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ABSTRACT OF THE DISSERTATION

Essays on Nonparametric Identification and Estimation

of All-Pay Auctions and Contests

by

Ksenia Shakhgildyan

Doctor of Philosophy in Economics

University of California, Los Angeles, 2019

Professor Rosa Liliana Matzkin, Co-Chair

Professor John William Asker, Co-Chair

My dissertation contributes to the structural nonparametric econometrics of auc-

tions and contests with incomplete information. It consists of three chapters.

The first chapter investigates the identification and estimation of an all-pay

auction where the object is allocated to the player with the highest bid, and

every bidder pays his bid regardless of whether he wins or not. As a baseline

model, I consider the setting, where one object is allocated among several risk-

neutral participants with independent private values (IPV); however, I also show

how the model can be extended to the multiunit case. Moreover, the model is

not confined to the IPV paradigm, and I further consider the case where the

bidders’ private values are affiliated (APV). In both IPV and APV settings, I

prove the identification and derive the consistent estimators of the distribution of

the bidders’ valuations using a structural approach similar to that of Guerre et

al. (2000). Finally, I consider the model with risk-averse bidders. I prove that

in general the model in this set-up is not identified even in the semi-parametric

case where the utility function of the bidders is restricted to belong to the class

of functions with constant absolute risk aversion (CARA).

The second chapter proves the identification and derives the asymptotically

ii



normal estimator of a nonparametric contest of incomplete information with un-

certainty. By uncertainty, I mean that the contest success function is not only

determined by the bids of the players, but also by the variable, which I call uncer-

tainty, with a nonparametric distribution, unknown to the researcher, but known

to the bidders. This work is the first to consider the incomplete information con-

test with a nonparametric contest success function. The limiting case of the model

when there is no uncertainty is an all-pay auction considered in the first chapter.

The model with two asymmetric players is examined. First, I recover the distri-

bution of uncertainty using the information on win outcomes and bids. Next, I

adopt the structural approach of Guerre et al. (2000) to obtain the distribution of

the bidders’ valuations (or types). As an empirical application, I study the U.S.

House of Representatives elections. The model provides a method to disentangle

two sources of incumbency advantage: a better reputation, and better campaign

financing. The former is characterized by the distribution of uncertainty and the

latter by the difference in the distributions of candidates’ types. Besides, two

counterfactual analyses are performed: I show that the limiting expenditure dom-

inates public campaign financing in terms of lowering total campaign spending as

well as the incumbent’s winning probability.

The third chapter is a semiparametric version of the second chapter. In the

case when the data is sparse, some restrictions on the nonparametric structure

need to be put. In this work, I prove the identification and derive the consistent

estimator of a contest of incomplete information, in which an object is allocated

according to the serial contest success function. As in previous chapters, I recover

the distribution of the bidders’ valuations from the data on observed bids using

a structural approach similar to that of Guerre et al. (2000) and He and Huang

(2018). As a baseline model, I consider the symmetric contest. Further, the model

is extended to account for the bidders’ asymmetry.
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CHAPTER 1

Nonparametric Identification and Estimation of

All-Pay Auctions

1.1 Introduction

Nonparametric analysis of auction data is a widely discussed topic. For an exten-

sive review see Athey and A. Haile (2007). The contribution of this paper is the

identification and estimation of an all-pay auction. The object is allocated to the

player with the highest bid, and every bidder pays his bid regardless of whether

he wins or not. There are several reasons why the examining of this auction for-

mat is of interest. First, the underlying structural model is used to describe the

players’ behavior in many scenarios, in which the assumption that only the person

who wins needs to pay his bid (as in case of the first-price auction) seems to be

restrictive. For instance, the all-pay auction has been used to model elections,

different kinds of contests and sports events, research and development as well as

rent-seeking activity, such as lobbying (see Baye et al. (1993)). The other reason

for considering this auction format is that as theoretical (see Krishna and Mor-

gan (1997)) and experimental (see Noussair and Silver (2006)) results indicate,

it raises greater revenue than the first-price auction and thus is good from the

seller’s perspective, although it is rarely used in real-world situations.

In this work, I prove the identification and derive the consistent estimator of

an all-pay auction. I find the distribution of the bidders’ valuations from the data

on bids using a structural approach similar to that of Guerre et al. (2000). As a
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baseline model, I consider the setting where one object is allocated among several

risk-neutral participants with independent private values (IPV). However, I also

show how the model can be extended to the setting where M > 1 objects are

distributed through the auction (see Barut et al. (2002) for the same set-up).

Moreover, the model is not confined to the IPV paradigm and can account

for the case in which the bidders’ private values are affiliated (APV). Laffont and

Vuong (1996) show that “for any given level of competition any symmetric AV

(affiliated values) model is observationally equivalent in terms of bids to some

symmetric APV model”. Thus, any CV (common values) model is equivalent

observationally to some APV model while IPV setting is a particular case of the

APV, making the APV setting the most general.

The estimation procedure (similar to that of Li et al. (2002)) makes it possible

to obtain the joint distribution of private valuations from the observed bids. This

distribution provides information to test the IPV assumption and to consider

different policy interventions.

Finally, I consider the model with risk-averse bidders. As experimental studies

of all-pay auctions show (see Fibich et al. (2006) and Barut et al. (2002)) the

bidder’s behavior is consistent with the risk-averse utility function. However, I

prove that in general the model in this set-up is not identified even in the semi-

parametric case where the utility function of the bidders is restricted to belong to

the class of functions with constant absolute risk aversion (CARA).

The rest of the paper is organized as follows. In Section 2 I introduce notations

and definitions used throughout the paper. Section 3 discusses the identification

and estimation as well as the Monte Carlo simulations of the IPV model. Section 4

considers the APV setting. Similarly, identification analysis, estimation procedure

as well as the Monte Carlo simulations are presented. Section 5 discusses the IPV

setting with risk-averse bidders and proves the nonidentification result. Section 6

concludes.
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1.2 Notations and Definitions

In this work, an all-pay auction model with N symmetric bidders is considered.

Every bidder observes some private information with cumulative distribution func-

tion (CDF) F ∈ F . Let G denote the set of all possible distributions of bids. Let

us call the mapping from the private information to bids γ ∈ Γ, where γ : F → G.

Nonparametric identification means that the econometrician can recover the

distribution of private information from the observed bids. Formally,

Definition 1.1. (Identification). A model (F ,Γ) is identified if for every (F, F ′) ∈

F2 and (γ, γ′) ∈ Γ2 , γ(F ) = γ′(F ′)⇒ (F, γ) = (F ′, γ′).

There exist various specifications of the auctions models. The setting where

each bidder observes his valuation of the good but not the values of the rest of

the players is called the private value model. In contrast, when all bidders receive

correlated signals about the value, the common values model is considered. Other

dimensions are whether the bidders are symmetric or asymmetric and whether

bidders’ information is independent or affiliated (see Athey and Haile (2002)).

Let us denote by vi the bidder i’s private information (or type), v = (v1, ..., vN).

N is the number of (potential) bidders. The payoff of each bidder if he obtains one

unit is represented by Ui = u(vi, V ), where V is the common payoff component.

It is further assumed that the utility function u(·) is continuous, non-negative,

increasing in each argument, and common across bidders. Bidders might be risk-

neutral or risk-averse. Here F denotes the joint cumulative distribution function of

(v1, ..., vN , V ). This function is assumed to be symmetric in vi (exchangeability).

F,N and u are common knowledge. Thus bidders play the game of incomplete

information.

Definition 1.2. Bidders have private values if

E[u(vi, V )|(v1, ..., vN)] = E[u(vi, V )|vi] ∀v−i, Ui

3



In the private values setting we can distinguish between two cases, namely

independent and affiliated values.

Definition 1.3. The private values are independent if

fvi,vj = fvifvj ,

where f(·) is the marginal distribution of the private signal.

Based on Milgrom and Weber (1982) the affiliation means the following:

Definition 1.4. For variables with densities it is said that they are affiliated if

for all v and v̂

f(v ∨ v̂)f(v ∧ v̂) ≥ f(v)f(v̂),

where ∨ denotes the component-wise maximum and ∧ denotes the component-wise

minimum.

Affiliation means, that the bigger is the realization of one’s value, the more

likely it is that the other’s value is also big.

1.3 IPV All-Pay Auction with Risk-Neutral Bidders

1.3.1 Model

I first focus on the IPV environment with N risk-neutral players and M identical

goods. In this case:

Assumption 1.1. u(vi) = vi, i = 1, ..., N .

Assumption 1.2. Each bidder draws a value vi independently from a commonly

known distribution F (v) with support [v, v̄].

4



All the bidders are ex-ante symmetric. Here vi is the private value for bidder

i of possessing the good.

Assumption 1.3. The bidders submit the bids bi simultaneously knowing N , M ,

vi and F (v).

Thus the distribution function F (·) is a common knowledge, while the val-

uations of other players are not observed, which makes the setting a game of

incomplete information.

Assumption 1.4. Each of N bidders pays bi, regardless of whether or not he

obtains a good.

Assumption 1.5. N bids are ordered from highest to lowest and all M highest

bidders receive a good. If there is a tie for the M-th object, a lottery takes place

and each of the bidders gets the object with equal probability.

Therefore the bidder i’s resulting payoff is vi− bi if he obtains a good, and −bi

otherwise. In expectation then the payoff to bidder i is:

E[Ui|vi, v−i] = viP [win|bi, N,M, F (v)]− bi

where P [win|bi, N,M, F (v)] is the probability that bi is one of the M highest bids.

Following the literature, I consider the Bayesian equilibrium of this incomplete

information game, which is strictly monotonic and symmetric (the existence can be

proved as in Krishna and Morgan (1997)). For each valuation the corresponding

bid is defined by the function s(v) = b. Since s(v) is strictly monotonic it is

invertible.

Given Assumptions 1.1-1.5, the win probability can be written as:

P [win|bi, N,M, F (v)] =
N−1∑

j=N−M

(N − 1)!

(N − j − 1)!j!
F (vi)

j(1− F (vi))
N−j−1.

5



Given the winning probability I proceed to find the equation that characterizes

the equilibrium.

Proposition 1.1. Given Assumptions 1.1-1.5 and M=1, there exists a strictly

increasing symmetric Bayesian equilibrium of the game described above:

bi = s(vi, F,N) = (N − 1)

vi∫
v

vf(v)F (v)N−2dv. (1.1)

The first-order condition of this game can be written as:

vi =
s′(vi)

f(vi)F (vi)N−2(N − 1)
. (1.2)

Proof: If the bid b corresponds to valuation v, b = s(v), the winning probability

is

P [win|b,N,M, F (v)] = F (v)N−1

Therefore expected utility of a bidder whose valuation is vi, but who bids as if his

valuation was v is:

V (vi, v) = viF (v)N−1 − s(v).

Using the First order condition (differentiating with respect to v and substituting

v = vi), we get:

0 = vi(N − 1)F (vi)
N−2f(vi)− s′(vi).

From this differential equation we obtain the value vi:

vi =
s′(vi)

f(vi)F (vi)N−2(N − 1)
.

6



It follows that the equilibrium strategy is

bi = s(vi, F,N) = (N − 1)

vi∫
v

vf(v)F (v)N−2dv.

The case M=1 was considered for simplicity of the presentation. It can be

easily generalized for any M.1

Usually, valuations are unobserved for the econometrician, whereas bids are

observed in the data. Let us denote by G(·) the distribution of bids. The next

section discusses how to recover the distribution of vi from the distribution of bids

G(·) using equation (1.2).

1.3.2 Nonparametric Identification

In this section, I prove the nonparametric identification of the IPV model.

In structural estimation, the first main question is whether the parameters of

the economic model are identified from the available data or not. The distribution

F (·) of bidders’ valuations is the only unknown element for the econometrician.

The number N of bidders, and the bids bi, i = 1, ..., N are observed. Therefore the

question is whether there exists a distribution F corresponding to the observables

and whether this function is unique.

The bids distribution G(·) depends on F (·) not only through vi but also

through the equilibrium strategy s(·). Thus for the successful identification, both

F , as well as the equilibrium strategy should be canceled out once the bids dis-

tribution and density are plugged in into the first-order condition (1.2).

1For instance, for M = 2: Pr[win|b,N,M,F (v)] = F (v)N−2(N−1− (N−2)F (v)). It follows
that

vi =
s′(vi)

f(vi)F (vi)N−3(N − 1)(N − 2)(1− F (vi))
.

7



Let G(·) denote the joint distribution of (b1, ..., bN). Then the following propo-

sition, analogous to Theorem 1 in Guerre et al. (2000)2, holds:

Proposition 1.2. Let N ≥ M. Let G(·) belong to the set of absolutely continuous

probability distributions with support [b, b̄]N . There exists an absolutely continuous

distribution of bidders’ valuations F (·) such that G(·) is the distribution of the

equilibrium bids in the all-pay auction with independent private values if and only

if:

1. G(b1, ..., bN) =
∏N

i=1 G(bi).

2. The function ξ(·, N,G) ≡ 1
g(bi)G(bi)N−2(N−1)

is strictly increasing on [b, b̄] and

its inverse is differentiable on [v, v̄] = [ξ(b,N,G), ξ(b̄, N,G)].

Moreover, when F (·) exists, it is unique with support [v, v̄] and satisfies F (v) =

G(ξ−1(v,N,G)) for all [v, v̄]. In addition, ξ(·, N,G) is the quasi inverse of the

equilibrium strategy in the sense that ξ(b,N,G) = s−1(b,N, F ) for all b ∈ [b, b̄].

Proof: For any b ∈ [b, b̄] = [s(v), s(v̄)] it holds that G(b) = Pr(b1 ≤ b) = Pr(v1 ≤

s−1(b)) = F (s−1(b)) = F (v), where b = s(v). Thus the bids distribution G(·) has

support [s(v), s(v̄)] and its density is g(b) = f(v)
s′(v)

, where v = s−1(b).

This allows us to rewrite the differential equation (1.2) above in terms of the

distribution of bids, that is

vi =
1

g(bi)G(bi)N−2(N − 1)
. (1.3)

As a result, we obtain the expression for private value vi as a function of the bids

bi, its distribution G(·), its density g(·), and the number of bidders N . The rest

follows from the proof of Theorem 1 in Guerre et al. (2000).

2I use the same notation as in Guerre et al. (2000) for convenience.
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The next section discusses the estimation procedure.

1.3.3 Nonparametric Estimation

In this section, the consistent plug-in estimation for the bidder’s valuation is

proposed.

Given equation (1.3), the plug-in estimator is constructed in the following way.

The first step is to estimate the bids distribution G(·) and density g(·) as using

them the econometrician would be able to find the corresponding valuations, which

in turn can be used to estimate the density function f(·). More precisely, as G(b)

is the marginal distribution of equilibrium bids in N -bidder auctions and g(b) is

the associated density, they can be estimated using kernel function as follows.

Consider LN - the number of N -bidders auctions. I index by l the l-th auction

and use the observations {bil, i = 1, ..., N, l = 1, ..., LN} to find the nonparametric

estimates of G(·) and g(·). Thus,

Ĝ(b) =
1

LN

LN∑
l=1

1

N

N∑
i=1

1(bil ≤ b), (1.4)

ĝ(b) =
1

LNhg

LN∑
l=1

1

N

N∑
i=1

Kg

(b− bil
hg

)
, (1.5)

where hg denotes the bandwidth and K denotes the kernel function.

As a result, we can estimate vi by plugging in the estimates Ĝ and ĝ into

equation (1.3).

Assumption 1.6. The data on {bi} is i.i.d.

Assumption 1.7. The density g(b) has compact support, is continuously differ-

entiable of order m ≥ δ+ k, k ≥ 2, with derivatives which are uniformly bounded.
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Assumption 1.8. The kernel function is of order δ, it has compact support and

is continuously differentiable on its support.

Assumption 1.9. As L → ∞, hg → 0,
√
Lhg → ∞,

√
Lh1+2k

g → 0, where

L = LN ∗N .

Proposition 1.3. Given the Assumptions 1.1-1.5 about the model as well as As-

sumptions 1.6-1.9 are satisfied the following is the consistent estimator of the

valuation of player i in auction l:

v̂il
p−→ vil,

where:

v̂il =
1

ĝ(bil)Ĝ(bil)N−2(N − 1)
. (1.6)

These are the pseudo values.

Proof: In the Appendix.

In the next step to estimate the density f(·) I use the pseudo-sample {v̂il, i =

1, ..., N, l = 1, ..., LN} and the kernel function:

f̂(v) =
1

LNhf

LN∑
l=1

1

N

N∑
i=1

Kf

(v − v̂il
hf

)
. (1.7)

Here hf is the bandwidth and Kf - kernel function.

Note that the invertibility of the bid function is the key thing for identifica-

tion as I relied on the assumption that the bidders use a strictly increasing bid

function.3

3It is possible to account for the case when the number of bidders is not known to the
participants, but they receive a signal with known distribution.
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1.3.4 Monte Carlo Simulation

In this section, a Monte Carlo study is conducted. It is similar to the one in

Guerre et al. (2000) and describes the estimation procedure in detail.

I assume that the data on L = 500 auctions with N = 2 players taking part

in them is given. The number of auctions and players per se do not change the

estimation procedure as the bidders are assumed to be ex-ante symmetric. What

plays a role in the estimation is the total number of observations, which is given

by L∗N . In this study, the true distribution function F of valuation is log-normal

with parameters zero and one, truncated at 0.055 and 2.5 that leads to leaving

out 20% approximately of the original log-normal distribution. 1000 Monte Carlo

replications are conducted. Next, each replication is described.

To start with, L ∗ N observations of valuations are drawn randomly and the

corresponding equilibrium strategies bil, i = 1, 2, l = 1, ..., L defined in equation

(1.1) are calculated. After that, given the bids, the CDF is estimated using (1.4)

and the bids’ density function is estimated using (1.5). Specifically, I use the

triweight kernel:

K(u) =
35

32
(1− u2)3

1(|u| ≤ 1).

This is a kernel of order 2. The important property is that it has compact

support and the kernel function is continuously differentiable on its support.

There are many other kernels satisfying the above properties. In its turn, hg =

1.06σ̂b(NL)−1/5, where σ̂b is the estimated standard deviation of the bids. The

order is L−1/5 as according to the Theorem 3 in Guerre et al. (2000) when the

valuations are not observed but should be estimated by choosing the bandwidths

hg = cg(logL/L)1/(2R+3) and hf = cf (logL/L)1/(2R+3), where R is the number

of bounded continuous derivatives of f(·), the optimal convergence rate can be

reached. In our case R = 1. Constant 1.06 is the result of the so-called rule of

11



thumb (see Hardle (1991)).

Knowing the estimated distribution and density of the bids we are ready to

estimate the valuations. The issue here is that the estimator of density g is biased

on the borders of the support. More precisely on [b, b + ρghg/2) and on (b̄ −

ρghg/2, b̄], where ρg is the length of the support of the kernel. In our case ρg = 2.

If we consider bmin to be the minimum of the observed bids and bmax the maximum

of the observed bids, then the ĝ is unbiased on [bmin+ρghg/2, bmax−ρghg/2]. Thus

I trim the estimated valuations specified in (1.6):

v̂il =


1

ĝ(bil)Ĝ(bil)N−2(N−1)
,

if bmin + ρghg/2 ≤ bil ≤ bmax − ρghg/2

∞, otherwise

(1.8)

The final step is the estimation of the density function of valuations f̂(·) using

(1.7). Here hf = 1.06σ̂v(NLT )−1/5, LT is the number of auctions that are left after

the trimming and σ̂b is the estimated standard deviation of v̂il. In each replication

I estimate f̂(·) at 500 equally spaced points on [0.055, 2.5].

Figure 1.1 presents the true density of the truncated log-normal distribution,

and for each value of v in the support, the mean of the 1000 estimates f̂(v),

together with the 5% quantile, and the 95% quantile.
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Figure 1.1: True and estimated densities of valuations in IPV model

The important result is that inside the interval marked by the vertical dashed

lined defined by the average of [s(bmin + hg) + hf , s(bmax − hg) − hf ] the true

density function is approximated by the mean of the 1000 Monte Carlo estimates

almost perfectly. On the borders, the estimation is biased due to the bias of kernel

estimators and trimming.

In addition in Figure 1.2 the true equilibrium strategy b = s(v) is represented

as well as for each b ∈ [s(0.055), s(2.5)] the mean of the 1000 estimates v̂(b) =

s−1(b), together with the 5% quantile, and the 95% quantile.

13



Figure 1.2: True and estimated equilibrium bids in IPV model

In this case inside the interval marked by the horizontal dashed lined defined by

the average of [bmin +hg, bmax−hg] the true equilibrium strategy is approximated

by the mean of the 1000 Monte Carlo estimates almost perfectly. On the borders,

the estimation is biased due to the bias of kernel estimators.

1.3.5 Observed Heterogeneity

The model can be extended to account for observed heterogeneity. Let Nl be the

number of bidders in the l-th auction and Xl is the vector of observed character-

istics. In this setting, the distribution of vil for the l-th auction is the conditional

distribution F (·|Xl, Nl) of valuations given (Xl, Nl). In its turn, the distribution

of observed bids in the l-th auction is G(·|Xl, Nl). Thus

vil =
1

g(bil|Xl, Nl)G(bil|Xl, Nl)N−2(N − 1)
,
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where

G(b|x, i) =
G(b, x, i)

fl(x, i)
, g(b|x, i) =

g(b, x, i)

fl(x, i)
.

These ratios can be estimated using observations {(bil, Xl, Nl, i = 1, ..., Nl, l =

1, ..., L}

Ĝ(b, x, i) =
1

LhdG

L∑
l=1

1

Nl

Nl∑
i=1

1(bil ≤ b)KG

(
x−Xl

hG
,
i−Nl

hGN

)
,

ĝ(b, x, i) =
1

Lhd+1
g

L∑
l=1

1

Nl

Nl∑
i=1

Kg

(
b− bil
hg

,
x−Xl

hg
,
i−Nl

hgN

)
,

f̂l(x, i) =
1

Lhd

L∑
l=1

1

Nl

Nl∑
i=1

K

(
x−Xl

h
,
i−Nl

h

)
,

where h denotes the bandwidth and K denotes the kernel function.

As a result, we are able to estimate:

v̂il =
1

ĝ(bil|Xl, Nl)Ĝ(bil|Xl, Nl)N−2(N − 1)
.

Next, using the pseudo sample {(v̂il, Xl), i = 1, ..., Nl, l = 1, ..., L}, we estimate

nonparametrically the density f(v|x) by f̂(v|x) = f̂(v,x)

f̂(x)
, where

f̂(v, x) =
1

Lhd+1
f

L∑
l=1

1

Nl

Nl∑
i=1

Kf

(
v − v̂il
hf

,
x−Xl

hf

)
,

f̂(x) =
1

Lhdx

L∑
l=1

Kx

(
x−Xl

hx

)
,

where h denotes the bandwidth and K denotes the kernel function.

The procedure is very similar to the one before except for the fact that we

condition of the observables and thus much more data is required.
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1.4 APV All-Pay Auction with Risk-Neutral Bidders

1.4.1 Model

In this section, I consider the same set-up with the affiliated private values (APV).

Assumption 1.10. Symmetric APV model is considered, thus all bidders are ex-

ante identical. Each of the bidders knows the joint distribution of the valuations

F.

The case of the first-price auction was considered in Li et al. (2002). The

authors use the same idea as in Guerre et al. (2000) to make use of the kernel

density estimators. As before I only consider Bayesian Nash equilibrium that is

strictly increasing, differentiable and symmetric. At first, I consider just one unit

of indivisible good for sale. Then the analysis will be extended to the case of M

units in Section 4.5.

Each bidder i chooses a bid bi to maximize his utility:

E[Ui|Vi = vi, V−i = v−i] = viP [win|bi, N, F (·)]− bi = viP [Bi ≤ bi|vi]− bi,

where Bi = s(yi), yi = maxj 6=i vj, and s(·) is the equilibrium strategy.

Proposition 1.4. Given Assumptions 1.1-1.5 and 1.10 are satisfied, as well as

M=1, there exists the strictly increasing symmetric Bayesian equilibrium of the

game described above:

bi = s(vi) =

vi∫
v

v · fy1|v1(v|v)dv. (1.9)

The first-order condition of this game can be written as:

vi =
s′(vi)

fy1|v1(vi|vi)
. (1.10)
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Proof: The expected utility of a bidder whose valuation is vi, but who bids as if

his valuation was v is:

V (vi, v) = vi

∫ v

v

fy1|v1(y|v)dy − s(v).

Using the First order condition (differentiating with respect to v and substituting

v = vi), we get:

0 = vi · fy1|v1(vi|vi)− s′(vi),

for all vi ∈ [v, v̄] such that s(v) = v. fy1|v1(·|·) is the notation for conditional

density of y1 given v1. Here 1 is the index of any bidder as all of them are identical

ex-ante. As a result, we get the following differential equation determining the

bid function:

s′(vi) = vi · fy1|v1(vi|vi), (1.11)

therefore

bi = s(vi) =

vi∫
v

v · fy1|v1(v|v)dv.

From the differential equation (1.11) we obtain the value vi:

vi =
s′(vi)

fy1|v1(vi|vi)
.

This proves the proposition.

Using the first-order condition we will be able to identify the model.

1.4.2 Nonparametric Identification

In this section, I prove the nonparametric identification of the APV model.
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As in the case of the IPV model, the APV model is identified whenever the

distribution function F can be found by the econometrician uniquely given the

data on the bids.

Let GB1|b1(·|·) be the conditional distribution of B1 given b1 and gB1|b1(·|·) be

the corresponding density.

Then the following proposition analogous to Proposition 1 in Li et al. (2002)4

holds:

Proposition 1.5. Let N ≥ 2. Let G(·) belong to the set of absolutely continuous

probability distributions with support [b, b̄]N . Then the symmetric APV model is

identified. Moreover, distribution G(·) with support [b, b̄]N can be rationalized by

a symmetric APV model if and only if

1. G(·) is symmetric and affiliated, and

2. the function ξ(·, N,G) ≡ 1
gB1|b1 (bi|bi) is strictly increasing on [b, b̄].

Proof: Analogously to Li et al. (2002):

GB1|b1(B|b) = P (B1 ≤ B|b1 = b) = P (y1 ≤ s−1(B)|v1 = s−1(b)) =

= Fy1|v1(s
−1(B)|s−1(b)).

Thus

gB1|b1(B|b) =
fy1|v1(s

−1(B)|s−1(b))

s′(s−1(B))
.

As a result, using the two equations above and condition v = s−1(b), the first-order

condition (1.10) can be rewritten as:

vi =
1

gB1|b1(bi|bi)
. (1.12)

4I use the same notation as in Li et al. (2002) for convenience.
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The rest follows from the proof of Proposition 1 in Li et al. (2002).

The next section discusses the estimation procedure.

1.4.3 Nonparametric Estimation

In this section, the consistent plug-in estimation for the bidder’s valuation is

proposed.

Similar to the IPV case, the first step is the estimation of the conditional bid

density gB1|b1(·|·) using the data on bids. In the next step, the pseudo valuations

can be estimated using the equation (1.12). The last step is the estimation of the

density of the valuations from the obtained pseudo values using kernel estimator.

Since

gB1|b1(B|b) =
gB1,b1(B, b)

gb1(b)
, (1.13)

joint density should be estimated as well as the density of b1.

Let LN be the number N -bidders auctions. I index by l the l-th auction and

use the observations {bil, i = 1, ..., N, l = 1, ..., LN} to estimate nonparametrically

gB1,b1(·, ·) and gb1(·).

ĝB1,b1(B, b) =
1

LNh2
g

LN∑
l=1

1

N

N∑
i=1

Kg

(B −Bil

hg
,
b− bil
hg

)
, (1.14)

ĝb1(b) =
1

LNh

LN∑
l=1

1

N

N∑
i=1

K
(b− bil

h

)
, (1.15)

where h denotes the bandwidth and K denotes the kernel function.
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Proposition 1.6. Given the Assumptions 1.1-1.10 are satisfied and M=1 the

following is the consistent estimator of the valuation of player i in auction l:

v̂il
p−→ vil,

where:

v̂il =
1

ĝB1|b1(bil|bil)
=

ĝb1(bil)

ĝB1,b1(bil, bil)
. (1.16)

These are the pseudo values.

Proof: In the Appendix.

To estimate the joint density f(·, ..., ·) I use the pseudo-sample {v̂il, i = 1, ..., N, l =

1, ..., LN}

f̂(v1, ..., vN) =
1

LNhNf

LN∑
l=1

Kf

(v1 − v̂1l

hf
, ...,

vN − v̂Nl
hf

)
,

for any value (v1, ..., vN).

In its turn, to estimate the marginal density

f̂(v) =
1

LNhf

LN∑
l=1

1

N

N∑
i=1

Kf

(v − v̂il
hf

)
. (1.17)

for any value v ∈ [0, 1].

Similarly to the IPV case, it is possible to account for the observed hetero-

geneity by conditioning on the unobservables.
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1.4.4 Monte Carlo Simulation

In this section, the estimation is described step by step by conducting a Monte

Carlo study.

I consider the scenario when the data on L = 500 auctions, each with N = 2

bidders is given. It could be easily generalized to account for the case when there

is a different number of bidders. Following Li et al. (2002) I consider the simplest

case of affiliated values distribution.

Private values are assumed to be the sum of the two uniform random variables

vi = γ + ui, where γ is U [0.25, 0.75], and the ui’s are independently drawn from

U [−0.25, 0.25] so that they are correlated through γ and corr(vi, vj) = 0.5. Then

fγ(x) = 2, x ∈ [0.25, 0.75], fu(y) = 2, y ∈ [−0.25, 0.25], thus

f(v) =

∫
fγ(v − y)fu(y)dy = 2

0.25∫
−0.25

fγ(v − y)dy =


v−0.25∫
−0.25

4dy, v ∈ [0, 0.5]

0.25∫
v−0.75

4dy, v ∈ [0.5, 1]

It follows that the marginal density of the valuations is triangular:

f(v) =


4v, v ∈ [0, 0.5]

4− 4v, v ∈ [0.5, 1]

and F (v) =


2v2, v ∈ [0, 0.5]

4v − 2v2 − 1, v ∈ [0.5, 1]

(1.18)
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It can also be shown that

fy1,v1(t, s) =



8t, t < s < 1/2, t > 0

8s, s < t < 1/2, s > 0

8t− 8s+ 4, t < 1/2, 1/2 < s < t+ 1/2

8s− 8t+ 4, s < 1/2, 1/2 < t < s+ 1/2

8− 8s, s < 1, 1/2 < t < s

8− 8t, t < 1, 1/2 < s < t

and

fy1,v1(v, v) =


8v, v ∈ [0, 0.5]

8− 8v, v ∈ [0.5, 1]

As a result,

fy1|v1(v|v) = 2, v ∈ [0, 1].

Similarly, in general case, for any N it can also be shown that

fy1|v1(v|v) =


1−(2v−1)N−1

1−v , v ∈ [0, 0.5]

2N−1vN−2, v ∈ [0.5, 1].

Thus we can find the corresponding bids. In case when N = 2 using (1.9)

bi =

vi∫
0

2vdv = v2
i , vi ∈ [0, 1].

1000 Monte Carlo simulations are conducted. For each simulation 500 values
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of γ and 1000 values of ui are drawn, and then vi are calculated. Next, for each

value draw the corresponding bid is calculated. Given the bids, the first step of

estimation is conducted, using (1.14) and (1.15) the joint and marginal densities

are estimated. In each estimation the triweight kernel is used:

K(u) =
35

32
(1− u2)3

1(|u| ≤ 1).

This is a kernel of order 2. It is continuously differentiable and has compact sup-

port, thus rhog = 2. In its turn h = 1.06σ̂b(NL)−1/5 and hg = 1.06σ̂b(NL)−1/6,

where σ̂b is the estimator of the standard deviation of the bids. Given the es-

timators of joint and marginal densities the pseudo values (1.16) are calculated

and trimmed as in the case of the IPV model to account for the bias of kernel

estimation:

v̂il =


1

ĝB1|b1 (bil|bil)
=

ĝb1 (bil)

ĝB1,b1
(bil,bil)

,

if bmin + ρghg/2 ≤ bil ≤ bmax − ρghg/2

∞, otherwise

(1.19)

The final step is the estimation of f̂(·) using (1.17). Here hf = 1.06σ̂v(NLT )−1/5,

LT is the number of auctions that are left after the trimming. In its turn, σ̂b is

the estimator of the standard deviation of the pseudo values. In each replication,

I estimate f̂(·) at 500 equally spaced points on [0, 1]. The Figure 1.3 presents the

true triangular marginal density, and for each value of v ∈ [0, 1], the mean of the

1000 estimates f̂(v), together with the 5% quantile, and the 95% quantile.

23



Figure 1.3: True and estimated densities of valuations in APV model

The Figure below describes the situation when the model is estimated as IPV,

whereas in reality, it is an APV setting.

Figure 1.4: True and estimated densities of valuations: IPV and APV comparison
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1.4.5 Model with Multiple Units

The model could be extended to the case with M units for sale. In this case,

instead of B1 I introduce Bm = s(ym), ym is m-th largest bid among others’ bids.

In this case

s′(vi) = vi · fym|v1(vi|vi).

And as a result we get:

v =
1

gBm|b1(b|b)
.

I use the estimates:

ĝBm,b1(B, b) =
1

LNh2
g

LN∑
l=1

1

N

N∑
i=1

Kg

(B −Bil

hg
,
b− bil
hg

)
,

ĝb1(b) =
1

LNh

LN∑
l=1

1

N

N∑
i=1

K
(b− bil

h

)
,

where h denotes the bandwidth and K denotes the kernel function.

Thus:

v̂il =
1

ĝBm|b1(bil|bil)
=

ĝb1(bil)

ĝBm,b1(bil|bil)
.

To estimate the joint density f(·, ..., ·) the pseudo-sample {v̂il, i = 1, ..., N, l =

1, ..., LN} is used as before.

1.5 IPV All-Pay Auction with Risk-Averse Bidders

1.5.1 Model

As in previous sections assume that there are N bidders, i = 1, ..., N . Each bidder

draws a value vi independently from a commonly known distribution F (v) with

support [v, v̄]. vi is the private value that bidder i of possessing the good. In
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contrast to the previous set-up now each bidder is risk-averse, therefore he has

utility function U(·), such that: U(0) = 0, U ′(·) > 0 and U ′′(·) ≤ 0, which are

standard assumptions. Without loss of generality let us normalize U(1) = 1.

Each bidder i knows the number of bidders N , his value vi, as well as the

distribution of the valuations of the other bidders F (v) and utility function U(·).

Again I consider the Bayesian equilibrium of this incomplete information game

which is strictly monotonic and symmetric. The bid function is defined by s(v) =

b. As s(v) is strictly monotonic it is invertible, so s−1(b) = v. In addition to these

assumptions using the independence of the valuations, we can write the expected

payoff to bidder i as:

E[Ui|Vi = vi, V−i = v−i] = U(vi − bi)FN−1(s−1(bi)) + U(−bi)[1− FN−1(s−1(bi))].

Taking the first derivative with respect to the bid we get:

0 = −U ′(vi−bi)FN−1(s−1(bi))+U(vi−bi)(N−1)FN−(s−1(bi))f(s−1(bi))
1

s′(s−1(bi))
−

−U ′(−bi)[1− FN−1(s−1(bi))]− U(−bi)(N − 1)FN−(s−1(bi))f(s−1(bi))
1

s′(s−1(bi))
.

Substituting s−1(bi) = vi and rearranging the terms we get the first-order differ-

ential equation which determines the bid function:

s′(vi) =
(N − 1)f(vi)F

N−2(vi)[U(vi − bi)− U(−bi)]
U ′(−bi) + FN−1(vi)[U ′(vi − bi)− U ′(−bi)]

. (1.20)

Using this equation I prove that the model is not identified. Analogous result for

the case of first-price auction is derived in Campo et al. (2011).
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1.5.2 Nonidentification Result

I have shown in section 3.1 that F (vi) = G(bi) and f(vi)
s′(vi)

= g(bi), thus we can

rewrite the equation 1.20 as

(N − 1)g(vi)G
N−2(vi)[U(vi − bi)− U(−bi)]

U ′(−bi) +GN−1(bi)[U ′(vi − bi)− U ′(−bi)]
= 1.

Following Guerre et al. (2009), let us call the model a set of structures [U, F ]. A

structure [U, F ] is non-identified if there exists another structure [U ′, F ′] within

the model that leads to the same equilibrium bid distribution. If no such structure

[U ′, F ′] exists for any [U, F ], the model is (globally) identified.

Proposition 1.7. In general the IPV model with risk-averse bidders is not iden-

tified. Moreover, any structure [U, F ] in UCARA × F is not identified. Formally,

consider N = 2, U(x) = 1−exp(−ax)
1−exp(−a)

, a > 0. Then any structure [U, F ] with

F (v) = 2−a−2 exp(−av)
(1−exp(−av))(2−a)

, v ∈ [− 1
a

ln
(

2−a
2

)
,+∞), where a ∈ [1, 2), leads to the

exponential distribution G(b) = 1− exp−2b on [0,+∞).

Proof: Let’s consider CARA utility function such that :

U(x) =
1− exp(−ax)

1− exp(−a)
, a > 0.

Thus U ′(x) = a exp(−ax)
1−exp(−a)

> 0 and U ′′(x) = −a2 exp(−ax)
1−exp(−a)

< 0.

Let’s also fix N=2. In this case the differential equation becomes (I omit index

i for simplicity):

1 =
g(b)[1− exp(−av + ab)− 1 + exp(ab)]

a exp(ab) +G(b)[a exp(−av + ab)− a exp(ab)]

which (after deviding both numerator and denominator by exp(ab)) is equivalent

to

1 =
g(b)[1− exp(−av)]

a− aG(b)[1− exp(−av)]
.
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Let’s find v from this equation. 1− exp(−av) = a
g(b)+aG(b)

⇒

v = −1

a
ln

(
1− a

g(b) + aG(b)

)
.

Now let’s consider exponential family of distributions G(b) = 1 − exp−λb, b ≥ 0,

g(b) = λ exp−λb. Then g(b) + aG(b) = λ exp−λb +a(1− exp−λb) and

∂[g(b)+aG(b)]
∂b

= −λ2 exp−λb +aλ exp−λb = λ exp−λb(a− λ) < 0 when λ > a. Thus in

this case v is an increasing function of b.

Let’s find the bid function: g(b) + aG(b) = a
1−exp(−av)

⇒ (λ − a) exp−λb =

a
1−exp(−av)

⇒

b = s(v) = −1

λ
ln
( a exp(−av)

(1− exp(−av))(λ− a)

)
.

In its turn

F (v) = G(b(v)) = 1−exp−λb = 1− a exp(−av)

(1− exp(−av))(λ− a)
=

λ− a− λ exp(−av)

(1− exp(−av))(λ− a)
.

b ∈ [0; +∞), therefore v is well-defined, but has the moving support since v =

− 1
a

ln
(
λ−a
λ

)
if b = 0 and v = +∞ if b = +∞.

In particular, this is true if λ=2. This proves the proposition.

As a result, it was shown that this model is not identified even in the semi-

parametric case where the utility function of the bidders is restricted to belong to

the class of functions with constant absolute risk aversion (CARA).

1.6 Conclusion

In this work, I have proved the identification and derived the consistent estimator

of an all-pay auction. I have adopted the structural approach of Guerre et al.

(2000) and have proved that the distribution function of bidders’ valuations is

identified nonparametrically from the data in both IPV and APV settings. The
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important property of the estimation is that the determination of the equilibrium

strategy is avoided since I only use the first-order condition. This allows the

estimation of the distribution of valuations even in the case when the closed-form

solution cannot be explicitly found. Finally, I considered the model with risk

aversion. I show that this model is not identified even in the semi-parametric

case where the utility function of the bidders is restricted to belong to the class

of functions with constant absolute risk aversion (CARA).
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1.7 Appendix

1.7.1 Proof of Proposition 1.3

Proof: By Theorem 1.1 from Li and Racine (2006):

ĝ(bil)− g(bil) = Op(h
2
g + (Lhg)

−1/2) = op(1).

In its turn by the string law of large numbers empirical CDF converges almost

surely to the true CDF, thus also converges in probability.

Thus, by the properties of convergence in probability and continuous mapping

theorem,

1

ĝ(bil)Ĝ(bil)N−2(N − 1)

p−→ 1

g(bil)G(bil)N−2(N − 1)
.

1.7.2 Proof of Proposition 1.6

Proof: By Theorem 1.1 from Li and Racine (2006):

ĝb1(bil)− gb1(bil) = op(1).

Moreover, by Theorem 1.3 from Li and Racine (2006):

ĝB1,b1(bil, bil)− gB1,b1(bil, bil) = op(1).
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Thus, by the properties of convergence in probability and continuous mapping

theorem,

ĝb1(bil)

ĝB1,b1(bil, bil)

p−→ gb1(bil)

gB1,b1(bil, bil)
.
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CHAPTER 2

Nonparametric Identification and Estimation of

Contests with Uncertainty and an Application

to U.S. House Elections

2.1 Introduction

In this work, I prove the identification and derive the asymptotically normal es-

timator of a nonparametric contest of incomplete information with uncertainty.

This is the first paper to consider the identification and estimation of a model with

a nonparametric contest success function which determines the winning probabil-

ity. Similar to Guerre et al. (2000) and He and Huang (2018) I propose a method

to estimate the distribution of bidders’ private valuations (or types) from observed

bids as well as the winning outcomes, which does not require any parametric as-

sumptions or the Bayesian Nash equilibrium computation.

The contest is a natural model of costly competition as it describes situations

when all players exert costly effort to achieve some goal (win the contest). This is

a sunk cost as no matter whether a player wins or loses the bidder always pays the

bid. Such interactions include a wide range of scenarios. The electoral competition

was modeled using contest theory since the 1990: see, for example, Snyder (1989),

Baron (1994) or Skaperdas and Grofman (1995). Moreover, it is used to model

marketing and advertising by firms (Bell et al. (1975)); litigation (Farmer and

Pecorino (1999), Bernardo et al. (2000), Hirshleifer and Osborne (2001), Baye
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et al. (2005)); research and development, patent race, procurement of innovative

good, research contests ( Taylor (1995), Che and Gale (2003)); sport events, arms

race and rent-seeking activity, such as lobbying (Tullock (1980), Krueger (1974),

Baye et al. (1993)).

The contest is defined by the contest success function that maps efforts (bids)

into probabilities of winning for participating players (bidders).1 In this work,

I consider a contest with uncertainty. By uncertainty I mean that the contest

success function is not only determined by the bids of the players, but also by a

variable, which I call uncertainty, with a nonparametric distribution, known to

the bidders, but unknown to the researcher. The model is described in detail in

the next section.

Moreover, I consider the incomplete information contest in contrast to most

of the theoretical papers on contests and auctions that consider games with com-

plete information. In reality, it is more plausible to think that the bidders do not

observe the private information of the other bidders. Fey (2008), Ryvkin (2010)

and Ewerhart (2014) are a few of the papers providing the existence of equilib-

rium results in the context of incomplete information contests. The literature on

nonparametric identification and estimation of incomplete information auctions

and contests is very sparse as well. Only the first-price auctions were considered

in detail in the block of papers originated from Guerre et al. (2000). In the pre-

vious chapter, I considered all-pay auctions (an extreme case of a contest). And

the only paper that considers a contest as a game with incomplete information

is the one by the He and Huang (2018). In that paper, the authors assume that

the contest success function has the Tullock’s form. I will show that the Tullock

contest is a particular case of a contest with uncertainty considered in this work,

1All-pay auction is an extreme case of the contest when the bidder with the highest bid wins;
thus, the winning probability is one if and only if the bidder has the highest bid. In reality, in
the scenarios described above, it is common that the contestant with the highest bid can still
lose, thus it is important to consider contests for empirical applications.
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in a case when the distribution of uncertainty is known to be exponential.

I examine the model with two asymmetric players in this work. Every bidder

pays his bid regardless of whether he wins or not. Each bidder has a valuation

of the good, which is his private information, and knowing his own valuation, the

number of bidders and the distribution of the other bidders’ valuations, submits a

bid in order to obtain an object. The model is a game of incomplete information

in the sense that the bidders do not observe the other bidders’ valuations, but

the distributions of the valuations are common knowledge. As a result of the

identification and estimation of the model, I recover the distributions of bidders’

valuations. The novelty of the paper is that as the first step, I estimate the

nonparametric distribution of uncertainty using the information on win outcomes

and bids.

Importantly for the empirical application, the model can be reformulated in

terms of types instead of valuations, meaning that each player instead has a dif-

ferent type, which is just the inverse of the valuation. The type characterizes how

costly it is for the player to raise a bid, whereas the valuations are normalized to

be 1. I show that this model is equivalent to the one with the different valuations’

distributions.

As an empirical application, I consider the U.S. House of Representatives elec-

tions, which were also studied by He and Huang (2018) as an application of the

Tullock contest. Bidders in this setting are considered to have different abilities

to raise money (types described above), whereas the valuations are normalized to

be 1. Using the model, I disentangle and estimate two potential advantages of the

Incumbent. The first source of advantage is due to the fact that the Incumbent

often has a better reputation and is more experienced than the Challenger. The

other source of advantage is the Incumbent’s better campaign financing. Only the

latter can be regulated by the authority; thus, it is important that this source of

advantage can be quantified separately from the reputation effect. A large body
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of empirical work studies the effect of campaign spending on the vote share in

the context of Congressional elections starting from the pioneering work of Ja-

cobson (1978). My work contributes to the literature by providing a method of

recovering the incumbency advantage in campaign financing (characterized by the

difference in type distributions between the candidates), as well as the advantage

of the Incumbent due to the reputation (characterized by the uncertainty distri-

bution). This is done using the information on the observed spendings as well

as winning outcomes, and the nonparametric structural contest model.2 Results

of the model suggest that the Incumbent’s advantage was prevalent throughout

the sample period 1972-2016. Incumbents won in 93.8% of contests. Moreover,

on average Incumbents spent 2.5 times as much as their Challengers. Using the

structural model, I estimate that if the Incumbents were to spend as much as the

Challengers they would win only 85% of the times. The knowledge of the type

distributions allows policymakers to quantify the effect of different policy changes.

In this work, I consider two different policy counterfactuals aimed at limiting the

incumbency advantage: a public campaign financing of Challengers and a limit

on Incumbents’ expenditure. I show that the latter is more effective in terms of

lowering both the Incumbents’ winning probability as well as the total campaign

spending. This is in accordance with He and Huang (2018) conclusions, but in

contrast to the prevailing opinion that: ”the problem is not equalizing spending

between candidates but rather simply getting more money to Challengers so that

they can mount competitive races,” stated by Jacobson (1978).

The rest of the paper is organized as follows. In Section 2, I introduce the

contest model with uncertainty. Section 3 discusses the nonparametric identifi-

cation of the model. Section 4 considers the nonparametric estimation as well

as the Monte Carlo simulations. The application to the U.S. House Elections is

presented in Section 5. Section 6 concludes.

2This is in contrast to the Tullock contest considered in He and Huang (2018) that imposes
the parametric structure on the winning probability.

35



2.2 Contest Model with Uncertainty

2.2.1 Notations and Definitions

In this work, a contest with N = 2 asymmetric risk-neutral bidders is considered.

This is motivated by the nature of the application in which two candidates are

competing for a seat in U.S. House of Representatives: one is the Incumbent and

the other is the Challenger. The model can be easily extended to account for the

arbitrary number of bidders.

Assumption 2.1. Each bidder has a valuation of the good vi, i = 1, 2, which is

his private information. Each bidder draws this valuation vi independently from

a commonly known distribution Fi(v) with support [vi, v̄i], density fi and quantile

function qi = F−1
i , i = 1, 2.

Assumption 2.2. The bidders submit the bids bi simultaneously.

Assumption 2.3. Each of N bidders pays bi, regardless of whether or not he

obtains a good.

Moreover, the impact of the campaign spending on the winning probability is

uncertain.

Assumption 2.4. The real impact is xi = g(bi, εi), where εi is assumed to be

independent of bi.

Assumption 2.5. At the time of bidding, each bidder i knows the number of

bidders, his own valuation vi as well as Fj(·) and the distributions of uncertainties

εi, i = 1, 2.

The reason for such an Assumption 4 is that some of the voters have a prefer-

ence for the Incumbent versus the Challenger due to the Incumbent’s reputation,

and this is no matter what would be the campaign spending and advertising. On
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the other hand, for other voters, the campaign expenditure determines their pref-

erence. The goal is to disentangle and estimate these two potential advantages of

the Incumbent. The first source of advantage is due to the fact that the Incumbent

often has a better reputation and is more experienced than the Challenger. The

other source of advantage is the Incumbent’s better skills in raising money for the

campaign. In this work, I consider the case when the higher expenditures have

a multiplicative effect on the political impact: as in Hillman and Riley (1989),

where the model was introduced.

Assumption 2.6. xi = bi · εi, i = 1, 2, where Hξ(·) is the CDF of ε2/ε1 := ξ,

whereas by hξ(·) the corresponding density function.

Only positive xi can lead to victory; thus, εi have positive support.

Moreover, let wi = 1 if bidder i wins and wi = 0 otherwise. Then the proba-

bility of winning of the first player given the bids is:

P (w1 = 1| b1, b2) = P (x1 > x2 | b1, b2) = P (b1ε1 > b2ε2 | b1, b2) (2.1)

where ε1 and ε2 are preferences for bidder 1 and bidder 2 respectively.

The expected payoff to bidder i participating in the contest, is given by:

E[Ui|vi, Fj, Hξ] = viP [wi = 1|vi, Fj, Hξ]− bi = viP (biεi > bjεj|vi, Fj, Hξ)− bi,

(2.2)

where i = 1, 2, j = −i.3 The final payoff to the bidder i is vi − bi if he obtains a

good, and −bi if he does not obtain a good.

It is worth noting that:

3This model can be extended to account for the observables by assuming:

P [wi = 1|vi, Fj , Hξ] = P [(bi +m(Xi))εi ≥ (bj +m(Xj))εj |vi, Fj , Hξ],

where both function m and distribution of ε2/ε1 can be identified in the first step.
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Proposition 2.1. In a specific case when both εi and εj have an exponential

distribution with parameter λ = 1, the contest described above is equivalent to the

Tullock contest.

Proof: In the Appendix.

2.2.2 Equilibrium Characterization

I consider the strictly monotonic Bayesian equilibrium in this incomplete infor-

mation game. Using the results of Athey (2001), the existence of equilibrium can

be proved.

Proposition 2.2. Given Assumptions 2.1-2.6 are satisfied, there exists a pure

strategy increasing BNE of the incomplete information game formulated above.

Proof: In the Appendix.

For each valuation, the corresponding bid is defined by the function si(vi) =

bi, i = 1, 2 that is the equilibrium bid strategy which maximizes the bidder i’s

expected payoff. Since si(vi) is strictly monotonic it is invertible and s−1
i (bi) = vi.

Proposition 2.3. Given Assumptions 1-6 as well as the assumption of strict

monotonicity of the bidding strategies the first-order conditions of this game can

be written as:

v1 =
1

v̄2∫
v2

f2(v2) 1
s2(v2)

hξ

(
s1(v1)
s2(v2)

)
dv2

(2.3)

v2 =
1

v̄1∫
v1

f1(v1) s1(v1)

s22(v2)
hξ

(
s1(v1)
s2(v2)

)
dv1

(2.4)

Proof: Under the assumptions of strict monotonicity of the bidding strategies and

independent valuations, we can write the expected payoff to bidder 1 when his

38



true valuation is v1 but he bids as if it was v as:

E[U1|v1, F2, Hξ] =

= v1P [w1 = 1|b, F2, Hξ]− b = v1P (bε1 > b2ε2)− b = v1P (b2ξ < b)− b =

= v1

b̄2∫
b2

 b/b2∫
0

hξ(y)dy

 g2(b2)db2 − b =

v1

v̄2∫
v2

 s1(v)/s2(v2)∫
0

hξ(y)dy

 f2(v2)dv2 − s1(v).

Using the First order condition (differentiating with respect to v and substitut-

ing v = vi and equating it to zero) we get the following equation for the valuation

of player 1:

v1

v̄2∫
v2

s′1(v)

s2(v2)
hξ

(
s1(v)

s2(v2)

)
f2(v2)dv2 − s′1(v) = 0 when v = v1 ⇒

v1 =
1

v̄2∫
v2

f2(v2) 1
s2(v2)

hξ

(
s1(v1)
s2(v2)

)
dv2

Similarly for player 2 we can write the expected payoff to bidder 2 when his true
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valuation is v2 but he bids as if it was v as:

E[U2|v2, F1, Hξ] =

= v2P [w2 = 1|b, F1, Hξ]− b = v2P (bε2 > b1ε1)− b = v2P (ξ > b1/b)− b =

= v2

b̄1∫
b1

 ∞∫
b1/b

hξ(y)dy

 g1(b1)db1 − b =

v2

v̄1∫
v1

 ∞∫
s1(v1)/s2(v)

hξ(y)dy

 f1(v1)dv1 − s2(v).

By taking derivative with respect to v and equating it to zero we get the following

equation for the valuation of player 2:

v2

v̄1∫
v1

s′2(v)s1(v1)

s2
2(v)

hξ

(
s1(v1)

s2(v)

)
f1(v1)dv1 − s′2(v) = 0 when v = v2 ⇒

v2 =
1

v̄1∫
v1

f1(v1) s1(v1)

s22(v2)
hξ

(
s1(v1)
s2(v2)

)
dv1

This proves the proposition.

In our case, given the data, private values are unobserved for the econometri-

cian, whereas bids are observed. Thus the goal would be to rewrite right hand

sides of the equations (2.3) and (2.4) in terms of distribution of bids. The method

is described in detail in the Section on Identification.
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2.2.2.1 Representation in Terms of Types

The problem can be easily reformulated in terms of the types (how costly is it to

raise a bid for the player). Expected payoff to bidder i in this case is given by:

E[Ui|ci, Fj(c), Hξ] = P [wi = 1|ci, Fj, Hξ]− cibi = P (biεi > bjεj|ci, Fj, Hξ)− cibi,

(2.5)

where i = 1, 2, j = −i, ci = 1
vi

and Fi is the type distribution function whereas fi

is the corresponding density.

Thus equations (2.3) and (2.4) can be written in terms of types:

c1 =

c̄2∫
c2

f2(c2)
1

s2(c2)
hξ

(
s1(c1)

s2(c2)

)
dc2 (2.6)

and

c2 =

c̄1∫
c1

f1(c1)
s1(c1)

s2
2(c2)

hξ

(
s1(c1)

s2(c2)

)
dc1 (2.7)

2.3 Nonparametric Identification

In this section, I prove that the parameters of the model are nonparametrically

identified from available data, which is the main question in structural estimation.

In the presented model there are two unknown structural elements for the

econometrician - the distribution of valuations F (·) as well as the distribution

Hξ(·) of ε2/ε1 := ξ, whereas the number of bidders, the bids themselves bi, i = 1, 2

as well as the win results, are observed. Therefore the identification problem

reduces to whether the distributions F and Hξ are uniquely determined from

observed bids and win outcomes. Note that the distribution G(·) of bi depends

on the underlying distribution F (·) not only through vi, but also through the
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equilibrium strategy s(·).

Formally, let G denote the set of all distributions over the space of permitted

bids and let p denote the win probability of the Incumbent, F ∈ F and H ∈ H.

Let us call the mapping from the private information to bids γ ∈ Γ, where γ :

F ×H → G × p. Then,

Definition 2.1. (Identification). A model (F ,H,Γ) is identified if for every

(F, F ′), (H,H ′) and (γ, γ′), γ(F,H) = γ′(F ′, H ′)⇒ (F,H, γ) = (F ′, H ′, γ′).

The identification argument can be conducted in two steps. First:

Proposition 2.4. The distribution of the ration of uncertainties ε1/ε2 is identified

from the data on bids and win outcomes.

Proof:

P (w1 = 1) = P (b1ε1 > b2ε2) = P

(
ε2
ε1
<
b1

b2

)
:= P

(
ξ <

b1

b2

)
= Hξ

(
b1

b2

)
, (2.8)

where I do not condition on bids for simplicity.

Thus the distribution of ε1
ε2

can be identified from observed win outcomes on

the positive support by varying b1/b2.

In the second step, the distribution of ξ is used to recover the value distribution.

Proposition 2.5. 4 Suppose that functions

λ1(bi, N,G,H) ≡ 1
b̄2∫
b2

g2(b2) 1
b2
hξ

(
b1
b2

)
db2

and

λ2(bi, N,G,H) ≡ 1
b̄1∫
b1

g1(b1) b1
b22
hξ

(
b1
b2

)
db1

4The formulation of the proposition is similar to Theorem 1 in Guerre et al. (2000).
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are strictly increasing on the support of bids [bi, b̄i] and their inverses are differ-

entiable on the supports of valuations [vi, v̄i]. If Gi(·) are absolutely continuous

probability distributions with support [bi, b̄i], then there exists an absolutely con-

tinuous distribution of bidders’ valuations Fi(·) corresponding to the distribution

of bids. When Fi(·) exists, it is unique with support [vi, v̄i] and satisfies Fi(vi) =

Gi(λ
−1
i (bi, N,G,H)) for all [vi, v̄i]. In addition, λi(bi, N,G,H) is the quasi inverse

of the equilibrium strategy in the sense that λ−1
i (bi, N,G,H) = s−1

i (bi, N, Fi, H)

for all b ∈ [bi, b̄i]. Moreover, the identifying equations can be rewritten in terms

of quantile functions:

q1(t1) =
1

1∫
0

1
r2(t2)

hξ

(
r1(t1)
r2(t2)

)
dt2

(2.9)

and

q2(t2) =
1

1∫
0

r1(t1)

r22(t2)
hξ

(
r1(t1)
r2(t2)

)
dt1

. (2.10)

where t1, t2 ∈ (0, 1).

Proof: Similar to Guerre et al. (2000), the identification result is based on the

property that together with the distribution Fi(·) and the density fi(·), the deriva-

tive of the strategy s′i(·) can be canceled out from the differential equation.

Because bi is a function of vi, which is random and distributed as Fi(·), bi is also

random. Let’s denote its distribution Gi(·) and quantile function ri(·) = G−1
i (·),

i = 1, 2.

For every b ∈ [bi, b̄i] = [si(vi), si(v̄i)], we have Gi(b) = Pr(bi ≤ b) = Pr(vi ≤

s−1
i (b)) = Fi(s

−1
i (b)) = Fi(v), where bi = si(vi). Thus, the distribution Gi(·) is

absolutely continuous, has support [si(vi), si(v̄i)] and density gi(bi) = fi(vi)
s′i(vi)

, where

vi = s−1
i (bi).
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This allows us to rewrite the differential equation (2.3) above in terms of the

distribution of bids, that is for the first bidder:

v1 =
1

b̄2∫
b2

g2(b2) 1
b2
hξ

(
b1
b2

)
db2

(2.11)

In its turn, the equation (2.4) for the second bidder can be rewritten as:

v2 =
1

b̄1∫
b1

g1(b1) b1
b22
hξ

(
b1
b2

)
db1

(2.12)

Thus equations now express the individual private values vi as functions of the

individual’s equilibrium bids bi, their distributions Gi(·), their densities gi(·), the

density hξ of the ratio of tastes ξ and the number of bidders N .

Let us denote ti = Fi(vi) and tj = Fj(vj), equivalently vi = qi(ti) and vj =

qj(tj), where qi(·) and qj(·) are quantile functions of the distribution of valuations.

As a result of monotonicity of the strategies Gi(si(vi)) = Fi(vi), applying r−1
i (·)

to both sides of equality, where ri(·) is quantile function of the bid distribution

we get: si(vi) = ri(Fi(vi)) = ri(ti) and sj(vj) = rj(Fj(vj)) = rj(tj). Moreover,

Fj(s
−1
j (si(vi))) = Gj(si(vi)) = Gj(ri(ti)), Fj(v̄j) = 1 and Fj(vj) = 0. Using these

equalities and changing variables we can rewrite the equations (2.11) and (2.12)

above as:

q1(t1) =
1

1∫
0

1
r2(t2)

hξ

(
r1(t1)
r2(t2)

)
dt2

(2.13)
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and

q2(t2) =
1

1∫
0

r1(t1)

r22(t2)
hξ

(
r1(t1)
r2(t2)

)
dt1

, (2.14)

where t1, t2 ∈ (0, 1). This proves the proposition.

Moreover, Proposition 5 can be reformulated in terms of types.

Proposition 2.6. Suppose that functions

λc1(bi, N,G,H) ≡
b̄2∫
b2

g2(b2)
1

b2

hξ

(
b1

b2

)
db2

and

λc2(bi, N,G,H) ≡
b̄1∫
b1

g1(b1)
b1

b2
2

hξ

(
b1

b2

)
db1

are strictly decreasing on the support of bids [bi, b̄i] and their inverses are dif-

ferentiable on the supports of types [ci, c̄i]. If Gi(·) are absolutely continuous

probability distributions with support [bi, b̄i], then there exists an absolutely con-

tinuous distribution of bidders’ private types Fi(·) corresponding to the distribu-

tion of bids. When Fi(·) exists, it is unique with support [ci, c̄i] and satisfies

Fi(ci) = 1 − Gi((λ
c
i)
−1(bi, N,G,H)) for all [vi, v̄i]. In addition, λci(bi, N,G,H) is

the quasi inverse of the equilibrium strategy in the sense that (λci)
−1(bi, N,G,H) =

s−1
i (bi, N, Fi, H) for all b ∈ [bi, b̄i]. Moreover, the identifying equations can be

rewritten in terms of quantile functions and given by equations:

qc1(1− t1) =

1∫
0

1

r2(t2)
hξ

(
r1(t1)

r2(t2)

)
dt2 (2.15)
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and

qc2(1− t2) =

1∫
0

r1(t1)

r2
2(t2)

hξ

(
r1(t1)

r2(t2)

)
dt1, (2.16)

where t1, t2 ∈ (0, 1).

Proof: Apply Proposition 5 and note ci = 1
vi

, i = 1, 2.

2.4 Nonparametric Estimation

In this section, I propose the asymptotically normal estimators of the density hξ

and bidders’ types.

If we knew the quantile functions ri(·) as well as the distribution of ξ Hξ(·),

then we could use that to recover quantile functions of the bidders’ valuations qi(·).

Let L be the number of auctions, l is the the l-th auction, {bil, i = 1, 2, l = 1, ..., L}

are the observations of the bids, {wil, i = 1, 2, l = 1, ..., L} are the observations of

the winning outcomes.5

In the first step, I estimate the distribution of the ε1
ε2

using kernels from the

observed bids and winning outcomes. Specifically, consider bidder 1 winning prob-

ability:

Ĥξ(b) = P̂ (w1 = 1|b1/b2 = b) =

L∑
l=1

w1lK
(
b1l/b2l−b

h

)
L∑
l=1

K
(
b1l/b2l−b

h

) , (2.17)

where K(·) is the kernel function and h is the bandwidth.

By taking the derivative with respect to b, we can find the estimator for the

5 I assume that in each auction the same two types of bidders take part. In case when there
are some observable characteristics of the bidders and enough data, the analysis is similar, with
the only difference that we can condition on the observables.
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corresponding density function:

ĥξ(b) = Ĥ ′ξ(b) =

=

L∑
l=1

w1lK
(
b1l/b2l−b

h

)
·
L∑
l=1

K ′
(
b1l/b2l−b

h

)
−

L∑
l=1

K
(
b1l/b2l−b

h

)
·
L∑
l=1

w1lK
′
(
b1l/b2l−b

h

)
h

[
L∑
l=1

K
(
b1l/b2l−b

h

)]2 .

(2.18)

I use Frchet derivatives to find the asymptotic distribution. In terms of the

density of the observables:

Hξ(b) =

∫
wf(w, b)dw

f(b)
,

where f(w, b) is the density of the vector (w, b) and b = b1/b2. By taking the

derivative with respect to b we get:

hξ(b) =
f(b)

∫
w ∂f(w,b)

∂b
dw − ∂f(b)

∂b

∫
wf(w, b)dw

f(b)2
=

f(b)
∫
wf ′(w, b)dw − f ′(b)

∫
wf(w, b)dw

f(b)2

Assumption 2.7. The data on {bi, wi} is i.i.d.

Assumption 2.8. The density f(b) has compact support, is continuously differ-

entiable of order m ≥ δ+ k, k ≥ 2, with derivatives which are uniformly bounded.

Assumption 2.9. The kernel function is of order δ, it has compact support and

is continuously differentiable on its support.

Assumption 2.10. As L→∞, h→ 0,
√
Lh3 →∞,

√
Lh3+2k → 0.

Then the following theorem holds:

Theorem 2.1. Given the assumptions about the model as well as that Assump-
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tions 2.7-2.10 are satisfied:

ĥξ(b)
p−→ hξ(b), and

√
Lh3(ĥξ(b)− hξ(b))→ N(0, Vξ),

where

Vξ =

[
P (w = 1|b)(1− P (w = 1|b)))

f 2(b)

] ∫ (
∂K(u)

∂u

)2

du

Proof: In the Appendix.

In its turn, the bid density can be estimated using the kernel estimator as

follows:

ĝi(bi) =
1

Lh

L∑
l=1

K
(bi − bil

h

)
, (2.19)

Then the pseudo-values are estimated using the combination of ĥξ(b) and ĝbi(b):

v̂1 =
1

¯̂
b2∫̂
b2

ĝ2(b2) 1
b2
ĥξ

(
b1
b2

)
db2

(2.20)

and

v̂2 =
1

¯̂
b1∫̂
b1

ĝ1(b1) b1
b22
ĥξ

(
b1
b2

)
db1

(2.21)

and pseudo types then are:
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ĉ1 =

¯̂
b2∫
b̂2

ĝ2(b2)
1

b2

ĥξ

(
b1

b2

)
db2 (2.22)

and

ĉ2 =

¯̂
b1∫
b̂1

ĝ1(b1)
b1

b2
2

ĥξ

(
b1

b2

)
db1 (2.23)

Then the following theorem holds:

Theorem 2.2. Given the assumptions about the model as well as Assumptions

2.71-2.10 are satisfied:

ĉ1(b1)
p−→ c1(b1), and

√
Lh3(ĉ1(b1)− c1(b1))→ N(0, V ),

where

V =

b̄2∫
b2

g2
2(b2)

1

b2
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Similarly:

ĉ2(b2)
p−→ c2(b2), and

√
Lh3(ĉ2(b2)− c2(b2))→ N(0, V ),
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where

V =

b̄1∫
b1

g2
1(b1)

b2
1

b4
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Proof: In the Appendix.

ri(·) can be estimated from observed bids:

r̂i(t) = b
(dLte:L)
i , (2.24)

where b
(dse:L)
i is the s-th lowest order statistic out of L i.i.d. bids observations; d·e

is the ceiling function.

In the second step, the quantile functions of the bidder’s valuations are esti-

mated:

q̂1(t1) =
1

1∫
0

1
r̂2(t2)

ĥξ

(
r̂1(t1)
r̂2(t2)

)
dt2

(2.25)

and

q̂2(t2) =
1

1∫
0

r̂1(t1)

r̂22(t2)
ĥξ

(
r̂1(t1)
r̂2(t2)

)
dt1

, (2.26)

where t1, t2 ∈ (0, 1).

Note that the invertibility of the bid function is the key for identification as we

relied on the assumption that the bidders use a strictly increasing bid function.

Similarly, we can estimate the quantile functions of types:

q̂c1(1− t1) =

1∫
0

1

r̂2(t2)
ĥξ

(
r̂1(t1)

r̂2(t2)

)
dt2 (2.27)
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and

q̂c2(1− t2) =

1∫
0

r̂1(t1)

r̂2
2(t2)

ĥξ

(
r̂1(t1)

r̂2(t2)

)
dt1, (2.28)

where t1, t2 ∈ (0, 1).

Proposition 2.7. (Csorgo (1983)) Let G be a twice differentiable distribution

function, having finite support. Assume inf
0<t<1

g(G−1(t)) > 0 and sup
0<t<1

|g′(G−1(t))| <

∞. Then sup
0<t<1

|r̂(t)− r(t)| a.s.−−→ 0.

⇒

sup
0<t<1

|r̂(t)− r(t)| = op(1).

It can be proved that:

Proposition 2.8. Under the same assumptions as above:

q̂i(t)− qi(t) = op(1),

i = 1, 2.

2.5 Monte Carlo Simulations

Example 2.1. If the true quantile functions qi, i = 1, 2 of the bidder’s valuations

are

q1(t1) =
1− k
k

ck2c
1−k
1 t1−k1 , q2(t2) =

1 + k

k
ck+1

2 c−k1 t1+k
2 t1, t2 ∈ (0, 1),

and the distribution of ξ is Beta-distribution: hξ(x) = kxk−1, 0 ≤ x ≤ 1, 0 <

k < 1, then there exist unique equilibrium bid functions s1(v1) = c1F1(v1) and

c2(v) = k2F2(v) for any c1 and c2.
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Let’s consider L = 200 auctions with 2 bidders and 100 Monte Carlo replica-

tions. Then the following Figure 2.1 below presents the true quantile function,

the mean, the 5% quantile, and the 95% quantile of the 100 estimates q̂1(t) and

q̂2(t) for c1 = 4, c2 = 2 and k = 0.2.

Figure 2.1: Results of Monte Carlo simulations

2.6 Application: U.S. House of Representatives

The theory described in the previous sections can be applied to quantify the

incumbency advantage in the U.S. House of Representatives elections. Moreover,

the model provides a method to separate the advantage into two parts. The first

advantage is due to the better reputation of the Incumbent. It is characterized by

the fact that even when both the Incumbent and the Challenger spend the same

amount of money on their campaign, the probability that the Incumbent wins

is estimated to be bigger than that of the Challenger. This probability is given

by the P (ξ < 1), which is determined by the distribution of uncertainty. In its

turn, the second advantage is due to the difference in campaign financing, which

is characterized by the difference in the quantile functions of candidates’ types,
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where the type describes how costly is it for the candidate to raise money. I show

that the Incumbent has a lower type and thus has better campaign financing. The

important difference between these two advantages is that only the latter can be

influenced by the policymakers, whereas the reputation can not. Thus it is crucial

for policy implications to be able to distinguish and quantify them.

2.6.1 U.S. House Elections: Incumbents vs. Challengers

I use the data from U.S. House of Representatives elections.6 These elections

happen every two years. Currently, there are 435 voting seats; winners serve 2-year

terms. To quantify the incumbency advantage, I use the data on 6578 Incumbent-

Challenger elections during the 1972-2016 period. All the Incumbent’s and the

Challenger’s expenditures are in $2016. The summary statistics is presented in

Table 2.1 below. Incumbents won in 93.8% of contests. On average, Incumbents

spend 2.5 times as much as the Challenger. Throughout the observed period,

expenditures are increasing with only a slight decline starting in 2010. Please see

Figure 2.2 below.

Table 2.1: Summary statistics of the Incumbent-Challenger elections

Obs Mean Std. Dev. Min Max

Incumbent’s Expenditures 6578 1057.67 1044.42 .198 26859.96

Challenger’s Expenditures 6578 401.08 698.81 .002 10839.82

Vote share for Incumbent 6562 64.17 9.12 34.13 94.66

Incumbent winning dummy 6578 .938 .240 0 1

* Expenditures are in thousands of dollars

6I am very grateful to Gary Jacobson, Professor of Political Science at the University of
California, San Diego, for providing me with his data.
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Figure 2.2: Average expenditures by election cycle

Thus we observe the data on 6578 auctions with two bidders each, and winning

outcomes, where bidders are candidates and bids are expenditures.

The first step is the estimation of the distribution of uncertainty ξ using equa-

tions (2.17) and (2.18) above. The normal kernel and the optimal bandwidth are

used. The results are shown below in Table 2.2.

Table 2.2: Cumulative distribution function Hξ(·)

b 1 2 3 4 5 7 7

Ĥξ(b) 0.85 0.88 0.91 0.94 0.97 0.98 1.00

Here b represents the ratio of the Incumbent’s and the Challenger’s bids. If

b = 1, expenditures are equal, and Hξ(·) represents the winning probability of the

Incumbent in this case. Thus the first incumbency advantage is represented by

85% winning probability even in the case when the expenditures are the same.

The second step is the estimation of quantile functions of types. We start with

the estimation of the quantile function of bids using equation (2.24) and then
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plug the estimates into equations (2.27) and (2.28) to find the quantile functions

of types.

Figure 2.3 represents the results of the model estimation.7 I divide all election

cycles by decades. The result reflects the Incumbent’s advantage in campaign

financing as the Challenger’s type first-order stochastically dominates the Incum-

bent’s type distribution.

Figure 2.3: Estimated Quantile Functions of Types by Decade

7On the boundaries, the quantile functions were monotonized as the kernel estimators tend
to be biased close to the boundaries.

55



I also present the change of the quantile functions over the decades in Figure

2.4 below.

Figure 2.4: Estimated Quantile Functions of Types over Decades

We can also estimate the Incumbent’s and the Challenger’s valuation quantile

functions instead. See Figure 2.5 below.
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Figure 2.5: Estimated Quantile Functions of Valuations

2.6.2 Counterfactuals

Once the primitives of the model – such as the distribution of uncertainty and

the type distributions – are estimated, researches have the capability to run the

counterfactual simulations. Counterfactuals allow testing different ways to limit

the incumbency advantage. Limiting the incumbency advantage is important for

the following reasons. First, according to the prevalent opinion in political science,
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democracy is not possible without sufficient competition as well as the turnover

of the seats in Congressional elections. Moreover, the increased total campaign

spending is costly for society. Thus it would be useful to consider the policy

that reduces the Incumbent’s winning probability, as well as the total campaign

spending.

Two well-known policies are the limit on expenditures and public campaign

financing. According to Jacobson (1978): ”Even though Incumbents raise money

more easily from all sources, limits on contributions will not help Challengers be-

cause the problem is not equalizing spending between candidates but rather simply

getting more money to Challengers so that they can mount competitive races.”

The reason behind that statement is that the marginal effect of the Challenger’s

expenditure on the probability to win is greater than that of the Incumbent.

Although that is true, this logic doesn’t take into account the underlying game

between the Incumbent and the Challenger. In reality, as the Challenger increases

expenditures, the low-type Incumbent also does so, and as a result, the effect on

winning probability is uncertain.

Let us consider two policies, one by one and compare the conclusions.

2.6.2.1 Public Campaign Financing

First, I consider public campaign financing for the Challenger, which lowers his

type’s distribution. I quantify the effect of the limit case of the public financing

of the Challengers such that the resulting type quantile function matches one of

the Incumbents. This case eliminates the advantage due to the difference in types

completely, since now the types are assumed to be the same.

I take the equal quantile functions of the Incumbent and the Challenger as

given. The goal is to find the optimal strategies of the players using the equations

(2.27) and (2.28) and solving the inverse problem of finding r̂1(·) and r̂2(·) from
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the q̂1(·) and q̂2(·). I do that by approximating the bid quantile function by the

exponential distribution − log(1−t)
λ

. After that, I calculate the Incumbent’s winning

probability knowing the bid strategies and the distribution of uncertainty. Results

are presented in Figure 2.3 below.

Table 2.3: Public campaign financing: resulting winning probability

Incumbent’s probability of winning

All 72-80 82-90 92-2000 2002-2016

Original 0.938 0.929 0.953 0.941 0.935

With challenger’s financing 0.896 0.907 0.917 0.895 0.847

Decrease 0.042 0.22 0.36 0.046 0.088

The Incumbent’s winning probability decreases by 4.2% from 93.8% to 89.6%.

Moreover, the reform leads to the increase in expenditures of both candidates,

see Table 2.4 below:

Table 2.4: Public campaign financing: resulting expenditures

All 72-80 82-90 92-2000 2002-2016

Mean of incumbent’s expenditures

Original 1057 394 792 1110 1650

With challenger’s financing 1623 512 1092 1597 3381

Increase 566 118 300 487 1731

Mean of challenger’s expenditures

Original 401 243 309 420 557

With challenger’s financing 997 329 721 1073 1976

Increase 596 86 412 653 1419

* Expenditures are in thousands of $
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2.6.2.2 Limit on Expenditure

The other popular policy is the limit on expenditure. I consider such a case that

both candidates spend the same amount. Thus I do not allow the Incumbent

to spend more than the Challenger. In this case, b1 = b2 and the Incumbent’s

winning probability becomes:

P (b1ε1 > b2ε2) = P (ε1 > ε2) = P (ε2/ε1 < 1) = Hξ(1)

Using this formula and equation (2.17), I estimate the winning probability. Results

are presented in Table 2.5 below.

Table 2.5: Limit on expenditure results

Incumbent probability of winning

All 72-80 82-90 92-2000 2002-2016

Original 0.938 0.929 0.953 0.941 0.935

With the expenditure constraint 0.851 0.873 0.885 0.852 0.789

Decrease 0.087 0.056 0.068 0.089 0.146

It can be seen that the Incumbent’s winning probability drops by 8.7% from

93.8% to 85.1%, a bigger change than with public campaign financing for the

Challenger.

In conclusion, the Challenger’s public financing is not as effective as the limit

on expenditures in terms of both lowering the Incumbent’s winning probability

as well as on the total campaign spending. Thus by taking into account the

game structure of the model, I have shown that the predictions change once the

game-theoretical structure of the interactions between the candidates is taken into

account.
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2.7 Conclusion

In this work, I identified and estimated the incomplete information contest with

nonparametric contest success function. As a result, I recovered the distribution

of valuations or, alternatively, types from the bid distributions and win outcomes.

Here types characterize how costly it is to raise the bid and is just the inverse

of the valuation. This model provides the framework that can be applied to the

variety of real-life scenarios such as marketing and advertising by firms, litigation,

research and development, patent race, procurement of innovative good, research

contests, sports events, arms race, rent-seeking activity, such as lobbying, as well

as electoral competition. I apply the model to the U.S. House of Representatives

elections, which were also studied by He and Huang (2018) in the case of Tullock

contest. The model results show the incumbency advantage and can distinguish

the two sources of it. Moreover, the decrease in how costly is it to raise money for

the election over decades is observed. The knowledge of the types’ distributions

allows quantifying the effect of different policy changes such as limits on expendi-

tures or funding for Challengers in order to eliminate incumbency advantage. By

comparing these two policies, I found the former to be more effective.
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2.8 Appendix

2.8.1 Proof of Proposition 2.1

Proof: In case when both εi and εj have exponential distribution with parameter

λ = 1, fε(t) = e−t and in its turn Fε(t) = 1− e−t. As a result:

P (w1 = 1| b1, b2) = P (x1 > x2 | b1, b2) = P (b1ε1 > b2ε2 | b1, b2) =

= P (ε2 <
b1

b2

ε1 | b1, b2) =

+∞∫
0

Fε

(
b1

b2

t

)
fε(t)dt =

+∞∫
0

(
1− e−

b1
b2
t
)
e−tdt =

= 1− 1

1 + b1
b2

=
b1

b1 + b2

which is the contest success function of the well-known Tullock contest.

2.8.2 Proof of Proposition 2.2

Proof: Let us consider all assumptions required for the Theorem 6 in Athey (2001)

to hold.

1. fi(·) is density with respect to Lebesque measure, bounded and atomless.

2. Ui = pi(b1, b2)(vi − bi) + (1 − pi(b1, b2))(−bi) can be written in the general

form considered in the paper.

3. Winner’s payoff vi − bi and loser’s payoff −bi are continuous in (vi, b) and

bounded as vi has a finite support [vi, v̄i] and the bidders won’t find it

profitable to bid more than the valuation.

4. Expected utility E[Ui] =
∫
pi(bi, sj(vj))fj(vj)dvj − bi is bounded and finite.
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5. Single-crossing condition ∂2Ui
∂vi∂bi

≥ 0 is satisfied as:

∂2U1

∂v1∂b1

=
∂P1

∂b1

=
1

b1

hξ

(
b1

b2

)
> 0,

∂2U2

∂v2∂b2

=
∂P2

∂b2

=
b1

b2
2

hξ

(
b1

b2

)
> 0.

Thus all the assumptions of Theorem 6 in Athey (2001) are satisfied, hence there

exists a pure-strategy Bayesian Nash Equilibrium in nondecreasing strategies.

Since the single-crossing property holds with strict inequality, this equilibrium

is actually in increasing strategies.

2.8.3 Proof of Example 2.1

Proof: Given that the distribution of ξ is Beta-distribution: hξ(x) = kxk−1, 0 ≤

x ≤ 1, 0 < k < 1, an equation (2.3) can be rewritten as

v1 =
1

v̄2∫
v2

1
s2(v2)

k s1(v1)k−1

s2(v2)k−1dF2(v2)

=
1

ks1(v1)k−1
v̄2∫
v2

s2(v2)−kdF2(v2)

In its turn, equation (2.4) becomes:

v2 =
1

v̄1∫
v1

s1(v1)

s22(v2)
k s1(v1)k−1

s2(v2)k−1dF1(v1)

=
1

ks2(v2)−k−1
v̄1∫
v1

s1(v1)kdF1(v1)

If we plug in s1(v1) = c1F1(v1) and s2(v2) = c2F2(v2) we get:

v1 =
1

k(c1F1(v1))k−1
v̄2∫
v2

(c2F2(v2))−kdF2(v2)

=
1

k
1−k

ck−1
1

ck2
(F1(v1))k−1

,
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similarly

v2 =
1

k(c2F2(v2))−k−1
v̄1∫
v1

(c1F1(v1))kdF1(v1)

=
1

k
1+k

ck1
ck+1
2

(F2(v2))−k−1
.

In terms of quantile functions this can be written as:

q1(t1) =
1− k
k

ck2c
1−k
1 t1−k1 , q2(t2) =

1 + k

k
ck+1

2 c−k1 t1+k
2 t1, t2 ∈ (0, 1),

where q1 = F−1
1 and q2 = F−1

2 .

2.8.4 Proof of Theorem 2.1

Proof: First, we would like to estimate hξ(b) - the derivative of

Hξ(b) =

∫
wf(w, b)dw

f(b)
.

By taking the derivative with respect to b we get:

hξ(b) = Φ(f) =
f(b)

∫
w ∂f(w,b)

∂b
dw − ∂f(b)

∂b

∫
wf(w, b)dw

f(b)2
=

f(b)
∫
wf ′(w, b)dw − f ′(b)

∫
wf(w, b)dw

f(b)2

Φ(f + h) =

=
[f(b) + h(b)]

∫
w[f ′(w, b) + h′(w, b)]dw − [f ′(b) + h′(b)]

∫
w[f(w, b) + h(w, b)]dw

[f(b) + h(b)]2
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Φ(f + h)− Φ(f) =

f(b)2[f(b) + h(b)]
∫
w[f ′(w, b) + h′(w, b)]dw

f(b)2[f(b) + h(b)]2
−

f(b)2[f ′(b) + h′(b)]
∫
w[f(w, b) + h(w, b)]dw

f(b)2[f(b) + h(b)]2
+

−f(b)[f(b) + h(b)]2
∫
wf ′(w, b)dw

f(b)2[f(b) + h(b)]2
+

f ′(b)[f(b) + h(b)]2
∫
wf(w, b)dw

f(b)2[f(b) + h(b)]2

Num = f 3(b)

∫
wf ′(w, b)dw + f 3(b)

∫
wh′(w, b)dw+

+f 2(b)h(b)

∫
wf ′(w, b)dw + f 2(b)h(b)

∫
wh′(w, b)dw−

−f 2(b)f ′(b)

∫
wf(w, b)dw − f 2(b)f ′(b)

∫
wh(w, b)dw−

−f 2(b)h′(b)

∫
wf(w, b)dw − f 2(b)h′(b)

∫
wh(w, b)dw−

−f 3(b)

∫
wf ′(w, b)dw − 2f 2(b)h(b)

∫
wf ′(w, b)dw−

−f(b)h2(b)

∫
wf ′(w, b)dw + f ′(b)f 2(b)

∫
wf(w, b)dw+

+2f ′(b)f(b)h(b)

∫
wf(w, b)dw + f ′(b)h2(b)

∫
wf(w, b)dw =

f 3(b)

∫
wh′(w, b)dw − f 2(b)h(b)

∫
wf ′(w, b)dw+

+f 2(b)h(b)

∫
wh′(w, b)dw − f 2(b)f ′(b)

∫
wh(w, b)dw−

−f 2(b)h′(b)

∫
wf(w, b)dw − f 2(b)h′(b)

∫
wh(w, b)dw−

−f(b)h2(b)

∫
wf ′(w, b)dw + 2f ′(b)f(b)h(b)

∫
wf(w, b)dw+

+f ′(b)h2(b)

∫
wf(w, b)dw = Q+ P,
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Where:

Q = f 3(b)

∫
wh′(w, b)dw − f 2(b)h(b)

∫
wf ′(w, b)dw−

−f 2(b)f ′(b)

∫
wh(w, b)dw − f 2(b)h′(b)

∫
wf(w, b)dw+

+2f ′(b)f(b)h(b)

∫
wf(w, b)dw

P = f 2(b)h(b)

∫
wh′(w, b)dw − f 2(b)h′(b)

∫
wh(w, b)dw−

−f(b)h2(b)

∫
wf ′(w, b)dw + f ′(b)h2(b)

∫
wf(w, b)dw

Moreover:

1

f 2(f + h)2
=

1

f 4
+

1

f 2(f + h)2
− 1

f 4
=

1

f 4
− 2hf + h2

f 4(f + h)2

As a result:

Φ(f + h)− Φ(f) =

=
Q

f 4(b)
+

P

f 4(b)
− Q(2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
− P (2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
= DΦ(f, h) +RΦ(f, h),

Where:

DΦ(f, h) =
Q

f 4(b)

RΦ(f, h) =
P

f 4(b)
− Q(2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
− P (2h(b)f(b) + h2(b))

f 4(b)(f(b) + h(b))2
.
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Thus, for some constant A <∞:

|DΦ(f, h)| < A||h|| and |RΦ(f, h)| < A||h||2.

Using Newey (1994), Lemma 5.3: ||h|| p−→ 0. And thus,

sup|Φ(f + h)− Φ(f)| ≤ A||h||+ a||h||2 p−→ 0.

Now let us derive the asymptotic distribution.

Q = f 3(b)

∫
wh′(w, b)dw − f 2(b)h(b)

∫
wf ′(w, b)dw−

−f 2(b)f ′(b)

∫
wh(w, b)dw − f 2(b)h′(b)

∫
wf(w, b)dw+

+2f ′(b)f(b)h(b)

∫
wf(w, b)dw

In its turn,

f(b) =

∫
f(w, b)dw.

Thus

Q = f 3(b)

∫
wh′(w, b)dw − f 2(b)h′(b)

∫
wf(w, b)dw + T =

= f 3(b)

∫
w(f̂ ′(w, b)− f ′(w, b))dw−

−f 2(b)

∫
((f̂ ′(w, b)− f ′(w, b))dw)

∫
wf(w, b)dw + T =

=

∫
f 2(b)

[
wf(b)−

∫
wf(w, b)dw

]
(f̂ ′(w, b)− f ′(w, b))dw + T,

where T depends only on h, but not h′. Thus the terms in T converge faster than

the ones that depend on the derivative estimate.
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As a result,

D =

∫ [
wf(b)−

∫
wf(w, b)dw

f 2(b)

]
(f̂ ′(w, b)− f ′(w, b))dw + T.

Using Newey (1994), Lemma 5.3, we find that

√
Lh3(Φ(f + h)− Φ(f))→ N (0, Vξ) ,

where

Vξ =

∫ [
wf(b)−

∫
wf(w, b)dw

]2
f(w, b)

f 4(b)
dw

∫ (
∂K(u)

∂u

)2

du.

As w can only take 2 values 0 and 1:
∫
wf(w, b)dw = f(1, b) and

Vξ =

[
f(1, b)2f(0, b) + f(0, b)2f(1, b)

f 4(b)

] ∫ (
∂K(u)

∂u

)2

du =

=

[
f(1, b)f(0, b)

f 3(b)

] ∫ (
∂K(u)

∂u

)2

du

Moreover,

f(1, b) = f(b)P (w = 1|b) and

f(0, b) = f(b)P (w = 0|b) = f(b)(1− P (w = 1|b)),

thus

Vξ =

[
P (w = 1|b)(1− P (w = 1|b)))

f(b)

] ∫ (
∂K(u)

∂u

)2

du
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And as a result,

ĥξ(b)→ hξ(b) in probability, and
√
Lh3(ĥξ(b)− hξ(b))→ N(0, Vξ),

where

Vξ =

[
P (w = 1|b)(1− P (w = 1|b)))

f 2(b)

] ∫ (
∂K(u)

∂u

)2

du

.

2.8.5 Proof of Theorem 2.2

Proof: Now let us denote by f̃(w, b1, b2) the joint density of the vector (w, b1, b2)

and consider:

c1 = 1/v1 =

b̄2∫
b2

g2(b2)
1

b2

hξ

(
b1

b2

)
db2 := Φ̃(b1; f)

We also denote:

hξ

(
b1

b2

)
:= φ(b1, b2; f̃)

g2(b2)
1

b2

:= ψ(b2; f̃)

Then

Φ̃(b1; f̃) =

b̄2∫
b2

ψ(b2; f̃)φ(b1, b2; f̃)db2
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It follows that:

Φ̃(b1; f̃ + h̃)− Φ̃(b1; f̃) =

b̄2∫
b2

ψ(b2; f̃ + h̃)φ(b1, b2; f̃ + h̃)db2 −
b̄2∫
b2

ψ(b2; f̃)φ(b1, b2; f̃)db2

=

b̄2∫
b2

φ(b1, b2; f̃)Dψ(b1, b2; f̃)db2 +

b̄2∫
b2

Dψ(b2; f̃)φ(b1, b2; f̃)db2 + the rest =

=

b̄2∫
b2

∫
w

g2(b2)
1

b2

[
wf(b)−

∫
wf(w, b)dw

f 2(b)

]
(f̂ ′(w, b)− f ′(w, b))dwdb2 + the rest,

where b = b1/b2.

The rest converges faster as the rate of convergence of f̂ ′(w, b) is slower than

that of f̂(w, b).

Thus:

ĉ1(b1)→ c1(b1) in probability, and
√
Lh3(ĉ1(b1)− c1(b1))→ N(0, V ),

where

V =

b̄2∫
b2

g2
2(b2)

1

b2
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du

Similarly:

ĉ2(b2)→ c2(b2) in probability, and
√
Lh3(ĉ2(b2)− c2(b2))→ N(0, V ),
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where

V =

b̄1∫
b1

g2
1(b1)

b2
1

b4
2

[
P (w = 1| b1

b2
)(1− P (w = 1| b1

b2
)))

f( b1
b2

)

]
db2 ·

∫ (
∂K(u)

∂u

)2

du
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CHAPTER 3

Nonparametric Identification and Estimation of

a Serial Contest

3.1 Introduction

In this work, I prove the identification and derive the consistent estimator of a

contest model where an object is allocated according to the allocation rule de-

termined by the serial contest success function (CSF). Every bidder pays his bid

regardless of whether he wins or not. The model is a game of incomplete infor-

mation in the sense that the bidders do not observe the other bidders’ valuations,

but the distribution of the valuations is common knowledge. Identification and

estimation of the model primitives is a crucial part of any policy intervention.

Similar to Guerre et al. (2000) and He and Huang (2018) I propose a method that

allows the researcher to estimate the distribution of bidders’ valuations using the

data on their bids. This method does not require any parametric assumptions,

nor does it require Bayesian Nash equilibrium strategy computation, which makes

the method computationally attractive.

The contest is a natural model of costly competition as it describes situations

where all players exert costly effort to achieve some goal (win the contest). This

is sunk cost, in the sense that it is paid no matter whether a player wins or loses.

Such interactions include a wide range of scenarios such as marketing and adver-

tising by firms (Bell et al. (1975)), litigation (Hirshleifer and Osborne (2001), Baye

et al. (2005)); research and development, patent race, procurement of innovative
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good, research contests ( Taylor (1995), Che and Gale (2003)); sports events, arms

race and rent-seeking activity, such as lobbying (Tullock (1980), Krueger (1974),

Baye et al. (1993)). Electoral competition was also modeled using contest theory

since the 1990s, see, for example, Baron (1994), Snyder (1989), or Skaperdas and

Grofman (1995).

The contest is determined by the contest success function, which is the function

that maps bidders’ efforts to the win probability. See the survey by Konrad

(2009) for an extensive discussion of different types of contests.1 The probability

of winning satisfies some standard assumptions which are described in detail in

Section 2. Depending on the application, different contest success functions are

more reasonable to use. In this work, the contest with serial CSF is considered.

It was introduced by Alcalde and Dahm (2007), and the main characteristic of

this contest is that the win probability depends on the percentage mark-up. The

serial contest success function has several advantages over the other widely used

CSF such as Tullock (1980) CSF, for which win probability depends on the ratio

of the bids, and Hirshleifer (1989) CSF for which win probability depends on the

difference of the bids. Compared to the Tullock’s contest success function, serial

CSF depends not only on the relative bids but also on the absolute differences

of bids. In the case of election campaign spending, for instance, it is plausible

to think that the difference in spendings matter. For instance, the difference

between bids of 10 and 30 thousand dollars might be more impactful than the

difference between the bids of 1000 and 3000. On the other hand, with respect to

the Hirshleifer’s difference-form contests, the serial contest weakens the absolute

criterion in the mapping from bids to winning probability and, most importantly,

it is homogeneous in bids. The last property is crucial for the applications in

which the bid is the expenditure, as we would like to have the property that

1All-pay auction is an extreme case of the contest model when the bidder with the highest
bid wins, thus the winning probability is one if and only if the bidder has the highest bid. In
reality, in the scenarios described above it is common that the contestant with the highest bid
can still lose, thus it is important to consider contests for empirical applications.
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the win probability does not depend on the units of measurement (like dollars or

thousands of dollars).

Most of the theoretical papers on contests and auctions consider games with

complete information in the sense that players observe each other’s valuations.

In reality, it is more plausible to think that the bidders do not observe the pri-

vate information of the other bidders. Fey (2008), Ryvkin (2010) and Ewerhart

(2014) are a few of the papers providing the existence of equilibrium results in the

context of the incomplete information contests. The literature on nonparamet-

ric identification and estimation of incomplete information auctions and contests

is very sparse. There is a block of papers on the first-price auctions originated

from Guerre et al. (2000). In my previous research project, I considered all-pay

auctions (an extreme case of a contest). The only two papers that consider the

identification and estimation of a contest as a game with incomplete information

are He and Huang (2018) and my project on nonparametric identification and

estimation of the contest model with uncertainty. He and Huang (2018) consider

the case when the contest success function has the Tullock’s form. In my project,

which is presented in Chapter 2, I consider the nonparametric representation of

the contest success function. But in the case when the data is sparse, we would

need to put some restrictions on the nonparametric structure. Thus, one of the

possibilities would be to assume the specific CSF and in this work, I discuss the

case of the serial contest success function.

The rest of the paper is organized as follows. In Section 2, I introduce the

symmetric contest model with serial CSF. The nonparametric identification and

estimation, as well as the Monte Carlo simulations, are discussed in detail. Section

3 considers the asymmetric setting. Similarly, identification analysis, estimation

procedure as well as the Monte Carlo simulations are presented. Section 4 con-

cludes.
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3.2 Symmetric Contest Model

3.2.1 Notations and Definitions

In this work, I consider a contest model with N = 2 risk-neutral bidders. The

model can be easily extended to account for the arbitrary number of bidders.

Assumption 3.1. Each bidder has a private valuation of the good vi, i = 1, 2,

which is his private information. He draws this valuation vi from the distribution

F (v) with support [v, v̄], density f and quantile function q = F−1 independently

from the other bidders.

Assumption 3.2. When bidders simultaneously submit their bids bi they know

the number of bidders, their own valuations vi and F (v).

Thus this is a game with incomplete information.

Assumption 3.3. Each of the bidders pays bi, regardless of whether or not he

obtains a good.

The winner is determined according to the contest success function Ψ.

Definition 3.1. (CSF) A contest success function is a mapping

Ψ : RN
+ → ∆N ,

such that for each b = (b1, ..., bN) ∈ RN
+ , Ψ(b) is in the N−1 dimensional simplex,

i.e. Ψ(b) is such that, for each i, Ψi(b) ≥ 0, and
∑N

i=1 Ψi(b) = 1.

Ψ satisfies the following assumptions:

Monotonicity: Ψi(bi, b−i) is weakly increasing in bi, for any b−i ∈ RN−1
+ , and

any i ∈ 1, ..., N ;

Zero bids: Ψi(0, b−i) = 0 for any b−i 6= 0, and any i ∈ 1, ..., N ; moreover,
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Ψi(bi, b−i) > 0 for any bi > 0, and any i ∈ 1, ..., N ;

Anonymity: Ψi(b) = Ψi(bφ(1), ..., bφ(N)) for any permutation φ : 1, ..., N →

1, ..., N , any b ∈ RN
+ , and any i ∈ 1, ..., N ;

Smoothness: Ψi is continuous on RN
+\{0}, for any i ∈ 1, ..., N ; moreover, the

partial derivative ∂Ψi(bi,b−i)
∂bi

exists and is continuous in b−i, for any bi > 0, and any

i ∈ 1, ..., N .

Given the contest success function Ψ, the expected payoff to bidder i partici-

pating in the contest, is given by:

E[ui|vi, N, F (v)] = viE[Ψi(bi, b−i)|bi, N, F (v)]− bi.

The final payoff to the bidder i is vi − bi if he wins, and −bi if he looses.

In this work, I consider the contest with serial CSF. It was introduced by

Alcalde and Dahm (2007). The main characteristic of this type of contests is that

the win probabilities depend on the percentage mark-up.

Definition 3.2. (Serial CSF) If b is an ordered vector of bids such that b1 ≥ b2 ≥

... ≥ bn ≥ 0, then the serial CSF with economies of scale parameter α ≥ 0 assigns

for all bidders i:

Ψi(b) =
n∑
j=i

bαj − bαj+1

j · bα1
,

with bn+1 = 0. If b is degenerated, then fair lottery takes place.

The class of serial contest success functions can also be defined recursively as

follows:

Ψi(b) = Ψi+1(b) +
bαi − bαi+1

i · bα1
, Ψn(b) =

bαn
n · bα1

.

As in the paper I consider 2 bidder case, the CSF takes the following form.
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Assumption 3.4. The winning probability is given by:

Ψi(bi, bj) =


1
2

(
bi
bj

)α
, if bi ≤ bj

1− 1
2

(
bj
bi

)α
, if bi ≥ bj,

where i, j = 1, 2.

In case when α = 1:

Ψi(bi, bj) =

 1
2
− bj−bi

2bj
, if bi ≤ bj

1
2

+
bi−bj

2bi
, if bi ≥ bj.

In its turn, the extreme case when α =∞ is equivalent to the all-pay auction:

Ψi(bi, bj) =

 0, if bi ≤ bj

1, if bi ≥ bj.

Below is shown the contest success function (the win probability) of the first

bidder once the bid of the second bidder b2 is fixed at the value 1 for different

values of the parameter α.

Figure 3.1: Serial contest success function of bidder 1
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3.2.2 Equilibrium Characterization

Given Assumptions 3.1-3.4 the expected utility of player i can be written in the

following way:

E[ui(v)|vi, F (v)] = viE[Ψi(b, b−i)|b, vi, N, F (v)]− bi =

vi

[∫ b̄

bi

1

2

(
bi
bj

)α
dG(bj) +

∫ bi

b

(
1− 1

2

(
bj
bi

)α)
dG(bj)

]
− bi,

where i = 1, 2, j = −i. The final payoff to the bidder i is vi − bi if he obtains a

good, and −bi if he does not obtain a good.

I consider the Bayesian equilibrium in this incomplete information game which

is symmetric and strictly monotonic. The existence can be proved using Athey

(2001) Theorem 6.

Proposition 3.1. Given Assumptions 3.1-3.4 there exists a pure strategy increas-

ing BNE of the incomplete information game formulated above.

Proof. The proof can be found in the Appendix.

For each valuation, the corresponding bid is defined by the function s(v) = b

that is the equilibrium bid strategy which maximizes the bidder’s expected payoff.

s(v) is invertible and s−1(b) = v given that it is strictly monotonic.

Proposition 3.2. Given Assumptions 3.1-3.4 as well as the assumption of strict

monotonicity of the bidding strategies the first-order conditions of this game can

be written as:

vi =
1

α
2
[s(vi)α−1

∫ v̄
vi
s(vj)−αdF (vj) + s(vi)−α−1

∫ vi
v
s(vj)αdF (vj)]

, (3.1)

where i = 1, 2, j = −i.

78



Proof: The expected payoff to bidder i when his true valuation is vi but he bids

as if it was v can be written as follows:

E[ui(v)|vi, F (v)] = viE[Ψi(b, b−i)|b, v,N, F (v)]− b =

= vi

[∫ b̄

b

1

2

(
b

bj

)α
dG(bj) +

∫ b

b

(
1− 1

2

(
bj
b

)α)
dG(bj)

]
− b =

= vi

[∫ v̄

v

1

2

(
s(v)

s(vj)

)α
dF (vj) +

∫ v

v

(
1− 1

2

(
s(vj)

s(v)

)α)
dF (vj)

]
− s(v) =

= vi

[
1

2
s(v)α

∫ v̄

v

s(vj)
−αdF (vj)−

1

2
s(v)−α

∫ v

v

s(vj)
αdF (vj) + F (v)

]
− s(v),

since b = s(v) and G(b) = Pr(bi ≤ b) = Pr(vi ≤ s−1(b)) = F (s−1(b)) = F (v) as

s(v) is invertible.

Using the first order condition (FOC) (differentiating with respect to v and

substituting v = vi), we get:

∂E[ui]

∂v
= vi[

1

2
αs(v)α−1s′(v)

∫ v̄

v

s(vj)
−αdF (vj)−

1

2
s(v)αs(v)−αf(v)+

1

2
αs(v)−α−1s′(v)

∫ v

v

s(vj)
αdF (vj)−

1

2
s(v)−αs(v)αf(v) + f(v)]− s′(v) = 0,

when v = vi.

From the differential equation above we obtain the following equation on the

valuation and the strategy:

vi =
1

α
2
[s(vi)α−1

∫ v̄
vi
s(vj)−αdF (vj) + s(vi)−α−1

∫ vi
v
s(vj)αdF (vj)]

.

In the model, the bids are observed from the data whereas the valuations are

unknown for the econometrician. Thus, to be able to recover the valuations we

should be able to eliminate both F (·) as well as s(·) from the write hand side of

the equation (3.1) and represent it as a function of bids. The method is presented
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in the next section.

3.2.3 Nonparametric Identification

In this section, I prove that the parameters of the model are nonparametrically

identified from available data.

The only unknown ingredient of the model is the distribution of valuations

F (·), the number of bidders as well as the bids bi, i = 1, 2, are observed. As a

result, the question of identification boils down to the question of whether the

distribution F can be uniquely recovered from observed bids.

Let’s denote the distribution of bi by G(·) and quantile function r(·) = G−1(·).

Note that the distribution G(·) of bi depends on the underlying distribution F (·)

not only through vi, but also through the equilibrium strategy s(·).

Formally, let G denote the set of all distributions over the space of permitted

bids, F ∈ F . Let’s call the mapping from the private information to bids γ ∈ Γ,

where γ : F → G. Then,

Definition 3.3. (Identification). A model (F ,Γ) is identified if for every (F, F ′) ∈

F2 and (γ, γ′) ∈ Γ2 , γ(F ) = γ′(F ′)⇒ (F, γ) = (F ′, γ′).

Proposition 3.3. Given Assumptions 3.1-3.4 are satisfied and F (v) is continuous

and strictly increasing on [v, v̄], the quantile function of valuations is nonparamet-

rically identified:

q(t) =
1

α
2
[r(t)α−1

1∫
t

r(tj)−αdtj + r(t)−α−1
t∫

0

r(tj)αdtj]

, t ∈ (0, 1). (3.2)

Proof: As it was shown above for every b ∈ [b, b̄] = [s(v), s(v̄)]: G(b) = F (v),

where b = s(v), thus G(s(v)) = F (v). Let r(t) = G−1(t) and q(t) = F−1(t), where
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t ∈ (0, 1). Then by changing variables (applying r to both sides of equation):

G(s(v)) = F (v)⇔ s(v) = r(F (v)).

Moreover, v = q(t), where t = F (v).

Substituting the above expressions into the equation (3.1), we can rewrite the

equation for the quantile function of valuations in terms of the quantile function

of bids:

q(t) =
1

α
2
[r(t)α−1

1∫
t

r(tj)−αdtj + r(t)−α−1
t∫

0

r(tj)αdtj]

, t ∈ (0, 1).

This proves the proposition.

3.2.4 Nonparametric Estimation

In this section, I propose the nonparametric estimators of the quantile function

of bidders’ valuations.

If we knew the quantile function r(t), then we could use that to recover the

quantile function of the bidders valuation q(t). r(t) is unknown, but can be

estimated from observed bids:

r̂(t) = b(dnte:n),

where b(dse:n) is the s-th lowest order statistic out of n i.i.d. bids observations and

d·e is the ceiling function.

Let L be the number of auctions, l is the l-th auction, {bil, i = 1, 2, l = 1, ..., L}

are the observations. Then we can estimate the quantile function of valuations by
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plugging-in the estimators of quantile function of the bids into equation (3.2):

q̂(t) =
1

α
2
[r̂(t)α−1

1∫
t

r̂(tj)−αdtj + r̂(t)−α−1
t∫

0

r̂(tj)αdtj]

, t ∈ (0, 1). (3.3)

Note that the invertibility of the bid function is the key for identification as

we relied heavily on the assumption that the bidders use a strictly increasing bid

function.

Proposition 3.4. (Csorgo (1983)) Let G be a twice differentiable distribution

function, having finite support. Assume inf
0<t<1

g(G−1(t)) > 0 and sup
0<t<1

|g′(G−1(t))| <

∞. Then sup
0<t<1

|r̂(t)− r(t)| a.s.−−→ 0.

⇒

sup
0<t<1

|r̂(t)− r(t)| = op(1).

It can be proved that:

Proposition 3.5. Under the same assumptions as above:

q̂(t)− q(t) = op(1).

Moreover, in case α is not known it can be estimated from the observed bids

and win outcomes. As the CSF is:

Ψi(bi, bj) =


1
2

(
bi
bj

)α
, if bi ≤ bj

1− 1
2

(
bj
bi

)α
, if bi ≥ bj,

where i, j = 1, 2, and it describes the

probability of winning, thus α can be estimates using the Maximum Likelihood

Estimator as the first step of the estimation procedure.
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3.2.5 Monte Carlo Simulations

To analyze the performance of the estimator (3.3) I will run the Monte Carlo

Simulations.

Example 3.1. If the distribution of valuations is

F (v) =

(
1 +

α− 1

α + 1
− α− 1

α

2k

v

) 1
α−1

, v ∈ [v, v̄], α 6= 1,

or equivalently if quantile function q of the valuations is

q(t) =
1

α
2k(1−α)

(tα−1 − 1) + α
2k(1+α)

, t ∈ (0, 1), α 6= 1.

q(0) = k(1+α)(α−1)
α2 = v and q(1) = 2k(α+1)

α
= v̄. Then there exists a unique

equilibrium bid function s(v) = kF (v), where v ∈ [v, v̄] for any k.

The proof can be found in the Appendix.

Let’s consider L = 200 auctions with 2 bidders and 100 Monte Carlo replica-

tions. Then the following figure presents the true quantile function, the mean, the

5% quantile, and the 95% quantile of the 100 estimates q̂(t) for k = 2 and α = 3.

Figure 3.2: Monte Carlo results in case of symmetric bidders
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As we see the estimator works very well in this case, the only issue might occur

at the border since the quantile estimates are biased closed to the borders.

3.3 Asymmetric Contest Model

3.3.1 Nonparametric Identification

In this section, I prove the nonparametric identification of the model with asym-

metric bidders.

I consider the case when bidders are asymmetric in a sense that they have dif-

ferent distributions of the valuations: Fi(·), i = 1, 2 with corresponding densities

fi(·). Denote by si(vi), i = 1, 2 strictly monotonic equilibrium strategies, thus

they are invertible and s−1
i (bi) = vi. The rest is the same as in the symmetric

scenario.

Proposition 3.6. If Fi(v) are continuous and strictly increasing on [v, v̄], the

quantile functions of valuations are nonparametrically identified:

qi(t) =
1

α
2
[ri(t)α−1

1∫
Gj(ri(t))

rj(tj)−αdtj + ri(t)−α−1
Gj(ri(t))∫

0

rj(tj)αdtj]

,

where t ∈ (0, 1), i = 1, 2, j = −i.

Proof: Given that the strategies of both players are strictly monotonic and the

valuations are independent, the expected payoff to bidder i when his true valuation
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is vi but he bids as if it was v can be written as:

E[ui(v)|vi, Fj(v)] = vi

[∫ b̄j

b

1

2

(
b

bj

)α
dGj(bj) +

∫ b

bj

(
1− 1

2

(
bj
b

)α)
dGj(bj)

]
− b =

= vi


v̄j∫

s−1
j (si(v))

1

2

(
si(v)

sj(vj)

)α
dFj(vj) +

s−1
j (si(v))∫
vj

(
1− 1

2

(
sj(vj)

si(v)

)α)
dFj(vj)

− si(v) =

= vi
1

2
si(v)α

v̄j∫
s−1
j (si(v))

sj(vj)
−αdFj(vj)− vi

1

2
si(v)−α

s−1
j (si(v))∫
vj

sj(vj)
αdFj(vj)+

+viFj(s
−1
j (si(v)))− si(v),

since bi = si(vi) and Gi(b) = Pr(bi ≤ b) = Pr(vi ≤ s−1
i (b)) = Fi(s

−1
i (b)) = Fi(v)

as si(v) is invertible.

Using the First order condition (differentiating with respect to v and substi-

tuting v = vi), we get:

∂E[ui]

∂v
= vi[

1

2
αsi(v)α−1s′i(v)

v̄j∫
s−1
j (si(v))

sj(vj)
−αdFj(vj)−

−1

2
si(v)αsj(s

−1
j (si(v)))−αfj(s

−1
j (si(v)))

∂

∂v
(s−1
j (si(v)))+

+
1

2
αsi(v)−α−1s′i(v)

s−1
j (si(v))∫
vj

sj(vj)
αdFj(vj)−

−1

2
si(v)−αsj(s

−1
j (si(v)))αfj(s

−1
j (si(v)))

∂

∂v
(s−1
j (si(v)))+

+fj(s
−1
j (si(v)))

∂

∂v
(s−1
j (si(v)))]− s′i(v) = 0,

when v = vi.

From the differential equation above we obtain the following equation on the
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valuation and the strategy:

vi =
1

α
2
[si(vi)α−1

v̄j∫
s−1
j (si(vi))

sj(vj)−αdFj(vj) + si(vi)−α−1

s−1
j (si(vi))∫
vj

sj(vj)αdFj(vj)]

.

(3.4)

Let us now denote t = Fi(vi) and tj = Fj(vj), equivalently vi = qi(t) and vj =

qj(tj), where qi(·) and qj(·) are quantile functions of the distribution of valuations.

As a result of monotonicity of the strategies similar to the case with symmetric

bidders Gi(si(vi)) = Fi(vi), applying r−1
i (·) to both sides of equality, where ri(·)

is quantile function of the bid distribution we get: si(vi) = ri(Fi(vi)) = ri(t) and

sj(vj) = rj(Fj(vj)) = rj(tj). Moreover, Fj(s
−1
j (si(vi))) = Gj(si(vi)) = Gj(ri(t)),

Fj(v̄j) = 1 and Fj(vj) = 0. Using these equalities and changing variables we can

rewrite the equation (3.4) above as:

qi(t) =
1

α
2
[ri(t)α−1

1∫
Gj(ri(t))

rj(tj)−αdtj + ri(t)−α−1
Gj(ri(t))∫

0

rj(tj)αdtj]

, (3.5)

where t ∈ (0, 1), i = 1, 2, j = −i. This proves the proposition.

3.3.2 Nonparametric Estimation

In this section, I propose nonparametric estimator of quantile functions of bidders’

valuations.

If we knew the quantile functions ri(·) as well as the distribution of bids Gi(·),

then we could use that to recover quantile functions of the bidders’ valuations qi(·).

Let L be the number of auctions, l is the l-th auction, {bil, i = 1, 2, l = 1, ..., L} are

the observations. As in case of the symmetric valuations ri(·) can be estimated
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from observed bids:

r̂i(t) = b
(dLte:L)
i ,

where b
(dse:L)
i is the s-th lowest order statistic out of L i.i.d. bids observations; d·e

is the ceiling function. In its turn Gi(·) can be estimated as:

Ĝi(b) =
1

L

L∑
l=1

1(bil ≤ b).

Thus, we can estimate the quantile function of valuations using the following

plug-in estimator:

q̂i(t) =
1

α
2
[r̂i(t)α−1

1∫
Ĝj(r̂i(t))

r̂j(tj)−αdtj + r̂i(t)−α−1
Ĝj(r̂i(t))∫

0

r̂j(tj)αdtj]

, (3.6)

where t ∈ (0, 1).

3.3.3 Monte Carlo Simulations

To analyze the performance of the estimator (3.6) I will run the Monte Carlo

Simulations.

Example 3.2. If the true quantile functions qi, i = 1, 2 of the bidder’s valuations

are

qi(t) =
1

α
2

[
kα−1
i k−αj

1−α tα−1 + 1
kj(1+α)

+ 1
kj(α−1)

] , t ∈ (0, 1), i = 1, 2.

Then there exist unique equilibrium bid functions s1(v) = k1F1(v) and s2(v) =

k2F2(v) for any k1 and k2.

The proof can be found in the Appendix.

Let’s consider L = 200 auctions with 2 bidders and 100 Monte Carlo replica-
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tions. Then the following figure presents the true quantile function, the mean, the

5% quantile, and the 95% quantile of the 100 estimates q̂1(t) and q̂2(t) for k1 = 5,

k2 = 6 and α = 2.

Figure 3.3: Monte Carlo results in case of asymmetric bidders

As we see the estimator works very well in this case, the only issue might occur

at the border since the quantile estimates are biased closed to the borders.

3.3.4 Representation in Terms of Types

The problem can be easily reformulated in terms of the types, where the type

characterizes how costly it is to raise a bid. Let ci, i = 1, 2 be the type of bidder

i. Expected payoff to bidder i in this case is given by:

E[ui|ci, Fj(c)] = E[Ψi(ci, c−i)|bi, ci, N, Fj(c)]− ci ∗ bi.

where ci = 1
vi

.

Then under the same conditions as before we can estimate the quantile func-
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tions of types:

q̂i(1− t) =
α

2
[r̂i(t)

α−1

1∫
Ĝj(r̂i(t))

r̂j(tj)
−αdtj + r̂i(t)

−α−1

Ĝj(r̂i(t))∫
0

r̂j(tj)
αdtj],

where t ∈ (0, 1).

3.4 Conclusion

In this work, I identified and estimated the incomplete information contest model

with serial contest success function with both symmetric and asymmetric bidders.

As a result, I recover the distribution of valuations or, alternatively, types from

the bid distribution. This model provides the framework that can be applied

to the variety of real-life scenarios such as litigation, research and development,

patent race, procurement of innovative good, research contests, sport, events, arms

race, rent-seeking activity, such as lobbying, as well as electoral competition. The

knowledge of the distribution of valuations or types allows the policymakers to

quantify the effect of different policy changes. This is a semiparametric version of

the model presented in Chapter 2, which can be applied in the case when the data

is sparse and some restrictions need to be put on the nonparametric structure.
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3.5 Appendix

3.5.1 Proof of Proposition 3.1

Proof: Let us consider the more general case when bidders are asymmetric in a

sense that they have different distributions of the valuations: Fi(·), i = 1, 2 with

corresponding densities fi(·). Let us consider all assumptions required for the

Theorem 6 in Athey (2001) to hold.

1. fi(·) is density with respect to Lebesque measure, bounded and atomless.

2. Ui = Ψi(b1, b2)(vi − bi) + (1−Ψi(b1, b2))(−bi) can be written in the general

form considered in the paper.

3. Winner’s payoff vi − bi and loser’s payoff −bi are continuous in (vi, b) and

bounded as vi has a finite support [vi, v̄i] and the bidders won’t find it

profitable to bid more that the valuation.

4. Expected utility E[Ui] =
∫

Ψi(bi, sj(vj))fj(vj)dvj − bi is bounded and finite.

5. Single-crossing condition ∂2Ui
∂vi∂bi

≥ 0 is satisfied as:

∂2Ui
∂vi∂bi

=
∂Ψi

∂bi
=

 1
2bj

> 0, if bi ≤ bj
bj
2b2i

> 0, if bi ≥ bj.

Thus all the assumptions of Theorem 6 in Athey (2001) are satisfied, hence there

exists a pure-strategy Bayesian Nash Equilibrium in nondecreasing strategies.

Since the single-crossing property holds with strict inequality, this equilibrium

is actually in increasing strategies.
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3.5.2 Proof of Example 3.1

Proof: An equation (3.1) can be rewritten as

vi
α

2
[s(vi)

α−1

∫ v̄

vi

s(vj)
−αdF (vj) + s(vi)

−α−1

∫ vi

v

s(vj)
αdF (vj)]− 1 = 0.

If we consider α 6= 1 and plug in s(v) = kF (v) the equation above becomes:

vi
α

2
[(kF (vi))

α−1

∫ v̄

vi

(kF (vj))
−αdF (vj)+

+(kF (vi))
−α−1

∫ vi

v

(kF (vj))
αdF (vj)]− 1 = 0.

Taking the integrals we get:

vi
α

2

1

k

[
F (vi)

α−1

(
1

1− α
− F (vi)

1−α

1− α

)
+ F (vi)

−α−1F (vi)
1+α

1 + α

]
− 1 = 0,

since F (v̄) = 1.

Collecting the terms we get:

vi
α

2k

[
F (vi)

α−1 1

1− α
− 1

1− α
+

1

1 + α

]
= 1.

In the end from here:

v =
1

α
2k(1−α)

(F (v)α−1 − 1) + α
2k(1+α)

,

or equivalently:

F (v) =

(
1 +

α− 1

α + 1
− α− 1

α

2k

v

) 1
α−1

, v ∈ [v, v̄], α 6= 1.

This proves the statement.
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3.5.3 Proof of Example 3.2

Proof: An equation (3.4) can be rewritten as

vi
α

2
[si(vi)

α−1

v̄j∫
s−1
j (si(vi))

sj(vj)
−αdFj(vj)+

+si(vi)
−α−1

s−1
j (si(vi))∫
vj

sj(vj)
αdFj(vj)]− 1 = 0.

If we consider α 6= 1 and plug in si(v) = kiFi(vi) the equation above becomes:

vi
α

2
[kα−1
i Fi(vi)

α−1

v̄j∫
s−1
j (kiFi(vi))

k−αj Fj(vj)
−αdFj(vj)+

+k−α−1
i Fi(vi)

−α−1

s−1
j (kiFi(vi))∫

vj

kαj Fj(vj)
αdFj(vj)]− 1 = 0.

Taking the integrals we get:

vi
α

2

[
kα−1
i k−αj Fi(vi)

α−1

(
Fj(vj)

−α+1

−α + 1

)∣∣∣∣v̄j
s−1
j (kiFi(vi))

+

+ k−α−1
i kαj Fi(vi)

−α−1

(
Fj(vj)

α+1

α + 1

)∣∣∣∣s−1
j (kiFi(vi))

vj

]
− 1 = 0.

Collecting the terms we get:

vi
α

2

[
kα−1
i k−αj Fi(vi)

α−1 1

−α + 1
+

1

k2(α− 1)
+

1

k2(α + 1)

]
− 1 = 0,

since Fj(s
−1
j (kiFi(vi))) = kiFi(vi)

kj
.
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In the end from here:

vi =
1

α
2

[
kα−1
i k−αj

1−α Fi(vi)α−1 + 1
kj(1+α)

+ 1
kj(α−1)

] .
This proves the statement.
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