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Virtual-diagnostic-based time stamping for ultrafast electron diffraction
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4Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA

(Received 25 January 2023; accepted 27 March 2023; published 3 May 2023)

In this work, nondestructive virtual diagnostics are applied to retrieve the electron beam time of arrival
and energy in a relativistic ultrafast electron diffraction (UED) beamline using independently measured
machine parameters. This technique has the potential to improve the temporal resolution of pump and
probe UED scans. Fluctuations in time of arrival have multiple components, including a shot-to-shot jitter
and a long-term drift which can be separately addressed by closed loop feedback systems. A linear-
regression-based model is used to fit the beam energy and time of arrival and is shown to be able to predict
accurate behavior for both long- and short-time scales. More advanced time-series analysis based on
machine learning techniques can be applied to improve this prediction further.

DOI: 10.1103/PhysRevAccelBeams.26.052801

I. INTRODUCTION

A recent trend in accelerator and beam physics has been
the use of virtual diagnostics to measure indirectly one or
more beam parameters using larger sets of upstream,
nondestructive measurements of accelerator and machine
parameters, which are correlated with the downstream
beam properties. Various mathematical tools ranging from
linear and nonlinear interpolations to more complex
machine-learning-based techniques can be used to create
high fidelity predictive models from training data obtained
by destructive beam measurements. Then the model can be
used to retrieve the beam parameter of interest once the
destructive measurements cease. This is critically advanta-
geous when measurements of the given parameter are
particularly time consuming or require running in a
particular working point on the beamline which is not
compatible with the end-user application (e.g., [1–6]).
In particular, in systems where beam fluctuations

strongly affect the accelerator performances, a very attrac-
tive opportunity exists to take advantage of virtual diag-
nostics models to improve the reliability in delivering a
known set of beam parameters to an application even in
presence of active feedback systems. This is because while

feedback systems can be used to monitor machine param-
eters and keep them close to a given working point, these
loops are not perfect (i.e., still allow a residual amount of
jitter) and a complete compensation requires a beam-based
diagnostic. In addition, the monitoring is typically limited
to a single variable and the control algorithm does not take
into account cross-correlation terms with other machine
parameters. A global smart control system taking advan-
tage of powerful and reliable virtual diagnostics models has
therefore the potential to outperform such local feedback
loops.
As an example, temporal stability is particularly impor-

tant in pump-probe ultrafast techniques such as Ultrafast
Electron Diffraction (UED). In a UED experiment, tem-
poral resolution is defined as

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δt2e− þ Δt2laser þ Δt2jitter þ Δt2VM

q
; ð1Þ

where Δte− is the electron bunch length, and Δtlaser is the
laser pulse length. These quantities can be reduced using a
bunching cavity and laser compressor, respectively.ΔtVM is
the velocity mismatch term, which can be neglected for
ultrarelativistic beams and thin samples. That leaves the
limiting factor of Δtjitter, the time-of-arrival jitter between
the laser pulse and electron bunch. Time stamping has been
proposed in the past (e.g., [7,8]) to sort the UED patterns
and retrieve the actual temporal trace of an ultrafast
process. Nevertheless, depending on the particular imple-
mentation, accurate time stamping strongly constrains the
machine setup (charge, crystal proximity, THz deflector)
which might not be fully compatible with high-quality
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diffraction patterns. Taking advantage of a virtual diag-
nostic would greatly increase the range of applicability of
time stamping in UED, potentially improving the temporal
resolution of the technique.
One of the beam parameters most strongly connected to

the time of arrival of the beam at the sample is the beam
energy. In linear transport theory, the connection is math-
ematically represented by the matrix element R56 which
connects the final time of arrival with the relative energy
deviation ΔE=E from the reference particle. For example,
in a drift, higher energy particles arrive sooner. With more
complex arrangements of beamline elements, which
include buncher cavity and bending dipoles, the relation
can become more complex (see [9]), as discussed in
Sec. III B. Still, the beam energy is often the dominant
contribution to the particle time of arrival at a given plane in
the beamline and a kinetic energy virtual diagnostic could
be useful to refine the predictions of the relative time-of-
arrival fluctuations in a UED setup [10]. We also note here
that there are other cases where nondestructive measure-
ments of the beam energy (which otherwise requires
bending the beam in a dipole spectrometer) would greatly
improve accelerator performances. For example, in multi-
shot measurements of transverse phase spaces, such as a
quadrupole or solenoid scan emittance measurements
[11,12], energy fluctuations change the focusing strength
of the magnets, which would be considered to be constant
for such a scan; poor energy stability is catastrophic to such
a measurement. Even single-shot emittance measurement
techniques, such as [13], require knowing the beam energy.
In this paper, we develop nondestructive virtual diag-

nostics for the beam time of arrival (TOA) and kinetic
energy, which take into account nondestructive machine
parameters measured upstream. Time stamping techniques
in UED pose unique challenges, requiring single-shot TOA
measurements on very low charge beams with very high
resolution (<100 fs), which has only been achieved via
destructive measurements [14]. Our work shows that the
use of advanced mathematical methods can help break the
paradigm of measurement accuracy versus beam charge.
Indeed, we show that the electron beam parameters can be
inferred from the accelerator context, i.e., measurable
instantaneous machine parameters, with the same level
of precision obtained by performing destructive measure-
ments. Thus, the temporal resolution becomes independent
from the beam charge and only dependent on the precision
of the measurement of machine parameters.
The experiments were carried out at the LBNL HiRES

beamline for UED, where we were able to reconstruct the
beam energy and TOA for each shot with an accuracy
beating our feedback systems using a simple linear inter-
polation virtual diagnostics model. By applying machine
learning (ML) forecasting techniques, the reliability of the
prediction further improves. The application of ML has
been shown to solve or mitigate a plethora of accelerator

control and diagnostic problems, for example, for navigat-
ing efficiently the multidimensional parameter space to find
control set points [15,16], for inverting a large parameter
space to make a parasitic diagnostic [17,18] or for nonde-
structive virtual diagnostics [1,2]. ML has also been
combined with model-independent adaptive feedback for
automatic control of the longitudinal phase space of the
electron beam in the LCLS [19]. Further, UED has
benefited from ML-based static models and virtual diag-
nostics [20,21]. The application of ML to forecasting for
accelerators is a burgeoning effort that shows unique
promise because of the time series structure of measured
beam data [22].
In the next section, we discuss the operations at HiRES

and the measurement systems for the parameters that are
used in establishing the virtual diagnostics. The results of a
linear-regression-based virtual diagnostic are shown in two
cases where beam TOA and beam energy are used to train
the model and benchmark its fidelity. In the last section of
the paper, we compare the application of more complexML
models to the linear regression model.

II. SYNCHRONOUS DATA ACQUISITION
AND ANALYSIS AT HIRES

A. Data Acquisition at HiRES

The HiRES accelerator includes a continuous-wave-
class, normal-conducting electron photogun working at
185.7 MHz [23] (RF1 in Fig. 1) and a subsequent bunching
cavity (RF2) operating at the seventh harmonic of the
gun, i.e., 1.3 GHz. The present maximum electron beam
repetition rate is fixed by the photocathode laser to
250 kHz, while an acousto-optic deflector at the end of
the optical amplification chain can select user-defined
patterns and/or lower the repetition rate. The nominal beam
energy is 750 keV and all measurements in the paper were
taken with an approximate beam charge of 15 fC.
Referring to Fig. 1, a dipole magnet (D1) downstream of

the gun (RF1) and rf buncher cavity (RF2) is used to select
between two beamlines, each providing access to a series of
diagnostic tools. In particular, a deflecting cavity along the
straight line (RF3) provides accurate pulse length and time-
of-arrival information, with a calibration of 23.37 fs=pixel
at the downstream imaging screen (VS3). The side beam-
line (UED beamline), branches off at an angle of 60° with
respect to the straight line, resulting in high dispersion at
the imaging screen VS2, and enabling high resolution
energy measurements. The energy calibration ΔE=E at
the screen is 2.5 × 10−5=pixel and can be increased or
decreased using the quadrupole triplet just upstream VS2
(Q1). In the measurements presented in this paper, the
calibration for ΔE=E was 1.7 × 10−5=pixel.
Owing to its unique set of beam parameters and its

flexibility, the HiRES has been used for both UED
applications [24,25] and for developing new technologies
for compact and large-scale user facilities [26–28].
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For example, the low-level-rf control electronics
(LLRF), one of the most critical subsystems for ensuring
electron beam energy stability, has been developed at
LBNL and then deployed at the LCLS-II accelerator at
SLAC [29]. The system allows precision control and
measurement of amplitude and phase, with minimal cross-
talk (more the 100 dB isolation in the upgraded version)
and white noise background below 150 dBc=Hz. Such
development is a key component for developing high
precision feedback loop controls and for high fidelity
prediction of beam parameters.
The aim of this work is to develop a novel virtual

diagnostic tool for online high-precision time and energy
stamping. The tool has been tested for single-shot beam
predictions using information collected passively during
beam runs and, while in these first tests, the acquisition was
limited to 1 Hz, minor modifications to the timing system
would allow much faster repetition rates, in the kHz range
and beyond.
The development of a virtual diagnostic starts with

building a model of the system, correlating measurements
of beam parameters with machine parameters. Measuring
the beam energy or time of arrival requires intercepting the
electron beam with scintillator screens and analyzing the
resulting images for the beam centroid after bending
through a dipole or a time-dependent kick from a transverse
deflecting cavity (TCAV).
The signal-to-noise ratio (SNR) of the training datasets is

of particular importance as the model will be trained on the
processed variables extracted from the images, and any
error in the calculation for the parameter corresponds to an
effective loss of information. In order to boost image SNR,

it is possible to integrate multiple electron beam pulses
(because of the high repetition rate of the system, each only
4 μs apart), so long as the timescale of system changes is
longer than the averaging period.
At fixed rf power, the rate of change of the phase or

amplitude of an electromagnetic field in a resonant cavity is
limited by the cavity bandwidth. Indeed, the latter acts as a
filter for external disturbances, so that every noise compo-
nent outside its bandwidth is strongly attenuated. In the
case of our 186 MHz cw-rf gun, with a quality factor Q
greater than 104, we can estimate the timescale of field
fluctuations:

τnoise ¼
1

Δf
¼ Q

f
> 50 μs ð2Þ

where f is the resonance frequency of the cavity. Further,
there is an intrapulse proportional-integral-derivative
(PID)-type feedback system engaged, which should further
reduce jitter. The engagement of the intrapulse feedback
can be seen after approximately 250 μs in the rf traces
in Fig. 2.
For the rf bunching cavity and deflecting cavity, rms

fluctuations of the amplitude and phase of the rf in both
cavities show only a minimal increase when integrated for
40 μs relative to the case when integrated for 4 μs (the
inherent uncertainty in laser shot time of arrival). The slight
increase in fluctuations in each cavity is expected to
increase the uncertainty in beam time of arrival at the final
screen by less than 10 fs each. Therefore, most of the data
produced in this work have been collected by averaging ten

FIG. 1. The HiRES beamline. The UED beamline starts at D1 and goes through the dogleg to DD, while the diagnostic beamline goes
straight from D1 to VS3. Adapted with permission from [9].
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beams per image, in order to increase the SNR in the
images (see Fig. 2).
In order to obtain the most accurate model and pre-

dictions, the heterogeneous data acquired (a mix of images
and waveforms) require deterministic time alignment with a
precision equal to or better than τnoise. Figure 2 describes
our timing setup. The electron gun is used in pulsed mode
for these experiments, with a total duration of the rf pulse of
1 ms and a repetition rate of 500 Hz (corresponding to a
duty cycle of 50%). The optical gate sending the burst of
ten consecutive laser pulses can be activated at any time
along the rf pulse, with a precision of 4 μs. In Fig. 2(b), we
show the correlation plots of electron beam relative energy
deviation and the amplitude of the field in the electron gun,
in the simple case where no other cavity is used. The ρ
coefficient on top of each plot corresponds to the value of
the correlation function between the two. The data are
shown in the case of synchronized and not synchronized
acquisition, providing a clear idea of the information lost
without precise time alignment.
The beam position on the screen measured during the

initial characterization of the accelerator is not only
determined by the variable we are interested in predicting.
Beam position can change because of a magnet current
change or because of laser pointing fluctuations on the
cathode. Therefore a complete model should calculate
correlations with all the relevant parameters of the accel-
erator. Photocathode laser beam images are saved with

μs-scale alignment precision synchronously with electron
beam images, but fortunately, not all data require the same
level of time alignment. Variations in parameters such as
cavity temperatures,water flows, andmagnet currentsmostly
contribute to machine drifts, and only require synchrony at
the subsecond level, which can be achieved via software. At
HiRES, continuous data storing of user-requested machine
settings is performed automatically by an online database
with 10-Hz periodicity, providing the necessary information
to include all machine parameters in the model.
Data for the deflecting cavity deserve a special discussion.

As mentioned above, data on this cavity should in principle
be taken synchronously, as small short-term fluctuations are
expected. In Fig. 3, the correlation plots between the electron
gun amplitude and the measured beam time of arrival before
and after the compensation of TCAV short-term fluctuations
are shown.Given the small contributions of these jitters to the
measured short-term fluctuations, we acquire TCAV data via
the database and therefore account only for long-term drifts
of the field in the cavity.

B. Data analysis and prediction

In the following section, virtual diagnostics based on
multivariable linear regression are presented. Multiple
linear regression is a statistical modeling technique where

FIG. 2. (a) Synchronization scheme: rf amplifier run at 50%
duty cycle with a 2-ms period. Up to ten laser shots arrive at 4 μs
intervals for a short period toward the end of each rf pulse, where
the rf is generally most stable. (b) Correlation plots of rf gun
amplitude and relative energy deviation (measured at the dipole
spectrometer) for synchronized and temporally misaligned ac-
quisition schemes.

FIG. 3. Synchronous measurements of beam TOA at TCAV:
correlations of TOAwith electron gun amplitude (without the use
of the rf bunching cavity, similar to data in Fig. 2). Left: TCAV rf
jitters are not taken into account in postprocessing. Right:
fluctuations in TCAV rf amplitude and phase are used to correct
beam time-of-arrival measurements. In (a), long-term drifts are
uncompensated. In (b), a moving average is subtracted to show
only short timescale jitters. Note the much smaller y scale in the
bottom plots.
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Y ¼ Xβþ ϵ; ð3Þ

where Y is a vector of the observed quantities,X is a matrix
of dimension number of observations by number of pre-
dictors, β is a vector of regression coefficients (dimension:
number of predictors), and ϵ is the error term, a vector of
individual errors on each observation. Estimates of regres-
sion coefficients, β̂, are learned by minimizing residuals.
Multiple linear regression is a powerful tool because of

its explainable nature. Rather than producing a black-box
model, which produces predictions through an opaque
process, multiple linear regression produces an interpret-
able and explainable model. As it will be shown below, the
regression coefficients are learned and can be analyzed in
order to characterize quantitatively the impact that each
predictor has on the overall prediction.
It is also important to observe that linear regression

between two variables is agnostic to the time relation
between different data points as it is inherently a time-
independent method. However, the datasets in this work are
all time-series datasets. While linear regression is effective
in quantifying the consistent effect that the predictors have
on the observation, the method will fail to identify the time-
dependent noise processes that perturb the system and
affect both the predictors and the observations.
In this case, two adaptations to the usual prescription for

linear regression were made: (i) the data were not ran-
domized, in order to preserve the time-series ordering and
(ii) the model is trained on the first part of the data, while
the last part of the data is reserved for validation. The linear
regression results below serve as a practical baseline result
that—by itself—shows promise for improving stability, but
as shown in the last section of the paper could be further
improved upon by taking into account temporal evolution
using more complex models.

III. ONLINE PREDICTIONS OF ELECTRON
BEAM PARAMETERS

A. Time stamping

The temporal resolution in UED experiments [see
Eq. (1)] is often dominated by the relative time-of-arrival
fluctuations between excitation laser and probing electron
beam. Therefore an online diagnostic capable of precise
nondestructive measurement of TOA would have a pro-
found impact on the overall instrument performance. For
the data presented in this section, the accelerator setup
matched the beam and machine parameters used during
UED experiments. As such, the rf bunching cavity (RF2) is
set for temporal compression, with nominal field amplitude
and zero-degree injection phase (the so-called zero-
crossing phase). The fields in both the electron gun and
the bunching cavity are stabilized in amplitude and in phase
by fast, FPGA-based PID-type feedback loops.

In Fig. 4, we show the standard deviation of the time-of-
arrival of the beam at the deflecting cavity (measured by
converting the centroid variation of the beam on the screen
using the pixel-to-time deflector calibration), as a function
of the temporal duration for the data acquisition. This
quantity continuously increases due to short- and long-term
drift. In the inset, zooming in on the 1-min time scale, it is
shown how short-term drifts account for less than 200 fs of
temporal jitter. On the other hand, with an increase in the
temporal width of the acquisition window, the overall
stability of the system is observed to degrade at longer
timescales. Depending on the duration of the intervals in
between re-establishing a new time-zero position in UED
pump probe scans [14], the integrated resolution can
become as large as 600 fs.
Figure 5 shows the evolution of the beam TOA at the

TCAV over about 3 h. The data are divided into two
sections (highlighted by the vertical dashed line), with 75%
of the points used for developing a model of the system (the
training data set), and the last 25% is used to validate it. A
further test set is not required to test generalization, as no
hyperparameter tuning was required.
We then use the linear regression model described in

Sec. II B for prediction. Inputs to the model include rf
amplitude and phase of the electron gun, the bunching cavity
and the deflecting cavity, the photocathode laser arrival time
at the cathode with respect to the rf wave, and an image of its
transverse shape, intensity, and position at the cathode.
The red line in Fig. 5 shows the result of the regression.

The model is able to learn the correlations in the data and
predict to a high degree of accuracy, decreasing the
uncertainty in the long-term data (RMSE) by more than
a factor of two in the test set. This represents a major
improvement, one that reduces the uncertainty from the
hours-long timescale in Fig. 4 to the minutes-long stability.

FIG. 4. Standard deviation of transverse beam centroid cali-
brated to TOA relative to the reference beam as a function of the
width of the acquisition time window. Inset shows a short
timescale.
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Notably, the model was able to predict accurately the
outcome of a sudden large phase shift in the TCAV in the
test dataset (visible at around 8600 seconds). Such a jump is
mostly due to a sudden variation in the settings of our
diagnostic device, and not to an actual change in beam
TOA. By tracking the parameters of the measurement
system, i.e., TCAV rf amplitude and phase, real temporal
shifts can be isolated from simple beam centroid fluctua-
tions due to variations of the fields in the TCAV. Indeed,
once the system correlations have been learned from the
training dataset, all the coefficients that would contribute to
a beam movement on the screen but not necessarily to a
change in TOA can be removed.
Although the improvements made so far are impressive,

they do not fully take into account the complexity of a
drifting, time-series dataset. The discrepancy arises because
of the distinction between the root mean square error
(RMSE) of the linear regression prediction from the actual
measurement, and the standard deviation (STD), which
measures the deviation from the mean value. It is essential
to carefully choose the reference point for assessing the
virtual diagnostic’s best performance. With traditional
feedback, minimizing the system’s drift is the typical
approach until it becomes negligible, and the uncertainty
is then determined by the STD. Essentially, when destruc-
tive measurements are turned off, the beam is presumed to
have the same properties as the last-measured beam. Thus,

in a drifting system, the uncertainty in the TOA would
increase with time (due to the variation in the mean value).
However, by utilizing the linear regression virtual diag-
nostic, it is possible to compensate for these drifts, and the
uncertainty remains relatively constant over time, with little
to no degradation.
As described in Sec. II B, the impact of each predictor on

the overall time of arrival estimate can be extracted from the
model. In Fig. 6, the top predictors’ impacts [1 standard
deviation of variation converted to TOA prediction using
the corresponding β from Eq. (3)] are reported. This can be
helpful for several reasons, including (i) to see if conven-
tional feedback systems can be better tuned and (ii) to see if
the perceived TOA variation is due to measurement
uncertainty (i.e., the TCAV measuring the TOA is jittering)
or if the TOA is actually moving. Although the effect of the
TCAV is significant, the dominating contribution is that of
the buncher, meaning that the TOA is actually moving,
despite conventional feedback systems. It also suggests that
these conventional feedback systems could be improved for
the buncher cavity. A full list of parameters included in the
model is shown in Appendix A.
These results show how the combination of a linear-

regression-based model and time-aligned data can help
enhance the performance of traditional feedback systems.

B. Energy stamping

A similar approach can be used to obtain very accurate
predictions of the electron beam energy. To showcase
this capability, we make use of separate beamline settings.
In particular, the electron beam is transported into the
UED line and measured at the VS2 screen (Fig. 1) after

FIG. 6. Top 10 model predictors and the associated TOA
movement with 1 STD movement in the validation set. Details
of the predictors can be found in Table I in Appendix A.FIG. 5. Time-of-arrival fluctuation measured using the TCAV

screen while the PID-type feedback was engaged. Residual drifts
not corrected by the feedback are present. The linear regression is
also shown. The uncertainty due to long-term drifts is reduced to
the 200 fs level similar to the shot-to-shot, short-term jitter shown
in Fig. 4.
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acceleration by the electron gun, while the rf bunching
cavity (RF2) is left off for simplicity of interpretation. We
acquired 3 h of data for the two different cases of stabilized
and unstabilized accelerating fields in the gun (using the
active LLRF PID stabilization loop mentioned earlier).
Results of energy stability measurements in the two

cases are shown in the histogram of Fig. 7(a). The effect of
the fast feedback in stabilizing the energy is evident, with
rms relative energy stability going from approximately
10−3 to 2 × 10−4 over a 3-h run. Nevertheless, a clear
structure is evident in the stabilized case, with a double
peaked distribution of unknown cause, suggesting even
better performance may be achieved.
The application of our linear regression model to both

scenarios results in the histograms of Fig. 7(b). Here we
plot the residual error left after comparing the model
predictions with the measured ground truth. We can make
a few observations: first, the application of the model
increases the precision with which we can assert the energy
of each electron beam, by a tenfold factor for feedback-off,

and by a small factor in the feedback-on case. Second, the
residual error distribution is now much closer to a
Gaussian, to be expected when only random noise is left,
and nothing else can be learned from the system. This is
therefore the first indication that our model is close to
optimal. Third, the final RMSE is similar in the stabilized
and unstabilized cases. This last point is quite interesting,
as it shows that virtual diagnostic tools have comparable
performances with respect to traditional feedback systems.
For applications where time of arrival may vary, but in a
well-controlled fashion, such as pump-probe experiments,
this suggests that in the future, software-based approaches
could outperform hardware-based approaches in the stabi-
lization and control of particle beams. In the future,
considering the likely increase in computing power, net-
work speed, and bandwidth, feedback could even be based
on virtual diagnostics.
Using a matrix formalism for the linear transport in

longitudinal phase space, one can compare the virtual
diagnostics results for the energy and time-of-arrival
measurements. At the TCAV screen,

Δt ¼
�

R56;gb

h · R56;gb þ 1
þ R56;bs

�
ΔE
E

; ð4Þ

where R56;gb and R56;bs are related to the drift distances
from the gun to the buncher and from the buncher to screen,
respectively. These R56 elements are given in time-energy
coordinates for convenience. For HiRES, these can be
calculated to be 0.73 and 3.20 ns, respectively. h is the R65

term associated with a thin lens description of the buncher
cavity. For HiRES, calibration measurements indicate this
to be ð−2.02 nsÞ−1. This can be expressed in engineering
units to be approximately

Δt ½ns� ¼ 4.3415
ΔE
E

; ð5Þ

where Δt is given in nanoseconds. Using an uncertainty
from the energy stamping virtual diagnostic of about
7.45 × 10−5 (see the feedback off case in Fig. 7), we find
an uncertainty of 227 fs, when considering the limitations
discussed below, which is comparable to the 225-fs
uncertainty of the time-stamping virtual diagnostic.

C. Limitations of the method

There are many possible limitations that leave room to
increase the precision of this method beyond what is
achieved in this work. To start, the model used up to
now is linear, so any presence of small nonlinearity in the
system will not be captured. Also, the model may change
with time, and therefore some sort of adaptive tuning could
be exploited (see [27,30]). Maybe the most important of all
limitations is the accuracy in the measurement of key
parameters and the level of noise in the measured ground

FIG. 7. Linear regression predictions with and without tradi-
tional PID-type feedback (FB) engaged. (a) The variation from
the mean of the training data is shown, after conversion to relative
energy deviation. (b) the validation errors are shown. Note that
the FB off case shows greater improvement than the FB on case
on both an absolute and a relative scale.
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truth used for training the model. In this work, we are
aiming at final predictions with accuracy at the 10−5 level,
which requires more than 100 dB SNR in measurements of
radiofrequency signals. Potentially more dangerous is the
requirement on the currents energizing the different mag-
nets in the beamline. Measuring 10−5 variations on this
current requires specialized hardware that is usually not
available for each magnet of the accelerator. Therefore, we
perform an experimental sensitivity study and verify the
dipole D1 as the one with the highest impact on the beam
position on the screen. The current fluctuations driving the
magnetic dipole were then measured with high precision by
a specialized setup. A Danisense DS50ID ultrastable flux-
gate current transducer with a 16-bit digitizer was set up to
measure the current provided to the dipole from the CAEN
A3620 power supply when set to a nominal value corre-
sponding to a 750-keV electron beam. A 66-h long
measurement of the current was taken and showed fluctu-
ations on the high 10−5 level, corresponding to apparent
relative energy functions on the 5 × 10−5 level. See Fig. 8
for more details. The rms fluctuations found during this
test, although not contextual with beam measurements, are
of the same scale as the residual error we obtained in both
cases of Fig. 7, showing that direct synchronous measure-
ment of the current in the dipole magnet could increase the
precision of the virtual tool.

IV. ADVANCED PREDICTIONS

While the above methods are effective, the regression
approach presented above relies on the assumption that
TOA or energy can be extracted from linear correlations
with the predictors. In this section, an approach is shown
that leverages advancements in forecasting to use a tem-
poral fusion transformer (TFT) architecture to reduce
temporal correlation in the residuals and further improve
the prediction performance of the model.

A. Autoregressive models and TFTs

Autoregressive models are a class of models used to
represent sequential data that include recurrent neural
networks (RNNs), long-term and short-term memory net-
works (LSTMs), and transformers. RNNs estimate the
probability pðytþ1jht; ytÞ with a prior consisting either of
weights generated from an initialization strategy or previ-
ously computed hidden stateht [31]. In practice, representing
nonmonotonic and complex relationships in sequences
requires improving these models by stacking multiple
neurons or using bidirectional LSTMs [32–35]. While still
widely used, there are also problems with LSTMs, namely
catastrophic forgetting, where successive updates of the
memory cell with new data cause the network weights to
forget historical data [36,37]. Catastrophic forgetting affects
the network’s ability to be pretrained on large datasets prior to
fine-tuning for a specific task [38].
Transformers are a member of the class of autoregressive

models that build upon models such as those described
above. Transformers use submodules consisting of stacked
LSTM neurons as well as novel components such as self-
attention in order to train on many datasets or large
sequences. While the transformer architecture was origi-
nally used in the field of natural language processing, it has
subsequently been expanded to a variety of other modalities
including time-series forecasting and visual processing
[39,40]. Transformers consist of an encoder that maps
feature vector fx1;t; x2;t…:xn;tg to a continuous represen-
tation fz1;t; z2;t…:zn;tg, which is then used by a decoder to
generate a sequence of m predictions fy1;t; y2;t…:ym;tg.
TFTs, described in [41], are a transformer architecture

and the current state of the art for multihorizon forecasting.
At each time step t, a context window of length k consisting
of past predictors, along with the past values of the ground
truth, is sent to the encoder. Known machine parameters at
the prediction time steps (or horizons) are also encoded.
TFTs contain multiple variable selection networks that
reduce network complexity through the modulation of the
probability that a given predictor’s signal propagates to
deeper layers of the network. This reduces the need for data
preprocessing, the impact of noisy variables, and prevents
overfitting. The TFT decoder includes a multiheaded
attention module for long-term temporal pattern recogni-
tion. Through multiheaded attention, weights are learned
that reflect the degree to which encoded variables attend or
correlate with one another [42]. These weights are then
passed from the decoder to a dense layer that produces the
quantile predictions.
In summary, the TFT offers an explainable model that

predicts a distribution of results instead of a point pre-
diction. TFTs extract variable importance using both
attention and automated variable selection [41]. Quantile
predictions allow confidence of a prediction to be assessed,
which is useful for human evaluation and downstream
control tasks.

FIG. 8. Measured current fluctuations extrapolated to perceived
relative energy fluctuations for a 750-keVelectron beam, as in the
experiment.
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B. Method

In offline forecasting tasks, access to past ground-truth
data allows for the context window to be populated with
observations of the target as shown in Eq. (6). A prediction
at time step t is given by

Ŷt ¼ fðfXt−k;…;Xtg; fYt−k;…; Yt−1gÞ; ð6Þ

where X at each time step is a vector of predictors, such as
machine parameters. Y at any given time step is the ground-
truth data, in this case, the beam TOA, where Ŷ is the
prediction of this quantity. k is the context window, or
history, that the model is given.
In the context of the HiRES virtual diagnostic, the lack of

ground-truth data during deployment about the beam TOA
has to be negotiated once destructive measurements cease.
In such an online or a multihorizon task, one approach
would be to introduce previous predictions recursively as
shown in Eq. (7).

Ŷt ¼ fðfXt−k;…;Xtg; fŶt−k;…; Ŷt−1gÞ ð7Þ

In this approach, residual bias introduced in the model’s
estimates would accumulate with each recursive prediction,
and over thousands of timesteps would become significant.
Even without a significant increase in error, error would be
time correlated rather than being normally distributed. In
order to avoid this problem, once destructive measurements
cease, previous ground-truth measurements must be
replaced with time-independent predictions as shown in
Eq. (8).

Ŷt ¼ fðfXt−k;…;Xtg; fgðXt−kÞ;…; gðXt−1ÞgÞ ð8Þ

where gðxÞ is any time-independent model. In the work
presented herein, the linear regression model as shown in
Sec. III A, as described in Eq. (3), is used to replace ground-
truth data, after training with access to the ground-truth
data, as shown in Eq. (6). Thus, during training, the TFT
has access to a context window of long-term trend
information in X and Y in order to learn from a more
complete view of the system’s dynamics. Following train-
ing, during online application, we utilize accurate estimates
of Y as provided by the linear-regression-based estimates
gðXtÞ and therefore the approach does not suffer from
catastrophic degradation of the predictions after destructive
measurements are no longer available.
The results in this section make use of a TFT imple-

mented in PyTorch Lightning [43] with the PyTorch fore-
casting package [44]. A 75=25 training split identical to
that of the linear regression model in Sec. III was employed
with one caveat: for both the training and validation sets,
the first k instances (with k being the length of the context
window) do not have corresponding predictions. The
predictors were the same as those used for the linear

regression model in Sec. III A. Finally, a robust normalizer
was applied to the data, which scales and centers it with
regard to but without transforming the target. Additional
details of the TFT model can be found in Appendix B.

C. Results and discussion

The results shown in Fig. 9 are the quantile predictions
trained on ground-truth observations of the beam TOA.
Note that the RMSE is approximately 6% better than that of
linear regression, as the residuals of the model are in
general closer to zero, as shown in Fig. 10.
This improvement can be explained by noting that

despite state-of-the-art stability at HiRES, Fig. 10 demon-
strates that the processes causing long-term TOA drift
introduce correlations of error over time that could be
reduced via the use of a forecasting model. As shown in
Fig. 10, residuals of the TFT show little autocorrelation

FIG. 9. TFT TOA median and interquartile range (shaded)
predictions in the validation set. Predictions are compared with
linear regression (LR) predictions and the ground truth.

FIG. 10. Left: error histogram comparing the absolute value of
the residuals from the linear regression and TFT models. Note
that the error is bunched closer to zero for the TFT. Right: residual
correlation for linear regression and TFT models. Note that the
use of a TFT predictor reduces the correlation in the residuals
between time steps.
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between time steps relative to the linear regression results.
This demonstrates that the approach of incorporating
historical machine parameter information despite the chal-
lenges of online forecasting detailed above is a reasonable
one.
It should be noted that because of the small number of

observations, only a validation set was used in this work,
and a test set was omitted. Although the validation set was
used for hyperparameter optimization and as a metric for
training, the generalization to a validation set is still
notable, under these conditions. In the future, pretraining
on data from different accelerator runs prior to fine-tuning
on related data should be investigated to further reduce
residual error and allow for increased observation of
anomalous states in the machine parameters and their
correlated effect on the target beam parameters. Every
state-of-the-art use of the transformer model used in natural
language processing since 2015 has relied on pretraining to
increase performance [45] and the use of transformers for
forecasting would likely benefit from similar methods.
Greater diversity of observations from better exploration of
the parameter space of predictors would lead to better
generalization and better model performance. The inability
of the predictions to capture the full variation of the ground-
truth beam TOA exhibited in Fig. 10 could be explained
by the fact that while relationships between machine
parameters and beam TOA have been learned in training,
anomalous transitions in machine parameters have not been
observed before, forcing the model to extrapolate. While
anomalous observations are, by definition, rare, a larger
number of observations of similar transitions in other
experiments would allow for greater predictive power
during these periods. Training with more raw data and
possibly with lagged data could help capture temporal
relationships between changes in the variables.
Another way to improve accuracy with training data

would be training with a greater diversity of examples prior
to any aggregation. In addition to learning the between
time-step error, learning the variance of the sensor readings
within a time step and training with data taken with the rf
cavities’ PID controllers disabled would allow the model to
learn a more robust embedding space.

V. CONCLUSION

In this work, a novel application of virtual diagnostics
has been explored, toward enhancing UED temporal
resolution by predicting electron beam TOA—or the main
contributor to TOA in this energy regime, beam energy.
Linear-regression-based models can be used to greatly
reduce uncertainty in machine parameters. For energy
stamping, linear-regression-based virtual diagnostics were
shown to mitigate the long-term drift to a level comparable
to what can be done with the PID feedback loops. For time
stamping, linear-regression-based virtual diagnostics were

shown to work in concert with traditional feedback to
mitigate long-term drift and lower the uncertainty to 225 fs,
which is on the same scale as the shot-to-shot fluctuations
and a significant reduction from the uncompensated stan-
dard deviation uncertainty of 600 fs. Further, state-of-the-
art forecasting models were applied to mitigate the tem-
poral correlation of residuals of the model predictions,
resulting in a nominal reduction in prediction uncertainty
to 212 fs.
There are several ways to realize benefits from reducing

the uncertainty in prediction error. For example, one could
use a virtual diagnostic for feedback, in order to remove the
long-term drift. Another method is to make use of the
knowledge provided by the virtual diagnostic, without
direct feedback. Working under the paradigm of “meas-
urement is easier than control” has been shown to be
effective (e.g., [17,18]) and has several advantages; rather
than working to control further the natural parameter drift
of the machine in an already state-of-the-art stability
environment, the remaining drift and jitter can be harnessed
to improve measurements. For example, in UED experi-
ments, if for each shot, the virtual diagnostics showcased in
this work are applied to retrieve the relative time of arrival
within the shot-to-shot error, one would be able to reorder
the data using the shot-tag information with a correspond-
ing improvement in the temporal resolution as well as a
significant reduction of acquisition times.
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APPENDIX A: MODEL PARAMETERS

Parameters for the model in Sec. III A are listed in
Table I. Parameters marked as “Async” were taken asyn-
chronously, as described in Sec. II A. For the gun and
buncher, PID-type feedback loops were engaged, based on
some of these readings. If PID-type feedback was engaged
based on one of the parameters, it is designated as “IL” or
“in-loop.” If an independent measurement of the parameter
exists, it is denoted as “OL” or “out-of-loop.”
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APPENDIX B: TFT HYPERPARAMETERS

The TFT architecture is outlined in detail in [41]. The
hyperparameters for the TFT model are listed in the
Table II.
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