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Abstract

Recent genomic profiling of childhood acute lymphoblastic leukemia (ALL) identified a novel

high-risk subtype with a gene expression signature resembling Philadelphia chromosome-positive

ALL and a poor prognosis (Ph-like ALL). However, the role of inherited genetic variation in Ph-

like ALL pathogenesis remains unknown. In a genome-wide association study (GWAS) of 511

ALL cases and 6,661 non-ALL controls, we identified a single susceptibility locus for Ph-like

ALL (GATA3, rs3824662, P=2.17×10−14, odds ratio [OR]=3.85, for Ph-like ALL vs. non-ALL;

P=1.05×10−8, OR=3.25, for Ph-like ALL vs. non-Ph-like ALL) that was independently validated.
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The rs3824662 risk allele was associated with somatic lesions underlying Ph-like ALL (i.e.,

CRLF2 rearrangement, JAK mutation, and IKZF1 deletion) and directly influenced GATA3

transcription. Finally, GATA3 SNP genotype was also associated with early treatment response

and the risk of ALL relapse. Our results provide insights into interactions between host and tumor

genomes and their importance in ALL pathogenesis and prognosis.

Progressive intensification and risk-adapted chemotherapy have improved the 5-year

survival rate of childhood ALL to over 85% in most developed countries1. However,

prognosis remains poor for approximately 20% of patients with high-risk features (e.g.,

older age and higher leukocyte count at diagnosis, Philadelphia chromosome-positive [Ph+]

ALL)2-5 .

Recent genomic profiling studies have revealed the remarkable heterogeneity of childhood

ALL with more granular classification of molecular subtypes. Up to 15% of childhood B-

lineage ALL cases exhibit a gene expression signature similar to that of Ph+ ALL6-9.

Defined by this common expression profile, the “Ph-like” ALL subtype has a range of

structural genetic alterations in the tumor genome that activate lymphoid development,

cytokine receptor, and kinase signaling pathways. Ph-like ALL commonly harbors somatic

IKZF1 deletion or mutation6,9. Up to 50% of Ph-like ALL cases carry CRLF2

rearrangements, with concurrent JAK mutations in approximately half of CRLF2-related

cases8,10. Ph-like ALL cases without CRLF2 alterations harbor a range of genomic lesions

targeting cytokine receptors and tyrosine kinases7. Importantly, Ph-like ALL is associated

with a high risk of relapse 6,8,11.

GWAS have identified germline single nucleotide polymorphisms (SNPs) in ARID5B,

IKZF1, CEBPE, PIP4K2A, and CDKN2A/CDKN2B that strongly influence susceptibility to

childhood ALL12-15. In fact, children carrying the ARID5B variants not only are more likely

to develop ALL in general, but are at a particularly high risk of having hyperdiploid

ALL14,16,17, implying interactions between inherited and acquired genetic variations during

leukemogenesis. Similarly in myeloproliferative neoplasms, germline variation at the JAK2

locus was linked to somatic JAK2V617F mutation18-20. Together, these observations indicate

that both germline and somatic genetic variations play critical roles in tumor pathogenesis.

To this end, we conducted a GWAS of Ph-like ALL to identify germline genetic variants

related to susceptibility to this ALL subtype, and to evaluate their association with somatic

lesions underlying Ph-like ALL and with the risk of relapse.

In the discovery GWAS, we compared genotype frequency at 718,890 SNPs between 75

children with Ph-like ALL from the Children’s Oncology Group (COG) AALL0232 cohort

and 6,661 non-ALL controls (Supplementary Fig.1). After adjusting for genetic ancestry,

two SNPs at 10p14 within the GATA3 gene reached genome-wide significance: rs3824662

(P=2.17×10−14, OR=3.85 [95%CI, 2.71 to 5.47]) and rs3781093 (P=4.94×10−12, OR=3.45

[2.42 to 4.93], Table 1 and Fig. 1). These two SNPs were in strong linkage disequilibrium

(LD, r2=0.94, D’=1 in HapMap CEU, Supplementary Fig. 2), representing a single

susceptibility locus. The A allele at rs3824662 and the C allele at rs3781093 were over-

represented in Ph-like ALL, conferring increased disease risk across ethnicity (Table 1 and
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Supplementary Fig. 3). We next performed a second GWAS comparing children in the COG

AALL0232 cohort who had the Ph-like expression profile (N=75) with those who did not

have the Ph-like profile (“non-Ph-like”, N=436). After adjusting for genetic ancestry, the

same GATA3 SNPs, rs3824662 and rs3781093, exhibited the strongest association across the

genome (P=1.05×10−8, OR=3.25 [2.16 to 4.89], and P=2.62×10−7, OR=2.89 [1.92 to 4.34],

respectively, Table 1 and Supplementary Figs. 3 and 4). Imputation of genotypes at 37,493

additional SNPs at this locus (chr10: 60,523 to 10,060,447) did not reveal any variants with

a stronger association with Ph-like ALL than the original GWAS hits (Supplementary Fig.

5).

To validate the association of GATA3 SNPs with Ph-like ALL, we then genotyped

rs3824662 and rs3781093 in 171 children with B-ALL enrolled in the COG P9906 study

and in an independent cohort of 5,755 non-ALL controls. In this replication analysis, risk

alleles at both GATA3 SNPs were consistently over-represented in Ph-like ALL (N=32)

compared to non-ALL controls: rs3824662 (P=3.69×10−5, OR=3.14, [1.18 to 5.44]), and

rs3781093 (P=0.0001, OR=2.95 [1.68 to 5.16]), or compared to non-Ph-like ALL (N=139):

rs3824662 (P=0.01, OR=2.16 [1.18 to 3.97]) and rs3781093 (P=0.004, OR=2.55 [1.33 to

4.88], Table 1).

To explore the functions of these germline GATA3 variants, we first examined the

relationships between rs3824662 SNP genotype and GATA3 mRNA expression. In

lymphoblastoid cell lines, rs3824662 A allele was associated with significantly increased

GATA3 mRNA level (HapMap YRI, N=56, P=0.034, Fig. 2A; CEU and MEX,

Supplementary Fig. 6). Consistently, the A allele was also linked to higher levels of DNase

hypersensitivity at this locus (HapMap YRI, N=67, P=9.5×10−8, Fig. 2B), indicating its

influence on local chromatin accessibility and transcriptional activity. Association of

germline GATA3 SNP genotype and GATA3 expression was confirmed in ALL blasts in

both COG AALL0232 and COG P9906 cohorts (N=511, P=9.2×10−8 and N=173,

P=3.6×10−6, respectively, Supplementary Fig. 7). Interestingly, ectopic overexpression of

GATA3 in ALL cell lines consistently led to global changes in gene expression pattern, with

a highly significant enrichment of genes within the Ph-like ALL expression signature

(UOCB1 cell line, P=0.0004; Nalm6 cell line, P=0.001, Supplementary Fig. 8).

Recurrent genomic lesions targeting lymphoid development, cytokine receptor, and tyrosine

kinase signaling are a hallmark of Ph-like ALL. In both COG AALL0232 and COG P9906,

the GATA3 SNP rs3824662 was associated with CRLF2 lesion, JAK mutation, and IKZF1

deletion, which was also validated in a third cohort of 781 children enrolled on the COG

P9905 protocol (Table 2). The A risk allele at rs3824662 was further enriched among

patients with multiple “Ph-like ALL related” somatic lesions. In COG AALL0232, the

frequency of the rs3824662 A allele was highest (73%) in ALL cases with CRLF2 lesion,

JAK mutation, and IKZF1 deletion simultaneously, followed by patients with one or two of

lesions (40%), and lowest (29%) among patients without any of the three lesions

(P=6.09×10−5, Fig. 3). This correlation was also validated in the COG P9906 cohort

(P=0.0005) and in the COG P9905 cohort (P=7.6×10−5, Fig. 3). Within Ph-like ALL, there

was a trend that rs3824662 A allele was over-represented in cases with CRLF2 lesions

(P=0.05, Supplementary Fig. 9). However, the association of rs3824662 with Ph-likeness
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remained significant within ALL cases that were negative for CRLF2 alterations

(P=8.8×10−5, Supplementary Fig. 9), JAK mutation (P=2.1×10−5), or IKZF1 deletion

(P=0.001), and in a multivariate model after adjusting for all three lesions (P=0.001).

Given the poor prognosis of Ph-like ALL, we next examined the relationships between

GATA3 SNP genotypes and ALL relapse. In the COG P9906 cohort, the GATA3 allele

linked to Ph-like ALL was also associated with a higher risk of relapse after adjusting for

genetic ancestry (rs3824662, N=215, P=0.002, Fig. 4A). While rs3824662 was strongly

related to early treatment response (i.e., minimal residual disease [MRD] at the end of

induction therapy, N=193, P=9.8×10−5, Fig. 4B), it remained prognostic even within

patients who were MRD negative (N=132, P=0.028). To further define the prognostic value

of the GATA3 SNP, we tested the association of rs3824662 with relapse in the COG P9905

protocol. In this cohort, genotype at rs3824662 was significantly associated with relapse,

with each copy of A allele linked to 1.43-fold increase (95% CI, 1.10 to 1.86) in the risk of

disease recurrence (N=781, P=0.007, Fig. 4C). Also, the A allele at rs3824662 was

associated with a higher MRD level at the end of induction therapy (N=710, P=0.039, Fig.

4D), and there was a trend for it to be linked to higher relapse risk within patients negative

for MRD in the COG P9905 cohort (N=566, P=0.094).

While association of rs3824662 with Ph-like ALL was consistent across ethnicity

(Supplementary Fig. 3), the risk allele frequency varied significantly among different ethnic

groups. Among worldwide populations, the rs3824662 allele related to Ph-like ALL and

relapse was markedly more common in Guatemalans with high Native American (NA)

genetic ancestry and US Hispanics than individuals of European descent (52%, 40%, and

14%, respectively, Supplementary Fig. 10), consistent with the racial disparities in ALL

treatment outcomes21.

The majority of children with ALL can be cured with individualized combination

chemotherapy, and treatment outcome continues to improve as new molecular prognostic

markers are incorporated to achieve more precise risk classification2. Until recently, little is

known about why a child develops a specific subtype of ALL in the first place and whether

inherited genetic variations that predispose to a subtype also influence prognosis12,14,16.

Therefore, the goal of this GWAS was to discover the genetic basis of the susceptibility to

Ph-like ALL and to better understand the biology of this important high-risk subtype. The

discovery of GATA3 variants associated with Ph-like ALL and related genomic lesions

points to potentially novel mechanisms of ALL etiology and also previously unrecognized

function of GATA3 in leukemogenesis. GATA3 belongs to a group of transcription factors

characterized by 2 highly-conserved zinc fingers that mediate binding to the (A/

G)GATA(A/G) sequence and protein-protein interactions22. Stage-specific transcription of

GATA3 has been extensively characterized during T cell development and differentiation23.

GATA3 is critical for the generation of early T-lineage progenitor cells24 and somatic loss-

of-function mutations in GATA3 are enriched in early T-cell precursor ALL25. Inherited

genetic variation in GATA3 has also been linked to the susceptibility to Hodgkin

lymphoma26, although they are not related to rs3824662 or rs3781093 (r2<0.1 in HapMap

CEU). Other members of GATA family are critical for different stages of hematopoietic
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development, and germline or somatic mutations in these genes can lead to a variety of

hematologic disorders27,28.

In strong LD in European, Hispanic, and Asian populations (r2=0.94, 0.90, and 0.97 in

HapMap CEU, MEX, and CHB/JPT, respectively), rs3824662 and rs3781093 both achieved

genome-wide significance in the discovery GWAS with similar association with Ph-like

ALL (Supplementary Figs. 2, 3, and 11). However, rs3781093 became non-significant in

multivariate analysis conditioning on rs3824662 (Supplementary Table 1). In African

subjects in which these 2 SNPs are poorly linked (r2=0.006 in the HapMap YRI), the A

allele at rs3824662 remained over-represented in Ph-like ALL whereas rs3781093 no longer

showed any evidence of association with Ph-like ALL (Supplementary Fig. 11). Also,

rs3781093 was not associated with GATA3 expression nor with local DNase hypersensitivity

in HapMap YRI samples, whereas consistent evidence points to rs3824662 as a potential

expression quantitative trait locus across ancestry in HapMap populations (Supplementary

Figs. 6 and 12). In fact, rs3842662 was the top SNP influencing DNase hypersensitivity at

this locus in the YRI population (Supplementary Fig. 12). Further examination of the

ENCODE data suggested possible enhancer activities within the region encompassing

rs3824662 in lymphoblastoid cell lines, based on histone methylation marks and PU.1 and

P300 binding (Supplementary Fig. 13). Although functional studies are warranted to

determine the exact causal variant(s) at this locus and molecular mechanisms by which

GATA3 variants influence Ph-like ALL leukemogenesis, these lines of evidence consistently

point to rs3824662 as a potentially functional variation with possibly direct contribution to

the GWAS signal.

The GATA3 allele linked to Ph-like ALL was also associated with an increased risk of

relapse in the COG P9906 cohort, which was validated in the COG P9905 cohort (Fig. 4).

However, in the COG P9906 cohort, the GATA3 SNP was not prognostic after adjusting for

Ph-likeness, arguing that the association with relapse might be largely driven by its

relationship with Ph-like ALL. GATA3 SNP genotype was also related to CRLF2

rearrangement, JAK mutation, and IKZF1 deletion, but remained associated with Ph-like

ALL after adjusting for these genomic lesions. To explore this further, we attempted to build

a classification model for Ph-like ALL on the basis of GATA3 germline SNPs, somatic

lesions in CRLF2, JAK, and IKZF1, and genetic ancestry in 682 patients in COG AALL0232

and COG P9906, using classification and regression tree methods (CART29). In this analysis

(Supplementary Fig. 14), CRLF2, IKZF1, rs3824662, and NA genetic ancestry were

independent predictors of Ph-like ALL, and rs3824662 was associated with Ph-likeness

regardless of CRLF2 status. Interestingly, NA genetic ancestry remained significant after

stratifying on the GATA3 SNP, indicative of additional ancestry-related germline variants

that are associated with Ph-like ALL. There was also significant over-representation of the

rs3824662 risk alleles in non-Ph-like ALL compared with non-ALL control (P=0.0008 and

0.00035 in the discovery GWAS and replication cohorts, respectively), suggesting effects of

this variant on ALL susceptibility in general.

In conclusion, our genome-wide germline SNP analysis identified genetic variations in the

GATA3 gene that influence susceptibility to Ph-like ALL and the risk of relapse. These
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findings highlight the intricate interactions between host and tumor genomes and their

importance in the pathogenesis and prognosis of cancer in general.

ONLINE METHODS

Subjects and genotyping

The ALL cases investigated comprised children with newly-diagnosed B-precursor ALL

who were treated on the Children’s Oncology Group (COG) trials AALL0232, P990532 and

P990610 (Supplementary Table 2), and non-ALL controls included 12,416 subjects14,33-35.

The number of subjects included in each analysis was described in Supplementary Figs 15,

16, and 17, and in the text as appropriate. This study was approved by the Institutional

Review Boards with proper informed consent.

Germline genomic DNA was extracted from peripheral blood or bone marrow samples

obtained during clinical remission for children with ALL. Genotyping was done for COG

AALL0232 and COG P9905 cohorts and for non-ALL controls using the Affymetrix Human

SNP Array 6.0. Quality control was performed for samples and SNPs according to call rate

and minor allele frequency (Supplementary Fig. 1). Theta (allele signal intensity) plots were

constructed using Affymetrix Genotyping Console for rs3824662 and rs3781093

(Supplementary Fig. 18). GATA3 SNPs (rs3824662 and rs3781093) were genotyped in the

COG P9906 cohort and in the Guatemalan samples by Sanger sequencing (Supplementary

Table 3).

Genetic ancestry was determined by using STRUCTURE21,36 and was used to define

ethnicity (Supplementary Note).

Ph-like ALL and GWAS

Ph-like ALL was identified in the COG ALL0232 cohort and in the COG P9906 cohort on

the basis of unsupervised hierarchical clustering analysis of global gene expression profile,

as described previously7,9,37 .

The discovery GWAS of Ph-like ALL comprised 511 ALL cases enrolled on the COG

AALL0232 protocol and 6,661 non-ALL controls from the dbGaP MESA dataset. We

performed two association tests to identify germline SNPs related to Ph-like ALL: we

compared the genotype frequency at each SNP 1) in Ph-like ALL (N=75) vs. non-ALL

controls (N=6,661) and 2) in Ph-like ALL (N=75) vs. ALL cases without Ph-like profile

(“non-Ph-like ALL”, N=436). Association was evaluated with logistic regression under an

additive model with genetic ancestry as covariates. Population stratification was assessed by

the construction of a quantile-quantile (Q-Q) plot (Supplementary Fig. 19). SNPs that

reached P≤5×10−8 in the discovery GWAS were tested in an independent replication cohort:

171 ALL cases from the COG P9906 protocol and 5,755 non-ALL controls. Association

with Ph-like ALL was evaluated by logistic regression with genetic ancestries as covariates

by comparing 1) Ph-like ALL (N=32) vs. non-ALL controls (N=5,755) and 2) Ph-like ALL

(N=32) vs. non-Ph-like ALL (N=139). Independently, the Ph-like phenotype was also

identified by the recognition of outliers by sampling ends (ROSE) algorithm (Supplementary
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Fig. 20). GATA3 SNPs (rs3824662 and rs3781093) and expression were also evaluated in a

separate cohort of patients with Ph+ ALL (Supplementary Note and Supplementary Fig. 21).

Functional characterization of GATA3 SNPs was performed by examining the association of

SNP genotype with GATA3 expression, local DNase hypersensitivity, and global gene

expression in ALL (Supplementary Note, Supplementary Table 4, Fig. 2, Supplementary

Figs. 6,7, 12, 22, and 23), partly using previously published data sets30,31,38. Associations of

GATA3 SNPs with CRLF2, JAK, and IKZF1 somatic lesions were evaluated in the COG

AALL0232, COG P9906, and COG P9905 cohorts, and with relapse in the COG P9906 and

COG P9905 cohorts (Supplementary Note). Germline SNPs within the JAK2 gene were

tested for association with somatic JAK2 mutation in ALL (Supplementary Table 5). R

2.15.1 statistical software was used for all analyses unless indicated otherwise

(Supplementary Note). Statistical tests were chosen as appropriate and according to the

phenotype distribution (e.g., normally or binomially distributed for continuous or categorical

variables, respectively).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome wide association study (GWAS) of the susceptibility of Ph-like ALL
The association between genotype and Ph-like ALL was evaluated using logistic regression

model for 718,890 SNPs in 75 Ph-like ALL and 6,661 non-ALL controls. P-values (−log 10

P, y axis) were plotted against respective chromosomal position of each SNP (x axis). The

blue horizontal line indicates the genome-wide significant threshold (P<5×10−8). Gene

symbol was indicated for the GATA3 locus at 10p14.
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Figure 2. rs3824662 as a cis-acting regulatory element of GATA3 transcription
GATA3 SNP rs3824662 risk allele (the A allele) was associated with higher GATA3 mRNA

in 56 unrelated lymphoblastoid cell lines from HapMap population (YRI) (A), and was

related to increased DNase hypersensitivity (higher transcription activity) in 67 unrelated

HapMap cell lines (YRI). GATA3 expression and DNase hypersensitivity at this locus were

obtained from previously published datasets30,31. (B). Genotype-expression association and

genotype-DNase hypersensitivity association was evaluated using a linear regression model,

adjusting genetic ancestry as appropriate. AU, arbitrary unit. Boxes include data between the

twenty-fifth and the seventy-fifth percentiles.
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Figure 3. GATA3 SNP rs3824662 risk allele frequency and the constellation of multiple “Ph-like
ALL related” genomic lesions (CRLF2 lesion, JAK mutation, and IKZF1 deletion)
Patients in COG AALL0232, COG P9906, and COG P9905 cohorts were grouped as triple

positive, double positive, single positive and triple negative based on their status for somatic

CRLF2 lesion, JAK mutation, and IKZF1 deletion. Risk (A) allele frequency at rs3824662

was highest in patients carrying all three lesions and lowest in patients carrying no lesions at

these three genes, with a positive correlation between A allele frequency and the cumulative

number of lesions in three cohorts (P=6.9×10−5, P=0.0005 and P=7.6×10−5, respectively),

as determined by the ordinal regression test adjusting genetic ancestry.

Perez-Andreu et al. Page 13

Nat Genet. Author manuscript; available in PMC 2014 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. Genotype at GATA3 SNP rs3824662 and ALL treatment response
The cumulative incidence of relapse was compared by genotype at rs3824662 in the COG

P9906 (A) and COG P9905 (B), with P value estimated by hazard regression test including

ancestry as covariate. Early treatment response measured by minimal residual disease

(MRD) at the end of induction was also related to genotype at rs3824662 in both COG

P9906 (C) and COG P9905 (D), with P value estimated by Spearman Rank test. For both

relapse and MRD, the allele linked to Ph-like ALL was also associated with worse treatment

response.
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