 0.94 0.96

Table 3.2: Coverage Probabilities of Asymptotic and BC, 95% Confidence Intervals
for 6. Simulated coverage estimates have margin of error ranging from .01 to .03 at
99% confidence depending on coverage. For all F', ox = 1.
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Parameters CI(6)

F 6 9 25 20 100 500
Normal 0.5 1| .83 (.02) | .78 (.02) | .72 (.02) | .44 (.01)
Normal 0.5 3| .61 (.01) | .45 (.01) | .32 (.00) | .14 (.00)
Normal 0.8 1| .82(.02) | .74 (.01) | .61 (.01) | .35 (.00)
Normal 0.8 3| .39 (.01) | .30 (.01) | .22 (.00) | .10 (.00)
Logistic 0.5 1| .87 (.01) | .86 (.01) | .83 (.01) | .55 (.01)
Logistic 0.5 3| .55 (.01) | .42 (.01) | .31 (.00) | .14 (.00)
Logistic 0.8 1| .78 (.02) | .75 (.02) | .66 (.01) | .39 (.01)
Logistic 0.8 3| .37 (.01) | .29 (.01) | .22 (.00) | .10 (.00)
Laplace 0.5 1| .83 (.02) | .81 (.02) | .79 (.02) | .59 (.02)
Laplace 0.5 3| .63 (.01) | .47 (.01) | .33 (.00) | .15 (.00)
Laplace 0.8 1| .84 (.02) | .83 (.01) | .76 (.01) | .45 (.01)
Laplace 0.8 3| .40 (.01) | .32 (.01) | .24 (.00) | .11 (.00)

CI(9)

F ) 25 50 100 500
Normal 0.5 1 |2.28 (.08) | 1.98 (.06) | 1.56 (.04) | 0.78 (.01)
Normal 0.5 3 |2.15 (.10) | 1.38 (.03) | 0.97 (.02) | 0.42 (.00)
Normal 0.8 1|1.90 (.05) | 1.47 (.03) | 1.12 (.02) | 0.51 (.00)
Normal 0.8 3| 1.34 (.02) | 0.94 (.01) | 0.66 (.00) | 0.29 (.00)
Logistic 0.5 1|3.18 (.26) | 2.49 (.20) | 1.88 (.08) | 0.94 (.01)
Logistic 0.5 3| 2.07 (.09) | 1.47 (.04) | 1.02 (.02) | 0.45 (.00)
Logistic 0.8 1|2.07 (.10) | 1.63 (.04) | 1.27 (.02) | 0.60 (.01)
Logistic 0.8 3| 1.35 (.03) | 0.96 (.02) | 0.69 (.01) | 0.31 (.00)
Laplace 0.5 1|2.95 (.14) | 2.54 (.10) | 2.05 (.06) | 1.14 (.02)
Laplace 0.5 3 |2.33 (.11) | 1.62 (.06) | 1.13 (.02) | 0.51 (.00)
Laplace 0.8 1|2.33 (.10) | 1.92 (.05) | 1.51 (.03) | 0.73 (.01)
Laplace 0.8 3| 1.47 (.04) | 1.06 (.02) | 0.76 (.01) | 0.34 (.00)

Table 3.3: Simulated Average Length of Asymptotic 95% ClIs for 8 and § when
m =n € {25,50,100,500}. Average interval length estimates have margin of error at
99% confidence as noted in parentheses. For all F, ox = 1.
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Table [3.1 shows that the coverage probability of the 95% asymptotic interval
for 0 is well calibrated except for the case of very small sample sizes m = n = 25.
However, the BC, intervals have far too low coverage probabilities for § when ¢ is
small, even for moderate sample size (e.g. m = n = 100) but well-calibrated coverage
probabilities for large . As the sample sizes increase, both confidence intervals have
coverage probabilities converging toward .95 but the asymptotic interval appears to
do so more quickly.

Table @shows that the coverage probability for the 95% asymptotic interval for
0 tends to be conservative when the component distributions are not well separated
and are fairly well-calibrated otherwise, even for small sample sizes. Contrarily, the
BC, confidence intervals tend to have coverage probabilities that are too low and this
is most notable when the components are not well separated. As the sample sizes
increase, both methods have coverage probabilities that converge to .95 rather slowly
when 0 is small. (There was one data set in the Table @ setting marked with *
for which the asymptotic confidence interval could not be computed. This is possible
due to the small sample size and the asymptotic nature of the interval).

Table [3.3 shows average lengths for both parameters of the asymptotic confi-
dence intervals, which were shown to have superior coverage probabilities to the BC|,
intervals in Tables [3.143.2. The intervals for § are notably smaller when the mixture
components are well separated. Also, the intervals for § are notably smaller when the
components are well-separated and also when there are more responders. The tables
verify that the average confidence interval length decreases at a rate of n=2 once the
sample size is sufficiently large to ensure that truncation at the edge of the parameter

space is rare.
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3.2 Method of Moment Confidence Regions

While the method of moment confidence intervals described in section provide
inference for 6 and § individually, neither produces bounds for the full treatment

effect (0, 9). The foundation for the asymptotic intervals is the limiting distributions

found in proposition|2.2.3. An analogous result for the distribution of @\6) von Would

provide the basis for asymptotic method of moment confidence regions. However,

marginal normality does not imply joint normality and thus the asymptotic results in

—

2.2.3 do not imply that (0, 6),,,,, is asymptotically normally distributed. Since little

is known about the distribution of @ vonss CRyvon(0,6) can be constructed from
Clvon(0), Clnrons (), Clnrons (A) by the following methods

e Using a single confidence interval

e Intersecting two confidence intervals

3.2.1 Confidence Region from Interval

A 100(1—a)% CI(A) is equivalent to a 100(1—a)% CR(6,6) = {(6,0) : 6 € CI(A)}.
Letting Ay and Ay be the lower and upper bounds of C'Iy,n(A) respectively, the

region can be written in any of the following forms

100(1 — )% CRaronrgay (6,8) = {(6,8) : Ay < 66 <
_ A
_ A

Figure [3.1 below displays this confidence region on a data set with 100 observations

per group.
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95% Confidence Region for (6,0)
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Figure 3.1: Data set of size m = n = 100 generated from F' ~ N(0,1) and (6,0) =
(0.5,2), shown as the red bulls-eye on the plot. The dark-green curves are found from
95% Clpron(A) = [0.49,1.09] onto (6,6). The blue dot represents the point estimate

(0,0) 300 = (0.49,1.62) and the light green shaded region is the 95% CRpona(6,9).
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3.2.2 Confidence Regions via Intersecting Confidence Inter-

vals

Another way to obtain method of moment confidence regions for (6,¢) is by inter-
secting two confidence intervals. For example, a confidence region can be found by

intersecting C'I(6) with C1(6) such that

CRy.5(0,6) = {(6,8) : 0 € CI(6) N6 € CI(5)}.

Similarly, intersecting C'I(6) with CI1(A) produces

CRp.0(0,0) = {(6,6) : 6 € CI(6) N 65 € CI(A)}

and intersecting C'1(6) with C'I(A) produces

CRisny(0,8) = {(6,8): 6 € CI(5) N 65 € CI(A)}.

The confidence levels of the confidence intervals can be selected to achieve a con-
servative confidence region for a corresponding nominal level. The confidence region
fails to capture (0,0) if at least one interval fails to do so. Let acg represent the
probability that the confidence region fails to capture (6,0). Let acrs and acra be
the probabilities that Clyop(0) and Clyop(A) fail to capture the true parameter,
respectively, and let acrscra be the probability that both fail to capture the true

parameter. Then

QR = Qgrs T QoA — QCIs,CIA

< acrs + acra. (3.8)
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Then a nominal 100(1 — agz)% CR(0,d) with conservative probability, (1 — acg) >
(1 — o), can be obtained by selecting acrs = aora = afp/2. Section (in the
next chapter) illustrates that CIy,n(0) frequently suffers from lower than nominal
coverage probability, which motivates selecting C'Iyon (A) and Clysops(9) to intersect
for a method of moments confidence region for (6,¢) as described above. Figure @

below illustrates this confidence region on a data set with 100 observations per group.
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95% Confidence Region for (6,0)
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Figure 3.2: Data set of size m = n = 100 generated from F' ~ N(0,1) and (6,0) =
(0.5,2), shown as the red bulls-eye on the plot. The dark-green curves correspond
to the bounds of 97.5% Clyon(A) = [0.45,1.14] and the vertical dark-green lines
correspond to the bounds of 97.5% ClIy,n(6) = [0.99,2.25]. The blue dot represents

—

the point estimate (0,6),,,,, = (0.49,1.62) and the light green shaded region is the
95% CRarons,ay(0,9).
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3.3 Pseudo-Likelihood Confidence Regions

A confidence region for (0,d) can be found by inverting a hypothesis test using the
likelihood ratio test statistic. Consider first a scenario in which f is known and
recall that the likelihood of (1.1)) is given by (2.18). Under Hy: (0,9) = (6o, do), the

likelihood ratio test statistic is given by
oo = —2 [logL (00, 00: X, Y) — logL (5, 5 X, Yﬂ . (3.9)

Under the null hypothesis, T{g, s,) has an asymptotic distribution that is XZfZQ (Wilks,
1938) since the hypothesized point null is two-dimensional, so long as (6, dp) does not
lie on the boundary of the parameter space. The results from Self and Liang (1987)
show that if 6y = 1,00 > 0 then T(15,) ~ .5xGr—; + -5XGr—y and if (6o, dp) = (0,0) then
the asymptotic distribution of T{g ) is unknown. Thus, for any true (6o, do) # (0,0),
an « level hypothesis test (asymptotically) fails to reject with probability (1 — «)

based on the rejection rule (0 = Fail to Reject, 1 = Reject)

I (T(90,50) > X% l—a) ) for 6, € (0, 1)
A?eo,éo)(X7 Y) = (3.10)

I (Tigo60) = -BX11 0+ -5X31 a) for b =1.

Therefore, when a treatment effect exists, a confidence region constructed by
100(1 — )% CRLix(6,6) = {(0,0) : Ay, 50(X,Y) =0} (3.11)

has asymptotic coverage probability (1 — «).
However, this confidence region relies upon knowledge of f in (2.18)) but in reality,

f is unknown. Thus, consider a modification of the confidence region derived in (3.11])
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by using the pseudo-likelihood (2.19)) which plugs in an estimate for f. The analo-
gous likelihood ratio test statistic computed from the pseudo-likelihood for testing

Hy: (0,0) = (09, 60) is given by
7/;(90750) = -2 logz (00, 00; X, Y) — logi (é\, g; X, Y)} ) (3.12)

The results in Liang and Self (1996) and Chen and Liang (2010) suggest that under
Hy: (0,0) = (6o,00) # (0,0), f(gm(;o) has the same asymptotic distribution as T, s,
so long as the following conditions hold

~

e f is a consistent estimate of f

e lim n/m=0.
m—00,n—00
Therefore, to improve performance when n and m are both finite with n/m > 0, a

Satterthwaite approximation is used to model the distribution of ﬁ90750). That is
Ti00,80) ~ €10, (3.13)

where ¢; and d; are functions of m and n that converge to 1 and 2 respectively as
m — oo, n — oo and n/m — 0. Thus, the proposed pseudo-likelihood confidence

region for capturing the sub-population specific treatment effect (6, 9) is
100(1 — @)% CRpsp(0,6) = {(e, 8) : Tigs) < clxghl,a} , (3.14)

which has asymptotic coverage probability (1 — «) as f — f, m — oo, n —
0o, n/m — 0. For simplicity, this cutoff (c1x7, ;_,) is used for all # (including § = 1)
unless sample sizes are sufficiently large to apply the asymptotic rule from . In
practice, this is done using a dense grid search over a select set of (0,0) as described

in section See section of the Appendix for details.
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The quantities ¢; and d; are determined from a large scale simulation by generating
1000 data sets under each following factorial combinations of settings in List [3.1.

e N € {60, 120,180, 300,600, 1200, 2400, 4800}

e num € {1:29,1:19,1:14, 1:9, 1:5, 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1}

e F' € {Normal, Laplace, SkRNorm, SkRLap, SkLLNorm, SkLLap}
e {258}

e 5€{51,23}

List 3.1: Large Scale Simulation Settings. There are 96 unique sample size pairs and
72 unique (F,0,9) triples for a total of 6912 combinations of (N, n:m, F, 0, ).

All 72 combinations of (F,6,d) are used to determine ¢; and d; for each pair of
(N,n/m). Specifically, each of the 72 settings produces 1000 realizations of 7/;(90750).
Method of moment estimates of ¢; and d; are calculated from these 72,000
realizations for each (N,n/m).

The derivation of the estimates is provided below.
If X ~x3_g = E[X]=dy, Var(X) = 2d,.
Therefore, since the Satterthwaite approximation indicates YA’(QO’(;O) 2z aX
E[ﬁgo’go)] = cidy, VCLT(Z/—\'(QO’(;O)) = 2c2d,.

Let T (g, and S2 be the mean and variance of the 72,000 simulated 7 (60,50) >

(60.90)
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respectively. For the method of moment estimates,

7(90750) SZGt Cldl, S2A s:et 2C%d1

Ti6,50)
T T,
00,6 00,0
—— 01:—(0 0) —>S§: :2—( 02 O)dl
dq (60,90) dy
o7 2
(60,50) foal T(09,50)
= d, 2 — 1 =T (05,60)—5=
T0g,50) (60,00)
Therefore,
2 —9
T99,50) d 2T(9o,5o)
1 = ZT ) 1 — S2
(6o0.80) Ttog.60)
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Table 3.4: Table of all (¢, d;) pairs according to the setting of sample sizes (N, n/m).
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Table 3.4 illustrates that the Satterthwaite approximation is necessary, as small
or treatment-heavy sample size settings indicate (¢, d;) values far from the asymp-
totic result, (c1,d;) — (1,2). The table also demonstrates the convergence of ﬁ90750)

to x5 as the Satterthwaite constants in the lower-left corner approach (1,2).

The function pslinf() (which can be found in section |A.10| of the Appendix)

implements this Satterthwaite approximation with bi-linear interpolation for sample
sizes (N',n’/m') that are not identical to any of the above listed simulation settings. If
the sample sizes are such that extrapolation is necessary, a warning is given (e.g. m =
400,n = 2000). For appropriately large sample sizes (m > 4640, n > 160, n/m <
1/29) the asymptotic cutoffs from are used to determine C'Rp(0,6).

Figure [3.3 below illustrates this confidence region on a data set with 100 obser-
vations per group. The confidence region has an oval-like shape and captures the true

parameter from which the data was simulated.
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Confidence Bounds for (0,9)
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Figure 3.3: Data set of size m = n = 100 generated from F ~ N(0,1) and
(0,6) = (0.5,2), shown as the red bulls-eye on the plot. The blue dot represents

the point estimate (6,9),,, = (0.56,1.37) and the light green shaded region is the
95% CRps,(6,9).
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3.4 Pseudo-Likelihood Confidence Intervals

Consider constructing confidence intervals that correspond to the pseudo-likelihood

estimators in (2.24) by inverting a hypothesis test.

3.4.1 Pseudo-Likelihood Intervals for 6

Because this section considers inference on # with confidence intervals, it is useful to
define profile likelihood for 6. To do so, first consider a scenario in which f is treated

as known rather than an unknown parameter.

m n

L(0.60):%,7) =TT @ TT [0 = 0)F o) + 05 (s — (6)| (3.16)
=1 i=1
where A(H) is the § that maximizes the likelihood 1) for a given 0. For testing

Hy: 6 = 0y, the likelihood ratio test statistic is defined as
Ty = —2 [logL (90,3(00); X, Y) —logL (5, 5 X, Y)} , (3.17)

where Ty, asymptotically follows a chi-square distribution with 1 degree of freedom
so long as 6 € (0,1) (Wilks, 1938). The results from Self and Liang (1987) show that
when 6y = 1, Ty, ~ .5x2+.5x% and when (6, §) = (0, 0) the distribution is unknown.
Therefore, under Hy: 6 = 6y(# 0), an « level hypothesis test (asymptotically) fails
to reject with probability (1 — «) based on the rejection rule (0 = Fail to Reject, 1 =
Reject)

I (Ty, > xil_a) , for 0y € (0,1)
6 (X,Y) = (3.18)

I(Tyy > 5x3 10+ 5XT1_a) forfy=1.
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Thus, a 100(1 — )% confidence set for 6 defined by the set of all § € (0, 1] such that
Mo(X,Y) = 0 has asymptotic coverage probability 1 — a.

However, since f is unknown, the likelihood and corresponding profile like-
lihood cannot be used. Consider a similar procedure that instead uses the
pseudo-likelihood ([2.19)), which substitutes an estimate for f. The pseudo-profile

likelihood function for 6 is defined as

(95 ) ﬁ[ }ﬁ[ Flys) + 07 (s A(e))] (3.19)

]:1 =1

where §(6) is the § that maximizes the pseudo-likelihood (2.19) for a given 6. The

pseudo-likelihood ratio test statistic for Hy: 6 = 6, is defined as
fgo = -2 [logz (00,5(00);X, Y) — logz (é\, 3\; X, Y)} , (3.20)

The results from Liang and Self (1996) and Chen and Liang (2010) suggest that j:’go
has the same asymptotic distribution as Tp, so long as the following conditions hold

. fis a consistent estimate of f

e lim n/m=0.
m—00,n—00

Therefore, to improve performance when n and m are finite with n/m > 0, a Sat-

terthwaite approximation is used to model the distribution of j:’go. That is,

Ty ~ 2X3p1 o (3.21)

where ¢, and dy are functions of m and n that converge to 1 as m — oo, n — oo and

n/m — 0. Thus, a pseudo-likelihood confidence set for € is given by

100(1 — a)% CSetpyr(0) = {9 T < czxg%l_a} . (3.22)
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For simplicity, this cutoff (C2X32,17a) is used for all # (including 6 = 1) unless sample
sizes are sufficiently large to apply the asymptotic rule from . See section
of the Appendix for details.

Since is not guaranteed to be an interval, a confidence interval can be

defined by
100(1 - Oé)% CIPSL<8) = {I’Illn CSetpsL<9), max CSthsL<9)] (323)

While the coverage probability of 100(1 — a)%CIps(0) is at least as large as that
of 100(1 — a)%C Setps,(#), the discrepancy is very minor as a large scale simulation
(see chapter {4)) indicates that C'Setpgr, () is identical to C'lpgr(0) in 99.68% of data
sets - with minor discrepancies when not identical. The quantities ¢; and dy are
determined from a large scale simulation by generating 1000 data sets under each
factorial combinations of settings in List [3.1. All 72 combinations of (F,6,4) are
used to determine ¢; and dy for each of the 96 pairs (N,n/m) in the simulation. As
illustrated in section , the 72,000 data sets are used to generate 7/—\’90 while their

corresponding ¢y and dy values are computed using the following formulas

52 =
2T
Cy = EGO s d2 = 5290 . (324)
2Ty, .
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Table 3.5: Table of all (cq, ds) pairs according to the setting of sample sizes (N, n/m).
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Table (3.5 illustrates that the Satterthwaite approximation is necessary, as small
or treatment-heavy sample size settings indicate (cq,ds) values far from the asymp-
totic result, (ca,ds) — (1,1). The table also demonstrates the convergence of Tp, to

X7 as the Satterthwaite constants in the lower-left corner approach (1,1).

The function pslinf() (which can be found in section |A.10| of the Appendix)

implements this Satterthwaite approximation with bi-linear interpolation for sample
sizes (N',n’/m') that are not identical to any of the above listed simulation settings. If
the sample sizes are such that extrapolation is necessary, a warning is given (e.g. m =
400,n = 2000). For appropriately large sample sizes (m > 4640, n > 160, n/m <

1/29), the asymptotic cutoffs from (3.18) are used to determine C(9).

3.4.2 Pseudo-Likelihood Intervals for ¢

Because this section considers inference on § with a confidence interval, it is useful
to define the profile likelihood for §. To do so, first consider a scenario in which f is
treated as known rather than an unknown parameter. The profile likelihood for 9§ is

defined as

£ (80).0:%,Y) =TT T [0~ 0000 +00) 1 - 9)] . (325)

j=1 i=1

where §(0) is the 6 that maximizes the likelihood (2.18) for a given 4.

For testing Hy: 6 = dg, the likelihood ratio test statistic is

Ty, = —2 [zogL (5(50), 5o; X, Y) ~logL (5, 5 X, Y)] . (3.26)

The profile likelihood ratio test statistic (3.26]) asymptotically follows a chi-square

distribution with 1 degree of freedom so long as 6 > 0 and § < 1. When 0 = 1, Tj,
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has a complicated asymptotic distribution, Dy, described in section 2.3 of Chen and
Liang (2010). The distribution of T}, is unknown when (6, o) = (0,0). Therefore,
under Hy: § = dp(# 0), an « level hypothesis test (asymptotically) fails to reject with

probability (1 — «) based on the rejection rule

I(T5 > x31-0), for6e(0,1)
go (X,)Y) = (3.27)

I(Ts, > Dn1—o) for =1

Thus, a 100(1 — «)% confidence set for ¢ defined by the set of all 6 > 0 such that
As(X,Y) = 0 has asymptotic coverage probability (1 — «) for all § > 0.

However, since f is unknown, the likelihood and corresponding profile like-
lihood cannot be used. Consider a similar procedure that instead uses the
pseudo-likelihood , which substitutes an estimate for f. Recall from the

pseudo-likelihood is given by

-~

L(6,5;X,Y) = L(},0,6: X,Y)

ﬁ[ f[[ vi) +0f(y, —5)] .

=1 1=

.
[y

In a similar fashion, the pseudo-profile likelihood function for ¢ is defined as

£ (#6).5:x.v) = T[] I [0 - 000 Fl) + 001 Fw - 5] . (329

j:l =1

where (/9\(5) is the 6 that maximizes 1’ for a fixed 9. The pseudo-likelihood ratio

test statistic for Hy: § = g is defined as
fgo = -2 [logz <§(5O),5O;X, Y) — logz (5, ;5\; X, Y)] : (3.29)
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The results from Liang and Self (1996) and Chen and Liang (2010) suggest that i;o
has the same asymptotic distribution as 7§, so long as the following conditions hold

~

e f is a consistent estimate of f

e lim n/m=0.
M—00,n—00

Therefore, to improve performance when n and m are finite with n/m > 0, a

Satterthwaite approximation is used to model the distribution of T, 5,- That is,
Tsy ~ C3X331-a (3.30)

where c3 and ds are functions of m and n that converge to 1 as m — oo, n — oo and

n/m — 0. Thus, a pseudo-likelihood confidence set for ¢ is given by
100(1 — @)% CSetpy (8) = {5 Ty < chg&l_a} . (3.31)

Given the complicated nature of Dy, this cutoff (csx3, ,_,) is used for all  (including
0 = 1). See section of the Appendix for details.

Since is not guaranteed to be an interval, a confidence interval can be
defined by

100(1 - Oé)% CIPSL(é) = [Hlln CSBtpSL((S), max CS@tPsL((S)] . (332)

While the coverage probability of 100(1 —a)% ClIps.(0) is at least as large as that of
100(1— )% CSetps(0), the discrepancy is very minor as a large scale simulation (see
chapter [4)) indicates that C'Setpsr(d) is identical to C'Ipsr(d) in 99.17% of data sets
and very similar when not identical. The quantities c3 and ds are determined from a
large scale simulation by generating 1000 data sets under each factorial combinations

of settings in List [3.1. All 72 combinations of (F,6,4) are used to determine c3 and
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d3 for each pair of (N,n/m). As illustrated in section [3.3] the 72,000 data sets are
used to generate T, 5, While their corresponding cs and ds values are computed using

the following formulas

52 -
Tso 2T50

C3 = —, dg = . (333)
2T's, S%so

Table [3.6 illustrates that the Satterthwaite approximation is necessary, as small
or treatment-heavy sample size settings indicate (cs,ds) values far from the asymp-
totic result, (c3,d3) — (1,1). The table also demonstrates the convergence of f;o to

X7 as the Satterthwaite constants in the lower-left corner approach (1,1).
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Table 3.6: Table of all (cs, d3) pairs according to the setting of sample sizes (N, n/m).
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The function pslinf() (which can be found in section |A.10| of the Appendix)

implements this Satterthwaite approximation with bi-linear interpolation for sample
sizes (N',n’/m') that are not identical to any of the above listed simulation settings. If
the sample sizes are such that extrapolation is necessary, a warning is given (e.g. m =
400,n = 2000). For appropriately large sample sizes (m > 4640, n > 160, n/m <

1/29), asymptotic cutoffs are used to determine CI(9).
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Chapter 4

Simulation Studies

4.1 Estimator Performance Comparison

This section compares the 4 different estimators of (6,d) presented in Chapter [2}
Normal MLE, EM-like Algorithm, Method of Moments, and Pseudo-Likelihood. For
Normal MLE, all details of the EM algorithm for finding the maximum of the log-
likelihood are described in section For the method of moments estimator, the
en = 20S% /N formula derived in section [2.2.2 is used. For the EM-like algorithm,
the sample size dependent recommendation stated in section [2.3.2 is used

e If m = n < 250, use version 6
o If m =n > 250, use version 2

Lastly, for the Pseudo-likelihood estimator, the log-concave maximum likelihood es-
timate of f described in section [2.4.2 is used.

The estimators are compared by a simulation study that generates 1000 data sets
under each following factorial combinations of settings in List E (reproduced here

for convenience).
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o m =n € {25,50,100,500}

e F' € {Normal, Laplace, SkRNorm, SkRLap, SkL.LNorm, SkLLap}
e {25 .8}

o 5 {5123}

Note that ox = 1 for all F' in the simulation so § = §/ox. The separation between
the components (which impacts the performance of the estimators) is determined by
d/ox (rather than ¢ alone). This should be accounted for when interpreting these
results for a contest where ox # 1, since § below represents the number of standard
deviations of separation between the components. Also, 6 > 0 for all simulations
which means that skewed right distributions are skewed “in the direction of §” and
skewed left distributions are skewed “in the opposite direction of 6”. This directional
relationship between the skew of F' and the direction of § is what determines the
performance of the estimators, so care should be taken in interpreting the results if
0 < 0. The described interpretation of simulation results below assume ox =1, § > 0;
see section of the Appendix for an example appropriately translating the results
to a context where ox # 1 or § < 0.

For each fixed pair of sample sizes, the score for a specific estimator i defined in
is used to compare its performance relative to the other estimators (indexed
by k, here k € {1,...,4}). Each estimator’s score represents the geometric average
loss of that estimator relative to the ‘oracle’ estimator [that separately chooses the
estimator(s) that minimize(s) \/MSE(@), \/MSE(S\), and \/ MSE(A) for each (m =

n, F,0,6)]. Table E displays the scores of the 4 estimators for the simulation.

Smaller scores are better and the smallest scores are highlighted in yellow.
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m =n Estimator S@O) | S©) | S(A) | {S(A)S(0)S(6)}/?

Normal MLE | 1.206 | 1.454 | 1.084 1.239

25 Moment 1.324 | 1.243 | 1.155 1.239
EM-like 1.099 | 1.421 | 1.050 1.179
Ps-Likelihood | 1.123 | 1.272 | 1.037 1.140
Normal MLE | 1.280 | 1.614 | 1.120 1.322

50 Moment 1.452 | 1.367 | 1.180 1.328
EM-like 1.128 | 1.490 | 1.075 1.218
Ps-Likelihood | 1.112 | 1.277 | 1.022 1.132
Normal MLE | 1.372 | 1.812 | 1.172 1.429

100 Moment 1.612 | 1.509 | 1.199 1.429
EM-like 1.164 | 1.529 | 1.095 1.249
Ps-Likelihood | 1.098 | 1.240 | 1.015 1.114
Normal MLE | 1.842 | 2.372 | 1.362 1.812

500 Moment 2.025 | 1.871 | 1.214 1.663
EM-like 1.237 | 1.586 | 1.120 1.300
Ps-Likelihood | 1.138 | 1.135 | 1.017 1.095

Table[4.1 indicates that the Pseudo-Likelihood estimator has the most robust per-
formance for all 5, 25\, A and all sample sizes with the exception of when m = n = 25,
S (@Ps L) and S (gpsL) are close seconds to S (aEMlike) and S (gMOM) respectively. Fig-
ures [4.1 - [4.2 plot the scores over the sample sizes. The Normal MLE and Moment
estimators have the least desirable performance - with the Normal MLE unsurprisingly
performing relatively worse as the sample size increases (as the Normality assumption
only holds for one sixth of the simulation settings). The next best estimator is the EM-
like algorithm which is the second-best for almost all settings. The Pseudo-Likelihood

estimator becomes increasingly more efficient relative to the other estimators as the

Table 4.1: Scores for Estimates of 6,0, A.

sample sizes increase, particularly for 5 and A.
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Figure 4.1: Estimator Scores for f and &
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To understand the performances of the best two estimators (EM-like and Pseudo-
Likelihood) for every simulation setting, consider the scatterplots of vV M SE in Fig-

ure [4.3 below. When 6 is more difficult to estimate, the EM-like estimate appears to

~

have slightly lower \/ M SE(f), while scenarios when estimation is easier lend them-

~

selves to smaller 4/ M SE(f) for the pseudo-likelihood method. For estimation of 6,

~

the pseudo-likelihood method tends to have smaller 1/ M SE(J) especially in the cases

where estimation is easier.

{MSE(8) for all 288 simulation settings

OEMiike)
0.50

0.10

IMSE(
0.02

I
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\ MSE(/G\PSL)

{MSE(5) for all 288 simulation settings

SeMiike)
1.00
|

IMSE(
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- I
0.05 0.10 0.20 0.50 1.00 2.00

MSE(8ps.)

Figure 4.3: Scatterplots of v M SE comparing EM-like and Pseudo-likelihood estima-
tors for both 6 and ¢.
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To better understand the relative performances of these two estimators for each the

parameter setting, consider the dot plots in Figures IE - IE of \/ MSE/minMSE
under each setting. Blue dots represent the EM-like estimator and red dots represent
the Pseudo-likelihood estimator. Simulation setting is denoted on the x axes. Under

each setting, the estimator at 1 is the best estimator.
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Figure 4.4: Dot Plots comparing the performance of estimators of 8 for small sample

sizes. Blue dots represent the EM-like estimator and red dots represent the Pseudo-
likelihood estimator.
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Figure 4.5: Dot Plots comparing the performance of estimators of # for moderate to
large sample sizes. Blue dots represent the EM-like estimator and red dots represent
the Pseudo-likelihood estimator.
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Figure 4.6: Dot Plots comparing the performance of estimators of ¢ for small sample

sizes. Blue dots represent the EM-like estimator and red dots represent the Pseudo-
likelihood estimator.
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Figure 4.7: Dot Plots comparing the performance of estimators of § for moderate to

large sample sizes. Blue dots represent the EM-like estimator and red dots represent
the Pseudo-likelihood estimator.
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The dot plots in Figures [4.4 - [4.7 reveal a few trends. For small sample sizes
in particular, é\PsL is preferable for larger # with skewed right distributions and for
smaller 6 with skewed left distributions. Conversely, é\EMlike is preferred for smaller
0 with skewed right distributions and for larger 6 with skewed left distributions.
The figures also reveal that é\PSL shows superior performance compared to (/g\EMlike
for heavy-tailed and left-skewed distributions while the EM-like algorithm is better
for Normal and Skewed-right Normal distributions. Similarly, S\EMW% shows better
results for F' ~ Normal and mixed results for Skewed-right Normal while SPS 7, demon-
strates dramatically superior performance for all other F'. Since the heuristic EM-like
algorithm mimics a normal EM-algorithm and uses normal kernels for kernel density

estimation, it is not surprising to see this preference for F' ~ Normal.

4.1.1 Optimal Sample Size Allocation

Given that @ psr, achieves the most efficient estimation, it is natural to consider
what sample size allocation produces optimal results. Optimal sample size allocation
is determined from a simulation study that generates 1000 data sets under each
factorial combination of the following settings.

e N € {60, 120,180, 300,600, 1200, 2400, 4800}

o num € {1:3,1:2,2:3,1:1,3:2,2:1,3:1}

e F' € {Normal, Laplace, SkRNorm, SkRLap, SkLLNorm, SkLLap}
0e{2.5 .8}
de{51,2,3}

For each pair of (N,n:m), the performance across all 72 (F,0, ) is summarized

by the average \/MSE(@), \/MSE(;S\), and \/ MSE(A) in Tables

respectively. Each row represents a total sample size N and each column represents a

4.2,4.3, and 4.4

randomization ratio (ratios on the left of the table assign more patients to the control
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group while those on the right assign more patients to the treatment group). The
optimal randomization ratio for each row is highlighted in yellow. For scenarios where
the experimental cost of assigning a patient to each group is equal, Tables 4.2 - [4.4
show that a sample allocation of three patients assigned to the treatment group for
every two patients assigned to the control group is optimal for precise estimation of
the treatment effect regardless of the total sample size. For settings where the cost
associated with assigning a patient to one group is more costly than another, the
settings of sample sizes that are within budget can be identified and the table entries

can be used to identify the within-budget setting with the best performance.

n:m

1:3 1:2 2:3 1:1 3:2 2:1 3:1

60 | 0.285 0.268 0.257 0.247 0.243 0.247 0.251
120 | 0.228 0.213 0.204 0.196 0.194 0.196 0.202
180 | 0.201 0.186 0.177 0.171 0.168 0.169 0.176
N | 300 | 0.167 0.153 0.148 0.141 0.139 0.140 0.144
600 | 0.129 0.118 0.113 0.107 0.105 0.107 0.111
1200 | 0.097 0.089 0.084 0.081 0.079 0.079 0.083
2400 | 0.072 0.066 0.062 0.059 0.057 0.058 0.060
4800 | 0.052 0.047 0.045 0.042 0.041 0.041 0.043

~

Table 4.2: Average \/ MSE() across 72 (F,0,0).
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60

120
180
N | 300
600
1200
2400
4800

Table 4.3: Average

60

120
180
N | 300
600
1200
2400

4800

Table 4.4: Average

nm

1:3

1:2

2:3

1:1

3:2

2:1

3:1

0.763
0.622
0.543
0.444
0.322
0.216
0.145
0.091

0.715
0.577
0.498
0.400
0.292
0.199
0.122
0.078

0.683
0.542
0.474
0.382
0.270
0.180
0.116
0.074

0.662
0.520
0.458
0.364
0.248
0.168
0.108
0.069

0.644
0.512
0.439
0.349
0.244
0.163
0.108
0.069

0.656
0.516
0.450
0.344
0.250
0.170
0.111
0.071

0.659
0.531
0.447
0.360
0.259
0.176
0.120
0.078

MSE(6) across 72 (F,0,6).

~

n.m

1:3

1:2

2:3

1:1

3:2

2:1

3:1

0.309
0.217
0.178
0.139
0.098
0.070
0.049
0.035

0.276
0.196
0.160
0.125
0.088
0.062
0.044
0.031

0.263
0.185
0.151
0.118
0.083
0.059
0.042
0.030

0.251
0.176
0.143
0.111
0.078
0.055
0.039
0.028

0.248
0.173
0.141
0.109
0.077
0.054
0.038
0.027

0.252
0.175
0.143
0.110
0.078
0.055
0.039
0.028

0.266
0.186
0.150
0.116
0.081
0.058
0.041
0.029

MSE(A) across 72 (F,6,6).
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4.1.2 Parameter Specific Performance

With the optimal ratio n:m = 3:2 in hand, consider the pseudo-likelihood estimator

performance across (F,6,0) for each N € {60,120, 180, 300,600, 1200, 2400, 4800}.

The heat grids in Figures

size, N. Similarly, Figures

4.9 -

4.12

4.13| -

present grids of

4.16| present grids of

-~

MSE(#) for each sample

~

MSE(9) for each sample

size, N. To aid in pattern recognition across (F,0,9) for each fixed N, every v MSE

entry contains a colored background indicating the size of vV MSE relative to the

median vV MSE, M. The color key in Figure |4.8 below indicates that a black

background represents the median while bright red represents v M .SE much smaller

than the median and bright blue represents v M S E much larger than the median. For

each grid, red represents easier cases of estimation while blue indicates more difficult

ones.

M/10 M/5

M = Median {MSE(%) among 72 (F.0.9)

Figure 4.8: Color Key for

M/2

M
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MSE(8) forN'= 60 (m= 24, n=36)
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Figure 4.9: Heat Grids for Pseudo-likelihood f for N € {60,120}
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MSE(8) for N = 180 (m= 72, n=108)
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MSE(8) for N = 300 (m = 120, n = 180)
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Figure 4.10: Heat Grids for Pseudo-likelihood 8 for N € {180,300}
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MSE(8) for N = 600 (m = 240 , n = 360)
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MSE(8) for N'= 1200 (m = 480, n =720)
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Figure 4.11: Heat Grids for Pseudo-likelihood 6 for N € {600, 1200}
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MSE(8) for N = 2400 (m = 960, n = 1440)
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MSE(8) for N = 4800 (m = 1920, n = 2880)
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Figure 4.12: Heat Grids for Pseudo-likelihood 8 for N € {2400, 4800}

135




MSE(5) forN= 60 (m= 24, n=36)
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Figure 4.13: Heat Grids for Pseudo-likelihood dfor N e {60,120}
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MSE(5) forN= 180 (m= 72, n=108)
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MSE(5) for N= 300 (m = 120, n = 180)

Normal
Laplace

0.8 -
0 05-
0.2

Normal
Laplace

Normal
Laplace

SkL Sym SkR

.23/ 46].62
24177 1

SkL Sym SkR

.21].341.39
.12].331.37

S50
5l6]1.5

SkL Sym SkR

.13].17].14
.081.111.08

SkL Sym SkR

212915
ERKTES

Figure 4.14

0.5

1
0

137

2

3

. Heat Grids for Pseudo-likelihood & for N € {180,300}




MSE(5) for N = 600 (m = 240, n = 360)
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Figure 4.15: Heat Grids for Pseudo-likelihood 4 for N € {600, 1200}
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MSE(5) for N = 2400 (m = 960, n = 1440)
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Figure 4.16: Heat Grids for Pseudo-likelihood 4 for N € {2400, 4800}
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Figures @ - show that for the smallest sample sizes, 0 has better per-
formance for larger #9. As the sample size increases, ¢ has less of an impact on
MSE (g) than ¢ does. Notable discrepancies in performance persist even with very
large sample sizes (e.g. N = 4800) depending upon how well separated the compo-
nent distributions are. For a fixed (0,4), \/ MSE (§) is lower for the Laplace-tailed
distributions than for the Normal-tailed distributions. The only exception to this is
(0,8) = (.2,.5) which always prefers F' ~ Normal instead of F ~ Laplace. Also,
right skewed distributions are favorable for larger 6 while left skewed distributions
are favorable for small 6.
Figures - show that the performance of § is also superior for larger 60.

-~

Both 6 and 6 have a notable impact on \/ M.SE(J) for all sample sizes, with smaller
values of each resulting in higher \/ M SE (A) The component distribution, F', has a
more prominent impact on the performance of § than 0. Skewed left distributions have
much smaller \/ MSE (;5\) than symmetric or skewed right distributions, particularly
for the more difficult cases (small 65, small sample size). In easy cases (69 large, F’
skewed left, larger sample size) the Laplace-tailed distributions are preferred, whereas
for more difficult cases the Normal-tailed distributions are preferred. As the sample
sizes increase, more of the 72 (F,0,d) simulation settings prefer the Laplace-tailed
distributions. Only when (6, d) = (.2,.5) are the symmetric and skewed right Normal

distributions preferred to the corresponding symmetric and skewed right Laplace

distributions for all sample sizes considered in the simulation.
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4.2 Interval Performance Comparison

This section compares confidence intervals for § and 9. Specifically, the asymp-
totic moment intervals described in section [3.1.1 and the pseudo-likelihood inter-
vals described in section are compared. Note that the asymptotic intervals use
ay = log(N?)/N as in Lubich et al. (2022) since it provides better performance for
the confidence intervals than the ay = 20/N-% optimized for point estimation in sec-
tion @ The pseudo-likelihood intervals use meC(x) from to be congruent
with the pseudo-likelihood point estimate.

The most ideal confidence interval procedure is one that always captures the true
parameter with an arbitrarily small interval. With finite data sets this is not possible,
as intervals with such certainty would necessarily contain the entire parameter space.
Therefore researchers specify a sufficiently large success rate, called the confidence
level (commonly 90% or 95%), for which intervals should capture the parameter. If
multiple methods of constructing a confidence interval achieve coverage probabilities
(1 — ) at least as large as the researcher’s confidence requirement, then the method
that produces narrower intervals is preferred.

Therefore the primary criterion to assess the performance of the confidence in-
terval methods is whether coverage probability (1 — «) is sufficiently high, while the
secondary criterion is interval length. Since the coverage probability of a confidence
interval method may vary depending upon the parameters (F,6,9) and these pa-
rameters are unknown, it is also important to assess the prevalence of sufficiently
high coverage probability across a variety of (F,0,d). Thus, coverage probability is
assessed via simulation by determining if the method produces a sufficiently high
coverage probability for a sufficient number of parameter settings. If this coverage
probability assessment is satisfactory for multiple methods, then the average lengths

are used to determine the preferable method.
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To carry out the performance comparison, 1000 data sets are generated under each

of the factorial combinations of the settings from List E (and displayed below)

N € {60, 120, 180, 300, 600, 1200, 2400, 4800}

n:m € {1:29,1:19,1:14,1:9, 1:5, 1:3, 1:2,2:3,1:1, 3:2, 2:1, 3:1}

F € {Normal, Laplace, SkRNorm, SkRLap, SkLLNorm, SkLLap}
0e€{2,.5 .8}

5 {5123}

where the choices of F' correspond to those described in detail in section of the
Appendix.

In the sections that follow, the performance is summarized across all (F,6,0)
to provide a recommendation on which method to use. While prior information
about (F,0,6) may not be readily available, researchers may be able to anticipate
whether their proposed treatment has a small or large overall effect size. Thus, the
36 simulation settings for which 89 < .50x and the 36 settings for which 80 > .50x
are assessed separately. Assessment is done for each pair of sample sizes (N, n:m) so
that a sample-size dependent recommendation can be given.

For 95% confidence intervals, coverage probability is said to be sufficiently high
if the simulated coverage probability is at least .925 and is considered to apply to
a sufficiently wide variety of settings if at least 33/36 simulation settings achieve
this. The two methods that are compared according to this criterion are the pseudo-
likelihood and method of moment intervals. For a particular sample size setting, when
both methods satisfy the coverage probability criterion the method with narrower
average intervals in more of the 36 settings is recommended. (Section of the
Appendix verifies that these recommendations may be applied to 90% confidence

intervals as well).
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Note that very rarely confidence intervals cannot be computed, so performance
measures (coverage probability, average length) are computed among data sets where
the confidence intervals can be produced. Method of moment confidence intervals for
0 fail to compute in 0.0000868% of data sets. Method of moment confidence intervals
for ¢ fail to compute in 0.4588% of data sets. Pseudo-likelihood intervals for 6§ and

for 0 each fail to compute in 0.00033% of data sets.

4.2.1 Confidence Intervals for 6

The tables below are indexed by NV in the rows and n:m in the columns, indicating the
pair of sample sizes that the cell represents. In each cell, the pair of numbers represent
how many of the 36 settings have sufficient coverage probability for the two methods
— 95%C1psr(0) and 95%C Inons(0) respectively. (For example, a cell with entry
— 36,33 — indicates that 36/36 settings produce coverage probability at least .925
for 95%C Ipsr,(0) and 33/36 settings produce simulated coverage probability at least
925 for 95%C 1o (0).) To aid in pattern recognition, each cell has a background
color corresponding to whether or not it meets the coverage probability criterion.
Sample size settings where neither method meets the coverage probability criterion
have no background color. Sample size settings where both methods meet the coverage
probability criterion have blue background color. Sample size settings where only
95%C Inrons (0) meets the coverage probability criterion have gold background color.
Sample size settings where only 95%C'Ip,1,(0) meets the coverage probability criterion

have green background color.
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Sufficient Coverage Probability Tables

Table 4.5: Each cell entry represents how many of the 36 (F,6,0) with A > 5oy
correspond to 95%C Ipsr,(6), 95%C Ipon(0) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.

1:29 | 1:19 | 1:14 m 1:1 | 32 | 21

29,4 | 30,5

Table 4.6: Each cell entry represents how many of the 36 (F,0,d) with A < 5oy
correspond to 95%C Ipsr,(0), 95%C Lo (f) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.
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Tables [4.5 - [4.6 show that at least one method of constructing 95%CI(6) pro-
vides satisfactory coverage probability for some, but not all, sample size settings. In
particular, for large effect sizes, if treatment data is sparse (e.g. n < 15) then neither
method is apt to achieve the coverage probability criterion. Also, for small effect
sizes, if the total sample size is either very small (e.g. N < 60), very large, or control
data is proportionally insufficient then neither method produces sufficient coverage
probability. For all other sample size scenarios, the pseudo-likelihood intervals have
satisfactory coverage probability. For large effect sizes and large enough group sizes,
the method of moment confidence intervals are also sufficient.

Tables [4.7 - [4.8 below give a sample-size dependent recommendation for which
interval method to use by assessing average lengths when both methods satisfy the

coverage probability criterion.
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Recommendation Tables

| 13 | 12 | 23 | 11 ] 32 | 21 | 34 |

Table 4.7: Each cell entry represents the recommended method — 95%CIp,.(0) or
95%C o (0) (blank white cell means neither method is recommended). The rec-
ommended method achieves simulated coverage probability at least .925 for at least
33 of the 36 simulation settings where A > .50x. If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average interval length in more settings than the alternate method.

1:29 | 1:19 | 1:14 | 1:9 1:5 1:3 1:2 | 2:3 1:1 3:2 2:1 | 3:1

60
120
180
300
600

1200
2400
4800

Table 4.8: Each cell entry represents the recommended method — 95%CIp,.,(0) or
95%C Inopr(0) (blank white cell means neither method is recommended). The rec-
ommended method achieves simulated coverage probability at least .925 for at least
33 of the 36 simulation settings where A < .50x. If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average interval length in more settings than the alternate method.
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Tables [4.7 - [4.8 indicate that pseudo-likelihood 95%C(6) is always preferable
to the method of moment 95%C1(#). For the scenarios (e.g. n < 15, A > 5oy
or N > 2400, n/N > .40, A < .50x) where neither method is recommended, the
projection of confidence regions for (,§) onto @ can be used (see section [£.3). More
specifically, let the projected confidence interval include 6 if and only if there exists
a 0 such that (6',9") € 95%CR(0,5). This approach produces a 95%CIp,,;(8) with
conservative probability [since P (0 € Clp,,;(0)) > P (0 € CR(6,0))].

Parameter Specific Performance

While the sample sizes (N, m:n) alone can be observed and pre-determined, it is of
interest to identify any patterns that may exist regarding the kinds of parameter
values (F,0,9) that result in insufficient coverage probability. Figure below
identifies which (F,0,¢) results in simulated coverage probability too low (less than
925 for 95% confidence intervals) for the recommended method in Tables [4.7 - 4.8
(aggregated across all possible sample sizes). When using the recommended method,
97.72% of simulated settings result in satisfactory coverage probability while only

2.28% do not. The parameter settings of those 2.28% are displayed below.
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95%ClRrec(0): Number of (N,n:m) with Sim CP <92.5%
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Figure 4.17: Each square corresponds to one (F,6,0), as labeled by the axes. The
number in each square represents how many of the sample size settings (N, n:m) pro-
duce insufficient coverage probability in the simulation by using the recommendations

in Tables E - E

Figure indicates that achieving satisfactory coverage probability is most
difficult when ¢ is small and 6 is close to a boundary (either 0 or 1). In particular,
if # is near 1 then the lighter-tailed (Normal-tailed) distributions are more likely to
produce low coverage probability. However, if 6 is near 0, then the distributions
with a heavy and long upper tail are more likely to produce lower than nominal
coverage probability. For the other scenarios, the confidence intervals frequently have

satisfactory coverage probability.
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4.2.2 Confidence Intervals for §

The tables below are indexed by N in the rows and n:m in the columns, indicating
the pair of sample sizes that the cell represents. In each cell, the pair of numbers
represent how many of the 36 settings have sufficient coverage probability for the
two methods — 95%CIps () and 95%C Inonr(9) respectively. (For example, a cell
with entry — 36,33 — indicates that 36/36 settings produce coverage probability at
least .925 for 95%C'Ipsr,(0) and 33/36 settings produce coverage probability at least
925 for 95%C I pop(0).) To aid in pattern recognition, each cell has a background
color corresponding to whether or not it meets the coverage probability criterion.
Sample size settings where neither method meets the coverage probability criterion
have no background color. Sample size settings where both methods meet the coverage
probability criterion have blue background color. Sample size settings where only
95%C Injons (0) meets the coverage probability criterion have gold background color.
Sample size settings where only 95%CIp,1,(0) meets the coverage probability criterion

have green background color.
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Sufficient Coverage Probability Tables

1:2911:09 | 134 | 1.9 | 155 | 13 | 12 | 2:3 | 11 | 32 | 21 | 34 |

=
N
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=
00
o
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o
o

D
00
o
o

Table 4.9: Each cell entry represents how many of the 36 (F,6,0) with A > 5oy
correspond to 95%C Ipsr, (), 95%C Inopr(0) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.

(1:29 [1:19 | 104 | 1.9 | 1:5 | 1:3 | 1:2 | 23 | 11 | 3:2 | 21 | 3:1 |

=
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Table 4.10: Each cell entry represents how many of the 36 (F,0,6) with A < 5oy
correspond to 95%C Ipsr(9), 95%C Ipron(6) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.
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Tables [4.9 - show that at least one method of constructing 95%C1(0)
provides satisfactory coverage probability for all sample size settings. For one third
of the settings, both the pseudo-likelihood and method of moments meet the coverage
probability criterion. Scenarios where method of moments does not achieve sufficient
coverage performance include when the treatment group size is not large (e.g. n <
160). If the effect size is small, total sample size is large, and group allocation favors
the treatment group, then the pseudo-likelihood intervals for 4 may fail to achieve
satisfactory coverage probabilities.

Tables - below give a sample-size dependent recommendation for which
interval method to use by breaking the ties using average lengths when both methods
satisfy the coverage probability criterion. Since intervals for ¢ can occasionally be
very large for both methods (and can be infinite for pseudo-likelihood, see section
of the Appendix), all intervals for § are truncated above at 6Sx when comparing

lengths. (Recall that an effect size of 6 = 60y is a utopianly high effect size.)
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Recommendation Tables

1:2911:19 [ 1:14 | 19 | 1:5 | 1:3 | 12 | 23 | 11 | 3:2 | 2:1 | 34 |

=

N Il
o 00| N
o o|o

00
o
o

Table 4.11: Each cell entry represents the recommended method — 95%CIpsr(9) or
95%C Inrons(0). The recommended method achieves simulated coverage probability
at least .925 for at least 33 of the 36 simulation settings where A > .50y. If the
non-recommended method also meets the coverage probability criterion, the recom-
mended method has smaller average interval length in more settings than the alternate
method.

(129 | 1:19 | 1:14 | 1:9 | 1:5 | 1:3 | 1:2 [ 2:3 | 1.1 | 3:2 | 20 | 31

| 60]
| 300
| 600
| 2400

Table 4.12: Each cell entry represents the recommended method — 95%CIps(9) or
95%C Inopr(0). The recommended method achieves simulated coverage probability
at least .925 for at least 33 of the 36 simulation settings where A < .5oy. If the
non-recommended method also meets the coverage probability criterion, the recom-
mended method has smaller average interval length in more settings than the alternate
method.
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Tables - indicate that the pseudo-likelihood method is recommended
rather than method of moments for 95%C'I(9) in nearly any sample size setting except

when the total sample size is very large, group allocation favors the treatment group.

Parameter Specific Performance

While the sample sizes (NN, m:n) alone can be observed and pre-determined, it is of
interest to identify any patterns that may exist regarding the kinds of parameter
values (F,0,9) that result in insufficient coverage probability. Figure below
identifies which (F,0,¢) results in simulated coverage probability too low (less than
.925 for 95% confidence intervals) for the recommended method in Tables -
m (aggregated across all possible sample sizes). When using the recommended
method, 99.12% of simulated settings result in satisfactory coverage probability while

only 0.88% do not. The parameter settings of those 0.88% are displayed below.
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Figure 4.18: Each square corresponds to one (F,6,0), as labeled by the axes. The
number in each square represents how many of the sample size settings (N, n:m) pro-
duce insufficient coverage probability in the simulation by using the recommendations
in Tables - The squares with a green background indicate that more than
3/4 of the time, the insufficient coverage probability occurs when using the pseudo-
likelihood interval. The squares with a gold background indicate that more than 3/4
of the time, the insufficient coverage probability occurs when using the method of
moment interval.

Figure indicates that when 6 is near 1 and ¢ is small, then the recommen-
dation is also more likely to produce lower than nominal coverage probability. For
all other scenarios, the confidence intervals almost always have satisfactory coverage

probability.
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4.3 Confidence Region Performance Comparison

Analogous to the ideal confidence interval procedure, the ideal procedure for con-
structing a confidence region for (6,¢) is one that always captures the true parameter
pair with an arbitrarily small region. Since this is not possible with finite data sets,
a researcher may specify a sufficiently large success rate, called the confidence level
(commonly 90% or 95%), for which regions should capture the parameter. If multiple
methods of constructing a confidence region achieve coverage probabilities (1 — «)
at least as large as the researcher’s confidence requirement, then the method that
produces smaller areas is preferred.

Therefore the primary criterion to assess the performance of the confidence region
methods is whether coverage probability (1 — «) is sufficiently high across a sufficient
number of parameter space settings (F,0,0). (For 95% confidence regions, simulated
coverage probability at least .925 for at least 33/36 settings is defined as satisfactory.)
When both methods have satisfactory coverage probability, the method with the
smaller average area is preferred. (Areas are based on confidence regions truncated
by 0 < 6Sx since both confidence region methods compared below can be unbounded
in § [the method of moment region always is|.)

To carry out the performance comparison, 1000 data sets are generated under each
of the factorial combinations of the the settings in List E (and displayed below)

e N € {60, 120,180, 300,600, 1200, 2400, 4800}

n:m € {1:29,1:19,1:14,1:9, 1:5, 1:3, 1:2,2:3, 1:1, 3:2, 2:1, 3:1}

F € {Normal, Laplace, SkRNorm, SkRLap, SkL.LNorm, SkLLap}
6e{2.5,.8}

5 {51,253}

In the sections that follow, the performance is summarized across all (F,6,6) to

provide a recommendation on which method to use. The 36 simulation settings for
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which 0§ < .50x and the 36 settings for which #) > .50 x are assessed separately. An
assessment is done for each pair of sample sizes (N, n:m) so that a sample-size de-
pendent recommendation can be given. The two methods of constructing confidence
regions compared are the method of moment region corresponding to 95%C Iysonr (A)
and the pseudo-likelihood 95%C Rpsr. (0, §). (This method of moment region is chosen
because it is more competitive with 95%C Rp,., (0, ) than the region found by inter-
secting two confidence intervals. See section of the Appendix for a comparison
of the two types of method moment regions described in section . Note that very
rarely confidence regions cannot be computed, so performance measures (coverage
probability, average area) are computed among data sets where the confidence re-
gions can be produced. The method of moment region never fails to compute. The
pseudo-likelihood region fails to compute in 0.00033% of data sets.

Tables - below are indexed by N in the rows and n:m in the columns,
indicating the pair of sample sizes that the cell represents. In each cell, the pair of
numbers represent how many of the 36 settings have sufficient coverage probability
for the two methods — 95%C Rps.(0,6) and 95%C Rarona(0,9) respectively. (For
example, a cell with entry — 36,33 — indicates that 36/36 settings produce cover-
age probability at least .925 for 95%C Rps (0, 6) and 33/36 settings produce cover-
age probability at least .925 for 95%C Ryonra(6,9).) To aid in pattern recognition,
cells have colored background according to whether or not they meet the coverage
probability criterion. Sample size settings where neither method meets the cover-
age probability criterion have no background color. Sample size settings where both
methods meet the coverage probability criterion have blue background color. Sample
size settings where only 95%C Ryonra(6,0) meets the coverage probability criterion

have gold background color. Sample size settings where only 95%C Rpsr (6, ) meets
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the coverage probability criterion have green background color. (Section of the
Appendix verifies that these recommendations may be applied to 90% confidence

regions as well).
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Sufficient Probability Tables
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Table 4.13: Each cell entry represents how many of the 36 (F,0,d) with A > 5oy
correspond to 95%C Rps1.(0,6), 95%C Ryrona (6, 9) that have simulated coverage prob-
ability at least .925. Color coded backgrounds emphasize when this number is at
least 33 - neither method: white, both methods: blue, pseudo-likelihood only: green,
method of moments only: gold.

31,36 | 29,36 | 30,36
27,36 | 27,36 | 25,36

| 300
| 600
| 1200]
| 2400]

Table 4.14: Each cell entry represents how many of the 36 (F,6,6) with A < 5oy
correspond to 95%C Rps1.(0,6), 95%C Rarona (0, 9) that have simulated coverage prob-
ability at least .925. Color coded backgrounds emphasize when this number is at
least 33 - neither method: white, both methods: blue, pseudo-likelihood only: green,
method of moments only: gold.
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Tables - indicate that at least one confidence region provides satisfac-
tory coverage probability for nearly any sample size setting. For most settings, both
the pseudo-likelihood and method of moment confidence regions produce satisfactory
coverage probability. If treatment data is sparse (e.g. n < 30) then the method of
moment region may be unsatisfactory and if it is very sparse (e.g. n < 10) then the
pseudo-likelihood may be as well. If the total sample size is very large and the group
allocation is nearly balanced or favors the treatment group, then the pseudo-likelihood
coverage probability may be unsatisfactory — particularly if the overall effect size is

small.
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Recommendation Tables

| 1:29 | 19 |14 | 1.9 | 15 | 13 | 12 [ 23 | 11 | 32
|

MoM | MoM | MoM

Table 4.15: Each cell entry represents the recommended method — 95%C Rps1, (6, 0)
or 95%C Ryron (0, 6) (blank white cell means neither method is recommended). The
recommended method achieves simulated coverage probability at least .925 for at least
33 of the 36 simulation settings where A > .50x. If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average area in more settings than the alternate method.

MoM | MoM | MoM | MoM MoM | MoM | MoM
| MoM |

| 300]
| 600]
| 1200]
| 2400

Table 4.16: Each cell entry represents the recommended method — 95%C Rp,1,(6, ) or
95%C Rprons (0, 6). The recommended method achieves simulated coverage probability
at least .925 for at least 33 of the 36 simulation settings where A < .50. If the non-
recommended method also meets the coverage probability criterion, the recommended
method has smaller average area in more settings than the alternate method.
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Tables - show which confidence region method is recommended for
each sample size setting. For large effect sizes, the pseudo-likelihood regions are
preferred for all sample size settings except sometimes when m < 40 or when N >
4800, n/N > .75. For small overall effect sizes, the pseudo-likelihood method is
almost always recommended except sometimes when N is very small or NV is very

large with group allocation that is nearly even or treatment heavy.

Parameter Specific Performance

While the sample sizes (N, m:n) alone can be observed and pre-determined, it is of
interest to identify any patterns that may exist regarding the kinds of parameter
values (F,0,9) that result in insufficient coverage probability. Figure below
identifies which (F,0,d) results in simulated coverage probability too low (less than
.925 for 95% confidence regions) for the recommended method in Tables -
(aggregated across all possible sample sizes). When using the recommended method,
98.97% of simulated settings result in satisfactory coverage probability while only

1.03% do not. The parameter settings of those 1.03% are displayed below.
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95%CRRec(0,0): Number of (N,n:m) with Sim CP < 92.5%
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Figure 4.19: Each square corresponds to one (F,6,0), as labeled by the axes. The
number in each square represents how many of the sample size settings (N, n:m) pro-
duce insufficient coverage probability in the simulation by using the recommendations
in Tables - The squares with a green background indicate that more than
3/4 of the time, the insufficient coverage probability occurs when using the pseudo-
likelihood region. The squares with a gold background indicate that more than 3/4
of the time, the insufficient coverage probability occurs when using the method of
moment, region.

Figure indicates coverage probability may drop below nominal when § is
small. Particularly some difficulty arises if 6 is close to 1 and F' has lighter (normal)
tails or if 6 is small and F' is skewed right. For the other scenarios, the confidence

regions frequently have satisfactory coverage probability.
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Chapter 5

Conclusion

5.1 Example

Note that a small portion of section[5.1) below is identical to content from previously
published work (Lubich et al., 2022).

To conclude exploration of inference approaches for , consider the following
demonstration of the recommended analysis of an example blood pressure data set
provided by Kaiser Permamente’s Electronic Blood Pressure Study (Green et al.,
2008). In this study m = 246 patients did not receive collaborative care manage-
ment support provided by clinical pharmacists via the Web, while n = 237 patients
did. Patients were randomly assigned to the two groups. Summary statistics of the
reduction in DBP for the two groups are X = 3.793,5% = 71.78,Y = 6.354, 52 =
89.73, N = 246 + 237 = 483. Figure [5.1 below displays histograms of the responses

for the two groups.
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Figure 5.1: Reduction in Diastolic Blood Pressure by Group.

Consider an approach to modeling the data with ([1.1]). In this context, § represents

the proportion of hypertensive patients that respond to additional pharmacist inter-

vention and ¢ represents the magnitude of the reduction in DBP for those responding

patients. The observed difference in average reduction in DBP is Y — X = 2.56,

which under the naive assumption that # = 1 estimates the effect of the pharmacist

intervention for the entire treated population. Section [4.1] indicates that the pseudo-

likelihood point estimate is always the preferred method. Sections [4.2] and [4.3| provide

scenario-dependent recommendations for the preferred method. Since Y — X = 2.56

is an estimate of A and 2.56 = .3Sx < .5Syx, the data suggests that A < .5ox.

Therefore Tables [4.8, [4.12] and [4.16] provide the recommended method for con-

structing confidence intervals and a confidence region, respectively. The sample size
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scenario here is nearest to the (N = 600,n:m = 1:1) table entries and thus each
table recommends use of the pseudo-likelihood method for confidence intervals and a
confidence region, respectively. (While the data strongly suggests that A < .50, the
corresponding tables with A > .5ox also recommend the pseudo-likelihood method
for all inference procedures).

The point estimate for is @ po, = (0.48,5.93), with an estimated average effect
size of A pst. = 2.85. The point estimate indicates that just under half of patients
benefit from the pharmacist intervention and the magnitude for those who benefit
is about a 6 mmHg reduction in DBP. For patients who do benefit, the estimated
treatment effect gpsL = 5.93 is more than double the naive estimate Y — X = 2.56
that assumes an effect on the entire treated population. To test the model’s goodness
of fit, the estimated probability integral transform is applied to the treatment data
using the estimate @ psr, and the emperical CDF of the control data ﬁm forming the
set of U; = (1 — g)ﬁm(yl) + gﬁm(yl — ;5\) for ¢ € {1,...,n}. This follows approximately
a uniform distribution as shown in Figure [5.2] indicating that the model is a good

fit for the data.

PIT Uniformity Goodness of Fit Check

o
> o
e
o 8
=)
o
o 2
C
© [ T T T T T T T 1
0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8 8/8
Ui

Figure 5.2: Approximately Uniform PIT Transformation of Treatment Data.
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Table [5.1 below displays 90% and 95% confidence intervals for the parameters

of interest.

Level C1(6) C1(6)

90% [.23,.72] | [3.6,10.0]

95% [.19,.84] | [2.6,11.7]

Table 5.1: Pseudo-likelihood confidence intervals.

While the treatment effect is only fully characterized by the pair (6, §), it is possible
that the primary interest may be inference on a single parameter. Consider a scenario
where 6 alone may be of interest. Suppose that Kaiser Permanente has already
implemented the additional pharmacist intervention as a component of their standard
care for the population of their members. If a large proportion of patients experience
some benefit from the treatment (say, at least 85%), then it may not be worthwhile
to look for alternate treatment options for the small subset (e.g. less than 15%) of
non-responders for whom the availability of additional pharmacist care has no effect
on reducing DBP. However, if only half of members benefit (and half do not) then
it may be worth trying to identify features of members who would benefit and those
that would not. Since the 90%C1(6) = [.23,.72] indicates that between 23% and 72%
of patients respond (meaning that between 28% and 77% do not benefit), there is
evidence of a substantial proportion of treated patients do not benefit. Therefore, it
may prove useful to characterize the kinds of patients who will not benefit from the
intervention so that they may be cost-effectively referred to a treatment option that
is more likely to provide a reduction in DBP.

Similarly, consider a scenario where ¢ alone may be of interest. Suppose Kaiser al-
ready has confidence in their ability to later identify which sub-population of members

will benefit from a treatment and is only interested in determining if the treatment
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has a clinically meaningful effect for the correct sub-population to be referred to this
service. Then 90% C'lpsr(5) = [3.6,10.0] provides the desired information, indicating
that the effect of the clinical pharmacist support is between a 3.6 and 10.0 mmHg re-
duction in DBP. For example, if a 3.0 mmHg reduction in DBP is considered clinically
meaningful then the confidence interval indicates that this treatment has a clinically
meaningful effect on responding patients.

To quantify the uncertainty surrounding the full treatment effect (0,9) consider

Figure[5.3 below that displays the 90% Pseudo-likelihood confidence region for (6, ).
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Figure 5.3: 90% Pseudo-likelihood confidence region for (6,0). The blue dot near the
center of the region is (6,9)p,, = (0.48,5.93).

Table below displays points that encompass the edge of the 90% Pseudo-

likelihood confidence region for (6, 9).
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o 0 4y 7 o O,

8.0 .15 10.0 727 .89
6.0 .2 114 ST 3 .95
4.6 3 10.7 B35 4 91
3.8 4 96 26 5 .82

3.3 .5 85 20 6 .74
3.0 6 7.5 A7 7 .64
28 .7 6.3 A5 8 .57
27 8 5.1 A5 9 46

28 9 41 A5 10 .37
28 94 32 A7 11 .28

20 114 .21

Table 5.2: The left side of the table provides the range of ¢ that lie in the 90% pseudo-
likelihood confidence region for an array of § € {.15,.2,.3,...,.9,.94}. The right side

of the table provides the range of # that lie in the confidence region for an array of
§€4{2.7,3,4,...,11,11.4}.

It is important to consider the practical implications of a treatment effect in the
confidence region. Consider a few select descriptions of plausible treatment effects
from the confidence region. The treatment may only benefit 15% of patients by a
magnitude of 8 mmHg. The treatment may benefit 94% of patients with only a
3 mmHg magnitude reduction. The treatment may benefit 60% of patients with a
reduction of 7.5 mmHg. The treatment may benefit only 20% of patients but have an
effect of reducing DBP by 11.4 mmHg. An important observation about the region
is that it does not contain (6,d) = (0,0) nor does it contain any points for which
0 = 1. Together these observations indicate that there exists a subset of the treated

population that does not benefit from the treatment and a subset that does.
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5.2 Future Work

More focused exploration on hypothesis testing could prove useful. In particular, it
would be interesting to see if a randomization test based on this pseudo-likelihood
estimator provides a more powerful test for a treatment effect — Hy: 60 = 0 <—
F(u) = G(u) for all u — than standard non-parametric tests such as an asymptotic
Z-test or Wilcoxon Rank Sum test. Also, it would be of interest to investigate a
formal test of Hy: 6 = 1 by using the pseudo-likelihood ratio test statistic (also
with a Satterthwaite approximation for finite-samples). Such a hypothesis test could
function as a model-checking test to verify that should be used rather than a
pure shift alternative. To see if the pseudo-likelihood’s efficiency gains over method
of moment translate to a multi-stage clinical trial setting, a group sequential clinical
trial setting as described in Friel (2022) could utilize the pseudo-likelihood approach.
Since all inference procedures in this dissertation fall under the frequentist umbrella,
bayesian point estimation and credible regions may be a worthwhile research direction.

An extension ([5.1)) of model allows for the responder distribution to be a

location-scale change from the control group rather than assuming only location-shift.

Gu) = (1 - 0)F(u) + OF (“;5) (5.1)

Another extension (5.2)) of model (1.1]) considers the possibility that, in addition to
the subset of individuals who do not respond to the treatment, there may also be a
subset of individuals for which the treatment is harmful (when contraindications have

yet to be established). Such a model can be written as

G(u) =m_1F(u—0_1)+ mF(u) + mF(u— 01), (5.2)
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where m; > 0 for alli € {—1,0,1} and 7y + 79 + m; = 1 while 6_; < 0 and é; > 0.
Without loss of generality, harmful effects are represented by d_; and beneficial effects
are represented by ;.

It might be interesting to see how the inference procedures in this dissertation
perform for distribution (£) other than the 6 considered in the simulations. Note that
simplifies to if v=1 and simplifies to when (7_1,d_1) = (0,0).
It would be interesting to see how useful the inference procedures on are if
is true and 7 is slightly different from 1, or if is true and (w_1,d_1) are relatively

small.
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Appendix

A.1 Proof of Moments of G

To derive equations (2.6]) - (2.9), consider the following relationship from model (1.1))
YL (1-2)X + Z(X +6)

where Z ~ Bernoulli(f) independent of X ~ F. This relationship holds because

Y ~ G from (1.1)). Thus,

2.6

2.9

py = E[Y] = E[(1 — 2)X + Z(X + )]

= px + 60.

To calculate (2.7), we first attain E[Y?] in terms of (F,0,0). Letting a = (1 — Z)X

and b= Z(X +9)

EY?|=FE[(a+b)’] = E[(a® + ab+ b?)]

=F [az + 62]

= (1—0) E[X?] + 0F [E[X?] + 2ux6 + 6]

= B[X?) 4+ 2ux05 + 052
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Notice that the terms for which both a and b have a non-zero exponents - k, and k;
- are 0 because (1 — Z)*Zk = ( with probability 1 whenever k, > 0 and k, > 0.

Then, we have that

oy = E[(Y — py)’] = E[Y?] - B[Y]?
= E[X% + 200px + 06 — (1% + 2001x + 6%62)
= (B[X?] = px) + (0 - 6°)¢”

= 0% +0(1 — 0)5°. 2.7
To calculate (2.8)), first attain E[Y?] in terms of (F,6,0).

E[Y?] = E[(a +b)’]
= Ela® + 3a*b + 3ab® + b°]
= Ela® +b*]

= E[X?] + 300 E[X?] + 300 ux + 05°,

again noting that a*b* = 0 if k, > 0 and k, > 0. Then, we have that

faey = E((Y — piy)’] = E[Y®] = BE[Y?|puy + 2415
= (E[X?] = 3E[X % ux + 2u%) + 05° — 30%5° 4 26°5°
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To calculate (2.9)), we first attain E[Y?] in terms of (F,6,9).

EY'] = E[(a+b)"] = E[a" + ']

= B[X* + 400 E[X?] + 600° B[ X?] + 405° ux + 06*,
again noting that a*sb* = 0 if k, > 0 and k, > 0. Then, we have that

faey = E[(Y — py)'] = B[Y'] — dpy E[Y®] + 643 B[Y?] — 3y,
= (E[X"] — 4px E[X°] + 6p3% E[X?] - 3u%)
+ 606 B[ X2 4 05* — 60013, — 606> E[X?)
— 40%6* + 60%0° 1% + 66°0* — 305
= flgex + 06" [(1 — 40 + 60% — 30°) + 6(1 — 0) (0% /5°)]
= flaes + 06" [((1 = 30)(1 — 6)* +6(1 — 0)) + 6(1 — 6)(0%/6%)]

= flaes + 0(1 — 0)6* [(1 —30)(1 — 6) + 6 + 6o% /6°] . 2.9)
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A.2 Consistency

Consider first a proof of proposition @, consistency of both f and ¢ in estimating
0 and 0 respectively. The proof shows that the + operator and ey modifications do
not negate the natural consistency of the moment estimator so long as ey — 0 as
m,n — oo. First consider f (X,Y, 52, 5%), an approximation of )

R(PCEL N
(Y—X)%_-FGN

Y VvV Q2 2\ _ (SXQ/_S_%() !
f(X,Y,Sy,SX)—{lJr—(?_y)Q}

If m — oo and n — oo, then clearly f(7,7, S%,Sg() 29 since (7_7)2 I
2 2

(y — px)?, (5% = %) 5 (0f —0%), and 6 = {1 + (UY—UX)Q

(MY —MX)

to show that (S2 — S%);. 2 (6% — 0%) and ((7 — Y)i - €N> B (uy — px).

-1
} . Thus it suffices

Since (S — S%) 2 (03 — 0%), this means that V € > 0 and ¥V w > 0, 3 {mq, no}

such that V. m > mg and V n > ng

P((52—5%) — (0% —0%)|>¢) <w

@P((S%—Sg()—(a%—ag() <—e)—|—P((S}2/—S§()—(032/—0§() > €) < w.
Also,

P<|(S§—S§()+—(J%—J§()|>e><w

s P((S2-5%2) —(62 —02) < —e)+P((S2—-5%2) — (02 —02%)>¢€) <w.
<(Y x)4 % X Yy xX). % X
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SO since
P((82—5%), — (0} —0%) < —¢) < P (8%~ $%) = (o} — 0}) < o),
this means that
(S} = 8%) B (0F —0%) = (S = %)+ = (o7 — o).

An analogous argument shows that (? — 7)1 % (py — pux). Therefore
((7 — X)i + € N) S (uy — px) so 0L 6. The consistency of 5 immediately follows
because § = (Y — 7)+ /0 and 6 = (y — px) /0.
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A.3 Asymptotic Normality

Here is a proof for the asymptotic normality and derivation of the asymptotic variance

of @ and 4. First consider proposition |2.2.3 for é\’,

L M
(Y—X)a_—i‘GN

= 7 o2 2y (5 =53\
f (XY, 52,52) _{1+ (7—7>2}

Using a first order taylor series expansion gives

f(X.Y,S%,57) =

2 2 of % of %
e X - e -
f (/*LXa/'LY7O-X70-Y) + OX X ( ,LLX) + oY . ( 'uY)
of of
" 05% Sy=o%, (Fx =) + 5% |52 -0 (85 =ov) + ol

_ o (08 =% 177 f 2008 — Ry ~ )
= F (v 03, o)+ {1+ (,UY_,UX)2} { (my — px)?
2(0% — ox)(Y — py)
" (y — px)?
n S% —o%
(,UY - ,UX)2
ol — S%
(ny — MX) } " 0(1) (3)

Now since X, Y, S%, 5% are all unbiased estimators of iy, py, 0%, 0%, respectively,
Elf (X,Y,S%,5%)] = 0 with accuracy to the first order expansion. Furthermore,
since that converge in distribution to a normal distribution by the central limit the-

orem, f (Y, Y, 5%, S%) also converges in distribution to a normal with asymptotic
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variance equal to Var (f (Y, Y, S%, 532/))

Now to derive the variance of § by taking the variance of , begin by noting
that any covariance terms between X and Y are 0 because X and Y are independent.
Also, utilizing the following variance (Cho et al., |2005) and covariance (Dodge and

Rousson, (1999; Zhang, |2007) results

Var (5%) = % (,u46 — Z : 304) (4)
Couv (X, 57) = £, (5)

provides a first order taylor series approximate variance of ¢

Var (9) =

(14 0(1)) {1 + M}_4 {M (ﬁ + ﬁ)

(1y = px) (hy —px)® \m — n
_ 4(012/' - Og() (:u?)cac + MBCy)
(hy — px)® N m n
R R (T = B (=12 "
(py — px)* m n '

The special case of m = n gives the asymptotic variance formula in (2.15)) as desired.

Now to prove proposition |2.2.3 for the case of 5

~ A (S% — S%)+
=== (7 X)+{1+(7_7)i+w}
YV 2 ) (V_ ¥ (Sy —S%)
g(vast:SX)_(Y_X){1+ (7_7)2}
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Using a first order taylor series expansion

g (77 ?7 S}Q/a ng) =

dg - dg =
2 2
9 9 9 —'I_ pp— X - + R— -
g(px, py, 0%, 0y) X qux( fix) 57 ?:;w( fiy)
dg dg
+ @ sg(ag{(sgf —o%)+ @ oo (S§ —ov)
+o(1)
o2 — o2 —
= g(ux, py, 0%, 0%) + (ﬁ - 1) (X = px)

+o(1). (7)

Now since X,Y,S%, 52 are all unbiased estimators of ux, iy, 0%, 0% respectively,
Elg(X,Y,S%,5%)] = ¢ with accuracy to the first order expansion. Furthermore,
since X,Y, 8%, 9% each converge in distribution to a normal distribution by the cen-
tral limit theorem, f (7, Y,S%, 532/) also converges in distribution to a normal with

asymptotic variance equal to Var (f (X,Y,5%,5%)). Now to derive the variance of
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5 by taking the variance of

wran{ (H=m-1) (34 %)
L9 (1 oy —o% ) (Hsea /M + [t3ey /1)

(hy — px)? (1y — px)
m-—3 , ,
., 1 (facx — — 10X) N (Haey — "=30) -
(y — px)? m n '

The special case of m = n gives the asymptotic variance formula in (2.16)) as desired.
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A.4 Simulation Settings

The performance of the methods in the coming chapters are compared across an
array of the simulation settings (F,6,9). Robust methodology is desired so that
performance is satisfactory across the parameter space, which motivates the following
primary simulation settings on which to measure performance.
e F' € {Normal, Laplace, Skewed Right Normal (SKRN), Right Skewed Laplace
(SKLL), Skewed Left Normal (SKLN), Skewed Left Laplace (SKLL)}

— All distributions are from the 5 parameter skewed generalized T distri-
bution with A = 0 for symmetric distributions, A = .5 for right skewed
distributions and A = —.5 for left skewed distributions. Distributions from
the generalized Normal family have parameters p = 2, and ¢ = oo while
those from the generalized Laplace family have parameters p = 1 and
q = o0.

— pux =0and ox =1 for all F.

e {258}
e 5 e{51,2,3}

The six choices of F' are chosen to allow for a variety of distributional shapes — in
particular to vary tail heaviness and skewness. This distribution has multiple param-
eterizations. A vignette by Davis (2015), which can be accessed in R programming
by the command vignette(“sgt”) , displays the parameterization as well as much of
the content summarizing this family of distributions described here. Consider how
the 5 parameters of the Skewed Generalized T Distribution (u, o, A, p, q), introduced
by Theodossiou (1998), allow for this kind of flexibility. The skew of the distribution
is controlled by —1 < A < 1 where A < 0 for skewed left distributions, A = 0 for sym-

metric distributions, and A > 0 for skewed right distributions. The parameters p > 0
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and ¢ > 0 jointly control the tail behavior (with smaller values of each corresponding

to heavier tailed distributions). The density is given by

1
|z — p+mfP 41 e
(vo)P(Asign(z — p+m) + 1)P

(9)

fsar(;p, 0.\, p,q) = p{ 200¢" P B(1/p, q) <q

where B(-,-) represents the Euler Beta function

L(2)C(y)

B(z,y) :/0 N1 =) dt = T

and

m = (B(1/p.q))"" (200Ag" " B(2/p,q — 1/p)),

—1/2
—1/p

v B(1/p,q) B(1/p,q)

(33 +1) (B(3/q,q — 2/p)) — AN (B<2/q,q — 1/19))2]

so that p represent the mean and o is the standard deviation so long as they exist
(the h'" moment exists if pg > h). See Figure below for families of distributions
that are special cases.

Specifically, in the case of ¢ — oo, we have the six distributions used for the

simulation shown in Table [A.1] below.
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5 parameter SGT

4 parameter
p=1 =12
4 =2 q—= \
3 parameter SLaplace SCauchy
=0 p=1 p=2 =0 G Q=12 =0

2

Figure A.1: Diagram of Skewed Generalized T Family Tree

A

-9 0 )

2 | Skewed Left Normal | Normal | Skewed Right Normal

1 | Skewed Left Laplace | Laplace | Skewed Right Laplace

Table A.1: Distributions used for Simulations

Figure displays the pdfs for the six distributions in the simulation.
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Figure A.2: Distributions used for Simulation
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Consider the intuitive measure of tail heaviness in that if lim, 1o fi1(x)/f2(z) =0
then fy is said to have a heavier upper tail than f;, while if lim,_,_ fi(z)/f2(x) =0
then f5 is said to have a heavier lower tail than f;. If both conditions are satisfied,
then f5 is said to be heavier tailed than f;. Note the difference in the distributions
for the Normal tails (Skewed Normal Family p = 2) and the Laplace tails (Skewed
Laplace Family p = 1) by considering the special cases of @ for the Skewed Normal

and Skewed Laplace families presented below.

: —pml Y
orm\ s A) = n ! - |x ) - L
fSN (.77, M, 0, ) (U U\/E) exrp ( Ung(l + ASZgTL(I — U + mn)) ( 0)
where
20,0\
- (1)
and
v, = V21 [(m — 8\ + 37A?)] 12 (12)
Similarly,
B — o+ my|
o o) = (o) B [z —p 1
fst p(~r71u70-7 ) = (v02) "exp < vo (14 Asign(x — p+my)) (13
where
m; = 21)[0')\ (14)
and
o= [2(14 23] (13)

Now to compare the tails of the distributions,
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2
TU,0,) texp { — |2 = fn -
fsNorm (T finy Ty An) (/o) p{ Vn0n (1 + Apsign(z — pin, + my,))

fsLap(; u, 00, ) (2vlal)_1exp{— |xfuz+mz| }
vo (1 + Nsign(z — py + my))

_ o { (e mn>|2) o=t ml)
(16)

where ¢, = v202(1 + \,sign(x — p, +my))? and ¢ = voy(1 + Nsign(z — w + my))

for brevity.

2u,07 p { —Cl(l‘2 = 2(pn — M) T + (ftn — mn>2) + ez — (= mu)] } . (17)

- ﬁvnane CnCl
Note that there exists (L, U,, L;, U;) such that 0 < L, < ¢, < U, <ocand 0 < [; <

¢ < U; < oo for all x (because —1 < A < 1). Thus,

fSNorm(x; Hny On, /\n)

= limg_+oexp(—x%) = 0. 18
fsLap(; pa, 01, \r) —oolp(—T) (18)

limx%ioo

Therefore, the Skewed Laplace Distribution has heavier tails than Skewed Normal
Distribution.

The settings of 0 for the simulation study cover situations where the treatment
is only effective on a small proportion of the treated population (6 = .2) to the case
where a large majority do (f = .8). The settings for § are chosen to cover a range
of treatment effect sizes for the responders that is large enough to be of practical

importance (.50x < ¢) but also realistic (6 < 30x).
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A.5 Interpreting Simulation Results

The table below provides some examples for appropriately identifying the simula-
tion results that communicate the performance statistics relevant to a novel scenario
(where possibly 6 < 0 or ox # 1). The column on the left of Table indicates
scenarios that may reflect a real-life data set, while the column on the right indicates

the simulation results corresponding to the scenario on the left.

m n F, 0, o, o, m n F, 0, o0 oy

90 90 SkR Norm 0.8 3.0 6.0| 90 90 SkR Norm 0.8 0.5 1.0
480 720 SkL Norm 0.2 -2.0 1.0| 480 720 SkR Norm 0.2 2.0 1.0

1920 2880 SkR Lap 0.5 -1.0 0.3]1920 2880 SkL Lap 0.5 3.0 1.0

Table A.2: Corresponding settings for interpretation. Let r subscript a real scenario
and s subscript the corresponding simulated scenario in List [3.1.
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Control Group

200
]
]
T

Frequency
100
|

50

O —
| | | | | | | |
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5
Response (TSH — mU/L)
Treatment Group
o
lo p—
3 o
[ O
() -
>
o
2 o _|
L 0
O —

[ I I I I I I |
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Response (TSH — mU/L)

Figure A.3: The “real” data in the histograms represents a scenario for treating
hypothyroid that corresponding to the left side of Table in the last row.

Note that in the “real” scenario that results in data as displayed in Figure
MSE(8,) (for example) is the same as the simulation setting on the last row of the
right column (m = 1920, n = 2880, F, ~ SkLLap, s = 0.5, §; = 3.0, ox, = 1.0) and
has MSE(?(\T) the same as on the from the simulated setting, where I/(\r = &/SXT

—

(and K, = 6,/Sy.). Note that, even though the data is clearly skewed right in this
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scenario, the simulation results that communicate the relevant performance metrics
(e.g. VM SE, coverage probability, average interval lengths, etc.) are from the skewed
left Laplace distribution. Similarly, even though the magnitude of 9, may seem small
9 = —1, this is a pronounced effect relative to the natural variability in the data (as
observed in Figure , so the appropriate simulation to reference for performance
metrics has 0, = 3. The scenarios correspond to each other because both of the
following are true.
1. Both the real data set and the corresponding simulation settings have a treat-
ment effect in the opposite direction of the skew in F' (F, skewed right and

0, <0 <= F; skewed left and 5 > 0).

2. The magnitude of the treatment effect relative to the natural variability in F'

is the same (8, /ox, =1/0.3=3=3/1=4,/0x,).
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A.6 Area Calculations for Confidence Regions

The area of pseudo-likelihood confidence regions is calculated from a dense grid of
points that encompass the region. To identify such a dense grid of points that
encompasses the region, a lighter grid search is first done across the set of 6 €
{.01,.02,...,.99,1.0} x § € {.15%,.25x,...,5.95x,6.0Sx} to compute the pseudo-
likelihood test statistic at each grid point. The four boundaries of the dense
(100 x 100) grid are selected to encapsulate the confidence region as follows.

e The upper boundary for 6 is selected as the smallest 6, such that all (6,¢) with

0 > 0, have T(g.5) > c1X7, 1o

e The upper boundary for 0 is selected as the smallest §, such that all (6,¢) with

§ > 6, have T(g’(;) > clxghl_a.
e The lower boundary for 6 is selected as the largest 6; such that all (6, ) with

0 < 6; have f(M) > ClX(211,1—a-
e The lower boundary for ¢ is selected as the largest §; such that all (6,¢) with

0 < 9; have j\j(gﬁ) > Clxgll,l—of

Therefore, by construction, all edge points of the dense region are not contained
in the confidence region. The area is calculated as the area of the rectangular region
formed by the dense grid search, A = (0, — 6;)(d, — 9;), times the proportion of the
dense grid points contained in the confidence region with a half-weight adjustment
given to the edge points for improved numerical accuracy (see Figure below).
Let X be the number of points in the dense grid search that are in the confidence

region. Let K be the number of grid points, K = 100 x 100 = 10, 000.

X X

1
Area CR(0,6)pst, = 5 (? + T — 400

) (6, — (5, — 5) (19)
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Grid Search to Numerically Evaluate Area

1.0 A
0.8 -
o 0.6 -
0.4 -
0.2 -
0.0 L | | | |
0.0 0.5 1.0 1.5 2.0
o)
® Non-Adjusted ® True Area ® Adjusted
® ® @

| | | | |
0.482 0.484 0.486 0.488 0.490

Area

Figure A.4: Circle with radius r = .395 and center at (0,0) = (.5,1.0). Grid rect-
angular region is defined by 6, = 0.1, 6, = 0.9, §; = 0.6, §, = 1.4. True area is
mr? = 0.4902, denoted as the red bulls-eye in the lower graph. The blue “Adjusted”
number represents the numerical approximation to the area (0.4910) from equation
, while the “Non-Adjusted” number is the proportion of grid points that are inside
the circle times the area formed by the rectangle (0.4810).
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For the method of moment confidence regions, the area is an analytical expression
of the boundary equations. The exact calculation depends upon how the boundaries
intersect each other. Let A; and A, represent the lower and upper bounds of A used
to construct the region. Let ¢; and J, represent the lower and upper bounds of §
used to construct the region. Since some confidence regions can have infinite area,
the simulations in section |4.3| compute areas of the regions truncated at a maximum
feasible value of § = 6Sx. Let §, be the minimum of the computed upper bound
of the confidence interval for § and 6Sx. For the confidence regions that only use
Clyon(A), naturally 6, = 0 and 6, = 6Sx. The 9 scenarios for the possible forms of
confidence regions listed below and shown in the Figure |A.5|
Ap=0, & <Ay 0, <A,

A=0, 6 <Ay, 6, >4,
A =0, 0> Ay, 0, >A,
A >0, 6 <Ay, 6, <A
A >0, 0 <Ay, A<d, <A,
A >0, 6 <Ay, 6, > Ay
A >0, 0> A, 6, <A,
Ar>0, A <6 <Ay, 0, > A,
A >0, 0> Ay, 0y > A,

© P N o WD
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0 6I 6u 0 6I 6u6 0 6I 0 6u
A Ay Scenario 4 ; A Ay Scenario 5 ; A Ay Scenario 6
Q 0 \ \ 0 \
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06I6u 0 0 6I 6u 0 0 6I 0 6u
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Figure A.5: Nine different scenarios for Method of Moment confidence regions.

The corresponding formulas for each of the confidence region areas are as follows
1. (0, — &)
0
2. (Ay— )+ A —
( 1) + Aulog ( A )

3. Aylog (2—”)
l
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Below is the derivation for area computations (recall that A = 66).

mf/“/1@%
. d
= 0
/51 |9 0d5
Ou
:/1i
5 do

=5
= 05—s"

= (6u — &) (20)

A/&
m—/ / @%+/‘/ ww
A/a
= (A=) + /,/ ww

=(Ay — ) + /A 5 d(S
= (A, — &) + Aylog(8)|5= 5“

= (Au - 51) + Aulog(du) - Aulog(Au)

= (Au = 0) + Aulog (Z—Z) : (21)
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Ou Ay

/5
5 Jo dG d(S

6u
_/51 Kl d5
= Aulog( )|5 51

- Aulog(éu) - Aulog((sl)

—Alog(i)
!

A4 =0 (because [0, 9,] and [A;, A,] are mutually exclusive).

= [6 — Addog(8)] [5=,

= {5u — AllOg(du)} — {Al — Allog(Al)}

= (6, — A) — Aylog (Zl)
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(23)
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Ay gl Su Au/a
A6 = -
=L s d9d(5+/Au/l d9d5
Su A/é
=<¢(A,— A Alog( u)}—i—/ /
{( = A NN d0d6
A, WA, A d
(A, —A)— A Bu L d
{( w8 log( z>}+/Au 5 5do
:{(Au—Al Alog( “>}+
l
A

[Aulog (0u) = Adlog (0u)] — [Aulog(Au) — Arlog(Ay)]

= (A, —A) - AlOQ(il)+Al0 <iu> Alog(iu) (25)

A7—/ /
5 Jays d9d6

= [0 — Alog(9)] [5=5
= {0u — Audog(du)} — {0 — Aulog(01)}

= (6, — &) — Ajlog ((;) (26)

Ay 5 Au/6
dd
as= | /Al/a it L, Vs
A Bu/s
A u
{ llog( )}+/ /,/5 W
Au “ u Ald
{ )= A’log<5)}+/AuT 5 ds

!
A, Ou Ou
(A, — &) — Ajlog ( 3 + Aylog (A_u) — Ajlog <A_u> ) (27)
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A.7 Proof Relating Infinte and “Null-Containing”

Intervals

Let the parameter space of (0,6) be {(0,9) : 6 € (0,1] and § € (0,00), or (0,6) =
(0,0)}-

Claim:

0e C’SetpsL(é) < OS@tPSL((;) = [07 OO)

0e CSetpsL<9) s CS@tpsL(e) = [0, 1]

Observation 1: L(0,6) = L(0,0) = [T7, f(z;) [T}, f(y:) for all § € R. (Note,
this does not say anything about the parameter space, it is simply an observation
about the function L(-, -)).

Observation 2: GllrélJrL(H, §') = L(0,4") for a fixed & (since the pseudo-likelihood
is a continuous function of # for any given § ) . This means that for any ¢ > 0, there
exists a ' > 0 such that |L(0,0') — L(6',0')| < e.

Proof:
(<) CSetps(0) =[0,00) = 0 € CSetpsr(0) trivially.

(=) Now to see that 0 € CSetpsr(6) = CSetpsr(0) = [0,00), recall that
100(1 — a)% CSetpyr(8) = {5 T < 03Xt21371_a} , B.31)

where

Ts = —2 [Zogz (5(5), 0; X, Y) — logf (5, g; X, Y)] . (13.29)
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Rearranging to put this in terms of the profile (pseudo)-likelihood gives

0e CSthsL((S)

— (29)

2
L(0(0>707X7 Y) > L(@,(;,X, Y)exp{_%%} déf .

Now, since 2(5(5), 5X,)Y)= meaxZ(H, §; X,Y), then for a given &', §' € CSetp,r(9)
< 30 such that L(¢',8') > k. Because 0 € CSetp,.(0), then L(0,0) > k. By ob-
servation 1, this implies that for any fixed 6', L(0,6") > k. Let € = L(0,6 )—k. Then,
by observation 2 there exists a 6 > 0 such that |L(0,6") — L(#',5")| < L(0,8") — k.

Case 1: L(0,8') < L(6',§)

k< L(0,6) < L(0,68)

— L(0,0) > k.
Case 2: L(#',6") < L(0,6)

L(0,6) — L(6',6) < L(0,6) — k

— L(0,5) > k.

Since 0 is arbitrary, then for any ¢ there exists a § > 0 such that L(',5) > k.
Therefore, § € CSetpy,(0) for all § € [0,00). A similar argument shows that
0 € CSetpsr(0) = CSet(0) = [0, 1], that has an analogous observation 2 based

on the continuity of fin the pseudo-likelihood 1)
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Discussion of Interval Agreement and Interpretation

Note that the cutoff k is different for C'Set(6) and C'Set(d) only due to the Satterth-
waite approximation. In the limit (when ¢; = ¢3 = 1 and dy = d3 = 1), the intervals
always agree on when to include or exclude 0 from the intervals.

The non-compact nature of the parameter space reflects the difficulty interpret-
ing a single parameter. If one parameter is 0, then the other parameter does not
have a real interpretation. In general, we say that 6 represents the proportion of
responders and ¢ is the magnitude of the shift for the responder subpopulation. How-
ever, if § = 0 then there are no responders, so § can no longer be meaningfully
interpreted as the magnitude of the shift for the responders (since there are none).
Similarly, if 6 = 0, then there is no shift for the “responders”. In such a case, 6
can no longer be meaningfully interpreted as the proportion of the responders (since
these “responders” are really no different than non-responders). So while in some
circumstances a practitioner might care to focus primarily on one variable, say @,
inference about it cannot be totally divorced from inference for  since 6 is meaning-
less if 6 = 0. One nice asymptotic property of the pseudo-likelihood intervals is that
0 € CSet() < 0 € CSet(0).

However, this is not true for the method of moment intervals nor for sample sizes
where the Satterthwaite approximation is used for the pseudo-likelihood intervals.
For example, when investigating the Kaiser data set on reduction in diastolic blood

pressure, the moment intervals came out to be

95% Clyrons(6) = [0.13,0.50]

95% Clprons(6) = [0.00,16.1].
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While the interval for 6 is interesting (in that it does not contain either 0 or 1), it’s
not meaningful if 6 = 0, which is in Clys,p(5). This highlights the danger of using
a single method of moment interval (for either 6 or 4) to conclude that a treatment
effect exists.

Another frustrating aspect of the moment intervals is that the marginal intervals
Clyon(6) or Clyop(6) can contain 0 even when there’s clearly enough evidence from
the moments that there truly is a treatment effect - as seen by the corresponding
CI(A). For example, for the same data set from which the two above moment

intervals are calculated, the confidence interval for the overall treatment effect is

95% Clnorr(A) = [1.0,4.2].

Surely if the average treatment effect is somewhere between a 1.0 and 4.2 point
reduction in DBP, then the effect on the responders (which is subset of all treated
patients) should also be at least 1.0. However, the corresponding lower bound for
95% Clyrons(0) is 0. So since the treatment effect is characterized by (6,6) and
interpretation of one interval is incomplete without consideration of the other, this
suggests that a better way to characterize the uncertainty surrounding the treatment

effect is with a confidence region.
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A.8 Comparing Method of Moment Regions

A.8.1 Sufficient Probability Tables (95% Regions)

29,36 | 28,36 | 23,36

Table A.3: Each cell entry represents how many of the 36 (F,0,d) with A > 5oy
correspond to CRusona(0,6), CRyonigs,ny(6,0) that have simulated coverage proba-
bility at least .925. Color coded backgrounds emphasize when this number is at least
30 - neither method: white, both methods: blue, A region only: dark orange, A N ¢
region only: gold.

15 | 13 | 12 | 23 | 11 | 32 | 21 | 31

Table A.4: Each cell entry represents how many of the 36 (F,0,d) with A < 5oy
correspond to CRyonra(0,9), CRarorngs,ay(0,0) that have simulated coverage proba-
bility at least .925. Color coded backgrounds emphasize when this number is at least
30 - neither method: white, both methods: blue, A region only: dark orange, A N 4§
region only: gold.
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Tables[A.3]-[A.4]indicate that at least one confidence region provides satisfactory
coverage probability for nearly any sample size setting. For most settings, both the
A region and method of moment confidence regions produce satisfactory coverage
probability. If treatment data is sparse (e.g. m < 20) both the method of moment

regions may be unsatisfactory.
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A.8.2 Recommendation Tables

Table A.5: Each cell entry represents the recommended method — CRysonra(6,6)
or CRonris,a3(0,6) (blank white cell means neither method is recommended). The
recommended method achieves simulated coverage probability at least .925 for at least
30 of the 36 simulation settings where A > .50x. If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average interval length in more settings than the alternate method.

[y
(03}
[y
w
=
N
N
w
[y
[y
w
N
N
[y
w
=

BB (BB BB
=== = = =
=== = = =
BB (BB |B (BB
I = == = >
= == =~ >~

= == = =~
== = = =

Table A.6: Each cell entry represents the recommended method — CRyonra(6,6)
or C’RMOM{(;,A}(H, ). The recommended method achieves simulated coverage prob-
ability at least .925 for at least 30 of the 36 simulation settings where A < 5oy.
If the non-recommended method also meets the coverage probability criterion, the
recommended method has smaller average interval length in more settings than the
alternate method.
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Tables - show which confidence region method is recommended for each
sample size setting. For large effect sizes, the ANd regions win almost all tie-breakers
based on area and are preferred when the total and treatment group sample sizes are
sufficiently large (e.g. N > 120 or N > 300andn > 120). For small overall effect
sizes, the A regions are always preferred and are recommended so long as there are

more than 10 treatment observations.
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A.9 90% Confidence Tables

Note that the 90% confidence interval simulation coverage probability cutoff is chosen

to be .865 because the simulation error for a 90% confidence interval is larger than
v/-90(1 — .90)/1000 B

V-95(1 — .95)/1000
same number of standard errors (due to simulation error) below .90 as .925 is below

138%, so .865 is the

that of a 95% confidence interval by (

.95. Each table below has colored background according to the recommendations
(green is pseudo-likelihood, gold is method of moment, white is neither), but infor-
mation about coverage probabilities is for the 90% intervals. The tables below show
that the recommended method consistently has sufficient coverage probability across
a large number of (F, 6, §) while the cases where neither method is recommended con-
sistently has both methods with fewer (F,6,0) scenarios where coverage probability

is sufficient.
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Table A.7: Each cell entry represents how many of the 36 (F,0,d) with A > 5oy
correspond to 90%C Ipsr,(6), 90%C Inon (#) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from

Figure

1:29

1:19 | 1:14

60| 30,7
120 | 31,8
180
300
600

1200

2400

4800

30,11 | 31,12

1:9

1:5
33,12

1:3

29,14

1:2 2:3 1:1 3:2 2:1 3:1
36,12 34,6 | 33,3

35,5 | 32,5 | 30,3

32,5 | 31,2 | 32,3

30,4 | 31,4 | 29,1

30,7 29,6 | 28,5 | 27,2

27,7 28,7 | 25,7 | 26,6 | 25,3
29,9 |27,10(23,10| 23,9 | 23,9 | 24,7
28,13 | 25,12 | 25,12 | 24,11 | 23,11 | 23,8

Table A.8: Each cell entry represents how many of the 36 (F,0,d) with A < 5oy
correspond to 90%C Ipsr,(0), 90%C Lo (f) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from

Figure
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1:2911:29 [ 1:14 | 19 | 1.5 | 1:3 | 12 | 233 | 1 | 3:2 | 2:1 | 34 |

[N

N Il
o 00 [N
o o|o
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o
o

Table A.9: Each cell entry represents how many of the 36 (F,0,d) with A > 5oy
correspond to 90%C Ipsr,(8), 90%C Inon (0) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from

Figure

(129 | 1:19 | 1:14 | 1.9 | 1.5 [ 1:3 | 1:2 [ 2:3 | 1.1 | 3:2 | 21 | 31 |

(=
00| N

&
3

Table A.10: Each cell entry represents how many of the 36 (F,6,0) with A < 5oy
correspond to 90%C Ipsr,(9), 90%C Ipron(6) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from

Figure
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| 1:29 | 19 114 | 1.9 | 15 | 13 | 12 [ 23 | 1a | 32

36,36 | 36,36

120 29,7

180

1200

'S
o

Table A.11: Each cell entry represents how many of the 36 (F,0,0) with A > 5oy
correspond to 90%C Rp,1(0,6),90%C Ryronra (6, 0) that have simulated coverage prob-
ability at least .865. Color coded backgrounds correspond to the recommendations

from Figure [4.15

L5

36,36 | 36,36 | 36,36 | 36,36 36,36 | 36,36 | 35,36

27,36 | 28,36
24,36 | 23,36

| 300]
[ 600
| 1200]
| 2400

Table A.12: Each cell entry represents how many of the 36 (F,6,0) with A < .5ox
correspond t0 90%C Rp,1,(0,6), 90%C Ryronra (0, 9) that have simulated coverage prob-
ability at least .865. Color coded backgrounds correspond to the recommendations

from Figure [4.16]
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A.10 R Code

Normal MLE (with Control Data) Code

NormEM2loc = function(dat, 1, eps = le-5, maxiter = 1000,
plot = FALSE, verbose = FALSE, est.only = TRUE)
{
if (length(dat) != length(l)){stop("data vector/matrix (dat) does not match label vector (1) in length")}
# Input
mu0 = 2 # Assumes two components
# Assumes delta > 0
# Input

p.mean.dnorm = function(X,p){return(sum(colMeans (p*dnorm(X)))/bw)}

N <- length(dat)

if (length(mu0) > 1){g <- length(mu0)} else{g <- muO}
unlabeled = which(is.na(1))

labeled = which(!is.na(1))

labs = unique(l1[labeled])

### Just initialize by different cut-points with absolute membership
if (1length(unlabeled)>0)
{
ord.unlab = order(dat[unlabeled])
starts = min(c(length(unlabeled),6))
ind = round(seq(from = 1, to = length(unlabeled), length.out = starts))
M = matrix(NA,nrow=length(unlabeled) ,ncol=starts)
count = 0
for(i in ind)
{
count = count+1
M[,count] = rep(1,length(unlabeled)) +
(1:1length(unlabeled)) %in% ord.unlab[c(rep(F,i-1),rep(T,length(unlabeled)-i+1))]

list.lambda = list()

list.mu = list()

list.sigma = list()

list.Log.lik = 1list()

max.iters = NULL

ans = matrix(NA,nrow=0,ncol=8)

colnames(ans) = c("theta-hat","delta-hat","Log-lik","sigma-hat","mul-hat","mu2-hat","iter","max.LL")

if (length(labeled)>0) {starts.seq = 1:starts}else{starts.seq = 2:starts} # Assumes labeled data comes from component 1
for(s in starts.seq)

{

# Initialize z.hat
1[unlabeled] = M[,s] # Fill in unlabeled
z.hat <- matrix(0, nrow = N, ncol = g)
for (j in 1:g)
{
z.hat[l == j, j] <= 1
}
z.hat[1==.5,] <- c(.5,.5) # assumes g = 2

iter <- 0

finished <- FALSE

lambda <- mu <- matrix(0, maxiter, g)
sigma <- Log.lik <- NULL

while (!finished) {
iter <- iter + 1
t0 = proc.time()
lambda[iter, ] <- colMeans(z.hat[unlabeled,])
muliter, ] <- colMeans(sweep(z.hat, 1, dat, "*"))/colMeans(z.hat) # changed to colMeans on top
ei = matrix(dat - rep(muliter,],each = N), ncol = g)
sigmaliter] <- sqrt(sum(z.hat*(ei~2))/N)
fkernel <- matrix(dnorm(dat, mean = rep(muliter,],each = N), sd = sigmaliter]), ncol = g)
Log.lik[iter] = sum(log(lambdal[iter,1]*dnorm(dat[unlabeled],
mean=mu[iter,1],
sd=sigmaliter]) +
lambda[iter,2] *dnorm(dat [unlabeled],
mean=muliter,2],
sd=sigmaliter]))) +
sum(dnorm(dat [1abeled] ,mean=mul[iter,1],sd=sigmal[iter],log=TRUE)) #!# to check log-likelihood
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lambda.f <- sweep(fkernel, 2, lambdaliter, ], "x")
z.hat [unlabeled,] <- lambda.f[unlabeled,]/rowSums(lambda.f [unlabeled,])
finished <- iter >= maxiter
if (iter > 1)
{
change <- Log.lik[iter] - Log.lik[iter-1]
finished <- (finished | (change < eps))
¥

if (plot & verbose & iter==1)
if (length(labeled)>1)
{

hist(dat[labeled],col="grey",
breaks = (10 + length(labeled)/20)/(max(logl0(max(length(labeled)-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Initial KDE", xlab = "Data")
legend("topleft", 1ty = 1, lwd = 2, col = g, legend = "f Density Estimate")
for(j in 1:g)
{
lines(x=sort(dat[unlabeled]) - muliter, j] + muliter,1],
y=fkernel [unlabeled[order(dat[unlabeled])],jl,col=j, 1lwd = 2) # the + mul[iter,1] is project specific
¥
¥

hist(dat [unlabeled],col="grey",
breaks = (10 + length(unlabeled)/20)/(max(log10(max(length(unlabeled)-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Initial KDE", xlab = "Data")
legend("topleft",1ty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),
y=rowSums (sweep (fkernel [unlabeled[order (dat [unlabeled])],],2,lambdaliter,],"*")),
1ty = 2, 1lwd = 2)
}
if (verbose) {
t1l <- proc.time()

cat("iteration ", iter, " 1lambda ", round(lambdaliter,
1, 4), " mu ", round(muliter, ], 4))
cat(" time", (t1 - t0)[3], "\n")

¥

if (diff(muliter,])<0){
mul[iter,] = rep(mean(dat),2)
lambda[iter,] <- c(1,0)
sigmaliter] = sd(dat)*(length(dat)-1)/length(dat)
Log.lik[iter] = sum(log(lambdal[iter,1]*dnorm(dat[unlabeled],mean=muliter,1],sd=sigmaliter]) +
lambda[iter,2]*dnorm(dat [unlabeled] ,mean=muliter,2],sd=sigmaliter]))) +
sum(dnorm(dat [1abeled] ,mean=mul[iter,1],sd=sigmal[iter],log=TRUE))
break}
} #Ends While loop
if (plot & verbose){
plot(Log.lik, type = "1", 1lwd = 3,
main = "Log-Likelihood over the iteratiomns",
xlab = "Iteration (t)", ylab = "Log-Likelihood"
)

plot(sigma, type = "1", 1lwd = 3,
main = "Sigma over the iterations",
xlab = "Iteration (t)", ylab = expression(sigma”t)

)

plot(apply(mu[1:iter,],1,diff)/sigma, type = "1", lwd = 3,
main = "K = delta/sigma over the iterations",
xlab = "Iteration (t)", ylab = expression(K"t)

)

plot(lambda[l:iter,2]*apply (mu[l:iter,],1,diff), type = "1", lwd = 3,
main = "Delta over the iterations",
xlab = "Iteration (t)", ylab = expression(Delta’t)

)

plot(x = mu[l:iter,1], y = mu[l:iter,2],
type = "p", pch = 16, cex = .5,
main = "Mul and Mu2 over the iterations",
xlab = expression(mu[1]°t), ylab = expression(mu[2]~t)
)
text(1,x = mu[1,1], y = mu[1,2], cex = 1.5)
text (floor(iter/2), x = mul[floor(iter/2),1], y = mul[floor(iter/2),2], cex = 1.5)
text(iter, x = muliter,1], y = muliter,2], cex = 1.5)

plot(x = apply(mul[l:iter,],1,diff), lambdal[l:iter,2],
type = "p", pch = 16, cex = .5,
main = "theta and delta over the iteratiomns",
xlab = expression(delta”t), ylab = expression(theta"t))
text(1,x = diff(mul1,]), y = lambdal1,2], cex = 1.5)
text (floor(iter/2),x = diff (mul[floor(iter/2),]), y = lambdal[floor(iter/2),2], cex = 1.5)
text(iter,x = diff(muliter,]), y = lambdaliter,2], cex = 1.5)
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list.lambda = c(list.lambda,list(matrix(lambda,ncol=g)))
list.mu = c(list.mu,list(matrix(mu,ncol=g)))

list.sigma = c(list.sigma,list(sigma))

list.Log.lik = c(list.Log.lik,list(Log.1lik))

max.iters = c(max.iters,iter)

ans = rbind(ans,c(lambdaliter,2], muliter,2] - mul[iter,1],
Log.lik[iter],sigmal[iter] ,muliter,1] ,muliter,2],iter,NA))

} # Ends for loop
if (plot)
{
est.ind = which.max(ans[,3])
est.iter = max.iters[which.max(ans[,3])]
plot(list.Log.lik[[est.ind]], type = "1", lwd = 3,
main = "Log-Likelihood over the iterations", cex.main = .9,
xlab = "Iteration (t)", ylab = "Log-Likelihood"

)

plot(list.sigma[[est.ind]], type = "1", lwd = 3,
main = bquote(bold(sigma ~ "over the iterations")),
xlab = "Iteration (t)", ylab = "", cex.main = 1.25

)
mtext (expression(sigma~t),side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually

plot(apply(list.mul[est.ind]][1:est.iter,],1,diff)/list.sigma[[est.ind]], type = "1", lwd = 3,
main = bquote(bold(K == delta/sigma ~ "over the iterations")),
xlab = "Iteration (t)", ylab = "", cex.main = 1.25

)

mtext (expression(K~t),side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually

plot(list.lambdal[[est.ind]] [1:est.iter,2]*apply(list.mul[[est.ind]][1:est.iter,],1,diff), type = "1", lwd = 3,
main = bquote(bold(Delta ~ "over the iterations")),
xlab = "Iteration (t)", ylab = "", cex.main = 1.25

)

mtext (expression(Delta”t), side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually

plot(x = list.mul[[est.ind]][1:est.iter,1], y = list.mu[[est.ind]][1:est.iter,2],

type = "p", pch = 16, cex = .5,

main = bquote(bold(mu[1] ~ "and" ~ mu[2] ~ "over the iterations")),

xlab = "", ylab = "", cex.main = 1.25
)
mtext (expression(mu[1]~t), side = 1, line = 2.5, las = 1, cex = 1.25) # Add x label manually
mtext (expression(mu[2]"t), side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually
text(1,x = list.mul[est.ind]]1[1,1], y = list.mul[est.ind]][1,2], cex = 1.5)
text(floor(est.iter/2), x = list.mul[[est.ind]] [floor(est.iter/2),1],

y = list.mul[[est.ind]] [floor(est.iter/2),2], cex = 1.5)
text(est.iter, x = list.mul[est.ind]] [est.iter,1], y = list.mul[est.ind]] [est.iter,2], cex = 1.5)

plot(x = apply(list.mul[est.ind]][1:est.iter,],1,diff), list.lambda[[est.ind]][1:est.iter,2],
type = "p", pch = 16, cex = .5,
main = bquote(bold(theta ~ "and" ~ delta ~ "over the iterations")),
xlab = "", ylab = "")
mtext (expression(delta”t), side = 1, line = 2.5, las = 1, cex = 1.25) # Add x label manually
mtext (expression(theta™t), side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually
text(1,x = diff(list.mullest.ind]]1[1,]), y = list.lambda[[est.ind]][1,2], cex = 1.5)
text (floor(est.iter/2),x = diff(list.mu[[est.ind]] [floor(est.iter/2),]),
y = list.lambda[[est.ind]] [floor(est.iter/2),2], cex = 1.5)
text(est.iter,x = diff(list.mu[[est.ind]] [est.iter,]), y = list.lambda[[est.ind]][est.iter,2], cex = 1.5)
}

ans[,8] = (ans[,"Log-lik"]==max(ans[,"Log-1ik"]))

if (est.only){if (ans[which.max(ans[,"Log-1ik"]),1]1<.0001){
return(c(0,0))}else{return(ans[which.max(ans[,"Log-1ik"]),1:2]1)}
Yelse{return(ans)}

#return(c(lambdaliter,2], muliter,2] - muliter,1],Log.lik[iter]))

# Generate m = 100 observations from N(0,1) for the control group and n = 100 observations from .3N(0,1) + .7N(2,1) for the trt group.
m = 100

n = 100

true.theta = .7

true.delta = 2

x = rnorm(m)

z = sample(c(0,1), size = n, replace = TRUE, prob = c(l-true.theta,true.theta))

y = rnorm(n) + true.deltakz

# Find the Normal Maximum Likelihood
NormEM2loc(dat = c(x,y), 1 = c(rep(1,m),rep(NA,n)), plot = TRUE)
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Semi-Supervised Semi-Parametric EM-like Algorithm

## Semi-Parametric EM Algorithm(s) - EM# - 6 versions

ssSpEMloc = function(dat, 1, bw = bw.nrd0O(dat[!is.na(l) & 1==1]), eps = min(c(le-5*sd(dat[!is.na(l) & 1==1]),1e-3)), maxiter = 100,
all.data.f = FALSE, stochastic = FALSE, symmetric = FALSE,
plot = FALSE, verbose = FALSE, est.only = TRUE,
delta.pos = TRUE)

{
### Warnings and Errors
if(all.data.f == FALSE & stochastic == TRUE){
warning("stochastic = TRUE only works with all.data.f = TRUE. Output uses all.data.f = TRUE")
}
if (length(dat) != length(1)){
stop("data vector/matrix (dat) does not match label vector (1) in length")
s
# Internally Define Kernel Density Estimation Function
KDE = function(f.data,y,bw=bw.nrd0(f.data),df=3,var.adj=TRUE)
{
dat = c(f.data,y)
std.dat = (dat - mean(dat))/sd(dat)
std.datx = (f.data - mean(f.data))/sd(f.data)
std.daty = (y - mean(y))/sd(y)
if (df=="adj1"){df <- 3 + 1/( max(0,max(abs(std.dat))-3) )}
if (df=="adj2"){df <- 3 + 1/( max(0,max(abs(std.datx)-3,max(abs(std.daty)))-3) )}
if(df < 3){df <- 3}
sig = sqrt(1/(1-2/df))
f.hat = NULL
if (var.adj)
{
#!# Vectorize KDE operations
#dist = sweep(matrix(f.data),2,y)
#dens = dt(sigxdist/bw, df=df)/bw
for(i in 1:length(y))
{
f.hat[i] = sig*mean(dt( sigx(f.data-y[i])/bw , df=df))/bw
}
Yelse
{
for(i in 1:length(y))
f.hat[i] = mean(dt( (f.data-y[i])/bw , df=df))/bw
return(f.hat)
}
## Input ##

mu0 = 2 # two components hard-coded in

# 1 =1 indicates component 1 (i.e. ’non-responder’ or control data)
# This function assumes delta = mu2 - mul > 0

## Input ##

# total sample size
n <- length(dat)

# Number of components (hard-coded to be 2)
if (length(mu0) > 1){m <- length(muO)}else{m <- muO}

# which observations do not have labels (and come from the mixture)
unlabeled = which(is.na(1))

# which observations are labeled (and come directly from the labeled component)
labeled = which(!is.na(1))

# which components provide at least one labeled observation
labs = unique(1[labeled])

# Store these initial labels that actually come from the data (not predictions to be updated in the algorithm)
init.class = 1

## Fill in initialization of class membership for observations without component label ##
if (1ength(unlabeled)>0)

{
obj = kmeans(dat[unlabeled], centers = mu0)
shifted = obj$cluster == which.max(obj$centers) # This cluster labeling assumes two components and delta > 0. component 2
unshifted = obj$cluster == which.min(obj$centers) # This cluster labeling assumes two components and delta > 0. component 1
if( !all.equal(shifted + unshifted, rep(l,length(unlabeled))) ){stop("uhoh")} # Sanity check
init.class[unlabeled] [shifted] = 2
init.class[unlabeled] [unshifted] = 1

}

219



## Initialize Necessary Elements ##
z.hat <- matrix(0, nrow = n, ncol = m)
fkernel <- matrix(0, nrow = n, ncol = m)
p.mean.dnorm = function(X,p){return(sum(colMeans (p*dnorm(X)))/bw)}
tt0 <- proc.time()
#lambda <- rep(1/m, m)
#kmeans <- kmeans(dat, mu0)
for (j in 1:m) {
z.hat[init.class == j, j] <- 1
}
iter <- 0
if (stochastic) {
sumpost <- matrix(0, n, m)
}
finished <- FALSE
lambda <- mu <- matrix(0, maxiter, m)

if(all.data.f)
{
while (!finished) {
iter <- iter + 1
t0 <- proc.time()

# theta-hat = the average weight in component 2 of the z.hats among unlabeled data.
lambda[iter, ] <- colMeans(z.hat[unlabeled,])

# mul-hat average of control and (1-z.hat) weighted treatment obs. mu2-hat is z.hat weighted average of treatment data.
muliter, ] <- apply(sweep(z.hat, 1, dat, "*"), 2, mean)/colMeans(z.hat)

## Compute f-hat at ui - muj for all i,j.
if (stochastic)
{
### Generate simulated component membership (for labeled data, it’s automatically the known label...
# for unlabeled data, according to the current weight for each component).
z = matrix(0, nrow = n, ncol = m)
z[labeled,] = z.hat[labeled,]
z[unlabeled,] <- t(apply(z.hat[unlabeled,], 1, function(prob) rmultinom(1, 1, prob)))

# Recenter each observation so that combined re-centered data has mean 0.
dat.t <- dat-apply(sweep(z,2,muliter, ],"*"),1,sum)
if (symmetric)
{
for(j in 1:m)

for(i in unlabeled)
{
### KDE with normal kernel, one version on re-centered data, one version on mirror image of re-centered data
# - those two version averaged ensures symmetric f-hat.
fkernel[i,j] = mean(c( mean((1/bw)*dnorm(((dat[i]l-muliter,jl)-dat.t)/bw)),
mean ((1/bw)*dnorm((-(dat [i]-mul[iter,jl)-dat.t)/bw)) ))

}
¥
Yelse{
for(j in 1:m)
{
for(i in unlabeled)
{
### KDE with normal kernel on re-centered data.
fkernel[i,j] = mean((1/bw)*dnorm(((dat[il-mu[iter,j])-dat.t)/bw))
}
}
}
Yelse

{

## Begin Deterministic KDE ##
if (symmetric)

{
for(j in 1:m)
{
M = matrix(((dat[1] - mul[iter,j]) - (rep(dat,m)-rep(muliter,],each=n)))/bw,nrow=n,ncol=m)
for(i in 1:n)
{
# M.prime is the ’reflected’ data used for the symmetrization step.
M.prime = M - 2*(dat[i]l-muliter,j])/bw
#Symmetric f-hat
fkernel[i,j] = mean(c(p.mean.dnorm(M,z.hat),p.mean.dnorm(M.prime,z.hat)))
M = M - M[min(i+1,n),j]
}
}
Yelse{
for(j in 1:m)
{

M = matrix(((dat[1] - mul[iter,j]) - (rep(dat,m)-rep(muliter,],each=n)))/bw,nrow=n,ncol=m)
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for(i in 1:n)
{
# f-hat
fkernel[i,j] = p.mean.dnorm(M,z.hat)
M =M - Mmin(i+1,n),j]
¥
¥
}
## End deterministic KDE ##

}

# updated lambda*f (i.e. pixf, (1-theta,theta)#f).
lambda.f <- sweep(fkernel, 2, lambdaliter, ], "x")

# update weights
z.hat [unlabeled,] <- lambda.f[unlabeled,]/rowSums(lambda.f [unlabeled,])

## Determine if time to stop ##
finished <- iter >= maxiter
if (stochastic) {
# keep track of cumulative sum of weights for stochastic estimate of mixing proportions
sumpost <- sumpost + z.hat
Yelse if (iter > 1) {
change <- c(lambdaliter, ] - lambdal[iter - 1, ],
muliter, ] - muliter - 1, 1)
finished <- finished | (max(abs(change)) < eps)
}

## Possible Output ##
if (plot & iter==1 & length(labeled)>1 & length(unlabeled)>1)
{
hist(dat[labeled],col="grey",breaks = (10 + n/20)/(max(logl0(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Initial KDE", xlab = "Data")
for(j in 1:m)

# the + muliter,1] is project specific, plot F(u) instead of F with mean 0
lines(x=sort(dat[unlabeled]) - mul[iter, j] + muliter,1],
y=fkernel [unlabeled [order(dat [unlabeled])],jl,col=j, lud = 2)
if(lall.data.f){break}
¥
legend("topleft", 1ty = 1, lwd = 2, col = j, legend = "f Density Estimate")

hist(dat [unlabeled],col="grey" ,breaks = (10 + n/20)/(max(logl0(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Initial KDE", xlab = "Data")
legend("topleft",1ty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),
y=rowSums (sweep (fkernel [unlabeled[order (dat [unlabeled])],],2,lambdaliter,],"*")),
1ty = 2, lwd = 2)

}
if (verbose) {
t1 <- proc.time()
cat("iteration ", iter, " 1lambda ", round(lambdaliter,
1, 4), " mu", round(muliter, 1, 4))
cat(" time", (t1 - t0)[3], "\n")
¥

} #Ends While loop
}# Ends if all.data.f

if(lall.data.f)
{
# Compute the mean for each component with labeled data (just mu_1 for dissertation)
mul[, labs] <- rep( apply(sweep(matrix(z.hat[labeled,labs],nrow=length(labeled)), 1, dat[labeled], "#*"
2, mean)/colMeans(matrix(z.hat[labeled,labs],nrow=length(labeled))), each = nrow(mu) )

## Centered KDE on control data ##

# Recenter labeled observation so that combined re-centered data has mean 0.
dat.t <- dat[labeled]-apply(sweep(matrix(z.hat[labeled,labs],nrow=length(labeled)),2,mu[1, labs],"*"),1,sum)

while(!finished){
iter <- iter+1

t0 <- proc.time()

# mixing proportions calculated as average component weight among unlabeled observations.
lambda[iter, ] <- colMeans(z.hat[unlabeled,])

# Computes averages for components without labeled data by using weighted average of (unlabeled) observations.

# (mu2-hat is z.hat weighted average of treatment data).

muliter, -labs] <- apply(sweep(matrix(z.hat[unlabeled,-labs],nrow=length(unlabeled)), 1, dat[unlabeled], "#*"),
2, mean)/colMeans(matrix(z.hat[unlabeled,-labs],nrow=length(unlabeled)))

if (symmetric)

for(j in 1:m)
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fkernell,j] <- apply(cbind(KDE(f.data = dat.t, y = dat - mul[iter,j], df=Inf, bw=bw, var.adj=TRUE),
KDE(f.data = dat.t, y = -(dat - muliter,j]), df=Inf, bw=bw, var.adj=TRUE)
),1,mean) # Average of kernel density estimates on re-centered and mirror image of re-centered data.

s
Yelse{
for(j in 1:m)
{
# KDE for re-centered data
fkernel[,j] <- KDE(f.data = dat.t, y = dat - mu[iter,j], df=Inf, bw=bw, var.adj=TRUE)
}
}

# mixing proportions times f
lambda.f <- sweep(fkernel, 2, lambdaliter, ], "*")

# computes updated component weighhts for unlabeled data
z.hat [unlabeled,] <- lambda.f[unlabeled,]/rowSums(lambda.f [unlabeled,])

## Determine if time to stop ##
finished <- iter >= maxiter
if (iter > 1) {
change <- c(lambdaliter, ] - lambdal[iter - 1, 1,
muliter, ] - muliter - 1, 1)
finished <- finished | (max(abs(change)) < eps)
¥

## Possible Output ##
if(plot & iter==1 & length(labeled) > 1 & length(unlabeled) > 1)
{
hist(dat[labeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Initial KDE", xlab = "Data")
comp.ind = 1; if(!all.data.f){comp.ind = 2}
for(j in comp.ind:m)
{
lines(x=sort(dat [unlabeled]) - mul[iter, j] + muliter,1],
y=fkernel [unlabeled [order(dat [unlabeled])],jl,col=j, lwd = 2)
s
legend("topleft", 1ty = 1, 1lwd = 2, col = j, legend = "f Density Estimate")

hist(dat[unlabeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Initial KDE", xlab = "Data")
legend("topleft",1ty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),
y=rowSums (sweep (fkernel [unlabeled [order (dat [unlabeled])],],2,lambdaliter,],"*")),
1ty = 2, lud = 2)
}
if (verbose) {
t1 <- proc.time()
cat("iteration ", iter, " lambda ", round(lambdaliter,
1, 4), " mu ", round(muliter, ], 4))
cat(" time", (t1 - t0)[3], "\n")
}

} # End While Loop

} # End if !all.data.f

### Finishing Touches ###
if (verbose) {
ttl <- proc.time()
cat("lambda ", round(lambdaliter, ], 4))
cat(", total time", (ttl - tt0)[3], "s\n")
}

if (plot)
{

hist(dat[labeled],col="grey",breaks = (10 + n/20)/(max(logl0(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Final KDE", xlab = "Data")
comp.ind = 1; if(!all.data.f){comp.ind = 2}
for(j in comp.ind:m)
{
lines(x=sort(dat[unlabeled]) - muliter, j] + muliter,1],
y=fkernel [unlabeled [order(dat [unlabeled])],jl,col=j, lwd = 2)
s
legend("topleft", 1ty = 1, lwd = 2, col = j, legend = "f Density Estimate")

hist(dat [unlabeled],col="grey",breaks = (10 + n/20)/(max(logl0(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Final KDE", xlab = "Data")
legend("topleft",1ty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),
y=rowSums (sweep (fkernel [unlabeled [order (dat [unlabeled])],],2,lambdaliter,],"*")),
1ty = 2, 1lwd = 2)

plot(x = 1:iter, y = lambda[l:iter,1], ylim = c(0,1), type = "1", lwd = 2

main = "Estimates of Mixing Proportions throughout Algorithm", ylab = "Proportion")
for(j in 2:m)
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{
lines(x = 1:iter, y = lambda[l:iter,j], col = j, lwd = 2)
s

plot(x = 1:iter, y = mu[l:iter,1], ylim = range(mu), type = "1", lwd = 2,
main = "Estimates of Component Means throughout Algorithm", ylab = "Mean")
for(j in 2:m)

{

lines(x = 1:iter, y = mu[l:iter,j]l, col = j, 1lwd = 2)
}
if (m==2){

plot(x = 1:iter, y = apply(mu[l:iter,],1,diff),
ylim = range(c(0,apply(muli:iter,],1,diff))),
type = "1", col = 2, lwd = 2, main = bquote("Estimates of" ~ delta ~ "throughout Algorithm"),
ylab = bquote(delta))

if (stochastic) {
if (est.only)
{
if (m==2 & delta.pos & (diff (mu[iter,])<=0 | lambda[iter,2]<.0001)){return(c(0,0))}
return(c(colMeans (lambda) [2] ,diff (colMeans (mu))))
Yelse{
return(structure(list(data = dat, posteriors = sumpost/iter,
bandwidth = bw, lambdahat = colMeans(lambda),
muhat = colMeans(mu), symmetric = symmetric),
class = "Adapted from npEM"))
}
}
else {
if (est.only)

if(m==2 & delta.pos & (diff(mu[iter,])<=0 | lambdaliter,2]<.0001)){return(c(0,0))}
return(c(lambdaliter,2],diff (muliter,]1)))
Yelse{
return(structure(list(data = dat, posteriors = z.hat, bandwidth = bw,
lambdahat = lambdaliter, ], muhat = muliter, ],
symmetric = symmetric), class = "Adapted from npEM"))

# Generate 50 observations from N(0,1) for the control group and 50 observations from .3N(0,1) + .7N(2,1) for the treatment group.
x = rnorm(50)

z = sample(c(0,1), size = 50, replace = TRUE, prob = c(.3,.7))

y = rnorm(50) + 2xz

# Find the Normal Maximum Likelihood
ssSpEMloc(dat = c(x,y), 1 = c(rep(1,50),rep(NA,50)), plot = TRUE)
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Pseudo-Likelihood Inference Code

Dependencies

install.packages("sgt", repos = "http://cran.us.r-project.org")
library("sgt")

install.packages("logcondens", repos = "http://cran.us.r-project.org")
library("logcondens")

Function Code

psl.inf = function(f.data,y,f.est="mLCD",bw = bw.nrdO(f.data),df=3, var.adj = TRUE, level, finite.area = FALSE,
plot=FALSE,true.theta=NA,true.delta=NA,
mu = NA, sigma = NA, lambda = NA, p = NA, q = NA)

### Initialize Important Quantities ###
# sequence of possible theta for grid search
th = seq(from = .01, to = 1, length.out = 100)
# Add true.theta to grid search
if (!is.na(true.theta)){
less.th = sum(th < true.theta)
if (less.th < length(th)){
last.th.ind <- (less.th+1):length(th)
}else{last.th.ind <- 0}
th <- c(th[0:1less.th],true.theta,th[last.th.ind])
s
# sequence of possible delta for grid search
del = seq(from = .1xsd(f.data), to = 6*sd(f.data), length.out = 60)
# Add true.delta to grid search if known
if (!is.na(true.delta)){
less.del = sum(del < true.delta)
if(less.del < length(del)){
last.del.ind <- (less.del+1):length(del)
}else{last.del.ind <- 0}
del <- c(del[0:less.del],true.delta,del[last.del.ind])
}

# Internally define helper function for kernel density estimation
KDE = function(f.data,y,bw=bw.nrd0(f.data),df=3,var.adj=TRUE)

{
dat = c(f.data,y)
std.dat = (dat - mean(dat))/sd(dat)
std.datx = (f.data - mean(f.data))/sd(f.data)
std.daty = (y - mean(y))/sd(y)
"adj1"){df <- 3 + 1/( max(0,max(abs(std.dat))-3) )}
"adj2"){df <- 3 + 1/( max(0,max(abs(std.datx)-3,max(abs(std.daty)))-3) )}

if(af < 3){df <- 3}
sig = sqrt(1/(1-2/df))
f.hat = NULL
if (var.adj)
{

#!# Vectorize KDE operations

#dist = sweep(matrix(f.data),2,y)

#dens = dt(sigxdist/bw, df=df)/bw

for(i in 1:length(y))

f.hat[i] = sigmean(dt( sig*(f.data-y[il)/bw , df=df))/bw

Yelse
{

for(i in 1:length(y))

{

f.hat[i] = mean(dt( (f.data-y[il)/bw , df=df))/bw

¥
¥
return(f.hat)

¥

# Internally define helper function for modifying Log-Condave Maximum Likelihood Density Estimate
mod.fhat = function(res,eval)

ends = range(res$knots)
n = res$n
w = c(1/n,(n-2)/n,1/n)

### Create indices for eval vector saying which segment it’s in.

lower = which(eval < ends[1])
middle = which(eval >= ends[1] & eval <= ends[2])
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upper = which(eval > ends[2])
if (lall(sort(c(lower,middle,upper)) == 1:length(eval))){"missing indices?"}

hi = exp(res$phil1])
al = (n-2)*hl
k1 = w[1]*(n-2) *hi*exp(-(n-2)*h1*ends[1])

h2 = exp(res$philres$m])
a2 = -(n-2)*h2
k2 = w[3]*(n-2)*h2*exp((n-2)*h2*ends[2])

mfhat = NULL

mfhat [lower] = kilxexp(al*eval[lower])

mfhat [middle] = w[2]*fhat(res=res,eval=eval[middle])
mfhat [upper] = k2*exp(a2+*eval [upper])

if (any(is.na(mfhat))){"Why still NAs?"}

return(mfhat)

if (toupper(f.est) %in) c("KDE","KERNEL","KERN")){
obj = NA

# f-hat, density estimate (based on control data, using kernel density estimate) evaluated at y values
fhat.y = KDE(f.data = f.data, y = y, bw = bw, df = df, var.adj = var.adj)
+
if (toupper(f.est) %in% c("LCD","LOG-CONCAVE","LOG-CON","LOG CONCAVE",
"LOG CON","LCON","LOG","LC","LCDENS","LC-DENS","MLCD"))

{
# Log-Concave MLE
obj = activeSetLogCon(f.data)
# f-hat, density estimate (based on control data, using modified log-concave MLE) evaluated at y values
fhat.y = mod.fhat(res=obj,eval=y) #!# mod.fhat() helper function defined outside
}

if (toupper(f.est) %in% c("TRUTH","F"))
obj = NA

f-"hat", True/(user specified) density of f evaluated at y values
fhat.y = dsgt(y,mu = mu, sigma = sigma, lambda = lambda, p = p, q = q)
}

# Function to evaluate fhat(y - deli)

eval.fhat.yd = function(f.data,y,f.est,
bw,df ,var.adj,
deli,obj,
mu,sigma,lambda,p,q)

if (toupper(f.est) %in)% c("KDE","KERNEL","KERN"))
{

fhat.yd = KDE(f.data = f.data, y = y - deli, bw = bw, df = df, var.adj = var.adj)
1f(toupper(f.est) %in% c("LCD","LOG-CONCAVE","LOG-CON","LOG CONCAVE",
"LOG CON","LCON","LOG","LC","LCDENS","LC-DENS","MLCD"))
¢ fhat.yd = mod.fhat(res=obj,eval=y - deli)
if(toupper(f.est) %in% c("TRUTH","F"))

fhat.yd = dsgt(y - deli,mu = mu, sigma = sigma, lambda = lambda, p = p, q = q)

return(fhat.yd)
}

# Define function for computing bound (used for confidence intervals and regions)
any.in = function(x,cl,df,c=1) any(x < cx*qchisq(p=cl,df=df))

# Define function for bi-linearly interpolating mean and var (used for Satterthwaite approximation)
bilinear = function(M,N,p.trt,N.in,p.in)
{
if (nrow(M) != length(N)){stop("Length of N does not equal number of rows of M")}
if(ncol(M) != length(p.trt)){stop("Length of p.trt does not equal number of columns of M")}
rownames (M) <- N
colnames(M) <- p.trt

p.trt.ind = min(max(sum(p.in >= p.trt),1),length(p.trt)-1)
N.ind = min(max(sum(N.in >= N),1),length(N)-1)
X = p.in; y = N.in

x0 = p.trt[p.trt.ind]
yO = N[N.ind]

x1 = p.trtlp.trt.ind+1]
y1 = N[N.ind+1]
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z00 = M[N.

z01 = M[N.
z10 = M[N.
z11 = M[N.
z.star =

ind,p.trt.ind]
ind,p.trt.ind+1]
ind+1,p.trt.ind]
ind+1,p.trt.ind+1]

€ (x1-x)*(y1-y)*200 + (x1-x)*(y-y0)*z10 + (x-x0)*(y1-y)*z01 + (x-x0)*(y-y0)*z11 )/( (x1-x0)*(y1-y0) )
return(z.star)

# Define Satterthwaite constants

C.CR <-

matrix(c(1.026035,1.242881,1.
022448,1.133521,1.
019073,1.164717,1.
012556,1.107921,1.
039824,1.093934,1.
043142,1.049957,1.
064287,1.069622,1.
.012544,1.050787,1.

I e

[N

nrow = 8, byrow = TRUE)

DF.CR <-

353304,1.
209424,1.
142916,1.
156220,1.
076780,1.
064548,1.
055648,1.
053520,1.

506900,1.
391784,1.
355192,1.
302759,1.
295238,1.
152818,1.
091301,1.
083536,1.

947223,2.
656656,2.
677559,1.
473298,1.
324490,1.
214041,1.
199641,1.
181289,1.

400741,3.
080179,2.
830471,2.
824668,2.
498298,1.
465731,1.
526891,1.
256195,1.

427919,1.

182174,3.958607,4.799132,7.
636975,3.279664,4.080320,5.
272151,2.801275,3.889390,5.
109494,2.547117,3.325433,4.
806582,2.011168,2.645757,4.
609443,1.897742,2.238591,3.
485453,1.649860,2.092417,2.
631067,1.783403,2.

224214,7.
977822,7.
713839,7.
676027,5.
479356,5.
239241,4.
840655,3.
495140,2.

252960,10.890202,
938542,11.269434,
915159,10.382594,
816139,10.491207,
330594,8.378515,
035796,6.722422,
687886,5.243302,
798502,4.578211),

matrix(c(1.701194,1.548824,1.494056,1.474888,1.283580,1.161816,0.9736668, 0.8522719,0.8160677, 0.6404665,0.7258481, 0.5837087,

[N

NN NN

N

C.CIt <-

910312,1.839065,1.
010585,1.844756,1.
084614,1.976540,1.
081533,2.014705,2.
081224,2.097099,2.
034170,2.046209,2.
.123243,2.058405,2.
nrow = 8, byrow

= TRUE)

788471,1.
928034,1.
937847,1.
060340, 1.
072250, 1.
093438,2.
067950,2.

654943,1.
709017,1.
778442,1.
788118,1.
967987,1.
057180,1.
042236,1.

510889,1.
480560,1.
659618,1.
810456,1.
951054,1.
938396,1.
939096,1.

304269,1.
459013,1.
451513,1.
717652,1.
730244,1.
611027,1.
905736,1.

1304029, 0.
2921745,
3455644,
5327706,
6712588,
7693809,
8001788,

9825586,0.9068518,

1205915,0.9219614,
.2102273,1.0422029,
.4615703,1.2591096,

.6873963,1.4960799,

1.

1

1
1.5045396,1.4223475,
1

1

.6824635,1.7003569,

0
0
0
0.
1
1
1

.7360351,0.6413862,
.7481736,0.6264377,
.8757224,0.8080819,
8720247,0.8443209,
.1495261,1.0588689,
.2741177,1.1195940,
.4152951,1.4306898,

0
0
0
0.
0
0
1

5770284,
.6026179,
.5836541,
6811000,
.8118687,
.9910001,
.0945199) ,

matrix(c(0.5739984, 0.6560228,0.6979546, 0.8081725,0.9242172, 1.107447, 1.294294, 1.454438, 1.712100, 2.073506, 2.324835, 2.739284,

o

oo ooo

0.

nro

DF.CIt <-

matrix(c(1.087390,

W

-

e e e

7120568, 0
7893309, 0
8533257, 0.
9149942, 0
9627990, 0
9997521, 1
9956396, 1.

= 8, byrow

1
019960, 1
006291, 1
014999, 1.
041496, 1
051141, 1
040141, 1
.059026, 1.

.9883437,1
.0430513,1

0291604, 1
= TRUE)

.055937,
.005323,
.005329,

032704,

.059369,
.025528,

034749,

1
1
1
1
.047536, 1.
1
1
1
)

nrow = 8, byrow = TRUE

C.CId <-

.7921105,0.8323754, 0.
.8562170,0.8820219, 0
8967342,0.9574057, 1
.9554293,0.9694660, 1
1
1
1

0061804,
0099895,
0221148,

.051993, 1.018971,
.008099, 1.029073,
.021087, 1.019935,
.016386, 1.024034,
049122, 1.032562,
.042806, 1.027734,
.065488, 1.024694,
.055034, 1.029376,

8928814,1.0502815,

cooo0oo0o0OokR

.9573503,1.1805273,
.0060719,1.1617061,
.0420609,1.1301589,
.0660749,1.1612572,
.0653691,1.15638371,
.0642393,1.1621291,

0120624,0.
9879237,0.
9125467,0.
9535650,0.
9983934,0.
9851017,0.
9875698,0.
9704596,0.

1
1
1
1
1
1
1

.249342,
.264927,
.330631,
.335296,
.336950,
.423905,
.220362,

9475902,
8981221,
9192865,
9061006,
9101461,
9100837,
8377217,
9566411,

1
1
1
1
1
1
1

8
8
8
8
8
8
9
8

matrix(c(1.516477,1.826422,1.990346,2.132463,2.722614,3.291681,4.420750,5.584964,6.571250,9.860396,9.792822,14.559449,

[N

.377650,1.506431,1.
308230,1.497846,1.
217408,1.337588,1.
171666,1.231406,1.
135017,1.135115,1.

B R e e

R

nro

DF.CId <-

W

125844,1.134289,1.
.028051,1.075499,1.
= 8, byrow

matrix(c(0.5887816,0.

-

R OOOoOo

7390238,0.
8272066,0.
9212071,0.
9922391,0.
0187917,1.
0196227,1.
.0976480,1.

= TRUE)

5528131,
7413282,
7725987,
8852327,
9613626,
0426874,
0248727,
0588452,

nrow = 8, byrow = TRUE)

rownames (C.CR) <- rownames(DF.CR) <- rownames(C.CIt)

609982,1.
415831,1.
396507, 1.
206510,1.
123657, 1.
104515,1.
091011,1.

5458533,0.
7315318,0.
8490924,0.
8687061,0.
9943895,0.
0517253,0.
0589298,1.
0475996,1.

837078,2.
726081,2.
611503,1.
560753,1.
286124,1.
147843,1.
132110,1.

5776927,
6964397,
7427438,
7912667,
8033920,
9507281,
0402121,
0279192,

173961,2.
224273,2.
843107,2.
570748,1.
357646,1.
282499,1.
247353,1.

coocoooooo

c("60", "120", "180", "300", "600", "1200", "2400","4800")
colnames(C.CR) <- colnames(DF.CR) <- colnames(C.CIt) <- colnames(DF.CIt) <- colnames(C.CId) <-
c("1/30", "1/20", "1/15", "1/10", "1/6", "1/4", "1/3", "2/8", "1/2", "3/5", "2/3", "3/4")

# Calculate "c" and "df" estimates based on N.in and p.in
N = ¢(60,120,180,300,600,1200,2400,4800)

817640,3.
404352,3.
384813,2.
775119,2.
709172,1.
822858,1.
320929,1.

.5335293,0.
.6610254,0.
.6286789,0.
.7415143,0.
.8332030,0.
.9429417,0.
.95635633,0.
.9635527,0.

5080249,
5637184,
6403420,
6260229,
7987648,
7998040,
7180629,
9514298,
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644735,4.
035308,3.
765119,3.
259675,2.
883729,2.
648062,1.
565746,1.

.372993, 1.702619, 1.982571, 2.524152, 3.189236, 3.693035,
.478778, 1.804763, 2.174147, 2.622138, 3.216853, 4.178737,
556792, 1.8265316, 2.345892, 2.767181, 3.402797, 4.671675,
.491548, 1.609600, 1.950919, 2.861848, 3.181003, 5.168521
.457690, 1.702376, 1.896527, 2.524949, 3.115720, 4.354668,
.380139, 1.564071, 1.722495, 2.313429, 2.847196, 4.338659,
.408159, 1.491989, 1.605369, 2.089509, 2.522134, 3.625007),
858178,0.8477451, 0.8039635,0.7573021, 0.7590984,0.7394837,
893386,0.7697848, 0.7412096,0.6623974, 0.5936911,0.6129038,
553957,0.7472854, 0.6915622,0.6579413, 0.5959874,0.5554533,
205744,0.7526594, 0.6499711,0.6242470, 0.5703290,0.5123080,
611576,0.8454547, 0.7750930,0.6045156, 0.6169245,0.4640618,
812822,0.7934464, 0.7850725,0.6725143, 0.6111315,0.5408882,
209586,0.8492124, 0.8507647,0.7155059, 0.6533312,0.5299317,
882094,0.8838344, 0.8880207,0.7771873, 0.7253455,0.6134246),
589144,5.666289,8.335783,10.960068, 15.306485,
809549,5.431025,8.074415,11.021878, 14.406966,
458886,4.595699,6.474964,8. 166269, 14. 566650,
516555,3.456203,6.409431,7.387063,11.905145,
310775,2.734692,4.249965,5.397095,9. 338454,
866824,2.509362,3.580416,4.802758,6.899954,
857433,1.954477,2.984488,3.174651,5.823208)
4358518,0.3775613, 0.3827662,0.3043313, 0.3496716,0.2829981
4856496,0.4244074, 0.4016887,0.3316179, 0.2946872,0.2738511
5661177,0.4868548, 0.3967950,0.3233705, 0.2792186,0.2730339,
5828540,0.5152537, 0.4403457,0.3736606, 0.3428074,0.2586485,
6829315,0.6511951, 0.5449091,0.3481682, 0.3495558,0.2809752,
7780296,0.6731247, 0.6335426,0.4812147, 0.4376909,0.3290643,
8481006,0.7894588, 0.6633031,0.5413594, 0.4674560,0.4081975,
8620989,0.7766074, 0.8088941,0.6197419, 0.6585104,0.4544030),

<- rownames(DF.CIt) <- rownames(C.CId) <-

rownames (DF.CId) <-

colnames (DF.CId) <-



p-trt = c(1/29,1/19,1/14,1/9,1/5,1/3,1/2,2/3,1,3/2,2,3)/(1 + c(1/29,1/19,1/14,1/9,1/5,1/3,1/2,2/3,1,3/2,2,3))

# use interpolation or extrapolation or asymptotic results to specify Satterthwaite constants
# (with corresponding message when appropriate)
N.in = length(f.data) + length(y); p.in = length(y)/N.in
if (! (N.in < 60 | N.in > 4800 | p.in < 1/30 | p.in > 3/4 | toupper(f.est) %in% c("TRUTH","F")))
{

c.CR = bilinear(M=C.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

df.CR = bilinear(M=DF.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CIt = bilinear(M=C.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df .CIt = bilinear(M=DF.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CId = bilinear(M=C.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CId = bilinear(M=DF.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
Yelse if (! (N.in > 4800 & p.in < 1/30 & length(y) > 160) & !(toupper(f.est) %in% c("TRUTH","F")))

warning ("Extrapolation of Sattertwaite approximation")
c.CR = bilinear(M=C.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CR = bilinear(M=DF.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CIt = bilinear(M=C.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CIt = bilinear(M=DF.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CId = bilinear(M=C.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

df.CId = bilinear(M=DF.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
Yelse{

message ("Asymptotic Results Used")

c.CR <- ¢.CIt <- ¢.CId <- 1

df.CR <- 2

df.CIt <- df.CId <- 1
}

# Define an object to contain Likelihood information for the grid search
Star = matrix(NA, nrow = length(th), ncol = length(del))

# Evaluate the log-likelihood at the null (theta,delta) <- (0,0)
fn.null = psL(theta = 0, fhat.y = fhat.y, fhat.yd = fhat.y)

# Initialize the maximum value of log-likelihood
fn.max <- fn.null; est <- c(0,0)

# Initialize quantities for plotting profile likelihood
fni = NULL; fni.plot = matrix(nrow=length(th),ncol=0); theta.max = NULL; fni.max = NULL # 777

### Light Grid Search ###
i =0 # counter
for(deli in del) # for each possible delta in the grid

i = i+l # counter

# Evaluate the (pseudo) log-likelihood for across all theta (the specified deltai in this loop)
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,

bw=bw,df=df,var.adj=var.adj,

deli=deli,obj=obj,

mu=mu, sigma=sigma,lambda=lambda,p=p,q=q)

# Store the (pseudo) log-likelihood
Star[,i] <- fni <- psL(theta = th, fhat.y = fhat.y, fhat.yd = fhat.yd)

# The largest theta for this value of delta (conditional theta that maximizes pseudo-LL)
theta.max <- c(theta.max,th[which.max(fni)])

# The maximum value of pseudo-likelihood given deltai
fni.max <- c(fni.max,fni[which.max(fni)])

# The value of pseudo-log likelihood given deltai
fni.plot = cbind(fni.plot,fni)

# Keep track of max ps-log likelihood, and corresponding (theta,delta)
if (max(fni) > fn.max){
fn.max <- fnil[which.max(fni)]
est <- c(th[which.max(fni)],deli)
row.max = which.max(fni); col.max = i
s
}

# If the confidence region contains a point on the boundary (deltai = 6%Sx)
# and if ‘finite.area‘ is FALSE, then extend the light grid search to 12xSx
more = FALSE
if ( ( -2#(fni.max[length(fni.max)] - fn.max) < c.CR*qchisq(p=level,df=df.CR) ) & (finite.area == FALSE) )
{
more = TRUE
del <- c(del,del[length(del)] + seq(from = .1xsd(f.data), to = 6*sd(f.data), length.out = 60))
Star = cbind(Star,matrix(NA, nrow = length(th), ncol = 60))

# for each possible delta in the grid
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for(deli in del[length(del)-60] + seq(from = .1*sd(f.data), to = 6xsd(f.data), length.out = 60))
{

i = i+l # counter

fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu, sigma=sigma,lambda=lambda,p=p,q=q)

# The (pseudo) log-likelihood
Star[,i] <- fni <- psL(theta = th, fhat.y = fhat.y, fhat.yd = fhat.yd)

# The largest theta for this value of delta (conditional theta that maximizes pseudo-LL)
theta.max <- c(theta.max,th[which.max(fni)])

# The maximum value of pseudo-log likelihood given deltai
fni.max <- c(fni.max,fnilwhich.max(fni)])

# The value of pseudo-log likelihood given deltai
fni.plot = cbind(fni.plot,fni)

# Keep track of max ps-likelihood, and corresponding (theta,delta)

if (max(fni) > fn.max){
fn.max <- fnil[which.max(fni)]
est <- c(th[which.max(fni)],deli)
row.max = which.max(fni)
col.max = i

}

}
}

# Calculate the pseudo-likelihood test statistic
Star <- -2x(Star - fn.max)

### Dense Grid Search that encapsulates the confidence region found from the light grid search ###
ind.thrange = range(which(apply(Star,1,any.in,cl=level,c = c.CR, df=df.CR))) + c(-1,1)
ind.thrange[1] = max(c(ind.thrange[1],1))

ind.thrange[2] = min(c(ind.thrange[2],length(th)))

ind.delrange = range(which(apply(Star,2,any.in,cl=level,c = c.CR, df= df.CR))) + c(-1,1)
ind.delrange[1] = max(c(ind.delrange[1],1))
ind.delrange[2] = min(c(ind.delrange[2],length(del)))

theta.dense.grid = seq(th[ind.thrange[1]],th[ind.thrange[2]],length.out=100 + 100*more)
delta.dense.grid = seq(dell[ind.delrange[1]],del[ind.delrange[2]],length.out=100 + 100*more)

### Add the true theta to the grid search if it is known/specified
if (!is.na(true.theta)){
if (true.theta > min(theta.dense.grid) & true.theta < max(theta.dense.grid))
{
less.th.grid = sum(theta.dense.grid < true.theta)
last.th.grid.ind <- (less.th.grid+1):length(theta.dense.grid)
theta.dense.grid <- c(theta.dense.grid[0:less.th.grid],true.theta,theta.dense.grid[last.th.grid.ind])
Yelse
{
true.th.range.del <- range(del[order(Star[less.th+1,])[1:(length(del)/10)1])
s
¥

### Add the true delta to the grid search if it is known/specified
if (!is.na(true.delta)){
if (true.delta > min(delta.dense.grid) & true.delta < max(delta.dense.grid))
{
less.del.grid = sum(delta.dense.grid < true.delta)
last.del.grid.ind <- (less.del.grid+1):length(delta.dense.grid)
delta.dense.grid <- c(delta.dense.grid[0:less.del.grid],true.delta,delta.dense.grid[last.del.grid.ind])
}
}

1t = length(theta.dense.grid); 1d = length(delta.dense.grid)

# Keep track of thetaxdelta for all dense grid points
Delta.dense = rep(theta.dense.grid,ld)*rep(delta.dense.grid,each=1t)

# Define an object to contain likelihood information for the dense grid search
Star.Dense = matrix(NA, nrow = 1t, ncol = 1d)

# Implement dense grid search
j = 0 #counter
for(deli in delta.dense.grid)
{
j = j+1 # counter
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu, sigma=sigma, lambda=lambda,p=p,q=q)
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Star.Dense[,j] = psL(theta = theta.dense.grid, fhat.y = fhat.y, fhat.yd = fhat.yd)
¥

# update maximum ps-log likelihood based on dense grid serach
old.fn.max <- fn.max
fn.max <- max(fn.max,max(Star.Dense))

# Calculate the pseudo-likelihood test statistic for the dense grid
Star.Dense <- -2*(Star.Dense - fn.max)

## Check Null Estimate

# (is it contained the confidence region/intervals

# [based on the distribution for the interior of the parameter spacel)
TS.null = -2%(fn.null - fn.max)

null.CR = any.in(TS.null,cl=level,df=df.CR,c=c.CR)

null.CIt = any.in(TS.null,cl=level,df=df.CIt,c=c.CIt)

null.CId = any.in(TS.null,cl=level,df=df.CId,c=c.CId)

null.CID = any.in(TS.null,cl=level,df=1,c=1)

null = c(TS.null,null.CR,null.CIt,null.CId,null.CID)

# If specified by user, include the true theta in the grid search
if (!is.na(true.theta))

{
if (true.theta > min(theta.dense.grid) & true.theta < max(theta.dense.grid))
{
prof.TS.th.truth = min(Star.Dense[less.th.grid+1,])
Yelse
{
prof.TS.th.truth = Inf
j = 0 #counter
for(deli in seq(true.th.range.del[1],true.th.range.del[2],length.out = 100 + 100*more))
j = j+1 # counter
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu, sigma=sigma,lambda=lambda,p=p,q=q)
prof.TS.th.truth = min(c(prof.TS.th.truth,-2*(psL(theta = true.theta, fhat.y = fhat.y, fhat.yd = fhat.yd) - fn.max)))
}
}
}

# If specified by user, include the true delta in the grid search
if (1is.na(true.delta))

{
if (true.delta > min(delta.dense.grid) & true.delta < max(delta.dense.grid))
prof.TS.del.truth = min(Star.Dense[,less.del.grid+1])
Yelse
{
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=true.delta,obj=obj,
mu=mu, sigma=sigma,lambda=lambda,p=p,q=q)
prof.TS.del.truth = min(-2*( psL(theta = seq(.01,1,length=1000), fhat.y = fhat.y, fhat.yd = fhat.yd) - fn.max ))
¥
}

# For computing a 50-50 mixture of chi-squares with df = 1 and df = 2
qmix.chisq = function(x,p,df=c(1,2)) abs(mean(pchisq(x,df=df)) - p)
boundary.cutoff = optim(par = qchisq(p=level,df=1),

fn = gmix.chisq, p = level, df=c(1,2),

method = "Brent", lower = qchisq(p=level,df=1),

upper = qchisq(p=level,df=2))$par

## Compute CR Area
N = length(Star.Dense)
X = sum(Star.Dense < c.CRxqchisq(p=level,df=df.CR))
if ((N.in > 4800 & p.in < 1/30 & length(y) > 160) | (f.est %in% c("TRUTH","F")))
{
th.bound.ind <- which(theta.dense.grid == 1)
X = X + sum(Star.Dense[th.bound.ind,] < boundary.cutoff) -
sum(Star.Dense[th.bound.ind,] < c.CR*qchisq(p=level,df=df.CR))
}
if(null.CR & !finite.area){
Area=Inf}else{
Area=.5%(X/N + X/(N-2*1t-2%1d))*diff (range(theta.dense.grid))*diff (range(delta.dense.grid))
}

## Compute Intervals and note whether or not CSet is naturally an interval

TF.th = apply(Star.Dense,1,any.in,cl=level,df=df.CIt,c=c.CIt)
TF.del = apply(Star.Dense,2,any.in,cl=level,df=df.CId,c=c.CId)
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if (sum(TF.th) > 0){ind.thmarg = range(which(TF.th))}else{ind.thmarg = NA}
if (sum(TF.del) > 0){ind.delmarg = range(which(TF.del))}else{ind.delmarg = NA}

# If 0 in CSet(theta) => CSet(theta) = (0,1)
if (null.CIt){CI.th = c(0,1)}else{

if (!any(is.na(ind.thmarg))){CI.th = theta.dense.grid[ind.thmarg]l}else{CI.th = c(NA,NA)}
}

# If 0 in CSet(delta) => CSet(delta) = (0,Inf)
# If finite.area == FALSE then adjust interval for delta according to the above result
if(null.CId & !finite.area){CI.del <- c(0,Inf)}elseq{

if (lany(is.na(ind.delmarg))){CI.del = delta.dense.grid[ind.delmarg]}else{CI.del = c(NA,NA)}
}

# If 0 in CSet(Delta) => CSet(Delta) = (0,Inf)
# If finite.area == FALSE then adjust interval for Delta according to the above result
if(null.CID & !finite.area){CI.Del <- c(0,Inf)}else{
CI.Del = range(Delta.dense[which(Star.Dense < qchisq(p=level,df=1))]) #!# what do I do here? leave as asymptotic, I guess.
¥

# Store the endpoints for the intervals
if ('any(is.na(ind.thmarg))){
th.int = all(TF.th[seq(ind.thmarg[1],ind.thmarg[2])]1)
Yelse{
th.int = NA
¥
if (Yany(is.na(ind.delmarg))){
del.int = all(TF.del[seq(ind.delmarg[1],ind.delmarg[2])])
Yelse{
del.int = NA
}
ints = c(th.int = th.int, del.int = del.int)

### Determine whether CR captured truth
if (lany(is.na(c(true.theta,true.delta)))){
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.ad, ar.adj,
deli=true.delta,obj=obj,
mu=mu, sigma=sigma,lambda=lambda,p=p,q=q)

TS.th.del.truth = -2*(psL(theta=true.theta,fhat.y=fhat.y,fhat.yd=fhat.yd)-fn.max)
if (true.theta == 1 & ( (N.in > 4800 & p.in < 1/30 & length(y) > 160) | f.est %in), c("TRUTH","F") ))
{
CR.cap = TS.th.del.truth < boundary.cutoff
} else{
CR.cap = TS.th.del.truth < c.CR*qchisq(p=level,df=df.CR)
}
}else{TS.th.del.truth = NA; CR.cap = NA}

## Plot the results
if (plot)
{

par(mar = c(4,6,3,1), cex.lab = 2, cex.main = 2, cex.axis = 2)

CI.thresh = fn.max + (-c.CId*qchisq(p=level,df=df.CId)/2)
CR.thresh = fn.max + (-c.CR*qchisq(p=level,df=df.CR)/2)
plot(x = del, y = fni.max, type = "1", 1lwd = 3, pch = 16,
ylim = range(c(CR.thresh,CI.thresh,fni.max)),
xlab = expression(delta), ylab = "Max Log-Lik",
main = bquote("Maximum Log-Lik given" ~ delta)
)
abline(h = CI.thresh, lwd =
segments(x0 = CI.del[1], yO
segments(x0 = CI.del[2], yO
abline(h = CR.thresh)
points(x = 0, y = fn.null, pch = 19)

2, 1ty = 2)
= -107200, y1 = CI.thresh, lwd = 2, 1ty = 2, col = "darkgreen")
= -107200, y1 = CI.thresh, lwd = 2, 1ty = 2, col = "darkgreen")

plot(x = del, y = theta.max, type = "1", lwd = 3, pch = 16,
ylim = c(0,1),
xlab = expression(delta), ylab = bquote(hat(theta)(delta) [MLE]),
main = bquote(theta ~ "that maximizes PsL given" ~ delta))
points(x = 0, y = 0, pch = 19)

plot(x = c(0,max(del)), y = c(0,1.05), col = "white",
xlab = bquote(delta), ylab = "",
main = bquote("Confidence Bounds for("*theta*","xdeltax")")
)
mtext(text = bquote(theta), side = 2, cex = 2.5, las = 2, line = 3)

for(i in 1:length(theta.dense.grid))

if (i < length(theta.dense.grid)){
for(j in 1:length(delta.dense.grid))
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points(x = delta.dense.grid[j], y = theta.dense.grid[i],
col = 1 + 2*(Star.Dense[i,jl< c.CR*qchisq(level,df=df.CR)), pch = 19, cex = .5)
}
Yelse{
for(j in 1:length(delta.dense.grid))
{
if(N.in > 4800 & p.in < 1/30 & length(y) > 160)
{
points(x = delta.dense.grid[j], y = theta.dense.grid[i],
col = 1 + 2+(Star.Densel[i,j]< boundary.cutoff), pch = 19, cex = .5)
Yelse{
points(x = delta.dense.grid[j], y = theta.dense.grid[il,
col = 1 + 2*(Star.Dense[i,j]< c.CR*qchisq(level,df=df.CR)), pch = 19, cex = .5)

}
}
}

lines(x = CI.Del[1]/seq(.001,1,.001), y = seq(.001,1,.001), 1lwd = 2, col = "darkgreen")
lines(x = CI.Del[2]/seq(.001,1,.001), y = seq(.001,1,.001), 1lwd = 2, col = "darkgreen")

segments(x0 = -.15, yO = CI.th[1], y1 CI.th[2], 1lwd = 5, col = "darkgreen")
segments(y0 = CI.th[1], x0 = -.15, x1 = CI.del[2], 1ty = 2, 1lwd = 3, col = "darkgreen")
if ('null.CIt){text(x = 0, y = CI.th[1], labels = round(CI.th[1],3), pos = 1, font = 2, col = "darkgreen")}
segments(y0 = CI.th[2], x0 = -.15, x1 = CI.del[2], 1ty = 2, lwd = 3, col = "darkgreen")
text(x = 0, y = CI.th[2], labels = round(CI.th[2],3), pos = 3, font = 2, col = "darkgreen")
segments(x0 = CI.del[1], x1 = CI.del[2], yO = -.03, 1lwd = 5, col = "darkgreen")
segments(x0 = CI.del[1], yO = -.03, y1 = CI.th[2], 1ty = 2, lwd = 3, col = "darkgreen")
if ('null.CId){text(x = CI.del[1], y = -.02, labels = round(CI.del[1],2), pos = 2, font = 2, col = "darkgreen")}
segments(x0 = CI.del[2], yO = -.03, y1 = CI.th[2], 1ty = 2, 1lwd = 3, col = "darkgreen")
text(x = CI.del[2], y = -.02, labels = round(CI.del[2],2), pos = 4, font = 2, col = "darkgreen")
points(x = true.delta, y = true.theta, col = "red", lwd = 2, cex = 1.5, pch = 10)
segments(x0 = true.delta, yO = -.15, yl = true.theta, col = "red", lwd = 2, 1ty = 2)
segments(x0 = -.15, x1 = true.delta, yO = true.theta, col = "red", lwd = 2, 1ty = 2)
text(x = true.delta, y = true.theta, pos = 4,
labels = bquote(bold("(" * .(round(true.theta,2)) * "," * .(round(true.delta,2)) * ")")), col = "red")

if (null.CR){points(x = 0, y = 0, col = 3, pch = 15, cex = 1.5)}
points(x = est[2], y = est[1], col = "blue", pch = 19)
¥
if (tany(is.na(c(true.theta,true.delta)))){
TS.truth = c(TS.CR.Truth = TS.th.del.truth,
TS.prof.th.truth = prof.TS.th.truth,
TS.prof.del.truth = prof.TS.del.truth)}
else{
TS.truth = rep(NA,3)
}
ans = list(c(theta.hat = est[1], delta.hat = est[2], Delta.hat = prod(est)),
CI.th,CI.del,CI.Del,
ints,null.CR,Area,CR.cap,
TS.truth,TS.null)
names(ans) = c("Est",
paste0(100*level,c("CI_theta", "CI_delta","CI_Delta",
"Ints","Null_CR","Area","CR_Cap")),
"TS_Truth","TS_Null")
return(ans)

}

# Generate m = 100 observations from N(0,1) for the control group and n = 100 observations from .3N(0,1) + .7N(2,1) for the trt group.
m = 100

n = 100

true.theta = .7

true.delta = 2

x = rnorm(m)

= sample(c(0,1), size = n, replace = TRUE, prob = c(l-true.theta,true.theta))

rnorm(n) + true.delta*z

"N

y

# Find the Normal Maximum Likelihood
psl.inf(f.data = x, y = y, plot = TRUE, level = .95, true.theta = .7, true.delta = 2)
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