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Abstract

A Tale of Two Dictionary Learning Problems

by

Charles J. Garfinkle

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Adjunct Professor Friedrich Sommer, Chair

Learning optimal dictionaries for sparse representation modeling has led to the discovery of
characteristic sparse features in several classes of natural signals. However, universal guaran-
tees of the uniqueness and stability of such features in the presence of noise are lacking. This
work presents very general conditions guaranteeing when dictionaries yielding the sparsest
encodings of a dataset are unique and stable with respect to noise. The stability constants
are explicit and computable; as such, there is an effective procedure sufficient to affirm if a
proposed solution to the dictionary learning problem is unique within bounds commensurate
with the noise.
Two formulations of the dictionary learning problem are considered. The first seeks a dic-
tionary for which each signal in a dataset is approximated up to some bounded error by a
linear superposition of only a limited number of dictionary elements. In this case, existing
guarantees are extended to the noisy regime to show that such dictionaries and the sparse
representations they induce are almost always identifiable up to an error commensurate
with the approximation error. Moreover, a theory of combinatorial designs is introduced to
demonstrate that this is so even if the dictionary fails to satisfy the spark condition, the
data are distributed over only a polynomial set of subspaces spanned by the dictionary, or
(to some extent) even if the dictionary is overestimated in size.
The second formulation of the problem seeks a dictionary which minimizes the average num-
ber of dictionary elements required to approximate each signal in the dataset up to some
bounded error. The guarantees in this case, the first of their kind in both in the noiseless and
noisy regimes, are derived by demonstrating that this second problem actually reduces to an
instance of the first. Importantly, in both cases, no constraints whatsoever are imposed on
learned dictionaries beyond a natural upper bound on their size.
This work serves to justify, in principle, dictionary learning in general as a means of discov-
ering latent sparse structure in real data. Though much work remains to be done deriving
criteria for use in practice, the theoretical tools developed here should be of use to this end.
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I want to dedicate this work to my dad. Yet it feels as though doing so would in some
sense measure his life up against these results, which can’t possibly be matched to the time
with him I traded to produce them. Whatever the eventual effect of this work on the scientific
ecosystem may be, these mathematical truths could have waited. They could have arrived
at their own pace, via myself or another, and I could have been more present with my dad
as he waited patiently to die of cancer.

I suppose that I couldn’t really fathom what it actually meant for this to happen – to never
see or talk to or hug him again – while the idea of putting original work out there, of crafting
my own piece of the overwhelming puzzle that is neuroscience, was tantalizing. Yet I feel
that it was very much a sense of desperation, of having to accomplish something and prove
myself worthy of the position I had come to find myself in after 20+ years of schooling and a
first failed project, that largely drove these efforts. Truth be told, I initially had no particular
interest in dictionary learning other than as a means to passing my qualifying exam; and by
that time, I worried the brain was so dauntingly complex that I should feel lucky to have at
least been offered a well-defined problem of arguable relevance to neuroscience to work on,
particularly one I felt even remotely equipped to solve myself.

So let’s just say that this is the first bit of a life’s work dedicated to my dad. A life of
work uninfluenced by position or status and the associated self-doubt, pressure, or delusions
of grandeur; one dedicated to passionate ideas, to solving problems I care about and that
really matter, to loving and caring for others or, as my dad would say, to “being a mensch”.
May this dedication serve to hold me accountable for that. Also, I love you, mom. I dedicate
this and everything to come to you, too.
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Chapter 1

Introduction

It is a long-standing practice in the field of signal processing to describe signals as linear
combinations of elementary waveforms selected from a pre-specified “dictionary”. Every
signal has a unique representation in terms of these components when the dictionary forms
a basis. For example, a signal can be decomposed into its constituent frequencies via the
Fourier transform, which performs a change of basis.

Bases have been the dominant form of signal representation until recently due largely to
their simplicity. For many signal analysis tasks, however, no one basis can convey clearly all
of the relevant information in the signal. For instance, if a signal can be either a sine wave
or a delta function, then neither the standard basis nor the Fourier basis will indicate one
case as explicitly as it does the other.

This need for more freedom of expression has led to the development of redundant signal
representations utilizing overcomplete dictionaries, which contain more waveforms than there
are dimensions of the signal. An overcomplete dictionary admits infinitely many possible
ways to decompose a signal into a linear superposition its constituent components. The
intention is then to seek the best such representation, be it by some analytic criteria, or as
measured by some task-specific cost function.

A popular approach to the design of overcomplete dictionaries in the latter case has
been to seek one which admits a sparse representation for every signal of interest; that is,
each signal can be reconstructed, or at least well-approximated, by a combination of only a
few dictionary elements from the bunch. Carrying on with our running example, the union
of the standard basis with the Fourier basis is an overcomplete dictionary with respect to
which both sine waves and delta functions achieve the sparsest possible representation as
the scaling of a single elementary waveform from the dictionary.

Early approaches to sparse representation modeling would assume a model of the sig-
nal class from which a suitable sparsifying dictionary could be derived, as we have in our
trivial example. Such dictionaries are characterized by an analytic formulation and a fast
implicit implementation; yet they tend to be over-simplistic when applied to model natural
phenomena.

An alternative modern approach to dictionary design is conditioned on the assumption
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that the sparse structure of signals conveying information about complex natural phenomena
can be more accurately extracted directly from a training dataset, a process referred to as
dictionary learning (see [50] for a comprehensive review). In the seminal work [38] (see
also [26, 7, 22]), a dictionary trained over a collection of small patches extracted from
images of the natural environment was shown to share qualitative similarities with linear
filters estimated from the response properties of simple-cell neurons in mammalian visual
cortex, which until then had been more weakly described analytically as Gabor filters. This
remarkable discovery demonstrated that the assumption of sparsity alone could potentially
account for a fundamental property of the visual system, and showcased the potential of the
machine-learning approach to dictionary design. Even more curiously, these waveforms (e.g.,
Gabor-like wavelets) tend to appear in dictionaries optimized with respect to different natural
image datasets by a variety of dictionary learning algorithms, suggesting that the optimal
dictionaries for sparse representation of these signals may, in some sense, be canonical [11].

In light of these observations, it is natural to wonder when the optimal dictionary for
sparse representation modeling can be identified given a representative sample from a signal
class. Answers to this question have implications in practice wherever an appeal is made
to latent sparse structure of data (e.g., forgery detection [25, 39]; brain recordings [30, 1,
33]; and gene expression [49]), since the assumption is that this structure captures some
identifiable physical or logically causal variable.

Even though several dictionary learning algorithms have recently been proposed to prov-
ably recover a unique dictionary under specific conditions (see [45, Sec. I-E] for a summary
of the state of the art), few theorems can be invoked to justify inference with respect to this
model of data more broadly. Despite the now ubiquitous application of dictionary learning
methods in practice, to the best of my knowledge a universal guarantee of the uniqueness
and stability of learned dictionaries and the sparse representations they induce over real data
in the presence of noise has yet to appear in the literature.

In this work, it is proven very generally that uniqueness and stability is a typical property
of learned dictionaries. Specifically, if each of N observed n-dimensional real signals is truly
a (noisy) linear combination of at most k elementary waveforms drawn from a suitable
dictionary of size m � N , that dictionary is uniquely specified by the data up to an error
that is linear in the noise given N = m(k − 1)

(
m
k

)
+m such signals (Thm. 1 and Cor. 1). In

fact, provided n ≥ min(2k,m), in almost all cases the problem is well-posed, as per Hadamard
[21], given enough data (Thm. 3 and Cor. 2). Similar guarantees also hold for the related
(and perhaps more commonly posed, e.g. [42]) optimization problem seeking a dictionary
minimizing the average number of elementary waveforms required to reconstruct each sample
of the dataset (Thm. 2). To great practical benefit (and technical pain!), these guarantees
apply without the imposition of any constraints at all on learned dictionaries beyond an
upper bound on their size, which is necessary in any case to avoid trivial solutions (e.g.,
allowing m = N).
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1.1 The dictionary learning problem(s)

Let us now rigorously define the two formulations of the dictionary learning problem with
which this work concerns itself. Fix a matrix A ∈ Rn×m with the elementary waveforms of
the dictionary as its columns Aj (j = 1, . . . ,m) and let dataset Z consist of measurements:

zi = Axi + ni, i = 1, . . . , N, (1.1)

for k-sparse xi ∈ Rm having at most k < m nonzero entries and noise ni ∈ Rn, with bounded
norm ‖ni‖2 ≤ η representing our worst-case uncertainty in measuring the product Axi. We
shall first consider the following decidable1 formulation of the dictionary learning problem.

Problem 1. Find a matrix B and k-sparse codes x1, . . . ,xN that satisfy ‖zi − Bxi‖2 ≤ η
for all i = 1, . . . , N .

Note that every solution to Prob. 1 represents infinitely many equivalent alternatives
BPD and D−1P>x1, . . . ,D

−1P>xN parametrized by a choice of permutation matrix P and
invertible diagonal matrix D. Identifying these ambiguities (labelling and scale) yields a
single orbit of solutions represented by any particular set of elementary waveforms (the
columns of B) and their associated sparse coefficients (the entries of xi) that reconstruct
each data point zi.

Previous theoretical work addressing the noiseless case η = 0 (e.g., [35, 18, 2, 24]) for
matrices B having exactly m columns has shown that a solution to Prob. 1, when it exists,
is unique up to such relabeling and rescaling provided the xi are sufficiently diverse and A
satisfies the spark condition:

Ax1 = Ax2 =⇒ x1 = x2, for all k-sparse x1,x2, (1.2)

which is necessary to guarantee the uniqueness of arbitrary k-sparse xi. We shall generalize
these results to the practical setting η > 0 by considering the following natural notion of
stability with respect to measurement error.

Definition 1. Fix Y = {y1, . . . ,yN} ⊂ Rn. We say Y has a k-sparse representation in
Rm if there exists a matrix A and k-sparse x1, . . . ,xN ∈ Rm such that yi = Axi for all i.
This representation is stable if for every δ1, δ2 ≥ 0, there exists some ε = ε(δ1, δ2) that is
strictly positive for positive δ1 and δ2 such that if B and k-sparse x1, . . . ,xN ∈ Rm satisfy:

‖Axi −Bxi‖2 ≤ ε(δ1, δ2), for all i = 1, . . . , N,

then there is some permutation matrix P and invertible diagonal matrix D such that for all
i, j:

‖Aj − (BPD)j‖2 ≤ δ1 and ‖xi −D−1P>xi‖1 ≤ δ2. (1.3)

1Note that Prob. 1 is decidable for rational inputs zi [23] since the statement that it has a solution can
be expressed as a logical sentence in the theory of algebraically closed fields, and this theory has quantifier
elimination [5].
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To see how Prob. 1 motivates Def. 1, suppose that Y has a stable k-sparse representation
in Rm and fix δ1, δ2 to be the desired accuracies of recovery in (1.3). Consider any dataset
Z generated as in (1.1) with η ≤ 1

2
ε(δ1, δ2). Using the triangle inequality, it follows that any

n×m matrix B and k-sparse x1, . . . ,xN solving Prob. 1 are necessarily within δ1 and δ2 of
the original dictionary A and codes x1, . . . ,xN , respectively.2

The main result of this work is a very general uniqueness theorem (Thm. 1) directly
implying (Cor. 1), which guarantees that sparse representations of a dataset Z are unique
up to noise whenever generating dictionaries A satisfy a spark condition on supports and
the original sparse codes xi are sufficiently diverse (e.g., Fig. 2.1). Moreover, an explicit,
computable ε(δ1, δ2) is given in (2.4) that is linear in desired accuracy δ1, and essentially so
in δ2.

The same guarantees can be extended (Thm. 2) to the following alternate formulation
of the dictionary learning problem, which seeks to minimize the average number of nonzero
entries in sparse codes.

Problem 2. Find a matrix B and vectors x1, . . . ,xN solving:

min
N∑
i=1

‖xi‖0 subject to ‖zi −Bxi‖2 ≤ η, for all i. (1.4)

Surprisingly, the development of Thm. 1 is general enough to guarantee uniqueness and
stability even when generating A do not fully satisfy (1.2), and to some degree even when
recovery dictionaries B have more columns than A. The approach incorporates a theory of
combinatorial designs for the sparse supports of generating codes xi that should also be of
independent interest.

1.2 Outline of the thesis

Formal statements of the main findings described above are given in Chap. 2, along with
their adaptation to dictionaries and codes drawn from arbitrary (continuous) probability
distributions (Thm. 3 and Cor. 2). All results assume real matrices and vectors. For clarity
of exposition, the technical proofs of Thms. 1 and 2 are deferred to Chap. 3, following
some necessary definitions and the statement of a key lemma in combinatorial matrix anal-
ysis (Lem. 1, proven in the chapter’s Appendix). These results and their applications are
discussed in Chap. 4, which concludes with some open questions and directions for future
research, which are seeded in part by some practically-minded simulations.

2We mention that the different norms in (1.3) reflect the distinct meanings typically ascribed to the
dictionary and sparse codes in modeling data.
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Chapter 2

Results

2.1 Definitions

To state precisely the results of this work, we will require first the identification of some
combinatorial criteria on the supports1 of sparse vectors. Let {1, . . . ,m} be denoted [m], its
power set 2[m], and

(
[m]
k

)
the set of subsets of [m] of size k. A hypergraph on vertices [m] is

simply any subset H ⊆ 2[m]. Let us say that H is k-uniform when H ⊆
(
[m]
k

)
. The degree

degH(i) of a node i ∈ [m] is the number of sets in H that contain i, and we say H is regular
when for some r we have degH(i) = r for all i (given such an r, we say H is r-regular). Let
us also write 2H := {S ∪ S ′ : S, S ′ ∈ H}. The following class of structured hypergraphs is a
key ingredient in this work.

Definition 2. Given H ⊆ 2[m], the star σ(i) is the collection of sets in H containing i. We
say H has the singleton intersection property (SIP) when ∩σ(i) = {i} for all i ∈ [m].

Next, we will require a quantitative generalization of the spark condition (1.2) to combi-
natorial subsets of supports. The lower bound of an n ×m matrix M is the largest α with
‖Mx‖2 ≥ α‖x‖2 for all x ∈ Rm [20]. By compactness of the unit sphere, every injective
linear map has a positive lower bound; hence, if M satisfies (1.2), then submatrices formed
from 2k of its columns or less have strictly positive lower bounds.

The lower bound of a matrix is generalized below in (2.1) by restricting it to the spans
of certain submatrices2 associated with a hypergraph H ⊆

(
[m]
k

)
of column indices. Let MS

denote the submatrix formed by the columns of a matrix M indexed by S ⊆ [m] (setting
M∅ := 0). In the sections that follow, let MS denote the column-span of a submatrix MS,
and MG to denote {MS}S∈G. Define:

LH(M) := min

{
‖MSx‖2√
k‖x‖2

: S ∈ H, 0 6= x ∈ R|S|
}
, (2.1)

1Recall that a vector x is said to be supported in S when x ∈ span{ej : j ∈ S}, with ej forming the
standard column basis.

2See [48] for an overview of the related “union of subspaces” model.
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writing also Lk in place of LH when H =
(
[m]
k

)
.3 As explained above, compactness implies

that L2k(M) > 0 for all M satisfying (1.2). Clearly, LH′(M) ≥ LH(M) whenever H′ ⊆ H,
and similarly any k-uniform H satisfying ∪H = [m] has L2 ≥ L2H ≥ L2k (letting L2k := Lm
whenever 2k > m).

2.2 Uniqueness theorems

Deterministic guarantees

The following is the statement of the main result. For expository purposes the quantity
C1 (a function of A, x1, . . . ,xN , and H) will be left undefined until Chap. 3.

Theorem 1. If an n×m matrix A satisfies L2H(A) > 0 for some r-regular H ⊆
(
[m]
k

)
with

the SIP, and k-sparse x1, . . . ,xN ∈ Rm include more than (k−1)
(
m
k

)
vectors in general linear

position4 supported in each S ∈ H, then the following recovery guarantees hold for C1 > 0
given by (3.11).

Dictionary Recovery: Fix ε < L2(A)/C1.5 If an n × m matrix B has, for every
i ∈ [N ], an associated k-sparse xi satisfying ‖Axi −Bxi‖2 ≤ ε, then m ≥ m, and provided
that m(r − 1) < mr, there is a permutation matrix P and an invertible diagonal matrix D
such that:

‖Aj − (BPD)j‖2 ≤ C1ε, for all j ∈ J, (2.2)

for some J ⊆ [m] of size m− (r − 1)(m−m).
Code Recovery: If, moreover, AJ satisfies (1.2) and ε < L2k(AJ)/C1, then (BP)J

also satisfies (1.2) with L2k(BPJ) ≥ (L2k(AJ)− C1ε)/‖DJ‖1, and for all i ∈ [N ]:

‖(xi)J − (D−1P>xi)J‖1 ≤
(

1 + C1‖(xi)J‖1
L2k(AJ)− C1ε

)
ε, (2.3)

where subscript (·)J here represents the subvector formed from restricting to coordinates
indexed by J .

In words, Thm. 1 says that the smaller the regularity r of the original support hypergraph
H or the difference m−m between the assumed and actual number of elements in the latent
dictionary, the more columns and coefficients of the original dictionary A and sparse codes

3In compressed sensing literature, 1−
√
kLk(M) is the asymmetric lower restricted isometry constant

for M with unit `2-norm columns [8].
4Recall that a set of vectors sharing support S are in general linear position when any |S| of them are

linearly independent.
5Note that the condition ε < L2(A)/C1 is necessary; otherwise, with A = I (the identity matrix) and

xi = ei, the matrix B =
[
0, 12 (e1 + e2), e3, . . . , em

]
and sparse codes xi = e2 for i = 1, 2 and xi = ei for

i ≥ 3 satisfy ‖Axi −Bxi‖2 ≤ ε but nonetheless violate (2.2).
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xi are guaranteed to be contained (up to noise) in the appropriately labelled and scaled
recovered dictionary B and codes xi, respectively.

In the important special case when m = m, the theorem directly implies that Y =
{Ax1, . . . ,AxN} has a stable k-sparse representation in Rm, with inequalities (1.3) guaran-
teed in Def. 1 for the following worst-case error ε:

ε(δ1, δ2) := min

{
δ1
C1

,
δ2L2k(A)

1 + C1

(
δ2 + maxi∈[N ] ‖xi‖1

)} . (2.4)

Since sparse codes in general linear position are straightforward to produce with a “Van-
dermonde” construction (i.e., by choosing columns of the matrix [γji ]

k,N
i,j=1, for distinct nonzero

γi), we have the following direct consequence of Thm. 1.

Corollary 1. Given any regular hypergraphH ⊆
(
[m]
k

)
with the SIP, there are N = |H|

[
(k − 1)

(
m
k

)
+ 1
]

vectors x1, . . . ,xN ∈ Rm such that every matrix A satisfying spark condition (1.2) generates
Y = {Ax1, . . . ,AxN} with a stable k-sparse representation in Rm for ε(δ1, δ2) given by (2.4).

One can easily verify that for every k < m there are regular k-uniform hypergraphs H
with the SIP besides the obvious H =

(
[m]
k

)
. For instance, take H to be the k-regular set of

consecutive intervals of length k in some cyclic order on [m]. In this case, a direct consequence
of Cor. 1 is rigorous verification of the lower bound N = m(k − 1)

(
m
k

)
+m for sufficient

sample size from the introduction. Special cases allow for even smaller hypergraphs. For
example, if k =

√
m, then a 2-regular k-uniform hypergraph with the SIP can be constructed

as the 2k rows and columns formed by arranging the elements of [m] into a square grid.
It should be stressed here that framing the problem in terms of hypergraphs will allowed

us to show, unlike in previous research on the subject, that the matrix A need not necessarily
satisfy (1.2) to be recoverable from data. As an example, let A = [e1, . . . , e5,v] with
v = e1 + e3 + e5 and take H to be all consecutive pairs of indices 1, . . . , 6 arranged in cyclic
order. Then for k = 2, the matrix A fails to satisfy (1.2) while still obeying the assumptions
of Thm. 1 for dictionary recovery.

A practical implication of Thm. 1 is the following: there is an effective procedure suffi-
cient to affirm if a proposed solution to Prob. 1 is indeed unique (up to noise and inherent
ambiguities). One need simply check that the matrix and codes satisfy the (computable)
assumptions of Thm. 1 on A and the xi. In general, however, there is no known efficient
procedure. A brief discussion on this point is deferred until later.

A less direct consequence of Thm. 1 is the following uniqueness and stability guarantee
for solutions to Prob. 2.

Theorem 2. Fix a matrix A and vectors xi satisfying the assumptions of Thm. 1, only
now with over (k − 1)

[(
m
k

)
+ |H|k

(
m
k−1

)]
vectors supported in general linear position in each

S ∈ H. Every solution to Prob. 2 (with η = ε/2) satisfies the dictionary recovery and code
recovery guarantees of Thm. 1 when the corresponding bounds on ε are met.
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Figure 2.1: Learning a dictionary from increasingly noisy data. The (unraveled)
basis elements of the 8 × 8 discrete cosine transform (DCT) form the 64 columns of the
left-most matrix above. Three increasingly imprecise dictionaries (columns reordered to
best match original) are recovered by FastICA [28] trained on data generated from 8-sparse
linear combinations of DCT elements corrupted with additive noise (increasing from left to
right).

Probabilistic guarantees

Another extension of Thm. 1 can be derived from the following algebraic characterization
of the spark condition. Letting A be the n×m matrix of nm indeterminates Aij, the reader
may work out why substituting real numbers for the Aij yields a matrix satisfying (1.2) if
and only if the following polynomial evaluates to a nonzero number:

f(A) :=
∏

S∈([m]
2k )

∑
S′∈([n]

2k)

(det AS′,S)2,

where for any S ′ ∈
(
[n]
2k

)
and S ∈

(
[m]
2k

)
, the symbol AS′,S denotes the submatrix of entries

Aij with (i, j) ∈ S ′ × S.6

Since f is analytic, having a single substitution of a real matrix A satisfying f(A) 6= 0
implies that the zeroes of f form a set of (Borel) measure zero. Such a matrix is easily
constructed by adding rows of zeroes to a min(2k,m)×m Vandermonde matrix as mentioned
previously, so that every sum in the product defining f above is strictly positive. Thus,
almost every n×m matrix with n ≥ min(2k,m) satisfies (1.2).

It turns out that a similar phenomenon applies to datasets of vectors with a stable sparse
representation. Briefly, following the same procedure as in [24, Sec. IV], for k < m and
n ≥ min(2k,m), we may consider the “symbolic” dataset Y = {Ax1, . . . ,AxN} generated
by an indeterminate n ×m matrix A and m-dimensional k-sparse vectors x1, . . . ,xN inde-
terminate within their supports, which form a regular hypergraph H ⊆

(
[m]
k

)
satisfying the

SIP. Restricting (k − 1)
(
m
k

)
+ 1 indeterminate xi to each support in H, and letting M be the

6The large number of terms in this product is likely necessary given that deciding whether or not a
matrix satisfies the spark condition is NP-hard [47].
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n×N matrix with columns Axi, it can be checked that when f(M) 6= 0 for a substitution
of real numbers for the indeterminates, all of the assumptions on A and the xi in Thm. 1
are satisfied. We therefore have the following.

Theorem 3. There is a polynomial in the entries of A and the xi that evaluates to a nonzero
number only when Y has a stable k-sparse representation in Rm. In particular, almost all
substitutions impart to Y this property.

To extend this observation to arbitrary probability distributions, note that if a set of p
measure spaces has all measures absolutely continuous with respect to the standard Borel
measure on R, then the product measure is also absolutely continuous with respect to the
standard Borel product measure on Rp (e.g., see [15]). This fact combined with Thm. 3
implies the following.7

Corollary 2. If the indeterminate entries of A and the xi are drawn independently from
probability distributions absolutely continuous with respect to the standard Borel measure,
then Y has a stable k-sparse representation in Rm with probability one.

Thus, drawing the dictionary and supported sparse coefficients from any continuous prob-
ability distribution almost always generates data with a stable sparse representation.

2.3 Discussion

It is befitting to comment on the optimality of these results. The linear scaling for ε
in (2.4) is essentially optimal (e.g., see [3]), but a basic open problem remains: how many
samples are necessary to determine the sparse coding model? These results demonstrate that
sparse codes xi drawn from only a polynomial number of k-dimensional subspaces permit
stable identification of the generating dictionary A. This lends some legitimacy to the use of
the model in practice, where data in general are unlikely (if ever) to exhibit the exponentially
many possible k-wise combinations of dictionary elements required by (to my knowledge) all
previously published results.

Consequently, if k is held fixed or if the size of the support set of reconstructing codes
is polynomial in m and k, then a practical (polynomial) amount of data suffices to identify
the dictionary.8 Reasons to be skeptical that this holds in general, however, can be found
in [47, 46]. Even so, the next chapter contains a discussion on how probabilistic guarantees
can in fact be made for any number of available samples (see also Fig. 4.1).

As it seemed to benefit a reviewer of this work, some clarification may be in order on how
the deterministic sample complexity N = |H|

[
(k − 1)

(
m
k

)
+ 1
]

given here (Cor. 1) compares
to those listed in the the top two rows listed in Table I of [24]. To be clear, the theory

7We refer the reader to [24] for a more detailed explanation of these arguments.
8In the latter case, a reexamination of the pigeonholing argument in the proof of Thm. 1 requires a

polynomial number of samples distributed over a polynomial number of supports.
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developed here is strictly more general, since H can always be taken to be
(
[m]
k

)
. The point

of difference in this comparison is the assumed set of supports for sparse codes, which is
always

(
[m]
k

)
in [24], whereas here it can be assumed to be any regular k-uniform hypergraph

that satisfies the SIP. By row,

I. The result here improves upon the listed k
(
m
k

)2
by an exponential factor, since for every

k < m there exists a regular k-uniform hypergraph H with |H| = m satisfying the SIP.

II. The authors in [24] have applied measure-theoretic arguments to achieve (k + 1)
(
m
k

)
with almost-certainty (i.e. with probability one), a factor of m reduction over that for
which certainty can alternatively be guaranteed here. In their case, (k + 1) vectors
need to be allocated to each of

(
m
k

)
distinct supports, whereas here (k − 1)

(
m
k

)
+ 1

vectors are allocated to each of m distinct supports.
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Chapter 3

Proofs

We shall prove Thm. 1 and then prove Thm. 2 by arguing that Prob. 2 reduces to an
instance of Prob. 1 given sufficient data.

It is instructive to begin the proof of Thm. 1 by showing how dictionary recovery (2.2)
already implies sparse code recovery (2.3) when A satisfies (1.2) and ε < L2k(A)/C1. We
shall temporarily assume (without loss of generality) that m = m, so as to omit an otherwise
requisite subscript (·)J around certain matrices and vectors. By definition of L2k in (2.1),
and noting that

√
k‖v‖2 ≥ ‖v‖1 for k-sparse v, we have for all i ∈ [N [:

‖xi −D−1P>xi‖1 ≤
‖BPD(xi −D−1P>xi)‖2

L2k(BPD)

≤ ‖(BPD−A)xi‖2 + ‖Axi −Bxi‖2
L2k(BPD)

≤ C1ε‖xi‖1 + ε

L2k(BPD)
, (3.1)

where the first term in the numerator above follows from the triangle inequality and (2.2).
It remains for us to bound the denominator. For any 2k-sparse x, we have by the triangle

inequality:

‖BPDx‖2 ≥ ‖Ax‖2 − ‖(A−BPD)x‖2
≥
√

2k(L2k(A)− C1ε)‖x‖2,

We therefore have that L2k(BPD) ≥ L2k(A) − C1ε > 0, and (2.3) then follows from
(3.1). The reader may also verify that L2k(BP) ≥ L2k(BPD)/‖D‖1.

The heart of the matter is therefore (2.2), which we shall now establish beginning with
the important special case of k = 1.
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3.1 Proving the case k = 1

Since the only 1-uniform hypergraph with the SIP is [m], which is obviously regular, we
require only xi = ciei for i ∈ [m], with ci 6= 0 to guarantee linear independence. While
we have yet to define C1 generally, in this case we may set C1 = 1/min`∈[m] |c`| so that
ε < L2(A) min`∈[m] |c`|.

Proof of Thm. 1 for k = 1. Fix A ∈ Rn×m satisfying L2(A) > 0, since here we have 2H =(
[m]
2

)
, and suppose some B and 1-sparse xi ∈ Rm have ‖Axi − Bxi‖2 ≤ ε < L2(A)/C1 for

all i. Then, there exist c1, . . . , cm ∈ R and a map π : [m]→ [m] such that:

‖ciAi − ciBπ(i)‖2 ≤ ε, for i ∈ [m]. (3.2)

Note that ci 6= 0, since otherwise we would reach the following contradiction: ‖Ai‖2 ≤
C1|ci|‖Ai‖2 ≤ C1ε < L2(A) ≤ L1(A) = mini∈[m] ‖Ai‖2.

Let us now show that π is injective (in particular, a permutation if m = m). Suppose
that π(i) = π(j) = ` for some i 6= j and `. Then, ‖ciAi−ciB`‖2 ≤ ε and ‖cjAj−cjB`‖2 ≤ ε,
and we have:

(|ci|+ |cj|)ε ≥ |ci|‖cjAj − cjB`‖2 + |cj|‖ciAi − ciB`‖2
≥ ‖A(cicjej − cjciei)‖2
≥
√

2L2(A)‖cicjej − cjciei‖2
≥ L2(A) (|ci|+ |cj|) min

`∈[m]
|c`|,

contradicting our assumed upper bound on ε. Hence, the map π is injective and so m ≥ m.
Letting P and D be the m × m permutation and invertible diagonal matrices with,

respectively, columns eπ(i) and ci
ci

ei for i ∈ [m] (otherwise, ei for i ∈ [m] \ [m]), we may
rewrite (3.2) to see that for all i ∈ [m]:

‖Ai − (BPD)i‖2 = ‖Ai −
ci
ci

Bπ(i)‖2 ≤
ε

|ci|
≤ C1ε.

3.2 Stating the main lemma

An extension of the proof to the general case k < m requires some additional tools to
derive the general expression (3.11) for C1. These include a generalized notion of distance
(Def. 3) and angle (Def. 4) between subspaces as well as a stability result in combinatorial
matrix analysis (Lem. 1), which contains most of the complexity of the proof of Thm. 1.

Definition 3. For u ∈ Rm and vector spaces U, V ⊆ Rm, let dist(u, V ) := min{‖u − v‖2 :
v ∈ V } and define:

d(U, V ) := max
u∈U, ‖u‖2≤1

dist(u, V ). (3.3)
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Note the following facts about d. Clearly,

U ′ ⊆ U =⇒ d(U ′, V ) ≤ d(U, V ). (3.4)

From [31, Ch. 4 Cor. 2.6], we also have:

d(U, V ) < 1 =⇒ dim(U) ≤ dim(V ), (3.5)

and from [37, Lem. 3.2]:

dim(U) = dim(V ) =⇒ d(U, V ) = d(V, U). (3.6)

The required stability result in combinatorial matrix analysis is the following. For ex-
pository purposes, the proof of this fact is relegated to Sec. 3.5.

Lemma 1. If an n ×m matrix A has L2H(A) > 0 for some r-regular H ⊆
(
[m]
k

)
with the

SIP, then the following holds for C2 > 0 given by (3.10):
Fix ε < L2(A)/C2. If for some n×m matrix B and map π : H 7→

(
[m]
k

)
,

d(AS,Bπ(S)) ≤ ε, for S ∈ H, (3.7)

then m ≥ m, and provided m(r − 1) < mr, there is a permutation matrix P and invertible
diagonal D such that:

‖Ai − (BPD)i‖2 ≤ C2ε, for i ∈ J, (3.8)

for some J ⊆ [m] of size m− (r − 1)(m−m).

The constant C2 (a function of A and H) will be presented relative to a quantity used
in [10] to analyze the convergence of the “alternating projections” algorithm for projecting
a point onto the intersection of subspaces. This quantity is incorporated into the following
definition, which we shall refer to in the proof of Lem. 3 in the Sec. 3.5; specifically, it will
be used to bound the distance between a point and the intersection of subspaces given an
upper bound on its distance from each subspace.

Definition 4. For a collection of real subspaces V = {Vi}`i=1, define ξ(V) := 0 when |V| = 1,
and otherwise:

ξ2(V) := 1−max
`−1∏
i=1

sin2 θ (Vi,∩j>iVj) , (3.9)

where the maximum is taken over all ways of ordering the Vi and the angle θ ∈ (0, π
2
] is

defined implicitly as [10, Def. 9.4]:

cos θ(U,W ) := max
{
|〈u,w〉| : u∈U∩(U∩W )⊥, ‖u‖2≤1

w∈W∩(U∩W )⊥, ‖w‖2≤1

}
.
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Note that θ ∈ (0, π
2
] implies 0 ≤ ξ < 1, and that ξ(V ′) ≤ ξ(V) when V ′ ⊆ V .1

The constant C2 > 0 of Lem. 1 can now be expressed as:

C2(A,H) :=
(r + 1) maxj∈[m] ‖Aj‖2
1−maxG∈( Hr+1)

ξ(AG)
. (3.10)

3.3 Proving the general case k < m

We may now define the constant C1 > 0 of Thm. 1 in terms of C2. Given vectors
x1, . . . ,xN ∈ Rm, let X denote the m×N matrix with columns xi and let I(S) denote the
set of indices i for which xi is supported in S. Define:

C1(A,H, {xi}Ni=1) :=
C2(A,H)

minS∈H Lk(AXI(S))
. (3.11)

Given the assumptions of Thm. 1 on A and the xi, this expression for C1 is well-defined2

and yields an upper bound on ε consistent with that proven sufficient in the case k = 1
considered at the beginning of this chapter.3

The practically-minded reader should note that the explicit constants C1 and C2 are
effectively computable: the denominator of C1 involves a quantity Lk that may be calculated
as the smallest singular value of a certain matrix, while computing the quantity ξ in the
denominator of C2 involves computing “canonical angles” between subspaces, which reduces
again to an efficient singular value decomposition. There is no known fast computation of
Lk in general, however, since even Lk > 0 is NP-hard [47], although efficiently computable
bounds have been proposed (e.g., via the “mutual coherence” of a matrix [12]); alternatively,
fixing k yields polynomial complexity. Moreover, calculating C2 requires an exponential
number of queries to ξ unless r is held fixed, too (e.g., the “cyclic order” hypergraphs
described above have r = k). Thus, as presented, C1 and C2 are not efficiently computable
in general.

Proof of Thm. 1 for k < m. We shall find a map π : H →
(
[m]
k

)
for which the distance

d(AS,Bπ(S)) is controlled by ε for all S ∈ H. Applying Lem. 1 then completes the proof.
Fix S ∈ H. Since there are more than (k − 1)

(
m
k

)
vectors xi supported in S, by the

pigeonhole principle there must be some S ∈
(
[m]
k

)
and a set of k indices K ⊆ I(S) for which

all xi with i ∈ K are supported in S. It also follows4 from L2H(A) > 0 and the general

1We acknowledge the counter-intuitive property: θ = π/2 when U ⊆W .
2To see this, fix S ∈ H and k-sparse c. Using the definitions, we have ‖AXI(S)c‖2 ≥√

kLH(A)‖XI(S)c‖2 ≥ kLH(A)Lk(XI(S))‖c‖2. Thus, Lk(AXI(S)) ≥
√
kLH(A)Lk(XI(S)) > 0, since

LH(A) ≥ L2H(A) > 0 and Lk(XI(S)) > 0 by general linear position of the xi.
3When xi = ciei, we have C2 ≥ 2‖Ai‖2 and the denominator in (3.11) becomes mini∈[m] |ci|‖Ai‖2;

hence, C1 ≥ 2/mini∈[m] |ci|.
4See footnote 2.
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linear position of the xi that Lk(AXK) > 0; that is, the columns of the n× k matrix AXK

form a basis for AS.
Fixing y ∈ AS \ {0}, there then exists c = (c1, . . . , ck) ∈ Rk \ {0} such that y = AXKc.

Setting y = BXKc, which is in BS, we have by triangle inequality:

‖y − y‖2 = ‖(AXK −BXK)c‖2 ≤ ε‖c‖1 ≤ ε
√
k‖c‖2

≤ ε

Lk(AXK)
‖y‖2,

where the last inequality uses (2.1). From Def. 3:

d(AS,BS) ≤ ε

Lk(AXK)
≤ ε

Lk(AXI(S))
≤ ε

C1

C2

. (3.12)

Finally, apply Lem. 1 with ε < L2(A)/C1 and π(S) := S.

Before moving on to the proof of Thm. 2, let us briefly revisit the discussion on sample
complexity from the end of the previous chapter. While an exponential number of samples
may very well prove to be necessary in the deterministic or almost-certain case, our proof
of Thm. 1 can be extended to hold with some probability for any number of samples by
alternative appeal to a probabilistic pigeonholing at the point early in the proof where the
(deterministic) pigeonhole principle is applied to show that for every S ∈ H, there exist
k vectors xi supported on S whose corresponding xi all share the same support.5 Given
insufficient samples, this argument has some less-than-certain probability of being valid for
each S ∈ H. Nonetheless, simulations with small hypergraphs demonstrate that successful
recovery is nearly certainly even when N is only a fraction of the deterministic sample
complexity (see Fig. 4.1).

Proof of Thm. 2. We shall bound the number of k-sparse xi from below and then apply
Thm. 1. Let np be the number of xi with ‖xi‖0 = p. Since the xi are all k-sparse, by (1.4)
we have:

m∑
p=0

pnp =
N∑
i=0

‖xi‖0 ≤
N∑
i=0

‖xi‖0 ≤ kN

Since N =
∑m

p=0 np, we then have
∑m

p=0(p− k)np ≤ 0. Splitting the sum yields:

m∑
p=k+1

np ≤
m∑

p=k+1

(p− k)np ≤
k∑
p=0

(k − p)np ≤ k
k−1∑
p=0

np, (3.13)

5A famous example of such an argument is the counter-intuitive “birthday paradox”, which demonstrates
that the probability of two people having the same birthday in a room of twenty-three is greater than 50%.
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demonstrating that the number of vectors xi that are not k-sparse is bounded above by how
many are (k − 1)-sparse.

Next, observe that no more than (k−1)|H| of the xi share a support S of size less than k.
Otherwise, by the pigeonhole principle, there is some S ∈ H and a set of k indices K ⊆ I(S)
for which all xi with i ∈ K are supported in S; as argued previously, (3.12) follows. It
is simple to show that L2(A) ≤ maxj ‖Aj‖2, and since 0 ≤ ξ < 1, the right-hand side of
(3.12) is less than one for ε < L2(A)/C1. Thus, by (3.5) we would have the contradiction
k = dim(AS) ≤ dim(BS) ≤ |S| < k.

The total number of (k − 1)-sparse vectors xi thus cannot exceed |H|(k − 1)
(
m
k−1

)
. By

(3.13), no more than |H|k(k − 1)
(
m
k−1

)
vectors xi are not k-sparse. Since for every S ∈ H

there are over (k − 1)
[(
m
k

)
+ |H|k

(
m
k−1

)]
vectors xi supported there, it must be that more

than (k − 1)
(
m
k

)
of them have corresponding xi that are k-sparse. The result now follows

from Thm. 1, noting by the triangle inequality that ‖Axi−Bxi‖ ≤ 2η for i = 1, . . . , N .

3.4 Discussion

The absence of any assumptions at all about dictionaries that solve Prob. 1 was a major
technical hurdle in proving Thm. 1. This very general guarantee was sought because of the
practical difficulty of ensuring that an algorithm maintain a dictionary satisfying the spark
condition (1.2) at each iteration, which (to my knowledge) has been an explicit or implicit
assumption of all previous works except [24]; indeed, even certifying a dictionary has this
property is NP-hard [47].

Several results in the literature had to be combined to extend the guarantees derived in
[24] into the noisy regime. The main challenge was to generalize Lem. 1 to the case where the
k-dimensional subspaces spanned by corresponding submatrices AS and Bπ(S) are assumed
to be“close” but not identical. Referring now to the proof in this chapter’s Appendix,
the situation is unlike that in [24], where an inductive argument could be applied to the
noiseless case. Rather, here it has to be explicitly demonstrated that this proximity relation is
propagated through iterated intersections right down to the spans of the dictionary elements
themselves. Lem. 3 was designed to encapsulate this fact, proven by appeal to a convergence
guarantee for an alternating projections algorithm first proposed by von Neumann. This
result, combined with a little known fact (3.6) about the distance metric between subspaces,
make up the more obscure components of the deduction.

The proof of Lem. 1 diverges most significantly from the approach taken in [24] by way
of Lem. 4, which utilizes a combinatorial design for support sets (the “singleton intersection
property”) to reduce the deterministic sample complexity by an exponential factor. This
constitutes a significant advance toward legitimizing dictionary learning in practice, since
data must otherwise exhibit the exponentially many possible k-wise combinations of dictio-
nary elements required by (to my knowledge) all previously published results; although an
exponential number of samples per support is still required (unless k is held fixed). The issue
is that the map π : H →

(
[m]
k

)
is surjective only when H is taken to be

(
[m]
k

)
, in which case



CHAPTER 3. PROOFS 17

one may proceed by induction as in [24], freely choosing supports in the codomain of π to
intersect over (k−1) indices to then map back to some corresponding set of (k−1) indices at
the intersection of supports in the domain. Here, for H ⊂

(
[m]
k

)
, a bijection between indices

had to instead be established by pigeonholing the image of π under constraints imposed by
the SIP, which was formulated specifically for this purpose. It just so happened that this
more general argument for a non-surjective π constrained by the SIP applied just as well to
the situation where the number of dictionary elements m is over-estimated (i.e. m > m), in
which case a one-to-one correspondence can be guaranteed between a subset of columns of
A and B of a size simply expressed in terms of the width of each matrix and the regularity
of H.

One of the mathematically significant achievements in [24] was to break free from the
constraint that the recovery matrix B satisfy the spark condition in addition to the generating
dictionary A. Here, it has been demonstrated that, in fact, even A need not satisfy the
spark condition! Rather, A need only be injective on the union of subspaces with supports
forming a regular k-uniform hypergraph satisfying the SIP (a distinguishing example is given
in Sec. 2). This relaxation of constraints inspired the definition of the restricted matrix lower
bound LH in (2.1), which generalizes the well-known (see footnote 3) restricted matrix lower
bound Lk to be in terms of a hypergraph H, and is an interesting object for further study
in its own right.

To reiterate, the methods applied here to prove Thm. 1 yield the following results beyond
a straightforward extension of those in [24] to the noisy case:

1. A reduction in deterministic sample complexity: To identify the n × m generating
dictionary A, it is required in [24] that k

(
m
k

)
data points be sampled from each of the(

m
k

)
subspaces spanned by subsets of k columns of A. It is shown here that in fact it

suffices to sample from at most m such subspaces (see Cor. 1).

2. An extension of guarantees to the case where the number of dictionary elements is
unknown: The results of [24] only apply to the case where the matrix B has the same
number of columns as A. It is shown here that if B has at least as many columns as
A then it contains (up to noise) a subset of the columns of A.

3. Relaxed requirements (no spark condition) on the generating matrix A: Rather, A
need only be injective on the union of subspaces with supports that form a regular
uniform hypergraph satisfying the SIP.

3.5 Appendix: Proving the main lemma

We shall prove Lem. 1 after the following auxiliary lemmas.

Lemma 2. If f : V → W is injective, then f
(
∩`i=1Vi

)
= ∩`i=1f (Vi) for any V1, . . . , V` ⊆ V .

(f(∅) := ∅.)
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Proof. By induction, it is enough to prove the case ` = 2. Clearly, for any map f , if
w ∈ f(U ∩ V ) then w ∈ f(U) and w ∈ f(V ); hence, w ∈ f(U) ∩ f(V ). If w ∈ f(U) ∩ f(V ),
then w ∈ f(U) and w ∈ f(V ); thus, w = f(u) = f(v) for some u ∈ U and v ∈ V , implying
u = v by injectivity of f . It follows that u ∈ U ∩ V and w ∈ f(U ∩ V ).

In particular, if a matrix A satisfies L2H(A) > 0, then taking V to be the union of
subspaces consisting of vectors with supports in 2H, we have A∩G = ∩AG for all G ⊆ H.

Lemma 3. Let V = {Vi}ki=1 be a set of two or more subspaces of Rm, and set V = ∩V. For
u ∈ Rm, we have (recall Defs. 3 & 4):

dist(u, V ) ≤ 1

1− ξ(V)

k∑
i=1

dist(u, Vi). (3.14)

Proof. Recall the projection onto the subspace V ⊆ Rm is the mapping ΠV : Rm → V that
associates with each u its unique nearest point in V ; i.e., ‖u − ΠV u‖2 = dist(u, V ). By
repeatedly applying the triangle inequality, we have:

‖u−ΠV u‖2 ≤ ‖u− ΠVku‖2 + ‖ΠVku− ΠVkΠVk−1
u‖2

+ · · ·+ ‖ΠVkΠVk−1
· · ·ΠV1u− ΠV u‖2

≤
k∑
`=1

‖u− ΠV`u‖2 + ‖(ΠVk · · ·ΠV1 − ΠV )u‖2, (3.15)

where we have also used that the spectral norm of the orthogonal projections ΠV` satisfies
‖ΠV`‖2 ≤ 1 for all `.

It remains to bound the second term in (3.15) by ξ(V)‖u − ΠV u‖2. First, note that
ΠV`ΠV = ΠV and Π2

V = ΠV , so we have ‖(ΠVk · · ·ΠV1 − ΠV )u‖2 = ‖(ΠVk · · ·ΠV1 − ΠV )(u−
ΠV u)‖2. Consequently, inequality (3.14) follows from [10, Thm. 9.33]:

‖ΠVkΠVk−1
· · ·ΠV1x− ΠV x‖2 ≤ z‖x‖2, for all x, (3.16)

with z2 = 1−
∏k−1

`=1 (1− z2` ) and z` = cos θ
(
V`,∩ks=`+1Vs

)
(recall θ from Def. 4), after substi-

tuting ξ(V) for z and rearranging terms.

Lemma 4. Fix an r-regular hypergraph H ⊆ 2[m] satisfying the SIP. If the map π : H → 2[m]

has
∑

S∈H |π(S)| ≥
∑

S∈H |S| and:

| ∩ π(G)| ≤ | ∩ G|, for G ∈
(
H
r

)
∪
(
H

r + 1

)
, (3.17)

then m ≥ m; and if m(r− 1) < mr, the map i 7→ ∩S∈σ(i)π(S) is an injective function to [m]
from some J ⊆ [m] of size m− (r − 1)(m−m) (recall σ from Def. 2).
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Proof. Consider the following set: T1 := {(i, S) : i ∈ π(S), S ∈ H}, which numbers |T1| =∑
S∈H |π(S)| ≥

∑
S∈H |S| =

∑
i∈[m] degH(i) = mr by r-regularity of H. Note that |T1| ≤ mr;

otherwise, pigeonholing the tuples of T1 with respect to their m possible first elements would
imply that more than r of the tuples in T1 share the same first element. This cannot be the
case, however, since then some G ∈

( H
r+1

)
formed from any r + 1 of their second elements

would satisfy ∩π(G) 6= 0; hence, | ∩ G| 6= 0 by (3.17), contradicting r-regularity of H. It
follows that m ≥ m.

Suppose now that m(r − 1) < mr, so that p := mr − m(r − 1) is positive and |T1| ≥
m(r − 1) + p. Pigeonholing T1 into [m] again, there are at least r tuples in T1 sharing some
first element; that is, for some G1 ⊆ H of size |G1| ≥ r, we have |∩π(G1)| ≥ 1 and (by (3.17))
| ∩ G1| ≥ 1. Since no more than r tuples of T1 can share the same first element, we in fact
have |G1| = r. It follows by r-regularity that G1 is a star of H; hence, | ∩ G1| = 1 by the SIP
and | ∩ π(G1)| = 1 by (3.17).

If p = 1, then we are done. Otherwise, define T2 := T1 \ {(i, S) ∈ T1 : i = ∩π(G1)}, which
contains |T2| = |T1| − r ≥ (m− 1)(r − 1) + (p− 1) ordered pairs having m− 1 distinct first
indices. Pigeonholing T2 into [m− 1] and repeating the above arguments produces the star
G2 ∈

(H
r

)
with intersection ∩G2 necessarily distinct (by r-regularity) from ∩G1. Iterating this

procedure p times in total yields the stars Gi for which ∩Gi 7→ ∩π(Gi) defines an injective
map to [m] from J = {∩G1, . . . ,∩Gp} ⊆ [m].

Proof of Lem. 1. Let us begin by showing that dim(Bπ(S)) = dim(AS) for all S ∈ H. Note

that since ‖Ax‖2 ≤ maxj ‖Aj‖2‖x‖1 and ‖x‖1 ≤
√
k‖x‖2 for all k-sparse x, by (2.1) we

have L2(A) ≤ maxj ‖Aj‖2 and therefore (as 0 ≤ ξ < 1) the right-hand side of (3.7) is less
than one. From (3.5), we have |π(S)| ≥ dim(Bπ(S)) ≥ dim(AS) = |S|, the final equality
holding by injectivity of AS. As |π(S)| = |S|, the claim follows. Note, therefore, that Bπ(S)

has full-column rank for all S ∈ H.
We shall next demonstrate that (3.17) holds. Fixing G ∈

(H
r

)
∪
( H
r+1

)
, it suffices to show

that d(B∩π(G),A∩G) < 1, since by (3.5) we then have |∩π(G)| = dim(B∩π(G)) ≤ dim(A∩G) =
| ∩ G|, with equalities from the full column-ranks of AS and Bπ(S) for all S ∈ H.6 Observe
that d(B∩π(G),A∩G) ≤ d

(
∩Bπ(G),∩AG

)
by (3.4), since trivially B∩π(G) ⊆ ∩Bπ(G) and also

A∩G = ∩AG by Lem. 2. Recalling Def. 3 and applying Lem. 3 yields:

d
(
∩Bπ(G),∩AG

)
≤ max

u∈∩Bπ(G), ‖u‖2≤1

∑
S∈G

dist (u,AS)

1− ξ(AG)

=
∑
S∈G

d
(
∩Bπ(G),AS

)
1− ξ(AG)

,

passing the maximum through the sum. Since ∩Bπ(G) ⊆ Bπ(S) for all S ∈ G, by (3.4) the
numerator of each term in the sum above is bounded by d

(
Bπ(S),AS

)
= d

(
AS,Bπ(S)

)
≤ ε,

6Note that if ever B∩π(G) 6= /bfseries0 while ∩G = ∅, we would have d(B∩π(G),0) = 1. However, that
leads to a contradiction.
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with the equality from (3.6) since dim(Bπ(S)) = dim(AS). Thus, altogether:

d(B∩π(G),A∩G) ≤
|G|ε

1− ξ(AG)
≤ C2ε

maxj ‖Aj‖2
, (3.18)

recalling the definition of C2 in (3.10). Lastly, since C2ε < L2(A) ≤ maxj ‖Aj‖2, we have
d(B∩π(G),A∩G) ≤ 1 and therefore (3.17) holds.

Applying Lem. 4, the association i 7→ ∩S∈σ(i)π(S) is an injective map π : J → [m] for
some J ⊆ [m] of size m − (r − 1)(m −m), and Bπ(i) 6= 0 for all i ∈ J since the columns of
Bπ(S) are linearly independent for all S ∈ H. Letting ε := C2ε/maxi ‖Ai‖2, it follows from
(3.6) and (3.18) that d

(
Ai,Bπ(i)

)
= d

(
Bπ(i),Ai

)
≤ ε for all i ∈ J . Setting ci := ‖Ai‖−12 so

that ‖ciAei‖2 = 1, by Def. 3 for all i ∈ J :

min
ci∈R
‖ciAei − ciBeπ(i)‖2 ≤ d

(
Ai,Bπ(i)

)
≤ ε,

for ε < L2(A) mini∈[m] |ci|. But this is exactly the supposition in (3.2), with J and ε in place
of [m] and ε, respectively. The same arguments of the case k = 1 in Sec. 3 can then be
made to show that for any m ×m permutation and invertible diagonal matrices P and D
with, respectively, columns eπ(i) and ci

ci
ei for i ∈ J (otherwise, ei for i ∈ [m] \ J), we have

‖Ai − (BPD)i‖2 ≤ ε/|ci| ≤ C2ε for all i ∈ J .
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Chapter 4

Discussion

The main motivation for this work was the observation that characteristic sparse repre-
sentations tend to emerge from sparse coding models trained over a variety of natural scene
datasets by a variety of learning algorithms. The theorems proven here provide some insight
into this phenomenon by establishing very general conditions under which identification of
the model parameters is not only possible but also robust to measurement and modeling
error.

The guarantees concerning the identification of a dictionary and corresponding sparse
codes of minimal average support size (Thm. 2), which is the optimization problem of most
interest to practitioners (Prob. 2), are to my knowledge the first of their kind in both the
noise-free and noisy domains. It has been shown here that, given sufficient data, this problem
reduces to an instance of Prob. 1 to which the main result (Thm. 1) then applies: every
dictionary and corresponding set of sparse codes consistent with the data are equivalent
up to inherent relabeling/scaling ambiguities and a discrepancy (error) that scales linearly
with the noise. In fact, in almost all cases these problems are well-posed given a sufficient
amount of data (Thm. 3 and Cor. 2). Furthermore, the derived scaling constants are explicit
and computable; as such, there is an effective procedure that suffices to affirm if a proposed
solution to these problems is indeed unique up to noise and inherent ambiguities, although
it is not efficient in general.

While the extension from exact recovery to the noisy stability of dictionary learning may
be significant, the fact that the analysis relies on metrics of the data that are not feasible to
compute limits its impact to the scientific community beyond computer science and applied
mathematics. Consequently, the inferences of those applying dictionary learning methods
to inverse problems in their research are justified only in principle; but this is unavoidably
the case for NP-hard problems. What sets the main results of this work apart from the
vast majority of results in the field, however, is their deterministic nature. They do not
depend on any kind of assumption about the particular random distribution from which the
sparse supports, coefficients, or dictionary entries are drawn (e.g., Cor. 2 makes a sweeping
statement applicable to all continuous distributions).

Indeed, theoretical validation makes little practical difference if the methodology is al-
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ready in widespread use, while practical criteria establishing whether the data models ob-
tained by practitioners are optimal or not would have very high impact. To this end, the work
has been laid out for those wanting to derive statistical criteria for inference with respect
to more domain-specific parametric dictionaries and codes (i.e. estimate C1), and reduced
by half for those hoping to prove the consistency of any dictionary learning algorithm (i.e.
prove convergence to within ε(δ1, δ2) given in (2.4)).

Nonetheless, a main reason for the sustained interest in dictionary learning as an un-
supervised method for data analysis seems to be the assumed well-posedness of parameter
identification in the model, confirmation of which forms the core of these findings. Several
groups have applied compressed sensing to signal processing tasks; for instance, in MRI
analysis [36], image compression [13], and even the design of an ultrafast camera [17]. It is
only a matter of time before these systems incorporate dictionary learning to encode and
decode signals (e.g., in a device that learns structure from motion [32]), just as scientists have
used sparse coding to uncover latent structure in data (e.g., forgery detection [25, 39]; brain
recordings [30, 1, 33]; and gene expression [49]). As uniqueness guarantees with minimal
assumptions apply to all areas of data science and engineering that utilize learned sparse
structure, assurances offered by these theorems give hope that different devices and algo-
rithms may learn equivalent representations given enough data from statistically identical
systems.1

Within the field of theoretical neuroscience in particular, dictionary learning for sparse
coding and related methods have recovered characteristic components of natural images [38,
27, 7, 22] and sounds [6, 44, 9] that reproduce response properties of cortical neurons. The
results of this work suggest that this correspondence could be due to the “universality”
of sparse representations in natural data, an early mathematical idea in neural theory [41].
Furthermore, they justify the soundness of one of the few hypothesized theories of bottleneck
communication in the brain [29]: that sparse neural population activity is recoverable from its
noisy linear compression through a randomly constructed (but unknown) wiring bottleneck
by any biologically plausible unsupervised sparse coding method that solves Prob. 1 or 2
(e.g., [42, 43, 40]).2

4.1 Future directions

There are many challenges left open by this work. First and foremost, it should be
stressed that all conditions stated here which guarantee the uniqueness and stability of
sparse representations have only been shown sufficient; it remains open to work out a set
of necessary conditions on all fronts, be it on the number of required samples per support,
the structure of support set hypergraphs, or the tolerable signal-to-noise ratio for a bounded
recovery error. It is also worth stressing that the deterministic conditions derived here must

1To contrast with the current hot topic of “Deep Learning”, there are few such uniqueness guarantees
for these models of data; moreover, even small noise can dramatically alter their output [19].

2We refer the reader to [16] for more on interactions between dictionary learning and neuroscience.
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accommodate always the worst possible cases. It would be of great practical benefit to see
how drastically all conditions can be relaxed by requiring less-than-certain guarantees, as
(for instance) exhibited in the discussion on probabilistic pigeonholing following the proof of
Thm. 1. In a similar vein, the tolerable signal-to-noise ratio can be reduced by considering
the probability that noise sampled from a concentrated isotropic distribution will point in
a harmful direction, which may be especially low in high-dimensional spaces or for certain
support set hypergraphs.

Another interesting remaining challenge is to work out for which special cases it is efficient
to check that a solution to Prob. 1 or 2 is unique up to noise and inherent ambiguities.
Considering that the sufficient conditions detailed here are in general NP-hard to compute,
are the necessary conditions also hard to compute? Are Probs. 1 and 2 then also hard
(e.g., see [46])? Since Prob. 2 is intractable in general (i.e. including the noiseless case),
but solvable in practice by convex relaxation when the matrix A is known and has a large
enough lower bound over sparse domains [14], is there a version of Thm. 2 that lays down
general conditions under which Prob. 2 can be solved efficiently in full by similar means?

I briefly expand on some of these directions below. It is my hope that these remaining
challenges pique the interest of the community and that the theoretical tools showcased here
can be applied to derive practical dictionary learning guidelines for sparse representation
modeling of real data.

Reducing the required signal-to-noise ratio

A concern raised in peer review of this work was the typical size of the constant C1, which
sets the tolerable signal-to-noise ratio for dictionary and code recovery up to an acceptable
error. Referring to the definition of this constant in (3.11), the reader should note that
the denominator involves Lk, a standard quantity in the field of compressed sensing (the
“restricted isometry constant”, see footnote 3), which is known to be reasonable for many
random distributions generating dictionaries A and sparse codes xi [4]. The numerator
C2, on the other hand, incorporates the more obscure quantity ξ defined in (4), which is
computed from the “Friedrichs angle” between certain spans of subsets of the columns of A.
Simulations for small (pseudo-)randomly generated dictionaries A suggest nonetheless that
the constant C2 is likely reasonable in general as well (at least, for the case where m = k2

and H is taken to be the set of rows and columns formed by arranging the elements of [m]
into a square grid; see Fig. 4.1). These observations motivate the following conjecture:

Conjecture 1. For all t > 0,

Pr[|C2 − E[C2]| > t]→ 0 as k →∞ and k/m→ 0

provided the assumptions of Thm. 1 are satisfied.
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Reducing the required number of samples

It is possible to tighten the pigeonholing argument in the proof of Thm. 1 and thereby
reduce the deterministic sample complexity without recourse to uncertain guarantees. The
argument as presented iterates over supports S ∈ H, in each case determining a correspond-
ing support S ∈

(
[m]
k

)
without consideration of previously matched support pairs; and yet

the assumption L2H(A) > 0 implies that no two supports in H can map to the same S. The
number of bins to pigeonhole into thus decreases every iteration, though this is a drop in a
bucket of exponential size. It would be interesting to see how much the deterministic sam-
ple complexity can be reduced by imposing these constraints holistically, given the specific
structure of the hypergraph H.

Incidentally, there is also room to breathe in the restrictions on H. Already, the results
of this work motivate the following question, which is only one among many combinatorial
problems brought to mind by the SIP (Def. 2):

Question 1. Fix integers m and k < m. What is the smallest regular hypergraph H ⊆
(
[m]
k

)
satisfying the SIP?

A close examination of the proof of Lemma 4 and its incorporation into the proof of Lem. 1
reveals, however, that looser constraints on H maintain compatibility with the argument to
some degree. Assuming that the nodes of H are labeled in order of non-increasing degree, if
instead of the full SIP we require only that the stars ∩σ(i) intersect at singletons for all i ≤ q
for some positive q, we have that m ≥ k|H|/ deg(1) and, provided m < k|H|/(deg(1) − 1),
the nonempty subset J is of size equal to the largest number p satisfying:

m∑
i=`

deg(i) > (m+ 1− `)(deg(`)− 1) for all ` ≤ p ≤ q.

Specifically, J contains all nodes of degree exceeding deg(p) and some subset of those with
degree equal to deg(p). It is thus natural to ask: what are the necessary constraints on the
hypergraph H, and what is the smallest hypergraph satisfying these constraints for given m
and k?

Opening ourselves up instead to uncertain guarantees, we can ask:

Question 2. Fix k < m. What is the probability that a random subset of
(
[m]
k

)
is regular

and satisfies the SIP?

We may also elaborate on the probabilistic pigeonholing strategy outlined in Sec. 3 fol-
lowing the proof of Thm. 1. The problem is to count the number of ways in which vectors
supported in S ∈ H can be partitioned among supports in

(
[m]
k

)
without allocating k or more

to any individual one (in which case the logic of the proof fails to imply the result; we are
interested in the probability that it doesn’t). These are integer solutions to the problem∑

i ni = N subject to ni < k for all i, where i = 1, . . . ,
(
m
k

)
. Following closely the exposition

in [34], it appears there is no closed formula for this problem, but the number of solutions
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can be computed in a number of operations independent of N . Writing p =
(
m
k

)
, the number

is the coefficient of XN in the polynomial (1 + X + . . . + Xk−1)p. Written as a rational
function of X,

(1 +X + . . .+Xk−1)p =

(
1−Xk

1−X

)p
=

(
1−Xk

)p
(1−X)p

the coeffiecient of X i in the numerator is zero unless i is a multiple qk of k, in which case it is
(−1)q

(
p
q

)
, and the coefficient of Xj in the inverse of the denominator is (−1)j

(−p
j

)
=
(
j+p−1
j

)
,

which is zero unless j ≥ 0 and otherwise equal to
(
j+p−1
p−1

)
. It remains to sum over all

i+ j = N , which gives:

nfails =

min(p,N/k)∑
q=0

(−1)q
(
p

q

)(
N − qk + p− 1

p− 1

)
where the summation is truncated to ensure that N − qk ≥ 0 (the condition j ≥ 0) and has
at most p+ 1 =

(
m
k

)
+ 1 terms.

The total number of ways to pigeonhole is ntotal =
(
N+p−1
p−1

)
, and so the probability of

full recovery is (1− nfails/ntotal)
|H|. Curves computed in this way in (see Fig. 4.1) suggest

that while it may very well be impossible to exorcise exponentiality from the number of
required samples in the deterministic or almost-certain case, perhaps it is possible with
high-probability by one way or another. Informally,

Question 3. While fixing k yields polynomial deterministic sample complexity in m (see
Cor. 1), is there some more general probablistic sense (perhaps for some restricted class of
hypergraphs) by which sample complexity is polynomial in both m and k?

Dictionary learning via `1-norm minimization

A commonly applied workaround to the intractability (see [46]) of Prob. 2 is to replace
the `0-norm in (1.4) with its best convex approximation, the `1-norm, thereby transforming
the inference of sparsest xi for fixed B into a convex optimization problem solvable by a
linear program. Recalling the linear model (1.1) of data zi, the approach is to solve the
following problem rather than solving Prob 2 directly.:

Problem 3. Find a matrix B and vectors x1, . . . ,xN solving:

min
N∑
i=1

‖xi‖1 subject to ‖zi −Bxi‖2 ≤ η, for all i, (4.1)

A major advance in compressive sensing was the discovery of practical criteria guaran-
teeing that, when the matrix B is held fixed, the vectors xi that solve (4.1) also in fact solve
(1.4) provided L2k(B) is large enough [14]. Interestingly, the current work provides conditions
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on the generating dictionary A and k-sparse codes xi under which all matrices B solving
Prob. 2 have L2k(B) bounded from below; specifically, L2k(B) ≥ (L2k(A)− 2ηC1) /‖D‖1 in
the case where A satisfies the spark condition (1.2). Thus, for suitable A there should be
some noise bound inside of which all solutions to Prob. 2 are solutions to Prob. 3 as well. It
is an open question as to whether there exist practical constraints which reject solutions to
Prob. 3 that don’t also solve Prob. 2.

We can already see this may be possible by examining the simple case k = 1 without
noise, i.e. η = 0.

Proposition 1. If the matrix A has unit length-columns with L2(A) > 0 and xi = ciei with
ci 6= 0 for i = 1, . . . ,m, then every solution to Prob. 3 with B also having m unit-length
columns satisfies A = BP and xi = P>xi for some m×m permutation matrix P.

Proof. We will show that the xi must in fact be 1-sparse and then apply Thm. 1. Fixing
i ∈ [m] and writing xi =

∑m
j=1 cjej, we have:

ci = ‖Axi‖2 = ‖Bxi‖2 = ‖
m∑
j=1

cjBej‖2 ≤
m∑
j=1

|cj|‖Bej‖2 = ‖xi‖1 (4.2)

So ‖xi‖1 ≥ ci for all i ∈ [m], and we have
∑m

i=1 ‖xi‖1 ≥
∑m

i=1 ci. But since A and the
xi satisfy the constraints of the minimization problem, we must also have

∑m
i=1 ‖xi‖1 ≤∑m

i=1 ‖xi‖1 =
∑m

i=1 ci. Thus,
∑m

i=1 ‖xi‖1 =
∑m

i=1 ci. Since again ‖xi‖1 ≥ ci, it must be the
case that in fact ‖xi‖1 = ci for all i ∈ [m].

Revisiting (4.2), for a given i ∈ [m] we have ci = ‖Bxi‖2 ≤ ‖xi‖1 = ci, with equality
holding only when the vectors cjBej are colinear. This would be the case either if xi is
1-sparse, or if B has colinear columns. We can rule out the latter case because if that were
so, we could consolidate all sets of colinear columns to form a dictionary with fewer than m
columns and yet for which there must exist 1-sparse xi, i = 1, . . . ,m solving Prob. 3; but
this would contradict the fact that L2(A) > 0. So it must be the case that in fact the xi are
all 1-sparse, and we may apply Thm. 1.

The approach taken here was to show that the points Bxi lie on a polytype which
identifies with all of the data zi = ciAei only at its vertices, and that the xi must therefore
be 1-sparse. Intuitively, it seems that similar arguments should apply in the general case
k < m, where the points Bxi may align with all of the data only at the k − 1-dimensional
boundaries of the polytope.
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Figure 4.1: Learning a dictionary from an arbitrary number of samples. Probability
of successful dictionary and code recovery (as per Thm. 1) for a number of samples N given
as a fraction of the deterministic sample complexity N = |H|[(k − 1)

(
m
k

)
+ 1] when the

support set hypergraph H is the set of m consecutive intervals of length k in a cyclic order
on [m]. Each plot has k ranging from 2 to m − 1 (the case k = 1 requires N = m), with
lighter grey lines corresponding to larger k. Successful recovery is nearly certain with far
fewer samples than the deterministic sample complexity.
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Figure 4.2: Concentration of the constant C2. Distribution of C2(A,H) computed for
1.33x overcomplete generic unit-norm dictionaries A ∈ Rn×m (i.e. with n = 3m/4) when the
support set hypergraphH consists of the rows and columns formed by arranging the elements
of [m] into a square grid (i.e. m = k2). The distribution becomes more concentrated as m
grows.
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