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ABSTRACT OF THE DISSERTATION 
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by 
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Dr. Daniel R. Jeske, Chairperson 
 
 
 
 

In a randomized clinical trial (RCT) with a control group vs. treatment group design, 

mixture models (Lindsay, 1995; G. McLachlan and Peel, 2000) can be a good choice for 

the treatment group response distribution in anticipation that there might be a sub-

population of the treated population whose responses have the same distribution as the 

control group. It is well known that such sub-populations of ‘non-responding’ treated 

patients exist in oncology trials (Spear et al., 2001; Manegold et al., 2016). Although it 

would be ideal to identify a-priori the features that characterize individuals who will 

respond (a ‘responder’) to the treatment and those who will not (a ‘non-responder’), this 

dissertation considers inference when such information has yet to be ascertained. Post-

hoc sub-group analyses are known to lead to an inflated rate of false discoveries (Lagakos 

et al., 2006). Assessing the existence of subgroups with mixture model inference before 

proceeding with identifying subgroups based upon biomarkers can decrease the false 

discovery rate among sub-group analyses. Jeske and Yao (2020) demonstrated that 

ignoring the heterogeneity of treatment effects could result in an under-powered 



 vii 

experiment and have the risk of missing some useful treatments. When heterogeneity is 

indeed present and treatment effects are sub-population specific, the average treatment 

effect obtained by the standard methods can lead to incorrect conclusions. Hence, the use 

of mixture models to represent the response distribution within the treatment group is 

compelling and it is desirable to describe the nature of this sub-population specific effect 

via inference on the corresponding parameters from the mixture distribution. This 

dissertation explores four methods of point estimation for the parameters. Two of the 

methods are also used to construct confidence bounds (both intervals and regions) for the 

parameters. Simulation is used to assess the performances of the various methods and 

make a recommendation. The recommended methods are illustrated on an example blood 

pressure data set. 
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Chapter 1

Introduction

1.1 Research Direction

In a randomized clinical trial (RCT) with a control group vs. treatment group design,

mixture models (Lindsay, 1995; G. McLachlan and Peel, 2000) can be a good choice

for the treatment group response distribution in anticipation that there might be a

sub-population of the treated population whose responses have the same distribution

as the control group. It is well known that such sub-populations of ‘non-responding’

treated patients exist in oncology trials (Spear et al., 2001; Manegold et al., 2016). Al-

though it would be ideal to identify a-priori the features that characterize individuals

who will respond (a ‘responder’) to the treatment and those who will not (a ‘non-

responder’), this dissertation considers inference when such information has yet to be

confirmed. Post-hoc sub-group analyses are known to lead to an inflated rate of false

discoveries (Lagakos et al., 2006). Assessing the existence of subgroups with mixture

model inference before proceeding with identifying subgroups based upon biomark-

ers can decrease the false discovery rate among sub-group analyses. A group fMRI

example motivated a recent call for more attention to be given to mixture alterna-

tives for comparing two (alternative) treatments (by a hypothesis test), stating that

1



medical applications, psychiatric-genetics and personalized medicine are important

applications where mixtures are plausible alternatives (Rosenblatt and Benjamini,

2018). Jeske and Yao (2020) demonstrated that ignoring the heterogeneity of treat-

ment e↵ects could result in an under-powered experiment and have the risk of missing

some useful treatments. When heterogeneity is indeed present and treatment e↵ects

are sub-population specific, the average treatment e↵ect obtained by the standard

methods can lead to incorrect conclusions. Hence, the use of mixture models to rep-

resent the response distribution within the treatment group is compelling and it is

desirable to describe the nature of this sub-population specific e↵ect via inference on

the corresponding parameters from the mixture distribution.

−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Two Distinct Subpopulations

u

f

RespondersNon− 
 Responders

θ1 − θ

δ

Figure 1.1: Two distinct sub-populations that make up a mixture distribution.

Denote the cumulative distribution functions (CDFs) associated with a response

from the control group and the treatment group by F and G, respectively. Mean

shift alternatives of the form G(u) = F (u� �) are frequently used. This dissertation

2



assumes, without loss of generality, that � > 0 and uses a mixture model for the

responses from the treatment group of the form

G(u) = (1� ✓)F (u) + ✓F (u� �). (1.1)

where ✓ 2 (0, 1] and F 2 F representing the set of all CDFs. Also, (✓, �) = (0, 0) is in

the parameter space and represents a non-existent treatment e↵ect. In this context,

the treatment e↵ect is represented by the pair (✓, �) and the average treatment e↵ect

is � = ✓�. The parameter ✓ represents the proportion of responders in the treated

population, while � represents the e↵ect size of the treatment for the responders.

(Note that when ✓ = 1 the model simplifies to a pure mean shift). While it is

common to impose that F belongs to a particular parametric family (e.g. Normal),

this dissertation aims to limit distributional assumptions with the goal of distribution-

robust inference on (✓, �).

While each individual is either a responder or non-responder, the component mem-

bership of a randomly sampled individual is an unobserved random variable. Let

Z = Z1, ..., Zn
iid⇠ Bernoulli(✓) represent component membership (0 for non-responder,

1 for responder) for each patient in the treatment group. Let Y = Y1, ..., Yn repre-

sent the (observed) response from the random sample of treated patients. Thus,

the treatment data consists of n pairs - (Y ,Z) = (Y1, Z1), ..., (Yn, Zn) - where Yi

is observed and Zi is a latent variable. The conditional distributions representing

the sub-population responses are Yi|(Zi = 0) ⇠ F (u) and Yi|(Zi = 1) ⇠ F (u � �).

Therefore Yi marginally follows G in (1.1). Let X = X1, ..., Xm represent the patient

responses in the control group. Control patients do not respond to the treatment

(since they do not receive it) so the distribution for these untreated patients is F (u).

By randomization in the RCT X and Y are independent random samples with a

total sample size denoted N = m+ n.

3



The rest of the dissertation is organized as follows. The remainder of Chapter 1

explores mixture models more broadly and further motivates the research direction

by showing how it contributes to the existing literature. Chapter 2 explores various

estimators for the treatment e↵ect. Chapter 3 discusses confidence bounds (intervals

and regions) corresponding to two of the estimates from chapter 2, method of moments

and pseudo-likelihood. Chapter 4 compares the performance of the estimators and

confidence bounds via extensive simulation studies and provides recommendations.

Chapter 5 concludes by demonstrating the utility of the recommended methods on

an example blood pressure data set and discusses future work.

1.2 Survey of Mixture Models

Mixture models are also known as ‘latent class models’ or ‘unsupervised learning

models’. Sometimes they are used as a means of flexibly modeling data that is di�cult

to model parametrically. For example, kernel density estimation (KDE) is one very

popular non-parametric estimation technique for estimating a density. This technique

is actually a special case of mixture modeling. Another application of mixtures is

for modeling a population that is thought to be comprised of multiple distinct sub-

populations. Inference in these scenarios may focus on both sub-population features

as well as the percentage of the population from each sub-population. The number

of distinct sub-populations modeled by a mixture distribution may be pre-specified

or learned from the observed data.
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1.2.1 Basic Definitions and Notation

A mixture distribution G is defined by a distribution function

G(u) =
cX

j=1

⇡jFj(u) (1.2)

where 0  ⇡j  1 for all j 2 {1, ..., c},
Pc

j=1 ⇡j = 1 and Fj is a distribution function

for all j 2 {1, ..., c}. Each Fj is called a component distribution, while each ⇡j is called

a component probability and c is the number of components in the mixture model,

which may be known or unknown. Let bolded symbols represent vectors. Thus,

F (u) = [F1(u), ..., Fc(u)] (or just F ). Since
Pc

j=1 ⇡j = 1, all component probabilities

are defined by specification of c � 1 of the ⇡j values. By convention, consider the

first c � 1 to be the parameter vector ⇡ = [⇡1, ..., ⇡c�1] (then ⇡c = 1 �
Pc�1

j=1 ⇡j).

If c is finite, then G is said to be a finite mixture model. When G(u)s have a

corresponding probability density function (pdf), g(u) =
d

du
G(u), it may also be

written in analogous form to (1.2) as shown below

g(u) =
d

du
G(u) =

d

du

cX

j=1

⇡jFj(u)

=
cX

j=1

⇡j
d

du
Fj(u)

=
cX

j=1

⇡jfj(u) (1.3)

where each fj is the pdf of the corresponding distribution function Fj.
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1.2.2 Parametric Specifications

Component distributions Fj(u) are often chosen to be from some parametric family,

F (u;�j), which is indexed by a euclidean parameter vector �j . Commonly the same

family is chosen for all j 2 {1, ..., c}, though this need not be the case (Grimlund,

1989). Most commonly, this family is chosen to be the Normal family of distributions

(Fraley et al., 2012; G. J. McLachlan and Rathnayake, 2014; Maleki et al., 2019).

When the random variable is multivariate, the multivariate normal family is com-

monly used for mixture modeling (NAKAMURA and KONISHI, 1999; Dolan et al.,

2004; He et al., 2006; Boldea and Magnus, 2009). Other distributions such as the

gamma distribution (Young et al., 2019), t-distribution (Burgess-Hull, 2020), and

skewed t-distribution (Lin et al., 2007) have been studied as well.

1.2.3 Infinite Mixture Models

Infinite mixture models also exist where ⇡ is generalized to be a probability measure

H over a parameter vector � such that the infinite mixture distribution is defined by

G(u) =

Z
f(u;�)dH(�), (1.4)

where f(u;�) is the family of densities indexed by the parameter � and H(�) is called

the mixing distribution. When H(�) is discrete with finite support (1.4) simplifies to

(1.2) with finite c.
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1.2.4 Framework for Interpretation of Sub-populations

A useful framework for working with mixture distributions is to note that a mixture

distribution has the same distribution as the sum of independent variables as follows.

Let Zi = [1, 0, ..., 0] with probability ⇡1, Zi = [0, 1, ..., 0] with probability ⇡2,...,

Zi = [0, 0, ..., 1] with probability ⇡c, independently for all i 2 {1, ..., n}. That is,

let Zi
iid⇠ Categorical (⇡) for i 2 {1, ..., n}. Let zi,j be the jth element of Zi. Let

Xi,j ⇠ Fj independently for all j 2 {1, ..., c} and for all i 2 {1, ..., n}. Also let

Xi,· = [Xi,1, ..., Xi,c] and let Xi,· be independent of Zi. Then Yi
def
= ZiXT

i,·
iid⇠ G(y).

See the proof below

P (Yi  y)
def
= P (ZiX

T
i,·  y)

= P

 
c[

j=1

{zi,j = 1 \ (Xj  y)}
!

=
cX

j=1

P (zi,j = 1)P (Xi,j  y|zi,j = 1)

=
cX

j=1

P (zi,j = 1)P (Xi,j  y)

=
cX

j=1

⇡jFj(y)

= G(y)

where the steps hold by definition, the multiplication and addition rules, independence

of Xi,· and Zi, the definitions of Zi and Xi,j, and the definition of G in (1.2).
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1.2.5 Mixture of Regression Models

Mixture models can also be used to model the distribution of responses (or errors)

in the context of models that include covariates, xi. For example, let there be c

unobserved groups in the population where the ith observation comes from subgroup

j, indicated by zi,j = 1. Then

Yi|(X, Z = j) = XT
i � + ✏i, (1.5)

where ✏i
iid⇠ �(0, �2

j ) and � is the normal density. So marginally,

Yi|X ⇠
cX

j=1

⇡j�(y;X
T
i �j, �

2
j ). (1.6)

Various extensions exist where each Yi is multivariate (So↵ritti and Galimberti,

2011), ✏i is non-normal (Zeller et al., 2016) or even estimated non-parametrically

(Hunter and Young, 2012; Hu et al., 2017).
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1.2.6 Supervision, Clustering and Classification

The data setup for mixture modeling can be classified according to the availability

of Zi for all observations Yi for i 2 {1, ..., N}. In the machine learning literature,

data settings where no component labels are known are called unsupervised. Data

settings where all component labels are known are called supervised. Data settings

where a subset of available observations are of known component origin is called semi-

supervised. Within the supervised (or semi-supervised) framework it is important to

distinguish between types of supervision for accurate modeling (Hosmer Jr, 1973).

The data scenarios are listed below.

• Unsupervised

• Supervised

– Stratified Random Sampling

– Simple Random Sampling

• Semi-Supervised

– Stratified Random Sampling

– Simple Random Sampling

Clustering is the act of grouping unsupervised observations into unique groups,

called clusters. If the number of clusters, c, is known, the mixture model approach

to clustering corresponds to fitting a mixture distribution with c clusters. However,

sometimes the number of clusters is not known and thus the mixture modeling ap-

proach then considers c as a parameter rather than a known quantity (NAKAMURA

and KONISHI, 1999; G. J. McLachlan and Rathnayake, 2014). The two most com-

mon mixture model approaches (G. J. McLachlan et al., 2019) to selecting c are

maximizing a penalized log-likelihood and carrying out hypothesis tests using a Like-

lihood Ratio Test (LRT). For a classic and visual approach to selecting the number

of components, silhouette diagrams may be used (Rousseeuw, 1987).
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In a supervised setting, the observations are classified into pre-specified groups,

indicated by the observed Z. If the observations are randomly sampled from the

overall population, then Z1, ..., Zn
iid⇠ Categorical(⇡) and inference about ⇡ can be

made directly from Z1, ..., Zn. However, if stratified sampling is implemented from

the sub-populations, then the membership labels Z1, ..., Zn 6⇠ Categorical(⇡) and

thus do not provide direct information about ⇡. In such a case, information is only

available about the conditional distributions of Yi|(Z = j) and thus standard methods

like ANOVA or regression may be implemented to conduct statistical inference about

the parameters. In a machine learning context, classification of future observations

into class membership is often the goal in any form of supervised setting. It should

be noted that while an additional sample of observations from (1.2) is necessary

for inference on ⇡ (Ilagan and Falk, 2022), classification techniques using mixture

models (or other techniques) may still provide satisfactory classification metrics such

as sensitivity P (C = j|zi,j = 1) and specificity P (C 6= j|zi,j 6= 1). Furthermore,

posterior predictive probabilities P (zi,j = 1|C = j) may still be useful without this

information if components are well-separated.

Lastly, the semi-supervised setting describes when n1 observations have compo-

nent labels and n2 observations do not have component labels (n1 + n2 = n). The

same discussion about stratified versus simple random sampling above applies to the

supervised labels Z1, ..., Zn1 . Section 1.2.8 shows that while the sampling method

alters how the maximum likelihood estimates are computed, even in the stratified

scenario, Y1, ..., Yn1 may still be utilized for inference on ⇡ since (Zi, Yi) consists of

an observation from Yi|(zi,j = 1) even when Zi 6⇠ Bern(⇡j).

Besides mixture modeling, many other methods exist in the machine learning liter-

ature for clustering (Rokach and Maimon, 2005; Saxena et al., 2017) and classification

(Soofi and Awan, 2017; Dogan and Birant, 2021) problems.
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1.2.7 Identifiability

For notational purposes, let ⇡j, ⇡j0 represent two di↵erent choices of the value of the

same (jth) component probability. Also let ⇡k1 and ⇡k2 represent two arbitrary but

distinct component probabilities. Analogous notation is used for F .

One characteristic issue that arises in modeling data with a mixture distribution

is identifiability.

Definition 1.2.1 A distribution G(u; ⌧ ) is identifiable if ⌧ 6= ⌧ 0 =) G(u; ⌧ ) 6=

G(u; ⌧ 0) where ⌧ is the parameter vector of G.

Mixture models carry an inherent identifiability issue called label-switching. For

any mixture model (1.2), if Fk1 = F
0
k2, F

0
k1 = Fk2 and ⇡k1 = ⇡

0
k2, ⇡k2 = ⇡

0
k1 then

G(u; ⌧ ) = G(u; ⌧ 0) where ⌧ = (⇡,F ). This means that the model is non-identifiable

by the definition of identifiability, but only because of switching the labels of (⇡k1, Fk1)

and (⇡k2, Fk2). In settings where the component labels {1, 2, ..., c} are arbitrary in

their interpretation, as in the unsupervised setting where clustering is the goal, this

kind of non-identifiability is not problematic. Thus the definition of identifiability in

an unsupervised mixture setting is modified to satisfy Definition 1.2.1 up to a per-

mutation in labels. However, if the various components have distinct interpretations,

then this label-switching is an issue. In such scenarios supervised or semi-supervised

data is a solution to the label-switching issue.

For an example of label-switching, consider the following normal mixture model

G(u; ⇡1, µ1, �
2
1, ⇡2, µ2, �

2
2) = ⇡1�(u;µ1, �

2
1) + ⇡2�(u;µ2, �

2
2), (1.7)

where �(u) is a normal CDF and thus in this context ⌧ = (⇡1, µ1, �
2
1, ⇡2, µ2, �

2
2).

Consider that G(u; .2, 5, 1, .8, 10, 4) = G(u; .8, 10, 4, .2, 5, 1), so strictly speaking, the

11



model is not identifiable. However, the only di↵erence is what label (1 or 2) is given

to the component that has the smaller mean, mixing proportion, and variance. In

scenarios where the aspects of the component distributions ought to match with

particular labels, additional restrictions (such as ⇡1 < ... < ⇡c or µ1 < ... < µc) may

be imposed.

Another manner in which identifiability breaks down for (1.2) is by failing to ensure

that each component distribution Fj is a ‘true component’ of G. This occurs when

⇡j = 0 for one or more j 2 {1, ..., c}, or when at least two Fk1, Fk2 are non-distinct.

There are other (less trivial) ways in which non-identifiability of the model can

arise. Without any further restrictions on F (other than that each element be dis-

tinct), it is not possible to guarantee identifiability of G. Consider the following

example where the component distributions, Fj are distinct with positive component

probabilities ⇡j > 0 but the model is non-identifiable. Let c = 2, and F1(u) ⇠

(1�w1)N(0, 1)+w1N(2, 1) and F2(u) ⇠ (1�w2)N(0, 1)+w2N(2, 1) where w1 6= w2.

If ⇡2w1+⇡1w2 = p for any p 2 [0, 1], then G(u) = (1�p)N(0, 1)+pN(2, 1). For exam-

ple, if (w1 = .4, w2 = .7, ⇡1 = .4, ⇡2 = .6) or (w0
1 = .5, w0

2 = .8, ⇡0
1 = 11/15, ⇡0

2 = 4/15)

then p = .58. Analogous non-identifiable cases for c > 2 abound as well.

These examples highlight the need for further restriction on the mixture model in

order to ensure identifiability. One common way to do this is to specify a parametric

family for the component distributions. If c is known and finite, then each of F1, ..., Fc

can have a specified family (perhaps the same family, perhaps di↵erent). Titterington

et al. (1985) showed that with many common families for F , G becomes identifiable

barring label-switching with a notable exception being the uniform distribution.

To see why (1.3) is not identifiable if all fj (or more than one) follow a uniform

distribution, consider the following example. Let c = 2 and choose the following
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two sets for the parameters (⇡1 = 1/4, ⇡2 = 3/4, f1 = U(�1,1), f2 = U(1,7)) and

(⇡0
1 = 1/3, ⇡0

2 = 2/3, f
0
1 = U(�1,1), f

0
2 = U(�1,7)) then g(u) = g

0
(u) for all u (1.8) thus

showing that g is not identifiable.

g(u) = g
0(u) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 u < �1

9

24
�1  u < 1

1

24
1  u < 7

0 7  u

(1.8)
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Figure 1.2: Nonidentifiable Mixture of Uniforms. The plot on top represents f1

in grey, f2 in light green, and g in dark green. The bottom plot with f
0
1, f

0
2, g

0 is
analogous.

1.2.8 The EM Algorithm

Maximum Likelihood Estimation is a stalwart approach for statistical inference dating

back to the origin of the field of Statistics (Edgeworth, 1908; Wilks, 1938). Maximum
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Likelihood Estimation involves finding the parameter value ⌧ that maximizes the

likelihood function for a given set of data Y1, ..., Yn sampled from the model. Since

the log is a bijective function that is easier to work with (and the maximizer of the log-

likelihood function is the same as that of the likelihood function) attention is given

to maximizing the log-likelihood function. An observed random sample Y1, ..., Yn

from (1.3), where each Fj(y;�j) has a parametric family indexed by �j , provides an

(observed) log-likelihood function

lobs(⌧ ;Y ) =
nX

i=1

log

(
cX

j=1

⇡jfj(Yi;�j)

)
. (1.9)

Analytical maximization of (1.9) is not feasible due to the component summation.

However, the latent variable framework from section 1.2.4 makes maximization of the

complete log-likelihood possible. The unobserved Z1, ..., Zn contain the information

missing from (1.9) for the complete data log-likelihood

lc(⌧ ;Y, Z) =
nX

i=1

cX

j=1

zi,j {log (⇡j) + log (fj(Yi;�j))} (1.10)

where ⌧ = (⇡,�) (and � = [�1, ...,�c]).

The missing data setup of the mixture model lends itself naturally to implemen-

tation of the Expectation Maximization (EM) algorithm for maximizing (1.9). Such

an algorithm was originally discussed by Day (1969) for the two-component location-

shifted (possibly multivariate) normal mixture models. The EM algorithm was then

formalized by Dempster et al. (1977), which finds a local maximum of the observed

log likelihood (1.9) by iterating back and forth between ‘Expectation’ and ‘Maximiza-

tion’ steps computed from the complete log-likelihood (1.10). The algorithm begins

at step k = 0 with an initial estimate of the parameter ⌧ (0) = (⇡(0)
,�(0)). Then the
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‘E’-step is performed by computing the conditional expectation of (1.10) given Y and

⌧ (k), as below

Q(⌧ ; ⌧ (k)) = EZ

⇥
lc(⌧ ;Y ,Z)|Y , ⌧ = ⌧ (k)

⇤
. (1.11)

This reduces to

nX

i=1

cX

j=1

E[zi,j|Yi]
n
log

⇣
⇡
(k)
j

⌘
+ log

⇣
fj(Yi;�

(k)
j )

⌘o
(1.12)

by the linearity of expectation. Note that since zi,j is an indicator variable, E[zi,j|yi] =

P (zi,j = 1|yi), and by Bayes’ rule

P (zi,j0 = 1|yi) =
⇡j0fj0(yi;�j0)Pc
j=1 ⇡jfj(yi;�j)

. (1.13)

Thus, the ‘E’ step reduces to computing p
(k)
i,j = P

�
zi,j = 1|yi,⇡(k�1)

,�(k�1)
�
for all

i, j.

Next, the ‘M’ step proceeds by maximizing Q(⌧ ; ⌧ (k�1)) over ⌧ to give an updated

value, ⌧ (k). Note, that maximizing Q(⌧ ; ⌧ (k�1)) can often be done analytically (in

particular with fj all from exponential families) and is more feasible than trying to

directly maximize lobs(⌧ ;Y ). These ‘E’ and ‘M’ steps are repeated for increasing k

until lobs(⌧ (k);Y ) reaches a (local) maximum. The key property of the EM algorithm

for maximizing (1.9) is that

lobs(⌧
(k);Y ) � lobs(⌧

(k�1);Y ) (1.14)

for all k 2 {0, 1, 2, ...}. This non-decreasing property ensures that ⌧ (k) must converge

to a local maximum of lobs(⌧ ;Y ). When there are multiple local maxima (which is

common with (1.2) type models), starting the algorithm at various ⌧ (0) can uncover
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multiple local maximizers and the value of lobs(⌧ ;Y ) can be computed at each to

determine which is the largest. While there is no guarantee that this identifies the

global maximizer, the chance of obtaining the global maximizer increases in scenarios

where a vast array of starting values is computationally feasible or there are computa-

tionally inexpensive estimates (like method of moments) that may provide an initial

value close to the global maximizer.

1.2.9 Semi-Parametric Modeling

In contrast to modeling (1.2) with parametric assumptions on the component dis-

tributions as described in section 1.2.2, much recent work has been done on semi-

parametric modeling of (1.2) where the component distributions are estimated non-

parametrically. See Xiang et al. (2019) for a recent review. Without parametric

specification of the component densities, additional assumptions must be present for

identifiability to hold. Chang and Walther (2007a) assume log-concave components

for location-shifted distributions, but this is insu�cient to ensure identifiability. Bor-

des, Mottelet, et al. (2006) showed that for two-component location shifted mixture

with symmetric component densities, the model is identifiable. Bordes et al. (2007)

and Hunter et al. (2007) consider estimation of the component probabilities and lo-

cation parameters for such a model. Another two-component model was motivated

to detect di↵erentially expressed genes under two or more conditions in microarray

data where one component is known and the other is symmetric with finite third

moment (Bordes, Delmas, et al., 2006). Estimation for this model has since been

further explored (Bordes and Vandekerkhove, 2010; Hohmann and Holzmann, 2013;

Xiang et al., 2014; Patra and Sen, 2016).
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1.3 Model Preliminaries

1.3.1 Identifiability

Consider the special mixture model (1.1) of interest in this dissertation and note that

it is a special case of (1.2) where c = 2, ⇡2 = ✓, F1(u) = F (u), and F2(u) =

F (u � �). The restrictions that ✓ 2 (0, 1] and � > 0 or (✓, �) = (0, 0) alone

are insu�cient to ensure identifiability of (1.1). To see why, consider the follow-

ing example that produces two distinct triplets (F, ✓, �) and (F 0
, ✓

0
, �

0) such that

G(u;F, ✓, �) = G(u;F 0
, ✓

0
, �

0) for all u 2 R. Let (F, ✓, �) = (N(0, 1), .7, 1.5) and let

(F 0
, ✓

0
, �

0) = (.3N(�2, 1) + .7N(�.5, 1), 1, 2). Then G(u;F, ✓, �) = G(u;F 0
, ✓

0
, �

0) =

.3N(0, 1) + .7N(1.5, 1). Thus in an unsupervised setting - where there is no control

data X
iid⇠ F , but only Y

iid⇠ G - the model (1.1) is not identifiable.

As mentioned in sections 1.2.2 and 1.2.9, it is common to restrict F by imposing

parametric assumptions or shape constraints to achieve identifiability. However, in the

semi-supervised setting, data from X
iid⇠ F is available and thus F (a sub-model of G)

is identifiable. Consequently in this semi-supervised setting, model (1.1) is identifiable

so long as there is no distinct pair of parameters (✓, �), (✓0, �0) that produce the same

equation for G in model (1.1) [for the same F ]. Yakowitz and Spragins (1968) showed

that finite location-shifted mixture distributions are identifiable for any F . Thus the

model is identifiable in this semi-supervised setting without any constraints on F .

1.3.2 Parametric Inference with Treatment Data Only

To motivate the need for semi-parametric inference on (1.1) with control data, con-

sider first the inference problem with only treatment data and parametric assump-

tions on F . Recall that (Y1, Z1), ..., (Yn, Zn) represent the n paired observations for
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the randomly sampled individuals who are given the treatment under consideration.

Y1, ..., Yn represent the observed response of each individual and Z1, ..., Zn represent

the unobserved sub-population to which each of the n sampled individuals belongs

(each individual is either a non-responder or a responder). Let Zi ⇠ Bernoulli(✓),

Yi|(Zi = 0) ⇠ F (u), Yi|(Zi = 1) ⇠ F (u� �). Therefore, Y1, ..., Yn
iid⇠ G in (1.1).

Consider the MLE of ⌧ = (✓, µ0, µ1, �
2) with the correct assumption that F (u) ⇠

N(µ0, �
2) and F (u� �) ⇠ N(µ1, �

2) [� = µ1 � µ0 > 0] by implementation of the EM

algorithm. The algorithm is defined by

0.) Initialize: ⌧ (0)

1.) E-step: Compute Q(⌧ |⌧ (k�1)) = EZ [logLc(⌧ ; (Y, Z))|Y, ⌧ (k�1)]

2.) M-step: Maximize Q(⌧ |⌧ (k�1)) over ⌧ to give an updated value ⌧ (k),

where alternation between 1.) and 2.) repeats until convergence of ⌧ (k) occurs. Since

the only random variables from logLc(⌧ ; (Y, Z)) in 1.) are Z1, ..., Zn, it is useful to

define p
(k)
i = E[Zi|Y, ⌧ (k�1)].

Based on the solutions to the expectation and the maximization steps, the initial-

ization and k
th steps of the algorithm are

0. Initialize: ⌧ (0) = (✓(0), µ(0)
0 , µ

(0)
1 , �

2(0)) [�(0) = µ
(0)
1 � µ

(0)
0 ]

1. E-step: p(k)i =
✓
(k�1)

f
(k�1)(yi � �

(k�1))

(1� ✓(k�1))f (k�1)(yi) + ✓(k�1)f (k�1)(yi � �(k�1))
2. M-step:

✓
(k) =

Pn
i=1 p

(k)
i

n

µ
(k)
0 =

Pn
i=1(1� p

(k)
i )yiPn

i=1(1� p
(k)
i )

µ
(k)
1 =

Pn
i=1 p

(k)
i yiPn

i=1 p
(k)
i

�
2(k) =

Pn
i=1(1� p

(k)
i )(yi � µ

(k)
0 )2 + p

(k)
i (yi � µ

(k)
1 )2

n
.

Notice that since F (u) ⇠ N(u;µ0, �
2), each update of (µ(k)

0 , �
2(k)) uniquely defines

f
(k).
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Consider the simulation to assess the performance of [(✓, �) on 1000 independent

data sets when n = 100, F ⇠ N(0, 1), ✓ = .7, � = 2. The simulation results are

obtained using the Mclust package in R. Notice from the top panel in Figure 1.3

that the mixture model has (✓, �) such that the separation between the sub-population

component distributions is not substantial enough to produce a bimodal mixture

distribution. However, the e↵ect size is two standard deviations (K = �/� = 2/1 = 2)

and a moderate percentage of the population (✓ = 70%) is a responder. A treatment

with 70% responders may be of interest, and for most medical applications it is not

feasible to demand an e↵ect size more than two standard deviations. Thus it is

desirable to perform inference on a mixture model even if the mixture distribution is

not bimodal.

−4 −2 0 2 4 6 8
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0.
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0.
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g

RespondersNon− 
 Responders

0.70.3

Figure 1.3: Data Collection for Simulation Setting. Observations come from mixture
represented by dark green curve. n = 100, F ⇠ N(0, 1), ✓ = .7, � = 2.
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Figure 1.4: Normal Maximum Likelihood Estimate found by EM Algorithm. n =
100, F ⇠ N(0, 1), ✓ = .7, � = 2.

Figure 1.4 displays the distributions of b✓ and b� and shows that the estimators are

useful. The estimator typically indicates that between 50% to 90% of the population

responds to the treatment and the magnitude of the response for the responders is

between 1.5 and 2.5 units.

1.3.3 Semi-parametric Inference with Treatment Data Only

As stated in section 1.1, this dissertation aims to conduct inference that is robust to

distributional assumptions. An existing method for estimating (✓, �) is an EM-like

algorithm (Bordes, Mottelet, et al., 2006) where F is estimated non-parametrically,

which can be implemented using the mixtools package in R. First define Fs to be

a symmetric distribution function around 0 with density fs, f(u) = fs(u � µ0) and

f(u � �) = fs(u � µ1) where � = µ1 � µ0 > 0. The symmetry of fs is necessary for

model identifiability. The algorithm is as follows
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0. Initialize: ⌧ (0) = (✓(0), µ(0)
0 , µ

(0)
1 , f

(0)
s ) [�(0) = µ

(0)
1 � µ

(0)
0 ]

1. E-step: p(k)i =
✓
(k�1)

f
(k�1)(yi � �

(k�1))

(1� ✓(k�1))f (k�1)(yi) + ✓(k�1)f (k�1)(yi � �(k�1))
2. ‘M’-step:

✓
(k) =

Pn
i=1 p

(k)
i

n

µ
(k)
0 =

Pn
i=1(1� p

(k)
i )yiPn

i=1(1� p
(k)
i )

µ
(k)
1 =

Pn
i=1 p

(k)
i yiPn

i=1 p
(k)
i

f
(k)
s = ...

Now fs is itself a parameter to be estimated and is no longer uniquely determined

by a set of euclidean parameters - as is the case when assuming a particular para-

metric family for the component distribution. Since finding the particular f
(k)
s to

maximize Q(⌧ |⌧ (k�1)) is a di�cult task, the method of estimation opts rather to

estimate fs by kernel density estimation using a simulation technique to ‘complete

the data’ as follows

(a) Simulate z̃
(k)
i ⇠ Bernoulli(p(k)i )

(b) ỹ(k)i = yi � µ
(k)
z̃i

(c) bf (k)
n (u) =

1

nh

Pn
i=1 K(

u� ỹi

h
)

(d) f (k)
s (u) =

bf (k)
n (u) + bf (k)

n (�u)

2
In step (a), each observation is randomly assigned to either the ‘non-responder’ com-

ponent or the ‘responder’ component according to its current probability of compo-

nent membership. In step (b) each observation is ‘recentered’ by subtracting the

current estimate of the center of its respective component assignment. (Note that if

all simulation assignments and the center estimates are correct, then y1, ..., yn
iid
⇠ Fs.)

In step (c), a kernel density estimate is fit on all the ‘recentered’ data providing a pre-

liminary estimate of fs. In step (d), an additional symmetrization step is performed

to ensure a symmetric estimate of fs. (A deterministic version of the algorithm (Be-
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naglia et al., 2009) exists as well where the pjs are used directly to assign weighted

observations to the group instead of simulating full membership in one group. The

deterministic version performs similarly to the stochastic version.) Consider a sim-

ulation to assess the performance of [(✓, �) on 1000 independent data sets under the

same sampling scheme as in Figure 1.3

Figure 1.5: EM-like Algorithm with Only Treatment Data. n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.

As is very clear from Figure 1.5, the simulation study shows that the performance

of the EM-like estimator is unsatisfactory in this scenario. Particularly b� dramatically

underestimates �. By comparing Figure 1.4 and Figure 1.5, it appears that the

increased flexibility in allowing F to be any symmetric distribution comes at a steep

price. The flexibility in F makes it di�cult to identify separate sub-populations when

the separation between the components is not pronounced enough to obviously see

them in the resulting mixture - even though the model is theoretically identifiable

(Bordes, Mottelet, et al., 2006). To verify that the EM-like algorithm can work in

some situations, consider a larger e↵ect size, K = 4 (see Figure 1.6).

22



−4 −2 0 2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

Population Distribution (Mixture)

u

g
RespondersNon− 

 Responders
0.70.3

Figure 1.6: Data Collection for Simulation Setting with Large Shift. Observations
come from the mixture distribution represented by dark green. n = 100, F ⇠
N(0, 1), ✓ = .7, � = 4

Figure 1.7: EM-like Algorithm with Only Treatment Data. n = 100, F ⇠
N(0, 1), ✓ = .7, � = 4
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As seen from the simulation with a larger e↵ect size, the bias in b� decreases sub-

stantially to something more reasonable, and the variance of b✓ decreases as well.

However, as previously noted, in many applications of interest it may not be reason-

able to assume that the e↵ect size is so large. So for more realistic e↵ect sizes, where

the resulting mixture is not so prominently bimodal, it appears that the loss of infor-

mation about F that results from relaxing the normality assumption makes inference

about (✓, �) problematic. Therefore, consider another way of obtaining information

about F - control data.

Recall that the ‘non-responder’ sub-population is a subset of individuals who -

when given the treatment - do not respond. Thus individuals given a control inter-

vention have the same response distribution as individuals who do not respond to the

treatment. This dissertation aims to show that when a sample X1, ..., Xm
iid⇠ F (u)

from a control group is available, this information proves useful for inference on (✓, �)

without restricting F to be from some known parametric family.

1.3.4 Situating the Research in the Literature

Sections 1.2.2 and 1.2.9 surveyed a host of related literature that exists regarding

mixture models where the component distributions are estimated both parametrically

and non-parametrically. The specific setup, scope, and focus of the related work can

be characterized as in List 1.1 below. The bolded (and italicized) elements describe

how this dissertation research fits into the broader landscape.
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• Number of components

– Unknown

– Known

∗ c = 2

∗ c > 2 and c finite

∗ Infinite

• Data Dimension

– Univariate

– Multivariate

• Data Type(s)

– Categorial

– Numeric

– Mixed

• Assumption on Fjs

– Parametric

– Symmetric

– Log-Concave

– Certain Finite Moments

– Unimodal

– None

• Assumption between Fjs

– Same Specified Family

– Location-shifted

– Scaled (same location)

– Location-Scale

– Linear Log-ratio

– None

• Data Collection from

– G (with Zi known)

– G (with Zi unknown)

– All Fjs

– Some Fjs

– No Fjs

• Primary Inference Objective

– G

– Fjs

– Euclidean parameters

– pi and zi prediction

List 1.1: Summary of Mixture Modeling Scenarios

The assumptions on F vary from method to method in this dissertation, but

typically have only restrictions that seem broadly applicable to modeling medical

outcomes - such as F unimodal with reasonably well-behaved tails. The next chapter

presents various approaches to distribution-robust point estimation of (✓, �).
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Chapter 2

Estimation Methods

2.1 Normal Maximum Likelihood Estimator using

the EM Algorithm

While model (1.1) does not assume that F ⇠ Normal, an estimation approach that

utilizes a normality assumption may still provide distribution-robust performance.

Particularly, as discussed in sections 1.3.2 and 1.3.3, relaxing the normality assump-

tion (by imposing only a symmetric assumption on F ) dramatically deteriorates per-

formance of the EM-like estimator in the absence control data. If control data is

sparse, then it may be the case that an erroneous distributional assumption (i.e.

assume F ⇠ Normal when F 6⇠ Normal) could result in better inference on (✓, �)

than methods that impose no assumptions on F . Thus, adapting the standard EM

approach for finding the normal maximum likelihood estimate to the context with

additional control data could be beneficial. This estimator provides a benchmark for

performance comparisons with other estimators presented in this chapter that have

less stringent assumptions on F .
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Consider use of the EM algorithm to find the MLE assuming F ⇠ N(µ, �) where

the available data is X
iid⇠ F and Y

iid⇠ G from (1.1). The log-likelihood is then

lobs(µ, �, ✓, �;X,Y ) =
mX

j=1

log {f(xj;µ, �)} + (2.1)

nX

i=1

log {(1� ✓)f(yi;µ, �) + ✓f(yi � �;µ, �)}

and the complete log-likelihood is

lc(µ, �, ✓, �;X,Y, Z) =
mX

j=1

log {f(xj;µ, �)} + (2.2)

nX

i=1

log {(1� zi)f(yi;µ, �) + zif(yi � �;µ, �)} .

Let k be the iterating index for the EM algorithm. Based on the solutions to the

expectation and the maximization steps, implementation of the algorithm is as follows

0. Initialize: ⌧ (0) = (✓(0), µ(0)
0 , µ

(0)
1 , �

2(0)) [�(0) = µ
(0)
1 � µ

(0)
0 ]

1. E-step: p(k)i =
✓
(k�1)

f
(k�1)(yi � �

(k�1))

(1� ✓(k�1))f (k�1)(yi) + ✓(k�1)f (k�1)(yi � �(k�1))

2. M-step:

(a) ✓
(k) =

Pn
i=1 p

(k)
i

n

(b) µ
(k)
0 =

Pm
j=1 xj +

Pn
i=1(1� p

(k)
i )yi

m +
Pn

i=1(1� p
(k)
i )

(c) µ
(k)
1 =

Pn
i=1 p

(k)
i yiPn

i=1 p
(k)
i

(d) �
2(k) =

1

m+ n

Pm
j=1(xj � µ

(k)
0 )2

+
1

m+ n

Pn
i=1

n
(1� p

(k)
i )(yi � µ

(k)
0 )2 + p

(k)
i (yi � µ

(k)
1 )2

o
.
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Notice that the control data contributes direct information to the updates of

µ
(k)
0 and �

2(k) which uniquely determine f
(k)(u). As mentioned in section 1.2.8,

best practice is to run the algorithm with multiple starting values and compare the

observed log-likelihood at all convergent points, choosing the one with the largest

observed log-likelihood as the point estimate. The choice of starting value for im-

plementation using NormEM2loc() (see section A.10 of the Appendix) initializes

with the E-step by selecting a percentage of the largest observations in the treat-

ment group to assign as responders (0%, 20%, 40%, 60%, 80%, 100%). The Yi val-

ues assigned p
(0)
i = 1 are in the group with larger mean, while the Yi values as-

signed p
(0)
i = 0 are in the group with smaller mean. This is equivalent to selecting

✓
(0) 2 {0, .2, .4, .6, .8, 1} with µ

(0)
0 , µ

(0)
1 , �

2(0) computed using equations (b)-(d) (ac-

cording to the component membership assignment). By definition of the parameter

space, if either b✓ = 0 or b� = 0 then [(✓, �) = (0, 0). For a data set simulated from

m = 100, n = 100, F ⇠ N(0, 1), ✓ = .7, � = 2 (as shown in Figure 2.1), the R

output from NormEM2loc() is displayed in Figure 2.2. This output displays a ma-

trix with six rows representing the points of convergence from the six di↵erent initial

values. The convergent point that achieves the highest log likelihood is indicated by a

1 in row 6 of the last column (labeled ‘max.LL’). The iterations for the EM algorithm

for this run are graphically displayed in Figure 2.3.
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Figure 2.1: Data Collection with Control and Treatment Data. m = 100, n =
100, F ⇠ N(0, 1), ✓ = .7, � = 2.

Figure 2.2: Normal EM Output with six initial values.
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Figure 2.3: Plotting Output of EM Algorithm for Normal MLE.

The point with the highest log-likelihood, indicated by the last column ‘max.LL’,

is the estimate � [(✓, �) = (.62, 1.95), b� = 1.02, b� = b✓ b� = 1.21, bK = b�/b� =

1.91. Figure 2.2 shows that multiple starting values for this data set � ✓
(0) 2

{0, .2, .4, .6, .8} � converge to this estimate (with negligible discrepancies). The plots

in Figure 2.3 show the path toward the estimate and verify that the log-likelihood

is non-decreasing.
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2.2 Method of Moment Estimation

Note that much of section 2.2 below is identical to content from previously published

work (Lubich et al., 2022).

Recall that X1, ..., Xm
iid⇠ F and Y1, ..., Yn

iid⇠ G from (1.1) where X and Y are

independent for a total sample size of N = m+n. Denoting the mean of F and G by

µX and µY , respectively, then µY = µX + � (see proposition 2.2.1) and therefore a

(modified) method of moment estimator for � is b� = (Y �X)+ where t+ = t if t > 0

and 0 otherwise. The + operator restricts b� to remain in the parameter space. Jeske

and Yao (2020) further proposed method of moment estimators for the parameters in

model (1.1) of the form

b� = (Y �X)+ (2.3)

b✓ =

⇢
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + ✏N

��1

(2.4)

b� =
b�
b✓
= (Y �X)+

⇢
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + ✏N

�
, (2.5)

where (X,S
2
X) are the sample mean and variance of the control group observations,

(Y , S
2
Y ) are the same for the treatment group observations, and ✏N is a small positive

number that bounds the denominators away from zero. If ✏N = op(1) as suggested

in Lubich et al. (2022), then the method of moment estimators (2.4) and (2.5) are

consistent. By definition of the parameter space, if either b✓ = 0 or b� = 0 then

[(✓, �) = (0, 0). Another nice property of the estimators is that they do not require

any parametric assumptions about the distribution F .
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2.2.1 Moments

Here the formulas for some moments of G are stated in terms of (F, ✓, �). These results

are utilized to derive the variance of (2.4) and (2.5), which is displayed in section

2.2.3. Let µX = E [X] , �2
X = E [(X � µX)2] , µ3cX = E[(X � µX)3], and µ4cX =

E[(X � µX)4]. Similarly, let µY = E[Y ], �2
Y = E[(Y � µY )2], µ3cY = E[(Y � µY )3],

and µ4cY = E[(Y � µY )4]. Let Fk be the set of all CDFs with finite k
th moment.

Proposition 2.2.1 For (F, ✓, �) 2 (F4, (0, 1],R+), the moments of Y ⇠ G can be

found in terms of (F, ✓, �) and are as follows

µY = µX + ✓� (2.6)

�
2
Y = �

2
X + ✓(1� ✓)�2 (2.7)

µ3cY = µ3cX + ✓(1� ✓)�3 [1� 2✓] (2.8)

µ4cY = µ4cX + ✓(1� ✓)�4
⇥
(1� ✓)(1� 3✓) + ✓ + 6�2

X/�
2
⇤
. (2.9)

Equations (2.6)�(2.9) are proved in section A.1 of the Appendix. Notice that each

moment of Y ⇠ G can be written in terms of the corresponding moment of X ⇠ F

plus a term that depends on (✓, �). Equation (2.6) implies that the average e↵ect is

given by � = ✓� = E[Y ]�E[X]. The even central moments of Y � (2.7) and (2.9) �

can be minimized by letting � become arbitrarily small or letting ✓ approach either 0

or 1 (since the additional terms are non-negative). Such cases characterize a scenario

where the treatment group’s response distribution approaches (a potentially shifted

version of) the control group’s response distribution. The di↵erence µ3cY � µ3cX may

be positive or negative, and is 0 when ✓ 2 {.5, 1} or as ✓ approaches 0.

The bounding parameter ✏N is chosen to be of the form ✏N = S
2
XaN [where aN =

o(1)] so that b✓ retains its invariance to location-scale transformations of the data. To
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see how this b✓ maintains the location-scale invariance, consider the estimates on the

data X
0 = bX + c and Y

0 = bY + c. Recall that S2
X0 = b

2
S
2
X and X 0 = bX + c (and

similarly for Y 0).

b✓(X 0
, Y

0) =

⇢
1 +

(S2
Y 0 � S

2
X0)+

(Y 0 �X 0)2+ + S
2
X0aN

��1

=

⇢
1 +

(b2S2
Y � b

2
S
2
X)+

(bY + c� bX � c)2+ + b2S2
XaN

��1

=

⇢
1 +

b
2(S2

Y � S
2
X)+

b2(Y �X)2+ + b2S2
XaN

��1

=

⇢
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + S
2
XaN

��1

= b✓(X, Y ). (2.10)

Similarly, bK = b�/SX � the estimate of K = �/�X , which is the magnitude of the

e↵ect size for the responders relative to natural variability � is also location-scale

invariant. To see this, again consider this estimate on (X 0
, Y

0). First,

b�(X 0
, Y

0) = (Y 0 �X 0)+

⇢
1 +

(S2
Y 0 � S

2
X0)+

(Y 0 �X 0)2+ + S
2
X0aN

�

= b(Y �X)+

⇢
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + S
2
XaN

�

= bb�(X, Y ),

which implies that

bK(X 0
, Y

0) = b�(X 0
, Y

0)/SX0

= bb�(X, Y )/bSX

= b�(X, Y )/SX = bK(X, Y ). (2.11)
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2.2.2 Simulation for Tuning Parameter aN

This section shows the results of a simulation study for the tuning parameter aN

and recommends a simple function of N that produces near-optimal results for the

simulation settings. Recall ✏N = S
2
XaN for invariance properties, so aN uniquely

defines the bounding parameter ✏N . It is desirable to approximate an optimal aN

with a simple closed-form solution when using the estimators (2.4) and (2.5). As

such, the factorial design of the simulation is intended to cover a broadly applicable

set of sample sizes and region of the parameter space.

The sample size settings under consideration are N 2 N = {60, 120, 240, 480,

960, 1920, 3840, 7680, 15360} such that m = n = N/2. For each sample size, 1000

data sets are generated for the 6⇥ 3⇥ 4 = 72 combinations with parameter values

• F 2 {Normal, Laplace, Skewed Right Normal (SkRNorm), Skewed Right Laplace

(SkRLap), Skewed Left Normal (SkLNorm), Skewed Left Laplace (SkLLap)}

– All distributions are from the 5 parameter skewed generalized T distri-

bution with � = 0 for symmetric distributions, � = .5 for right skewed

distributions and � = �.5 for left skewed distributions. Distributions from

the generalized Normal family have parameters p = 2 and q = 1, while

those from the generalized Laplace family have parameters p = 1 and

q = 1.

– µX = 0 and �X = 1 for all F .

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

where the choices of F correspond to those described in detail in section A.4 of the

Appendix. Henceforth all F in simulations are standardized to have µX = 0 and

�X = 1 unless otherwise stated.
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With these 72 combinations of (F, ✓, �) in hand, consider first for a fixed N , a

criterion to decide what choice of aN produces the best overall performance across

the parameter space. Under each of the settings above, the estimates (2.4) and (2.5)

are computed with a comprehensive array of 190 choices for aN 2 A ranging from

.0001 to 2.3. A is chosen to include a range wide enough to su�ciently capture the

optimal aN for each N and to ensure that the grid is dense enough around each

optimal aN to identify it with su�cient precision. See A below.

.0001 .001 .00125 .0015 .00175 .002 .00225 .0025 .00275 .003

.00325 .0035 .00375 .004 .00425 .0045 .00475 .005 .00525 .0055

.00575 .006 .00625 .0065 .00675 .007 .00725 .0075 .00775 .008

.00825 .0085 .00875 .009 .00925 .0095 .00975 .010 .0105 .011

.0115 .012 .0125 .013 .0135 .014 .0145 .015 .0155 .016

.0165 .017 .0175 .018 .0185 .019 .0195 .02 .021 .022

.023 .024 .025 .026 .027 .028 .029 .03 .031 .032

.033 .034 .035 .036 .037 .038 .039 .04 .041 .042

.043 .044 .045 .046 .047 .048 .049 .05 .0525 .0550

.0575 .0600 .0625 .0650 .0675 .0700 .0725 .0750 .0775 .08

.0825 .085 .0875 .09 .0925 .095 .0975 .10 .1025 .105

.1075 .11 .1125 .115 .1175 .12 .125 .13 .135 .14

.145 .15 .16 .17 .18 .19 .20 .21 .22 .23

.24 .25 .26 .27 .28 .29 .30 .32 .34 .36

.38 .40 .42 .44 .46 .48 .50 .525 .55 .575

.6 .625 .65 .675 .7 .725 .75 .775 .8 .825

.85 .875 .9 .925 .95 .975 1 1.05 1.1 1.15

1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65

1.7 1.75 1.8 1.85 1.9 1.95 2.0 2.1 2.2 2.3

Table 2.1: A
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Determine a winning aN for each N by minimizing the following summary com-

parative performance metric.

M(aN) = S(b✓aN )S(b�aN )

=
72Y

F,✓,�

8
<

:

vuut MSE(b✓aN )
min
aN2A

MSE(b✓aN )

9
=

;

1/72
72Y

F,✓,�

8
<

:

vuut MSE(b�aN )
min
aN2A

MSE(b�aN )

9
=

;

1/72

. (2.12)

(The performance metric (2.12) does not include b� because the method of moment

estimate of b� is invariant to ✏N , and thus aN .) This process is repeated for each

N 2 N with M(aN) computed for all aN 2 A. For each N 2 N , the chosen winner

is a
⇤
N = argmin

aN

M(aN). Figure 2.4 below displays each a
⇤
N for N 2 N found via

simulation as a blue dot along the curve of the M(aN).

The set of a⇤N for the nine N 2 N indicate that the optimal scaling factor is of

the form

aN =
k1

Nk2
. (2.13)

k1 and k2 for the curve fit are chosen to minimize

Y

N2N

M(k1/Nk2)

M(a⇤N)
(2.14)

over a grid of k1 2 {5, 10, 15, ..., 100} and k2 2 {.05, .10, ..., 2.0}. These grid points

are chosen to be wide enough to capture the optimal (k1, k2). (M(k1/Nk2) for each

N 2 N is found by interpolation � see vertical line segments in Figure 2.4.) The

resulting optimum occurs at (k1, k2) = (20, .95). Figure 2.5 shows the good fit of

aN = 20/N .95 to the simulated optima.
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2.2.3 Consistency and Asymptotic Normality

This section states propositions that b✓ and b� in (2.4) and (2.5) are consistent and

asymptotically normal estimators of ✓ and �, respectively.

Proposition 2.2.2 (Consistency of Moment Estimator) For any

(F, ✓, �) 2 (F2, (0, 1],R+), b✓ p! ✓ and b� p! �.

Proposition 2.2.2 is proved in section A.2 of the Appendix. Proposition 2.2.3

is proved in section A.3 of the Appendix and is stated here for the case of m = n.

Proposition 2.2.3 (Normality of Moment Estimator) For any

(F, ✓, �) 2 (F4, (0, 1),R+)

p
n(b✓ � ✓) ! N(0, �2

✓),

p
n(b� � �) ! N(0, �2

� ),

where

�
2
✓ =

✓
1 +

�
2
Y � �

2
X

(µY � µX)2

◆�4
(
4(�2

Y � �
2
X)

2

(µY � µX)6
�
�
2
X + �

2
Y

�
� 4(�2

Y � �
2
X)

(µY � µX)5
(µ3cX + µ3cY )

+
(µ4cX � �

4
X) + (µ4cY � �

4
Y )

(µY � µX)4

)
, (2.15)

�
2
� =

✓
1� �

2
Y � �

2
X

(µY � µX)2

◆2 �
�
2
X + �

2
Y

�
+ 2

✓
1� �

2
Y � �

2
X

(µY � µX)2

◆✓
µ3cX + µ3cY

µY � µX

◆

+
(µ4cX � �

4
X) + (µ4cY � �

4
Y )

(µY � µX)2
. (2.16)
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Figure 2.6: Illustration of asymptotic normality for distributions of b✓ and b� for F ⇠
Laplace, �X = 1, ✓ = .5, � = 2 and sample sizes m = n 2 {25, 50, 100, 500}. Blue
curve represents approximate distribution based on Proposition 2.2.3.

Figure 2.6 illustrates how fast b✓ and b� converge in distribution to normal. For

the selected parameter settings, there is lack of normality due to the bounding of

b✓  1 in the top left plot of the figure, which subsides as the sample sizes increase.

Also note the elimination of the positive bias in b✓ and negative bias in b� as the sample

sizes increase.
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2.3 Semi-parametric EM-like Algorithm

A generalization of the Normal EM algorithm was proposed by Bordes et al. (2006)

for estimating the mixing proportions and mean parameters of location-shifted mix-

tures that does not assume that the common component distribution is normally

distributed, but operates only on treatment data. They showed that this EM-like al-

gorithm produces comparable results to Normal EM when F is Normal and superior

results when F is far from normal so long as the mixing proportions are moderate

and the components are well separated. This algorithm performs poorly when the

components are not well separated as shown in section 1.3.3. Here the algorithm is

adapted to incorporate information from the control data that allows for improved

performance when the components are not well separated.

This EM-like algorithm has 6 total variations to consider based upon three di↵er-

ent inputs variables to the function ssSpEMloc (which can be found in section A.10

of the Appendix) as shown in Table 2.2.

EM-like Algorithm Variations

Version all.data.f stochastic symmetric

1 TRUE TRUE TRUE

2 TRUE TRUE FALSE

3 TRUE FALSE TRUE

4 TRUE FALSE FALSE

5 FALSE FALSE TRUE

6 FALSE FALSE FALSE

Table 2.2: Table of Semi-Parametric EM-like Algorithm Settings

The first option in the algorithm is ‘all.data.f’. When this option is TRUE, (X,Y)

is used to estimate f at each step; whereas when it is FALSE, only X is used to
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estimate f . When ‘all.data.f = TRUE’, there is an option for how to incorporate the

weights (component membership probabilities pi, for treatment observations Yi) into

the estimation of f at each iteration via the ‘stochastic’ argument. If ‘stochastic =

TRUE’ then each pi is used to simulate whether the corresponding Yi came from the

non-responder component or the responder component. If ‘stochastic = FALSE’, then

each pi is used to provide a weighted assignment of each Yi to the two components

when updating bf . Finally, if ‘symmetric = FALSE’ a regular kernel density estimate

is used to estimate f , while in the ‘symmetric = TRUE’ case a symmetrization step

is added to make this estimate (denoted bfs) symmetric about the mean of bf (denoted

bµ0).

To initialize, begin by using k-means (Hartigan and Wong, 1979) clustering on

the treatment data to cluster the data into two groups. The Yi values assigned

p
(0)
i = 1 are in the group with larger mean, while the Yi values assigned p

(0)
i = 0

are in the group with smaller mean. This full group membership assignment is used

for the initialization. Let �(k) = µ
(k)
1 � µ

(k)
0 . Let K(·) represent the standard normal

kernel (used for kernel density estimation) and let h represent the chosen bandwidth.

Thereafter a case-by-case description of the iterations between E and ‘M’ steps is

presented below. (The ‘M’ step does not truly maximize the complete log-likelihood

which is why it is surrounded by quotation marks. The updating equations for µ0 and

µ1 maximize the log-likelihood when F ⇠ Normal, but not in general. Furthermore,

the updating equations for f are based on a kernel density estimate which also does

not maximize the log-likelihood function.) By definition of the parameter space, if

either b✓ = 0 or b� = 0 then [(✓, �) = (0, 0) for all versions.
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1.) all.data.f = TRUE, stochastic = TRUE, symmetric = TRUE

1. E-step: p(k)i =
✓
(k�1)

f
(k�1)
s (yi � �

(k�1))

(1� ✓(k�1))f (k�1)
s (yi) + ✓(k�1)f

(k�1)
s (yi � �(k�1))

2. ‘M’-step:

(a) ✓
(k) =

Pn
i=1 p

(k)
i

n

(b) µ
(k)
0 =

Pm
j=1 xj +

Pn
i=1(1� p

(k)
i )yi

m+
Pn

i=1 (1� p
(k)
i )

(c) µ
(k)
1 =

Pn
i=1 p

(k)
i yiPn

i=1 p
(k)
i

(d) f
(k)
s (u) = Steps i.� iv. below

i. Simulate z̃
(k)
i ⇠ Bernoulli(p(k)i )

ii. ỹ
(k)
i = yi � z̃

(k)
i �

(k)

iii. f
(k)(u) =

Pm
j=1 K ((u� xj)/h) +

Pn
i=1 K

⇣
(u� ỹ

(k)
i )/h

⌘

(m+ n)h

iv. f
(k)
s (u) =

f
(k)(u) + f

(k)(2µ(k)
0 � u)

2
The quantities p

(k)
i , ✓

(k)
, µ

(k)
0 , µ

(k)
1 , �

(k) are updated in the same manner as the

Normal EM algorithm, while fs is found by using simulated ‘re-centered’ data. If all

✓
(k) = ✓, µ

(k)
0 = µ0, and µ

(k)
1 = µ1, then ỹ

(k)
i

iid⇠ f(u). The estimates for the parameters

(✓, µ0, µ1) [� = µ1 � µ0] are computed by taking the average of (✓(k), µ(k)
0 , µ

(k)
1 ) over

all the iterations. The estimate of f is found by using the last iteration, bf(u) =

f
‘maxiter’
s (u) where the number of iterations is pre-specified by the ‘maxiter’ argument.

2.) all.data.f = TRUE, stochastic = TRUE, symmetric = FALSE

Version 2 of the algorithm is identical to Version 1 with the exception that f (k�1) is

used in the E-step (instead of f (k�1)
s ) and thus the symmetrization step iv. is not

necessary.
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3.) all.data.f = TRUE, stochastic = FALSE, symmetric = TRUE

In Version 3, the pis are not used to simulate complete data but rather are used

directly to provide a weighted assignment of each Yi into the ‘non-responder’ and

‘responder’ components.

1. E-step: p(k)i =
✓
(k�1)

f
(k�1)
s (yi � �

(k�1))

(1� ✓(k�1))f (k�1)
s (yi) + ✓(k�1)f

(k�1)
s (yi � �(k�1))

2. ‘M’-step:

(a) ✓
(k) =

Pn
i=1 p

(k)
i

n

(b) µ
(k)
0 =

Pm
j=1 xj +

Pn
i=1(1� p

(k)
i )yi

m+
Pn

i=1 (1� p
(k)
i )

(c) µ
(k)
1 =

Pn
i=1 p

(k)
i yiPn

i=1 p
(k)
i

(d) f
(k)(u) =

1

(m+ n)h

⇢ mX

j=1

K

✓
u� xj

h

◆
+

nX

i=1

(1� pi)K

✓
u� yi

h

◆
+ piK

✓
u� (yi � �

(k))

h

◆�

(e) f
(k)
s (u) =

f
(k)(u) + f

(k)(2µ(k)
0 � u)

2
The estimates for the parameters (✓, µ0, µ1, f)[� = µ1 � µ0] are the final iteration

of the corresponding values. The convergence criterion is when |✓(k) � ✓
(k�1)| and

|µ(k)
0 � µ

(k�1)
0 | and |µ(k)

1 � µ
(k�1)
1 | are all less than a pre-specified ✏ > 0.

4.) all.data.f = TRUE, stochastic = FALSE, symmetric = FALSE

Version 4 of the algorithm is identical to Version 3 except that the updating equation

for p
(k)
i uses f

(k�1) instead of f (k�1)
s and thus the symmetrization step in (e) is not

necessary.
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5.) all.data.f = FALSE, stochastic = FALSE, symmetric = TRUE

Version 5 does not use all of the data to estimate f but only observations of known

component origin, X ⇠ F . The motivation for only using control data is that this

‘pure’ data may provide stability to the algorithm by preventing a dramatic change the

estimate of f over the iterations due to inappropriate influence of the Yis. Therefore,

f only needs to be estimated once from the control data.

• bµ0 =

Pm
j=1 xj

m

• bf(u) =
Pm

j=1 K

✓
u� xj

h

◆

• bfs(u) =
bf(u) + bf(2bµ0 � u)

2

1. E-step: p(k)i =
✓
(k�1) bfs(yi � �

(k�1))

(1� ✓(k�1)) bfs(yi) + ✓(k�1) bfs(yi � �(k�1))
2. M-step:

(a) ✓
(k) =

Pn
i=1 p

(k)
i

n

(b) µ
(k)
1 =

Pn
i=1 p

(k)
i yiPn

i=1 p
(k)
i

The estimates for the parameters (✓, µ1, f, �) are the final iteration of the cor-

responding values. The convergence criterion is satisfied when |✓(k) � ✓
(k�1)| and

|µ(k)
0 � µ

(k�1)
0 | and |µ(k)

1 � µ
(k�1)
1 | are all less than a pre-specified ✏ > 0.

6.) all.data.f = FALSE, stochastic = FALSE, symmetric = FALSE

Version 6 is the same as Version 5 except bf(u) is used in the E-step instead of bfs(u)

(and thus bfs(u) need not be computed).
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2.3.1 Illustration of EM-like Algorithm Versions

The plots in Figures 2.7 - 2.12 below describe how the algorithm proceeds for

each of the 6 versions on the same data set generated from m = 100, n = 100, F ⇠

N(0, 1), ✓ = .7, � = 2. Each page includes a 2 ⇥ 3 grid of plots of the same variety.

The top left plot shows the initial KDE of the mixture (following the k-means ini-

tialization). The top center plot shows the final KDE of bf . The top right plot shows

the final KDE of the mixture bg using the estimates of ( bf, b✓, b�). The bottom left plot

shows the iterations of ✓(k). The bottom center plot shows the iterations of µ(k)
0 (in

black) and µ
(k)
1 (in red). The bottom right plot shows the iterations of �(k).
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Figure 2.7: EM-like Version 1 on a data set generated from m = 100, n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.
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Figure 2.8: EM-like Version 2 on a data set generated from m = 100, n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.
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Figure 2.9: EM-like Version 3 on a data set generated from m = 100, n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.
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Figure 2.10: EM-like Version 4 on a data set generated from m = 100, n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.
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Figure 2.11: EM-like Version 5 on a data set generated from m = 100, n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.
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Figure 2.12: EM-like Version 6 on a data set generated from m = 100, n = 100, F ⇠
N(0, 1), ✓ = .7, � = 2.
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Figure 2.13 shows a plot of all the estimates of [(✓, �)EMlike for the six versions

of the EM-like algorithm on the same data set. The red bulls-eye symbol represents

the true (✓, �). Figure 2.13 illustrates that the di↵erent versions of the algorithm

provide distinct but similar estimates of the treatment e↵ect that are also similar to

those found by methods that assume (correctly in this case) that F ⇠ Normal.
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Figure 2.13: Point Estimates for all 6 versions of EM-like Algorithm on a data set
generated from m = 100, n = 100, F ⇠ N(0, 1), ✓ = .7, � = 2. Numbers on the
plot represent the estimates of the corresponding EM-like versions. N represents
the estimate using the EM algorithm with a Normality assumption as described in
section 2.1. Nt represents the EM algorithm with a Normality assumption using only
treatment data as described in section 1.2.8.
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Recall from Figure 1.5 (copied in the figure below for comparison) that point

estimation using this EM-like algorithm under this parameter setting (with F ⇠

N(0, 1) and (✓, �) = (.7, 2)) is unsatisfactory without control data. Figure 2.14

below shows the improvement in distribution-robust inference on (✓, �) by including

m = 100 control observations into the algorithm.

Figure 2.14: EM-like algorithms on 1000 data sets generated from m = 100, n =
100, F ⇠ N(0, 1), ✓ = .7, � = 2. The estimators displayed on the top plots do not use
the m = 100 control observations, while the estimators on the bottom plots do. Both
algorithms use Version 1.

53



2.3.2 Simulation for Determining Preferable Versions

The concluding pages of this section compare the relative performances of the 6 ver-

sions of the EM-like algorithm by comparing results across a wide variety of simulation

settings. Performance comparisons should keep in mind that obtaining [(✓, �)EMlike is

of primary interest and obtaining bf is of secondary interest.

The joint distribution of [(✓, �) characterizes how well a method estimates (✓, �).

The marginal distributions of b✓ and b� give vital information to the e↵ectiveness of the

estimate, but do not fully define the joint distribution. To supplement the marginal

distributions, the distribution of b� = b✓ b� provides additional information about [(✓, �).

The parameter � = ✓� is of particular interest because it represents the average

treatment e↵ect in (1.1). Therefore, the distributions of b✓, b�, and b� together give a

comprehensive understanding of the e↵ectiveness of [(✓, �) in estimating (✓, �).

To compare the performance of [(✓, �)EMlike under the 6 di↵erent variations, con-

sider the simulation study that generates 1000 data sets under each following factorial

combinations of settings in List 2.1.

• m = n 2 {25, 50, 100, 500}

• F 2 {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

List 2.1: There are 4 sample size settings and 72 unique (F, ✓, �) triples for a total of
288 combinations of (m = n, F, ✓, �). The choices of F correspond to those described
in section A.4 of the Appendix.

Table 2.3 below displays scores for b✓, b� and b� = b✓ b� (let b⌧ represent an estimator

for a generic parameter ⌧). These scores for estimator i are the geometric average

of
q

MSE(b⌧i)/min
k

MSE(b⌧k) across all 72 combinations of (F, ✓, �) (where k indexes
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the candidate estimators, here k 2 {1, ..., 6})

S(b⌧i) =
72Y

F,✓,�

8
<

:

vuut MSE(b⌧i)
min
k

MSE(b⌧k)

9
=

;

1/72

. (2.17)

The score represents the average relative loss in performance of each estimator com-

pared to an ‘oracle’ estimator (that chooses the optimal algorithm version given

the true parameters). For example, estimator i with a score of S(b�i) = 1.10 has
q

MSE(b�i) that is on average 10% larger than the oracle estimator. A score of

S(b�i) = 1 means that Version i has the smallest
q
MSE(b�) for each of the 72 simu-

lation settings, so smaller scores (closer to 1) are preferred. Table 2.3 also presents

the geometric average of S(b✓), S(b�), and S(b�) as a summary score for each estimation

method. Each of the 4 sample sizes are shown separately in the table. Figures 2.15

- 2.16 display the same scores in Table 2.3 in 4 plots corresponding with the 4

columns of the table. The lowest (and near lowest) scores are highlighted in yellow.
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m = n Version S(b✓) S(b�) S(b�) {S(b✓)S(b�)S(b�)}1/3

EM-like 1 1.104 1.084 1.056 1.081

EM-like 2 1.105 1.106 1.051 1.087

25 EM-like 3 1.263 1.126 1.080 1.154

EM-like 4 1.306 1.148 1.098 1.181

EM-like 5 1.123 1.038 1.033 1.064

EM-like 6 1.096 1.079 1.018 1.064

EM-like 1 1.147 1.143 1.064 1.117

EM-like 2 1.125 1.149 1.056 1.109

50 EM-like 3 1.326 1.192 1.093 1.200

EM-like 4 1.350 1.192 1.109 1.213

EM-like 5 1.143 1.074 1.034 1.082

EM-like 6 1.130 1.112 1.025 1.088

EM-like 1 1.224 1.234 1.083 1.178

EM-like 2 1.132 1.193 1.053 1.125

100 EM-like 3 1.396 1.254 1.114 1.249

EM-like 4 1.346 1.209 1.105 1.216

EM-like 5 1.161 1.117 1.035 1.103

EM-like 6 1.157 1.145 1.029 1.109

EM-like 1 1.566 1.521 1.186 1.414

EM-like 2 1.158 1.219 1.046 1.139

500 EM-like 3 1.731 1.559 1.215 1.486

EM-like 4 1.311 1.177 1.085 1.187

EM-like 5 1.272 1.346 1.080 1.228

EM-like 6 1.223 1.227 1.052 1.164

Table 2.3: Scores for Estimators of ✓, �,�.
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Figure 2.15: EM-like Scores for b✓ and b�
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Figure 2.16: EM-like Score for b� and an Overall Summary Score
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A few trends from Table 2.3 and Figures 2.15 - 2.16 emerge. One trend is

that the estimators that assume f is symmetric (1, 3, 5) perform comparably to or

better than their symmetry-agnostic counterparts (2, 4, 6 respectively) for su�ciently

small sample sizes, while for su�ciently large sample sizes the symmetry-agnostic

versions dramatically outperform those with a symmetry assumption. The symmetry

assumption allows for a decreased variability in bf (even if f is not symmetric) which

is particularly beneficial for small samples leading to more stable [(✓, �). However, for

large sample sizes the inconsistency of bf for non-symmetric f results in substantially

biased bf and thus poor estimates. A second trend is that the versions where bf is

computed only based only on control data (5 and 6) perform the best overall for small

to moderate sample sizes while for larger sample sizes the iterative methods are more

e�cient. Again, the stability of bf(X) [as opposed to bf(X,Y )] aids in smaller sample

size settings. The discrepancies in performance of [(✓, �)EMlike5 and [(✓, �)EMlike6 for

small sample sizes are minor and version 6 has the advantage of being able to capture

skew in f if it exists. For larger sample sizes, the stochastic symmetry-agnostic

version (2) performs the best. Note that if (✓, µ0, µ1) were known, only the stochastic

versions return an f -distributed sample at each iteration from which bf is updated

(Bordes et al., 2007) - the deterministic versions do not have this property. Since

version 2 (and not 1) has a consistent bf for all continuous f , it is not surprising that

version 2 displays superior performance for su�ciently large samples. While Benaglia

et al. (2009) indicate that the deterministic version consistently performs slightly

better than the stochastic versions for � � 3�X in the case of no control data, these

results show that in the presence of control data and smaller �, the stochastic version

indicates superior performance - particularly in estimating the mixing proportion. In

light of these observations, a simple robust recommendation for [(✓, �)EMlike is

• If m = n  250, use version 6

• If m = n > 250, use version 2.
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Parameter Specific Performance Comparison

To understand how the relative performances of the estimators depend upon (F, ✓, �),

the plots on the following pages in Figures 2.18 - 2.21 compare the 2 recommended

versions (2, 6) of the EM-like estimator. Under each of the 288 simulation settings

either

r
MSE(b✓i)/min

k
MSE(b✓) or

r
MSE(b�i)/min

k
MSE(b�k) is plotted for each es-

timator i 2 {2, 6}. Each plot has 72 columns of dots representing the 72 settings

of (F, ✓, �). Each column has 2 dots representing the 2 versions of the algorithm.

Figure 2.17 displays the color key for the 2 recommended versions of the EM-like

estimator. The best performing estimator under each column’s setting has a value

of 1 while higher scores represent a relative loss in performance. For example, a dot

at 2 represents an estimator that has twice the
p
MSE as the best estimator under

that simulation setting. There are four separate plots for each of the four sample size

settings for b✓ and another four plots for b� for a total of eight plots.
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EM−like 2
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Figure 2.17: Color Key for EM-like Algorithm Versions
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Figure 2.18: Dot Plots comparing the performances of version 2 and version 6 of the
EM-like estimator of ✓ for small sample sizes.
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Figure 2.19: Dot Plots comparing the performances of version 2 and version 6 of the
EM-like estimator of ✓ for moderate to large sample sizes.
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Figure 2.20: Dot Plots comparing the performances of version 2 and version 6 of the
EM-like estimator of � for small sample sizes.
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Figure 2.21: Dot Plots comparing the performances of version 2 and version 6 of the
EM-like estimator of � for moderate to large sample sizes.
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Figures 2.18 - 2.19 show that for b✓ in small sample size settings, version 6 is

superior to version 2 � particularly when either ✓ � .5 and F is symmetric or skewed

right, or when ✓ = .2 and F is skewed left. This means that b✓EMlike6 prefers ✓ in

the direction of the skew relative to b✓EMlike2. Also of note is that version 6 performs

better for heavier (Laplace) tailed distributions in small sample sizes. However, for b✓

in larger sample size settings version 2 performs better overall. In particular version

2 is preferred for symmetric or light (Normal) tailed distributions while version 6

retains e�ciency for skewed Laplace distributions.

Figures 2.18 - 2.19 show that for b� in small sample size settings, version 6 is

superior to version 2 with a notable exception when F is skewed left and � is small.

Version 6 also shows uniformly superior performance for F ⇠ Laplace and generally

superior performance for heavier (Laplace) tailed distributions for small sample sizes.

However, for larger sample sizes version 2 performs better overall than version 6, most

notably when F ⇠ Laplace.

Figures 2.18 and 2.20 together show that for [(✓, �) in small sample size settings,

version 6 prefers large e↵ect sizes for a small subset of the population while version 2

prefers a smaller e↵ect size for a larger subset of the population. Figures 2.19 and

2.21 show that for [(✓, �) in large sample size settings, version 6 is mostly preferable

for the skewed left Laplace distribution with ✓  .5 while version 2 is mostly preferred

for symmetric distributions.
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2.4 Pseudo-Likelihood Estimator

The likelihood of the model (1.1) when both control and treatment data are present

is

L(f, ✓, �;X, Y ) =
mY

j=1

[f(xj)]
nY

i=1

[(1� ✓)f(yi) + ✓f(yi � �)] . (2.18)

The maximum likelihood estimate of (f, ✓, �) is (f ⇤
, ✓

⇤
, �

⇤) such that L(f, ✓, �;X =

x, Y = y) is maximized at L(f = f
⇤
, ✓ = ✓

⇤
, � = �

⇤;X = x, Y = y). Since the set of

possible f is a large space to search over, joint maximization of (f, ✓, �) is di�cult.

Since the control data provides direct information about f , replacing f with bf in

(2.18) provides a pseudo-likelihood function, bL(✓, �;X, Y ), that can be maximized

with respect to (✓, �) alone.

bL(✓, �;X, Y ) = L( bf, ✓, �;X, Y )

=
mY

j=1

h
bf(xj)

i nY

i=1

h
(1� ✓) bf(yi) + ✓ bf(yi � �)

i
. (2.19)

Thus a dense grid search in a region of plausible (✓, �) can be used to find the

maximum of the pseudo-likelihood. The estimate of the treatment e↵ect for this

pseudo-likelihood estimator is

[(✓, �)PsL = argmax
(✓,�)

bL(✓, �;X = x, Y = y). (2.20)

For the grid search, the factorial combination of ✓ 2 {.01, .02, ..., 1} and � 2

{.1SX , .2SX , ..., 6SX} along with the null case (0, 0) is used in the function psl.inf()

which can be found in section A.10 of the Appendix. Recalling that K = �/� (and

Kj = �j/SX) the grid points of � correspond with Kj 2 {.1, ..., 6}. An e↵ect size of
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K = 6 is a utopianly high value as such a case corresponds to virtually no overlap in

the responder and non-responder components - thus essentially reducing the estima-

tion problem to the trivial case where the component labels (Z1, ..., Zn) are observed.

For rare data sets where the grid search suggests that it is plausible that [(✓, �)PsL

could be beyond Kj = 6, the grid can extended to include Kj 2 {6.1, 6.2, ..., 12} when

‘finite.area = FALSE’.

2.4.1 Defining Options for bf

This section considers how to obtain bf , an estimate of f . Clearly making use of

X1, ..., Xm
iid⇠ f is indispensable. However, Y1, ..., Yn

iid⇠ (1 � ✓)f(u) + ✓f(u � �) also

contains information about f and could be considered in the estimation of bf . While

there may be some loss of information by excluding treatment data Y in estimation,

this provides a computational advantage in estimation such that the estimate of f

is not based upon (✓, �) which relinquishes the need for recursive estimation of the

parameters. Furthermore the estimator of f considered here is based only upon X to

retain the purity of the estimate of f upon which (✓, �) are determined from (2.19).

Now consider the manner of obtaining bf(X), keeping in mind that obtaining

[(✓, �)PsL is of primary interest, while estimating f is of secondary interest. To decide

on a choice of bf , consider the performance of [(✓, �)PsL under four di↵erent options

for bf .

The first option for bf is kernel density estimation using a standard normal kernel

and a default bandwidth formula. Kernel density estimation is a commonly used tech-

nique for estimating a density nonparametrically and the two factors that determine

the kernel density estimation are the selections of kernel and bandwidth. Density

estimation with the normal kernel is common practice and there exist rule of thumb

68



formulas for the bandwidth when using the standard normal kernel (Silverman, 1986).

The formula given by Silverman is

h = 0.9min

✓
SX ,

IQR(X)

1.34

◆
m

�1/5
, (2.21)

which has some optimality properties when the true distribution is normally dis-

tributed, and yet the IQR portion of the formula provides some robustness for non-

normally distributed data.

The second option for bf is a kernel density estimate based on a T (df = 3) kernel,

while the third option for bf is also a kernel density estimate based on a T (3) kernel

but standardized to have variance 1. Use of a T (3) kernel is not as common as the

normal kernel is, but it is motivated here to possibly induce stability in the estimates

[(✓, �)PsL. Because of the uncommon nature of T (3) kernels there is not a default

bandwidth designed for this kernel in the literature, so trying the formula derived for

standard normal kernels (2.21) on both a regular T (3) kernel and the standardized

T (3) kernel e↵ectively reduces to two di↵erent bandwidth selections for the T (3)

kernel. These bandwidth selections fully define the second and third options for bf ,

respectively.

The fourth and final option for bf is a modification of the maximum likelihood esti-

mate for a large class of densities: log-concave densities. First, consider the definition

of concave down.

Definition 2.4.1 A univariate density function f is concave down if f(⇡x + (1 �

⇡)y) � ⇡f(x) + (1� ⇡)f(y) for all x, y 2 R and 0 < ⇡ < 1.

Proposition 2.4.1 If f(x) is twice di↵erentiable, then f(x) is concave down if and

only if f
00(x)  0 for all x 2 R.
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Definition 2.4.2 A univariate density function f is said to be log-concave if log(f)

is concave down.

Proposition 2.4.2 If log(f) is twice di↵erentiable, then f is log-concave if and only

if
d
2

dx2
log(f(x))  0 for all x 2 R.

A list of distributions categorized by their log-concave status is found below in Table

2.4

Log-concave Log-concave (if) Not Log-concave

Normal Wishart (n � p+ 1) T

Exponential Dirichlet (all params > 1) Cauchy

Uniform Gamma (shape param > 1) Pareto

Logistic �
2 (df > 2) Log-normal

Extreme Value Beta (both params > 1) F

Laplace Weibull (shape param > 1) ...

Table 2.4: List of Distributions by their log-concave status.

Note that all of the parameter conditions in the second column of Table 2.4

correspond to the exponent in the pdf being positive. Furthermore, all log-concave

distributions are unimodal (Samworth, 2018).

The log-concave density maximum likelihood estimate - bfLCMLE - is nicely sum-

marized in Chang and Walther (2007b):

Given data X1, ..., Xn i.i.d. from f , the MLE bf of f under the restriction

that f be log-concave exists uniquely and has support [X(1), X(n)]. log( bf)

is a piecewise linear function whose knots are a subset of {X1, ..., Xn}.
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The MLE can be computed e.g. using the Iterative Convex Minorant Al-

gorithm described in Jongbloed (1998). The resulting algorithms for com-

puting the log-concave MLE bf as given in Walther (2002) and Rufibach

(2006) provide as output bf(Xi), i = 1, ..., n. This is all that is needed for

an EM-type algorithm; of course one can easily compute the entire density

bf by linearly interpolating between log

⇣
bf(X(i))

⌘
and log

⇣
bf(X(i+1))

⌘
and

then exponentiating.

This can be easily implemented using the logConDens() function from the logcondens

package in R (Dümbgen and Rufibach, 2011). It uses the ‘Active Set Algorithm’ to

perform the computation which is described in Dümbgen and Rufibach (2009) and

is faster than the Iterative Convex Minorant Algorithm. To motivate the need for a

modification to bfLCMLE(X), consider that

bfLCMLE(X) = 0 for all x 2
��

�1, X(1)

�
[
�
X(m),1

� 
. (2.22)

Note that P (Y(1) < X(1)) > 0 and that Y(1) < X(1) =) Y(1) � � < X(1) for all � > 0.

This means that if y(1) < x(1) then

(1� ✓) bf(y(1)) + ✓ bf(y(1) � �) = 0 for all � > 0, (2.23)

which implies that

logbL = bl(✓, �) =
mX

i=1

log

⇣
bf(xi)

⌘
+

nX

j=1

log

⇣
(1� ✓) bf(yj) + ✓ bf(yj � �)

⌘
= �1 (2.24)

for all � > 0 (which contains the whole parameter space). In such a case bl(✓, �) cannot

be maximized and thus [(✓, �)PsL does not exist. Furthermore, the relative frequency
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of this behavior does not diminish as m ! 1, n ! 1 nor does it diminish for

increasing �. To see this, consider the following.

Recalling the complete data framework of the mixture model described in section

1.2.4, the fraction of observations that are generated from f(u) is (1 � ✓). Thus an

expected (1� ✓)n of the treatment observations are generated from f(u). There are

alsom control observations generated from f(u). Each of these observations is equally

likely to be the minimum value (there is also a smaller probability that one of the

treatment observations from f(u� �) is the smallest value). Therefore, if bfLCMLE is

used

P (Y(1) < X(1)) �
n(1� ✓)

m+ n(1� ✓)

=
r(1� ✓)

1 + r(1� ✓)
where r = n/m

=) lim
m,n!1

P ([(✓, �)PsL DNE) � r1(1� ✓)

1 + r1(1� ✓)
, (2.25)

where r1 = limm,n!1 n/m. This lower bound of the limit (2.25) is only 0 if ✓ = 1 or

r1 = 0.

To avoid this issue caused by bf with unbounded support, consider instead the

modified log-concave estimate of f below

bfmLC(x) =

8
>>>><

>>>>:

k1exp(a1x) x < x(1)

m� 2

m

bfLCMLE(x) x 2 [x(1), x(m)]

k2exp(a2x) x > x(m).

(2.26)

The constants (k1, a1, k2, a2) in (2.26) can be chosen so that each exponential tail

has area 1/m while ensuring that bfmLC(x) is continuous at x(1) and x(m). Note that
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continuity is achieved by ensuring

lim
x!�x(1)

bfmLC(x) =
m� 2

m

bfLCMLE(x(1)) (2.27)

lim
x!+x(m)

bfmLC(x) =
m� 2

m

bfLCMLE(x(m)). (2.28)

To solve for the appropriate k1, a1 in (2.26), the following two equations must be

satisfied

k1exp(a1x(1))
set
=

m� 2

m

bfLCMLE(x(1)) (2.29)

Z x(1)

�1
k1exp(a1x)dx =

k1

a1
exp(a1x(1))

set
=

1

m
. (2.30)

Rearranging (2.29) means that

k1 =
m� 2

m

bfLCMLE(x(1)) exp(�a1x(1)) (2.31)

so substituting k1 into (2.30) gives

1

a1

m� 2

m

bfLCMLE(x(1)) exp(�a1x(1))exp(a1x(1)) =
1

m
(a1 > 0) (2.32)

and rearranging provides

a1 = (m� 2) bfLCMLE(x(1)). (2.33)

Similarly, to solve for the appropriate k2, a2 in (2.26), the following two equations

must be satisfied

k2exp(a2x(m))
set
=

m� 2

m

bfLCMLE(x(m)) (2.34)

Z 1

x(m)

k2exp(a2x)dx = �k2

a2
exp(a2x(m))

set
=

1

m
(a2 < 0). (2.35)
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Rearranging (2.34) means that

k2 =
m� 2

m

bfLCMLE(x(m)) exp(�a2x(m)) (2.36)

so substituting k2 into (2.35) gives

� (m� 2)

m

bfLCMLE(x(m))exp(�a2x(m))

a2
exp(a2x(m)) =

1

m
(2.37)

and rearanging provides

a2 = �(m� 2) bfLCMLE(x(m)). (2.38)

Note also that because this density estimate has area 1/m in each tail, it has the

following connection with the emperical cdf of the control data bFm(x)

bFmLC(x(1)) = bFm(x(1)) =
1

m
(2.39)

bFmLC(x(m)) = lim
x!�x(m)

bFm(x(m)) =
m� 1

m
(2.40)

See Figure 2.22 below for an example of bfLCMLE(x) and bfmLC(x) for a random

sample of fifty observations from a Skewed Right Laplace distribution.
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Log−Concave Density MLE with Modification

x
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en
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8

f̂ LCMLE(x)
f̂mLC(x)

Figure 2.22: Log Concave Density Maximum Likelihood Estimate with Modifica-
tion. Fifty i.i.d observations are drawn from a skewed generalized T distribution with
parameters (µ = 0, � = 1,� = .5, p = 1, q = 1).

Even with a fairly small sample size, m = 50, the modification to the MLE is minor

and achieves tail behavior of a distribution that is not bounded by X(1) and X(m).

Thus, to avert the possibility of an unbounded (2.24), the fourth option for bf is bfmLC

as defined above. For a summary of all candidate bf , see Table 2.5 below.
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bf Variations

bf Kernel Bandwidth

bfKDE.Norm Normal 0.9min

✓
SX ,

IQR(X)

1.34

◆
m

�1/5

bfKDE.T3.NA T(3) 0.9min

✓
SX ,

IQR(X)

1.34

◆
m

�1/5

bfKDE.T3.Adj T(3) 3�1/20.9min

✓
SX ,

IQR(X)

1.34

◆
m

�1/5

bfmLC N/A N/A

Table 2.5: Candidate bfs

2.4.2 Simulation for Selecting bf

To compare the performance of [(✓, �)PsL with the four di↵erent choices of bf presented

in Table 2.5, consider a simulation study that generates 1000 data sets under each

following factorial combinations of settings in List 2.1. Recall that (2.17) provides

the score to compare robust performance across (F, ✓, �) of estimator i among a set

of candidate estimates (indexed by k, here k 2 {1, ..., 4}). Table 2.6 below displays

scores for b✓, b� and b� = b✓ b�. The score represents the average relative loss in perfor-

mance of each estimator compared to an ‘oracle’ estimator (that choose the optimal

bf given the true parameters). For example, an estimator with a score of S(b�) = 1.05

has a
q

MSE(b�) that is on average 5% larger than the oracle estimator. Table 2.6

also presents the geometric average of S(b�), S(b✓), and S(b�) as a summary score for

each estimation method. The smallest scores are highlighted in yellow. Figures 2.23

- 2.24 display the scores graphically.
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m = n bf Variation S(b✓) S(b�) S(b�) {S(b�)S(b✓)S(b�)}1/3

Normal 1.081 1.133 1.033 1.082

25 T (3)NA 1.149 1.051 1.024 1.073

T (3)Adj 1.016 1.053 1.020 1.030

mod LogCon 1.059 1.056 1.026 1.047

Normal 1.111 1.232 1.051 1.129

50 T (3)NA 1.204 1.077 1.040 1.105

T (3)Adj 1.028 1.076 1.024 1.042

mod LogCon 1.049 1.058 1.017 1.041

Normal 1.151 1.363 1.070 1.189

100 T (3)NA 1.273 1.111 1.048 1.140

T (3)Adj 1.050 1.110 1.022 1.060

mod LogCon 1.047 1.070 1.009 1.042

Normal 1.200 1.626 1.123 1.299

500 T (3)NA 1.421 1.231 1.074 1.234

T (3)Adj 1.089 1.143 1.025 1.084

mod LogCon 1.029 1.061 1.004 1.031

Table 2.6: Scores for Estimates of �, ✓, �.
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Figure 2.23: Pseudo-Likelihood Scores for b✓ and b�
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Figure 2.24: Pseudo-Likelihood Score for b� and an Overall Summary Score
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For some of the smallest sample sizes, one of the kernel density estimates with a

T (3) kernel sometimes show the best performance, but for moderate to large sample

sizes bfmLC produces better estimation. A secondary advantage of bfmLC is that it

provides a unimodal density estimate while T (3)Adj is almost certain to produce a

multimodal estimate of f . Therefore, bfmLC is recommended for pseudo-likelihood

point estimation.

Parameter Specific Performance Comparison

The plots on the following pages in Figures 2.26 - 2.29 compare the two best

estimator versions under each of the 288 simulation settings by plotting either
q

MSE(b✓T3Adj
)/MSE(b✓mLC) or

q
MSE(b�T3Adj

)/MSE(b�mLC). Each plot has fixed

sample sizes and displays one estimator (b✓ or b�). Each plot displays the ratio for

each of the 72 (F, ✓, �). The axes determine (✓, �). At each coordinate, the results for

all 6 F s are shown as a 2 ⇥ 3 grid with row representing tail behavior and column

representing skew behavior. The ratio is displayed at each grid location with a colored

background to facilitate pattern recognition. Figure 2.25 displays the color key for

the T (3)Adj and Log-Concave options for bf .

Figure 2.25: Color Key for Candidate bf
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MSE1(θ) MSE2(θ)  for m =  50 , n = 50
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Figure 2.26: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of b✓ for small sample sizes.
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MSE1(θ) MSE2(θ)  for m =  100 , n = 100
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Figure 2.27: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of b✓ for moderate to large sample sizes.
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MSE1(δ) MSE2(δ)  for m =  25 , n = 25

δ
0.5 1 2 3

0.2
0.5
0.8

θ

0.9 1 1 1

1 1 1 1

1 0.9 1 1

1 0.9 1 1

1 1 1 1

1.1 0.9 1 1.1

1 1 0.9 1

1 1.1 1 1

1 1.1 1 1

1 0.9 0.9 1

1 1 1.1 1.1

1.1 1.1 1.1 1.1

1 1 1.1 1

1 1 1.1 1.1

1 1 1 1.1

1.1 1 1 1

1 1 1 1

0.9 0.8 0.9 0.9

0.9 1 1 1

1 1 1 1

1 0.9 1 1

1 0.9 1 1

1 1 1 1

1.1 0.9 1 1.1

1 1 0.9 1

1 1.1 1 1

1 1.1 1 1

1 0.9 0.9 1

1 1 1.1 1.1

1.1 1.1 1.1 1.1

1 1 1.1 1

1 1 1.1 1.1

1 1 1 1.1

1.1 1 1 1

1 1 1 1

0.9 0.8 0.9 0.9

0.9 1 1 1

1 1 1 1

1 0.9 1 1

1 0.9 1 1

1 1 1 1

1.1 0.9 1 1.1

1 1 0.9 1

1 1.1 1 1

1 1.1 1 1

1 0.9 0.9 1

1 1 1.1 1.1

1.1 1.1 1.1 1.1

1 1 1.1 1

1 1 1.1 1.1

1 1 1 1.1

1.1 1 1 1

1 1 1 1

0.9 0.8 0.9 0.9

0.9 1 1 1

1 1 1 1

1 0.9 1 1

1 0.9 1 1

1 1 1 1

1.1 0.9 1 1.1

1 1 0.9 1

1 1.1 1 1

1 1.1 1 1

1 0.9 0.9 1

1 1 1.1 1.1

1.1 1.1 1.1 1.1

1 1 1.1 1

1 1 1.1 1.1

1 1 1 1.1

1.1 1 1 1

1 1 1 1

0.9 0.8 0.9 0.9

Laplace
Normal

Laplace
Normal

Laplace
Normal

SkL Sym SkR SkL Sym SkR SkL Sym SkR SkL Sym SkR

MSE1(δ) MSE2(δ)  for m =  50 , n = 50
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Figure 2.28: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of b� for small sample sizes.

83
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Figure 2.29: Heat Grids comparing the performance of Pseudo-likelihood Estimator
Variations of b� for moderate to large sample sizes.
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Figures 2.26 - 2.27 indicates that the T (3)Adj variation of b✓ is slightly preferred

in small sample sizes, showing improvement with the heavier (Laplace) tailed distri-

butions. As the sample sizes increase, the mLC version shows superior performance

for larger � while T (3)Adj shows superior performance for smaller �. Across all sample

sizes, the T (3)Adj version favors smaller ✓ for the heavier (Laplace) tailed distributions

and small �. Also across all sample sizes T (3)Adj favors larger ✓ for lighter (Normal)

tailed distributions and small �.

Figures 2.28 - 2.29 indicate that the discrepancies between b� for the 2 versions

are minor for small sample sizes, though it appears that when ✓ = .8 and heavy

(Laplace) tailed distributions are present T (3)Adj is preferred for skewed left distri-

butions and the log-concave version is preferred for right skewed ones. As the sample

sizes increase, the T (3)Adj version becomes increasingly preferable for � = .5 and

lighter (Normal) tails, while the log-concave version becomes preferred for nearly all

other scenarios.

Considering the pair [(✓, �)PsL, the colored grids corroborate the fact that the

T (3)Adj variation is slightly preferred with very small sample sizes. The grids also

reveal that the only setting for which [(✓, �)T (3)Adj
is consistently preferred is when F

has Gaussian tails, � = .5 and ✓ � .8 (which is the smallest e↵ect size of the setting

closest to the traditional model that assumes F ⇠ Normal with a pure shift). The

primary pattern revealed in the grids is that all other settings eventually give way

to comparable or preferential performance of [(✓, �)mLC . In particular, [(✓, �)mLC is

uniformly preferred if � is large enough, where the lower bound for “large enough”

decreases as the sample sizes increase.
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Chapter 3

Confidence Bounds

A point estimate of (✓, �) does not quantify the uncertainty surrounding the treatment

e↵ect. Confidence bounds can provide information about this uncertainty. This

chapter first considers confidence bounds corresponding to the method of moment

estimator, with confidence intervals for ✓ and � in section 3.1 and confidence regions

for (✓, �) in section 3.2. Then confidence bounds for the pseudo-likelihood method are

considered, with confidence regions in section 3.3 and confidence intervals in section

3.4.

3.1 Method of Moment Confidence Intervals

Most of this section is identical to previously published work (Lubich et al., 2022).

Consider confidence intervals that are based on the method of moment estimators

in (2.4) and (2.5). Section 3.1.1 considers asymptotic intervals that are based on the

asymptotic properties of the moment estimators. Section 3.1.2 considers bootstrap

intervals constructed from bootstrap sampling distributions.
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3.1.1 Asymptotic Moment Intervals

Consider first asymptotic confidence intervals that rely on the consistency and asymp-

totic normality of b✓MoM and b�MoM presented in Propositions 2.2.2 and 2.2.3. These

propositions ensure that for su�ciently large (m,n) � here considering m = n �

b✓MoM ⇠̇ N(✓, �2
✓/n) and b�MoM ⇠̇ N(�, �2

�/n), where ⇠̇ means ‘is approximately dis-

tributed as’. Therefore the proposed asymptotic 100(1�↵)% confidence intervals for

✓ and �, respectively, are

CIMoM(✓) =
⇣
b✓ � z↵/2b�✓/

p
n, b✓ + z↵/2b�✓/

p
n

⌘
(3.1)

CIMoM(�) =
⇣
b� � z↵/2b��/

p
n, b� + z↵/2b��/

p
n

⌘
, (3.2)

where z↵/2 = ��1(1 � ↵/2). The standard errors, b�✓ and b��, are found by plug-

ging in the sample moments as estimates for the population moments found in the

asymptotic variance formulas and making the same alterations as in the estimators.

That is, (µY � µX) is substituted with
�
Y �X

�
+
+ ✏N and (�2

Y � �
2
X) is substituted

with (S2
Y � S

2
X)+. Finally, the boundaries of the asymptotic confidence interval are

truncated at the edges of the parameter space when necessary.

In addition to the confidence intervals for ✓ and �, the natural asymptotic confi-

dence interval for� = ✓� can be considered as well. Recalling that b�MoM = (Y �X)+,

a 100(1� ↵)% confidence interval for � is given by

CIMoM(�) =

 
b�MoM � z↵/2

r
S
2
X

m
+

S
2
Y

n
, b�MoM + z↵/2

r
S
2
X

m
+

S
2
Y

n

!
, (3.3)

where the lower bound is truncated at 0 as needed. The central limit theorem ensures

that this has the desired coverage probability. For most distributions, 30 observations

per group is ample for satisfactory approximation of the asymptotic distribution (Diez
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et al., 2012) so long as the overall e↵ect size � is large enough so the probability that

b�MoM = 0 is small.

3.1.2 Bootstrap Moment Confidence Intervals

Bootstrapping is a general approach to constructing confidence intervals that does

not depend on knowledge of the (asymptotic) distribution of an estimator. Boot-

strapping involves repeatedly resampling the observed data with replacement and

computing a statistic for each resample to provide a bootstrap sampling distribu-

tion of the statistic. This bootstrap sampling distribution can be used for inference.

For a more information on bootstrapping, see Efron and Tibshirani (1994). Boot-

strap confidence intervals are motivated as an alternative to asymptotic confidence

intervals since they may possibly provide better performance, particularly when the

sample sizes are small and the asymptotic approximations are imprecise. Consider

constructing bootstrap intervals for ✓ and � from model (1.1) using b✓MoM and b�MoM

as the statistics respectively. Implementation of bootstrap intervals in this context

involves the following general steps

(a) Randomly sample from X1, ..., Xm and Y1, ..., Yn independently with replace-

ment B=1000 times.

(b) For each of these 1000 bootstrap samples, calculate b✓b and b�b to obtain bootstrap

sampling distributions.

(c) Determine the bounds of the confidence intervals for ✓ and � by using the

bootstrap sampling distributions.

Multiple methods for step (c) may be considered. Let b⌧ represent the method

of moment estimate for a generic parameter (either ✓ or �). Percentile Bootstrap

Intervals select percentiles of the bootstrap distribution, b⌧ (↵1)
b and b⌧ (↵2)

b , such that

↵1 + (1 � ↵2) = ↵ and use [b⌧ (↵1)
b , b⌧ (↵2)

b ] as the 100(1 � ↵)% confidence interval.
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Centered Bootstrap Percentile Intervals use the percentiles in a di↵erent manner,

[2b⌧ � b⌧ (↵2)
b , 2b⌧ � b⌧ (↵1)

b ], for a 100(1 � ↵)% confidence interval. Another method of

bootstrap intervals is called BCa (Bias-Corrected accelerated) that typically pro-

duces better results than the aforementioned approaches (Efron, 1987). Consider

implementation of the BCa confidence intervals

1. Randomly sample from X1, ..., Xm and Y1, ..., Yn independently with replace-

ment B=1000 times.

2. For each of these 1000 bootstrap samples, calculate b✓b and b�b to obtain bootstrap

sampling distributions.

3. Calculate the acceleration (a) and bias (z0) correction terms for both b✓ and b�

based on (3.4) and (3.5), respectively.

4. Calculate the percentiles of the bootstrap distributions to use for the confidence

interval based on (3.6) and (3.7).

Typically (Efron, 1987) in step 3, z0 is calculated as z0 = ��1 (# {b⌧b < b⌧} /B)

and

a =

Pn
i=1

�
⌧ b � b⌧(�i)

�3

6{
Pn

i=1

�
⌧ b � b⌧(�i)

�2}3/2
, (3.4)

where # is the counting operator and b⌧(�i) is the estimate with the i
th observation

removed. However, this formula for z0 can fail for b✓ or b� because of the bounded nature

of the parameter space, and thus the estimators. There is non-zero probability that

b� = 0, in which case z0 = �1. Consider the following proposed adjustment for the

discrete nature of the bootstrap sampling distributions by taking

z0 = ��1

✓⇢
#(b⌧b < b⌧) + 1

2
# (b⌧b = b⌧)

�
/B

◆
. (3.5)
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Step 4 remains unchanged, letting

↵l = �

✓
z0 +

z0 � z↵/2

1� a(z0 � z↵/2)

◆
(3.6)

↵u = �

✓
z0 +

z0 + z↵/2

1� a(z0 + z↵/2)

◆
, (3.7)

giving the BCa interval [b⌧ (↵l)
b , b⌧ (↵u)

b ].

3.1.3 Performance Comparison of Moment Intervals

In the following pages, Tables 3.1 and 3.2 present coverage probabilities of the

asymptotic and BCa method of moment confidence intervals for ✓ and �, respectively,

for the following combinations of the parameters

• m = n 2 {25, 50, 100, 500}

• F 2 {Normal,Logistic,Laplace}

• ✓ 2 {.5, .8}

• � 2 {1, 3}

based upon a simulation of 1000 data sets per setting.

For each setting, the distribution of F is standardized to have mean 0 and standard

deviation 1. Note that � = 1 represents a small shift in the component distributions

which often results in a unimodal mixture while � = 3 results in a bimodal mixture.

Lastly, Table 3.3 presents average lengths for the asymptotic method.
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Parameters Interval Method

Asymptotic BCa Asymptotic BCa

F ✓ � m = n = 25 m = n = 50

Normal 0.5 1 0.88 0.77 0.87 0.81

Normal 0.5 3 0.90 0.94 0.93 0.94

Normal 0.8 1 0.94 0.83 0.95 0.80

Normal 0.8 3 0.90 0.92 0.93 0.94

Logistic 0.5 1 0.95 0.76 0.95 0.80

Logistic 0.5 3 0.91 0.95 0.92 0.94

Logistic 0.8 1 0.94 0.82 0.94 0.84

Logistic 0.8 3 0.88 0.91 0.90 0.94

Laplace 0.5 1 0.88 0.78 0.87 0.86

Laplace 0.5 3 0.92 0.94 0.94 0.95

Laplace 0.8 1 0.92 0.81 0.92 0.82

Laplace 0.8 3 0.92 0.93 0.93 0.92

m = n = 100 m = n = 500

Normal 0.5 1 0.91 0.84 0.93 0.94

Normal 0.5 3 0.94 0.95 0.95 0.95

Normal 0.8 1 0.95 0.80 0.96 0.92

Normal 0.8 3 0.94 0.94 0.94 0.95

Logistic 0.5 1 0.95 0.86 0.97 0.95

Logistic 0.5 3 0.93 0.95 0.95 0.96

Logistic 0.8 1 0.94 0.80 0.95 0.92

Logistic 0.8 3 0.93 0.94 0.94 0.96

Laplace 0.5 1 0.89 0.85 0.93 0.95

Laplace 0.5 3 0.94 0.96 0.95 0.95

Laplace 0.8 1 0.94 0.82 0.95 0.93

Laplace 0.8 3 0.93 0.93 0.95 0.94

Table 3.1: Coverage Probabilities of Asymptotic and BCa 95% Confidence Intervals
for ✓. Simulated coverage estimates have margin of error ranging from .01 to .03 at
99% confidence depending on coverage. For all F , �X = 1.
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Parameters Interval Method

Asymptotic BCa Asymptotic BCa

F ✓ � m = n = 25 m = n = 50

Normal 0.5 1 0.99⇤ 0.88 0.99 0.87

Normal 0.5 3 0.96 0.93 0.95 0.94

Normal 0.8 1 0.96 0.91 0.97 0.93

Normal 0.8 3 0.94 0.92 0.96 0.94

Logistic 0.5 1 0.98 0.89 0.99 0.87

Logistic 0.5 3 0.94 0.92 0.95 0.94

Logistic 0.8 1 0.95 0.94 0.96 0.92

Logistic 0.8 3 0.94 0.93 0.94 0.94

Laplace 0.5 1 0.98 0.89 0.99 0.88

Laplace 0.5 3 0.95 0.92 0.96 0.93

Laplace 0.8 1 0.97 0.93 0.97 0.92

Laplace 0.8 3 0.94 0.90 0.96 0.94

m = n = 100 m = n = 500

Normal 0.5 1 0.99 0.80 0.96 0.94

Normal 0.5 3 0.95 0.94 0.95 0.95

Normal 0.8 1 0.97 0.91 0.96 0.91

Normal 0.8 3 0.94 0.94 0.95 0.95

Logistic 0.5 1 0.99 0.85 0.97 0.95

Logistic 0.5 3 0.95 0.94 0.94 0.96

Logistic 0.8 1 0.96 0.91 0.96 0.90

Logistic 0.8 3 0.94 0.94 0.96 0.95

Laplace 0.5 1 0.99 0.85 0.98 0.94

Laplace 0.5 3 0.94 0.94 0.96 0.94

Laplace 0.8 1 0.98 0.91 0.97 0.92

Laplace 0.8 3 0.95 0.95 0.94 0.96

Table 3.2: Coverage Probabilities of Asymptotic and BCa 95% Confidence Intervals
for �. Simulated coverage estimates have margin of error ranging from .01 to .03 at
99% confidence depending on coverage. For all F , �X = 1.
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Parameters CI(✓)

F ✓ � 25 50 100 500

Normal 0.5 1 .83 (.02) .78 (.02) .72 (.02) .44 (.01)

Normal 0.5 3 .61 (.01) .45 (.01) .32 (.00) .14 (.00)

Normal 0.8 1 .82 (.02) .74 (.01) .61 (.01) .35 (.00)

Normal 0.8 3 .39 (.01) .30 (.01) .22 (.00) .10 (.00)

Logistic 0.5 1 .87 (.01) .86 (.01) .83 (.01) .55 (.01)

Logistic 0.5 3 .55 (.01) .42 (.01) .31 (.00) .14 (.00)

Logistic 0.8 1 .78 (.02) .75 (.02) .66 (.01) .39 (.01)

Logistic 0.8 3 .37 (.01) .29 (.01) .22 (.00) .10 (.00)

Laplace 0.5 1 .83 (.02) .81 (.02) .79 (.02) .59 (.02)

Laplace 0.5 3 .63 (.01) .47 (.01) .33 (.00) .15 (.00)

Laplace 0.8 1 .84 (.02) .83 (.01) .76 (.01) .45 (.01)

Laplace 0.8 3 .40 (.01) .32 (.01) .24 (.00) .11 (.00)

CI(�)

F ✓ � 25 50 100 500

Normal 0.5 1 2.28 (.08) 1.98 (.06) 1.56 (.04) 0.78 (.01)

Normal 0.5 3 2.15 (.10) 1.38 (.03) 0.97 (.02) 0.42 (.00)

Normal 0.8 1 1.90 (.05) 1.47 (.03) 1.12 (.02) 0.51 (.00)

Normal 0.8 3 1.34 (.02) 0.94 (.01) 0.66 (.00) 0.29 (.00)

Logistic 0.5 1 3.18 (.26) 2.49 (.20) 1.88 (.08) 0.94 (.01)

Logistic 0.5 3 2.07 (.09) 1.47 (.04) 1.02 (.02) 0.45 (.00)

Logistic 0.8 1 2.07 (.10) 1.63 (.04) 1.27 (.02) 0.60 (.01)

Logistic 0.8 3 1.35 (.03) 0.96 (.02) 0.69 (.01) 0.31 (.00)

Laplace 0.5 1 2.95 (.14) 2.54 (.10) 2.05 (.06) 1.14 (.02)

Laplace 0.5 3 2.33 (.11) 1.62 (.06) 1.13 (.02) 0.51 (.00)

Laplace 0.8 1 2.33 (.10) 1.92 (.05) 1.51 (.03) 0.73 (.01)

Laplace 0.8 3 1.47 (.04) 1.06 (.02) 0.76 (.01) 0.34 (.00)

Table 3.3: Simulated Average Length of Asymptotic 95% CIs for ✓ and � when
m = n 2 {25, 50, 100, 500}. Average interval length estimates have margin of error at
99% confidence as noted in parentheses. For all F , �X = 1.
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Table 3.1 shows that the coverage probability of the 95% asymptotic interval

for ✓ is well calibrated except for the case of very small sample sizes m = n = 25.

However, the BCa intervals have far too low coverage probabilities for ✓ when � is

small, even for moderate sample size (e.g. m = n = 100) but well-calibrated coverage

probabilities for large �. As the sample sizes increase, both confidence intervals have

coverage probabilities converging toward .95 but the asymptotic interval appears to

do so more quickly.

Table 3.2 shows that the coverage probability for the 95% asymptotic interval for

� tends to be conservative when the component distributions are not well separated

and are fairly well-calibrated otherwise, even for small sample sizes. Contrarily, the

BCa confidence intervals tend to have coverage probabilities that are too low and this

is most notable when the components are not well separated. As the sample sizes

increase, both methods have coverage probabilities that converge to .95 rather slowly

when � is small. (There was one data set in the Table 3.2 setting marked with ⇤

for which the asymptotic confidence interval could not be computed. This is possible

due to the small sample size and the asymptotic nature of the interval).

Table 3.3 shows average lengths for both parameters of the asymptotic confi-

dence intervals, which were shown to have superior coverage probabilities to the BCa

intervals in Tables 3.1-3.2. The intervals for ✓ are notably smaller when the mixture

components are well separated. Also, the intervals for � are notably smaller when the

components are well-separated and also when there are more responders. The tables

verify that the average confidence interval length decreases at a rate of n� 1
2 once the

sample size is su�ciently large to ensure that truncation at the edge of the parameter

space is rare.
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3.2 Method of Moment Confidence Regions

While the method of moment confidence intervals described in section 3.1 provide

inference for ✓ and � individually, neither produces bounds for the full treatment

e↵ect (✓, �). The foundation for the asymptotic intervals is the limiting distributions

found in proposition 2.2.3. An analogous result for the distribution of [(✓, �)MoM would

provide the basis for asymptotic method of moment confidence regions. However,

marginal normality does not imply joint normality and thus the asymptotic results in

2.2.3 do not imply that [(✓, �)MoM is asymptotically normally distributed. Since little

is known about the distribution of [(✓, �)MoM , CRMoM(✓, �) can be constructed from

CIMoM(✓), CIMoM(�), CIMoM(�) by the following methods

• Using a single confidence interval

• Intersecting two confidence intervals

3.2.1 Confidence Region from Interval

A 100(1�↵)% CI(�) is equivalent to a 100(1�↵)% CR(✓, �) = {(✓, �) : ✓� 2 CI(�)}.

Letting �L and �U be the lower and upper bounds of CIMoM(�) respectively, the

region can be written in any of the following forms

100(1� ↵)% CRMoM{�}(✓, �) = {(✓, �) : �l  ✓�  �u}

= {(✓, �) : �l

✓
 �  �u

✓
}

= {(✓, �) : �l

�
 ✓  �u

�
}.

Figure 3.1 below displays this confidence region on a data set with 100 observations

per group.
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Figure 3.1: Data set of size m = n = 100 generated from F ⇠ N(0, 1) and (✓, �) =
(0.5, 2), shown as the red bulls-eye on the plot. The dark-green curves are found from
95% CIMoM(�) = [0.49, 1.09] onto (✓, �). The blue dot represents the point estimate
[(✓, �)MoM = (0.49, 1.62) and the light green shaded region is the 95% CRMoM�(✓, �).
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3.2.2 Confidence Regions via Intersecting Confidence Inter-

vals

Another way to obtain method of moment confidence regions for (✓, �) is by inter-

secting two confidence intervals. For example, a confidence region can be found by

intersecting CI(✓) with CI(�) such that

CR{✓,�}(✓, �) = {(✓, �) : ✓ 2 CI(✓) \ � 2 CI(�)}.

Similarly, intersecting CI(✓) with CI(�) produces

CR{✓,�}(✓, �) = {(✓, �) : ✓ 2 CI(✓) \ ✓� 2 CI(�)}

and intersecting CI(�) with CI(�) produces

CR{�,�}(✓, �) = {(✓, �) : � 2 CI(�) \ ✓� 2 CI(�)}.

The confidence levels of the confidence intervals can be selected to achieve a con-

servative confidence region for a corresponding nominal level. The confidence region

fails to capture (✓, �) if at least one interval fails to do so. Let ↵CR represent the

probability that the confidence region fails to capture (✓, �). Let ↵CI� and ↵CI� be

the probabilities that CIMoM(�) and CIMoM(�) fail to capture the true parameter,

respectively, and let ↵CI�,CI� be the probability that both fail to capture the true

parameter. Then

↵CR = ↵CI� + ↵CI� � ↵CI�,CI�

 ↵CI� + ↵CI�. (3.8)
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Then a nominal 100(1� ↵
0
CR)% CR(✓, �) with conservative probability, (1� ↵CR) �

(1 � ↵
0
CR), can be obtained by selecting ↵CI� = ↵CI� = ↵

0
CR/2. Section 4.2 (in the

next chapter) illustrates that CIMoM(✓) frequently su↵ers from lower than nominal

coverage probability, which motivates selecting CIMoM(�) and CIMoM(�) to intersect

for a method of moments confidence region for (✓, �) as described above. Figure 3.2

below illustrates this confidence region on a data set with 100 observations per group.

98



0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
95% Confidence Region for (θ,δ)

δ

θ (0.5,2)

Figure 3.2: Data set of size m = n = 100 generated from F ⇠ N(0, 1) and (✓, �) =
(0.5, 2), shown as the red bulls-eye on the plot. The dark-green curves correspond
to the bounds of 97.5% CIMoM(�) = [0.45, 1.14] and the vertical dark-green lines
correspond to the bounds of 97.5% CIMoM(�) = [0.99, 2.25]. The blue dot represents

the point estimate [(✓, �)MoM = (0.49, 1.62) and the light green shaded region is the
95% CRMoM{�,�}(✓, �).
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3.3 Pseudo-Likelihood Confidence Regions

A confidence region for (✓, �) can be found by inverting a hypothesis test using the

likelihood ratio test statistic. Consider first a scenario in which f is known and

recall that the likelihood of (1.1) is given by (2.18). Under H0: (✓, �) = (✓0, �0), the

likelihood ratio test statistic is given by

T(✓0,�0) = �2
h
logL (✓0, �0;X, Y )� logL

⇣
b✓, b�;X, Y

⌘i
. (3.9)

Under the null hypothesis, T(✓0,�0) has an asymptotic distribution that is �2
df=2 (Wilks,

1938) since the hypothesized point null is two-dimensional, so long as (✓0, �0) does not

lie on the boundary of the parameter space. The results from Self and Liang (1987)

show that if ✓0 = 1, �0 > 0 then T(1,�0) ⇠ .5�2
df=1 + .5�2

df=2 and if (✓0, �0) = (0, 0) then

the asymptotic distribution of T(0,0) is unknown. Thus, for any true (✓0, �0) 6= (0, 0),

an ↵ level hypothesis test (asymptotically) fails to reject with probability (1 � ↵)

based on the rejection rule (0 = Fail to Reject, 1 = Reject)

�
↵
(✓0,�0)(X, Y ) =

8
>><

>>:

I
�
T(✓0,�0) � �

2
2,1�↵

�
, for ✓0 2 (0, 1)

I
�
T(✓0,�0) � .5�2

1,1�↵ + .5�2
2,1�↵

�
for ✓0 = 1.

(3.10)

Therefore, when a treatment e↵ect exists, a confidence region constructed by

100(1� ↵)% CRLik(✓, �) =
�
(✓, �) : �↵

(✓0,�0)(X, Y ) = 0
 

(3.11)

has asymptotic coverage probability (1� ↵).

However, this confidence region relies upon knowledge of f in (2.18) but in reality,

f is unknown. Thus, consider a modification of the confidence region derived in (3.11)
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by using the pseudo-likelihood (2.19) which plugs in an estimate for f . The analo-

gous likelihood ratio test statistic computed from the pseudo-likelihood for testing

H0: (✓, �) = (✓0, �0) is given by

bT(✓0,�0) = �2
h
logbL (✓0, �0;X, Y )� logbL

⇣
b✓, b�;X, Y

⌘i
. (3.12)

The results in Liang and Self (1996) and Chen and Liang (2010) suggest that under

H0: (✓, �) = (✓0, �0) 6= (0, 0), bT(✓0,�0) has the same asymptotic distribution as T(✓0,�0)

so long as the following conditions hold

• bf is a consistent estimate of f

• lim
m!1,n!1

n/m = 0.

Therefore, to improve performance when n and m are both finite with n/m > 0, a

Satterthwaite approximation is used to model the distribution of bT(✓0,�0). That is

bT(✓0,�0)
·⇠ c1�

2
d1 , (3.13)

where c1 and d1 are functions of m and n that converge to 1 and 2 respectively as

m ! 1, n ! 1 and n/m ! 0. Thus, the proposed pseudo-likelihood confidence

region for capturing the sub-population specific treatment e↵ect (✓, �) is

100(1� ↵)% CRPsL(✓, �) =
n
(✓, �) : bT(✓,�) < c1�

2
d1,1�↵

o
, (3.14)

which has asymptotic coverage probability (1 � ↵) as bf ! f, m ! 1, n !

1, n/m ! 0. For simplicity, this cuto↵ (c1�2
d1,1�↵) is used for all ✓ (including ✓ = 1)

unless sample sizes are su�ciently large to apply the asymptotic rule from (3.10). In

practice, this is done using a dense grid search over a select set of (✓, �) as described

in section 2.4. See section A.10 of the Appendix for details.
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The quantities c1 and d1 are determined from a large scale simulation by generating

1000 data sets under each following factorial combinations of settings in List 3.1.

• N 2 {60, 120, 180, 300, 600, 1200, 2400, 4800}

• n:m 2 {1:29, 1:19, 1:14, 1:9, 1:5, 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1}

• F 2 {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

List 3.1: Large Scale Simulation Settings. There are 96 unique sample size pairs and
72 unique (F, ✓, �) triples for a total of 6912 combinations of (N, n:m,F, ✓, �).

All 72 combinations of (F, ✓, �) are used to determine c1 and d1 for each pair of

(N, n/m). Specifically, each of the 72 settings produces 1000 realizations of bT(✓0,�0).

Method of moment estimates (3.15) of c1 and d1 are calculated from these 72,000

realizations for each (N, n/m).

The derivation of the estimates is provided below.

If X ⇠ �
2
df=d1 =) E[X] = d1, V ar(X) = 2d1.

Therefore, since the Satterthwaite approximation indicates bT(✓0,�0)
d
= c1X

E[bT(✓0,�0)] = c1d1, V ar(bT(✓0,�0)) = 2c21d1.

Let T (✓0,�0) and S
2
bT(✓0,�0)

be the mean and variance of the 72,000 simulated bT(✓0,�0),

102



respectively. For the method of moment estimates,

T (✓0,�0)
set
= c1d1, S

2
bT(✓0,�0)

set
= 2c21d1

=) c1 =
T (✓0,�0)

d1
! S

2
bT(✓0,�0)

= 2
T

2
(✓0,�0)

d
2
1

d1

=) d1 =
2T

2
(✓0,�0)

S
2
bT(✓0,�0)

! c1 = T (✓0,�0)

S
2
bT(✓0,�0)

2T
2
(✓0,�0)

.

Therefore,

c1 =
S
2
bT(✓0,�0)

2T (✓0,�0)

, d1 =
2T

2
(✓0,�0)

S
2
bT(✓0,�0)

. (3.15)
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Table 3.4: Table of all (c1, d1) pairs according to the setting of sample sizes (N, n/m).
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Table 3.4 illustrates that the Satterthwaite approximation is necessary, as small

or treatment-heavy sample size settings indicate (c1, d1) values far from the asymp-

totic result, (c1, d1) ! (1, 2). The table also demonstrates the convergence of bT(✓0,�0)

to �
2
2 as the Satterthwaite constants in the lower-left corner approach (1, 2).

The function psl.inf() (which can be found in section A.10 of the Appendix)

implements this Satterthwaite approximation with bi-linear interpolation for sample

sizes (N 0
, n

0
/m

0) that are not identical to any of the above listed simulation settings. If

the sample sizes are such that extrapolation is necessary, a warning is given (e.g. m =

400, n = 2000). For appropriately large sample sizes (m > 4640, n > 160, n/m <

1/29) the asymptotic cuto↵s from (3.10) are used to determine CRPsL(✓, �).

Figure 3.3 below illustrates this confidence region on a data set with 100 obser-

vations per group. The confidence region has an oval-like shape and captures the true

parameter from which the data was simulated.
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0.0

0.2

0.4

0.6

0.8
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Confidence Bounds for (θ,δ)

δ

θ (0.5,2)

Figure 3.3: Data set of size m = n = 100 generated from F ⇠ N(0, 1) and
(✓, �) = (0.5, 2), shown as the red bulls-eye on the plot. The blue dot represents

the point estimate [(✓, �)PsL = (0.56, 1.37) and the light green shaded region is the
95% CRPsL(✓, �).
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3.4 Pseudo-Likelihood Confidence Intervals

Consider constructing confidence intervals that correspond to the pseudo-likelihood

estimators in (2.24) by inverting a hypothesis test.

3.4.1 Pseudo-Likelihood Intervals for ✓

Because this section considers inference on ✓ with confidence intervals, it is useful to

define profile likelihood for ✓. To do so, first consider a scenario in which f is treated

as known rather than an unknown parameter.

L

⇣
✓, b�(✓);X, Y

⌘
=

mY

j=1

[f(xj)]
nY

i=1

h
(1� ✓)f(yi) + ✓f(yi � b�(✓))

i
(3.16)

where b�(✓) is the � that maximizes the likelihood (2.18) for a given ✓. For testing

H0: ✓ = ✓0, the likelihood ratio test statistic is defined as

T✓0 = �2
h
logL

⇣
✓0,

b�(✓0);X, Y

⌘
� logL

⇣
b✓, b�;X, Y

⌘i
, (3.17)

where T✓0 asymptotically follows a chi-square distribution with 1 degree of freedom

so long as ✓ 2 (0, 1) (Wilks, 1938). The results from Self and Liang (1987) show that

when ✓0 = 1, T✓0 ⇠ .5�2
0+ .5�2

1 and when (✓0, �0) = (0, 0) the distribution is unknown.

Therefore, under H0: ✓ = ✓0( 6= 0), an ↵ level hypothesis test (asymptotically) fails

to reject with probability (1�↵) based on the rejection rule (0 = Fail to Reject, 1 =

Reject)

�
↵
✓0(X, Y ) =

8
>><

>>:

I
�
T✓0 � �

2
1,1�↵

�
, for ✓0 2 (0, 1)

I
�
T✓0 � .5�2

0,1�↵ + .5�2
1,1�↵

�
for ✓0 = 1.

(3.18)
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Thus, a 100(1� ↵)% confidence set for ✓ defined by the set of all ✓ 2 (0, 1] such that

�✓(X, Y ) = 0 has asymptotic coverage probability 1� ↵.

However, since f is unknown, the likelihood (2.18) and corresponding profile like-

lihood (3.16) cannot be used. Consider a similar procedure that instead uses the

pseudo-likelihood (2.19), which substitutes an estimate for f . The pseudo-profile

likelihood function for ✓ is defined as

bL
⇣
✓, b�(✓);X, Y

⌘
=

mY

j=1

h
bf(xj)

i nY

i=1

h
(1� ✓) bf(yi) + ✓ bf(yi � b�(✓))

i
(3.19)

where b�(✓) is the � that maximizes the pseudo-likelihood (2.19) for a given ✓. The

pseudo-likelihood ratio test statistic for H0: ✓ = ✓0 is defined as

bT✓0 = �2
h
logbL

⇣
✓0,

b�(✓0);X, Y

⌘
� logbL

⇣
b✓, b�;X, Y

⌘i
, (3.20)

The results from Liang and Self (1996) and Chen and Liang (2010) suggest that bT✓0

has the same asymptotic distribution as T✓0 so long as the following conditions hold

• bf is a consistent estimate of f

• lim
m!1,n!1

n/m = 0.

Therefore, to improve performance when n and m are finite with n/m > 0, a Sat-

terthwaite approximation is used to model the distribution of bT✓0 . That is,

bT✓0
·⇠ c2�

2
d2,1�↵ (3.21)

where c2 and d2 are functions of m and n that converge to 1 as m ! 1, n ! 1 and

n/m ! 0. Thus, a pseudo-likelihood confidence set for ✓ is given by

100(1� ↵)% CSetPsL(✓) =
n
✓ : bT✓ < c2�

2
d2,1�↵

o
. (3.22)
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For simplicity, this cuto↵ (c2�2
d2,1�↵) is used for all ✓ (including ✓ = 1) unless sample

sizes are su�ciently large to apply the asymptotic rule from (3.18). See section A.10

of the Appendix for details.

Since (3.22) is not guaranteed to be an interval, a confidence interval can be

defined by

100(1� ↵)% CIPsL(✓) = [min CSetPsL(✓), max CSetPsL(✓)] (3.23)

While the coverage probability of 100(1 � ↵)%CIPsL(✓) is at least as large as that

of 100(1� ↵)%CSetPsL(✓), the discrepancy is very minor as a large scale simulation

(see chapter 4) indicates that CSetPsL(✓) is identical to CIPsL(✓) in 99.68% of data

sets - with minor discrepancies when not identical. The quantities c2 and d2 are

determined from a large scale simulation by generating 1000 data sets under each

factorial combinations of settings in List 3.1. All 72 combinations of (F, ✓, �) are

used to determine c2 and d2 for each of the 96 pairs (N, n/m) in the simulation. As

illustrated in section 3.3, the 72,000 data sets are used to generate bT✓0 while their

corresponding c2 and d2 values are computed using the following formulas

c2 =
S
2
bT✓0

2T ✓0

, d2 =
2T

2
✓0

S
2
bT✓0

. (3.24)
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Table 3.5: Table of all (c2, d2) pairs according to the setting of sample sizes (N, n/m).
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Table 3.5 illustrates that the Satterthwaite approximation is necessary, as small

or treatment-heavy sample size settings indicate (c2, d2) values far from the asymp-

totic result, (c2, d2) ! (1, 1). The table also demonstrates the convergence of bT✓0 to

�
2
1 as the Satterthwaite constants in the lower-left corner approach (1, 1).

The function psl.inf() (which can be found in section A.10 of the Appendix)

implements this Satterthwaite approximation with bi-linear interpolation for sample

sizes (N 0
, n

0
/m

0) that are not identical to any of the above listed simulation settings. If

the sample sizes are such that extrapolation is necessary, a warning is given (e.g. m =

400, n = 2000). For appropriately large sample sizes (m > 4640, n > 160, n/m <

1/29), the asymptotic cuto↵s from (3.18) are used to determine CI(✓).

3.4.2 Pseudo-Likelihood Intervals for �

Because this section considers inference on � with a confidence interval, it is useful

to define the profile likelihood for �. To do so, first consider a scenario in which f is

treated as known rather than an unknown parameter. The profile likelihood for � is

defined as

L

⇣
b✓(�), �;X, Y

⌘
=

mY

j=1

[f(xj)]
nY

i=1

h
(1� b✓(�))f(yi) + b✓(�)f(yi � �)

i
, (3.25)

where b✓(�) is the ✓ that maximizes the likelihood (2.18) for a given �.

For testing H0: � = �0, the likelihood ratio test statistic is

T�0 = �2
h
logL

⇣
b✓(�0), �0;X, Y

⌘
� logL

⇣
b✓, b�;X, Y

⌘i
. (3.26)

The profile likelihood ratio test statistic (3.26) asymptotically follows a chi-square

distribution with 1 degree of freedom so long as � > 0 and ✓ < 1. When ✓ = 1, T�0
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has a complicated asymptotic distribution, DN , described in section 2.3 of Chen and

Liang (2010). The distribution of T�0 is unknown when (✓0, �0) = (0, 0). Therefore,

under H0: � = �0( 6= 0), an ↵ level hypothesis test (asymptotically) fails to reject with

probability (1� ↵) based on the rejection rule

�
↵
�0(X, Y ) =

8
>><

>>:

I
�
T�0 � �

2
1,1�↵

�
, for ✓ 2 (0, 1)

I (T�0 � DN,1�↵) for ✓ = 1.

(3.27)

Thus, a 100(1 � ↵)% confidence set for � defined by the set of all � > 0 such that

��(X, Y ) = 0 has asymptotic coverage probability (1� ↵) for all � > 0.

However, since f is unknown, the likelihood (2.18) and corresponding profile like-

lihood (3.25) cannot be used. Consider a similar procedure that instead uses the

pseudo-likelihood (2.19), which substitutes an estimate for f . Recall from (2.19) the

pseudo-likelihood is given by

bL(✓, �;X, Y ) = L( bf, ✓, �;X, Y )

=
mY

j=1

h
bf(xj)

i nY

i=1

h
(1� ✓) bf(yi) + ✓ bf(yi � �)

i
.

In a similar fashion, the pseudo-profile likelihood function for � is defined as

bL
⇣
b✓(�), �;X, Y

⌘
=

mY

j=1

h
bf(xj)

i nY

i=1

h
(1� b✓(�)) bf(yi) + b✓(�) bf(yi � �)

i
, (3.28)

where b✓(�) is the ✓ that maximizes (2.19) for a fixed �. The pseudo-likelihood ratio

test statistic for H0: � = �0 is defined as

bT�0 = �2
h
logbL

⇣
b✓(�0), �0;X, Y

⌘
� logbL

⇣
b✓, b�;X, Y

⌘i
. (3.29)
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The results from Liang and Self (1996) and Chen and Liang (2010) suggest that bT�0

has the same asymptotic distribution as T�0 so long as the following conditions hold

• bf is a consistent estimate of f

• lim
m!1,n!1

n/m = 0.

Therefore, to improve performance when n and m are finite with n/m > 0, a

Satterthwaite approximation is used to model the distribution of bT�0 . That is,

bT�0
·⇠ c3�

2
d3,1�↵ (3.30)

where c3 and d3 are functions of m and n that converge to 1 as m ! 1, n ! 1 and

n/m ! 0. Thus, a pseudo-likelihood confidence set for � is given by

100(1� ↵)% CSetPsL(�) =
n
� : bT� < c3�

2
d3,1�↵

o
. (3.31)

Given the complicated nature of DN , this cuto↵ (c3�2
d3,1�↵) is used for all ✓ (including

✓ = 1). See section A.10 of the Appendix for details.

Since (3.31) is not guaranteed to be an interval, a confidence interval can be

defined by

100(1� ↵)% CIPsL(�) = [min CSetPsL(�), max CSetPsL(�)] . (3.32)

While the coverage probability of 100(1�↵)% CIPsL(�) is at least as large as that of

100(1�↵)% CSetPsL(�), the discrepancy is very minor as a large scale simulation (see

chapter 4) indicates that CSetPsL(�) is identical to CIPsL(�) in 99.17% of data sets

and very similar when not identical. The quantities c3 and d3 are determined from a

large scale simulation by generating 1000 data sets under each factorial combinations

of settings in List 3.1. All 72 combinations of (F, ✓, �) are used to determine c3 and
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d3 for each pair of (N, n/m). As illustrated in section 3.3, the 72,000 data sets are

used to generate bT�0 while their corresponding c3 and d3 values are computed using

the following formulas

c3 =
S
2
bT�0

2T �0

, d3 =
2T

2
�0

S
2
bT�0

. (3.33)

Table 3.6 illustrates that the Satterthwaite approximation is necessary, as small

or treatment-heavy sample size settings indicate (c3, d3) values far from the asymp-

totic result, (c3, d3) ! (1, 1). The table also demonstrates the convergence of bT�0 to

�
2
1 as the Satterthwaite constants in the lower-left corner approach (1, 1).
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Table 3.6: Table of all (c3, d3) pairs according to the setting of sample sizes (N, n/m).
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The function psl.inf() (which can be found in section A.10 of the Appendix)

implements this Satterthwaite approximation with bi-linear interpolation for sample

sizes (N 0
, n

0
/m

0) that are not identical to any of the above listed simulation settings. If

the sample sizes are such that extrapolation is necessary, a warning is given (e.g. m =

400, n = 2000). For appropriately large sample sizes (m > 4640, n > 160, n/m <

1/29), asymptotic cuto↵s are used to determine CI(�).
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Chapter 4

Simulation Studies

4.1 Estimator Performance Comparison

This section compares the 4 di↵erent estimators of (✓, �) presented in Chapter 2:

Normal MLE, EM-like Algorithm, Method of Moments, and Pseudo-Likelihood. For

Normal MLE, all details of the EM algorithm for finding the maximum of the log-

likelihood are described in section 2.1. For the method of moments estimator, the

✏N = 20S2
X/N

.95 formula derived in section 2.2.2 is used. For the EM-like algorithm,

the sample size dependent recommendation stated in section 2.3.2 is used

• If m = n  250, use version 6

• If m = n > 250, use version 2

Lastly, for the Pseudo-likelihood estimator, the log-concave maximum likelihood es-

timate of f described in section 2.4.2 is used.

The estimators are compared by a simulation study that generates 1000 data sets

under each following factorial combinations of settings in List 2.1 (reproduced here

for convenience).

117



• m = n 2 {25, 50, 100, 500}

• F 2 {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

Note that �X = 1 for all F in the simulation so � = �/�X . The separation between

the components (which impacts the performance of the estimators) is determined by

�/�X (rather than � alone). This should be accounted for when interpreting these

results for a contest where �X 6= 1, since � below represents the number of standard

deviations of separation between the components. Also, � > 0 for all simulations

which means that skewed right distributions are skewed “in the direction of �” and

skewed left distributions are skewed “in the opposite direction of �”. This directional

relationship between the skew of F and the direction of � is what determines the

performance of the estimators, so care should be taken in interpreting the results if

� < 0. The described interpretation of simulation results below assume �X = 1, � > 0;

see section A.5 of the Appendix for an example appropriately translating the results

to a context where �X 6= 1 or � < 0.

For each fixed pair of sample sizes, the score for a specific estimator i defined in

(2.17) is used to compare its performance relative to the other estimators (indexed

by k, here k 2 {1, ..., 4}). Each estimator’s score represents the geometric average

loss of that estimator relative to the ‘oracle’ estimator [that separately chooses the

estimator(s) that minimize(s)
q
MSE(b✓),

q
MSE(b�), and

q
MSE(b�) for each (m =

n, F, ✓, �)]. Table 4.1 displays the scores of the 4 estimators for the simulation.

Smaller scores are better and the smallest scores are highlighted in yellow.
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m = n Estimator S(b✓) S(b�) S(b�) {S(b�)S(b✓)S(b�)}1/3

Normal MLE 1.206 1.454 1.084 1.239

25 Moment 1.324 1.243 1.155 1.239

EM-like 1.099 1.421 1.050 1.179

Ps-Likelihood 1.123 1.272 1.037 1.140

Normal MLE 1.280 1.614 1.120 1.322

50 Moment 1.452 1.367 1.180 1.328

EM-like 1.128 1.490 1.075 1.218

Ps-Likelihood 1.112 1.277 1.022 1.132

Normal MLE 1.372 1.812 1.172 1.429

100 Moment 1.612 1.509 1.199 1.429

EM-like 1.164 1.529 1.095 1.249

Ps-Likelihood 1.098 1.240 1.015 1.114

Normal MLE 1.842 2.372 1.362 1.812

500 Moment 2.025 1.871 1.214 1.663

EM-like 1.237 1.586 1.120 1.300

Ps-Likelihood 1.138 1.135 1.017 1.095

Table 4.1: Scores for Estimates of ✓, �,�.

Table 4.1 indicates that the Pseudo-Likelihood estimator has the most robust per-

formance for all b✓, b�, b� and all sample sizes with the exception of when m = n = 25,

S(b✓PsL) and S(b�PsL) are close seconds to S(b✓EMlike) and S(b�MoM) respectively. Fig-

ures 4.1 - 4.2 plot the scores over the sample sizes. The Normal MLE and Moment

estimators have the least desirable performance - with the Normal MLE unsurprisingly

performing relatively worse as the sample size increases (as the Normality assumption

only holds for one sixth of the simulation settings). The next best estimator is the EM-

like algorithm which is the second-best for almost all settings. The Pseudo-Likelihood

estimator becomes increasingly more e�cient relative to the other estimators as the

sample sizes increase, particularly for b� and b�.
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Figure 4.1: Estimator Scores for b✓ and b�
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Figure 4.2: Estimator Scores for b� and an Overall Summary Score
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To understand the performances of the best two estimators (EM-like and Pseudo-

Likelihood) for every simulation setting, consider the scatterplots of
p
MSE in Fig-

ure 4.3 below. When ✓ is more di�cult to estimate, the EM-like estimate appears to

have slightly lower
q

MSE(b✓), while scenarios when estimation is easier lend them-

selves to smaller
q
MSE(b✓) for the pseudo-likelihood method. For estimation of �,

the pseudo-likelihood method tends to have smaller
q

MSE(b�) especially in the cases

where estimation is easier.
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Figure 4.3: Scatterplots of
p
MSE comparing EM-like and Pseudo-likelihood estima-

tors for both b✓ and b�.
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To better understand the relative performances of these two estimators for each the

parameter setting, consider the dot plots in Figures 4.4 - 4.7 of
p

MSE/minMSE

under each setting. Blue dots represent the EM-like estimator and red dots represent

the Pseudo-likelihood estimator. Simulation setting is denoted on the x axes. Under

each setting, the estimator at 1 is the best estimator.
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Figure 4.4: Dot Plots comparing the performance of estimators of ✓ for small sample
sizes. Blue dots represent the EM-like estimator and red dots represent the Pseudo-
likelihood estimator.
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Figure 4.5: Dot Plots comparing the performance of estimators of ✓ for moderate to
large sample sizes. Blue dots represent the EM-like estimator and red dots represent
the Pseudo-likelihood estimator.
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Figure 4.6: Dot Plots comparing the performance of estimators of � for small sample
sizes. Blue dots represent the EM-like estimator and red dots represent the Pseudo-
likelihood estimator.
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Figure 4.7: Dot Plots comparing the performance of estimators of � for moderate to
large sample sizes. Blue dots represent the EM-like estimator and red dots represent
the Pseudo-likelihood estimator.
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The dot plots in Figures 4.4 - 4.7 reveal a few trends. For small sample sizes

in particular, b✓PsL is preferable for larger ✓ with skewed right distributions and for

smaller ✓ with skewed left distributions. Conversely, b✓EMlike is preferred for smaller

✓ with skewed right distributions and for larger ✓ with skewed left distributions.

The figures also reveal that b✓PsL shows superior performance compared to b✓EMlike

for heavy-tailed and left-skewed distributions while the EM-like algorithm is better

for Normal and Skewed-right Normal distributions. Similarly, b�EMlike shows better

results for F ⇠ Normal and mixed results for Skewed-right Normal while b�PsL demon-

strates dramatically superior performance for all other F . Since the heuristic EM-like

algorithm mimics a normal EM-algorithm and uses normal kernels for kernel density

estimation, it is not surprising to see this preference for F ⇠ Normal.

4.1.1 Optimal Sample Size Allocation

Given that [(✓, �)PsL achieves the most e�cient estimation, it is natural to consider

what sample size allocation produces optimal results. Optimal sample size allocation

is determined from a simulation study that generates 1000 data sets under each

factorial combination of the following settings.

• N 2 {60, 120, 180, 300, 600, 1200, 2400, 4800}

• n:m 2 {1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1}

• F 2 {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

For each pair of (N, n:m), the performance across all 72 (F, ✓, �) is summarized

by the average
q

MSE(b✓),
q

MSE(b�), and
q

MSE(b�) in Tables 4.2, 4.3, and 4.4

respectively. Each row represents a total sample size N and each column represents a

randomization ratio (ratios on the left of the table assign more patients to the control
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group while those on the right assign more patients to the treatment group). The

optimal randomization ratio for each row is highlighted in yellow. For scenarios where

the experimental cost of assigning a patient to each group is equal, Tables 4.2 - 4.4

show that a sample allocation of three patients assigned to the treatment group for

every two patients assigned to the control group is optimal for precise estimation of

the treatment e↵ect regardless of the total sample size. For settings where the cost

associated with assigning a patient to one group is more costly than another, the

settings of sample sizes that are within budget can be identified and the table entries

can be used to identify the within-budget setting with the best performance.

n:m

1:3 1:2 2:3 1:1 3:2 2:1 3:1

60 0.285 0.268 0.257 0.247 0.243 0.247 0.251

120 0.228 0.213 0.204 0.196 0.194 0.196 0.202

180 0.201 0.186 0.177 0.171 0.168 0.169 0.176

N 300 0.167 0.153 0.148 0.141 0.139 0.140 0.144

600 0.129 0.118 0.113 0.107 0.105 0.107 0.111

1200 0.097 0.089 0.084 0.081 0.079 0.079 0.083

2400 0.072 0.066 0.062 0.059 0.057 0.058 0.060

4800 0.052 0.047 0.045 0.042 0.041 0.041 0.043

Table 4.2: Average
q
MSE(b✓) across 72 (F, ✓, �).
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n:m

1:3 1:2 2:3 1:1 3:2 2:1 3:1

60 0.763 0.715 0.683 0.662 0.644 0.656 0.659

120 0.622 0.577 0.542 0.520 0.512 0.516 0.531

180 0.543 0.498 0.474 0.458 0.439 0.450 0.447

N 300 0.444 0.400 0.382 0.364 0.349 0.344 0.360

600 0.322 0.292 0.270 0.248 0.244 0.250 0.259

1200 0.216 0.199 0.180 0.168 0.163 0.170 0.176

2400 0.145 0.122 0.116 0.108 0.108 0.111 0.120

4800 0.091 0.078 0.074 0.069 0.069 0.071 0.078

Table 4.3: Average
q

MSE(b�) across 72 (F, ✓, �).

n:m

1:3 1:2 2:3 1:1 3:2 2:1 3:1

60 0.309 0.276 0.263 0.251 0.248 0.252 0.266

120 0.217 0.196 0.185 0.176 0.173 0.175 0.186

180 0.178 0.160 0.151 0.143 0.141 0.143 0.150

N 300 0.139 0.125 0.118 0.111 0.109 0.110 0.116

600 0.098 0.088 0.083 0.078 0.077 0.078 0.081

1200 0.070 0.062 0.059 0.055 0.054 0.055 0.058

2400 0.049 0.044 0.042 0.039 0.038 0.039 0.041

4800 0.035 0.031 0.030 0.028 0.027 0.028 0.029

Table 4.4: Average
q

MSE(b�) across 72 (F, ✓, �).
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4.1.2 Parameter Specific Performance

With the optimal ratio n:m = 3:2 in hand, consider the pseudo-likelihood estimator

performance across (F, ✓, �) for each N 2 {60, 120, 180, 300, 600, 1200, 2400, 4800}.

The heat grids in Figures 4.9 - 4.12 present grids of
q

MSE(b✓) for each sample

size, N . Similarly, Figures 4.13 - 4.16 present grids of
q
MSE(b�) for each sample

size, N . To aid in pattern recognition across (F, ✓, �) for each fixed N , every
p
MSE

entry contains a colored background indicating the size of
p
MSE relative to the

median
p
MSE, M . The color key in Figure 4.8 below indicates that a black

background represents the median while bright red represents
p
MSE much smaller

than the median and bright blue represents
p
MSE much larger than the median. For

each grid, red represents easier cases of estimation while blue indicates more di�cult

ones.

Figure 4.8: Color Key for
p
MSE(b⌧PsL)

131



MSE(θ)  for N =  60 (m =  24 , n = 36)
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MSE(θ)  for N =  120 (m =  48 , n = 72)
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Figure 4.9: Heat Grids for Pseudo-likelihood b✓ for N 2 {60, 120}
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MSE(θ)  for N =  180 (m =  72 , n = 108)
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.34 .2 .08 .06

.28 .15 .07 .05

.34 .33 .2 .08

.31 .23 .1 .06

.28 .15 .06 .05

.34 .28 .15 .06

.31 .16 .07 .06

.22 .1 .05 .04

.34 .29 .09 .05

.29 .21 .09 .06

.28 .16 .08 .05

.36 .23 .06 .05

.3 .15 .07 .06

.23 .12 .07 .05

.33 .31 .17 .07

.31 .24 .11 .06

.34 .18 .09 .05

.37 .31 .15 .06

.34 .2 .08 .06

.28 .15 .07 .05

.34 .33 .2 .08

.31 .23 .1 .06

.28 .15 .06 .05

.34 .28 .15 .06

.31 .16 .07 .06

.22 .1 .05 .04

.34 .29 .09 .05

.29 .21 .09 .06

.28 .16 .08 .05

.36 .23 .06 .05

.3 .15 .07 .06

.23 .12 .07 .05

.33 .31 .17 .07

.31 .24 .11 .06

.34 .18 .09 .05

.37 .31 .15 .06

.34 .2 .08 .06

.28 .15 .07 .05

.34 .33 .2 .08

.31 .23 .1 .06

.28 .15 .06 .05

.34 .28 .15 .06

.31 .16 .07 .06

.22 .1 .05 .04

.34 .29 .09 .05

.29 .21 .09 .06

.28 .16 .08 .05

.36 .23 .06 .05

.3 .15 .07 .06

.23 .12 .07 .05

.33 .31 .17 .07

.31 .24 .11 .06

.34 .18 .09 .05

.37 .31 .15 .06

.34 .2 .08 .06

.28 .15 .07 .05

.34 .33 .2 .08

.31 .23 .1 .06

.28 .15 .06 .05

.34 .28 .15 .06

.31 .16 .07 .06

.22 .1 .05 .04

.34 .29 .09 .05

.29 .21 .09 .06

.28 .16 .08 .05

.36 .23 .06 .05

.3 .15 .07 .06

.23 .12 .07 .05

.33 .31 .17 .07

.31 .24 .11 .06

.34 .18 .09 .05

.37 .31 .15 .06

.34 .2 .08 .06

.28 .15 .07 .05

.34 .33 .2 .08

.31 .23 .1 .06

.28 .15 .06 .05

.34 .28 .15 .06

.31 .16 .07 .06

.22 .1 .05 .04

.34 .29 .09 .05

.29 .21 .09 .06

.28 .16 .08 .05

.36 .23 .06 .05

.3 .15 .07 .06

.23 .12 .07 .05
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MSE(θ)  for N =  300 (m =  120 , n = 180)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04

.33 .14 .04 .03

.25 .11 .05 .04

.18 .1 .05 .04

.3 .29 .12 .04

.28 .21 .08 .05

.3 .15 .06 .04

.36 .28 .08 .04

.3 .15 .06 .04

.21 .11 .05 .04

.33 .27 .15 .05

.28 .18 .07 .04

.24 .11 .05 .03

.32 .24 .09 .04

.27 .11 .05 .04

.16 .07 .04 .03

.31 .22 .05 .04

.27 .17 .07 .05

.25 .13 .07 .04
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Figure 4.10: Heat Grids for Pseudo-likelihood b✓ for N 2 {180, 300}
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MSE(θ)  for N =  600 (m =  240 , n = 360)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03

.27 .22 .06 .03

.26 .16 .05 .03

.25 .12 .04 .03

.32 .2 .04 .03

.24 .1 .04 .03

.15 .08 .04 .03

.3 .21 .07 .03

.24 .12 .05 .03

.18 .08 .03 .02

.29 .17 .05 .03

.19 .06 .04 .03

.12 .05 .03 .02

.27 .13 .03 .02

.23 .11 .05 .03

.21 .11 .05 .03

.28 .09 .03 .02

.18 .07 .04 .03

.14 .07 .04 .03
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MSE(θ)  for N =  1200 (m =  480 , n = 720)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02

.1 .05 .03 .02

.23 .18 .04 .02

.22 .11 .04 .02

.21 .09 .03 .02

.3 .13 .03 .02

.18 .06 .03 .02

.12 .06 .03 .02

.25 .16 .04 .02

.2 .08 .03 .02

.14 .05 .02 .02

.25 .1 .03 .02

.12 .04 .03 .02

.08 .03 .02 .02

.24 .08 .02 .02

.19 .08 .03 .02

.17 .08 .03 .02

.22 .04 .02 .02

.13 .04 .03 .02
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Figure 4.11: Heat Grids for Pseudo-likelihood b✓ for N 2 {600, 1200}
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MSE(θ)  for N =  2400 (m =  960 , n = 1440)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01

.21 .11 .03 .01

.18 .08 .03 .02

.18 .07 .02 .01

.27 .04 .02 .01

.12 .04 .02 .02

.1 .04 .02 .01

.22 .1 .03 .02

.15 .05 .02 .02

.1 .03 .02 .01

.18 .04 .02 .01

.07 .03 .02 .02

.06 .02 .01 .01

.18 .04 .02 .01

.15 .05 .02 .02

.13 .06 .02 .01

.13 .03 .01 .01

.08 .03 .02 .02

.08 .04 .02 .01
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Normal
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MSE(θ)  for N =  4800 (m =  1920 , n = 2880)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.19 .08 .02 .01

.15 .06 .02 .01

.14 .05 .02 .01

.2 .03 .01 .01

.07 .03 .01 .01

.08 .03 .01 .01

.18 .06 .02 .01

.11 .04 .02 .01

.08 .02 .01 .01

.11 .02 .01 .01

.04 .02 .01 .01

.04 .02 .01 .01

.14 .03 .01 .01

.11 .04 .02 .01

.1 .04 .02 .01

.06 .02 .01 .01

.05 .02 .01 .01

.05 .02 .01 .01

.19 .08 .02 .01

.15 .06 .02 .01

.14 .05 .02 .01

.2 .03 .01 .01

.07 .03 .01 .01

.08 .03 .01 .01

.18 .06 .02 .01

.11 .04 .02 .01

.08 .02 .01 .01

.11 .02 .01 .01

.04 .02 .01 .01

.04 .02 .01 .01

.14 .03 .01 .01

.11 .04 .02 .01

.1 .04 .02 .01

.06 .02 .01 .01

.05 .02 .01 .01

.05 .02 .01 .01

.19 .08 .02 .01

.15 .06 .02 .01

.14 .05 .02 .01

.2 .03 .01 .01

.07 .03 .01 .01

.08 .03 .01 .01

.18 .06 .02 .01

.11 .04 .02 .01

.08 .02 .01 .01

.11 .02 .01 .01

.04 .02 .01 .01

.04 .02 .01 .01

.14 .03 .01 .01

.11 .04 .02 .01

.1 .04 .02 .01

.06 .02 .01 .01

.05 .02 .01 .01

.05 .02 .01 .01

.19 .08 .02 .01

.15 .06 .02 .01

.14 .05 .02 .01

.2 .03 .01 .01

.07 .03 .01 .01

.08 .03 .01 .01

.18 .06 .02 .01

.11 .04 .02 .01

.08 .02 .01 .01

.11 .02 .01 .01

.04 .02 .01 .01

.04 .02 .01 .01

.14 .03 .01 .01

.11 .04 .02 .01

.1 .04 .02 .01

.06 .02 .01 .01

.05 .02 .01 .01

.05 .02 .01 .01

.19 .08 .02 .01

.15 .06 .02 .01

.14 .05 .02 .01

.2 .03 .01 .01

.07 .03 .01 .01

.08 .03 .01 .01

.18 .06 .02 .01

.11 .04 .02 .01
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Figure 4.12: Heat Grids for Pseudo-likelihood b✓ for N 2 {2400, 4800}
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MSE(δ)  for N =  60 (m =  24 , n = 36)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

.63 .71 .94 .99

.66 .58 .56 .48

.59 .48 .4 .36

1.3 1.2 1.1 .87

1.1 .81 .49 .38

1 .6 .32 .29

.95 .89 1.1 1.2

.9 .74 .6 .46

.8 .51 .37 .31

2 1.7 1.3 .95

1.5 .93 .47 .29

1 .65 .26 .23

.37 .52 .63 .62

.36 .38 .38 .34

.35 .32 .31 .29

.49 .55 .5 .47

.42 .37 .29 .27

.38 .29 .24 .24

Laplace
Normal

Laplace
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Normal

SkL Sym SkR SkL Sym SkR SkL Sym SkR SkL Sym SkR

MSE(δ)  for N =  120 (m =  48 , n = 72)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17

.69 .3 .14 .14

.33 .45 .44 .36

.3 .3 .26 .23

.28 .24 .21 .2

.53 .46 .28 .26

.38 .23 .18 .17

.31 .18 .15 .16

.67 .63 .79 .61

.6 .47 .41 .31

.52 .37 .28 .25

1.5 1.2 .81 .44

1.2 .58 .25 .2

.77 .36 .19 .19

1 .94 .9 .74

.76 .63 .44 .28

.69 .35 .24 .21

2.2 1.6 .95 .52

1.6 .73 .23 .17
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.33 .45 .44 .36

.3 .3 .26 .23
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Figure 4.13: Heat Grids for Pseudo-likelihood b� for N 2 {60, 120}
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MSE(δ)  for N =  180 (m =  72 , n = 108)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

.61 .67 .62 .44

.53 .4 .31 .24

.49 .3 .24 .2

1.5 1.2 .54 .29

.98 .39 .18 .15

.65 .22 .15 .13

.96 .89 .77 .54

.78 .46 .31 .22

.54 .28 .2 .17

2.3 1.7 .95 .27

1.4 .57 .14 .13

.69 .14 .11 .1

.33 .41 .33 .26

.26 .25 .2 .18

.24 .2 .18 .16

.52 .37 .2 .18

.3 .18 .13 .13

.22 .14 .12 .12

Laplace
Normal

Laplace
Normal

Laplace
Normal

SkL Sym SkR SkL Sym SkR SkL Sym SkR SkL Sym SkR

MSE(δ)  for N =  300 (m =  120 , n = 180)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36

.62 .39 .21 .16

.42 .21 .14 .12

2.3 1.5 .43 .25

1 .37 .11 .09

.34 .12 .08 .08

.31 .33 .23 .21

.23 .21 .16 .13

.21 .15 .13 .12

.5 .25 .14 .13

.24 .12 .1 .09

.13 .09 .08 .08

.61 .55 .5 .29

.46 .34 .24 .19

.39 .24 .17 .15

1.4 .96 .38 .17

.77 .33 .13 .11

.41 .13 .11 .1

.96 .74 .59 .36
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Figure 4.14: Heat Grids for Pseudo-likelihood b� for N 2 {180, 300}
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MSE(δ)  for N =  600 (m =  240 , n = 360)

δ
0.5 1 2 3

0.2
0.5
0.8

θ

.55 .46 .31 .19

.35 .26 .16 .12

.27 .17 .12 .1

1.4 .63 .16 .12

.44 .15 .09 .08

.14 .09 .07 .07

.83 .59 .35 .23

.5 .25 .14 .11

.24 .13 .09 .08

1.8 1 .2 .11

.75 .09 .07 .07

.16 .06 .06 .06

.26 .24 .15 .13

.19 .14 .1 .09

.15 .11 .09 .09

.43 .15 .09 .09

.14 .07 .06 .06

.08 .06 .06 .06

.55 .46 .31 .19

.35 .26 .16 .12

.27 .17 .12 .1

1.4 .63 .16 .12

.44 .15 .09 .08

.14 .09 .07 .07

.83 .59 .35 .23

.5 .25 .14 .11

.24 .13 .09 .08

1.8 1 .2 .11

.75 .09 .07 .07

.16 .06 .06 .06

.26 .24 .15 .13

.19 .14 .1 .09

.15 .11 .09 .09

.43 .15 .09 .09

.14 .07 .06 .06

.08 .06 .06 .06

.55 .46 .31 .19

.35 .26 .16 .12

.27 .17 .12 .1

1.4 .63 .16 .12

.44 .15 .09 .08

.14 .09 .07 .07

.83 .59 .35 .23

.5 .25 .14 .11

.24 .13 .09 .08

1.8 1 .2 .11

.75 .09 .07 .07

.16 .06 .06 .06

.26 .24 .15 .13

.19 .14 .1 .09

.15 .11 .09 .09

.43 .15 .09 .09

.14 .07 .06 .06

.08 .06 .06 .06

.55 .46 .31 .19

.35 .26 .16 .12

.27 .17 .12 .1

1.4 .63 .16 .12

.44 .15 .09 .08

.14 .09 .07 .07

.83 .59 .35 .23

.5 .25 .14 .11

.24 .13 .09 .08

1.8 1 .2 .11

.75 .09 .07 .07

.16 .06 .06 .06

.26 .24 .15 .13

.19 .14 .1 .09

.15 .11 .09 .09

.43 .15 .09 .09

.14 .07 .06 .06

.08 .06 .06 .06

.55 .46 .31 .19

.35 .26 .16 .12

.27 .17 .12 .1

1.4 .63 .16 .12

.44 .15 .09 .08

.14 .09 .07 .07

.83 .59 .35 .23

.5 .25 .14 .11

.24 .13 .09 .08

1.8 1 .2 .11

.75 .09 .07 .07

.16 .06 .06 .06

.26 .24 .15 .13
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MSE(δ)  for N =  1200 (m =  480 , n = 720)
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Figure 4.15: Heat Grids for Pseudo-likelihood b� for N 2 {600, 1200}
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MSE(δ)  for N =  2400 (m =  960 , n = 1440)
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MSE(δ)  for N =  4800 (m =  1920 , n = 2880)
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Figure 4.16: Heat Grids for Pseudo-likelihood b� for N 2 {2400, 4800}
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Figures 4.9 - 4.12 show that for the smallest sample sizes, b✓ has better per-

formance for larger ✓�. As the sample size increases, ✓ has less of an impact on
q

MSE(b✓) than � does. Notable discrepancies in performance persist even with very

large sample sizes (e.g. N = 4800) depending upon how well separated the compo-

nent distributions are. For a fixed (✓, �),
q
MSE(b✓) is lower for the Laplace-tailed

distributions than for the Normal-tailed distributions. The only exception to this is

(✓, �) = (.2, .5) which always prefers F ⇠ Normal instead of F ⇠ Laplace. Also,

right skewed distributions are favorable for larger ✓ while left skewed distributions

are favorable for small ✓.

Figures 4.13 - 4.16 show that the performance of b� is also superior for larger ✓�.

Both ✓ and � have a notable impact on
q
MSE(b�) for all sample sizes, with smaller

values of each resulting in higher
q

MSE(b�). The component distribution, F , has a

more prominent impact on the performance of b� than b✓. Skewed left distributions have

much smaller
q

MSE(b�) than symmetric or skewed right distributions, particularly

for the more di�cult cases (small ✓�, small sample size). In easy cases (✓� large, F

skewed left, larger sample size) the Laplace-tailed distributions are preferred, whereas

for more di�cult cases the Normal-tailed distributions are preferred. As the sample

sizes increase, more of the 72 (F, ✓, �) simulation settings prefer the Laplace-tailed

distributions. Only when (✓, �) = (.2, .5) are the symmetric and skewed right Normal

distributions preferred to the corresponding symmetric and skewed right Laplace

distributions for all sample sizes considered in the simulation.
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4.2 Interval Performance Comparison

This section compares confidence intervals for ✓ and �. Specifically, the asymp-

totic moment intervals described in section 3.1.1 and the pseudo-likelihood inter-

vals described in section 3.4 are compared. Note that the asymptotic intervals use

aN = log(N2)/N as in Lubich et al. (2022) since it provides better performance for

the confidence intervals than the aN = 20/N .95 optimized for point estimation in sec-

tion 2.2.2. The pseudo-likelihood intervals use bfmLC(x) from (2.26) to be congruent

with the pseudo-likelihood point estimate.

The most ideal confidence interval procedure is one that always captures the true

parameter with an arbitrarily small interval. With finite data sets this is not possible,

as intervals with such certainty would necessarily contain the entire parameter space.

Therefore researchers specify a su�ciently large success rate, called the confidence

level (commonly 90% or 95%), for which intervals should capture the parameter. If

multiple methods of constructing a confidence interval achieve coverage probabilities

(1� ↵) at least as large as the researcher’s confidence requirement, then the method

that produces narrower intervals is preferred.

Therefore the primary criterion to assess the performance of the confidence in-

terval methods is whether coverage probability (1� ↵) is su�ciently high, while the

secondary criterion is interval length. Since the coverage probability of a confidence

interval method may vary depending upon the parameters (F, ✓, �) and these pa-

rameters are unknown, it is also important to assess the prevalence of su�ciently

high coverage probability across a variety of (F, ✓, �). Thus, coverage probability is

assessed via simulation by determining if the method produces a su�ciently high

coverage probability for a su�cient number of parameter settings. If this coverage

probability assessment is satisfactory for multiple methods, then the average lengths

are used to determine the preferable method.
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To carry out the performance comparison, 1000 data sets are generated under each

of the factorial combinations of the settings from List 3.1 (and displayed below)

• N 2 {60, 120, 180, 300, 600, 1200, 2400, 4800}

• n:m 2 {1:29, 1:19, 1:14, 1:9, 1:5, 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1}

• F 2 {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

where the choices of F correspond to those described in detail in section A.4 of the

Appendix.

In the sections that follow, the performance is summarized across all (F, ✓, �)

to provide a recommendation on which method to use. While prior information

about (F, ✓, �) may not be readily available, researchers may be able to anticipate

whether their proposed treatment has a small or large overall e↵ect size. Thus, the

36 simulation settings for which ✓�  .5�X and the 36 settings for which ✓� > .5�X

are assessed separately. Assessment is done for each pair of sample sizes (N, n:m) so

that a sample-size dependent recommendation can be given.

For 95% confidence intervals, coverage probability is said to be su�ciently high

if the simulated coverage probability is at least .925 and is considered to apply to

a su�ciently wide variety of settings if at least 33/36 simulation settings achieve

this. The two methods that are compared according to this criterion are the pseudo-

likelihood and method of moment intervals. For a particular sample size setting, when

both methods satisfy the coverage probability criterion the method with narrower

average intervals in more of the 36 settings is recommended. (Section A.9 of the

Appendix verifies that these recommendations may be applied to 90% confidence

intervals as well).
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Note that very rarely confidence intervals cannot be computed, so performance

measures (coverage probability, average length) are computed among data sets where

the confidence intervals can be produced. Method of moment confidence intervals for

✓ fail to compute in 0.0000868% of data sets. Method of moment confidence intervals

for � fail to compute in 0.4588% of data sets. Pseudo-likelihood intervals for ✓ and

for � each fail to compute in 0.00033% of data sets.

4.2.1 Confidence Intervals for ✓

The tables below are indexed by N in the rows and n:m in the columns, indicating the

pair of sample sizes that the cell represents. In each cell, the pair of numbers represent

how many of the 36 settings have su�cient coverage probability for the two methods

� 95%CIPsL(✓) and 95%CIMoM(✓) respectively. (For example, a cell with entry

� 36, 33 � indicates that 36/36 settings produce coverage probability at least .925

for 95%CIPsL(✓) and 33/36 settings produce simulated coverage probability at least

.925 for 95%CIMoM(✓).) To aid in pattern recognition, each cell has a background

color corresponding to whether or not it meets the coverage probability criterion.

Sample size settings where neither method meets the coverage probability criterion

have no background color. Sample size settings where both methods meet the coverage

probability criterion have blue background color. Sample size settings where only

95%CIMoM(✓) meets the coverage probability criterion have gold background color.

Sample size settings where only 95%CIPsL(✓) meets the coverage probability criterion

have green background color.
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Su�cient Coverage Probability Tables

Table 4.5: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to 95%CIPsL(✓), 95%CIMoM(✓) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.

Table 4.6: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to 95%CIPsL(✓), 95%CIMoM(✓) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.
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Tables 4.5 - 4.6 show that at least one method of constructing 95%CI(✓) pro-

vides satisfactory coverage probability for some, but not all, sample size settings. In

particular, for large e↵ect sizes, if treatment data is sparse (e.g. n  15) then neither

method is apt to achieve the coverage probability criterion. Also, for small e↵ect

sizes, if the total sample size is either very small (e.g. N  60), very large, or control

data is proportionally insu�cient then neither method produces su�cient coverage

probability. For all other sample size scenarios, the pseudo-likelihood intervals have

satisfactory coverage probability. For large e↵ect sizes and large enough group sizes,

the method of moment confidence intervals are also su�cient.

Tables 4.7 - 4.8 below give a sample-size dependent recommendation for which

interval method to use by assessing average lengths when both methods satisfy the

coverage probability criterion.
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Recommendation Tables

Table 4.7: Each cell entry represents the recommended method � 95%CIPsL(✓) or
95%CIMoM(✓) (blank white cell means neither method is recommended). The rec-
ommended method achieves simulated coverage probability at least .925 for at least
33 of the 36 simulation settings where � > .5�X . If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average interval length in more settings than the alternate method.

Table 4.8: Each cell entry represents the recommended method � 95%CIPsL(✓) or
95%CIMoM(✓) (blank white cell means neither method is recommended). The rec-
ommended method achieves simulated coverage probability at least .925 for at least
33 of the 36 simulation settings where �  .5�X . If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average interval length in more settings than the alternate method.
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Tables 4.7 - 4.8 indicate that pseudo-likelihood 95%CI(✓) is always preferable

to the method of moment 95%CI(✓). For the scenarios (e.g. n  15, � > .5�X

or N � 2400, n/N � .40, �  .5�X) where neither method is recommended, the

projection of confidence regions for (✓, �) onto ✓ can be used (see section 4.3). More

specifically, let the projected confidence interval include ✓
0
if and only if there exists

a �
0
such that (✓

0
, �

0
) 2 95%CR(✓, �). This approach produces a 95%CIProj(✓) with

conservative probability [since P (✓ 2 CIProj(✓)) � P (✓ 2 CR(✓, �))].

Parameter Specific Performance

While the sample sizes (N,m:n) alone can be observed and pre-determined, it is of

interest to identify any patterns that may exist regarding the kinds of parameter

values (F, ✓, �) that result in insu�cient coverage probability. Figure 4.17 below

identifies which (F, ✓, �) results in simulated coverage probability too low (less than

.925 for 95% confidence intervals) for the recommended method in Tables 4.7 - 4.8

(aggregated across all possible sample sizes). When using the recommended method,

97.72% of simulated settings result in satisfactory coverage probability while only

2.28% do not. The parameter settings of those 2.28% are displayed below.
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95%CIRec(θ): Number of (N,n:m) with Sim CP < 92.5%
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Figure 4.17: Each square corresponds to one (F, ✓, �), as labeled by the axes. The
number in each square represents how many of the sample size settings (N, n:m) pro-
duce insu�cient coverage probability in the simulation by using the recommendations
in Tables 4.7 - 4.8.

Figure 4.17 indicates that achieving satisfactory coverage probability is most

di�cult when � is small and ✓ is close to a boundary (either 0 or 1). In particular,

if ✓ is near 1 then the lighter-tailed (Normal-tailed) distributions are more likely to

produce low coverage probability. However, if ✓ is near 0, then the distributions

with a heavy and long upper tail are more likely to produce lower than nominal

coverage probability. For the other scenarios, the confidence intervals frequently have

satisfactory coverage probability.
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4.2.2 Confidence Intervals for �

The tables below are indexed by N in the rows and n:m in the columns, indicating

the pair of sample sizes that the cell represents. In each cell, the pair of numbers

represent how many of the 36 settings have su�cient coverage probability for the

two methods � 95%CIPsL(�) and 95%CIMoM(�) respectively. (For example, a cell

with entry � 36, 33 � indicates that 36/36 settings produce coverage probability at

least .925 for 95%CIPsL(�) and 33/36 settings produce coverage probability at least

.925 for 95%CIMoM(�).) To aid in pattern recognition, each cell has a background

color corresponding to whether or not it meets the coverage probability criterion.

Sample size settings where neither method meets the coverage probability criterion

have no background color. Sample size settings where both methods meet the coverage

probability criterion have blue background color. Sample size settings where only

95%CIMoM(�) meets the coverage probability criterion have gold background color.

Sample size settings where only 95%CIPsL(�) meets the coverage probability criterion

have green background color.
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Su�cient Coverage Probability Tables

Table 4.9: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to 95%CIPsL(�), 95%CIMoM(�) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.

Table 4.10: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to 95%CIPsL(�), 95%CIMoM(�) that have simulated coverage probability
at least .925. Color coded backgrounds emphasize when this number is at least 33 -
neither method: white, both methods: blue, pseudo-likelihood only: green, method
of moments only: gold.
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Tables 4.9 - 4.10 show that at least one method of constructing 95%CI(�)

provides satisfactory coverage probability for all sample size settings. For one third

of the settings, both the pseudo-likelihood and method of moments meet the coverage

probability criterion. Scenarios where method of moments does not achieve su�cient

coverage performance include when the treatment group size is not large (e.g. n 

160). If the e↵ect size is small, total sample size is large, and group allocation favors

the treatment group, then the pseudo-likelihood intervals for � may fail to achieve

satisfactory coverage probabilities.

Tables 4.11 - 4.12 below give a sample-size dependent recommendation for which

interval method to use by breaking the ties using average lengths when both methods

satisfy the coverage probability criterion. Since intervals for � can occasionally be

very large for both methods (and can be infinite for pseudo-likelihood, see section

A.7 of the Appendix), all intervals for � are truncated above at 6SX when comparing

lengths. (Recall that an e↵ect size of � = 6�X is a utopianly high e↵ect size.)

151



Recommendation Tables

Table 4.11: Each cell entry represents the recommended method � 95%CIPsL(�) or
95%CIMoM(�). The recommended method achieves simulated coverage probability
at least .925 for at least 33 of the 36 simulation settings where � > .5�X . If the
non-recommended method also meets the coverage probability criterion, the recom-
mended method has smaller average interval length in more settings than the alternate
method.

Table 4.12: Each cell entry represents the recommended method � 95%CIPsL(�) or
95%CIMoM(�). The recommended method achieves simulated coverage probability
at least .925 for at least 33 of the 36 simulation settings where �  .5�X . If the
non-recommended method also meets the coverage probability criterion, the recom-
mended method has smaller average interval length in more settings than the alternate
method.
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Tables 4.11 - 4.12 indicate that the pseudo-likelihood method is recommended

rather than method of moments for 95%CI(�) in nearly any sample size setting except

when the total sample size is very large, group allocation favors the treatment group.

Parameter Specific Performance

While the sample sizes (N,m:n) alone can be observed and pre-determined, it is of

interest to identify any patterns that may exist regarding the kinds of parameter

values (F, ✓, �) that result in insu�cient coverage probability. Figure 4.18 below

identifies which (F, ✓, �) results in simulated coverage probability too low (less than

.925 for 95% confidence intervals) for the recommended method in Tables 4.11 -

4.12 (aggregated across all possible sample sizes). When using the recommended

method, 99.12% of simulated settings result in satisfactory coverage probability while

only 0.88% do not. The parameter settings of those 0.88% are displayed below.
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95%CIRec(δ): Number of (N,n:m) with Sim CP < 92.5%
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Figure 4.18: Each square corresponds to one (F, ✓, �), as labeled by the axes. The
number in each square represents how many of the sample size settings (N, n:m) pro-
duce insu�cient coverage probability in the simulation by using the recommendations
in Tables 4.11 - 4.12. The squares with a green background indicate that more than
3/4 of the time, the insu�cient coverage probability occurs when using the pseudo-
likelihood interval. The squares with a gold background indicate that more than 3/4
of the time, the insu�cient coverage probability occurs when using the method of
moment interval.

Figure 4.18 indicates that when ✓ is near 1 and � is small, then the recommen-

dation is also more likely to produce lower than nominal coverage probability. For

all other scenarios, the confidence intervals almost always have satisfactory coverage

probability.
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4.3 Confidence Region Performance Comparison

Analogous to the ideal confidence interval procedure, the ideal procedure for con-

structing a confidence region for (✓, �) is one that always captures the true parameter

pair with an arbitrarily small region. Since this is not possible with finite data sets,

a researcher may specify a su�ciently large success rate, called the confidence level

(commonly 90% or 95%), for which regions should capture the parameter. If multiple

methods of constructing a confidence region achieve coverage probabilities (1 � ↵)

at least as large as the researcher’s confidence requirement, then the method that

produces smaller areas is preferred.

Therefore the primary criterion to assess the performance of the confidence region

methods is whether coverage probability (1�↵) is su�ciently high across a su�cient

number of parameter space settings (F, ✓, �). (For 95% confidence regions, simulated

coverage probability at least .925 for at least 33/36 settings is defined as satisfactory.)

When both methods have satisfactory coverage probability, the method with the

smaller average area is preferred. (Areas are based on confidence regions truncated

by �  6SX since both confidence region methods compared below can be unbounded

in � [the method of moment region always is].)

To carry out the performance comparison, 1000 data sets are generated under each

of the factorial combinations of the the settings in List 3.1 (and displayed below)

• N 2 {60, 120, 180, 300, 600, 1200, 2400, 4800}

• n:m 2 {1:29, 1:19, 1:14, 1:9, 1:5, 1:3, 1:2, 2:3, 1:1, 3:2, 2:1, 3:1}

• F 2 {Normal, Laplace, SkRNorm, SkRLap, SkLNorm, SkLLap}

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

In the sections that follow, the performance is summarized across all (F, ✓, �) to

provide a recommendation on which method to use. The 36 simulation settings for

155



which ✓�  .5�X and the 36 settings for which ✓� > .5�X are assessed separately. An

assessment is done for each pair of sample sizes (N, n:m) so that a sample-size de-

pendent recommendation can be given. The two methods of constructing confidence

regions compared are the method of moment region corresponding to 95%CIMoM(�)

and the pseudo-likelihood 95%CRPsL(✓, �). (This method of moment region is chosen

because it is more competitive with 95%CRPsL(✓, �) than the region found by inter-

secting two confidence intervals. See section A.8 of the Appendix for a comparison

of the two types of method moment regions described in section 3.2). Note that very

rarely confidence regions cannot be computed, so performance measures (coverage

probability, average area) are computed among data sets where the confidence re-

gions can be produced. The method of moment region never fails to compute. The

pseudo-likelihood region fails to compute in 0.00033% of data sets.

Tables 4.13 - 4.14 below are indexed by N in the rows and n:m in the columns,

indicating the pair of sample sizes that the cell represents. In each cell, the pair of

numbers represent how many of the 36 settings have su�cient coverage probability

for the two methods � 95%CRPsL(✓, �) and 95%CRMoM�(✓, �) respectively. (For

example, a cell with entry � 36, 33 � indicates that 36/36 settings produce cover-

age probability at least .925 for 95%CRPsL(✓, �) and 33/36 settings produce cover-

age probability at least .925 for 95%CRMoM�(✓, �).) To aid in pattern recognition,

cells have colored background according to whether or not they meet the coverage

probability criterion. Sample size settings where neither method meets the cover-

age probability criterion have no background color. Sample size settings where both

methods meet the coverage probability criterion have blue background color. Sample

size settings where only 95%CRMoM�(✓, �) meets the coverage probability criterion

have gold background color. Sample size settings where only 95%CRPsL(✓, �) meets
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the coverage probability criterion have green background color. (Section A.9 of the

Appendix verifies that these recommendations may be applied to 90% confidence

regions as well).
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Su�cient Probability Tables

Table 4.13: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to 95%CRPsL(✓, �), 95%CRMoM�(✓, �) that have simulated coverage prob-
ability at least .925. Color coded backgrounds emphasize when this number is at
least 33 - neither method: white, both methods: blue, pseudo-likelihood only: green,
method of moments only: gold.

Table 4.14: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to 95%CRPsL(✓, �), 95%CRMoM�(✓, �) that have simulated coverage prob-
ability at least .925. Color coded backgrounds emphasize when this number is at
least 33 - neither method: white, both methods: blue, pseudo-likelihood only: green,
method of moments only: gold.
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Tables 4.13 - 4.14 indicate that at least one confidence region provides satisfac-

tory coverage probability for nearly any sample size setting. For most settings, both

the pseudo-likelihood and method of moment confidence regions produce satisfactory

coverage probability. If treatment data is sparse (e.g. n  30) then the method of

moment region may be unsatisfactory and if it is very sparse (e.g. n  10) then the

pseudo-likelihood may be as well. If the total sample size is very large and the group

allocation is nearly balanced or favors the treatment group, then the pseudo-likelihood

coverage probability may be unsatisfactory � particularly if the overall e↵ect size is

small.
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Recommendation Tables

Table 4.15: Each cell entry represents the recommended method � 95%CRPsL(✓, �)
or 95%CRMoM(✓, �) (blank white cell means neither method is recommended). The
recommended method achieves simulated coverage probability at least .925 for at least
33 of the 36 simulation settings where � > .5�X . If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average area in more settings than the alternate method.

Table 4.16: Each cell entry represents the recommended method� 95%CRPsL(✓, �) or
95%CRMoM(✓, �). The recommended method achieves simulated coverage probability
at least .925 for at least 33 of the 36 simulation settings where �  .5�X . If the non-
recommended method also meets the coverage probability criterion, the recommended
method has smaller average area in more settings than the alternate method.
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Tables 4.15 - 4.16 show which confidence region method is recommended for

each sample size setting. For large e↵ect sizes, the pseudo-likelihood regions are

preferred for all sample size settings except sometimes when m  40 or when N �

4800, n/N � .75. For small overall e↵ect sizes, the pseudo-likelihood method is

almost always recommended except sometimes when N is very small or N is very

large with group allocation that is nearly even or treatment heavy.

Parameter Specific Performance

While the sample sizes (N,m:n) alone can be observed and pre-determined, it is of

interest to identify any patterns that may exist regarding the kinds of parameter

values (F, ✓, �) that result in insu�cient coverage probability. Figure 4.19 below

identifies which (F, ✓, �) results in simulated coverage probability too low (less than

.925 for 95% confidence regions) for the recommended method in Tables 4.15 - 4.16

(aggregated across all possible sample sizes). When using the recommended method,

98.97% of simulated settings result in satisfactory coverage probability while only

1.03% do not. The parameter settings of those 1.03% are displayed below.
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95%CRRec(θ,δ): Number of (N,n:m) with Sim CP < 92.5%
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Figure 4.19: Each square corresponds to one (F, ✓, �), as labeled by the axes. The
number in each square represents how many of the sample size settings (N, n:m) pro-
duce insu�cient coverage probability in the simulation by using the recommendations
in Tables 4.15 - 4.16. The squares with a green background indicate that more than
3/4 of the time, the insu�cient coverage probability occurs when using the pseudo-
likelihood region. The squares with a gold background indicate that more than 3/4
of the time, the insu�cient coverage probability occurs when using the method of
moment region.

Figure 4.19 indicates coverage probability may drop below nominal when � is

small. Particularly some di�culty arises if ✓ is close to 1 and F has lighter (normal)

tails or if ✓ is small and F is skewed right. For the other scenarios, the confidence

regions frequently have satisfactory coverage probability.
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Chapter 5

Conclusion

5.1 Example

Note that a small portion of section 5.1 below is identical to content from previously

published work (Lubich et al., 2022).

To conclude exploration of inference approaches for (1.1), consider the following

demonstration of the recommended analysis of an example blood pressure data set

provided by Kaiser Permamente’s Electronic Blood Pressure Study (Green et al.,

2008). In this study m = 246 patients did not receive collaborative care manage-

ment support provided by clinical pharmacists via the Web, while n = 237 patients

did. Patients were randomly assigned to the two groups. Summary statistics of the

reduction in DBP for the two groups are X = 3.793, S2
X = 71.78, Y = 6.354, S2

Y =

89.73, N = 246 + 237 = 483. Figure 5.1 below displays histograms of the responses

for the two groups.
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Figure 5.1: Reduction in Diastolic Blood Pressure by Group.

Consider an approach to modeling the data with (1.1). In this context, ✓ represents

the proportion of hypertensive patients that respond to additional pharmacist inter-

vention and � represents the magnitude of the reduction in DBP for those responding

patients. The observed di↵erence in average reduction in DBP is Y � X = 2.56,

which under the naive assumption that ✓ = 1 estimates the e↵ect of the pharmacist

intervention for the entire treated population. Section 4.1 indicates that the pseudo-

likelihood point estimate is always the preferred method. Sections 4.2 and 4.3 provide

scenario-dependent recommendations for the preferred method. Since Y �X = 2.56

is an estimate of � and 2.56 = .3SX  .5SX , the data suggests that � < .5�X .

Therefore Tables 4.8, 4.12 and 4.16 provide the recommended method for con-

structing confidence intervals and a confidence region, respectively. The sample size
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scenario here is nearest to the (N = 600, n:m = 1:1) table entries and thus each

table recommends use of the pseudo-likelihood method for confidence intervals and a

confidence region, respectively. (While the data strongly suggests that �  .5�X , the

corresponding tables with � > .5�X also recommend the pseudo-likelihood method

for all inference procedures).

The point estimate for is [(✓, �)PsL = (0.48, 5.93), with an estimated average e↵ect

size of b�PsL = 2.85. The point estimate indicates that just under half of patients

benefit from the pharmacist intervention and the magnitude for those who benefit

is about a 6 mmHg reduction in DBP. For patients who do benefit, the estimated

treatment e↵ect b�PsL = 5.93 is more than double the naive estimate Y � X = 2.56

that assumes an e↵ect on the entire treated population. To test the model’s goodness

of fit, the estimated probability integral transform is applied to the treatment data

using the estimate [(✓, �)PsL and the emperical CDF of the control data bFm forming the

set of Ui = (1� b✓) bFm(yi) + b✓ bFm(yi � b�) for i 2 {1, ..., n}. This follows approximately

a uniform distribution as shown in Figure 5.2, indicating that the model is a good

fit for the data.
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Figure 5.2: Approximately Uniform PIT Transformation of Treatment Data.
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Table 5.1 below displays 90% and 95% confidence intervals for the parameters

of interest.

Level CI(✓) CI(�)

90% [.23,.72] [3.6,10.0]

95% [.19,.84] [2.6,11.7]

Table 5.1: Pseudo-likelihood confidence intervals.

While the treatment e↵ect is only fully characterized by the pair (✓, �), it is possible

that the primary interest may be inference on a single parameter. Consider a scenario

where ✓ alone may be of interest. Suppose that Kaiser Permanente has already

implemented the additional pharmacist intervention as a component of their standard

care for the population of their members. If a large proportion of patients experience

some benefit from the treatment (say, at least 85%), then it may not be worthwhile

to look for alternate treatment options for the small subset (e.g. less than 15%) of

non-responders for whom the availability of additional pharmacist care has no e↵ect

on reducing DBP. However, if only half of members benefit (and half do not) then

it may be worth trying to identify features of members who would benefit and those

that would not. Since the 90%CI(✓) = [.23, .72] indicates that between 23% and 72%

of patients respond (meaning that between 28% and 77% do not benefit), there is

evidence of a substantial proportion of treated patients do not benefit. Therefore, it

may prove useful to characterize the kinds of patients who will not benefit from the

intervention so that they may be cost-e↵ectively referred to a treatment option that

is more likely to provide a reduction in DBP.

Similarly, consider a scenario where � alone may be of interest. Suppose Kaiser al-

ready has confidence in their ability to later identify which sub-population of members

will benefit from a treatment and is only interested in determining if the treatment
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has a clinically meaningful e↵ect for the correct sub-population to be referred to this

service. Then 90% CIPsL(�) = [3.6, 10.0] provides the desired information, indicating

that the e↵ect of the clinical pharmacist support is between a 3.6 and 10.0 mmHg re-

duction in DBP. For example, if a 3.0 mmHg reduction in DBP is considered clinically

meaningful then the confidence interval indicates that this treatment has a clinically

meaningful e↵ect on responding patients.

To quantify the uncertainty surrounding the full treatment e↵ect (✓, �) consider

Figure 5.3 below that displays the 90% Pseudo-likelihood confidence region for (✓, �).
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Figure 5.3: 90% Pseudo-likelihood confidence region for (✓, �). The blue dot near the

center of the region is [(✓, �)PsL = (0.48, 5.93).

Table 5.2 below displays points that encompass the edge of the 90% Pseudo-

likelihood confidence region for (✓, �).
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�l ✓ �u ✓l � ✓u

8.0 .15 10.0 .77 2.7 .89

6.0 .2 11.4 .57 3 .95

4.6 .3 10.7 .35 4 .91

3.8 .4 9.6 .26 5 .82

3.3 .5 8.5 .20 6 .74

3.0 .6 7.5 .17 7 .64

2.8 .7 6.3 .15 8 .57

2.7 .8 5.1 .15 9 .46

2.8 .9 4.1 .15 10 .37

2.8 .94 3.2 .17 11 .28

.20 11.4 .21

Table 5.2: The left side of the table provides the range of � that lie in the 90% pseudo-
likelihood confidence region for an array of ✓ 2 {.15, .2, .3, ..., .9, .94}. The right side
of the table provides the range of ✓ that lie in the confidence region for an array of
� 2 {2.7, 3, 4, ..., 11, 11.4}.

It is important to consider the practical implications of a treatment e↵ect in the

confidence region. Consider a few select descriptions of plausible treatment e↵ects

from the confidence region. The treatment may only benefit 15% of patients by a

magnitude of 8 mmHg. The treatment may benefit 94% of patients with only a

3 mmHg magnitude reduction. The treatment may benefit 60% of patients with a

reduction of 7.5 mmHg. The treatment may benefit only 20% of patients but have an

e↵ect of reducing DBP by 11.4 mmHg. An important observation about the region

is that it does not contain (✓, �) = (0, 0) nor does it contain any points for which

✓ = 1. Together these observations indicate that there exists a subset of the treated

population that does not benefit from the treatment and a subset that does.
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5.2 Future Work

More focused exploration on hypothesis testing could prove useful. In particular, it

would be interesting to see if a randomization test based on this pseudo-likelihood

estimator provides a more powerful test for a treatment e↵ect � H0: ✓� = 0 ()

F (u) = G(u) for all u � than standard non-parametric tests such as an asymptotic

Z-test or Wilcoxon Rank Sum test. Also, it would be of interest to investigate a

formal test of H0: ✓ = 1 by using the pseudo-likelihood ratio test statistic (also

with a Satterthwaite approximation for finite-samples). Such a hypothesis test could

function as a model-checking test to verify that (1.1) should be used rather than a

pure shift alternative. To see if the pseudo-likelihood’s e�ciency gains over method

of moment translate to a multi-stage clinical trial setting, a group sequential clinical

trial setting as described in Friel (2022) could utilize the pseudo-likelihood approach.

Since all inference procedures in this dissertation fall under the frequentist umbrella,

bayesian point estimation and credible regions may be a worthwhile research direction.

An extension (5.1) of model (1.1) allows for the responder distribution to be a

location-scale change from the control group rather than assuming only location-shift.

G(u) = (1� ✓)F (u) + ✓F

✓
u� �

�

◆
(5.1)

Another extension (5.2) of model (1.1) considers the possibility that, in addition to

the subset of individuals who do not respond to the treatment, there may also be a

subset of individuals for which the treatment is harmful (when contraindications have

yet to be established). Such a model can be written as

G(u) = ⇡�1F (u� ��1) + ⇡0F (u) + ⇡1F (u� �1), (5.2)
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where ⇡i > 0 for all i 2 {�1, 0, 1} and ⇡�1 + ⇡0 + ⇡1 = 1 while ��1 < 0 and �1 > 0.

Without loss of generality, harmful e↵ects are represented by ��1 and beneficial e↵ects

are represented by �1.

It might be interesting to see how the inference procedures in this dissertation

perform for distribution (F ) other than the 6 considered in the simulations. Note that

(5.1) simplifies to (1.1) if � = 1 and (5.2) simplifies to (1.1) when (⇡�1, ��1) = (0, 0).

It would be interesting to see how useful the inference procedures on (1.1) are if (5.1)

is true and � is slightly di↵erent from 1, or if (5.2) is true and (⇡�1, ��1) are relatively

small.
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Appendix

A.1 Proof of Moments of G (2.6 - 2.9)

To derive equations (2.6) - (2.9), consider the following relationship from model (1.1)

Y
d
= (1� Z)X + Z(X + �)

where Z ⇠ Bernoulli(✓) independent of X ⇠ F . This relationship holds because

Y ⇠ G from (1.1). Thus,

µY ⌘ E[Y ] = E [(1� Z)X + Z(X + �)]

= µX + ✓�. (2.6)

To calculate (2.7), we first attain E[Y 2] in terms of (F, ✓, �). Letting a = (1 � Z)X

and b = Z(X + �)

E[Y 2] = E
⇥
(a+ b)2

⇤
= E

⇥�
a
2 + ab+ b

2
�⇤

= E
⇥
a
2 + b

2
⇤

= (1� ✓)E[X2] + ✓E
⇥
E[X2] + 2µX� + �

2
⇤

= E[X2] + 2µX✓� + ✓�
2
.
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Notice that the terms for which both a and b have a non-zero exponents - ka and kb

- are 0 because (1 � Z)kaZkb = 0 with probability 1 whenever ka > 0 and kb > 0.

Then, we have that

�
2
Y ⌘ E[(Y � µY )

2] = E[Y 2]� E[Y ]2

= E[X2] + 2✓�µX + ✓�
2 � (µ2

X + 2✓�µX + ✓
2
�
2)

= (E[X2]� µ
2
X) + (✓ � ✓

2)�2

= �
2
X + ✓(1� ✓)�2. (2.7)

To calculate (2.8), first attain E[Y 3] in terms of (F, ✓, �).

E[Y 3] = E[(a+ b)3]

= E[a3 + 3a2b+ 3ab2 + b
3]

= E[a3 + b
3]

= E[X3] + 3✓�E[X2] + 3✓�2µX + ✓�
3
,

again noting that akabkb = 0 if ka > 0 and kb > 0. Then, we have that

µ3cy ⌘ E[(Y � µY )
3] = E[Y 3]� 3E[Y 2]µY + 2µ3

Y

= (E[X3]� 3E[X2]µX + 2µ3
X) + ✓�

3 � 3✓2�3 + 2✓3�3

= µ3cx + ✓(1� ✓)�3[1� 2✓]. (2.8)
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To calculate (2.9), we first attain E[Y 4] in terms of (F, ✓, �).

E[Y 4] = E[(a+ b)4] = E[a4 + b
4]

= E[X4] + 4✓�E[X3] + 6✓�2E[X2] + 4✓�3µX + ✓�
4
,

again noting that akabkb = 0 if ka > 0 and kb > 0. Then, we have that

µ4cy ⌘ E[(Y � µY )
4] = E[Y 4]� 4µYE[Y 3] + 6µ2

YE[Y 2]� 3µ4
Y

=
�
E[X4]� 4µXE[X3] + 6µ2

XE[X2]� 3µ4
X

�

+ 6✓�2E[X2] + ✓�
4 � 6✓�2µ2

X � 6✓2�2E[X2]

� 4✓2�4 + 6✓2�2µ2
X + 6✓3�4 � 3✓4�4

= µ4cx + ✓�
4
⇥
(1� 4✓ + 6✓2 � 3✓3) + 6(1� ✓)(�2

X/�
2)
⇤

= µ4cx + ✓�
4
⇥�
(1� 3✓)(1� ✓)2 + ✓(1� ✓)

�
+ 6(1� ✓)(�2

X/�
2)
⇤

= µ4cx + ✓(1� ✓)�4
⇥
(1� 3✓)(1� ✓) + ✓ + 6�2

X/�
2
⇤
. (2.9)
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A.2 Consistency

Consider first a proof of proposition 2.2.2, consistency of both b✓ and b� in estimating

✓ and � respectively. The proof shows that the + operator and ✏N modifications do

not negate the natural consistency of the moment estimator so long as ✏N ! 0 as

m,n ! 1. First consider f
�
X, Y , S

2
Y , S

2
X

�
, an approximation of b✓

b✓ =

⇢
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + ✏N

��1

f
�
X, Y , S

2
Y , S

2
X

�
=

⇢
1 +

(S2
Y � S

2
X)

(Y �X)2

��1

If m ! 1 and n ! 1, then clearly f
�
X, Y , S

2
Y , S

2
X

� p! ✓ since
�
Y �X

�2 p!

(µY � µX)
2, (S2

Y � S
2
X)

p! (�2
Y � �

2
X), and ✓ =

⇢
1 +

(�2
Y � �

2
X)

(µY � µX)2

��1

. Thus it su�ces

to show that (S2
Y � S

2
X)+

p! (�2
Y � �

2
X) and

⇣�
Y �X

�2
+
+ ✏N

⌘
p! (µY � µX).

Since (S2
Y � S

2
X)

p! (�2
Y � �

2
X), this means that 8 ✏ > 0 and 8 ! > 0, 9 {m0, n0}

such that 8 m > m0 and 8 n > n0

P
�
|
�
S
2
Y � S

2
X

�
�
�
�
2
Y � �

2
X

�
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�
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��
S
2
Y � S

2
X

�
�
�
�
2
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2
X
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��
S
2
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2
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2
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2
X
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|
�
S
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Y � S
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�
�
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Y � �

2
X
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S
2
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2
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so since

P

⇣�
S
2
Y � S

2
X

�
+
�
�
�
2
Y � �

2
X

�
< �✏

⌘
< P

��
S
2
Y � S

2
X

�
�
�
�
2
Y � �

2
X

�
< �✏

�
,

this means that

(S2
Y � S

2
X)

p! (�2
Y � �

2
X) =) (S2

Y � S
2
X)+

p! (�2
Y � �

2
X).

An analogous argument shows that
�
Y �X

�2
+

p! (µY � µX). Therefore
⇣�

Y �X
�2
+
+ ✏N

⌘
p! (µY � µX) so b✓ p! ✓. The consistency of b� immediately follows

because b� =
�
Y �X

�
+
/b✓ and � = (µY � µX)/✓.
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A.3 Asymptotic Normality

Here is a proof for the asymptotic normality and derivation of the asymptotic variance

of b✓ and b�. First consider proposition 2.2.3 for b✓,

b✓ =

⇢
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + ✏N

��1

f
�
X, Y , S

2
Y , S

2
X

�
=

⇢
1 +

(S2
Y � S

2
X)

(Y �X)2

��1

Using a first order taylor series expansion gives

f
�
X, Y , S

2
X , S

2
Y

�
=

f
�
µX , µY , �

2
X , �

2
Y

�
+

@f

@X

����
X=µX

�
X � µX

�
+

@f

@Y

����
Y=µY

�
Y � µY

�

+
@f

@S
2
X

����
S2
X=�2

X

�
S
2
X � �

2
X

�
+

@f

@S
2
Y

����
S2
Y =�2

Y

�
S
2
Y � �

2
Y

�
+ o(1)

= f
�
µX , µY , �

2
Y , �

2
X

�
+

⇢
1 +

(�2
Y � �

2
X)

(µY � µX)2

��2⇢ 2(�2
Y � �

2
X)(µX �X)

(µY � µX)3

+
2(�2

Y � �
2
X)(Y � µY )

(µY � µX)3

+
S
2
X � �

2
X

(µY � µX)2

+
�
2
Y � S

2
Y

(µY � µX)

�
+ o(1) (3)

Now since X, Y , S
2
X , S

2
Y are all unbiased estimators of µX , µY , �

2
X , �

2
Y , respectively,

E[f
�
X, Y , S

2
X , S

2
Y

�
] = 0 with accuracy to the first order expansion. Furthermore,

since that converge in distribution to a normal distribution by the central limit the-

orem, f
�
X, Y , S

2
X , S

2
Y

�
also converges in distribution to a normal with asymptotic
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variance equal to V ar
�
f
�
X, Y , S

2
X , S

2
Y

��

Now to derive the variance of b✓ by taking the variance of (3), begin by noting

that any covariance terms between X and Y are 0 because X and Y are independent.

Also, utilizing the following variance (Cho et al., 2005) and covariance (Dodge and

Rousson, 1999; Zhang, 2007) results

V ar
�
S
2
�
=

1

n

✓
µ4c �

n� 3

n� 1
�
4

◆
(4)

Cov
�
X,S

2
�
=

µ3c

n
. (5)

provides a first order taylor series approximate variance of b✓

V ar

⇣
b✓
⌘
=

(1 + o(1))

⇢
1 +

(�2
Y � �

2
X)

(µY � µX)2

��4
(
4 (�2

Y � �
2
X)

2

(µY � µX)6

✓
�
2
X

m
+

�
2
Y

n

◆

� 4(�2
Y � �

2
X)

(µY � µX)5

⇣
µ3cx

m
+

µ3cy

n

⌘

+
1

(µY � µX)4

 
(µ4cx � m�3

m�1�
4
X)

m
+

(µ4cy � n�3
n�1�

4
Y )

n

!)
. (6)

The special case of m = n gives the asymptotic variance formula in (2.15) as desired.

Now to prove proposition 2.2.3 for the case of b�

b� =
b�
b✓
= (Y �X)+

n
1 +

(S2
Y � S

2
X)+

(Y �X)2+ + ✏N

o

g
�
X, Y , S

2
Y , S

2
X

�
= (Y �X)

⇢
1 +

(S2
Y � S

2
X)

(Y �X)2

�
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Using a first order taylor series expansion

g
�
X, Y , S

2
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2
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Y are all unbiased estimators of µX , µY , �

2
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2
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E[g
�
X, Y , S

2
Y , S

2
X

�
] = � with accuracy to the first order expansion. Furthermore,

since X, Y , S
2
X , S

2
Y each converge in distribution to a normal distribution by the cen-

tral limit theorem, f
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X, Y , S
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X , S

2
Y

�
also converges in distribution to a normal with

asymptotic variance equal to V ar
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f
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2
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b� by taking the variance of (7)
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⌘
=

(1 + o(1))

(✓
(�2

Y � �
2
X)

(µY � µX)2
� 1

◆2✓
�
2
X

m
+

�
2
Y

n

◆

+ 2

✓
1� �

2
Y � �

2
X

(µY � µX)2

◆
(µ3cx/m+ µ3cy/n)

(µY � µX)

+
1

(µY � µX)2

0

B@
(µ4cx �

m� 3

m� 1
�
4
X)

m
+

(µ4cy � n�3
n�1�

4
Y )

n

1

CA

)
. (8)

The special case of m = n gives the asymptotic variance formula in (2.16) as desired.
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A.4 Simulation Settings

The performance of the methods in the coming chapters are compared across an

array of the simulation settings (F, ✓, �). Robust methodology is desired so that

performance is satisfactory across the parameter space, which motivates the following

primary simulation settings on which to measure performance.

• F 2 {Normal, Laplace, Skewed Right Normal (SKRN), Right Skewed Laplace

(SKLL), Skewed Left Normal (SKLN), Skewed Left Laplace (SKLL)}

– All distributions are from the 5 parameter skewed generalized T distri-

bution with � = 0 for symmetric distributions, � = .5 for right skewed

distributions and � = �.5 for left skewed distributions. Distributions from

the generalized Normal family have parameters p = 2, and q = 1 while

those from the generalized Laplace family have parameters p = 1 and

q = 1.

– µX = 0 and �X = 1 for all F .

• ✓ 2 {.2, .5, .8}

• � 2 {.5, 1, 2, 3}

The six choices of F are chosen to allow for a variety of distributional shapes � in

particular to vary tail heaviness and skewness. This distribution has multiple param-

eterizations. A vignette by Davis (2015), which can be accessed in R programming

by the command vignette(“sgt”) , displays the parameterization as well as much of

the content summarizing this family of distributions described here. Consider how

the 5 parameters of the Skewed Generalized T Distribution (µ, �,�, p, q), introduced

by Theodossiou (1998), allow for this kind of flexibility. The skew of the distribution

is controlled by �1 < � < 1 where � < 0 for skewed left distributions, � = 0 for sym-

metric distributions, and � > 0 for skewed right distributions. The parameters p > 0
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and q > 0 jointly control the tail behavior (with smaller values of each corresponding

to heavier tailed distributions). The density is given by

fSGT (x;µ, �,�, p, q) = p

8
><

>:
2v�q1/pB(1/p, q)

✓
|x� µ+m|p

q(v�)p(�sign(x� µ+m) + 1)p
+ 1

◆1

p
+q

9
>=

>;

�1

(9)

where B(·, ·) represents the Euler Beta function

B(x, y) =

Z 1

0

t
x�1(1� t)y�1

dt =
�(x)�(y)

�(x+ y)

and

m = (B(1/p, q))�1 �2v��q1/pB(2/p, q � 1/p)
�
,

v = q
�1/p

"
(3�2 + 1)

✓
B(3/q, q � 2/p)

B(1/p, q)

◆
� 4�2

✓
B(2/q, q � 1/p)

B(1/p, q)

◆2
#�1/2

so that µ represent the mean and � is the standard deviation so long as they exist

(the h
th moment exists if pq > h). See Figure A.1 below for families of distributions

that are special cases.

Specifically, in the case of q ! 1, we have the six distributions used for the

simulation shown in Table A.1 below.
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Figure A.1: Diagram of Skewed Generalized T Family Tree

�

-.5 0 .5

p

2 Skewed Left Normal Normal Skewed Right Normal

1 Skewed Left Laplace Laplace Skewed Right Laplace

Table A.1: Distributions used for Simulations

Figure A.2 displays the pdfs for the six distributions in the simulation.
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Figure A.2: Distributions used for Simulation
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Consider the intuitive measure of tail heaviness in that if limx!+1 f1(x)/f2(x) = 0

then f2 is said to have a heavier upper tail than f1, while if limx!�1 f1(x)/f2(x) = 0

then f2 is said to have a heavier lower tail than f1. If both conditions are satisfied,

then f2 is said to be heavier tailed than f1. Note the di↵erence in the distributions

for the Normal tails (Skewed Normal Family p = 2) and the Laplace tails (Skewed

Laplace Family p = 1) by considering the special cases of (9) for the Skewed Normal

and Skewed Laplace families presented below.

fSNorm(x;µ, �,�) = (vn�
p
⇡)�1

exp

✓
� |x� µ+mn|
vn�(1 + �sign(x� µ+mn))

◆2

(10)

where

mn =
2vn��p

⇡
(11)

and

vn =
p
2⇡

⇥
(⇡ � 8�2 + 3⇡�2)

⇤�1/2
. (12)

Similarly,

fSLap(x;µ, �,�) = (vl�2)
�1
exp

✓
� |x� µ+ml|
vl�(1 + �sign(x� µ+ml))

◆
(13)

where

ml = 2vl�� (14)

and

vl =
⇥
2(1 + �

2)
⇤�1/2

. (15)

Now to compare the tails of the distributions,
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fSNorm(x;µn, �n,�n)

fSLap(x;µl, �l,�l)
=

(
p
⇡vn�n)�1

exp

⇢
� |x� µn +mn|
vn�n(1 + �nsign(x� µn +mn))

�2

(2vl�l)�1exp

⇢
� |x� µl +ml|
vl�l(1 + �lsign(x� µl +ml))

�

=
2vl�lp
⇡vn�n

exp

⇢
�
✓
|x� (µn �mn)|2

cn

◆
+

|x� (µl �ml)|
cl

�

(16)

where cn = v
2
n�

2
n(1 + �nsign(x � µn +mn))2 and cl = vl�l(1 + �lsign(x � µl +ml))

for brevity.

=
2vl�lp
⇡vn�n

exp

⇢
�cl(x2 � 2(µn �mn)x+ (µn �mn)2) + cn[x� (µl �ml)]

cncl

�
. (17)

Note that there exists (Ln, Un, Ll, Ul) such that 0 < Ln < cn < Un < 1 and 0 < Ll <

cl < Ul < 1 for all x (because �1 < � < 1). Thus,

limx!±1
fSNorm(x;µn, �n,�n)

fSLap(x;µl, �l,�l)
= limx!±1exp(�x

2) = 0. (18)

Therefore, the Skewed Laplace Distribution has heavier tails than Skewed Normal

Distribution.

The settings of ✓ for the simulation study cover situations where the treatment

is only e↵ective on a small proportion of the treated population (✓ = .2) to the case

where a large majority do (✓ = .8). The settings for � are chosen to cover a range

of treatment e↵ect sizes for the responders that is large enough to be of practical

importance (.5�X  �) but also realistic (�  3�X).
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A.5 Interpreting Simulation Results

The table below provides some examples for appropriately identifying the simula-

tion results that communicate the performance statistics relevant to a novel scenario

(where possibly � < 0 or �X 6= 1). The column on the left of Table A.2 indicates

scenarios that may reflect a real-life data set, while the column on the right indicates

the simulation results corresponding to the scenario on the left.

m n Fr ✓r �r �r m n Fs ✓s �s �s

90 90 SkR Norm 0.8 3.0 6.0 90 90 SkR Norm 0.8 0.5 1.0

480 720 SkL Norm 0.2 -2.0 1.0 480 720 SkR Norm 0.2 2.0 1.0

1920 2880 SkR Lap 0.5 -1.0 0.3 1920 2880 SkL Lap 0.5 3.0 1.0

Table A.2: Corresponding settings for interpretation. Let r subscript a real scenario
and s subscript the corresponding simulated scenario in List 3.1.
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Figure A.3: The “real” data in the histograms represents a scenario for treating
hypothyroid that corresponding to the left side of Table A.2 in the last row.

Note that in the “real” scenario that results in data as displayed in Figure A.3
q

MSE(b✓r) (for example) is the same as the simulation setting on the last row of the

right column (m = 1920, n = 2880, Fs ⇠ SkLLap, ✓s = 0.5, �s = 3.0, �Xs = 1.0) and

has
q

MSE(cKr) the same as on the from the simulated setting, where cKr = b�r/SXr

(and cKs = b�s/SXs). Note that, even though the data is clearly skewed right in this
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scenario, the simulation results that communicate the relevant performance metrics

(e.g.
p
MSE, coverage probability, average interval lengths, etc.) are from the skewed

left Laplace distribution. Similarly, even though the magnitude of �r may seem small

�r = �1, this is a pronounced e↵ect relative to the natural variability in the data (as

observed in Figure A.3), so the appropriate simulation to reference for performance

metrics has �s = 3. The scenarios correspond to each other because both of the

following are true.

1. Both the real data set and the corresponding simulation settings have a treat-

ment e↵ect in the opposite direction of the skew in F (Fr skewed right and

�r < 0 () Fs skewed left and �s > 0).

2. The magnitude of the treatment e↵ect relative to the natural variability in F

is the same (�r/�Xr = 1/0.3 = 3 = 3/1 = �s/�Xs).
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A.6 Area Calculations for Confidence Regions

The area of pseudo-likelihood confidence regions is calculated from a dense grid of

points that encompass the region. To identify such a dense grid of points that

encompasses the region, a lighter grid search is first done across the set of ✓ 2

{.01, .02, ..., .99, 1.0} ⇥ � 2 {.1SX , .2SX , ..., 5.9SX , 6.0SX} to compute the pseudo-

likelihood test statistic (3.12) at each grid point. The four boundaries of the dense

(100⇥ 100) grid are selected to encapsulate the confidence region as follows.

• The upper boundary for ✓ is selected as the smallest ✓u such that all (✓, �) with

✓ � ✓u have bT(✓,�) � c1�
2
d1,1�↵.

• The upper boundary for � is selected as the smallest �u such that all (✓, �) with

� � �u have bT(✓,�) � c1�
2
d1,1�↵.

• The lower boundary for ✓ is selected as the largest ✓l such that all (✓, �) with

✓  ✓l have bT(✓,�) � c1�
2
d1,1�↵.

• The lower boundary for � is selected as the largest �l such that all (✓, �) with

�  �l have bT(✓,�) � c1�
2
d1,1�↵.

Therefore, by construction, all edge points of the dense region are not contained

in the confidence region. The area is calculated as the area of the rectangular region

formed by the dense grid search, A = (✓u � ✓l)(�u � �l), times the proportion of the

dense grid points contained in the confidence region with a half-weight adjustment

given to the edge points for improved numerical accuracy (see Figure A.4 below).

Let X be the number of points in the dense grid search that are in the confidence

region. Let K be the number of grid points, K = 100⇥ 100 = 10, 000.

Area CR(✓, �)PsL =
1

2

✓
X

K
+

X

K � 400

◆
(✓u � ✓l)(�u � �l) (19)
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0.0
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0.8
1.0

Grid Search to Numerically Evaluate Area

δ

θ

0.482 0.484 0.486 0.488 0.490
Area

Non−Adjusted True Area Adjusted

Figure A.4: Circle with radius r = .395 and center at (✓, �) = (.5, 1.0). Grid rect-
angular region is defined by ✓l = 0.1, ✓u = 0.9, �l = 0.6, �u = 1.4. True area is
⇡r

2 = 0.4902, denoted as the red bulls-eye in the lower graph. The blue “Adjusted”
number represents the numerical approximation to the area (0.4910) from equation
(19), while the “Non-Adjusted” number is the proportion of grid points that are inside
the circle times the area formed by the rectangle (0.4810).
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For the method of moment confidence regions, the area is an analytical expression

of the boundary equations. The exact calculation depends upon how the boundaries

intersect each other. Let �l and �u represent the lower and upper bounds of � used

to construct the region. Let �l and �u represent the lower and upper bounds of �

used to construct the region. Since some confidence regions can have infinite area,

the simulations in section 4.3 compute areas of the regions truncated at a maximum

feasible value of � = 6SX . Let �u be the minimum of the computed upper bound

of the confidence interval for � and 6SX . For the confidence regions that only use

CIMoM(�), naturally �l = 0 and �u = 6SX . The 9 scenarios for the possible forms of

confidence regions listed below and shown in the Figure A.5.

1. �l = 0, �l < �u, �u  �u

2. �l = 0, �l < �u, �u > �u

3. �l = 0, �l � �u, �u > �u

4. �l > 0, �l < �l, �u  �l

5. �l > 0, �l < �l, �l < �u  �u

6. �l > 0, �l < �l, �u > �u

7. �l > 0, �l � �l, �u  �u

8. �l > 0, �l  �l < �u, �u > �u

9. �l > 0, �l � �u, �u > �u
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Figure A.5: Nine di↵erent scenarios for Method of Moment confidence regions.

The corresponding formulas for each of the confidence region areas are as follows

1. (�u � �l)

2. (�u � �l) +�ulog

✓
�u

�u

◆

3. �ulog

✓
�u

�l

◆

4. 0

5. (�u ��l)��llog

✓
�u

�l

◆

6. (�u ��l)��llog

✓
�u

�l

◆
+�ulog

✓
�u

�u

◆
��llog

✓
�u

�u

◆

7. (�u � �l)��llog

✓
�u

�l

◆

8. (�u � �l)��llog

✓
�u

�l

◆
+�ulog

✓
�u

�u

◆
��llog

✓
�u

�u

◆

9. �ulog

✓
�u

�l

◆
��llog

✓
�u

�l

◆
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Below is the derivation for area computations (recall that � = ✓�).

A1 =

Z �u

�l

Z 1

0

1
d

d✓

d

d�

=

Z �u

�l

✓|✓=1
✓=0

d

d�

=

Z �u

�l

1
d

d�

= �|�=�u
�=�l

= (�u � �l). (20)

A2 =

Z �u

�l

Z 1

0

1
d

d✓

d

d�
+

Z �u

�u

Z �u/�

0

1
d

d✓

d

d�

= (�u � �l) +

Z �u

�u

Z �u/�

0

1
d

d✓

d

d�

= (�u � �l) +

Z �u

�u

�u

�

d

d�

= (�u � �l) +�ulog(�)|�=�u
�=�u

= (�u � �l) +�ulog(�u)��ulog(�u)

= (�u � �l) +�ulog

✓
�u

�u

◆
. (21)
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A3 =

Z �u

�l

Z �u/�

0

1
d

d✓

d

d�

=

Z �u

�l

�u

�

d

d�

= �ulog(�)|�=�u
�=�l

= �ulog(�u)��ulog(�l)

= �ulog

✓
�u

�l

◆
. (22)

A4 = 0 (because [�l, �u] and [�l,�u] are mutually exclusive). (23)

A5 =

Z �u

�l

Z 1

�l/�

1
d

d✓

d

d�

=

Z �u

�l

1� �l

�

d

d�

= [� ��llog(�)] |�=�u
�=�l

= {�u ��llog(�u)}� {�l ��llog(�l)}

= (�u ��l)��llog

✓
�u

�l

◆
. (24)
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A6 =

Z �u

�l

Z 1

�l/�

1
d

d✓

d
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Z �u

�u
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�l/�

1
d

d✓

d

d�
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⇢
(�u ��l)��llog

✓
�u

�l

◆�
+

Z �u

�u
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�l/�

1
d

d✓

d

d�

=

⇢
(�u ��l)��llog

✓
�u

�l

◆�
+

Z �u

�u

�u

�
� �l

�

d

d�

=

⇢
(�u ��l)��llog

✓
�u

�l

◆�
+

[�ulog (�u)��llog (�u)]� [�ulog(�u)��llog(�u)]
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✓
�u

�l

◆
+�ulog

✓
�u

�u

◆
��llog

✓
�u

�u

◆
. (25)

A7 =

Z �u

�l

Z 1

�l/�

1
d

d✓

d

d�

= [� ��llog(�)] |�=�u
�=�l

= {�u ��llog(�u)}� {�l ��llog(�l)}
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�u

�l

◆
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◆
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A9 =

Z �u

�l
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1
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=
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A.7 Proof Relating Infinte and “Null-Containing”

Intervals

Let the parameter space of (✓, �) be {(✓, �) : ✓ 2 (0, 1] and � 2 (0,1), or (✓, �) =

(0, 0)}.

Claim:

0 2 CSetPsL(�) () CSetPsL(�) = [0,1)

0 2 CSetPsL(✓) () CSetPsL(✓) = [0, 1]

Observation 1: bL(0, �) = bL(0, 0) =
Qm

j=1
bf(xj)

Qn
i=1

bf(yi) for all � 2 R. (Note,

this does not say anything about the parameter space, it is simply an observation

about the function bL(·, ·)).

Observation 2: lim
✓!0+

L(✓, �
0
) = L(0, �

0
) for a fixed �

0
(since the pseudo-likelihood

is a continuous function of ✓ for any given �
0
) . This means that for any ✏ > 0, there

exists a ✓
0
> 0 such that |L(0, �0

)� L(✓
0
, �

0
)| < ✏.

Proof:

( (= ) CSetPsL(�) = [0,1) =) 0 2 CSetPsL(�) trivially.

( =) ) Now to see that 0 2 CSetPsL(�) =) CSetPsL(�) = [0,1), recall that

100(1� ↵)% CSetPsL(�) =
n
� : bT� < c3�

2
d3,1�↵

o
, (3.31)

where

bT� = �2
h
logbL

⇣
b✓(�), �;X, Y

⌘
� logbL

⇣
b✓, b�;X, Y

⌘i
. (3.29)
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Rearranging to put this in terms of the profile (pseudo)-likelihood gives

0 2 CSetPsL(�)

()

bL(b✓(0), 0;X, Y ) > bL(b✓, b�;X, Y )exp

⇢
�
c3�

2
d3,1�↵

2

�
def
= k.

(29)

Now, since bL(b✓(�), �;X, Y ) = max
✓

bL(✓, �;X, Y ), then for a given �
0
, �

0 2 CSetPsL(�)

() 9 ✓
0
such that bL(✓0

, �
0
) > k. Because 0 2 CSetPsL(�), then bL(0, 0) > k. By ob-

servation 1, this implies that for any fixed �
0
, L(0, �

0
) > k. Let ✏ = L(0, �

0
)�k. Then,
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Therefore, �
0 2 CSetPsL(�) for all �

0 2 [0,1). A similar argument shows that

0 2 CSetPsL(✓) =) CSet(✓) = [0, 1], that has an analogous observation 2 based

on the continuity of bf in the pseudo-likelihood (2.19).

205



Discussion of Interval Agreement and Interpretation

Note that the cuto↵ k is di↵erent for CSet(✓) and CSet(�) only due to the Satterth-

waite approximation. In the limit (when c2 = c3 = 1 and d2 = d3 = 1), the intervals

always agree on when to include or exclude 0 from the intervals.

The non-compact nature of the parameter space reflects the di�culty interpret-

ing a single parameter. If one parameter is 0, then the other parameter does not

have a real interpretation. In general, we say that ✓ represents the proportion of

responders and � is the magnitude of the shift for the responder subpopulation. How-

ever, if ✓ = 0 then there are no responders, so � can no longer be meaningfully

interpreted as the magnitude of the shift for the responders (since there are none).

Similarly, if � = 0, then there is no shift for the “responders”. In such a case, ✓

can no longer be meaningfully interpreted as the proportion of the responders (since

these “responders” are really no di↵erent than non-responders). So while in some

circumstances a practitioner might care to focus primarily on one variable, say ✓,

inference about it cannot be totally divorced from inference for � since ✓ is meaning-

less if � = 0. One nice asymptotic property of the pseudo-likelihood intervals is that

0 2 CSet(�) () 0 2 CSet(✓).

However, this is not true for the method of moment intervals nor for sample sizes

where the Satterthwaite approximation is used for the pseudo-likelihood intervals.

For example, when investigating the Kaiser data set on reduction in diastolic blood

pressure, the moment intervals came out to be

95% CIMoM(✓) = [0.13, 0.50]

95% CIMoM(�) = [0.00, 16.1].

206



While the interval for ✓ is interesting (in that it does not contain either 0 or 1), it’s

not meaningful if � = 0, which is in CIMoM(�). This highlights the danger of using

a single method of moment interval (for either ✓ or �) to conclude that a treatment

e↵ect exists.

Another frustrating aspect of the moment intervals is that the marginal intervals

CIMoM(✓) or CIMoM(�) can contain 0 even when there’s clearly enough evidence from

the moments that there truly is a treatment e↵ect - as seen by the corresponding

CI(�). For example, for the same data set from which the two above moment

intervals are calculated, the confidence interval for the overall treatment e↵ect is

95% CIMoM(�) = [1.0, 4.2].

Surely if the average treatment e↵ect is somewhere between a 1.0 and 4.2 point

reduction in DBP, then the e↵ect on the responders (which is subset of all treated

patients) should also be at least 1.0. However, the corresponding lower bound for

95% CIMoM(�) is 0. So since the treatment e↵ect is characterized by (✓, �) and

interpretation of one interval is incomplete without consideration of the other, this

suggests that a better way to characterize the uncertainty surrounding the treatment

e↵ect is with a confidence region.
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A.8 Comparing Method of Moment Regions

A.8.1 Su�cient Probability Tables (95% Regions)

Table A.3: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to CRMoM�(✓, �), CRMoM{�,�}(✓, �) that have simulated coverage proba-
bility at least .925. Color coded backgrounds emphasize when this number is at least
30 - neither method: white, both methods: blue, � region only: dark orange, � \ �

region only: gold.

Table A.4: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to CRMoM�(✓, �), CRMoM{�,�}(✓, �) that have simulated coverage proba-
bility at least .925. Color coded backgrounds emphasize when this number is at least
30 - neither method: white, both methods: blue, � region only: dark orange, � \ �

region only: gold.
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Tables A.3 - A.4 indicate that at least one confidence region provides satisfactory

coverage probability for nearly any sample size setting. For most settings, both the

� region and method of moment confidence regions produce satisfactory coverage

probability. If treatment data is sparse (e.g. n  20) both the method of moment

regions may be unsatisfactory.
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A.8.2 Recommendation Tables

Table A.5: Each cell entry represents the recommended method � CRMoM�(✓, �)
or CRMoM{�,�}(✓, �) (blank white cell means neither method is recommended). The
recommended method achieves simulated coverage probability at least .925 for at least
30 of the 36 simulation settings where � > .5�X . If the non-recommended method
also meets the coverage probability criterion, the recommended method has smaller
average interval length in more settings than the alternate method.

Table A.6: Each cell entry represents the recommended method � CRMoM�(✓, �)
or CRMoM{�,�}(✓, �). The recommended method achieves simulated coverage prob-
ability at least .925 for at least 30 of the 36 simulation settings where �  .5�X .
If the non-recommended method also meets the coverage probability criterion, the
recommended method has smaller average interval length in more settings than the
alternate method.
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Tables A.5 - A.6 show which confidence region method is recommended for each

sample size setting. For large e↵ect sizes, the �\� regions win almost all tie-breakers

based on area and are preferred when the total and treatment group sample sizes are

su�ciently large (e.g. N � 120 or N � 300andn � 120). For small overall e↵ect

sizes, the � regions are always preferred and are recommended so long as there are

more than 10 treatment observations.
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A.9 90% Confidence Tables

Note that the 90% confidence interval simulation coverage probability cuto↵ is chosen

to be .865 because the simulation error for a 90% confidence interval is larger than

that of a 95% confidence interval by

 p
.90(1� .90)/1000p
.95(1� .95)/1000

=

!
138%, so .865 is the

same number of standard errors (due to simulation error) below .90 as .925 is below

.95. Each table below has colored background according to the recommendations

(green is pseudo-likelihood, gold is method of moment, white is neither), but infor-

mation about coverage probabilities is for the 90% intervals. The tables below show

that the recommended method consistently has su�cient coverage probability across

a large number of (F, ✓, �) while the cases where neither method is recommended con-

sistently has both methods with fewer (F, ✓, �) scenarios where coverage probability

is su�cient.
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Table A.7: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to 90%CIPsL(✓), 90%CIMoM(✓) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from
Figure 4.7.

Table A.8: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to 90%CIPsL(✓), 90%CIMoM(✓) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from
Figure 4.8.

213



Table A.9: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to 90%CIPsL(�), 90%CIMoM(�) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from
Figure 4.11.

Table A.10: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to 90%CIPsL(�), 90%CIMoM(�) that have simulated coverage probability
at least .865. Color coded backgrounds correspond to the recommendations from
Figure 4.12.
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Table A.11: Each cell entry represents how many of the 36 (F, ✓, �) with � > .5�X

correspond to 90%CRPsL(✓, �), 90%CRMoM�(✓, �) that have simulated coverage prob-
ability at least .865. Color coded backgrounds correspond to the recommendations
from Figure 4.15.

Table A.12: Each cell entry represents how many of the 36 (F, ✓, �) with �  .5�X

correspond to 90%CRPsL(✓, �), 90%CRMoM�(✓, �) that have simulated coverage prob-
ability at least .865. Color coded backgrounds correspond to the recommendations
from Figure 4.16.
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A.10 R Code

Normal MLE (with Control Data) Code

NormEM2loc = function(dat, l, eps = 1e-5, maxiter = 1000,
plot = FALSE, verbose = FALSE, est.only = TRUE)

{
if(length(dat) != length(l)){stop("data vector/matrix (dat) does not match label vector (l) in length")}
# Input
mu0 = 2 # Assumes two components
# Assumes delta > 0
# Input

p.mean.dnorm = function(X,p){return(sum(colMeans(p*dnorm(X)))/bw)}

N <- length(dat)
if(length(mu0) > 1){g <- length(mu0)} else{g <- mu0}
unlabeled = which(is.na(l))
labeled = which(!is.na(l))
labs = unique(l[labeled])

### Just initialize by different cut-points with absolute membership
if(length(unlabeled)>0)
{

ord.unlab = order(dat[unlabeled])
starts = min(c(length(unlabeled),6))
ind = round(seq(from = 1, to = length(unlabeled), length.out = starts))
M = matrix(NA,nrow=length(unlabeled),ncol=starts)
count = 0
for(i in ind)
{

count = count+1
M[,count] = rep(1,length(unlabeled)) +

(1:length(unlabeled)) %in% ord.unlab[c(rep(F,i-1),rep(T,length(unlabeled)-i+1))]
}

}

list.lambda = list()
list.mu = list()
list.sigma = list()
list.Log.lik = list()
max.iters = NULL
ans = matrix(NA,nrow=0,ncol=8)
colnames(ans) = c("theta-hat","delta-hat","Log-lik","sigma-hat","mu1-hat","mu2-hat","iter","max.LL")

if(length(labeled)>0){starts.seq = 1:starts}else{starts.seq = 2:starts} # Assumes labeled data comes from component 1
for(s in starts.seq)
{

# Initialize z.hat
l[unlabeled] = M[,s] # Fill in unlabeled
z.hat <- matrix(0, nrow = N, ncol = g)
for (j in 1:g)
{

z.hat[l == j, j] <- 1
}
z.hat[l==.5,] <- c(.5,.5) # assumes g = 2

iter <- 0
finished <- FALSE
lambda <- mu <- matrix(0, maxiter, g)
sigma <- Log.lik <- NULL

while (!finished) {
iter <- iter + 1
t0 = proc.time()
lambda[iter, ] <- colMeans(z.hat[unlabeled,])
mu[iter, ] <- colMeans(sweep(z.hat, 1, dat, "*"))/colMeans(z.hat) # changed to colMeans on top
ei = matrix(dat - rep(mu[iter,],each = N), ncol = g)
sigma[iter] <- sqrt(sum(z.hat*(ei^2))/N)
fkernel <- matrix(dnorm(dat, mean = rep(mu[iter,],each = N), sd = sigma[iter]), ncol = g)
Log.lik[iter] = sum(log(lambda[iter,1]*dnorm(dat[unlabeled],

mean=mu[iter,1],
sd=sigma[iter]) +

lambda[iter,2]*dnorm(dat[unlabeled],
mean=mu[iter,2],
sd=sigma[iter]))) +

sum(dnorm(dat[labeled],mean=mu[iter,1],sd=sigma[iter],log=TRUE)) #!# to check log-likelihood
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lambda.f <- sweep(fkernel, 2, lambda[iter, ], "*")
z.hat[unlabeled,] <- lambda.f[unlabeled,]/rowSums(lambda.f[unlabeled,])
finished <- iter >= maxiter
if (iter > 1)
{

change <- Log.lik[iter] - Log.lik[iter-1]
finished <- (finished | (change < eps))

}

if(plot & verbose & iter==1)
{

if(length(labeled)>1)
{

hist(dat[labeled],col="grey",
breaks = (10 + length(labeled)/20)/(max(log10(max(length(labeled)-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Initial KDE", xlab = "Data")

legend("topleft", lty = 1, lwd = 2, col = g, legend = "f Density Estimate")
for(j in 1:g)
{

lines(x=sort(dat[unlabeled]) - mu[iter, j] + mu[iter,1],
y=fkernel[unlabeled[order(dat[unlabeled])],j],col=j, lwd = 2) # the + mu[iter,1] is project specific

}
}

hist(dat[unlabeled],col="grey",
breaks = (10 + length(unlabeled)/20)/(max(log10(max(length(unlabeled)-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Initial KDE", xlab = "Data")

legend("topleft",lty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),

y=rowSums(sweep(fkernel[unlabeled[order(dat[unlabeled])],],2,lambda[iter,],"*")),
lty = 2, lwd = 2)

}
if (verbose) {

t1 <- proc.time()
cat("iteration ", iter, " lambda ", round(lambda[iter,
], 4), " mu ", round(mu[iter, ], 4))
cat(" time", (t1 - t0)[3], "\n")

}
if(diff(mu[iter,])<0){

mu[iter,] = rep(mean(dat),2)
lambda[iter,] <- c(1,0)
sigma[iter] = sd(dat)*(length(dat)-1)/length(dat)
Log.lik[iter] = sum(log(lambda[iter,1]*dnorm(dat[unlabeled],mean=mu[iter,1],sd=sigma[iter]) +

lambda[iter,2]*dnorm(dat[unlabeled],mean=mu[iter,2],sd=sigma[iter]))) +
sum(dnorm(dat[labeled],mean=mu[iter,1],sd=sigma[iter],log=TRUE))

break}
} #Ends While loop
if(plot & verbose){

plot(Log.lik, type = "l", lwd = 3,
main = "Log-Likelihood over the iterations",
xlab = "Iteration (t)", ylab = "Log-Likelihood"

)

plot(sigma, type = "l", lwd = 3,
main = "Sigma over the iterations",
xlab = "Iteration (t)", ylab = expression(sigma^t)

)

plot(apply(mu[1:iter,],1,diff)/sigma, type = "l", lwd = 3,
main = "K = delta/sigma over the iterations",
xlab = "Iteration (t)", ylab = expression(K^t)

)

plot(lambda[1:iter,2]*apply(mu[1:iter,],1,diff), type = "l", lwd = 3,
main = "Delta over the iterations",
xlab = "Iteration (t)", ylab = expression(Delta^t)

)

plot(x = mu[1:iter,1], y = mu[1:iter,2],
type = "p", pch = 16, cex = .5,
main = "Mu1 and Mu2 over the iterations",
xlab = expression(mu[1]^t), ylab = expression(mu[2]^t)

)
text(1,x = mu[1,1], y = mu[1,2], cex = 1.5)
text(floor(iter/2), x = mu[floor(iter/2),1], y = mu[floor(iter/2),2], cex = 1.5)
text(iter, x = mu[iter,1], y = mu[iter,2], cex = 1.5)

plot(x = apply(mu[1:iter,],1,diff), lambda[1:iter,2],
type = "p", pch = 16, cex = .5,
main = "theta and delta over the iterations",
xlab = expression(delta^t), ylab = expression(theta^t))

text(1,x = diff(mu[1,]), y = lambda[1,2], cex = 1.5)
text(floor(iter/2),x = diff(mu[floor(iter/2),]), y = lambda[floor(iter/2),2], cex = 1.5)
text(iter,x = diff(mu[iter,]), y = lambda[iter,2], cex = 1.5)

}
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list.lambda = c(list.lambda,list(matrix(lambda,ncol=g)))
list.mu = c(list.mu,list(matrix(mu,ncol=g)))
list.sigma = c(list.sigma,list(sigma))
list.Log.lik = c(list.Log.lik,list(Log.lik))
max.iters = c(max.iters,iter)

ans = rbind(ans,c(lambda[iter,2], mu[iter,2] - mu[iter,1],
Log.lik[iter],sigma[iter],mu[iter,1],mu[iter,2],iter,NA))

} # Ends for loop
if(plot)
{

est.ind = which.max(ans[,3])
est.iter = max.iters[which.max(ans[,3])]
plot(list.Log.lik[[est.ind]], type = "l", lwd = 3,

main = "Log-Likelihood over the iterations", cex.main = .9,
xlab = "Iteration (t)", ylab = "Log-Likelihood"

)

plot(list.sigma[[est.ind]], type = "l", lwd = 3,
main = bquote(bold(sigma ~ "over the iterations")),
xlab = "Iteration (t)", ylab = "", cex.main = 1.25

)
mtext(expression(sigma^t),side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually

plot(apply(list.mu[[est.ind]][1:est.iter,],1,diff)/list.sigma[[est.ind]], type = "l", lwd = 3,
main = bquote(bold(K == delta/sigma ~ "over the iterations")),
xlab = "Iteration (t)", ylab = "", cex.main = 1.25

)
mtext(expression(K^t),side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually

plot(list.lambda[[est.ind]][1:est.iter,2]*apply(list.mu[[est.ind]][1:est.iter,],1,diff), type = "l", lwd = 3,
main = bquote(bold(Delta ~ "over the iterations")),
xlab = "Iteration (t)", ylab = "", cex.main = 1.25

)
mtext(expression(Delta^t), side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually

plot(x = list.mu[[est.ind]][1:est.iter,1], y = list.mu[[est.ind]][1:est.iter,2],
type = "p", pch = 16, cex = .5,
main = bquote(bold(mu[1] ~ "and" ~ mu[2] ~ "over the iterations")),
xlab = "", ylab = "", cex.main = 1.25

)
mtext(expression(mu[1]^t), side = 1, line = 2.5, las = 1, cex = 1.25) # Add x label manually
mtext(expression(mu[2]^t), side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually
text(1,x = list.mu[[est.ind]][1,1], y = list.mu[[est.ind]][1,2], cex = 1.5)
text(floor(est.iter/2), x = list.mu[[est.ind]][floor(est.iter/2),1],

y = list.mu[[est.ind]][floor(est.iter/2),2], cex = 1.5)
text(est.iter, x = list.mu[[est.ind]][est.iter,1], y = list.mu[[est.ind]][est.iter,2], cex = 1.5)

plot(x = apply(list.mu[[est.ind]][1:est.iter,],1,diff), list.lambda[[est.ind]][1:est.iter,2],
type = "p", pch = 16, cex = .5,
main = bquote(bold(theta ~ "and" ~ delta ~ "over the iterations")),
xlab = "", ylab = "")

mtext(expression(delta^t), side = 1, line = 2.5, las = 1, cex = 1.25) # Add x label manually
mtext(expression(theta^t), side = 2, line = 2.5, las = 1, cex = 1.25) # Add y label manually
text(1,x = diff(list.mu[[est.ind]][1,]), y = list.lambda[[est.ind]][1,2], cex = 1.5)
text(floor(est.iter/2),x = diff(list.mu[[est.ind]][floor(est.iter/2),]),

y = list.lambda[[est.ind]][floor(est.iter/2),2], cex = 1.5)
text(est.iter,x = diff(list.mu[[est.ind]][est.iter,]), y = list.lambda[[est.ind]][est.iter,2], cex = 1.5)

}

ans[,8] = (ans[,"Log-lik"]==max(ans[,"Log-lik"]))
if(est.only){if(ans[which.max(ans[,"Log-lik"]),1]<.0001){

return(c(0,0))}else{return(ans[which.max(ans[,"Log-lik"]),1:2])}
}else{return(ans)}

#return(c(lambda[iter,2], mu[iter,2] - mu[iter,1],Log.lik[iter]))
}

# Generate m = 100 observations from N(0,1) for the control group and n = 100 observations from .3N(0,1) + .7N(2,1) for the trt group.
m = 100
n = 100
true.theta = .7
true.delta = 2
x = rnorm(m)
z = sample(c(0,1), size = n, replace = TRUE, prob = c(1-true.theta,true.theta))
y = rnorm(n) + true.delta*z

# Find the Normal Maximum Likelihood
NormEM2loc(dat = c(x,y), l = c(rep(1,m),rep(NA,n)), plot = TRUE)
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Semi-Supervised Semi-Parametric EM-like Algorithm

## Semi-Parametric EM Algorithm(s) - EM# - 6 versions
ssSpEMloc = function(dat, l, bw = bw.nrd0(dat[!is.na(l) & l==1]), eps = min(c(1e-5*sd(dat[!is.na(l) & l==1]),1e-3)), maxiter = 100,

all.data.f = FALSE, stochastic = FALSE, symmetric = FALSE,
plot = FALSE, verbose = FALSE, est.only = TRUE,
delta.pos = TRUE)

{

### Warnings and Errors
if(all.data.f == FALSE & stochastic == TRUE){

warning("stochastic = TRUE only works with all.data.f = TRUE. Output uses all.data.f = TRUE")
}

if(length(dat) != length(l)){
stop("data vector/matrix (dat) does not match label vector (l) in length")
}

# Internally Define Kernel Density Estimation Function
KDE = function(f.data,y,bw=bw.nrd0(f.data),df=3,var.adj=TRUE)
{

dat = c(f.data,y)
std.dat = (dat - mean(dat))/sd(dat)
std.datx = (f.data - mean(f.data))/sd(f.data)
std.daty = (y - mean(y))/sd(y)
if(df=="adj1"){df <- 3 + 1/( max(0,max(abs(std.dat))-3) )}
if(df=="adj2"){df <- 3 + 1/( max(0,max(abs(std.datx)-3,max(abs(std.daty)))-3) )}
if(df < 3){df <- 3}
sig = sqrt(1/(1-2/df))
f.hat = NULL
if(var.adj)
{

#!# Vectorize KDE operations
#dist = sweep(matrix(f.data),2,y)
#dens = dt(sig*dist/bw, df=df)/bw
for(i in 1:length(y))
{

f.hat[i] = sig*mean(dt( sig*(f.data-y[i])/bw , df=df))/bw
}

}else
{

for(i in 1:length(y))
{

f.hat[i] = mean(dt( (f.data-y[i])/bw , df=df))/bw
}

}
return(f.hat)

}

## Input ##
mu0 = 2 # two components hard-coded in
# l = 1 indicates component 1 (i.e. ’non-responder’ or control data)
# This function assumes delta = mu2 - mu1 > 0
## Input ##

# total sample size
n <- length(dat)

# Number of components (hard-coded to be 2)
if(length(mu0) > 1){m <- length(mu0)}else{m <- mu0}

# which observations do not have labels (and come from the mixture)
unlabeled = which(is.na(l))

# which observations are labeled (and come directly from the labeled component)
labeled = which(!is.na(l))

# which components provide at least one labeled observation
labs = unique(l[labeled])

# Store these initial labels that actually come from the data (not predictions to be updated in the algorithm)
init.class = l

## Fill in initialization of class membership for observations without component label ##
if(length(unlabeled)>0)
{

obj = kmeans(dat[unlabeled], centers = mu0)
shifted = obj$cluster == which.max(obj$centers) # This cluster labeling assumes two components and delta > 0. component 2
unshifted = obj$cluster == which.min(obj$centers) # This cluster labeling assumes two components and delta > 0. component 1
if( !all.equal(shifted + unshifted, rep(1,length(unlabeled))) ){stop("uhoh")} # Sanity check
init.class[unlabeled][shifted] = 2
init.class[unlabeled][unshifted] = 1

}
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## Initialize Necessary Elements ##
z.hat <- matrix(0, nrow = n, ncol = m)
fkernel <- matrix(0, nrow = n, ncol = m)
p.mean.dnorm = function(X,p){return(sum(colMeans(p*dnorm(X)))/bw)}
tt0 <- proc.time()
#lambda <- rep(1/m, m)
#kmeans <- kmeans(dat, mu0)
for (j in 1:m) {

z.hat[init.class == j, j] <- 1
}
iter <- 0
if (stochastic) {

sumpost <- matrix(0, n, m)
}
finished <- FALSE
lambda <- mu <- matrix(0, maxiter, m)

if(all.data.f)
{

while (!finished) {
iter <- iter + 1
t0 <- proc.time()

# theta-hat = the average weight in component 2 of the z.hats among unlabeled data.
lambda[iter, ] <- colMeans(z.hat[unlabeled,])

# mu1-hat average of control and (1-z.hat) weighted treatment obs. mu2-hat is z.hat weighted average of treatment data.
mu[iter, ] <- apply(sweep(z.hat, 1, dat, "*"), 2, mean)/colMeans(z.hat)

## Compute f-hat at ui - muj for all i,j.
if(stochastic)
{

### Generate simulated component membership (for labeled data, it’s automatically the known label...
# for unlabeled data, according to the current weight for each component).

z = matrix(0, nrow = n, ncol = m)
z[labeled,] = z.hat[labeled,]
z[unlabeled,] <- t(apply(z.hat[unlabeled,], 1, function(prob) rmultinom(1, 1, prob)))

# Recenter each observation so that combined re-centered data has mean 0.
dat.t <- dat-apply(sweep(z,2,mu[iter, ],"*"),1,sum)
if(symmetric)
{

for(j in 1:m)
{

for(i in unlabeled)
{

### KDE with normal kernel, one version on re-centered data, one version on mirror image of re-centered data
# - those two version averaged ensures symmetric f-hat.

fkernel[i,j] = mean(c( mean((1/bw)*dnorm(((dat[i]-mu[iter,j])-dat.t)/bw)),
mean((1/bw)*dnorm((-(dat[i]-mu[iter,j])-dat.t)/bw)) ))

}
}

}else{
for(j in 1:m)
{

for(i in unlabeled)
{

### KDE with normal kernel on re-centered data.
fkernel[i,j] = mean((1/bw)*dnorm(((dat[i]-mu[iter,j])-dat.t)/bw))

}
}

}
}else
{

## Begin Deterministic KDE ##
if(symmetric)
{

for(j in 1:m)
{

M = matrix(((dat[1] - mu[iter,j]) - (rep(dat,m)-rep(mu[iter,],each=n)))/bw,nrow=n,ncol=m)
for(i in 1:n)
{

# M.prime is the ’reflected’ data used for the symmetrization step.
M.prime = M - 2*(dat[i]-mu[iter,j])/bw

#Symmetric f-hat
fkernel[i,j] = mean(c(p.mean.dnorm(M,z.hat),p.mean.dnorm(M.prime,z.hat)))
M = M - M[min(i+1,n),j]

}
}

}else{
for(j in 1:m)
{

M = matrix(((dat[1] - mu[iter,j]) - (rep(dat,m)-rep(mu[iter,],each=n)))/bw,nrow=n,ncol=m)
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for(i in 1:n)
{

# f-hat
fkernel[i,j] = p.mean.dnorm(M,z.hat)
M = M - M[min(i+1,n),j]

}
}

}
## End deterministic KDE ##

}

# updated lambda*f (i.e. pi*f, (1-theta,theta)*f).
lambda.f <- sweep(fkernel, 2, lambda[iter, ], "*")

# update weights
z.hat[unlabeled,] <- lambda.f[unlabeled,]/rowSums(lambda.f[unlabeled,])

## Determine if time to stop ##
finished <- iter >= maxiter
if (stochastic) {

# keep track of cumulative sum of weights for stochastic estimate of mixing proportions
sumpost <- sumpost + z.hat

}else if (iter > 1) {
change <- c(lambda[iter, ] - lambda[iter - 1, ],

mu[iter, ] - mu[iter - 1, ])
finished <- finished | (max(abs(change)) < eps)

}

## Possible Output ##
if(plot & iter==1 & length(labeled)>1 & length(unlabeled)>1)
{

hist(dat[labeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Initial KDE", xlab = "Data")

for(j in 1:m)
{

# the + mu[iter,1] is project specific, plot F(u) instead of F with mean 0
lines(x=sort(dat[unlabeled]) - mu[iter, j] + mu[iter,1],

y=fkernel[unlabeled[order(dat[unlabeled])],j],col=j, lwd = 2)
if(!all.data.f){break}

}
legend("topleft", lty = 1, lwd = 2, col = j, legend = "f Density Estimate")

hist(dat[unlabeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Initial KDE", xlab = "Data")

legend("topleft",lty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),

y=rowSums(sweep(fkernel[unlabeled[order(dat[unlabeled])],],2,lambda[iter,],"*")),
lty = 2, lwd = 2)

}
if (verbose) {

t1 <- proc.time()
cat("iteration ", iter, " lambda ", round(lambda[iter,
], 4), " mu ", round(mu[iter, ], 4))
cat(" time", (t1 - t0)[3], "\n")

}

} #Ends While loop
}# Ends if all.data.f

if(!all.data.f)
{

# Compute the mean for each component with labeled data (just mu_1 for dissertation)
mu[, labs] <- rep( apply(sweep(matrix(z.hat[labeled,labs],nrow=length(labeled)), 1, dat[labeled], "*"),

2, mean)/colMeans(matrix(z.hat[labeled,labs],nrow=length(labeled))), each = nrow(mu) )

## Centered KDE on control data ##

# Recenter labeled observation so that combined re-centered data has mean 0.
dat.t <- dat[labeled]-apply(sweep(matrix(z.hat[labeled,labs],nrow=length(labeled)),2,mu[1, labs],"*"),1,sum)

while(!finished){
iter <- iter+1
t0 <- proc.time()

# mixing proportions calculated as average component weight among unlabeled observations.
lambda[iter, ] <- colMeans(z.hat[unlabeled,])

# Computes averages for components without labeled data by using weighted average of (unlabeled) observations.
# (mu2-hat is z.hat weighted average of treatment data).
mu[iter, -labs] <- apply(sweep(matrix(z.hat[unlabeled,-labs],nrow=length(unlabeled)), 1, dat[unlabeled], "*"),

2, mean)/colMeans(matrix(z.hat[unlabeled,-labs],nrow=length(unlabeled)))

if(symmetric)
{

for(j in 1:m)
{
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fkernel[,j] <- apply(cbind(KDE(f.data = dat.t, y = dat - mu[iter,j], df=Inf, bw=bw, var.adj=TRUE),
KDE(f.data = dat.t, y = -(dat - mu[iter,j]), df=Inf, bw=bw, var.adj=TRUE)

),1,mean) # Average of kernel density estimates on re-centered and mirror image of re-centered data.
}

}else{
for(j in 1:m)
{

# KDE for re-centered data
fkernel[,j] <- KDE(f.data = dat.t, y = dat - mu[iter,j], df=Inf, bw=bw, var.adj=TRUE)

}
}

# mixing proportions times f
lambda.f <- sweep(fkernel, 2, lambda[iter, ], "*")

# computes updated component weighhts for unlabeled data
z.hat[unlabeled,] <- lambda.f[unlabeled,]/rowSums(lambda.f[unlabeled,])

## Determine if time to stop ##
finished <- iter >= maxiter
if (iter > 1) {

change <- c(lambda[iter, ] - lambda[iter - 1, ],
mu[iter, ] - mu[iter - 1, ])

finished <- finished | (max(abs(change)) < eps)
}

## Possible Output ##
if(plot & iter==1 & length(labeled) > 1 & length(unlabeled) > 1)
{

hist(dat[labeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Initial KDE", xlab = "Data")

comp.ind = 1; if(!all.data.f){comp.ind = 2}
for(j in comp.ind:m)
{

lines(x=sort(dat[unlabeled]) - mu[iter, j] + mu[iter,1],
y=fkernel[unlabeled[order(dat[unlabeled])],j],col=j, lwd = 2)

}
legend("topleft", lty = 1, lwd = 2, col = j, legend = "f Density Estimate")

hist(dat[unlabeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Initial KDE", xlab = "Data")

legend("topleft",lty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),

y=rowSums(sweep(fkernel[unlabeled[order(dat[unlabeled])],],2,lambda[iter,],"*")),
lty = 2, lwd = 2)

}
if (verbose) {

t1 <- proc.time()
cat("iteration ", iter, " lambda ", round(lambda[iter,
], 4), " mu ", round(mu[iter, ], 4))
cat(" time", (t1 - t0)[3], "\n")

}

} # End While Loop

} # End if !all.data.f

### Finishing Touches ###
if (verbose) {

tt1 <- proc.time()
cat("lambda ", round(lambda[iter, ], 4))
cat(", total time", (tt1 - tt0)[3], "s\n")

}

if(plot)
{

hist(dat[labeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Labeled Data and Final KDE", xlab = "Data")

comp.ind = 1; if(!all.data.f){comp.ind = 2}
for(j in comp.ind:m)
{

lines(x=sort(dat[unlabeled]) - mu[iter, j] + mu[iter,1],
y=fkernel[unlabeled[order(dat[unlabeled])],j],col=j, lwd = 2)

}
legend("topleft", lty = 1, lwd = 2, col = j, legend = "f Density Estimate")

hist(dat[unlabeled],col="grey",breaks = (10 + n/20)/(max(log10(max(n-1000,1))/1.5,1)),
freq = F, main = "Histogram of Unlabeled Data and Final KDE", xlab = "Data")

legend("topleft",lty = 2, lwd = 2, col = 1, legend = "Mixture Estimate")
lines(x=sort(dat[unlabeled]),

y=rowSums(sweep(fkernel[unlabeled[order(dat[unlabeled])],],2,lambda[iter,],"*")),
lty = 2, lwd = 2)

plot(x = 1:iter, y = lambda[1:iter,1], ylim = c(0,1), type = "l", lwd = 2,
main = "Estimates of Mixing Proportions throughout Algorithm", ylab = "Proportion")

for(j in 2:m)
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{
lines(x = 1:iter, y = lambda[1:iter,j], col = j, lwd = 2)

}

plot(x = 1:iter, y = mu[1:iter,1], ylim = range(mu), type = "l", lwd = 2,
main = "Estimates of Component Means throughout Algorithm", ylab = "Mean")

for(j in 2:m)
{

lines(x = 1:iter, y = mu[1:iter,j], col = j, lwd = 2)
}

if(m==2){
plot(x = 1:iter, y = apply(mu[1:iter,],1,diff),

ylim = range(c(0,apply(mu[1:iter,],1,diff))),
type = "l", col = 2, lwd = 2, main = bquote("Estimates of" ~ delta ~ "throughout Algorithm"),
ylab = bquote(delta))

}
}

if (stochastic) {
if(est.only)
{

if(m==2 & delta.pos & (diff(mu[iter,])<=0 | lambda[iter,2]<.0001)){return(c(0,0))}
return(c(colMeans(lambda)[2],diff(colMeans(mu))))

}else{
return(structure(list(data = dat, posteriors = sumpost/iter,

bandwidth = bw, lambdahat = colMeans(lambda),
muhat = colMeans(mu), symmetric = symmetric),

class = "Adapted from npEM"))
}

}
else {

if(est.only)
{

if(m==2 & delta.pos & (diff(mu[iter,])<=0 | lambda[iter,2]<.0001)){return(c(0,0))}
return(c(lambda[iter,2],diff(mu[iter,])))

}else{
return(structure(list(data = dat, posteriors = z.hat, bandwidth = bw,

lambdahat = lambda[iter, ], muhat = mu[iter, ],
symmetric = symmetric), class = "Adapted from npEM"))

}
}

}

# Generate 50 observations from N(0,1) for the control group and 50 observations from .3N(0,1) + .7N(2,1) for the treatment group.
x = rnorm(50)
z = sample(c(0,1), size = 50, replace = TRUE, prob = c(.3,.7))
y = rnorm(50) + 2*z

# Find the Normal Maximum Likelihood
ssSpEMloc(dat = c(x,y), l = c(rep(1,50),rep(NA,50)), plot = TRUE)
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Pseudo-Likelihood Inference Code

Dependencies

install.packages("sgt", repos = "http://cran.us.r-project.org")
library("sgt")
install.packages("logcondens", repos = "http://cran.us.r-project.org")
library("logcondens")

Function Code

psl.inf = function(f.data,y,f.est="mLCD",bw = bw.nrd0(f.data),df=3, var.adj = TRUE, level, finite.area = FALSE,
plot=FALSE,true.theta=NA,true.delta=NA,
mu = NA, sigma = NA, lambda = NA, p = NA, q = NA)

{

### Initialize Important Quantities ###
# sequence of possible theta for grid search
th = seq(from = .01, to = 1, length.out = 100)

# Add true.theta to grid search
if(!is.na(true.theta)){

less.th = sum(th < true.theta)
if(less.th < length(th)){

last.th.ind <- (less.th+1):length(th)
}else{last.th.ind <- 0}
th <- c(th[0:less.th],true.theta,th[last.th.ind])

}
# sequence of possible delta for grid search
del = seq(from = .1*sd(f.data), to = 6*sd(f.data), length.out = 60)

# Add true.delta to grid search if known
if(!is.na(true.delta)){

less.del = sum(del < true.delta)
if(less.del < length(del)){

last.del.ind <- (less.del+1):length(del)
}else{last.del.ind <- 0}
del <- c(del[0:less.del],true.delta,del[last.del.ind])

}

# Internally define helper function for kernel density estimation
KDE = function(f.data,y,bw=bw.nrd0(f.data),df=3,var.adj=TRUE)
{

dat = c(f.data,y)
std.dat = (dat - mean(dat))/sd(dat)
std.datx = (f.data - mean(f.data))/sd(f.data)
std.daty = (y - mean(y))/sd(y)
if(df=="adj1"){df <- 3 + 1/( max(0,max(abs(std.dat))-3) )}
if(df=="adj2"){df <- 3 + 1/( max(0,max(abs(std.datx)-3,max(abs(std.daty)))-3) )}
if(df < 3){df <- 3}
sig = sqrt(1/(1-2/df))
f.hat = NULL
if(var.adj)
{

#!# Vectorize KDE operations
#dist = sweep(matrix(f.data),2,y)
#dens = dt(sig*dist/bw, df=df)/bw
for(i in 1:length(y))
{

f.hat[i] = sig*mean(dt( sig*(f.data-y[i])/bw , df=df))/bw
}

}else
{

for(i in 1:length(y))
{

f.hat[i] = mean(dt( (f.data-y[i])/bw , df=df))/bw
}

}
return(f.hat)

}

# Internally define helper function for modifying Log-Condave Maximum Likelihood Density Estimate
mod.fhat = function(res,eval)
{

ends = range(res$knots)
n = res$n
w = c(1/n,(n-2)/n,1/n)

### Create indices for eval vector saying which segment it’s in.
lower = which(eval < ends[1])
middle = which(eval >= ends[1] & eval <= ends[2])
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upper = which(eval > ends[2])
if(!all(sort(c(lower,middle,upper)) == 1:length(eval))){"missing indices?"}

h1 = exp(res$phi[1])
a1 = (n-2)*h1
k1 = w[1]*(n-2)*h1*exp(-(n-2)*h1*ends[1])

h2 = exp(res$phi[res$m])
a2 = -(n-2)*h2
k2 = w[3]*(n-2)*h2*exp((n-2)*h2*ends[2])

mfhat = NULL
mfhat[lower] = k1*exp(a1*eval[lower])
mfhat[middle] = w[2]*fhat(res=res,eval=eval[middle])
mfhat[upper] = k2*exp(a2*eval[upper])

if(any(is.na(mfhat))){"Why still NAs?"}

return(mfhat)
}

if(toupper(f.est) %in% c("KDE","KERNEL","KERN")){
obj = NA

# f-hat, density estimate (based on control data, using kernel density estimate) evaluated at y values
fhat.y = KDE(f.data = f.data, y = y, bw = bw, df = df, var.adj = var.adj)

}
if(toupper(f.est) %in% c("LCD","LOG-CONCAVE","LOG-CON","LOG CONCAVE",

"LOG CON","LCON","LOG","LC","LCDENS","LC-DENS","MLCD"))
{

# Log-Concave MLE
obj = activeSetLogCon(f.data)

# f-hat, density estimate (based on control data, using modified log-concave MLE) evaluated at y values
fhat.y = mod.fhat(res=obj,eval=y) #!# mod.fhat() helper function defined outside

}
if(toupper(f.est) %in% c("TRUTH","F"))
{

obj = NA

# f-"hat", True/(user specified) density of f evaluated at y values
fhat.y = dsgt(y,mu = mu, sigma = sigma, lambda = lambda, p = p, q = q)

}

# Function to evaluate fhat(y - deli)
eval.fhat.yd = function(f.data,y,f.est,

bw,df,var.adj,
deli,obj,
mu,sigma,lambda,p,q)

{
if(toupper(f.est) %in% c("KDE","KERNEL","KERN"))
{

fhat.yd = KDE(f.data = f.data, y = y - deli, bw = bw, df = df, var.adj = var.adj)
}
if(toupper(f.est) %in% c("LCD","LOG-CONCAVE","LOG-CON","LOG CONCAVE",

"LOG CON","LCON","LOG","LC","LCDENS","LC-DENS","MLCD"))
{

fhat.yd = mod.fhat(res=obj,eval=y - deli)
}
if(toupper(f.est) %in% c("TRUTH","F"))
{

fhat.yd = dsgt(y - deli,mu = mu, sigma = sigma, lambda = lambda, p = p, q = q)
}
return(fhat.yd)

}

# Define function for computing bound (used for confidence intervals and regions)
any.in = function(x,cl,df,c=1) any(x < c*qchisq(p=cl,df=df))

# Define function for bi-linearly interpolating mean and var (used for Satterthwaite approximation)
bilinear = function(M,N,p.trt,N.in,p.in)
{

if(nrow(M) != length(N)){stop("Length of N does not equal number of rows of M")}
if(ncol(M) != length(p.trt)){stop("Length of p.trt does not equal number of columns of M")}
rownames(M) <- N
colnames(M) <- p.trt

p.trt.ind = min(max(sum(p.in >= p.trt),1),length(p.trt)-1)
N.ind = min(max(sum(N.in >= N),1),length(N)-1)
x = p.in; y = N.in

x0 = p.trt[p.trt.ind]
y0 = N[N.ind]
x1 = p.trt[p.trt.ind+1]
y1 = N[N.ind+1]
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z00 = M[N.ind,p.trt.ind]
z01 = M[N.ind,p.trt.ind+1]
z10 = M[N.ind+1,p.trt.ind]
z11 = M[N.ind+1,p.trt.ind+1]

z.star = ( (x1-x)*(y1-y)*z00 + (x1-x)*(y-y0)*z10 + (x-x0)*(y1-y)*z01 + (x-x0)*(y-y0)*z11 )/( (x1-x0)*(y1-y0) )
return(z.star)

}

# Define Satterthwaite constants
C.CR <-
matrix(c(1.026035,1.242881,1.353304,1.506900,1.947223,2.400741,3.182174,3.958607,4.799132,7.224214,7.252960,10.890202,

1.022448,1.133521,1.209424,1.391784,1.656656,2.080179,2.636975,3.279664,4.080320,5.977822,7.938542,11.269434,
1.019073,1.164717,1.142916,1.355192,1.677559,1.830471,2.272151,2.801275,3.889390,5.713839,7.915159,10.382594,
1.012556,1.107921,1.156220,1.302759,1.473298,1.824668,2.109494,2.547117,3.325433,4.676027,5.816139,10.491207,
1.039824,1.093934,1.076780,1.295238,1.324490,1.498298,1.806582,2.011168,2.645757,4.479356,5.330594,8.378515,
1.043142,1.049957,1.064548,1.152818,1.214041,1.465731,1.609443,1.897742,2.238591,3.239241,4.035796,6.722422,
1.064287,1.069622,1.055648,1.091301,1.199641,1.526891,1.485453,1.649860,2.092417,2.840655,3.687886,5.243302,
1.012544,1.050787,1.053520,1.083536,1.181289,1.256195,1.427919,1.631067,1.783403,2.495140,2.798502,4.578211),

nrow = 8, byrow = TRUE)

DF.CR <-
matrix(c(1.701194,1.548824,1.494056,1.474888,1.283580,1.161816,0.9736668, 0.8522719,0.8160677, 0.6404665,0.7258481, 0.5837087,

1.910312,1.839065,1.788471,1.654943,1.510889,1.304269,1.1304029, 0.9825586,0.9068518, 0.7360351,0.6413862, 0.5770284,
2.010585,1.844756,1.928034,1.709017,1.480560,1.459013,1.2921745, 1.1205915,0.9219614, 0.7481736,0.6264377, 0.6026179,
2.084614,1.976540,1.937847,1.778442,1.659618,1.451513,1.3455644, 1.2102273,1.0422029, 0.8757224,0.8080819, 0.5836541,
2.081533,2.014705,2.060340,1.788118,1.810456,1.717652,1.5327706, 1.4615703,1.2591096, 0.8720247,0.8443209, 0.6811000,
2.081224,2.097099,2.072250,1.967987,1.951054,1.730244,1.6712588, 1.5045396,1.4223475, 1.1495261,1.0588689, 0.8118687,
2.034170,2.046209,2.093438,2.057180,1.938396,1.611027,1.7693809, 1.6873963,1.4960799, 1.2741177,1.1195940, 0.9910001,
2.123243,2.058405,2.067950,2.042236,1.939096,1.905736,1.8001788, 1.6824635,1.7003569, 1.4152951,1.4306898, 1.0945199),

nrow = 8, byrow = TRUE)

C.CIt <-
matrix(c(0.5739984, 0.6560228,0.6979546, 0.8081725,0.9242172, 1.107447, 1.294294, 1.454438, 1.712100, 2.073506, 2.324835, 2.739284,

0.7120568, 0.7921105,0.8323754, 0.8928814,1.0502815, 1.249342, 1.372993, 1.702619, 1.982571, 2.524152, 3.189236, 3.693035,
0.7893309, 0.8562170,0.8820219, 0.9573503,1.1805273, 1.264927, 1.478778, 1.804763, 2.174147, 2.622138, 3.216853, 4.178737,
0.8533257, 0.8967342,0.9574057, 1.0060719,1.1617061, 1.330631, 1.556792, 1.825316, 2.345892, 2.767181, 3.402797, 4.671675,
0.9149942, 0.9554293,0.9694660, 1.0420609,1.1301589, 1.335296, 1.491548, 1.609600, 1.950919, 2.861848, 3.181003, 5.168521,
0.9627990, 0.9883437,1.0061804, 1.0660749,1.1612572, 1.336950, 1.457690, 1.702376, 1.896527, 2.524949, 3.115720, 4.354668,
0.9997521, 1.0430513,1.0099895, 1.0653691,1.1538371, 1.423905, 1.380139, 1.564071, 1.722495, 2.313429, 2.847196, 4.338659,
0.9956396, 1.0291604,1.0221148, 1.0642393,1.1621291, 1.220362, 1.408159, 1.491989, 1.605369, 2.089509, 2.522134, 3.625007),

nrow = 8, byrow = TRUE)

DF.CIt <-
matrix(c(1.087390, 1.055937, 1.051993, 1.018971, 1.0120624,0.9475902, 0.8858178,0.8477451, 0.8039635,0.7573021, 0.7590984,0.7394837,

1.019960, 1.005323, 1.008099, 1.029073, 0.9879237,0.8981221, 0.8893386,0.7697848, 0.7412096,0.6623974, 0.5936911,0.6129038,
1.006291, 1.005329, 1.021087, 1.019935, 0.9125467,0.9192865, 0.8553957,0.7472854, 0.6915622,0.6579413, 0.5959874,0.5554533,
1.014999, 1.032704, 1.016386, 1.024034, 0.9535650,0.9061006, 0.8205744,0.7526594, 0.6499711,0.6242470, 0.5703290,0.5123080,
1.041496, 1.047536, 1.049122, 1.032562, 0.9983934,0.9101461, 0.8611576,0.8454547, 0.7750930,0.6045156, 0.6169245,0.4640618,
1.051141, 1.059369, 1.042806, 1.027734, 0.9851017,0.9100837, 0.8812822,0.7934464, 0.7850725,0.6725143, 0.6111315,0.5408882,
1.040141, 1.025528, 1.065488, 1.024694, 0.9875698,0.8377217, 0.9209586,0.8492124, 0.8507647,0.7155059, 0.6533312,0.5299317,
1.059026, 1.034749, 1.055034, 1.029376, 0.9704596,0.9566411, 0.8882094,0.8838344, 0.8880207,0.7771873, 0.7253455,0.6134246),

nrow = 8, byrow = TRUE)

C.CId <-
matrix(c(1.516477,1.826422,1.990346,2.132463,2.722614,3.291681,4.420750,5.584964,6.571250,9.860396,9.792822,14.559449,

1.377650,1.506431,1.609982,1.837078,2.173961,2.817640,3.644735,4.589144,5.666289,8.335783,10.960068, 15.306485,
1.308230,1.497846,1.415831,1.726081,2.224273,2.404352,3.035308,3.809549,5.431025,8.074415,11.021878, 14.406966,
1.217408,1.337588,1.396507,1.611503,1.843107,2.384813,2.765119,3.458886,4.595699,6.474964,8.166269,14.566650,
1.171666,1.231406,1.206510,1.560753,1.570748,1.775119,2.259675,2.516555,3.456203,6.409431,7.387063,11.905145,
1.135017,1.135115,1.123657,1.286124,1.357646,1.709172,1.883729,2.310775,2.734692,4.249965,5.397095,9.338454,
1.125844,1.134289,1.104515,1.147843,1.282499,1.822858,1.648062,1.866824,2.509362,3.580416,4.802758,6.899954,
1.028051,1.075499,1.091011,1.132110,1.247353,1.320929,1.565746,1.857433,1.954477,2.984488,3.174651,5.823208),

nrow = 8, byrow = TRUE)

DF.CId <-
matrix(c(0.5887816,0.5528131, 0.5458533,0.5776927, 0.5335293,0.5080249, 0.4358518,0.3775613, 0.3827662,0.3043313, 0.3496716,0.2829981,

0.7390238,0.7413282, 0.7315318,0.6964397, 0.6610254,0.5637184, 0.4856496,0.4244074, 0.4016887,0.3316179, 0.2946872,0.2738511,
0.8272066,0.7725987, 0.8490924,0.7427438, 0.6286789,0.6403420, 0.5661177,0.4868548, 0.3967950,0.3233705, 0.2792186,0.2730339,
0.9212071,0.8852327, 0.8687061,0.7912667, 0.7415143,0.6260229, 0.5828540,0.5152537, 0.4403457,0.3736606, 0.3428074,0.2586485,
0.9922391,0.9613626, 0.9943895,0.8033920, 0.8332030,0.7987648, 0.6829315,0.6511951, 0.5449091,0.3481682, 0.3495558,0.2809752,
1.0187917,1.0426874, 1.0517253,0.9507281, 0.9429417,0.7998040, 0.7780296,0.6731247, 0.6335426,0.4812147, 0.4376909,0.3290643,
1.0196227,1.0248727, 1.0589298,1.0402121, 0.9553533,0.7180629, 0.8481006,0.7894588, 0.6633031,0.5413594, 0.4674560,0.4081975,
1.0976480,1.0588452, 1.0475996,1.0279192, 0.9635527,0.9514298, 0.8620989,0.7766074, 0.8088941,0.6197419, 0.6585104,0.4544030),

nrow = 8, byrow = TRUE)

rownames(C.CR) <- rownames(DF.CR) <- rownames(C.CIt) <- rownames(DF.CIt) <- rownames(C.CId) <- rownames(DF.CId) <-
c("60", "120", "180", "300", "600", "1200", "2400","4800")

colnames(C.CR) <- colnames(DF.CR) <- colnames(C.CIt) <- colnames(DF.CIt) <- colnames(C.CId) <- colnames(DF.CId) <-
c("1/30", "1/20", "1/15", "1/10", "1/6", "1/4", "1/3", "2/5", "1/2", "3/5", "2/3", "3/4")

# Calculate "c" and "df" estimates based on N.in and p.in
N = c(60,120,180,300,600,1200,2400,4800)

226



p.trt = c(1/29,1/19,1/14,1/9,1/5,1/3,1/2,2/3,1,3/2,2,3)/(1 + c(1/29,1/19,1/14,1/9,1/5,1/3,1/2,2/3,1,3/2,2,3))

# use interpolation or extrapolation or asymptotic results to specify Satterthwaite constants
# (with corresponding message when appropriate)
N.in = length(f.data) + length(y); p.in = length(y)/N.in
if(!(N.in < 60 | N.in > 4800 | p.in < 1/30 | p.in > 3/4 | toupper(f.est) %in% c("TRUTH","F")))
{

c.CR = bilinear(M=C.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CR = bilinear(M=DF.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CIt = bilinear(M=C.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CIt = bilinear(M=DF.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CId = bilinear(M=C.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CId = bilinear(M=DF.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

}else if(!(N.in > 4800 & p.in < 1/30 & length(y) > 160) & !(toupper(f.est) %in% c("TRUTH","F")))
{

warning("Extrapolation of Sattertwaite approximation")
c.CR = bilinear(M=C.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CR = bilinear(M=DF.CR,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CIt = bilinear(M=C.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CIt = bilinear(M=DF.CIt,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

c.CId = bilinear(M=C.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)
df.CId = bilinear(M=DF.CId,N=N,p.trt=p.trt,N.in = N.in, p.in = p.in)

}else{
message("Asymptotic Results Used")
c.CR <- c.CIt <- c.CId <- 1
df.CR <- 2
df.CIt <- df.CId <- 1

}

# Define an object to contain Likelihood information for the grid search
Star = matrix(NA, nrow = length(th), ncol = length(del))

# Evaluate the log-likelihood at the null (theta,delta) <- (0,0)
fn.null = psL(theta = 0, fhat.y = fhat.y, fhat.yd = fhat.y)

# Initialize the maximum value of log-likelihood
fn.max <- fn.null; est <- c(0,0)

# Initialize quantities for plotting profile likelihood
fni = NULL; fni.plot = matrix(nrow=length(th),ncol=0); theta.max = NULL; fni.max = NULL # ???

### Light Grid Search ###
i = 0 # counter
for(deli in del) # for each possible delta in the grid
{

i = i+1 # counter

# Evaluate the (pseudo) log-likelihood for across all theta (the specified deltai in this loop)
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,

bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu,sigma=sigma,lambda=lambda,p=p,q=q)

# Store the (pseudo) log-likelihood
Star[,i] <- fni <- psL(theta = th, fhat.y = fhat.y, fhat.yd = fhat.yd)

# The largest theta for this value of delta (conditional theta that maximizes pseudo-LL)
theta.max <- c(theta.max,th[which.max(fni)])

# The maximum value of pseudo-likelihood given deltai
fni.max <- c(fni.max,fni[which.max(fni)])

# The value of pseudo-log likelihood given deltai
fni.plot = cbind(fni.plot,fni)

# Keep track of max ps-log likelihood, and corresponding (theta,delta)
if(max(fni) > fn.max){

fn.max <- fni[which.max(fni)]
est <- c(th[which.max(fni)],deli)
row.max = which.max(fni); col.max = i

}
}

# If the confidence region contains a point on the boundary (deltai = 6*Sx)
# and if ‘finite.area‘ is FALSE, then extend the light grid search to 12*Sx
more = FALSE
if( ( -2*(fni.max[length(fni.max)] - fn.max) < c.CR*qchisq(p=level,df=df.CR) ) & (finite.area == FALSE) )
{

more = TRUE
del <- c(del,del[length(del)] + seq(from = .1*sd(f.data), to = 6*sd(f.data), length.out = 60))
Star = cbind(Star,matrix(NA, nrow = length(th), ncol = 60))

# for each possible delta in the grid
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for(deli in del[length(del)-60] + seq(from = .1*sd(f.data), to = 6*sd(f.data), length.out = 60))
{

i = i+1 # counter

fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu,sigma=sigma,lambda=lambda,p=p,q=q)

# The (pseudo) log-likelihood
Star[,i] <- fni <- psL(theta = th, fhat.y = fhat.y, fhat.yd = fhat.yd)

# The largest theta for this value of delta (conditional theta that maximizes pseudo-LL)
theta.max <- c(theta.max,th[which.max(fni)])

# The maximum value of pseudo-log likelihood given deltai
fni.max <- c(fni.max,fni[which.max(fni)])

# The value of pseudo-log likelihood given deltai
fni.plot = cbind(fni.plot,fni)

# Keep track of max ps-likelihood, and corresponding (theta,delta)
if(max(fni) > fn.max){

fn.max <- fni[which.max(fni)]
est <- c(th[which.max(fni)],deli)
row.max = which.max(fni)
col.max = i

}
}

}

# Calculate the pseudo-likelihood test statistic
Star <- -2*(Star - fn.max)

### Dense Grid Search that encapsulates the confidence region found from the light grid search ###
ind.thrange = range(which(apply(Star,1,any.in,cl=level,c = c.CR, df=df.CR))) + c(-1,1)
ind.thrange[1] = max(c(ind.thrange[1],1))
ind.thrange[2] = min(c(ind.thrange[2],length(th)))

ind.delrange = range(which(apply(Star,2,any.in,cl=level,c = c.CR, df= df.CR))) + c(-1,1)
ind.delrange[1] = max(c(ind.delrange[1],1))
ind.delrange[2] = min(c(ind.delrange[2],length(del)))

theta.dense.grid = seq(th[ind.thrange[1]],th[ind.thrange[2]],length.out=100 + 100*more)
delta.dense.grid = seq(del[ind.delrange[1]],del[ind.delrange[2]],length.out=100 + 100*more)

### Add the true theta to the grid search if it is known/specified
if(!is.na(true.theta)){

if(true.theta > min(theta.dense.grid) & true.theta < max(theta.dense.grid))
{

less.th.grid = sum(theta.dense.grid < true.theta)
last.th.grid.ind <- (less.th.grid+1):length(theta.dense.grid)
theta.dense.grid <- c(theta.dense.grid[0:less.th.grid],true.theta,theta.dense.grid[last.th.grid.ind])

}else
{

true.th.range.del <- range(del[order(Star[less.th+1,])[1:(length(del)/10)]])
}

}

### Add the true delta to the grid search if it is known/specified
if(!is.na(true.delta)){

if(true.delta > min(delta.dense.grid) & true.delta < max(delta.dense.grid))
{

less.del.grid = sum(delta.dense.grid < true.delta)
last.del.grid.ind <- (less.del.grid+1):length(delta.dense.grid)
delta.dense.grid <- c(delta.dense.grid[0:less.del.grid],true.delta,delta.dense.grid[last.del.grid.ind])

}
}

lt = length(theta.dense.grid); ld = length(delta.dense.grid)

# Keep track of theta*delta for all dense grid points
Delta.dense = rep(theta.dense.grid,ld)*rep(delta.dense.grid,each=lt)

# Define an object to contain likelihood information for the dense grid search
Star.Dense = matrix(NA, nrow = lt, ncol = ld)

# Implement dense grid search
j = 0 #counter
for(deli in delta.dense.grid)
{

j = j+1 # counter
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,

bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu,sigma=sigma,lambda=lambda,p=p,q=q)
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Star.Dense[,j] = psL(theta = theta.dense.grid, fhat.y = fhat.y, fhat.yd = fhat.yd)
}

# update maximum ps-log likelihood based on dense grid serach
old.fn.max <- fn.max
fn.max <- max(fn.max,max(Star.Dense))

# Calculate the pseudo-likelihood test statistic for the dense grid
Star.Dense <- -2*(Star.Dense - fn.max)

## Check Null Estimate
# (is it contained the confidence region/intervals
# [based on the distribution for the interior of the parameter space])
TS.null = -2*(fn.null - fn.max)
null.CR = any.in(TS.null,cl=level,df=df.CR,c=c.CR)
null.CIt = any.in(TS.null,cl=level,df=df.CIt,c=c.CIt)
null.CId = any.in(TS.null,cl=level,df=df.CId,c=c.CId)
null.CID = any.in(TS.null,cl=level,df=1,c=1)
null = c(TS.null,null.CR,null.CIt,null.CId,null.CID)

# If specified by user, include the true theta in the grid search
if(!is.na(true.theta))
{

if(true.theta > min(theta.dense.grid) & true.theta < max(theta.dense.grid))
{

prof.TS.th.truth = min(Star.Dense[less.th.grid+1,])
}else
{

prof.TS.th.truth = Inf
j = 0 #counter
for(deli in seq(true.th.range.del[1],true.th.range.del[2],length.out = 100 + 100*more))
{

j = j+1 # counter
fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,

bw=bw,df=df,var.adj=var.adj,
deli=deli,obj=obj,
mu=mu,sigma=sigma,lambda=lambda,p=p,q=q)

prof.TS.th.truth = min(c(prof.TS.th.truth,-2*(psL(theta = true.theta, fhat.y = fhat.y, fhat.yd = fhat.yd) - fn.max)))
}

}
}

# If specified by user, include the true delta in the grid search
if(!is.na(true.delta))
{

if(true.delta > min(delta.dense.grid) & true.delta < max(delta.dense.grid))
{

prof.TS.del.truth = min(Star.Dense[,less.del.grid+1])
}else
{

fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=true.delta,obj=obj,
mu=mu,sigma=sigma,lambda=lambda,p=p,q=q)

prof.TS.del.truth = min(-2*( psL(theta = seq(.01,1,length=1000), fhat.y = fhat.y, fhat.yd = fhat.yd) - fn.max ))
}

}

# For computing a 50-50 mixture of chi-squares with df = 1 and df = 2
qmix.chisq = function(x,p,df=c(1,2)) abs(mean(pchisq(x,df=df)) - p)
boundary.cutoff = optim(par = qchisq(p=level,df=1),

fn = qmix.chisq, p = level, df=c(1,2),
method = "Brent", lower = qchisq(p=level,df=1),
upper = qchisq(p=level,df=2))$par

## Compute CR Area
N = length(Star.Dense)
X = sum(Star.Dense < c.CR*qchisq(p=level,df=df.CR))
if((N.in > 4800 & p.in < 1/30 & length(y) > 160) | (f.est %in% c("TRUTH","F")))
{

th.bound.ind <- which(theta.dense.grid == 1)
X = X + sum(Star.Dense[th.bound.ind,] < boundary.cutoff) -

sum(Star.Dense[th.bound.ind,] < c.CR*qchisq(p=level,df=df.CR))
}
if(null.CR & !finite.area){

Area=Inf}else{
Area=.5*(X/N + X/(N-2*lt-2*ld))*diff(range(theta.dense.grid))*diff(range(delta.dense.grid))

}

## Compute Intervals and note whether or not CSet is naturally an interval
TF.th = apply(Star.Dense,1,any.in,cl=level,df=df.CIt,c=c.CIt)
TF.del = apply(Star.Dense,2,any.in,cl=level,df=df.CId,c=c.CId)
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if(sum(TF.th) > 0){ind.thmarg = range(which(TF.th))}else{ind.thmarg = NA}
if(sum(TF.del) > 0){ind.delmarg = range(which(TF.del))}else{ind.delmarg = NA}

# If 0 in CSet(theta) => CSet(theta) = (0,1)
if(null.CIt){CI.th = c(0,1)}else{

if(!any(is.na(ind.thmarg))){CI.th = theta.dense.grid[ind.thmarg]}else{CI.th = c(NA,NA)}
}

# If 0 in CSet(delta) => CSet(delta) = (0,Inf)
# If finite.area == FALSE then adjust interval for delta according to the above result
if(null.CId & !finite.area){CI.del <- c(0,Inf)}else{

if(!any(is.na(ind.delmarg))){CI.del = delta.dense.grid[ind.delmarg]}else{CI.del = c(NA,NA)}
}

# If 0 in CSet(Delta) => CSet(Delta) = (0,Inf)
# If finite.area == FALSE then adjust interval for Delta according to the above result
if(null.CID & !finite.area){CI.Del <- c(0,Inf)}else{

CI.Del = range(Delta.dense[which(Star.Dense < qchisq(p=level,df=1))]) #!# what do I do here? leave as asymptotic, I guess.
}

# Store the endpoints for the intervals
if(!any(is.na(ind.thmarg))){

th.int = all(TF.th[seq(ind.thmarg[1],ind.thmarg[2])])
}else{

th.int = NA
}

if(!any(is.na(ind.delmarg))){
del.int = all(TF.del[seq(ind.delmarg[1],ind.delmarg[2])])

}else{
del.int = NA
}

ints = c(th.int = th.int, del.int = del.int)

### Determine whether CR captured truth
if(!any(is.na(c(true.theta,true.delta)))){

fhat.yd <- eval.fhat.yd(f.data=f.data,y=y,f.est=f.est,
bw=bw,df=df,var.adj=var.adj,
deli=true.delta,obj=obj,
mu=mu,sigma=sigma,lambda=lambda,p=p,q=q)

TS.th.del.truth = -2*(psL(theta=true.theta,fhat.y=fhat.y,fhat.yd=fhat.yd)-fn.max)
if(true.theta == 1 & ( (N.in > 4800 & p.in < 1/30 & length(y) > 160) | f.est %in% c("TRUTH","F") ))
{

CR.cap = TS.th.del.truth < boundary.cutoff
} else{

CR.cap = TS.th.del.truth < c.CR*qchisq(p=level,df=df.CR)
}

}else{TS.th.del.truth = NA; CR.cap = NA}

## Plot the results
if(plot)
{

par(mar = c(4,6,3,1), cex.lab = 2, cex.main = 2, cex.axis = 2)

CI.thresh = fn.max + (-c.CId*qchisq(p=level,df=df.CId)/2)
CR.thresh = fn.max + (-c.CR*qchisq(p=level,df=df.CR)/2)
plot(x = del, y = fni.max, type = "l", lwd = 3, pch = 16,

ylim = range(c(CR.thresh,CI.thresh,fni.max)),
xlab = expression(delta), ylab = "Max Log-Lik",
main = bquote("Maximum Log-Lik given" ~ delta)

)
abline(h = CI.thresh, lwd = 2, lty = 2)
segments(x0 = CI.del[1], y0 = -10^200, y1 = CI.thresh, lwd = 2, lty = 2, col = "darkgreen")
segments(x0 = CI.del[2], y0 = -10^200, y1 = CI.thresh, lwd = 2, lty = 2, col = "darkgreen")
abline(h = CR.thresh)
points(x = 0, y = fn.null, pch = 19)

plot(x = del, y = theta.max, type = "l", lwd = 3, pch = 16,
ylim = c(0,1),
xlab = expression(delta), ylab = bquote(hat(theta)(delta)[MLE]),
main = bquote(theta ~ "that maximizes PsL given" ~ delta))

points(x = 0, y = 0, pch = 19)

plot(x = c(0,max(del)), y = c(0,1.05), col = "white",
xlab = bquote(delta), ylab = "",
main = bquote("Confidence Bounds for("*theta*","*delta*")")

)
mtext(text = bquote(theta), side = 2, cex = 2.5, las = 2, line = 3)

for(i in 1:length(theta.dense.grid))
{

if(i < length(theta.dense.grid)){
for(j in 1:length(delta.dense.grid))
{
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points(x = delta.dense.grid[j], y = theta.dense.grid[i],
col = 1 + 2*(Star.Dense[i,j]< c.CR*qchisq(level,df=df.CR)), pch = 19, cex = .5)

}
}else{

for(j in 1:length(delta.dense.grid))
{

if(N.in > 4800 & p.in < 1/30 & length(y) > 160)
{

points(x = delta.dense.grid[j], y = theta.dense.grid[i],
col = 1 + 2*(Star.Dense[i,j]< boundary.cutoff), pch = 19, cex = .5)

}else{
points(x = delta.dense.grid[j], y = theta.dense.grid[i],

col = 1 + 2*(Star.Dense[i,j]< c.CR*qchisq(level,df=df.CR)), pch = 19, cex = .5)
}

}
}

}

lines(x = CI.Del[1]/seq(.001,1,.001), y = seq(.001,1,.001), lwd = 2, col = "darkgreen")
lines(x = CI.Del[2]/seq(.001,1,.001), y = seq(.001,1,.001), lwd = 2, col = "darkgreen")
segments(x0 = -.15, y0 = CI.th[1], y1 = CI.th[2], lwd = 5, col = "darkgreen")
segments(y0 = CI.th[1], x0 = -.15, x1 = CI.del[2], lty = 2, lwd = 3, col = "darkgreen")
if(!null.CIt){text(x = 0, y = CI.th[1], labels = round(CI.th[1],3), pos = 1, font = 2, col = "darkgreen")}
segments(y0 = CI.th[2], x0 = -.15, x1 = CI.del[2], lty = 2, lwd = 3, col = "darkgreen")
text(x = 0, y = CI.th[2], labels = round(CI.th[2],3), pos = 3, font = 2, col = "darkgreen")
segments(x0 = CI.del[1], x1 = CI.del[2], y0 = -.03, lwd = 5, col = "darkgreen")
segments(x0 = CI.del[1], y0 = -.03, y1 = CI.th[2], lty = 2, lwd = 3, col = "darkgreen")
if(!null.CId){text(x = CI.del[1], y = -.02, labels = round(CI.del[1],2), pos = 2, font = 2, col = "darkgreen")}
segments(x0 = CI.del[2], y0 = -.03, y1 = CI.th[2], lty = 2, lwd = 3, col = "darkgreen")
text(x = CI.del[2], y = -.02, labels = round(CI.del[2],2), pos = 4, font = 2, col = "darkgreen")
points(x = true.delta, y = true.theta, col = "red", lwd = 2, cex = 1.5, pch = 10)
segments(x0 = true.delta, y0 = -.15, y1 = true.theta, col = "red", lwd = 2, lty = 2)
segments(x0 = -.15, x1 = true.delta, y0 = true.theta, col = "red", lwd = 2, lty = 2)
text(x = true.delta, y = true.theta, pos = 4,

labels = bquote(bold("(" * .(round(true.theta,2)) * "," * .(round(true.delta,2)) * ")")), col = "red")

if(null.CR){points(x = 0, y = 0, col = 3, pch = 15, cex = 1.5)}
points(x = est[2], y = est[1], col = "blue", pch = 19)

}
if(!any(is.na(c(true.theta,true.delta)))){

TS.truth = c(TS.CR.Truth = TS.th.del.truth,
TS.prof.th.truth = prof.TS.th.truth,
TS.prof.del.truth = prof.TS.del.truth)}

else{
TS.truth = rep(NA,3)
}

ans = list(c(theta.hat = est[1], delta.hat = est[2], Delta.hat = prod(est)),
CI.th,CI.del,CI.Del,
ints,null.CR,Area,CR.cap,
TS.truth,TS.null)

names(ans) = c("Est",
paste0(100*level,c("CI_theta", "CI_delta","CI_Delta",

"Ints","Null_CR","Area","CR_Cap")),
"TS_Truth","TS_Null")

return(ans)
}

# Generate m = 100 observations from N(0,1) for the control group and n = 100 observations from .3N(0,1) + .7N(2,1) for the trt group.
m = 100
n = 100
true.theta = .7
true.delta = 2
x = rnorm(m)

z = sample(c(0,1), size = n, replace = TRUE, prob = c(1-true.theta,true.theta))
y = rnorm(n) + true.delta*z

# Find the Normal Maximum Likelihood
psl.inf(f.data = x, y = y, plot = TRUE, level = .95, true.theta = .7, true.delta = 2)
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