
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Measuring and Investigating Periodic and Aperiodic Neural Activity

Permalink
https://escholarship.org/uc/item/8v92g8h6

Author
Donoghue, Thomas

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8v92g8h6
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA SAN DIEGO 
 
 
 
 

Measuring and Investigating Periodic and Aperiodic Neural Activity 
 
 
 
 

A dissertation submitted in partial satisfaction 
 

of the requirements for the Doctor of Philosophy 
 

in 
 

Cognitive Science 
 

by 
 

Thomas Donoghue 
 
 
 
 
 
 
Committee in Charge: 
 
 Professor Bradley Voytek, Chair 
 Professor Timothy Brown 
 Professor Virginia de Sa 
 Professor Lara Rangel 
 Professor John Serences 
 
 

2020 
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 
 

Thomas Donoghue, 2020 
 

All Rights Reserved 
 



 iii 

 
 
The dissertation of Thomas Donoghue is approved, and it is acceptable in quality and form for 
publication on microfilm and electronically: 
 
 

  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Chair 
 
 

University of California San Diego 
 

2020 
  



 iv 

TABLE OF CONTENTS 
 
Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 
 
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 
 
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  v 
 
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vi 
 
List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 
 
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  viii 
 
Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   x 
 
Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 
 
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
 
Chapter 1: Parameterizing Neural Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 
 
Chapter 2: Frequency Band-Ratio Measures Conflate Periodic  

and Aperiodic Neural Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
 
Chapter 3: Variability of Periodic and Aperiodic Electrophysiological  

Activity across the Cortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
 

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 
  



 v 

LIST OF FIGURES 
 
Figure 1.1: Overlapping nature of periodic and aperiodic spectral features . . . . . . . . . . 18 
 
Figure 1.2: Algorithm schematic on real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
 
Figure 1.3: Algorithm performance on simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
 
Figure 1.4: Algorithm performance compared to human raters . . . . . . . . . . . . . . . . . . . . 47 
 
Figure 1.5: Age-related shifts in spectral EEG parameters . . . . . . . . . . . . . . . . . . . . . . . . 50 
 
Figure 1.6: Event-related spectral parameterization of working memory in aging . . . . . . 52 
 
Supplementary Figure 1.1: False oscillatory power changes and illusory oscillations . . .  61 
 
Supplementary Figure 1.2: Algorithm performance on simulated data  

across a broader frequency range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 
 
Supplementary Figure 1.3: Algorithm performance on simulated data  

that violate model assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
 
Figure 2.1: Literature analysis of band ratio related articles . . . . . . . . . . . . . . . . . . . . . . .  73 
 
Figure 2.2: Overview of band ratio measures and spectral parameters . . . . . . . . . . . . . .  74 
 
Figure 2.3: Equivalent band ratio differences from distinct changes . . . . . . . . . . . . . . . .   76 
 
Figure 2.4: Single parameter simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   84 
 
Figure 2.5: Interacting parameter simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   86 
 
Figure 2.6: Correlations between spectral parameters and band ratio measures . . . . . .  89 
 
Figure 2.7: Topographies of band ratio measures and spectral parameters . . . . . . . . . . 91 
 
Figure 3.1: Overview of data and analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    114    
 
Figure 3.2: Aperiodic activity in EEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   123 
 
Figure 3.3: Periodic activity in EEG and MEG data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   125 
 
Figure 3.4: Oscillation band power and occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . .    126 
 
Figure 3.5: Topographies of spectral features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    129 



 vi 

LIST OF TABLES 
 

Supplementary Table 1.1: Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 
 
Table 2.1: Simulated Periodic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 
 
Table 2.2: Simulated Aperiodic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 
 
 

 
 

  



 vii 

LIST OF ABBREVIATIONS 
 
EEG: electroencephalography 
 
MEG: magnetoencephalography 
 
ECoG: electrocorticography 
 
LFP: local field potential 
 
DSP: digital signal processing 
 
PSD: power spectral density 
 
ERP: event-related potential 
  



 viii 

ACKNOWLEDGEMENTS 
 

Thank you to the original lab ‘cohort’ of grad students - Richard Gao, Tammy Tran, and 

Scott Cole - for being a truly tremendous group to embark on this adventure with. Thank you to 

Erik Peterson for getting the lab going with programming, and Roemer van der Meij for helping 

us develop our signal processing skills. Thank you also to Torben Noto, Sydney Smith, Ryan 

Hammonds, Eric Lybrand, Leo Waschke, and all the members of the VoytekLab past and present. 

 I would in particular like to thank my thesis advisor, Dr. Bradley Voytek. Thank you for 

your patience and guidance, through which you helped and allowed us to explore and set our 

own research paths, always helping us along the way. I would also like to thank my committee 

for guidance and feedback in preparing this thesis.  

I would also like to thank the people who introduced me to research, including Dr. Kris 

Onishi, who showed me how to do structured and organized work, while answering interesting 

questions in creative ways, and Dr. Sylvain Baillet, Elizabeth Bock, and Francois Tadel, who 

introduced to the wondrous world of human electrophysiology research, and working with code.  

I would like to thank the research assistants who helped me do all this work, including 

Will Fox, Aeri Kim, Priya Sebastian, Luyanda Mdanda, Julio Dominguez, Fenglin (Allen) Zhang, 

and Tyler Farnan. Thank for all of your help doing this research – working with you all has been 

a wonderful part of the grad school experience. 

 I would like to thank the programs and people that helped me move into a more 

programming oriented work, including the tireless work of those who put on the summer 

programs I attended, and everyone who has spent time developing software, advocating for 

best practices in scientific programming, and building materials and tutorials.  



 ix 

Chapter 1, in full, is a reprint of the material as it appears the following manuscript that 

has been submitted for publication: Donoghue T, Haller M, Peterson E, Varma P, Sebastian P, 

Gao R, Noto T, Lara A, Wallis J, Knight RT, Shestyuk A, & Voytek B. Parameterizing Neural Power 

Spectra. The dissertation author was the primary investigator and author of this paper.  

Chapter 2, in full, is a reprint of the material as it appears the following manuscript that 

has been submitted for publication: Donoghue T, Dominguez J & Voytek B. Electrophysiological 

Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity. The 

dissertation author was the primary investigator and author of this paper.  

Chapter 3, in full is an adaption of materials that appear in the following manuscript that 

is currently being prepared for submission for publication: Donoghue T, Mdanda L, Sebastian P, 

& Voytek B. Variability of Periodic and Aperiodic Electrophysiological Activity across the Cortex. 

The dissertation author was the primary investigator and author of this paper.  

 
 

  



 x 

VITA 
 
2014  Bachelors of Arts & Science: Cognitive Science 

McGill University 
 
2016  Masters of Cognitive Science 

University of California San Diego 
 
2020   Doctor of Philosophy, Cognitive Science 

University of California San Diego 
 
 
  



 xi 

 
 
 
 
 
 

ABSTRACT OF THE DISSERTATION 
 
 

On Measuring and Investigating Periodic and Aperiodic Neural Activity 
 
 

by 
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Doctor of Philosophy in Cognitive Science 
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Professor Bradley Voytek, Chair 
 

 
 

Understanding the functional organization of brain activity is a fundamental topic in 

neuroscience. Questions about how the brain coordinates information through space and time 

are often investigated with the use of neural field data – electrophysiological recordings of the 

aggregate electrical activity across groups of neurons. Such activity contains both periodic 

activity (neural oscillations), a common topic of investigation, and aperiodic activity, which has 

been less broadly studied, each of which have distinct interpretations. The overlap of these two 

components of activity is a source of difficulty for investigations which aim to measure and 

interpret the properties and dynamics of one or the other component, as methods that do not 

explicitly consider and measure both properties of the data are liable to conflate the two 
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components. Despite this, many commonly employed analysis methods do not attempt to 

explicitly measure and separate both periodic aperiodic activity.  

In this work, we develop a new method for separating and measuring periodic and 

aperiodic activity, using frequency domain representations of neural field data. First, we propose 

a novel algorithm for parameterizing neural power spectra, and validate this approach on 

simulated data, and demonstrate how it can be applied to real datasets. Second, we 

systematically explore how power spectrum parameterization compares to canonical 

approaches, using the example of frequency band ratio measures. Here we show that such 

measures that analyze pre-defined frequency ranges without considering and separating 

aperiodic activity are liable to reflect confounded measures of aperiodic activity. Finally, we apply 

the novel method across a series of datasets, systematically exploring the properties and 

variability of periodic and aperiodic activity across the human cortex. In sum, this work motivates 

that both periodic and aperiodic activity are dynamic components, necessitating dedicated 

methods to appropriately measure and interpret changes in the data. In doing so, methods that 

do consider both aperiodic and periodic activity allow for better quantifications of brain activity 

that can be investigated for their putative relationships to demographics, cognition and disease 

states.  
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Introduction 

1.1: Functional Organization of the Brain 

With the development, around the turn of the 20th century, of what came to be called the 

‘Neuron Doctrine’ (Ramón y Cajal, 1911), came the start of what we now recognize as modern 

neuroscience. Within this framework, 120 years of investigation have examined how networks of 

physically distinct cells, using a combination of electrical and chemical signaling, make up the 

nervous system, ultimately underlying everything we perceive, think, or do. Through many 

technological developments, much work has mapped detailed characterizations of many 

components of the nervous system, including, for example, physiological structures that make 

up neurons, morphological structure of single cells, patterns of gene expression across the brain, 

and mapping between cell activity and the external world.  

 What have been slower to emerge are integrative, functional descriptions of how this all 

works together. Of the many remaining mysteries of the nervous system, many open questions 

remain regarding the functional organization of brain activity. Given the approximately 80 billion 

neurons in the human brain (Azevedo et al., 2009), connected by relatively fixed anatomy (over 

short timescales, at least), how is it that the brain is able to parse, select, ignore, and combine 

information streams in all of the wonderfully flexibly ways that are the biological underpinnings 

of our rich cognitive lives. To function as it does, the mammalian brain must have powerful, 

flexible, and efficient mechanisms for coordinating information as it does, across multiple spatial 

and temporal scales.  
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 There are clearly powerful organizational activities at play – processes that can be either 

reactive or directed, and that flexibly adapt to a broad range of sensory inputs and motor 

outputs. Understanding the functional organization of the nervous system is an important topic 

of investigation. This is true not only in terms of being a key question in basic science, but also 

due to its relevance to clinical work, as a multitude of disorders across psychiatry and neurology 

display seemingly disordered, or at least different, patterns and organizations of neural activity, 

though we generally do not yet understand why.  

1.2: Electrophysiology 

 Prior to, and contemporaneously to anatomical work, which led to our understanding of 

the core structural properties of the brain, and the aforementioned Neuron Doctrine, other work 

probed the functional activity of the brain. By the late 19th century, experiments demonstrated 

the electrical excitability of the cerebral cortex, and the impact of electrical stimulation (Millett, 

1998). Subsequent work by David Ferrier extended this line of inquiry, relating cortical 

stimulation to organized patterns of behavioral responses, offering some of the first functional 

mappings of electrical neural activity (Sandrone & Zanin, 2014). 

 Building on this work, Richard Caton continued systematic investigations of electrical 

signaling in the brain, and went on to record what are now thought to be the first demonstrations 

of systematic patterns of electrical activity – or brain waves (Ormerod, 2006). Adolf Beck 

continued this line of investigation, noting continuous electrical oscillations of brain activity, and 

noting that these patterns of neural activity reacted and related to sensory stimulation (Coenen 

& Zayachkivska, 2013). By the end of the 1800s, the brain was known to have structured and 
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functionally relevant patterns of electrical activity, starting a research program and line of 

investigation into the functional organization of the brain that has continued to this day.  

The work up until this point had all been in model organisms. Subsequent work, including 

the development of better amplifiers, led to more generalized methods of recording, that could 

be applied to human subjects. This lead to the development of electroencephalography (EEG),  

allowing for recording electrical activity in human subjects, which again noted neural oscillations, 

that came to be termed as distinct bands, such as alpha and beta (Berger, 1929). By the early 

20th century, systematic evoked responses to external events also began to be reported with 

human subjects – for example, the demonstration of ‘on-effects’ following the presentation of 

light or sound (Davis, 1939). Slightly later came the first descriptions of evoked-potentials related 

to cognitive concepts, such as expectation, including the contingent-negative variation (CNV) 

(Walter et al., 1964), and the P300 (Sutton et al., 1965).  

 These early investigations, and their success, have led to vibrant and expansive research 

programs investigating electrical neural activity, and how it relates to functional organization and 

cognitive performance. Recordings of electrical fields in the brain, such as measured by intra-

cranial electrodes, such as in local field potential (LFP) or electrocorticography (ECoG), or extra-

cranial recordings such as electroencephalography (EEG) or magnetoencephalography (MEG) 

are now common recordings in neuroscience.  

Analyses of neural field data are now applied and developed across many different areas 

of research, in order to leverage and investigate functional activity of the brain. Such 

investigations focus on different aspects of interest from the data – for example, investigating 

rhythmic patterns of activity, now typically called neural oscillations, and/or distinct transient 
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events, that can be evoked, such as event-related potentials, or endogenous such as K-

complexes during sleep. It was also noted early on that such data had aperiodic properties, 

meaning ongoing, non-periodic activity, such as 1/f-like activity (Motokawa, 1949). Altogether, 

there appear to be three types of activity in neural field data: periodic activity, ongoing aperiodic 

activity, and transient events.  

1.3: Periodic Activity 

Neural oscillations are a ubiquitous feature of brain activity and are thought to play a key 

role in neural functioning (Buzsáki & Draguhn, 2004), while their disruption is implicated in a 

broad group of psychiatric and neurological disorders (Voytek & Knight, 2015). Neural 

oscillations, as observed in the local field potential (LFP), are composed of aggregate activity 

across hundreds to thousands of individual neurons, reflecting primarily synaptic activity (Buzsáki 

et al., 2012), generated by interactions and patterns of excitation and inhibition across groups 

of neurons (Wang, 2010). Neural oscillations are typically investigated in particular bands of 

interest, for example as delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), beta (13 - 30 Hz), and 

gamma (30 - 60 Hz) – though the specific frequency bands used can vary between experiments 

and species.  

Neural oscillations are thought to relate the functional organization of neural activity. 

Theories of how they do so include that they aid in information flow within the brain by flexibly 

aligning and misaligning oscillations between brain regions (Fries, 2005; Varela et al., 2001). 

These kinds of phase alignments, as they are known, have been shown to organize information 

flow between different areas (Colgin et al., 2009), and help form dynamic brain communication 
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networks (van der Meij et al., 2012) which aid in cognition, perception, and behavior (Voytek, 

Kayser, et al., 2015).  

There is a long history of findings that support that neural oscillations have functional 

impact of neural processing and behavioral outcomes. Early work demonstrated that evoked 

potentials could only be elicited in the occipital cortex at certain phases of the ongoing alpha 

wave (Bishop, 1932). Behavioral correlates were demonstrated soon after, as it was reported that 

alpha phase at the time of stimulus presentation relates to reaction time in a visual detection task 

(Lansing, 1957). Subsequent work, including using online systems to present stimuli at particular 

phases of ongoing signals, further demonstrated impacts of oscillatory phase on behavior and 

perception (Varela et al., 1981).  

In the time since, extensive research programs have investigated patterns of oscillatory 

activity within and between subjects, and their relation to cognition and disease. There are 

multiple views on the role and of neural oscillations in neural function. One proposal is that low 

frequency oscillations create ‘windows of excitability’, in which there is rhythmic bursts of 

increased neuronal excitation (Dugué et al., 2011). This idea has been extended to suggest this 

implies that perception is actually a rhythmic process, with cortical oscillations acting as a discrete 

sampling mechanism (VanRullen et al., 2014), creating perceptual and attentional cycles 

(VanRullen, 2016). However, alternate views more in line with the longstanding view that alpha 

oscillations reflect inhibition (Klimesch et al., 2007) have suggested that oscillations reflect pulses 

of rhythmic inhibition (Jensen & Mazaheri, 2010). Despite these ongoing debates, neural field 

data, and in particular rhythmic components therein are clearly a salient topic of investigation 

across neuroscience and psychology.  
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1.4: Aperiodic Activity 

 Electrophysiological field data also displays prominent aperiodic – meaning irregular,  or 

non-periodic – activity (B. J. He, 2014). In frequency representations, this is seen as the 1/f-like 

structure of neural power spectra. This activity, roughly following a power-law distribution, is 

sometimes described as being 'scale-free' or 'self-similar' activity. Despite the early observation 

of 1/f distributed activity in electrophysiological data (Motokawa, 1949), relatively little work has 

explored the properties and interpretations of aperiodic activity, as compared to, for example, 

the broad literature exploring periodic activity (neural oscillations). Where studies have 

investigated aperiodic activity, there is a large variability in the methods employed, and 

interpretations of results. Altogether, there is a currently a lack of consensus for methods, 

interpretations, and best practices guidelines for investigations of aperiodic activity in neural field 

data.  

 By 1/f, it is meant that there is a power-law relation between power and frequency, 

reflecting exponentially decreasing power across increasing frequencies. We will refer to this 

activity as the aperiodic ‘component’ of the data, which, in neural field data, reflects the majority 

of the power.  In the simple case, this manifests as a linear relationship between frequency and 

power, when plotted in log-log spacing, which can be captured by a line. In this simple y = a * 

f! formulation, the ̀ a` parameter, will be referred to as the aperiodic 'offset', and the '!' parameter 

will be referred to as the aperiodic 'exponent'. The aperiodic exponent is analogous to the slope 

of the line of the log-log power-spectrum, sometimes referred to as the spectral 'slope'. This 

kind of power-law distributed activity is seen in many other physical systems, and as such is a 

feature of inquiry across areas of physics and mathematics. 
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Some early investigations of aperiodic activity started by mapping 1/f properties across 

the cortex in the awake state (Freeman et al., 2003; Pritchard, 1992) and also comparing across 

species between rabbits and humans (Freeman & Zhai, 2009). The broadband offset of neural 

power spectra has been correlated with firing rate of the underlying neural population (Manning 

et al., 2009; Miller et al., 2009). More recent work has continued to demonstrate that aperiodic 

neural activity is a dynamic signal, and has been shown to correlate with age (W. He et al., 2019; 

Voytek, Kramer, et al., 2015), state, such as sleep (Lendner et al., 2020) or anesthesia (Colombo 

et al., 2019). Aperiodic activity has been investigated in task contexts, including in response 

inhibition (Pertermann et al., 2019), perceptual tasks (Waschke et al., 2017), visual tasks (El 

Boustani et al., 2009; Lin et al., 2016; Podvalny et al., 2015), and working memory (Sheehan et 

al., 2018; Voytek, Kramer, et al., 2015). Aperiodic neural activity has also been found to related 

to diseases such as ADHD (Robertson et al., 2019), Schizophrenia (Molina et al., 2020), 

Parkinson's (Martin et al., 2018), and stroke (Leemburg et al., 2018).  

Aperiodic neural activity has been analyzed under multiple conceptual frameworks. Some 

approaches seek to explore and explain aperiodic activity in terms of physiological models of 

putative generators of field data (Freeman & Zhai 2009; Gao et al, 2017). Other investigations 

consider aperiodic activity in terms of the variability, and/or level of 'neural noise' in the system 

(Voytek et al, 2015a; Waschke, 2017). More functional frameworks also focus on aperiodic activity 

as a scale-free phenomenon (He, 2014), focusing on fractal properties and self-similarity (Eke et 

al, 2002; Schaefer et al, 2014) and/or long-term dependencies in time series and/or critical states 

in dynamical systems (Palva et al, 2013). Collectively, the dynamic nature and theoretical interest 

of aperiodic activity has propelled a key interest in measuring and interpreting such activity.  
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1.5: Methods of Analysis of Neural Field Data 

Any given analysis of neural field data typically focuses on properties of interest of a 

particular component of the data. For example, when analyzing periodic activity, one might focus 

on a burst of alpha (~10 Hz) activity, and analyze its power, temporal extent, or waveform 

properties. Other investigations may seek to measure the amplitude and latency of transient 

events, such as an event-related potential of interest, or the color of noise or global field power 

of aperiodic activity.  

The analysis of neural field data has therefore developed a rich ecosystem of approaches 

adopted and adapted from the field of digital signal processing (DSP), with the goal of identifying 

and measuring particular components of interest, such as neural oscillations, transient events, or 

aperiodic activity – which are all present and overlapping in the data. Such analyses typically 

employ approaches across both the time and frequency domain, employing transforms such as 

filters, to select frequency ranges of interest; time-frequency analyses, to examine signal 

dynamics through time; and analyses of patterns and statistical properties of the data, etc. Each 

of these analyses makes assumptions of the data, both in the ways they get applied and operate 

on the data, and in how they are typically interpreted. 

Though recorded as fluctuations across time, analyses of neural field data often include 

representing and transforming the data in the frequency domain. Mathematically, via the Fourier 

theorem, any continuous time series can be perfectly represented by a Fourier Series – as a 

combination of sinusoidal waveforms. This mathematical convenience has led to the widespread 

use of frequency-domain representations and transformations. However, and importantly, 

frequency domain representations do not themselves imply or demonstrate any particular 
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property of the data. For example, computing a power spectrum of neural field data, as is 

commonly done, does not, by itself, demonstrate that the signal contains or is comprised of 

sinusoidal periodic activity. Since neural data is known to contain not only periodic, but also 

aperiodic activity (B. J. He, 2014), care must be taken to appropriately apply methods, and 

investigate and interpret the data appropriately.  

1.5: Conclusions & Outline of the Dissertation 

 Altogether, the investigation of the functional organization of neural activity is an 

important domain of research, and commonly explored through the collection and analysis of 

neural field data. Such investigations often focus on periodic or evoked components of the data, 

with relatively little work seeking to measure and investigate concomitant aperiodic activity, that 

is also present in the signal, and is itself a dynamic and informative component of the data. 

Methods of investigation that are applied to such data embody particular assumptions and 

conceptualizations of the data, and should be applied and interpreted with care, as they may 

conflate changes in different components of the data if they are not appropriately applied and 

interpreted.  

This dissertation examines and explores the methodological approaches for investigating 

neural field data, considering in particular the problem of appropriately measuring and 

interpreting the combination of aperiodic and periodic activity that is present in such signals. 

Chapter 1 investigates properties of neural field data, and proposes a method for separating 

and measuring aperiodic and periodic activity, addressing limitations of many commonly applied 

methods. This method is validated across simulated data, and in a series of empirical 

applications. Chapter 2 further investigates methods for analyzing neural field data, investigating 
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frequency band ratios, and comparing them to explicit parameterization of periodic and 

aperiodic features. Chapter 3 then adopts the method proposed for measuring periodic and 

aperiodic activity, applying it further to a series of datasets, investigating patterns and variability 

of periodic and aperiodic activity.  
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Chapter 1  

 

Parameterizing Neural Power Spectra 

 
Abstract 

Electrophysiological signals across species exhibit both periodic and aperiodic 

properties. Periodic oscillations are widely studied, having been linked to numerous 

physiological, cognitive, behavioral, and disease states. Most analyses of oscillations are 

conducted on canonically-defined frequency bands. This is done without consideration of the 

aperiodic (1/f-like) component, which compromises the accurate detection and measurement of 

periodic oscillations.  The aperiodic component of neural power spectra has received less 

attention than oscillations, but emerging evidence shows that it is dynamic and changes with 

age, task demands, and cognitive states. The aperiodic broadband offset may reflect population 

spiking while its exponent may reflect relative excitation/inhibition. Problematically, standard 

analytic approaches conflate periodic parameters (center frequency, power, bandwidth) with 

aperiodic ones (offset, exponent), compromising physiological interpretations. To overcome the 

limitations of traditional narrowband analyses and to reduce inferential errors caused by 

conflating periodic and aperiodic features, we introduce a novel algorithm for semi-automated 

parameterization of neural power spectra. Spectra are parameterized as a combination of the 

aperiodic component and putative periodic oscillatory peaks. This parameterization algorithm 

performs as well as expert human labelers for periodic oscillations and reliably captures ground 
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truth parameters in simulation. Notably, this algorithm requires no a priori specification of bands; 

it extracts as many oscillations as are found in the data, after controlling for the aperiodic 

component. Finally, we demonstrate how this approach can be used to analyze age-related 

changes in working memory and we demonstrate its utility for large-scale data exploration and 

analysis. 
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Introduction  

Neural oscillations are widely studied, with tens-of-thousands of publications to date. 

Nearly a century of research has shown that oscillations reflect a variety of cognitive, perceptual, 

and behavioral states (Buzsaki & Draguhn, 2004; Engel et al., 2001), with recent work showing 

that  oscillations aid in coordinating interregional information transfer (Fries, 2005; Voytek et al., 

2015). Notably, oscillatory dysfunction has been implicated in nearly every major neurological 

and psychiatric disorder (Kopell et al., 2014; Voytek & Knight, 2015). Following historical 

traditions, the vast majority of the studies examining oscillations rely on canonical frequency 

bands, which are approximately defined as: infraslow (< 0.1 Hz), delta (1-4 Hz), theta (4-8 Hz), 

alpha (8-12 Hz), beta (12-30 Hz), low gamma (30-60 Hz), high frequency activity (60-250 Hz), and 

fast ripples (200-400 Hz). Although most of these bands are often described as oscillations, 

standard approaches fail to assess whether an oscillation—meaning rhythmic activity within a 

narrowband frequency range—is truly present (Fig. 1A,B). 

In the frequency domain, oscillations manifest as narrowband peaks of power above the 

aperiodic component (Fig. 1A) (Buzsáki et al., 2013; B. J. He, 2014). Examining predefined 

frequency regions in the power spectrum, or applying narrowband filtering (e.g., 8-12 Hz for 

alpha) without parameterization, can lead to a misrepresentation and misinterpretation of 

physiological phenomena, because apparent changes in narrowband power can reflect several 

different physiological processes (Fig. 1C,D). 
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Figure 1.1 | Overlapping nature of periodic and aperiodic spectral features. (A) Example neural power 
spectrum with a strong alpha peak in the canonical frequency range (8-12 Hz, blue shaded region) and 
secondary beta peak (not marked). (B) Same as A, but with the alpha peak removed. (C-D) Apparent 
changes in a narrowband range (blue shaded region) can reflect several different physiological processes. 
Total power (green bars in the inset) reflects the total power in the range, and relative power (purple bars 
in the insets) reflect relative power of the peak, over and above the aperiodic component. (C) Measured 
changes, with a peak present, including: (i) oscillatory power reduction; (ii) oscillation center frequency 
shift; (iii) broadband power shift, or; (iv) aperiodic exponent change. In each simulated case, total measured 
narrowband power is similarly changed (inset, green bar), while only in the true power reduction case (i) 
has the 8-12 Hz oscillatory power relative to the aperiodic component actually changed (inset, purple bar). 
(D) Measured changes, with no peak present. This demonstrates how changes in the aperiodic component 
can be erroneously interpreted as changes in oscillation power when only focusing on a narrow band of 
interest. 
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These apparent changes include: (i) reductions in true oscillatory power (Crone, 1998; 

Jasper & Penfield, 1949); (ii) shifts in oscillation center frequency (Bullock, 1981; Haegens et al., 

2014; Klimesch, 1999; Mierau et al., 2017; Obrist, 1954; Samaha & Postle, 2015); (iii) reductions 

in broadband power (Manning et al., 2009; Miller et al., 2012; Winawer et al., 2013), or; (iv) 

changes in aperiodic exponent (Freeman & Zhai, 2009; Gao, 2016; Gao et al., 2017; B. J. He, 

2014; Podvalny et al., 2015; Voytek et al., 2015). When narrowband power changes are observed, 

the implicit assumption is typically a frequency-specific power change (Fig. 1C.i), however, each 

of the alternative cases can also manifest as apparent oscillatory power changes, even when 

there is no oscillation present (Fig. 1D). That is, changes in any of these parameters can give rise 

to identical changes in total narrowband power (Fig. 1C,D). 

Even if an oscillation is present, careful adjudication between different oscillatory 

features—such as center frequency and power—is required. Variability in oscillation features is 

ignored by many approaches examining predefined bands and, without careful 

parameterization, these differences can easily be misinterpreted as narrowband power 

differences (Cole & Voytek, 2019) (Fig. 1C). For example, there is clear variability in oscillation 

center frequency across species (Bullock, 1981), age (Dustman et al., 1993; Obrist, 1954), and 

cognitive/behavioral states (Haegens et al., 2014; Mierau et al., 2017; Samaha & Postle, 2015). 

Oscillation bandwidth may also change, but this parameter is underreported in the literature. 

Thus, what is thought to be a difference in band-limited oscillatory power could, instead, reflect 

center frequency differences between groups or conditions of interest (Cole & Voytek, 2019; 

Lansbergen et al., 2011) (Fig. 1C.ii). 
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Interpreting band-limited power differences is further confounded by the fact that 

oscillations are embedded within aperiodic activity (represented by the dotted blue line in Fig 

1A). This component of the signal stands in contrast to oscillations in that it need not arise from 

any regular, rhythmic process (Bullock et al., 2003). For example, signals such as white noise, or 

even a single impulse function, have power at all frequencies despite there being, by definition, 

no periodic aspect to the signal (Fig. S1B). Due to this aperiodic activity, pre-defined frequency 

bands or narrowband filters will always estimate non-zero power, even when there is no 

detectable oscillation present (Fig. 1B, S1).  

In neural data, this aperiodic activity has a 1/f-like distribution, with exponentially 

decreasing power across increasing frequencies. This component can be characterized by a 1/f! 

function, whereby the !	parameter, hereafter referred to as the aperiodic exponent, reflects the 

pattern of aperiodic power across frequencies, and is equivalent to the negative slope of the 

power spectrum when measured in log-log space (Miller et al., 2009). The aperiodic component 

is additionally parameterized with an ‘offset’ parameter, which reflects the uniform shift of power 

across frequencies. This aperiodic component has traditionally been ignored, however even 

when it is acknowledged it is treated as noise or as a nuisance variable to be corrected for, such 

as is done in spectral whitening (Groppe et al., 2013), rather than a feature to be explicitly 

parameterized. 

Ignoring or correcting for the aperiodic component is problematic, as this component 

also reflects physiological information. The aperiodic offset, for example, is correlated with both 

neuronal population spiking (Manning et al., 2009; Miller et al., 2012) and the fMRI BOLD signal 

(Winawer et al., 2013). The aperiodic exponent, in contrast, has been related to the integration 
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of the underlying synaptic currents (Buzsáki et al., 2012), which have a stereotyped double-

exponential shape in the time-domain that naturally gives rise to the 1/f-like nature of the power 

spectral density (PSD) (Gao et al., 2017). Currents with faster time constants, such as excitatory 

(E) AMPA, have relatively constant power at lower frequencies before power quickly decays 

whereas for inhibitory (I) GABA currents power decays more slowly as a function of frequency. 

This means that the exponent will be lower (flatter PSD) when E>>I, and larger when E<<I (Gao 

et al., 2017). Thus, treating the aperiodic component as “noise” ignores its physiological 

correlates, which in turn relate to cognitive and perceptual (Podvalny et al., 2015) states, while 

trait-like differences in aperiodic activity have been shown to be potential biological markers in 

development (W. He et al., 2019) and aging (Voytek et al., 2015) as well as disease, such as 

depression (Veerakumar et al., 2019), ADHD (Robertson et al., 2019), or schizophrenia (Molina 

et al., 2020). 

To summarize, periodic parameters such as frequency (Bullock, 1981; Haegens et al., 

2014; Klimesch, 1999; Mierau et al., 2017; Obrist, 1954; Samaha & Postle, 2015), power (Crone, 

1998; Jasper & Penfield, 1949), and potentially bandwidth, as well as the aperiodic parameters 

of broadband offset (Manning et al., 2009; Miller et al., 2012; Winawer et al., 2013) and exponent 

(Freeman & Zhai, 2009; Gao, 2016; Gao et al., 2017; B. J. He, 2014; Podvalny et al., 2015; Voytek 

et al., 2015), can and do change in behaviorally and physiologically meaningful ways, with some 

emerging evidence suggesting they interact with one another (Becker et al., 2018). Reliance on 

a priori frequency bands for oscillatory analyses can result in the inclusion of aperiodic activity 

from outside the true physiological oscillatory band (Fig. 1C.ii). Failing to consider aperiodic 

activity confounds oscillatory measures, and masks crucial behaviorally and physiologically 



  

 22 

relevant information. Therefore, it is imperative that spectral features are carefully parametrized 

to minimize conflating them with one another and to avoid confusing the physiological basis of 

“oscillatory” activity with aperiodic activity that is, by definition, arrhythmic. 

To better characterize the signals of interest, and overcome the limitations of traditional 

narrowband analyses, we introduce an efficient algorithm for semi-automatically parameterizing 

neural PSDs into periodic and aperiodic components. This algorithm extracts putative periodic 

oscillatory parameters characterized by their center frequency, power, and bandwidth; it also 

extracts the offset and exponent parameters of the aperiodic component (Fig. 2). Importantly, 

this algorithm requires no specification of narrowband oscillation frequencies; rather, it identifies 

oscillations based on their power above the aperiodic component. 

We test the accuracy of this algorithm against simulated power spectra where all the 

parameters of the periodic and aperiodic components are known, providing a ground truth 

against which to compare the algorithm’s ability to recover those parameters. The algorithm 

successfully captures both periodic and aperiodic parameters, even in the presence of significant 

simulated noise (Fig. 3). Additionally, we show that algorithm performs comparably to expert 

human raters who manually identified peak frequencies in both human EEG and non-human local 

field potential (LFP) spectra (Fig. 4). Finally, we demonstrate the utility of algorithmic 

parameterization. First we replicate and extend previous results demonstrating spectral 

parameter differences between younger and older adults at rest (Fig. 5). Finally, we find a novel 

link between the aperiodic component and behavioral performance in a working memory task 

(Fig. 6).  
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Figure 1.2 | Algorithm schematic on real data. (A) The power spectral density (PSD) is first fit with an 
estimated aperiodic component (blue). (B) The estimated aperiodic portion of the signal is subtracted from 
the raw PSD, the residuals of which are assumed to be a mix of periodic oscillatory peaks and noise. (C) 
The maximum (peak) of the residuals is found (orange). If this peak is above the noise threshold (red dashed 
line), calculated from the standard deviation of the residuals, then a Gaussian (green) is fit around this peak 
based on the peak’s frequency, power, and estimated bandwidth (see Methods). The fitted Gaussian is 
then subtracted, and the process is iterated until the next identified point falls below a noise threshold or 
the maximum number of peaks is reached. The peak-finding at this step is only used for seeding the multi-
Gaussian in D, and, as such, the output in D can be different from the peaks detected at this step. (D) 
Having identified the number of putative oscillations, based on the number of peaks above the noise 
threshold, multi-Gaussian fitting is then performed on the aperiodic-adjusted signal from B to account for 
the joint power contributed by all the putative oscillations, together. In this example, two Gaussians are fit 
with slightly shifted peaks (orange dots) from the peaks identified in C. (E) This multi-Gaussian model is 
then subtracted from the original PSD from A. (F) A new fit for the aperiodic component is estimated—
one that is less corrupted by the large oscillations present in the original PSD (blue). (G) This re-fit aperiodic 
component is combined with the multi-Gaussian model to give the final fit. (H) The final fit (red)—here 
parameterized as an aperiodic component and two Gaussians (putative oscillations)—captures >99% of 
the variance of the original PSD. In this example, the extracted parameters for the aperiodic component 
are: broadband offset = -21.4 au; exponent = 1.12 au/Hz. Two Gaussians were found, with the parameters: 
(1) frequency = 10.0 Hz, power = 0.69 au, bandwidth = 3.18 Hz; (2) frequency = 16.3 Hz, power = 0.14 au, 
bandwidth = 7.03 Hz. 
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Methods 

Algorithm development and analyses for this manuscript were done with the Python 

programming language. The code for the algorithmi and for the analysesii presented in this paper 

are openly available.  

Algorithmic parameterization 

The parameterization method presented herein quantifies characteristics of electro- or 

magneto-physiological data, in the frequency domain. While many methods can be used to 

calculate the power spectra for algorithmic parametrization, throughout this investigation we use 

Welch’s method (Welch, 1967). The algorithm conceptualizes the PSD as a combination of an 

aperiodic component, with overlying periodic components, or oscillations. These putative 

oscillatory components of the PSD are characterized as frequency regions of power over and 

above the aperiodic component, and are referred to here as “peaks”. The algorithm operates 

on PSDs in semilog-power space, which is linearly spaced frequencies, and log-spaced power 

values, which is the representation of the data for all of the following, unless noted. The aperiodic 

component is fit as a function across entire fitted range of the spectrum, and each oscillatory 

peak is individually modeled with a Gaussian. Each Gaussian is taken to represent an oscillation, 

whereby the three parameters that define a Gaussian are used to characterize the oscillation (Fig. 

2). 

 

 
i https://github.com/fooof-tools/fooof 
ii https://github.com/fooof-tools/Paper 
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This formulation models the power spectrum as: 

! = # +	&'!

"

!#$
																		(1) 

where power, P, representing the PSD, is a combination of the aperiodic component, L, and N 

total Gaussians, G. Each Gn is a Gaussian fit to a peak, for N total peaks extracted from the power 

spectrum, modeled as: 

'! = + ∗ -./ 0
−(2 − 3)%

25% 6										(2) 

where a is the power of the peak, in log10(power) values, c is the center frequency, in Hz, w is the 

standard deviation of the Gaussian, also in Hz, and F is the vector of input frequencies. 

The aperiodic component, L, is modeled using a Lorentzian function, written as:  

# = 7 − log(; + 2&)															(3) 

where b is the broadband offset, !	is the exponent, and k is the “knee” parameter, controlling 

for the bend in the aperiodic component (Miller et al., 2009), with F as the vector of input 

frequencies. Note that when k=0, this formulation is equivalent to fitting a line in log-log space, 

which we refer to as the fixed mode. Note that there is a direct relationship between the slope, 

a, of the line in log-log spacing, and the exponent, !, which is ! = -a (when there is no knee). 

Fitting with k allows for parameterizing bends, or knees, in the aperiodic component that are 

present in broad frequency ranges, especially in intracranial recordings (Miller et al., 2009). 

The final outputs of the algorithm are the parameters defining the best fit for the 

aperiodic component and the N Gaussians. In addition to the Gaussian parameters, the 

algorithm computes transformed ‘peak’ parameters. For these peak parameters, we define: (1) 
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center frequency as the mean of the Gaussian; (2) aperiodic-adjusted power—the distance 

between the peak of the Gaussian and the aperiodic fit (this is different from the power in the 

case of overlapping Gaussians that might share overlapping power), and; (3) bandwidth as 2std 

of the fitted Gaussian. Notably, this algorithm extracts all these parameters together in a manner 

that accounts for potentially overlapping oscillations; it also minimizes the degree to which they 

are confounded and requires no specification of canonical oscillation frequency bands. 

To accomplish this, the algorithm first finds an initial fit of the aperiodic component (Fig. 

2A). This first fitting step is crucial and not trivial, as any traditional fitting method, such as linear 

regression, or even robust regression methods designed to account for the effects of outliers on 

linear fitting, can still be significantly pulled away from the true aperiodic component due to the 

overwhelming effect of the high power oscillation peaks. To account for this, we introduce a 

procedure that attempts to fit the aperiodic aspects of the spectrum only. To do so, initial seed 

values for offset and exponent are set to the power of the first frequency in the PSD and an 

estimated slope, calculated between the first and last points of the spectrum (calculated in log-

log spacing, and converted to a positive value, since ! = -a). These seed values are used to 

estimate a first-pass fit.  

This first-pass aperiodic fit is then subtracted from the original PSD, creating a flattened 

spectrum, from which a power threshold (set at the 2.5 percentile) is used to find the lowest 

power points among the residuals, such that this excludes any portion of the PSD with peaks that 

have high power values in the flattened spectrum. This approach identifies only the data points 

along the frequency axis that are most likely to not be part of an oscillatory peak, thus isolating 

the parts of the spectrum that most likely to represent the aperiodic component (Fig. 2A). A 
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second fit of the original PSD is then performed only on these frequency points, giving a better 

estimate of the aperiodic component. This is, in effect, similar to approaches that have attempted 

to isolate the aperiodic component from oscillations by fitting only to spectral frequencies 

outside of an a priori oscillation (Voytek et al., 2015), but does so in a more unbiased fashion. 

The percentile threshold value can be adjusted if needed, but in practice rarely needs to be. 

After the estimated aperiodic component is isolated, it is regressed out, leaving the non-

aperiodic activity (putative oscillations) and noise (Fig. 2B). From this aperiodic-adjusted (i.e., 

flattened) PSD, an iterative process searches for peaks that are each individually fit with a 

Gaussian (Fig. 2C). Each iteration first finds the highest power peak in the aperiodic-adjusted 

(flattened) PSD. The location of this peak along the frequency axis is extracted, along with the 

peak power. These stored values are used to fit a Gaussian around the central frequency of the 

peak. The standard deviation is estimated from the full-width, half-maximum (FWHM) around the 

peak by finding the distance between the half-maximum powers on the left- and right flanks of 

the putative oscillation. In the case where there are two overlapping oscillations, this estimate 

can be very wide, so the FWHM is estimated as twice the shorter of the two sides. From FWHM, 

the standard deviation of the Gaussian can be estimated via the equivalence: 

=>? =
2@AB

2√2DE2
																(4) 

This estimated Gaussian is then subtracted from the flattened PSD, the next peak is 

found, and the process is repeated. This peak-search step halts when it reaches the noise floor, 

based on a parameter defined in units of the standard deviation of the flattened spectrum, re-

calculated for each iteration (default = 2std). Optionally, this step can also be controlled by 
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setting an absolute power, and/or a maximum number of Gaussians to fit. The power thresholds 

(relative or absolute) determine the minimum power beyond the noise floor that a peak must 

extend in order to be considered a putative oscillation. Once the iterative Gaussian fitting 

process halts, in order to handle edge cases, Gaussian parameters that heavily overlap (whose 

means are within 0.75std of the other), and/or are too close to the edge (<= 1.0std) of the 

spectrum, are then dropped. The remaining collected parameters for the N putative oscillations 

(center frequency, power, and bandwidth) are used as seeds in a multi-Gaussian fitting method 

(Python: scipy.optimize.curve_fit). Each fitted Gaussian is constrained to be close to (within 

1.5std) of its original guessed Gaussian. This process attempts to minimize the square error 

between the flattened spectrum and N Gaussians simultaneously (Fig. 2D). 

This multi-Gaussian fit is then subtracted from the original PSD, in order to isolate an 

aperiodic component from the parameterized oscillatory peaks (Fig. 2E). This peak-removed PSD 

is then re-fit, allowing for a more precise estimation of the aperiodic component (Fig. 2F). When 

combined with the equation for the N-Gaussian model (Fig. 2G), this procedure gives a highly 

accurate parameterization of the original PSD (Fig. 2H; in this example, >99% of the variance in 

the original PSD is accounted for by the combined aperiodic + periodic components). Goodness-

of-fit is estimated by comparing each fit to the original power spectrum in terms of the median 

absolute error (MAE) of the fit as well as the R2 of the fit.  

The fitting algorithm has some settings, that can be provided by the user, one of which 

defines the aperiodic mode, with options of ‘fixed’ or ‘knee’, which dictates whether to fit the 

aperiodic component with a knee. This parameter should be chosen to match the properties of 

the data, over the range to be fit. The algorithm also requires a setting for the relative threshold 
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for detecting peaks, which defaults to 2, in units of standard deviation. In addition, there are 

optional settings, which can be used to define: (1) the maximum number of peaks; (2) limits on 

the possible bandwidth of extracted peaks, and; (3) absolute, rather than relative, power 

thresholds. The algorithm can often be used without needing to change these settings. Some 

tuning may be useful for tuning algorithmic performance to different datasets with potentially 

different properties, for example, data from different modalities, data with different amounts of 

noise, and/or for fitting across different frequency ranges. Detailed description and guidance on 

these settings and if and how to change them can be found in the tool’s documentation. All 

parameter names, as well as their descriptions, units, default values, and accessibility to the API 

are also presented in Supplementary Table 1. 

Code for this algorithm is available as a Python package, licensed under an open source 

compliant Apache-2.0 license. The module supports Python >= 3.5, with minimal dependencies 

of numpy and scipy (>= version 0.19), and is available to download from the Python Package 

Indexiii. The package is openly developed and maintained on GitHubiv. The project’s repository 

includes the codebase, a test-suite, instructions for installing and contributing to the package, 

and the documentation materials. The documentation is also hosted on the documentation 

websitev, which includes tutorials, examples, frequently asked questions, a section on 

motivations for parameterizing neural power spectra, and a list of all the functionality available. 

On contemporary hardware (3.5 GHz Intel i7 MacBook Pro), a single PSD is fit in approximately 

 
iii https://pypi.python.org/pypi/fooof/ 
iv https://github.com/fooof-tools/fooof/ 
v https://fooof-tools.github.io/fooof/ 
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10-20 ms. Because each PSD is fit independently, this package has support for running in parallel 

across PSDs to allow for high-throughput parameterization. 

Simulated PSD creation and algorithm performance analysis 

Power spectra were simulated following the same underlying assumption of the fitting 

algorithm, that PSDs can be reasonably approximated as a combination of an aperiodic 

component and overlying peaks, that reflect putative periodic components of the signal. The 

equations used in the algorithm and described in the methods for the fitting procedure were 

used to simulate power spectra, such that for each simulated spectrum, the underlying 

parameters used to generate it are known. On top of the simulated aperiodic component with 

overlying peaks, white noise was added, with the level of noise controlled by a scaling factor. 

The power spectra were therefore simulated as an adapted version of equation (1):� 

! = # +	&'!

"

!#$
+GH												(5) 

Where P is a simulated power spectrum, L and Gn are the same as described in equations (2) and 

(3) respectively,	H is white noise, applied independently across frequencies, m is a multiplicative 

scaling factor of that noise. 

For all simulations, the parameterization algorithm was used with settings of 

{peak_width_limits = [1,8], max_n_peaks = 6, min_peak_height = 0.1, peak_threshold = 2.0, 

aperiodic_mode = ‘fixed’}, except where noted. For each set of simulations, 1000 power spectra 

were simulated for each condition. The algorithm was fit to each simulated spectrum, and 

estimated values for each parameter were compared to ground truth values of the simulated 

data. Deviation of the parameter values was calculated as the absolute deviation for the fit value 
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from the ground truth value. We also collected the goodness-of-fit metrics (error and R2) and the 

number of fit peaks from the spectral parameterizations. 

For the first set of simulations, power spectra were generated across the frequency range 

of 2-40 Hz, with a frequency resolution of 0.25 Hz (Fig 3A-F). The aperiodic component was 

generated with y-intercept (offset) parameter of 0, and without a knee (k=0). Exponent values 

were sampled uniformly from possibilities {0.5, 1, 1.5, 2}. Oscillation center frequencies came 

from the range of 3-34 Hz (1 Hz steps), with each center frequency sampled as the observed 

probability of center frequencies at that frequency in real data. For simulations in which there 

were multiple peaks within a single spectrum (Fig 3D-F), center frequencies were similarly 

sampled at random, with the extra constraint that a candidate center frequency was rejected if it 

was within 2 Hz on either side of another center frequency already selected for the simulated 

spectrum, such that individual spectra could not have superimposed peaks. Peak powers and 

bandwidths were sampled uniformly from {0.15, 0.20, 0.25, 0.4} and {1, 2, 3} respectively, 

independent of their center frequency. 

A set of power spectra were generated with one peak per spectrum across five noise 

levels {0.0, 0.025, 0.05, 0.10, 0.15} (Fig 3A-C). In these simulations, the center frequency, power, 

and bandwidth of the fit peak, as well the aperiodic exponent, were compared to the ground 

truth parameters. In order to compare ground truth parameters to the spectral reconstructions, 

which potentially included more than one peak, the highest power peak was extracted from the 

spectral fit to use for comparison. In another set of simulations, PSDs were created with a varying 

number of peaks – between 0 and 4 – with a fixed noise value of 0.01 (Fig 3D-F). For these 

simulations, the performance of the algorithm was examined in terms of the fit error across the 
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number of peaks, as well by comparing the number of simulated peaks to the number of peaks 

in the spectral fit.  

Simulated power spectra to test across a broader frequency range were generated across 

the frequency range of 1-100 Hz, with a frequency resolution of 0.5 Hz (Fig S2 A-C). These spectra 

were created with knees, using knee values of {0, 10, 25, 100, 150}, sampled with equal 

probability, with offset and exponent values sampled as done previously. For these spectra two 

peaks were added, one in the low frequency range, sampled as previously described, with an 

additional peak sampled with a center frequency sampled, with even probability, from between 

50 and 90 Hz (in 1 Hz) steps, with the same sampled power and bandwidth values as used 

previously. These spectra were generated across different noise levels, as before. Spectra were 

fit using the same algorithm settings as before, except for aperiodic mode being set to ‘knee’. 

Parameter reconstruction was evaluated, with the addition of calculating the accuracy of the 

reconstructed knee parameter.  

Additional simulations were created to evaluate the model performance with respect to 

violations of model assumptions (Fig S3 A-I). To examine violations of the aperiodic model 

assumptions, a set of spectra were also simulated with knees (Fig 3A-C) but were fit in the ‘fixed’ 

aperiodic mode, using the same settings as before. Simulations were created as described above 

for simulations including knees, except that in order to evaluate the influence of knee 

parameters, spectra were simulated and grouped by knee values, for values of {0, 10, 50, 100, 

150}, using a fixed noise level of 0.01. For these simulations, performance was primarily evaluated 

in terms of reconstruction accuracy of the aperiodic exponent, and in the number of fit peaks.  
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To examine model violations of the periodic component, power spectra were also 

simulated using asymmetric peaks in the frequency domain (Fig S3 D-F). For these simulations, 

peaks were simulated as skewed gaussians, in which an additional parameter is used that controls 

the skewness of the peaks (simulated in code with `scipy.stats.skewnorm`). These simulations 

were created across the frequency range of 2-40 Hz, with a fixed noise value of 0.01. Each 

spectrum contained a single peak, with peak parameters sampled as in the prior simulations for 

this range. A skew value was added to the peak, across conditions with skew values of {0, 5, 10, 

25, 50}. For these simulations, performance was primarily evaluated in terms of reconstruction 

accuracy of the peak center frequency, and in the number of fit peaks.  

In addition, time series simulations were created with non-sinusoidal oscillations (Fig 3G-

I), to investigate how the algorithm performs with asymmetric cycles and the resulting power 

spectra. Simulations were created as time series signals of oscillations of asymmetric cycles 

combined with aperiodic activity, using the simulation tools in the NeuroDSP Python toolbox 

(Cole et al., 2019). Time series were simulated as 10 second segments at a sampling rate of 500 

Hz. The aperiodic component of the signal was simulated as a 1/f signal, with exponent values 

sampled from the same values as above. The periodic component of the data was an asymmetric 

oscillation, with a peak frequency sampled as above. These oscillations were created with varying 

across rise-decay symmetry values (Cole & Voytek, 2017) of {0.5, 0.625, 0.75, 0.875, 1.0}. Note 

that a value of 0.5, with a symmetric rise and decay is a sinusoid, whereas values approaching 1 

are increasingly sawtooth-like. The full signal was a combination of the two components, from 

which power spectra were calculated, using Welch’s method (2 second segments, 50% overlap, 

Hanning window). The power spectrum models were then fit across the frequency range of [2, 
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40], using the same settings as above. For these simulations, performance was primarily 

evaluated in terms of reconstruction accuracy of the peak center frequency, and in the number 

of fit peaks. 

Human labelers versus algorithm 

In addition to simulated power spectra, randomly selected EEG (n = 64) and LFP (n = 42) 

PSDs were labeled by the algorithm and by expert human raters (n = 9). PSDs were calculated 

using Welch’s method (Welch, 1967) (1 second segments, 50% overlap, Hanning window). These 

PSDs were then fit and labeled from 2 to 40 Hz. Note that human labeling was done only for the 

center frequencies of putative oscillations on the PSDs that had the aperiodic component still 

present, as this is the most common human PSD parameterization approach. This misses all other 

features that the algorithm can also parameterize (power, bandwidth, offset, and exponent). 

Raters gave a high/low confidence rating to their labels, to provide a human analog for 

overfitting, and all plots and analyses use only results from the high-confidence ratings (including 

low-confidence ratings significantly impairs human label performance). Comparisons of the 

number of average numbers of peaks fit to each spectrum were done using independent-

samples t-tests, where for each spectrum we counted the number of peaks identified by the 

algorithm, and compared that number across all spectra to the average number of peaks the 

human raters found per spectrum. 

In order to estimate a putative “truth” for real physiological data where ground truth is 

unknown, we used a majority rule approach wherein a “consensus truth” criterion was calculated 

for each PSD separately by estimating the majority consensus for each identified peak. 

Specifically, for each PSD, all peaks identified by every human labeler were pooled, and the 
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frequency of identification was established for each peak. Those peaks that were identified by 

the majority of labelers (n > 4) within 1.0 Hz of one another were set as the putative truth for that 

PSD. All human labelers, and the algorithm, were then scored against this putative truth. 

Precision, recall, and F1 scores for human raters and the algorithm were calculated for each rater 

across all PSDs.  

Accuracy measures were then averaged across human labelers and compared the those 

of the algorithm. Normally, precision is calculated as the number of true positives divided by the 

total of true positives and false positives. However, because ground truth is unknown, “true 

positive” and “false positive” here are defined relative to the consensus truth. Similarly, recall is 

calculated as the number of true positives divided by the total of true positives and false 

negatives. 

 The F1 score is a weighted measure of accuracy that combines precision and recall. This 

metric is used because precision can be artificially very high while recall is very low; for example, 

it is possible to inflate precision by simply identifying a peak at every point along the frequency 

axis, thus no peaks would ever be missed, but recall would be severely impacted. If no peaks 

were found, precision and recall were all set to 0. Correct rejections were not included in 

performance estimates; had they been included, every non-peak that was correctly identified as 

such (most of the power spectra) would be marked as a correct rejection, skewing performance 

results.  

For those instances when a human labeler or the algorithm identified no peaks in the 

PSD, precision and recall values were set to 0 if the putative truth contained any peaks, and to 1 

if there was no consensus among human labelers on any of the peaks (i.e., the putative truth 
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criterion was 0 peaks). Thus, the majority rule scoring system did not penalize either human 

labelers or the algorithm for correctly rejecting false positives. All reported p values are 

Bonferroni corrected for the three correlated comparisons (precision, recall, and F1) performed 

for each modality (EEG and LFP). Comparisons of these measures across PSDs were assessed 

using the z-score, where the algorithm’s precision, recall, and F1 scores were compared to the 

distribution of the raters’ scores. For the Spearman correlation, rater precision and recall on both 

EEG and LFP data were included. 

Algorithmic analysis of EEG and LFP 

Scalp EEG data. Electroencephalography (EEG) data from a previously described study 

(Tran et al., 2016) were re-analyzed here. Briefly, we collected 64-channel scalp EEG from 17 

younger (20-30 years old) and 14 older (60-70 years old) participants while they performed a 

visual working memory task as well as a resting state period. All participants gave informed 

consent approved by the University of California, Berkeley Committee on Human Research. 

Participants were tested in a sound-attenuated EEG recording room using a 64+8 channel 

BioSemi ActiveTwo system. EEG data were amplified (-3dB at ~819 Hz analog low-pass, DC 

coupled), digitized (1024 Hz), and stored for offline analysis. Horizontal eye movements (HEOG) 

were recorded at both external canthi; vertical eye movements (VEOG) were monitored with a 

left inferior eye electrode and superior eye or fronto-polar electrode. All data were referenced 

offline to an average reference. All EEG data were processed with the MNE Python toolbox 

(Gramfort et al., 2014), the algorithm described herein, and custom scripts. These data have 

previously been reported(Tran et al., 2016), though all analyses presented here are novel using 

our new algorithmic approach. 
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EEG task and stimuli. Participants performed a visual working memory task. They were 

instructed to maintain central fixation and asked to respond using the index finger of their right 

hand. The visual working memory paradigm was slightly modified from the procedures used in 

Vogel and Machizawa (2004) (Vogel & Machizawa, 2004) as previously outlined (Voytek & Knight, 

2010), where additional task details can be found. Participants were visually presented with a 

constant fixation cross in the center of the screen throughout the entire duration of the 

experiment. At the beginning of each trial, this cross would flash to signal the beginning of the 

trial. This was followed 350 ms later by one, two, or three (corresponding to the load level) 

differently colored squares for 180 ms, lateralized to either the left or right visual hemifield. After 

a 900 ms delay, a test array of the same number of colored squares appeared in the same spatial 

location. Participants were instructed to respond with a button press to indicate whether or not 

one item in the test array had changed color compared to the initial memory array. Each 

participant performed 8 blocks of 40 trials each. 

EEG behavioral data analysis. Behavioral accuracy was assessed using a d' measure of 

sensitivity which takes into account the false alarm rate to correct for response bias (d' = Z(hit 

rate)-Z(false alarm rate)). To avoid mathematical constraints in the calculation of d', we applied a 

standard correction procedure, wherein, for any participants with a 100% hit rate or 0% false 

alarm rate, performance was adjusted such that 1/(2N) false alarms were added or 1/(2N) hits 

subtracted where necessary.  

EEG Pre-processing. Each participant’s EEG data were first filtered with a highpass filter 

at 1 Hz, and then decomposed using ICA (Bell & Sejnowski, 1995). Any ICA components that 

significantly correlated with HEOG and/or VEOG activity were automatically identified and 
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rejected. A two-minute segment of data from the beginning of the recording was extracted and 

analyzed as resting state data. Trials were epoched from -0.85 to 1.10 seconds relative to 

stimulus onset. All incorrect trials and trials with artifacts were excluded from subsequent 

analysis. The AutoReject procedure was used to estimate thresholds and automatically reject any 

trials with artifacts, as well as to interpolate bad channels (Jas et al., 2017). 

EEG resting state data analysis. Power spectra were calculated for all channels, using 

Welch's method (Welch, 1967), for a two-minute segment of extracted resting state data from 

the beginning of the recording. These power spectra were fit using the algorithm, using the 

settings {peak_width_limits = [1,6], max_n_peaks = 6, min_peak_height = 0.05, peak_threshold 

= 1.5, aperiodic_mode = ‘fixed’}. The average R2 of spectral fits was 0.96, reflecting good fits, 

though one participant from the younger group was considered an outlier, with R2 and absolute 

error of the fit more than 2.5 standard deviations away from the mean; this participant was 

dropped from further analyses in the resting condition. Estimated periodic spectral parameters 

were analyzed from a posterior channel of interest, Oz, chosen to capture visual cortical alpha 

activity. Aperiodic parameters were analyzed from channel Cz. 

T-tests were performed to evaluate differences between age groups. For visualization 

purposes, periodic and/or aperiodic components were reconstructed for each participant’s fitted 

parameters. To explore if aperiodic differences could drive frequency-specific power differences, 

t-tests were run at each frequency, comparing between younger and older adult group, for the 

power values from the reconstructed aperiodic-only signal. To compare participant-specific fits 

to canonical band analyses, the overlap of a Gaussian centered at 10 Hz with a +/-2 Hz bandwidth 
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(reflecting the common 8-12 Hz alpha range) was calculated with the individualized center 

frequency per participant, using a fixed +/-2 Hz bandwidth range. All t-tests are two-tailed. 

EEG task data analysis. For task analyses, data were analyzed from visual cortical alpha 

electrodes contralateral to the hemifield of visual stimulus presentation (right hemifield stimuli: 

{P3, P5, P7, P9, PO3, PO7, O1}; left hemifield stimuli: {P4, P6, P8, P10, PO4, PO8, O2}). Only 

correct trials were analyzed, and trials were collapsed across presentation side. Trials were split 

up into the three segments of interest: baseline [-0.85 to -0.35 sec], early trial segment [0.10 to 

0.60 sec], and late trial segment [0.50 to 1.00 sec].  

For spectral parameterization analyses, PSDs were calculated across each segment, for 

each channel, and spectra were fit, using the same settings as the rest data. Fitted parameters 

were then averaged across channels, to arrive at one set of parameters per trial, per participant. 

For comparison, two canonical alpha band analyses were run, one in which trial data were filtered 

to the alpha range (8-12 Hz), and another in which the data were filtered +/- 2 Hz around an 

individualized alpha center frequency, identified as the frequency of peak power between the 

range 7-14 Hz. These filtered copies of the data were then epoched and Hilbert transformed to 

calculate analytic alpha amplitude. Average analytic alpha was calculated across each time 

segment. Evoked measures of each parameter (i.e., canonical alpha, aperiodic-adjusted alpha 

power, and aperiodic offset and exponent) were calculated, in which the value of the parameter 

in the late trial was baseline-corrected by the measure of the parameter from the pre-trial 

baseline period for each investigated parameter.  

To investigate which estimation technique (canonical band estimation vs. spectral 

parameterization) and which spectral parameter best predicted behavior, regression models 
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were used to predict d', per load, from canonical or spectral parameterization output measures, 

separately for each age group. We used a baseline behavioral model, predicting d' from the 

memory load (the number of presented items in the trial), and all models also used load as a 

covariate. To compare which features best predicted behavior, we predicted separate models, 

using 1) canonical alpha, 2) canonical alpha measured at an individualized frequency, 3) 

parameterized alpha, 4) parameterized aperiodic features. These models are described as: 

										"! = $" + $#('()") + 	+     baseline model 

										"′ = $" + $#('()") + $$(-%&(()) + 	+   canonical alpha model 

										"′ = $" + $#('()") + $$(-%&((*+)) + 	+   individualized canonical alpha model 

										"′ = $" + $#('()") + $$(-%&(%)) + 	+   parameterized alpha model 

										"′ = $" + $#('()") + $$.)/,-%0 + $3.)/.++0 + 	+  aperiodic model  

In the above, #!" represents alpha power, and c, icf, p represent ‘canonical’, ‘canonical’ with 

individualized frequency’, and ‘parameterized’, respectively, and $% represents aperiodic, with 

exp and off denoting exponent and offset respectively. All models were fit as ordinary least 

squares linear models. Model fitting and comparisons were done using the statsmodels module 

in Python. The F-test for overall significance of the model was used to evaluate whether each 

model provided a significant fit.  

LFP data. LFP data used for algorithm validation came from two male rhesus monkeys 

(Maccaca mulatta) 4 to 5 years of age, collected for a previously reported experiment 

(methodological details can be found in the corresponding manuscript (Lara & Wallis, 2014)). All 

procedures were carried out in accord with the US National Institutes of Health guidelines and 
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the recommendations of the University of California, Berkeley Animal Care and Use Committee. 

Neuronal responses were recorded from PFC using arrays of 8-32 tungsten microelectrodes. 

Local field potentials were recorded with a 1 kHz sampling frequency and analyzed offline. LFP 

were isolated from the band-passed (0-100 Hz) recordings, and spectral fits were done on a 

channel-by-channel basis using Welch’s method and the same settings used for the EEG analyses 

described above. 
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Results 

Algorithm performance against simulated data 

To investigate algorithm performance, we simulated realistic neural PSDs with known 

ground truth parameters. These simulated spectra consist of a combination of Gaussians, with 

variable center frequency, power, and bandwidth; an aperiodic component with varying offset 

and exponent; and noise. Algorithm performance was evaluated in terms of its ability to 

reconstruct the individual parameters used to generate the data (Fig. 3; see Methods). Individual 

parameter accuracy was considered, since the algorithm, without using the settings to limit the 

number of fitted peaks, can arbitrarily increase R2 and reduce error. Thus, overall fit error should 

not be the sole method by which to assess algorithm performance, and should be considered 

together with the number of peaks fit. This is because, in the extreme, if the algorithm fits a peak 

at every frequency then the error between the center frequency of the true peak and the closest 

identified peak will be artificially low. In addition, global goodness-of-fit measures such as R2 or 

mean squared error are not directly related to accuracy of individual parameter estimation. 

Common analyses seek to identify and measure the most prominent oscillation in the 

power spectrum. To assess algorithm performance at this task, we began by simulating a single 

spectral peak with varying levels of both noise and aperiodic parameters (Fig. 3A). Algorithm 

performance is assessed by the absolute error of each of the reconstructed parameters: aperiodic 

offset and exponent (Fig. 3B), as well as center frequency, power, and bandwidth of the largest 

peak (Fig. 3C). Note that power as returned by the algorithm always refers to aperiodic-adjusted 

power—that is the magnitude of the peak over and above the aperiodic component. 
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Simulated aperiodic exponents ranged between [0.5, 2.0] au/Hz, and the median 

absolute error (MAE) of the algorithmically identified exponent remained below 0.1 au/Hz, even 

in the presence of high noise, with MAE increasing monotonically across noise levels (Fig. 3B). 

Spectral peaks were simulated with center frequencies between [3, 34] Hz, with peak power 

between [0.15, 0.4] au above the aperiodic component, and bandwidths between [1, 3 Hz] (see 

methods for full details). When identifying center frequency, MAE was within 1.25 Hz of the true 

peak for all tested noise levels. For peak power MAE remained below 0.1 au, and for bandwidth 

MAE was within 1.25 Hz, for even the largest noise scenarios. In both cases MAE increased 

monotonically with noise (Fig. 3A). Note that for bandwidth, a default algorithm parameter limits 

maximum bandwidth to 8.0 Hz (see Methods), which likely reduces MAE. 

Another use case for the algorithm is to identify multiple oscillations (Fig. 3D-F). Here we 

assess performance as overall fit error, considered in combination with whether the algorithm 

finds the correct number of oscillations. In the presence of multiple simulated peaks (Fig. 3D), 

the median fit error increases monotonically as the number of peaks increases (Fig. 3E). Multiple 

simulated peaks can differ significantly in power and can overlap, increasing fit error. Despite 

this, the modal number of fit peaks matches the number of true simulated peaks (Fig. 3E,F). 

Additional simulations tested algorithm performance across broader frequency ranges (Fig. S2). 

For the frequency range of 1-100 Hz, MAE was below 1.5 Hz for low frequency peaks (3-34 Hz), 

and below 4 Hz for high frequency peaks (50-90 Hz), across noise levels (Fig. S2B). Across larger 

frequency ranges, spectra often exhibit a ‘knee’, or bend in the aperiodic component of the data  
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Figure 1.3 | Algorithm performance on simulated data. (A-C) Power spectra were simulated with one peak, 
at five distinct noise levels (1000 spectra per noise level). (A) Example spectra with simulation parameters 
are shown (black), as aperiodic [offset, exponent] and periodic [center frequency, power, bandwidth]. 
Spectral fits (red), for the one-peak simulations in a low- and high-noise scenario. Simulation parameters 
for plotted example spectra are noted. (B) Median absolute error (MAE) of the algorithmically identified 
aperiodic offset and exponent, across noise levels, as compared to ground truth. (C) MAE of the 
algorithmically identified peak parameters—center frequency, power, and bandwidth—across noise levels. 
In all cases, MAE increases monotonically with noise, but remains low. (D-F) A distinct set of power spectra 
were simulated to have different numbers of peaks (0-4, 1000 spectra per number of peaks) at a fixed 
noise level (0.01). (D) Example simulated spectra, with fits, for the multi-peak simulations. Conventions as 
in A. (E) Absolute model fit error for simulated spectra, across number of simulated peaks. (F) The number 
of peaks present in simulated spectra compared to the number of fitted peaks. All violin plots show full 
distributions, where small white dots represent median values and small box plots show median, first and 
third quartiles, and ranges. The algorithm imposes a 6.0 Hz maximum bandwidth limit in its fit, giving rise 
to the truncated errors for bandwidth in C. Note that the error axis is log-scaled in B,C,E. 
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(Gao et al., 2020; Miller et al., 2009) (see Methods). Knee locations were simulated between [0, 

150] au, and MAE for the recovered parameters was below 15 au, while maintaining good 

performance for offset (MAE below 0.2) and exponent (MAE below 0.15) (Fig. S2C). Finally, the 

robustness of the algorithm was assessed against violations of model assumptions, including 

fitting no knee when a knee is present, non-Gaussian peaks, and non-sinusoidal oscillations (Fig. 

S3). 

Algorithm performance against expert human labeling  

Next, we examined algorithm performance against how experts identify peaks in PSDs. 

Because it is uncommon for human raters to manually measure the other spectral features 

parameterized by the algorithm, human raters experienced in oscillation research (n=9) identified 

only the center frequencies of peaks in human EEG and non-human primate LFP PSDs (Fig. 4A,B, 

see Methods). For many spectra there was strong consensus (e.g., Fig. 4A), but not for all (e.g., 

Fig. 4B). Performance was quantified in terms of precision, recall, and F1 score, the latter of which 

combines precision and recall with equal weight (see Methods). This is a conservative approach 

that underestimates the abilities of the algorithm (which is optimized to best fit the entire 

spectrum, not just a peak’s center frequency). Also important is that the definition of surrogate 

ground truth used here means that when human raters show disagreement regarding the center 

frequency of putative oscillations, the algorithm will be marked as incorrect (Fig. 4B). 

Human labelers were relatively consistent in peak labeling for both EEG and LFP datasets, 

as evidenced by above-chance recall for each rater with the majority (Fig. 4C). Despite the 

disadvantages outlined above, the algorithm identified a similar number of peaks as the raters 

for both EEG (n=64 PSDs; humans, algorithm: 1.81, 1.71; t63=0.77, p=0.44) and LFP (n=42 
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spectra, humans, algorithm: 1.05, 1.10; t41=-0.47, p=0.64). The algorithm had comparable 

precision as humans for both EEG (humans, algorithm: 0.77, 0.81; z=0.18, p=1.0) and LFP 

(humans, algorithm: 0.83, 0.63; z=-1.44, p=0.38). The algorithm had slightly lower recall 

compared to humans for EEG (humans, algorithm: 0.87, 0.68; z=-2.15, p=0.092), and 

comparable recall for LFP (humans, algorithm: 0.86, 0.84; z=-0.22, p=0.99).  

Raters also demonstrated a strong precision/recall tradeoff (Spearman �=-0.91, 

p=2.2×10-7) (Fig. 4C). Such a tradeoff is common in search and classification, as most strategies 

to improve recall come at the cost of precision, and vice versa. At the extreme, for example, one 

could achieve perfect precision by marking only the most obvious, largest power, peak, but at 

the cost of failing to recall all other peaks. Or one could achieve perfect recall by marking every 

frequency as containing a peak, but at the cost of precision. For this reason, we assessed overall 

performance using the F1 score, which equally weights precision and recall. The algorithm had 

comparable F1 scores as humans for EEG (humans, algorithm: 0.79, 0.74; z=-0.44, p=0.96), and 

slightly lower F1 scores for LFP (humans, algorithm: 0.83, 0.72; z=-2.16, p=0.087) (Fig. 4D). 
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Figure 1.4 | Algorithm performance compared to human raters on real EEG and LFP data. (A,B) Examples 
of two different EEG spectra labeled by expert human raters, highlighting cases of strong (A) and weak (B) 
consensus amongst raters. The black line is the PSD of real data against which center frequency estimates 
were made. The red line is the algorithm fit; the red stars are the center frequencies identified by the 
algorithm. The dots are each individual expert’s center frequency rating(s). Note that even when human 
consensus was low, with many identifying no peaks, as in B, the algorithm still provides an accurate fit (in 
terms of the R2 fit and error). Nevertheless, the identified center frequencies in B would all be marked as 
false positives for the algorithm as compared to human majority rule, penalizing the algorithm. (C) Human 
raters show a strong precision/recall tradeoff, with some variability amongst raters. (D) Despite the penalty 
against the algorithm for potential overfitting, as in B, it performs comparably to the human majority rule. 
n.s.: algorithm not significantly different from human raters. 
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Age-related differences in spectral parameters 

The practical utility of the algorithm was assessed across several EEG applications. First, 

we replicated and extend previous work looking at age-related differences in spectral 

parameters, such as alpha oscillations and aperiodic exponent, including how individualized 

parameters differ with aging (Fig. 5); then we examined whether task-related parameters are 

altered by working memory and aging (Fig. 6). To test this, we analyzed scalp EEG data from 

younger (n=16; 20-30 years) and older adults (n=14; 60-70 years) at rest and while performing a 

lateralized visual working memory task (see Methods). 

Resting state analyses. Resting state alpha oscillations and aperiodic activity, as 

parameterized by the algorithm, were compared between age groups. First, we quantified how 

much individualized alpha parameters differed from canonical alpha. To do this, participant-

specific alpha oscillations were reconstructed based on individual peak frequencies from channel 

Oz and were compared against a canonical 10 Hz-centered band. We observed considerable 

variation across participants (Fig. 5A,B, see Methods), as well as a significant difference between 

groups (overlap with canonical alpha: younger=84%, older=71%; t28=2.27, p=0.031; Cohen’s 

d=0.83) (Fig. 5B). Note that this manifests as a difference in alpha power between groups when 

using the canonical band analyses, though this is partly driven by more of older adult’s alpha 

lying outside the canonical 8-12 Hz alpha range. 

Older adults had lower (slower) alpha center frequencies than younger adults 

(younger=10.7 Hz, older=9.6 Hz; t28=2.20, p=0.036; Cohen’s d=0.79) and lower aperiodic-

adjusted alpha power (younger=0.78 μV2, older=0.45 μV2; t28=2.52, p=0.018; Cohen’s d=0.93), 

though bandwidth did not differ between groups (younger=1.9 Hz, older=1.8 Hz; t28=0.48, 
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p=0.632; Cohen’s d=0.17) (Fig. 5C). The mean aperiodic-adjusted alpha power difference 

between groups was 0.33 μV2/Hz whereas, when comparing total (not aperiodic-adjusted) alpha 

power, the mean difference was 0.45 μV2/Hz. This demonstrates that, though alpha power 

changes with age, the magnitude of this change is exaggerated by conflating age-related alpha 

changes with age-related aperiodic changes. 

Regarding aperiodic activity, older adults had lower aperiodic offsets (younger=-11.1 μV2, 

older=-11.9 μV2; t28=6.75, p<0.0001; Cohen’s d=2.45) and lower (flatter) aperiodic exponents 

(younger=1.43 μV2/Hz, older=0.75 μV2/Hz; t28=7.19, p<0.0001; Cohen’s d=2.63) (Fig. 5E). 

Participant-specific aperiodic components were reconstructed based on individual offset and 

exponent parameter fits from channel Cz, and used to compare frequency-by-frequency 

differences between groups (Fig. 5D). From reconstructions, significant differences were found 

between groups in the frequency ranges 1.0-10.5 Hz and 40.2-45.0 Hz (p<0.05, uncorrected t-

tests at each frequency band). This demonstrates, in real data, how group differences in what 

would traditionally be considered to be oscillatory bands can actually be caused by aperiodic—

non-oscillatory—differences between groups (c.f., Fig. 1). 
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Figure 1.5 | Age-related shifts in spectral EEG parameters during resting state. (A) Visualization of 
individualized oscillations as parameterized by the algorithm, selected as highest power oscillation in the 
alpha (7-14 Hz) range from visual cortical EEG channel Oz for each participant. There are clear differences 
in oscillatory properties between age groups that are quantified in C. (B) A comparison of alpha captured 
by a canonical 10 ± 2 Hz band, as compared to the average deviation of the center frequency of the 
parameterized alpha, for the younger group (left, blue) and older group (right, green). In this comparison, 
the canonical band approach captures 84% of the parameterized alpha in the younger adult group, and 
only 71% in the older adult group, as quantified in the middle panel. Red represents the alpha power 
missed by canonical analysis, which disproportionately reflects more missed power in the older group. (C) 
Comparison of parameterized alpha center frequency, aperiodic-adjusted power, and bandwidth, split by 
age group. (D) Comparison of aperiodic components at channel Cz, per group. For this visualization, the 
aperiodic offset and exponent, per participant, were used to reconstruct an “aperiodic only” spectrum 
(removing the putative oscillations). Red shaded regions reflect areas where there are significant power 
differences at each frequency between groups (p < 0.05 uncorrected t-tests). In this comparison, significant 
group differences in both aperiodic offset and exponent (E) drive group-wise differences that otherwise 
appear to be band-specific in both low (< ~10 Hz) and high (> ~40 Hz) frequencies, when analyzed in a 
more traditional manner. Bars in B, C, E represent mean values while stars indicate statistically significant 
difference, at p < 0.05. n.s. not significant. 
 

 



  

 51 

Working memory analyses. To evaluate whether parameterized spectra can predict 

behavioral performance, we analyzed a working memory task from the same dataset, in which 

participants had to remember the color(s) of briefly presented squares over a short delay period. 

We then attempted to predict behavioral performance, measured as d', from periodic and 

aperiodic parameters calculated as a difference measures between baseline and delay period 

(see Methods for full task and analysis details). Ordinary least squares linear regression models 

were fit to predict performance, and model comparisons were done to examine which spectral 

parameters and estimation approaches best predicted behavior (Fig. 6A-C). The most consistent 

model for predicting behavior across groups (adjusting for the number of parameters in the 

model) was one using only the two aperiodic parameters (offset and exponent; younger: F(4, 

46)=3.94, p = 0.0078, Radj
2=0.19; older: F(4, 37)=5.10, p=0.0023, Radj

2=0.29). In the older adult 

group, the aperiodic-adjusted alpha power model was also a significant predictor (F(3, 38)=7.70, 

p=0.0004, Radj
2=0.33), performing better than a model using canonical alpha measures (F(3, 

38)=5.18, p=0.0042, Radj
2=0.23). In the younger adult group, neither measure of alpha power 

significantly predicted behavior (Fig. 6E). This result highlights that, while traditional analyses of 

such tasks typically focus on alpha activity (Tran et al., 2016), we find that the more accurate 

prediction of behavior is from aperiodic activity, a pattern that may be misinterpreted as alpha 

dynamics in canonical analyses, in particular when there are spectral parameter differences 

between groups. 
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Figure 1.6 | Event-related spectral parameterization of working memory in aging. (A) Contralateral 
electrodes (filled blue dots on the electrode localization map) were analyzed in a working memory task, 
with spectral fits to delay period activity per channel, per trial, as well as to the pre-trial baseline period 
(see Methods). Task-related measures of each spectral parameter were computed by subtracting the 
baseline parameters from the delay period parameters. (B) Parameters were collapsed across channels, to 
provide a measure per trial, and collapsed across trials, to provide a measure per working memory load 
(condition). (C) For this analysis, condition average spectral parameters were used to predict behavioral 
performance, measured as d', per condition. (D) The average evoked difference in spectral parameters, 
between baseline and delay periods, for each group, presented as spectra reconstructed from the spectral 
fits, including aperiodic and oscillatory alpha parameters. The inset tables present the changes in each 
parameter, shaded if significant (one sample t-test, p < 0.05; green: positive weight; red: negative weight). 
(E) Parameters for behavioral models predicting behavioral performance for each group. All behavioral 
models use the evoked spectral parameters from A. Note that all behavioral models also include an 
intercept term, and a covariate for load. 
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Discussion 

Despite the ubiquity of oscillatory analyses, there are several analytic assumptions that 

impact the physiological interpretation of prior oscillation research. Standard approaches for 

quantifying oscillations presume that oscillations are present, which may not be true (Fig. S1), 

and often rely on canonical frequency bands that presume that spectral power implies oscillatory 

power. These assumptions overlook the existence of aperiodic activity, which is itself dynamic, 

and so cannot be simply ignored as stationary noise. Aperiodic activity also has interesting 

demographic, cognitive, and clinical correlates, as well as physiological relevance, and so should 

also be explicitly parameterized and analyzed. Here we introduce a novel method for 

algorithmically extracting periodic and aperiodic components in electro- and 

magnetophysiological data that addresses these often-overlooked issues in cognitive and 

systems neuroscience. 

We demonstrate this method with a series of applications, and highlight methodological 

points and novel findings. We show how apparent age-related differences in oscillatory power 

can be partially driven by shifts in oscillation center frequency (Fig. 1C). Specifically, we find that 

canonical alpha band analyses (e.g., analyzing the 8-12 Hz range) fail to capture all of the 

oscillatory power within individual participants, and are systematically biased between groups 

(Lansbergen et al., 2011) (Fig. 5B). In our data, canonical alpha analyses miss a greater proportion 

of power in older adult’s true alpha activity compared to younger adult’s alpha, due to the fact 

that older adults tend to have slower (lower frequency) alpha (Obrist, 1954) (Fig. 5A,B). This is 

important, as traditional analyses using fixed bands fail to address inter-individual differences, 
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which has methodological consequences, and also ignores that variations in peak-frequencies 

within oscillation bands have functional correlates and are of theoretical interest(Mierau et al., 

2017).  

We also show how apparent oscillation power can be influenced by changes in the 

aperiodic exponent, for example in the case of age-related changes in the aperiodic exponent 

(Fig. 5D,E). Thus, though we replicate often-described age-related alpha power changes 

(Klimesch, 1999; Obrist, 1954), we find the magnitude of this effect, when analyzed for alpha 

power specifically, is more subtle than previously reported. This is because age-related changes 

in the aperiodic component also shift total narrowband alpha power, despite the fact that power 

in a narrowband oscillation has not changed relative to the aperiodic process (Voytek & Knight, 

2015) (see Fig. S1A). We conclude that periodic activity is not the sole driver of the apparent ~10 

Hz power differences in aging; and that the magnitude of alpha power differences have been 

systemically confounded by concomitant differences in aperiodic activity.  

We also examined the utility of spectral parameterization in a cognitive context, analyzing 

EEG data from a visual working memory task (Fig. 6). While such studies often focus on oscillatory 

activity, in particular visual cortical alpha (Tran et al., 2016), recent computational work shows the 

importance of excitation/inhibition (EI) balance in working memory maintenance (Lim & 

Goldman, 2013). Given that the aperiodic exponent partially reflects EI balance (Gao et al., 2017), 

and is systematically altered in aging (Voytek et al., 2015), we hypothesized that the aperiodic 

component would predict working memory performance. We find that, across groups, event-

related changes in the aperiodic parameters, rather than just oscillatory alpha, most consistently 

predict individual working memory performance. In contrast, delay period alpha parameters 
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tracked behavior among older, but not younger, adults. This suggests that there are categorical 

differences between groups regarding which spectral parameters track working memory 

outcomes, and that these features are easy to conflate—or miss—without explicit spectral 

parameterization, and highlights a novel finding of aperiodic activity predicting working memory 

performance in human EEG data.  

This work raises interesting possibilities for how to interpret common findings. 

Intriguingly, when examined in the time-domain, differences in the aperiodic exponent manifest 

as raw voltage differences (Fig. S1A). It may be that observed differences between conditions, 

for example in event-related spectral perturbations or evoked potentials, are partially explainable 

by, or related to, differences in aperiodic exponent. This consideration is particularly important 

when comparing between groups, given that the aperiodic exponent varies across groups, 

including aging (Voytek et al., 2015) (Fig. 5D,E) and disease (Molina et al., 2020; Robertson et 

al., 2019).  

The observation of within subject changes of the aperiodic exponent also has implications 

regarding the ubiquitous negative correlation between low frequency (<30 Hz) and high 

frequency (>40 Hz) activity (Mukamel et al., 2005), observed here in the EEG data (Fig. 5D). This 

is often interpreted as a push/pull relationship between low frequency oscillations and gamma, 

however spectral parameterization offers a different interpretation: a see-saw-like rotation of the 

spectrum at around 20-30 Hz due to a change in aperiodic activity. This results in decreased 

power in lower frequencies with a simultaneous increase in higher frequency power. Here it 

would be a mischaracterization to say that there was a task-related decrease in low frequency 

oscillations, because that need not be the feature that was truly altered; instead, the aperiodic 
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exponent changed, manifesting as the spectrum “rotating” around a specific frequency point. 

This has been observed to occur in a task-related manner in human visual cortex (Podvalny et al., 

2015).  

Across the gamma range, there can be both narrowband activity and broadband shifts 

(Bartoli et al., 2019). There may also be high variability of narrowband frequencies within 

participants such that averaging across those bands decreases detectability overall statistical 

power (Muthukumaraswamy et al., 2010). Parameterizing spectra allows for detecting 

narrowband peaks, and inferring whether narrow- and/or broadband aspects of the data are 

changing. This may also be useful for analyses such as phase-amplitude coupling (PAC), which 

have provided a powerful means for probing the potential mechanisms of neural communication 

(Canolty & Knight, 2010; de Hemptinne et al., 2015; van der Meij et al., 2012; Voytek et al., 

2015). These analyses typically rely on fixed frequency bands, which is problematic given that 

multiple-oscillator PAC exhibits different phase coupling frequencies by cortical region (van der 

Meij et al., 2012). Using spectral parameterization to characterize oscillatory components may 

allow for better identifying phase coupling modes across brain regions, task, and time, thus 

increasing the specificity and accuracy of cross-frequency coupling analyses. 

Altogether, the parameterization algorithm provides a principled method for quantifying 

the neural power spectrum, increasing analytical power by disentangling periodic and aperiodic 

components. This allows researchers to take full advantage of the rich variability present in neural 

field potential data, rather than treating that variability as noise. These spectral features reflect 

distinct properties of the data, but may also be inter-related, given the evidence that the 

aperiodic exponent and band powers can be correlated (Muthukumaraswamy & Liley, 2018; Tran 
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et al., 2020). This highlights the need for careful parameterization to adjudicate between 

individual spectral features and their relationship to cognitive, clinical, demographic, and 

physiological data. 

Though the algorithm itself is agnostic to underlying physiological generators of the 

periodic and aperiodic components, it can be leveraged to investigate theories and 

interpretations of them. For example, changes in the aperiodic exponent may relate to a shift in 

the balance of the transmembrane currents in the input region, such as a shift in EI balance (Gao 

et al., 2017). In oscillations, traditional canonical frequency band analyses commit researchers to 

the idea that those predefined bands have functional roles, rather than considering the 

underlying physiological mechanisms that generate different spectral features. Spectral 

parameterization across scales, and in combination with other measures, may allow us to better 

link macroscale electrophysiology to microscale synaptic and firing parameters (Barbieri et al., 

2014; Reimann et al., 2013), providing a better understanding of the relationship between 

microscale synaptic dynamics and different components in field potential signals, from 

microscale LFP, to mesoscale intracranial EEG, to macroscale EEG and MEG (Buzsáki et al., 

2012).  

While there are other methods for measuring periodic and aperiodic activity, none jointly 

parameterize aperiodic and periodic components. Some methods focus on identifying individual 

differences in oscillations, however, they are mostly restricted to detecting the peak frequency 

within a specific sub-band (Haegens et al., 2014). This has resulted in a broad literature looking 

at variation within canonical bands, most commonly peak alpha frequency within and across 

individuals (Haegens et al., 2014; Mierau et al., 2017). However, such approaches often assume 
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only one peak within a band, does not generalize across broad frequencies, and/or ignores 

aperiodic activity (Pascual Marqui et al., 1987), perpetuating the conflation of aperiodic and 

periodic processes. Other approaches attempt to control for the aperiodic component when 

identifying oscillations, but do not parameterize both the aperiodic and periodic features 

together. Often, these methods treat the aperiodic component as a nuisance variable (Blankertz 

et al., 2010), for example by correcting for it via spectral whitening (Groppe et al., 2013), rather 

than a feature to be explicitly modeled and parameterized. For example, an approach called 

BOSC (Better OSCillation Detector) (Hughes et al., 2012) fits a line to the PSD to determine a 

power threshold in an attempt to isolate oscillations, but does not parameterize the aperiodic 

signal. The irregular-resampling auto-spectral analysis (IRASA) method, which seeks to explicitly 

separate the periodic component through a resampling procedure (Wen & Liu, 2016), also does 

not parameterize the aperiodic signal. In developing the current algorithm, we found that linear 

spectral fits, such as used in BOSC and often applied with IRASA, do not perform as well as the 

approach presented here. Other methods, such as principal component variants, require manual 

component selection (Miller et al., 2012). Collectively, the current method addresses existing 

shortcomings by explicitly parameterizing periodic and aperiodic signals, flexibly fitting multiple 

peaks and different aperiodic functions, without requiring extensive manual tuning or 

supervision.  

There are some practical considerations to keep in mind when applying this method. The 

model, as proposed, is applicable to multiple kinds of datasets, ranging from LFP to EEG and 

MEG. Different modalities, and different frequency ranges, may require different settings for 

optimal fitting, and fits should always be evaluated for goodness-of-fit. Detailed notes and 
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instructions for applying the algorithm to different modalities, assessing model fits, and tuning 

parameters are all available in the tool’s online documentationvi. There are also caveats to 

consider when interpreting model parameters. Notably, while the presence of power above the 

aperiodic component suggests that there is an oscillation at that frequency, a spectral peak does 

not always imply that there is an oscillation at that frequency (Cole & Voytek, 2017). For example, 

sharp wave rhythms, such as the sawtooth-like waves seen in hippocampus or the sensorimotor 

mu rhythm, will manifest as narrowband power at harmonics of the fundamental frequency (Cole 

& Voytek, 2017) (Fig. S3 G-I). Similarly, the lack of an observed peak over and above the aperiodic 

component does not definitively imply the complete absence of an oscillation. There could be 

very low power oscillations, highly variable oscillatory properties, and/or rare burst events or 

within a long time series (Izhikevich et al., 2018), that do not exhibit as clear spectral peaks. To 

address these possibilities, spectral parameterization can be complemented with time-domain 

analysis approaches (Cole & Voytek, 2019). 

In conclusion, application of our algorithm shows that different physiological processes, 

including changes in the exponent or offset of the aperiodic component or periodic oscillatory 

changes, are often conflated (Caplan et al., 2015). Our approach allows for disambiguating 

distinct changes in the data by parameterizing aperiodic and periodic features, allowing for 

investigations of how these features relate to cognitive functioning in health, aging, and disease, 

as well as their underlying physiological mechanisms. The proposed algorithm is validated with 

simulated data, and its utility demonstrated on a series of data applications. Because of the 

 
vi https://fooof-tools.github.io/ 
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speed and ease of the algorithm and the interpretability of the fitted parameters, this tool opens 

avenues for the high-throughput, large-scale analyses that will be critical for data-driven 

approaches to neuroscientific research (Voytek, 2016). 
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Supplementary Figure 1.1 | False oscillatory power changes and illusory oscillations. (A) Here we took a 
real neural PSD (blue) and artificially introduced a change in the aperiodic exponent, similar to what is seen 
in healthy aging (Voytek et al., 2015). This PSD was then inverted back to the time domain (right panels). 
The exponent change manifests as amplitude differences in the time domain. This affects apparent 
narrowband power when an a priori filter is applied. This is despite the fact that the true oscillatory power 
relative to the aperiodic component is unaffected. (B) Even when no oscillation is present, such as the case 
with the white and pink (1/f) noise examples here (blue and green, respectively), narrowband filtering gives 
rise to illusory oscillations where no periodic feature exists in the actual signal, by definition.
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Supplementary Figure 1.2 | Algorithm performance on simulated data across a broader frequency range. 
(A-C) Power spectra were simulated across the frequency range (1-100 Hz), with two peaks, one in a low 
range, and one in a high range (see Methods), across five distinct noise levels (1000 spectra per noise 
level). (A) Example power spectra with simulation parameters as aperiodic [offset, knee, exponent] and 
periodic [center frequency, power, bandwidth] (B) Absolute error of algorithmically identified peak center 
frequency, separated for the low (3-35 Hz) and high range (50-90 Hz) peaks. (C) Absolute error of 
algorithmically identified aperiodic parameters, offset, knee, and exponent. Note that the error axis is log-
scaled in B,C. 
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Supplementary Figure 1.3 | Algorithm performance on simulated data that violate model assumptions (A-
C) Power spectra were simulated across a broader frequency range (1-100 Hz), with two peaks, one in a 
low range, and one in a high range across five distinct knees values (1000 spectra per knee value). These 
power spectra were fit with the model set in 'fixed' mode to evaluate how sensitive performance is to 
aperiodic mode. (A) Example power spectra with simulation parameters as aperiodic [offset, knee, 
exponent] and periodic [center frequency, power, bandwidth]. (B) Absolute error of algorithmically 
identified aperiodic exponent, across power spectra with different knee values. (C) The number of peaks 
fit by the model, across different knee values. (D-F) A distinct set of simulations were created in which 
power spectra were created with asymmetric or skewed peaks, across five distinct skew levels (1000 
spectra per skew level). (D) Example simulated spectra, with fits and parameter definitions, showing two 
different skew levels.  (E) Absolute error of algorithmically identified peak center frequency, across power 
spectra with different peak skewness values. (F) The number of peaks fit by the model, across peak 
skewness. Note that all spectra in this set have one peak. (G-I) A distinct set of simulations, in which time 
series were generated with asymmetric oscillations in the time domain, from which power spectra were 
calculated, across five distinct levels of oscillation asymmetry (1000 spectra per asymmetry value). (G) 
Example simulation of an asymmetric oscillation, simulated in the time domain, and the associated power 
spectrum. (H) Absolute error of algorithmically identified peak center frequency, across oscillation 
asymmetry values. (I) The number of peaks fit by the model, compared across oscillation asymmetry values. 
Note that the error axis is log-scaled in B,E,H. 
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Supplementary Table 1.1 | Algorithm parameters 

 

 

  

name description units default 
value

API 
accessible?

peak_width_limits Bounds on the [min, max] peak 
bandwidth. hertz [0.5, 12] Yes

max_n_peaks Maximum number of peaks to fit. integer Infinite Yes

min_peak_height Absolute minimum power threshold 
for peaks. log power 0.0 Yes

peak_threshold Relative minimum power threshold 
for peaks. std 2.0 Yes

aperiodic_mode Whether to fit the aperiodic 
component with a knee parameter.

'fixed' or 
'knee' 'fixed' Yes

_ap_percentile_thresh Power percentile to select points to 
fit aperiodic component. percentage 2.5 No

_ap_guess Seed values for aperiodic fitting. float [None, 0, 
None] No

_bw_std_edge Threshold for dropping peaks close 
to the edge. gaussian std 1.0 No

_gauss_overlap_thresh Threshold for dropping overlapping 
peaks. gaussian std 0.75 No

_cf_bound Bound on centre-frequency for 
multi-gaussian fit. gaussian std 1.5 No
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Chapter 2 

 

Frequency Band Ratios Conflate Periodic and  

Aperiodic Neural Activity 

 

Abstract 

Band ratio measures, computed as the ratio of power between two frequency bands, are 

a common analysis measure in neuro-electrophysiological recordings. Band ratio measures are 

typically interpreted as reflecting quantitative measures of periodic, or oscillatory, activity. This 

assumes that the measure reflects relative powers of distinct periodic components that are well 

captured by predefined frequency ranges. However, electrophysiological signals contain 

periodic components and a 1/f-like aperiodic component, the latter of which contributes power 

across all frequencies. Here, we investigate whether band ratio measures truly reflect oscillatory 

power differences, and/or to what extent ratios may instead reflect other periodic changes—

such as in center frequency or bandwidth—and/or aperiodic activity. In simulation, we investigate 

how band ratio measures relate to changes in multiple spectral features, and show how multiple 

periodic and aperiodic features influence band ratio measures. We validate these findings in 

human electroencephalography (EEG) data, comparing band ratio measures to 

parameterizations of power spectral features, and find that multiple disparate features influence 

ratio measures. For example, the commonly applied theta / beta ratio is most reflective of 

differences in aperiodic activity, and not oscillatory theta or beta power. Collectively, we show 

that periodic and aperiodic features can create the same observed changes in band ratio 
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measures, and that this is inconsistent with their typical interpretations as measures of periodic 

power. We conclude that band ratio measures are a non-specific measure, conflating multiple 

possible underlying spectral changes, and recommend explicit parameterization of neural power 

spectra as a more specific approach.  
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Introduction 

Frequency band ratio measures, in which a ratio of power is calculated between pre-

specified frequency bands, are a common analysis measure in cognitive and clinical 

neuroscience. For example, a consistent line of research investigates the theta / beta ratio as a 

potential biomarker for executive function, and in particular attentional processing (Angelidis et 

al., 2016; Gordon et al., 2018; Lubar, 1991; van Son et al., 2019). Other work has explored using 

ratio measures in learning and memory (Kim et al., 2016; Nokia et al., 2008; Trammell et al., 

2017),  age related changes (Clarke et al., 2001; Gasser et al., 1988; Matoušek & Petersén, 1973), 

and automated sleep scoring (Costa-Miserachs et al., 2003; Krakovská & Mezeiová, 2011; Reed 

et al., 2017).  

Band ratio measures are also common in clinical neuroscience, in studies seeking 

biomarkers for diagnosis, clinical monitoring, and potential intervention. Band ratio measures are 

commonly used in investigations of attention-deficit hyperactivity disorder (Arns et al., 2013; Loo 

& Makeig, 2012; Lubar, 1991; Snyder & Hall, 2006). Other investigations into the potential clinical 

utility of band ratio measures include anesthesia (Long et al., 1989), multiple sclerosis (Keune et 

al., 2017), cerebral ischemia (Sheorajpanday et al., 2009), and Parkinson's disease (Geraedts et 

al., 2018). Band ratio measures have also been applied in studies of mild-cognitive impairment, 

dementia, and Alzheimer’s (Bennys et al., 2001; Moretti et al., 2013; Penttilä et al., 1985), recently 

reviewed in (Cassani et al., 2018), and have also been applied in studies of autism (Wang et al., 

2016) and psychotic disorders (Howells et al., 2018).  
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Figure 2.1. Literature Analysis of Band Ratio Related Articles. A) Associations between published journal 
articles referring to band ratio measures and cognitive and clinical associations. Each cell represents the 
proportion of articles referring to a specified band ratio measure that also mentions the corresponding 
association term. B) Total counts of the number of articles mentioning each band ratio measure. 

 

Collectively, band ratio measures are used across basic, clinical, and applied 

neuroscience. This is corroborated by an automated literature search that quantified the number  

of published articles that reference band ratio measures (Figure 1), finding over 250 articles. 

Given the popularity of these measures, it is important to investigate their methodological 

properties and assumptions.  

Studies using band ratio measures typically compute power in pre-defined frequency 

bands, and then calculate a ratio measure between them. The result is then analyzed for potential 

correlations with features of interest. Such analyses typically interpret band ratio measures as  

A B
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Figure 2.2. Overview of Band Ratio Measures and Spectral Parameters. A) An example power spectrum in 
which shaded regions reflect the theta (4-8 Hz) and beta band (20-30 Hz) respectively. Band ratio measures, 
such as the theta / beta ratio are calculated by dividing the average power between these two bands. B) 
An example of a parameterized power spectrum, in which aperiodic activity is separated from measured 
periodic components. This is an example spectrum from EEG data, in which peaks in theta, alpha, and 
beta power are present.  C) Examples of simulated power spectra with and without component oscillations 
of the theta / beta ratio. Black lines indicate the simulated data, with red line reflecting the model fit, the 
dashed blue line indicating the aperiodic component of the model fit, and the green lines indicating the 
location of canonical theta and beta oscillations. Band ratio measures, though intended to measure 
periodic activity, will reflect power at the pre-determined frequencies regardless of whether there is 
evidence of periodic activity at those frequencies. 
 

reflecting periodic power, under the assumption that pre-specified frequency bands specifically 

measure oscillatory activity. 

However, a known problem with applying predefined frequency bands uniformly across 

all participants is that variation in center frequencies can lead to misestimations of band powers 

(Lansbergen et al., 2011). These potential confounds between different periodic features of the 

Band 
Ratio =

avg(low band power) 

avg(high band power)

A B

C
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data challenge the notion that band ratio measures relate specifically to periodic power (see 

Figure 3A). 

A broader issue is the implicit assumption that pre-defined frequency bands reflect only 

periodic activity, and that measuring the average power of a frequency range specifically 

captures periodic power. This assumption is in general invalid, as electrophysiological activity 

includes not only periodic components, but 1/f-like aperiodic activity (Haller et al., 2018; B. J. 

He, 2014). This 1/f-like activity, henceforth referred to as the ‘aperiodic component’, has power 

at all frequencies, meaning there will always be power in a given frequency range, but is not 

comprised solely of periodic activity (see Figure 2B).  

Therefore, power in a given frequency range, reflects, at least in part, aperiodic activity, 

and only partially, if at all, periodic activity. A marker that there is actual periodic power in a 

signal is that there should be a band specific peak over and above this aperiodic component 

(Buzsáki et al., 2013). To specifically measure this periodic component of the signal, one should 

measure the power of overlying peaks relative to the aperiodic component of the signal (Haller 

et al., 2018). Band ratio measures, as currently applied, do not address the confound of 

ubiquitous aperiodic activity in neural signals. Aperiodic neural activity is known to be variable 

both within (Podvalny et al., 2015) and between (Voytek et al., 2015) individuals, which raises the 

possibility that band ratio measures may capture and reflect differences in aperiodic activity 

within and between individuals (see Figure 3B).  
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Figure 2.3. Equivalent Band Ratio Differences from Distinct Changes. Simulations demonstrating the 
underdetermined nature of band ratio measures. In each case, the power spectrum plotted in orange has 
the same difference of measured theta / beta ratio, indicated as Δ TBR, from the reference spectrum, in 
blue. This difference in ratio can arise from changes in multiple different features of the data, including a 
shift in: A) periodic parameters such as the center frequency, power or bandwidth of oscillations, and/or 
from a shift in; B) aperiodic properties of the data, in this case the aperiodic exponent. Differences in 
aperiodic activity can induce differences in measured band ratios, even without any periodic components 
present (bottom panel). 

 

 In summary, band ratio measures are a common measure that are interpreted as 

reflecting periodic power. However, variations in periodic parameters and/or aperiodic activity, 

with or without oscillations even being present, can influence band ratio measures (Figure 2C). 

This suggests that band ratio measures are underdetermined, whereby a change in one or many 

different features of the data may drive analogous differences in band ratio measures (Figure 3). 

If so, typical interpretations of band ratio measures are unsupported, and band ratio measures 

may be uninterpretable, as there are many possible underlying causes of measured differences. 
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Methods 

In this investigation we examined whether the conception of band ratios as measures that 

specifically reflect periodic power is supported. This question is motivated by considering that 

periodic properties of electrophysiological data are highly variable, often violating the 

assumptions of predefined frequency bands, and also that they also co-exist with variable and 

dynamic aperiodic activity (Haller et al., 2018). To investigate this, we examined the properties 

and validity of band ratio measures, including, 1) how are band ratio measures influenced by 

different features of periodic activity, including center frequency, power and bandwidth, and 2) 

how are band ratio measures influenced by changes in aperiodic properties of the data, including 

the aperiodic exponent and offset. To do so, we used simulated data and an EEG dataset, and 

calculated band ratio measures, comparing these measurements to other quantifications of the 

data in order to investigate which properties of the data band ratio measures are sensitive to.  

Analyses were done using Python (version 3.7), including common libraries numpy, 

pandas, scipy, matplotlib and seaborn for analysis and visualization. The MNE library was used 

for managing and processing EEG data (Gramfort et al., 2014). Custom code was used to 

calculate band ratio measures and perform analyses. All code for this project is available in the 

project repository (https://github.com/voytekresearch/bandratios). 

2.1 Literature Analysis 

 The literature analysis was done using the ‘Literature Scanner’ (LISC) Python toolbox 

(Donoghue, 2019). Briefly, this toolbox allows for collecting and analyzing literature data by 

curating search terms of interest, gathering related articles from available databases, and 
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analyzing the results. For this analysis, a list of band ratio terms (e.g., “theta / beta ratio”) and 

related association terms (e.g., “attention”), with relevant synonyms and exclusion words, was 

manually curated. Searches were performed to determine the number of articles in the PubMed 

database that reference these terms in their abstract, and the number of co-occurrences of band 

ratio terms with association terms. Association scores were calculated as the proportion of 

articles referencing a band ratio measure that also mention one of the included association terms.  

2.2 Spectral Measures 

Band ratio measures are usually calculated from absolute power values, averaged across 

canonical frequency bands. For all analyses, canonical frequency bands were defined as: theta 

(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz). In this study, band ratios were calculated from power 

spectra by dividing mean power across the low band range by the mean power across the high 

band range. For all analyses, we calculated the theta / beta ratio, theta / alpha ratio, and alpha 

/ beta ratio. Ratio measures are often log-transformed, as they typically display a non-normal, 

skewed distribution. Where log-transformations of ratio values were used in analyses or 

visualizations, it is noted.  

As a comparison to band ratio measures, periodic (oscillatory) and aperiodic properties 

of power spectra were characterized using the fitting-oscillations-&-one-over-f (FOOOF) toolbox 

(Haller et al., 2018) for parameterizing neural power spectra. Briefly, this tool measures both the 

aperiodic component of neural power spectra, described by the exponent and offset, and 

periodic peaks, described by the center frequency (CF), power (PW) and bandwidth (BW) of 

identified peaks. Band ratio measures were compared to the outputs of these parameterizations, 

to evaluate which parameters of the data the band ratio measures are sensitive to and primarily 
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reflect. We also computed ‘parameterized ratios’ which were ratio measures computed between 

the power of identified peaks from the parameterization procedure, as a measure of the ratio of 

isolated periodic power between bands, after controlling for aperiodic activity. 

2.3 Simulations 

 Neural power spectra were simulated to match the statistics of electrophysiological 

neural data, by combining a 1/f-like aperiodic component with overlying peaks of periodic 

activity, with overlying noise (Haller et al., 2018). The aperiodic component describes the 1/f-like 

characteristic of neural power spectra and is entirely described by the aperiodic ‘exponent’ and 

‘offset.’ The aperiodic exponent, meaning the !  in !"!, describes the steepness of the 1/f, and 

the ‘offset,’ describes the vertical translation of the aperiodic component. Periodic components 

describe putative oscillations that display power above the aperiodic component. Periodic 

components are simulated as Gaussians, and are described by a ‘center frequency’ (CF) in hertz; 

peak ‘power’ (PW), over and above the aperiodic component, in arbitrary units (au); and 

‘bandwidth’ (BW) which describes the width of the peak, also measured in hertz. The simulation, 

for a power spectrum P, is described as: 

" = $ +	'(# 

in which L is the aperiodic component, described as 

$ = ) − log	(/$) 

where b is the offset and ! is the exponent. Note that in these formulations, power is in log10 

spacing. In linear power, the exponent would be written as 1//$, hence the label of one-over f.  
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Periodic components are added, whereby each peak is described as a Gaussian, as: 

(# = 1 ∗ exp	(−(/ − 6)
%	

2 ∗ 8% ) 

in which c is the peak center frequency, and a and w are the height and width of the gaussian, 

equivalent to the power and bandwidth of the peak. For both the aperiodic and periodic 

components, / is the array of frequencies of the power spectrum.  

Spectra were simulated for the frequency range of 1-35 Hz, with 0.5 Hz frequency 

resolution. Default aperiodic and periodic parameter values were chosen to capture 

physiologically realistic values. These default values, as well as the ranges that parameters were 

simulated across for each parameter, for each frequency band, are given in tables 1 & 2. A small 

amount of normally distributed noise (0.005 au) was added per frequency to all spectra. 

 To measure how spectral parameters relate to band ratio measures, spectra were 

simulated where a single parameter was varied across a range while the remaining parameters 

were kept at their default values. From these spectra the theta / beta, theta / alpha and alpha / 

beta ratio measures were calculated to track how individual parameters relate to ratio measures. 

Since CF, PW, and BW are specific to a peak, they were individually varied for both low-band 

and high-band peaks.  

We then studied how band ratio measures are affected by interacting changes in spectral 

parameters. Simulated power spectra were created where two parameters from the set {CF, PW, 

BW, EXP} were simultaneously varied across their respective ranges. All combinations of paired 

parameter simulations were calculated, and then analyzed by calculating band ratio measures 

and examining which how simulated properties influence measured values. The default 
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parameter settings and ranges remained the same as the single parameter simulations (as in 

Tables 1 & 2). 

 

 
Table 2.1 Simulated Periodic Parameters Each parameter is given a default value, used when this 
parameter is included but not varied, and a range and increment, which define the range of simulated 
values when this parameter is systematically varied.  
 

 
 
Table 2.2 Simulated Aperiodic Parameters Same description as Table 1, for the aperiodic parameters 
 

 
 
 

 

 

Theta Alpha Beta

CF

Default 6 10 21.5

Range 4 - 8 8 - 13 13 - 30

Increment 0.25 0.25 1

PW

Default 0.5 0.5 0.5

Range 0 - 1.0 0 - 1.0 0 - 1.0

Increment 0.1 0.1 0.1

BW

Default 0.1 0.1 0.1

Range 0.2 - 0.4 0.2 - 0.4 0.2 - 0.4

Increment 0.2 0.2 0.2

Default Range Increment
Offset 0 0 - 2.5 0.25

Exponent 1 0 - 3 0.2
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2.4 EEG Data Analysis 

 To further examine how various spectral parameters affect band ratio measures, in real 

data, we used the openly available ‘Multimodal Resource for Studying Information Processing in 

the Developing Brain’, or MIPDB, dataset of human EEG data released by the Child Mind 

Institute (Langer et al., 2017). The study population is a community sample of children and adults 

(n = 126, age range = 6-44, age mean = 15.79, age standard deviation = 8.03, number of males 

= 69). Data for each subject includes resting state and task EEG data, behavioral measures, and 

eye tracking data. EEG data was collected on a 128 channel Geodesic Hydrocel system, from 

which the outermost channels, around the chin and neck, were excluded, leaving a standard 111 

channel setup. For the current investigation, we analyzed eyes-closed resting state data. Of the 

126 participants in the dataset, 9 did not include resting state data collection, as indicated by 

the dataset description, and were therefore excluded. In addition, a further 6 participants were 

excluded from this analysis due to missing the resting state recording file (1 subject) or not having 

enough resting data events to analyze (5 participants) leaving 111 participants included in the 

final analysis.  

 In the resting state protocol, participants were instructed to fixate on a central cross, and 

open or close their eyes when they heard a beep, alternating between 20 second blocks of eyes 

open and 40 second blocks of eyes closed. The dataset includes a pre-processed and artifact 

corrected copy of the data, which was used here, with full details of the pre-processing described 

in (Langer et al., 2017). Briefly, bad electrodes were identified and interpolated, eye artifacts 

were regressed out of the EEG from EOG electrodes, and a PCA approach was used to remove 
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sparse noise from the data. We further identified flat channels (channels with no data) and 

interpolated them, and re-referenced data to a common average reference. 

 For the current analyses, we used the eyes closed resting state data, and extracted the 

time period of 5 – 35 seconds within the 40 second eyes closed resting segments, excluding the 

5 seconds post and prior to eye opening. We used the first block for each participant for analysis. 

Power spectra were calculated for each channel using Welch’s method, using 2 second windows 

with 25% overlap. 

  We then parameterized the calculated power spectra to return estimates of periodic and 

aperiodic parameters. The model parameterization we used is agnostic to frequency bands, 

fitting peaks wherever they’re found in the frequency spectrum regardless of canonical band 

definitions (Haller et al., 2018). We determined that activity was contained in a band if the peak 

of an oscillation was contained in the aforementioned band definitions. Settings for 

parameterizing power spectra are as follows: the width for a detected peak was bound between 

1 - 8 Hz, with a maximum number of detectable peaks set at 8, a minimum threshold for detecting 

a peak set at 0.1 au, the threshold for detecting was set at the default value of 2 standard 

deviations above the noise floor, and spectra were fit in ‘fixed’ aperiodic mode, without a knee. 

Parameterizations were evaluated for quality, including manual checks, and using goodness-of-

fit metrics, including the r-squared between spectrum models and original data, which had mean 

value of 0.9732, indicating good fits. 

 



  

   84 

 

Figure 2.4. Single Parameter Simulations. Simulations of changes in measured theta / beta ratio as 
individual parameters are varied, including: A) periodic parameters and B) aperiodic parameters. Changes 
in theta center frequency show an increase in theta / beta ratio as the heightened activity is better captured 
in the canonical band, then decreases as activity leaves the band. Increasing theta power and bandwidth 
both increase theta / beta ratio while increasing beta power and bandwidth decreases theta / beta ratio. 
The center frequency and bandwidth of alpha peaks also influences measured theta / beta ratio, even 
though alpha is not supposed to be included in the measure. Beta parameters essentially have the inverse 
effect of changes in theta parameters. Changes in aperiodic exponent also substantially impact measured 
theta / beta ratio, though offset has no effect. Note that the layout of this figure corresponds to Figure 3, 
in which examples of how each parameter influences measured theta / beta ratio can be seen. 
 

 

2.5 Statistical Analyses 

 For all band ratio measures, we calculated Spearman correlations between spectral 

parameters, including center frequency, power and bandwidth of each oscillation band, as well 

as the aperiodic exponent, across all channels. We do not report correlations to aperiodic offset, 

as offset shifts by themselves do not affect ratio measures (see simulation results). In addition, 
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we calculated Spearman correlations between each ratio measure and participants’ ages, and 

between spectral parameters and age.  

For all computed correlations, we applied bootstrapping approaches to compute 

confidence intervals for each reported measure and, where appropriate, to test the difference 

between correlation magnitudes (Wilcox, 2016). Confidence intervals were computed by 

resampling, with replacement, and computing correlations for each resample, which creates a 

distribution from which confidence intervals can be computed. For all bootstraps, 5000 

resamples were used, and 95% confidence intervals were computed. In addition, differences 

between correlations were using bootstrapping. To do so, differences of correlations were 

computed on resamples, creating a distribution of bootstrapped differences of correlations, 

which can be used to test if the measured difference is significantly different from zero. The 

distribution of difference measures was used to compute an empirical p-value, testing a two-

sided comparison of if the measured value is significantly different from zero.  
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Figure 2.5. Interacting Parameter Simulations. Measured theta / beta ratio values in simulations as two 
spectral parameters are varied together. Ratio measures are plotted in log10 space due to their skewed 
distributions. Combinations plotted are aperiodic exponent with low band center frequency (A), as well as 
with low band power (B) and high band power (C). All combinations of varying parameters influence 
measured band ratio values. 
 

Results 

3.1 Simulation Results 

 We started by investigating, in simulation, the extent to which band ratios capture 

periodic power as typically interpreted, and/or to what extent they are potentially related to 

other periodic or aperiodic spectral parameters. Measured theta / beta ratios across simulations  

in which one spectral parameter was changed at a time, are reported in Figure 4. As expected, 

when examining periodic changes (Figure 4A) the theta / beta ratio is strongly driven by power 

of theta and beta oscillations. However, ratio measures can also be influenced by the center 

frequency and bandwidth of the theta and beta peaks. We also replicate previous work showing  

that the center frequency of the alpha peak can impact measures of theta / beta ratio, 

(Lansbergen et al., 2011), and extend this to include alpha bandwidth. For aperiodic changes 

(Figure 4B), we see that the aperiodic exponent has a significant effect on measured ratio values, 

but that the offset has no effect. 

A B C
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Collectively, we see that a wide range of different parameter changes can affect 

measured ratios. In this case, 8 of the 10 parameters alter theta / beta band ratio, with the only 

exceptions being the aperiodic offset, which changes power equally between ratio bands, and 

power in the non-included band, in this case alpha (for the theta / beta ratio). Of note, however, 

is that the scale of these effects can be quite different, with the power of the included bands and 

the aperiodic exponent having the biggest impacts. Simulations for other band ratio measures 

are consistent with those for the theta / beta ratio, and are available in the project repository.  

 We further explored simulations of pairwise combinations of parameter changes, to 

investigate how ratio measures are affected by concomitant changes in multiple parameters 

(Figure 5). These simulations include, for example, measured theta / beta band ratios as the 

aperiodic exponent and theta center frequency both vary, showing an interaction between them 

(Figure 5A). We can see how changes in aperiodic exponent interact with power changes in the 

lower (Figure 5B) and higher (Figure 5C) bands. These simulations also demonstrate that both 

features have an impact on measured ratios, and allow a comparison of scale, showing, for 

example, that although the influence of low band power and aperiodic exponent is of a similar 

magnitude, when compared to high band power, the effect of aperiodic exponent changes is 

relatively much larger. Collectively, through these simulations, we see that changes in different 

spectral parameters can interact and drive different patterns of differences in measured band 

ratios. Further simulations of interacting parameters across all other combinations are available 

in the project repository.  
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3.2 EEG Data Results 

 We next analyzed EEG data recorded during resting state, and compared band ratio 

measures to parameterized power spectral features. For all correlations here, we report results 

across all channels. Re-running these analyses with channel groups, using frontal, central, and 

parietal sub-selections all showed qualitatively similar patterns, the results of which are available 

in the project repository.  

For the theta / beta ratio, within periodic spectral parameters we find, as expected, that 

the strongest relationship is between theta / beta ratio and theta power (r = 0.34, CI95: [0.15, 

0.52], p < 0.001) with a similar magnitude correlation with beta power (r = -0.28, CI95: [-0.46, -

0.09], p < 0.01). When ignoring direction (taking the absolute value of the correlations), the 

magnitude of the correlations between theta / beta ratio and theta and beta power is not 

significantly different (Δr  = 0.06, CI95: [-0.25, 0.36], p = 0.69). When considering aperiodic 

parameters, we find a much stronger relationship between theta / beta ratio and aperiodic 

exponent (r = 0.77, CI95: [0.66, 0.84] p < 10-20). This correlation is of a significantly higher 

magnitude ( ignoring direction) than the correlation to theta power (Δr  = 0.42, CI95: [0.22, 0.62],  

p < 10-35) or beta power (Δr  = 0.48, CI95: [0.26, 0.70], p < 10-35). The full set of spectral parameter 

correlations is available in Figure 6A.  
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Figure 2.6. Correlations between Spectral Parameters and Band Ratio Measures in EEG Data. In a large 
EEG dataset, correlation results are reported for band ratios as compared to the periodic (left) and 
aperiodic (right) parameters for the (A) theta / beta ratio, (B) theta / alpha ratio and (C) alpha / beta ratio. 
In (A), these results show that the theta / beta ratio is most strongly correlated with the aperiodic exponent, 
and less related to power in the theta or beta. In contrast, (B) and (C) show that any ratio measure that 
includes an alpha band is most strongly correlated to alpha power, meaning any alpha ratio is mostly 
reflecting just alpha power. 
 

 In contrast, for the theta / alpha ratio, the highest correlation across both periodic and 

aperiodic spectral parameters was for alpha power (r = -0.89, CI95: [-0.93, -0.84], p < 10-35), with 

a much lower correlation to aperiodic exponent (r = 0.26, CI95: [0.09, 0.42], p < 0.01), with a 

significant difference of correlation magnitude between the two (Δr  = 0.63, CI95: [0.45, 0.82], p 
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< 10-35). This pattern of correlations was also similar for the alpha / beta ratio, with a strong 

correlation with alpha (r = 0.87, CI95: [0.79, 0.92], p < 10-30), and a much weaker one with aperiodic 

exponent (r = 0.32, CI95: [0.14, 0.49], p < 0.001), again reflecting a significant difference in 

correlation magnitude (Δr  = 0.54, CI95: [0.35, 0.73], p < 10-35). Spectral parameter correlations 

for the theta / alpha ratio and alpha / beta ratio are available in Figure 6B & 6C respectively.  

 We also calculated average ratio measures and spectral parameters for each channel, 

across the group. Topographies of these measures are plotted in Figure 7. Here we can see, for 

example, that the spatial topography of the theta / beta ratio is most similar to that of the 

aperiodic exponent, with a strong spatial correlation (r = 0.77, CI95: [0.66, 0.84], p < 10-20) 

between them. Notably, the magnitude of the correlation of theta / beta ratio to theta power (r 

= 0.52, CI95: [0.38, 0.64], p < 0.001) and beta power (r = 0.32, CI95: [0.15, 0.48], p < 0.001) are 

both significantly less than the correlation of theta / beta ratio to aperiodic exponent (theta 

power vs. exponent: Δr  = -0.24, CI95: [-0.39, -0.11], p < 0.01; beta power vs exponent: Δr  = -

0.44, CI95: [-0.56, -0.33], p < p < 10-35).  

The topography of alpha / beta ratio is nearly identical to the topography of alpha power 

(r = 0.98, CI95: [0.95, 0.98], p < 10-70). Similarly, there is a strong inverse relation between the 

theta / alpha ratio and alpha power (r = -0.92, CI95: [-0.95, -0.87], p < 10-45). In these cases, the 

correlation of theta / alpha ratio to alpha power was significantly greater than to aperiodic 

exponent (Δr  = -0.19 , CI95:[-0.28, -0.11], p < p < 10-35), and the correlation between alpha / beta 

ratio and alpha power was also significantly greater than to aperiodic exponent (Δr  = 0.11, CI95: 

[0.07, 0.17], p < p < 10-35). 
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Figure 2.7. Topographies of Band Ratio Measures and Spectral Parameters. Topographical maps of the A) 
ratios measures, including the theta / beta ratio, theta / alpha ratio and alpha / beta ratio. For comparison, 
the topography of the aperiodic exponent (B) and of alpha power (D) are also presented. Each topography 
is scaled to relative range of the data, with higher values plotted in lighter colors (yellow). C) The spatial 
correlation between topographies of each ratio measure to spectral parameters including power of theta, 
alpha and beta, and the aperiodic exponent (EXP). 

 

We also calculated how each measure correlated with age. The theta / beta ratio was 

found to be highly correlated with age (r = -0.67, CI95: [-0.76, -0.54], p < 10-15), with the negative 

correlation indicating that older adults have higher theta / beta ratios. The theta / alpha ratio 

also had a significant correlation with age (r = -0.37, CI95: [-0.51, -0.20], p = 0.0001), but the alpha 

/ beta ratio was not significantly correlated with age (r = -0.12, CI95: [-0.30, 0.08], p = 0.22). For 

spectral parameters, the aperiodic exponent was found to be highly correlated with age (r = 

0.68, CI95: [-0.77, -0.57], p < 10-15), consistent with previous reports (W. He et al., 2019; Voytek 
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et al., 2015). There was not a significant difference in the magnitude of the correlation of theta / 

beta ratio and age, and that of the aperiodic exponent and age (Δr  = 0.01, CI95: [-0.01, 0.0], p 

= 0.18).  

We also calculated correlations between parameterized ratios (ratios computed on 

isolated periodic power) and age. We found that the parameterized theta / beta ratio (r = -0.12, 

CI95: [-0.29, 0.05], p = 0.21), parameterized theta / alpha ratio (r = -0.13, CI95: [-0.31, 0.05], p = 

0.18), and parameterized alpha / beta ratio (r = -0.08, CI95: [-0.28, 0.11], p = 0.38) were all non-

significantly correlated with age. This is consistent with correlations between band ratio measures 

and age being driven by the influence of aperiodic activity, since no relation is found with isolated 

periodic power. 
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Discussion 

4.1 Methodological Discussion Points 

 Through investigations of both simulated and real data, we find that frequency band ratio 

measures, though typically applied and interpreted as reflecting the relative periodic power of 

distinct frequency bands, can actually reflect a large number of distinct changes in the underlying 

data. These band ratio measures therefore capture multiple different changes in periodic and 

aperiodic properties. Part of this stems from the use of predefined frequency bands of interest, 

as has been previously reported (Lansbergen et al., 2011; Saad et al., 2018). Here, we replicate 

and extend this finding, showing how center frequency, and also oscillatory bandwidth, can 

influence band ratio measures in ways that can be misinterpreted as reflecting power differences. 

In addition, we show how frequency band ratio measures may commonly capture, at least 

partially, aperiodic components of electrophysiological data.  

 Specifically, we used a parameterization model conceiving of the power spectrum as the 

combination of an aperiodic, 1/f-like spectrum, characterized by an offset and exponent, with 

overlying periodic 'peaks', each characterized by a center frequency, power (over and above the 

aperiodic component) and bandwidth measure. With this approach, we show many of these 

parameters can affect band ratio measures in simulation. When applied to real data, we find that 

different parameters do affect ratio measures, with different patterns for different ratio measures. 

For example, theta / beta ratio measures mostly reflect aperiodic exponent, whereas theta / 

alpha and alpha / beta ratios mostly reflect alpha power. In no ratio measures did we find 

evidence that the measure primarily reflects power within both specified bands. 
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 Given the underdetermined nature of band ratio measures in the face of multiple features 

of the data that may be changing, we conclude that band ratio measures are not an appropriate 

measure for characterizing electrophysiological data, at least not in isolation. This is because they 

are uninterpretable in terms of knowing which component(s) of the data they actually reflect. We 

therefore recommend complementary or alternate approaches, such as parameterizing neural 

power spectra (Haller et al., 2018).  Such approaches allow for specifically measuring periodic 

and aperiodic components and therefore a more precise quantification and identification of 

which features of the data vary within and between individuals. 

 A prior recommendation, that attempts to address center frequency differences 

(Lansbergen et al., 2011), is that band ratio measures should use individualized frequency bands 

(Saad et al., 2018). It should be noted that the recommended approach, originally proposed by 

(Klimesch, 1999), is to use individualized bands based on an alpha band anchor point, whereby 

theta and beta can be defined as below and above the observed alpha peak. Though this 

addresses some issues with varying alpha center frequency, it does not specifically establish if 

there is a defined theta or beta peak, over and above aperiodic power, nor does it identify 

specific center frequencies should such periodic activity be present. Because this approach also 

does not separate aperiodic from periodic power, individualized peak detection, especially when 

anchored to alpha peaks, is insufficient to address the problems highlighted here.  

 It has previously been reported that ratio measures are stable and have high test-retest 

reliability within individuals (Angelidis et al., 2016; Monastra et al., 2001; Ohlund, 2000). This is 

not necessarily in conflict with the finding here that band ratio measures may reflect many distinct 

features of the data; stable test-retest reliability merely suggests that whichever feature(s) are 
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captured by band ratios within a given subject are themselves stable. However, that band ratios 

across individuals, and in particular across different populations, may reflect different properties 

of the data may well help explain why there has been difficulty in reproducing several findings 

using band ratios. For example, recent failures to replicate band ratio measures include follow 

ups on previously reported relations with trait anxiety (van Son et al., 2018) or attentional control 

(van Son et al., 2019). In clinical work, there have been inconsistent findings relating the theta / 

beta ratio to ADHD (Liechti et al., 2013; Ogrim et al., 2012). It is possible that when investigating 

varying populations, different features of the data may be driving different observed ratio 

measures, and this may relate to the significant variance of band ratio measures and their 

correlates found across studies.  

4.2 Interpretation Related Discussion Points 

Band ratio measures are often conceptualized as capturing the proportion of a 'slower' 

frequency band relative to some 'faster' one, and are often interpreted as a relative 'slowing' of 

neural activity (eg: Monastra, Lubar, & Linden, 2001; Poza, Hornero, Abásolo, Fernández, & 

Mayo, 2008) or as a shift of power from one band to another (eg: Gasser, Verleger, Bächer, & 

Sroka, 1988). Other interpretations focus on interpreting and investigating ratio measures in 

terms of changes within the component bands, for example interpreting a decrease in theta / 

beta ratio as changes in the theta or beta band (eg: Clarke et al., 2013), which conceptualizes 

one or more distinct changes in periodic bands. All of these conceptualizations consider that 

band ratios reflect periodic power.  

In this work, we challenge the notion that ratio measures can be assumed to reflect 

periodic changes. While they can, and sometimes do, reflect changes in periodic power, they 
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also reflect other parameters, and are often highly influenced by aperiodic activity. This is 

consistent with observations that helped motivate the use band ratio measures, for instance of 

correlated changes across frequency bands (Lubar, 1991). These observed correlated changes 

across frequency bands can be explained parsimoniously as a change in aperiodic activity. 

Changes in aperiodic exponent influences power across all frequencies and therefore induces 

correlations between any two measured frequency regions. This notion is somewhat consistent 

with the interpretations of ratios reflecting ‘substitutions’ of power between bands (Gasser et al., 

1988), in the sense that one process explains the changes across different frequency regions – 

though the conception that this is a shift of periodic activity is inconsistent with our findings.  

 These findings cast doubt on prior reports that use band ratio measures and interpret 

them as primarily reflecting periodic power. Where such studies are reproducible, 

recontextualization of such findings should consider multiple possible interpretations, including, 

for example that, a) there is a true change in the power ratio of activity between distinct 

frequency bands reflecting periodic activity, b) there is a difference in periodic parameters other 

than power, such as in center frequency and/or bandwidth, c) there are differences in aperiodic 

activity, or, d) some combination of the above. Based on data analyzed, the theta / beta ratio is 

most likely to reflect aperiodic activity, whereas the theta / alpha and alpha / beta ratios are most 

likely to primarily reflect alpha power. That said, ratio measures could vary across studies in what 

they reflect, and/or reflect interactions between parameters. Re-evaluations of prior work and/or 

follow up investigations should seek to re-evaluate such data to investigate which features, in 

each case, are driving the measured changes in band ratios, and update interpretations 

accordingly.  
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In this investigation we replicated the consistently reported finding that band ratio 

measures vary systematically with age (Angelidis et al., 2016; Bresnahan et al., 1999; Buyck & 

Wiersema, 2014; Clarke et al., 2001; Gasser et al., 1988; Monastra et al., 2001; Ogrim et al., 

2012; Putman et al., 2010). We also replicate that aperiodic activity varies systematically with age 

(W. He et al., 2019; Voytek et al., 2015). The EEG dataset analyzed here consists of young 

participants, and the pattern of findings is also consistent with recent work showing that changes 

in aperiodic activity across age better explain developmental patterns compared to prior reports 

of correlated changes across multiple distinct oscillation bands (W. He et al., 2019). Since band 

ratio measures are highly correlated with aperiodic activity (especially the theta / beta ratio), the 

relation of band ratios to age could be explained as a consequence of band ratio measures 

reflecting aperiodic activity. This interpretation is supported by the finding that parameterized 

ratios, using the isolated periodic power, do not correlate with age. The noted relation of band 

ratios to age is therefore likely to be a confound of aperiodic activity.  

Overall, the EEG data analyzed here suggests that ratio measures, and the theta / beta 

ratio in particular, often largely reflects aperiodic activity. As well as the relationship of aperiodic 

activity and band ratio measures to age, this is also consistent with other reports that find that 

correlates of band ratio measures may relate to aperiodic activity. For example, when band ratios 

are used in sleep scoring, it is typically done with the delta / theta ratio, which we predict likely 

also captures aperiodic changes. This would be consistent with recent reports that aperiodic 

activity changes systematically with sleep (Lendner et al., 2020). Collectively, these shared 

correlates are consistent with the suggestion that band ratio measures likely often reflect 

aperiodic activity. 
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 A key prediction, if ratio measures often reflect aperiodic properties, is that the reported 

findings will not be specific to the frequency ranges used to measure the ratios, as aperiodic 

effects should exist across all frequencies. Indeed, correlated change across frequency bands is 

one of the observations that led to the popularity of band ratio measures (Lubar, 1991). It has 

also been reported that distinct ratio measures across different frequency bands show similar 

patterns, for example that both delta / beta and theta / beta ratios relate to cognitive correlates 

(Schutter & Van Honk, 2005; Tortella-Feliu et al., 2014), both theta / alpha and theta / beta have 

been reported to relate to ADHD (Barry et al., 2003), and multiple different ratios show similar 

patterns in investigations of Alzheimer’s disease (Poza et al., 2008). In cases such as these, in 

which different band ratio measures show approximately similar trends across a wide array of 

band pairs, a plausible interpretation is that these findings do not reflect correlated changes 

across multiple distinct frequency bands, but rather that they are all capturing frequency-agnostic 

aperiodic shifts. 

Band ratio measures are also used as target for manipulation in neurofeedback 

paradigms. In such designs, findings are also consistent with the possibility that targeting ratios 

at least partially manipulates aperiodic properties, rather than targeting oscillation bands 

specifically. For example, a recent report showed that targeting beta in a feedback design also 

induces power changes in the alpha band (Jurewicz et al., 2018), which challenges the possibility 

of targeting different bands independently. Where investigations probe the specificity of 

neurofeedback protocols, non-specific effects have been reported, such as an effect on beta 

from a theta / alpha protocol (Egner et al., 2004), and changes in alpha when using a theta / beta 
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protocol (Bazanova et al., 2018; Limin Yang et al., 2015), all of which is consistent with ratios 

reflecting aperiodic activity. 

 If a considerable proportion of the variance of band ratios measures is due to aperiodic 

properties, and not well described or interpreted as band specific changes, then it becomes an 

open question to ask what the physiological interpretation should be, and therefore how these 

findings should be interpreted. One hypothesis is that the aperiodic properties of neural time 

series may relate the relative balance of excitatory and inhibitory activity (Gao et al., 2017). 

Though further work is required to explore this hypothesis and how it relates to measurements 

done with band ratios, this does suggest a potential link between what has been measured in 

band ratios, as a correlate of various cognitive markers and disease states, and potential 

interpretations related to excitation and inhibition. A more general review of aperiodic properties 

in neural data, sometimes referred to 'scale-free' activity, is available in (B. J. He, 2014).  

In the case of ADHD, the theta / beta ratio has been a focus of much research (see reviews 

in Arns, Conners, & Kraemer, 2013 & Snyder & Hall, 2006), including being investigated as a 

potential diagnostic marker (Snyder et al., 2015). Findings have been inconsistent, with a 

reported lack of reliability across studies (Arns et al., 2013), and a practice advisory against using 

the theta / beta ratio as a diagnostic marker for ADHD (Gloss et al., 2016). These inconsistent 

findings could potentially be explained by our findings, with the prediction that the theta / beta 

measure is non-specific and inconsistent in how it is capturing different features of the data across 

subjects and studies, and that it is overall likely to be highly influenced by aperiodic activity. 

Indeed, it has recently been reported in a population of ADHD subjects that aperiodic properties 



  

   100 

are correlated with theta / beta ratio measures, and that aperiodic measures better relate to 

disease state and medication status than any ratio measures (Robertson et al., 2019).  

We therefore recommend that particular attention should be paid to ratio measures 

applied in clinical applications, in which the pursuit of biomarkers based on non-specific and 

unreliable measures could hinder, rather than ameliorate, clinical practice. For other clinical 

disorders that have been investigated with band ratio measures, such as Alzheimer’s disease 

(Cassani et al., 2018), or psychotic disorders (Howells et al., 2018), investigations should follow 

up on which underlying features best explain changes in ratio measures, and update 

interpretations and future work on biomarkers accordingly.  

A notable exception, as we found in analyzed EEG data, to ratio measures reflecting 

aperiodic shifts is in cases in which ratio measures include the alpha band. When the alpha band 

is included in the ratio, band ratio measures tend to primarily reflect alpha power. This is likely 

due to the prominence of the alpha band, where alpha is typically present across participants, 

has very high power, and is dynamic. Thus, it is logical that ratio measures that include the alpha 

band largely reflect alpha dynamics, as we observed here. This effect may also be exaggerated 

in our analysis, as we are analyzing eyes closed data, in which alpha power is most prominent, 

though the pattern of results is consistent when re-computed on eyes open data. Investigations 

in which ratio measures such as delta / alpha or theta / alpha are used should investigate to what 

extent the dominant effect they are capturing is alpha dynamics. Overall, we recommend that 

reports from studies using band ratios including alpha should consider if the findings are likely 

to be largely explained by alpha dynamics.  
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Conclusion 

 Frequency band ratio measures are a common analysis approach applied to neural field 

data, including EEG, MEG, ECoG and LFP. Band ratio approaches have been applied across 

many domains, including in basic research investigating executive functions, learning and 

memory, and sleep; in clinical investigations including investigating ADHD and dementia; and in 

applied work leveraging them for neurofeedback applications. Though typically interpreted as a 

normalized measure reflecting the relative power of distinct periodic components, here we show 

that band ratio measures can reflect not only multiple features of periodic neural activity, 

including the center frequency, power and bandwidth of periodic components, but can also be 

driven by variations in aperiodic activity. This is demonstrated both in simulation and in the 

analysis of a large EEG dataset, in which we show how multiple spectral features relate to 

measured band ratios, making them an imprecise metric. For example, the most dominant 

contributor to the theta / beta ratio is the aperiodic exponent, whereas the theta / alpha and 

alpha / beta ratio predominantly reflect alpha power. Overall, band ratio measures are found to 

be underdetermined, and so across participants, recording modalities, species, and contexts 

may reflect different components of the signal. This makes comparisons with band ratio measures 

difficult, if not impossible, and questions their typical interpretations as reflecting periodic 

activity. As an alternative, we recommend that parameterization of neural power spectra is able 

to better capture which components of neural signals vary and relate to features of interest, 

without conflating changes in periodic and aperiodic activity, as band ratio measures do. 
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Chapter 3 

 

Variability of Periodic and Aperiodic Electrophysiological Activity 

across the Human Cortex 

 

Abstract 

 Electrophysiological activity displays both periodic (oscillatory) and aperiodic (1/f-like) 

activity. Both of these components have been implicated in healthy brain functioning and disease 

states, and display significant variation both within and between subjects. However, there are 

some limitations to prior work investigating the variability of periodic and aperiodic neural 

activity, including that i) many common analyses approaches do not explicitly separate periodic 

and aperiodic activity, and thus potentially conflate these two distinct components ii) periodic 

activity is typically examined using pre-defined frequency bands that may not accurately reflect 

oscillation occurrence and frequency variation, which limits precise quantification and 

comparison and iii) concomitant variability in aperiodic neural activity is rarely considered and 

analyzed. In this work, we apply a novel parameterization approach that addresses these 

limitations by characterizing periodic and aperiodic activity from neural power spectra. We apply 

this approach across several EEG and MEG datasets, and report on patterns of within and 

between subject variability, noting, for example: i) between subject variability in the occurrence, 

center frequency, aperiodic-adjusted power and bandwidth variation of neural oscillations, ii) 

within subject topographical variation of periodic activity, and dynamics between state, iii) 



 109 

between subject patterns of variability of aperiodic activity, and iv) within subject variability of 

aperiodic activity, whereby aperiodic activity varies systematically across the cortex as well as 

between task and rest states. These analyses present a detailed overview of within and between 

subject variation in neural field data, much of which may be missed by common analysis 

approaches, and demonstrates the utility of applying spectral parameterization to large datasets.  
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Introduction 

 Electro-magnetic neural field recordings, reflecting aggregate activity across large 

populations of neurons, are commonly recorded in neuroscientific investigations of human brain 

activity, such is as recorded by magnetoencephalography (MEG) or electroencephalography 

(EEG). Such data contains both periodic activity, which are rhythmic patterns of aggregate 

synaptic activity across groups of neurons (Buzsáki et al., 2012; Wang, 2010), and aperiodic 

activity that has no characteristic periodicity, contributing power across all frequencies (Haller et 

al., 2018; B. J. He, 2014).  

Aperiodic activity in neural field data is often termed 1/f or 1/f-like activity, as it follows a 

1/f! distribution in the frequency domain.  Aperiodic activity is known to be variable within and 

between subjects, for example, relating to age between subjects (W. He et al., 2019; Voytek & 

Knight, 2015), and task performance within subjects (Podvalny et al., 2015). The provenance and 

putative functional roles of aperiodic activity are active areas of investigation, and it has been 

proposed that aspects of aperiodic activity potentially relate to the excitation / inhibition (EI) 

balance in neural circuits (Gao et al., 2017), and to timescales of neural processing (Gao et al., 

2020).  

Despite its ubiquity and potential interpretations, relatively little work has explored the 

properties and variability of aperiodic neural activity. Some early investigations started by 

mapping 1/f properties across the cortex (Freeman et al., 2003; Pritchard, 1992), including in 

newborn babies (Fransson et al., 2013), as well as comparing across species (Freeman & Zhai, 

2009). Though recent work has increasingly started to investigate aperiodic neural activity as a 
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potentially interesting feature of investigation, there is still a relative lack of work exploring intra- 

and inter-individual variation of such activity. One recent investigation of individual variability 

found that it varies between subjects to the extent that individuals can be identified based on 

patterns of aperiodic activity (Demuru & Fraschini, 2020). 

In comparison to aperiodic activity, periodic activity, or neural oscillations, have been 

much more heavily studied. Periodic activity is a ubiquitous feature of neural field data, and has 

been proposed to play important roles in neural computation and  cognition (Buzsáki & Draguhn, 

2004). Disruptions of periodic activity are implicated across numerous psychiatric and 

neurological disorders (Voytek & Knight, 2015). Functional interpretations of periodic activity 

typically consider that oscillations may be involved in functional organization, organizing 

information through time (VanRullen, 2016), and/or between regions (Fries, 2005; Varela et al., 

2001).  

Periodic neural activity is typically conceptualized and analyzed in terms of distinct 

frequency bands. These bands are typically described as delta (0.5 - 4 Hz), theta (4 - 8 Hz), alpha 

(8 - 13 Hz), beta (13 - 30 Hz), low gamma (30 - 80 Hz) and high gamma (80 - 150), though band 

definitions often vary. Prior work has examined patterns and topographies of these bands across 

the cortex, including in MEG (Cox et al., 2018; Demirtas et al., 2018; Niso et al., 2016a), and 

ECoG (Frauscher et al., 2018a). Such work has shown group level patterns of cortical activity – 

for example, that theta activity is typically most prominent in the frontal lobe, beta is focused in 

central sensorimotor regions, and alpha dominates in the occipital cortex.  

 Between subject variability of periodic activity can occur across distinct features, such as 

in their power, frequency, and spatial distribution. Patterns of oscillatory power have been 
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reported to vary systematically with age (Hashemi et al., 2016), including in ways that predict 

cognitive performance (Vlahou et al., 2014). Another common feature of investigation is the peak 

frequency, in particular of alpha, which also varies with age (Lindsley, 1938), and is considered 

to be a stable neurophysiological trait (Grandy et al., 2013). Variations of peak frequency relate 

to behavioral reaction times (Surwillo, 1961)  and cognitive task demands (Haegens et al., 2014).   

In terms of individual variability, it has been noted that individuals have identifiable 

‘oscillatory signatures’ (Näpflin et al., 2007). Using EEG data, participants can be identified from 

their power spectra, in particular based on alpha activity (Del Pozo-Banos et al., 2014). These 

individual differences are robust and consistent, showing stability, including across sessions, in 

both MEG (Martín-Buro et al., 2016), and EEG (Fingelkurts et al., 2006). Oscillation measures also 

show high test-retest reliability in task scenarios, including movement related beta activity 

(Espenhahn et al., 2017), auditory related steady state oscillations (Tan et al., 2015), and working 

memory and vigilance tasks (McEvoy et al., 2000). 

 Altogether, a large body of work supports that there exists robust, consistent, and 

behaviorally significant variability of periodic activity, both within and between subjects. This 

activity co-exists with aperiodic activity, that itself also exhibits significant variability. Despite 

these findings, a large amount of work on neural field data often ignores this variability, by 

analyzing group level and averaged measures. Even work that does consider between subject 

variability, often still ignores within subject variation. For example, many investigations and 

analyses implicitly presume within subject stability of features of interest, and yet recent work 

has shown, for example, that alpha frequency and power can vary systematically with time spent 

on a task (Benwell et al., 2019).  
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Altogether, there is significant variability of both periodic and aperiodic activity, that is 

often under-appreciated and under-explored. The majority of investigations apply and 

investigate group level measures, without considering individual variability. This is often 

compounded by methodological limitations, even in work that does consider individual 

variability. These limitations include that analyses typically i) do not explicitly measure and 

separate periodic and aperiodic activity, which is liable to conflate changes between the two 

components, ii) apply predefined frequency ranges, which both presumes that oscillations are 

present (which may not be true), and makes assumptions about their center frequency, and iii) 

do not acknowledge and investigate if and how aperiodic activity itself can vary.  

 Here we seek to further investigate the variability of both aperiodic and periodic activity, 

while addressing these methodological limitations. This is done by measuring and accounting 

for concomitant periodic and aperiodic activity, allowing for separating these components, in 

order to examine the variability of each one. In doing so, we apply approaches that do not 

presume oscillatory presence or frequency, but rather specifically quantifying oscillatory 

frequency and power. This allows us to measure variability of both periodic and aperiodic activity. 

Applying these methods allows for examining within and between subject variability, allowing 

for systematic comparisons and estimating typical values and ranges within and between brain 

regions, conditions, and populations. 
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Figure 3.1 | Overview of data and analyses. (A) Example of a (simulated) time series of electrical activity 
recorded from the cortex. (B) The power spectrum of the data in A, with shading indicating pre-defined 
oscillation bands, including delta (2-4 Hz - shown in yellow), theta (4-8 Hz - green), alpha (8-13 Hz - blue), 
and beta (13-30 Hz - purple). (C) The same power spectrum as B, parameterized for periodic and aperiodic 
activity. Each parameter identified and quantified by the parameterization is labelled. Each identified peak 
is parameterized by its center frequency, aperiodic adjusted power (power over and above the aperiodic 
component), and bandwidth. Note that peaks are detected without applying any predefined frequency 
regions of interests. The aperiodic component is parameterized by the ‘offset‘, or global broadband 
power, and the ‘exponent’, which is the value of !	 in 1/f!, which reflects the pattern of power across 
frequencies. Note that the aperiodic exponent is equivalent to the slope, ‘a’ of the power spectrum, which 
can be computed from the log-log spectrum, and is sometimes reported in other work as the ‘spectral 
slope’, and has the equivalence !	=	-a. For this spectrum, the algorithm identifies a peak of activity in the 
alpha band, whereas activity in all other bands is explained by the aperiodic component. The simulated 
data was simulated as a bursty alpha oscillation with a 10 Hz center frequency, over aperiodic activity with 
an exponent of 1.75 a.u. The measured parameters from the algorithm are a peak with a center frequency 
of 10.1 Hz, and aperiodic exponent of 1.76 a.u. 
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Methods 

In this work, we revisit the investigation of variability in neural field data, addressing 

limitation of prior work by i) explicitly measuring and separating both periodic & aperiodic 

activity, ii) detecting and measuring periodic neural activity without using predefined frequency 

bands, and iii) explicitly measuring the variability of aperiodic activity, all while quantitatively 

measuring spectral features of interest across multiple datasets and contexts. To do so, we 

analyzed several EEG and MEG datasets, applying a spectral parameterization algorithm to 

quantify periodic and aperiodic activity, and examine within and between subject variability of 

the resultant measures.  

The majority of the analyses were done using the Python programming language (version 

3.7), including common libraries numpy, pandas, scipy, matplotlib and seaborn for analysis and 

visualization. The MEG data was preprocessed in Matlab (r2017a), using the Brainstorm analyses 

toolbox (Tadel et al., 2011a). The EEG data was processed using the MNE toolbox (Gramfort et 

al., 2014). Analysis functions and time series simulations were used from the NeuroDSP Python 

toolbox (Cole et al., 2019). Parameterization of neural power spectra was done with the FOOOF 

toolbox (Haller et al., 2018). All code used for this project is available in the project repositories.  

 For all analyses, power spectrum parameterization was applied to quantify aperiodic and 

periodic activity (Haller et al., 2018). Briefly, this process conceptualizes and operationally defines 

oscillations as power (or ‘bumps’) over and above the aperiodic 1/f-like component of the data. 

This aperiodic component is parameterized, after which a search procedure detects and any 

regions of frequency-specific power, reflecting putative periodic activity (Fig 1C). These peaks 
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are detected and parameterized without using pre-specified frequency bands, providing 

quantified measures of the center-frequency, power (relative to the aperiodic component) and 

bandwidth of each identified peak. After isolating and removing these overlying peaks, a new 

estimate of the aperiodic component is calculated, providing an estimate of the global spectrum 

offset and aperiodic exponent (Fig 1C). This algorithm has settings, including bounds that can 

be set on the number and width of the detected peaks, power thresholds for detecting peaks, 

and a setting for the form of the aperiodic component.  

2.1 Local EEG Dataset 

An initial dataset of EEG data was analyzed from a project investigating the role of cortical 

oscillations in visual perception, henceforth referred to as the ‘local’ EEG dataset. Data included 

resting state segments and EEG data while subjects performed a lateralized visual detection task, 

modelled on a task that has been previously described (Busch et al., 2009). Briefly, subjects had 

to attend to a central fixation cross, and respond to peripherally presented flashes of lights.  For 

the current investigation, task activity was only analyzed as ‘task blocks’ (as compared to resting 

state) with no analyses of trial related activity or behavioral performance. During the rest blocks, 

subjects were instructed to close their eyes, and hold still, for two-minute segments. EEG data 

was collected for 29 subjects (age range = [18, 28], 18 female) using a 64 channel BrainVision 

system, using standard 10-20 EEG electrode placement, and recorded with a sampling rate of 

5000 Hz, and later down-sampled to 500 Hz. 15 of the subjects were recorded in a protocol with 

2 rest blocks and 10 task blocks, while the remaining 14 subjects had 1 rest block and 12 task 

blocks. 
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The EEG data was decomposed using ICA (Bell & Sejnowski, 1995), after applying a 1 Hz 

high-pass filter. Any ICA components that were significantly correlated with EOG activity were 

automatically identified and rejected. Bad channels were identified and interpolated. Two-

minute segments were extracted from each rest and task block, for each subject. Power spectral 

densities were calculated per subject, per state, per block and per channel for each segment of 

data, using the Welch’s method, using 4 second windows, half-second overlap, with a Hamming 

window (Welch, 1967). Power spectra were parameterized across the frequency range of (3 – 30 

Hz), using settings {peak_width_limits=[1,6], max_n_peaks=6, min_peak_height=0.075, 

peak_threshold=1.0, aperiodic_mode=‘fixed’}. Extracted peaks were post-hoc grouped into 

frequency bands, defined as theta (2-7Hz), alpha (8-14Hz), beta (15-30Hz) chosen to reflect 

approximate band ranges in the data (see Fig. 3A). Aperiodic parameters, offset and exponent, 

were also collected, per power spectrum.  

2.2 ChildMind EEG Dataset 

Additional EEG data was analyzed from the openly available ‘Multimodal Resource for 

Studying Information Processing in the Developing Brain’ (MIPDB) dataset from the Child Mind 

Institute (Langer et al., 2017), which will be referred to as the `ChildMind` dataset. The dataset 

includes EEG data, behavioral measures, and eye tracking for a community sample of children 

and adults (n = 126, age range = 6-44, age mean = 15.79, age standard deviation = 8.03, number 

of males = 69). For this project, we analyzed the resting state EEG data, which was collected on 

a 128 channel Geodesic Hydrocel system, with the peripheral channels dropped, leaving a 111-

channel montage, with a sampling rate of 500 Hz. Of the 126 participants in the dataset, 9 did 

not include resting state data collection, as indicated by the dataset description, and were 
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therefore excluded. In addition, a further 6 participants were excluded from this analysis due to 

missing the resting state recording file (1 subject) or not having enough resting data events to 

analyze (5 participants) leaving 111 participants included in the final analysis. 

In the resting state paradigm of the ChildMind dataset, participants were instructed to 

fixate on a central cross, and open and close their eyes at the sound of a beep, alternating 

between 20 second segments of eyes open and 40 second segments of eyes closed. The dataset 

includes a pre-processed and artifact corrected copy of the data, which was used here, with full 

details of the pre-processing described in (Langer et al., 2017). Briefly, bad electrodes were 

identified and interpolated, eye artifacts were regressed out of the EEG from EOG electrodes, 

and a PCA approach was used to remove sparse noise from the data. We further identified flat 

channels (channels with no data) and interpolated them, and re-referenced data to a common 

average reference. 

For each 20 second eyes-open block, we extracted data from 2-18 seconds avoiding the 

time points around the time when eyes were opened and closed. Similarly, for each 40 second 

eyes-closed segment, we extracted the time region of 5-35 seconds. Power spectra were 

calculated, for each subject, for each block, and for each channel, using Welch’s method, using 

2 second windows and half second overlap, with a Hamming window (Welch, 1967). These 

spectra were then parameterized, across the frequency range of 3-35 Hz, using settings 

{peak_width_limits=[1,6], max_n_peaks=6, min_peak_height=0.05, peak_threshold=2.0, 

aperiodic_mode=‘fixed’}. We computed the average spectra across all blocks, separately for 

eyes-open and eyes-closed data, and also parameterized these average spectra, using the same 

settings. 
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2.3 MEG Dataset 

 We additionally analyzed magnetoencephalography (MEG) data, which was chosen as it 

provides high temporal-resolution, non-invasive recordings of human cortical activity, that can 

be localized using source projection. Open-access resting-state MEG data, as well as 

corresponding T1-weighted MRIs for each participant, were accessed from the young adult 

dataset from the Human Connectome Project database (Van Essen et al., 2013). Briefly, a subset 

of 95 participants from the HCP had MEG recordings. Of this group, 80 participants met our 

quality control procedures and were included in the analyses here (ages 22-35; 35 female). 

Participants were excluded due to missing resting state recordings, missing anatomical scans 

needed for source projection, or due to excessive artifacts. One participant was rejected post 

fitting due to being an outlier on goodness-of-fit and/or aperiodic parameters (more than 3 

standard deviations from the group mean). For each participant, the first available rest recording 

was used, comprising approximately 6 minutes of eyes open, resting state data. Full details of 

the data collection are available elsewhere (Van Essen et al., 2012).  

MEG data were pre-processed following best-practice guidelines (Gross et al., 2013), 

using the Brainstorm software toolbox (Tadel et al., 2011b). Cardiac and eye related artifacts 

(blinks and saccades) were automatically detected from ECG and EOG traces respectively and 

removed from the data using signal-space projections (SSP) from data segments selected from 

around each artifactual event (Nolte & Curio, 1999) using default parameters in Brainstorm. All 

MEG data were manually inspected for any remaining artifacts, and any contaminated segments 

were marked as bad, and not included in any further analysis. Cleaned, pre-processed resting 

state data were then epoched into 5 second segments.  
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Using the segmentation procedures available in Freesurfer (Fischl, 2012), each 

participants’ T1-weighted anatomical MRI scan was used to construct scalp and cortical surfaces. 

Individual high-resolution surfaces were down-sampled to 7501 vertices using Brainstorm to 

serve as cortical reconstructions for MEG source imaging. Structural MRI images were co-

registered with the MEG recordings using anatomical landmarks (nasion, and pre-auricular 

points) and digitized head points available from the recording, which were automatically aligned 

in Brainstorm, and then manually checked and tuned, as needed.  

For source-projection, the overlapping-sphere technique (Huang et al., 1999) for forward 

modelling of the neural magnetic fields was used, using perpendicularly oriented current dipoles 

for each individual’s anatomy (Baillet et al., 2001). Source projections were calculated using 

Brainstorm’s weighted minimum norm estimate (wMNE) applied to the preprocessed sensor 

data. Empty room recordings, also available from the HCP, were used as an empirical estimate 

of the noise for each MEG sensor, in the wMNE projection. For group analysis, individual source 

maps were then geometrically registered to the ICBM152 brain template, a non-linear average 

of 152 participants (Fonov et al., 2009), using Brainstorm’s multilinear registration technique.  

For each epoch, a power spectra were estimated using an adapted version of Welch’s 

method, which averaged across the individual FFTs using the median, as opposed to the mean, 

in order to deal with the skewed nature of power value distributions (Izhikevich et al., 2018), using 

a window size of 2 seconds. For each participant, at every vertex, a power spectrum was 

calculated from source-projected data, on the group template brain. Power values were then 

averaged across all available epochs to obtain one power spectrum per vertex, per individual. 
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Following pre-processing, source projection, and spectral analysis, we had power 

spectral representations of resting state activity at each of 7501 vertices for each of the 80 

participants, projected on a template brain. Each of these spectra were then fit across the 

frequency range [2, 40], with settings {peak_width_limits=[1,6], max_n_peaks=6, 

min_peak_height=0.1, peak_threshold=2, aperiodic_mode=‘fixed’}, providing an aperiodic 

exponent and offset value per vertex as well as a list of extracted peaks (if found) per vertex, per 

participant. In rare cases, the algorithm can fail to converge on a solution and thus does not 

provide a fit. This was the case for a total of 4 spectra out of 600,080. For any spectrum for which 

this happened, that vertex for that participant was set as having no detected peaks, and the 

aperiodic exponent was interpolated as the mean value of all successful fits from that participant. 

To analyze and visualize the putative oscillation results, all extracted peaks were post hoc 

sorted into pre-defined oscillation bands of theta (3-7 Hz), alpha (7-14 Hz), and beta (15-30 Hz). 

These ranges were chosen to capture the approximate clusters of peaks in the extracted data 

(see Fig. 3C). To do so, per vertex and per participant, peak output parameters were selected, 

for each band, if they corresponded to a peak with a center frequency within the band limits. If 

there was no peak within that range, that vertex was set as having no oscillation of that band. If 

more than one peak was found for the given range, the highest power peak was selected. From 

this band-specific data, we then created group maps for each oscillation band across all vertices. 

For each band we extract two maps: an oscillation power map as well as an oscillation probability 

map, which is the percent of the group that had a peak within that band at that vertex. 
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We then calculated a power-normalized “oscillation score”. To do so, for each band, the 

average peak power value at each vertex, across all participants, was divided by the maximum 

average power value from the distribution of all vertices, such that the vertex that displays the 

highest band power across the group receives a score of 1, and every other vertex receives a 

normalized score between 0 and 1. This power ratio was then multiplied, vertex-by-vertex, with 

the oscillation probability topography. The resultant oscillation score is a bounded measure that 

can take values between 0 and 1, whereby a maximal score of 1 reflects that every participant 

has an oscillation in the specified band at the specified vertex, and that oscillation has the 

greatest average power at that vertex. Scores lower than 1 reflect increased variation in the 

presence and/or relative power of oscillations across the group. 

Note that oscillation scores lower than 1 cannot, by themselves, be disambiguated in 

terms of where the variability lies. For example, an oscillation score of approximately 0.5 could 

reflect either a location in which oscillations tend to be of maximal power, but are only observed 

across approximately half the group, or oscillations that are consistent across the entire group, 

at about half the maximal power, or some middle ground between the two. These situations can 

be disambiguated by examining both the oscillation probability and power ratio maps 

separately. We then calculated the Pearson correlation between the topographies of oscillation 

scores for each band as well as the correlation between each band’s oscillation score and the 

aperiodic exponent topography. 
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Figure 3.2 | Aperiodic activity in EEG data (A) Topography of aperiodic exponent, for both eyes-open and 
eyes-closed resting state data. (B) Correlation between age and aperiodic exponent, computed per 
channel. (C) Correlation of the aperiodic exponent across blocks. EC and EO denote 'eyes-closed' and 
'eyes-open' respectively. EC / EO means correlations between the two states. 'Within' indicates a 
comparison within subjects, and 'Between' indicates between subjects. All data in this figure is from the 
ChildMind Dataset.  

 

2.4 Statistics & Analyses 

 Group level measures and topographies were calculated by averaging features across 

channels or vertices. Comparisons between spectral features were compared with t-tests, using 

related samples tests for within subject comparisons. All tests were two-tailed. Effect sizes were 

computed with Cohens-d. Correlations were computed as Spearman’s correlations.  
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Results 

3.1 Overall Results 

 The aperiodic exponent exhibited variability between subjects and datasets, with a 

difference in aperiodic exponents found between the ChildMind EEG dataset (mean=1.67, 

std=0.33), and MEG dataset (mean=0.83, std=0.23). Some of the differences between groups 

may be due to age variation, as there were significant negative correlations between aperiodic 

exponent with age, in both the ChildMind EEG dataset (r=-0.66, p=<1x10-12), and in the MEG 

dataset (r=-0.46, p<1x10-4). Note that the ChildMind dataset is predominantly children, whereas 

the MEG dataset is young adults.  

 The aperiodic exponent was found to be stable within individuals, though with notable 

variation topographically and across states. In the ChildMind EEG dataset, the aperiodic 

exponent was greater centrally, in particular along the anterior to posterior axis (Fig. 2A). This 

topographical pattern was consistent in rest data with eyes-open and eyes-closed. There was 

also a topographical pattern to where the aperiodic exponent most highly correlated with age 

(Fig. 2B). There was a small but significant difference between subjects averaged aperiodic 

exponent between eyes open and eyes closed resting states (t=2.37, p=0.020, cohens-d=0.15). 

We also computed the correlation of aperiodic exponent values between blocks, within subjects 

(Fig. 2C). We find strong correlations of within-subjects repeat measures of aperiodic activity 

including with the eyes-closed state, (average correlation: 0.53), within the eyes-open (average 

correlation: 0.40), and between eyes open and closed conditions (average correlation: 0.38). By  
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Figure 3.3 | Periodic activity in EEG and MEG data (A) The distribution of all center frequencies, across the 
group, in the EEG dataset. The distribution of peaks roughly captures canonical bands, though there is 
substantial heterogeneity. (B) Distributions of detected peaks for individual subjects. Each colored line is 
the count of peaks, per frequency, for an individual subject. For clarity, 10 individual subjects from the 
group are shown. The black line is the median number of peaks, per frequency, across all subjects. Notably, 
each subject shows idiosyncrasy in their distribution of peaks. (C-D) Same as A-B, but with the MEG 
dataset. 
 

comparison, the correlation of aperiodic exponent between subjects was much lower (average 

correlation: 0.05). 

 As a replication of the EEG results, the same topographical pattern of aperiodic exponent 

was found (data not shown), and there was also a significant difference in subjects’ aperiodic 

exponent between the rest and task states (t=6.23, p=<1x10-5, cohens-d=0.80). This dataset did 

not have enough age variation to examine age correlations. When calculating average features 

across task blocks, we found a significant correlation of alpha power (r=0.70, p=0.025) with block 

number, and a trending (r=-0.61, p=0.060) relation of alpha center frequency. The correlation of 

aperiodic exponent across task blocks was not significant (r=-0.50, p=0.138).  

DC MEG: Group Peaks

EEG: Group Peaks EEG:  Individual PeaksA B

MEG:  Individual Peaks
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Figure 3.4 | Oscillation band power and occurrence. (A) The group level aperiodic-adjusted power, per 
band. For each participant, the oscillation power within the band was normalized between 0 and 1, and 
then averaged across all participants, such that a maximal relative power of 1 would indicate that all 
participants have the same location of maximal band-specific power. Note that alpha and beta have 
maximal values approaching 1, reflecting a high level of consistency in location of maximal power, whereas 
in theta the values are lower, reflecting more variability. (B) Oscillation occurrence, measured as the 
proportion of participants for whom an oscillation peak was fit, at each vertex, per band. 
 

Across all analyzed datasets, when collapsed across participants and all cortical locations 

(channels or vertices), the distribution of center frequencies for all algorithm-extracted 

oscillations partially recapitulates canonical frequency bands, wherein the most common 

frequencies are centered in the theta, alpha, and beta ranges (EEG: Fig. 3A, MEG: Fig 3C). 

Notably, however, there are extracted oscillations across all frequencies, so while canonical 

bands do capture the modes of oscillatory activity, they are not an exhaustive description of 
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periodic activity in the human neocortex. When analyzed at the individual level, there is 

significant individual variability in detected peaks (EEG: Fig. 3B, MEG: Fig 3D). Interestingly, 

individual subjects appear to have narrow ranges of center frequencies within any given band, 

whereas the observed variability of peaks across whole band ranges is a group level 

phenomenon (black lines in Fig. 3B & Fig. 3D). As extracted peaks are broadly consistent with 

canonical bands, we post-hoc clustered peaks into theta (3-7 Hz), alpha (7-14 Hz), and beta (15-

30 Hz) bands for subsequent analyses, 

3.2 Topographical Results 

Using source-reconstruction with the resting state MEG data, we quantified how spectral 

parameters varied across the cortex. When examined across the cortex, we find that the 

aperiodic-adjusted oscillation band power also recapitulates well-documented spatial patterns 

(Niso et al., 2016b), where theta power is concentrated at the frontal midline, alpha power is 

predominantly distributed over posterior and sensorimotor areas, and beta power is focused 

centrally, over the sensorimotor cortex (Fig. 4A). However, prior reports using canonical methods 

may be at least partially driven by aperiodic activity, because they do not separate or quantify if, 

or how often, oscillations are present over and above the aperiodic component. To address this, 

we quantified how often an oscillation was observed, for each band, across the cortex (Fig. 4B). 

These two metrics were then combined into an “oscillation score”, which is a composite of the 

group-level oscillation occurrence probability weighted by the relative power of algorithmically 

identified parameters (Fig. 5A). 
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The oscillation score allows us to examination the variability of periodic activity across 

participants. For example, the oscillation scores approaching 1.0 in both alpha and beta indicate 

a very high degree of consistency in these bands (a maximum score of 1.0 tells us that every 

participant has an oscillation of maximum relative power in the same location). We find that alpha 

and beta are ubiquitous across the cortex, though their relative power is concentrated in specific 

regions (Fig. 4A). By contrast, theta is more variable, with max oscillation scores <0.4 indicating 

significant variability in whether theta is present, and in its relative power. Theta oscillations are 

only sometimes observed in frontal regions at rest and are almost entirely absent in visual 

regions. 

The explicit parametrization of each feature allows us to separately examine how each 

parameter varies across the cortex. Note, for example, that the consistency of oscillation 

presence and relative power do not imply that these oscillations are consistent in their center 

frequency, because we also see significant variation of peak frequencies (Fig. 3A). Periodic power 

and oscillation occurrence vary systematically across the cortex (Fig. 4). There is also spatial 

heterogeneity of the aperiodic exponent such that highest exponent values are found in 

posterior regions, and the exponent gets gradually smaller (flatter) as it moves anteriorly (Fig. 

5B). We calculated the correlation between the aperiodic exponent and age, per vertex, and 

found a pattern of correlations in the MEG data (Fig. 5D), that was broadly consistent with the 

pattern found in the EEG data (Fig 2B). 
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Figure 3.5 | Topographies of spectral features. (A) Oscillation topographies reflecting the oscillation score: 
the probability of observing an oscillation in the particular frequency band, weighted by relative band 
power, after adjusting for the aperiodic component (see Methods). These topographies quantify the 
known qualitative spatial distribution for canonical oscillation bands theta (3-7 Hz), alpha (7-14 Hz), and 
beta (15-30 Hz). (B) The topography of resting state aperiodic exponent fit values across the cortex. Group 
exponent—calculated as the average (mean) exponent value, per vertex, across all participants—shows 
that the aperiodic exponent is lower (flatter) for more anterior cortical regions. (C) Correlations between 
the oscillation topographies and the exponent topography show that theta is spatially anti-correlated with 
the other parameters. (D) Correlation of aperiodic exponent to age, computed across vertices.  

We also examined relationships between parameters, calculated as correlations between 

the spatial topographies of oscillation scores per parameter (Fig. 5C). The strongest observed 

relationships were a negative correlation between theta and alpha (r=-0.60, p<0.0001) and a 

positive correlation between alpha and the aperiodic exponent (r=0.83, p<0.0001). Collectively, 

these analyses allow us to verify patterns of aperiodic-adjusted periodic activity, and quantify, 

for the first time, the consistency of occurrence of oscillations. In addition, the spatial topography 

of the aperiodic exponent is important to note when exploring topographies of presumed 

oscillations derived from narrowband analyses, given that the aperiodic component can drive 

observed spatial differences. 
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Discussion 

In this work, we explored power spectrum parameterization as a method for measuring 

periodic and aperiodic activity, across the human cortex, exploring the variability of measured 

results both within and between subjects. These findings highlight the large degree of variability 

that may be missed in many analyses that use only fixed frequency band and group level 

analyses, and motivates the need to consider and measure both aperiodic and periodic activity.  

In periodic activity, we find a significant variability of measured peaks. Notably, though 

the structure of the data at the group level is consistent with distinct oscillation bands, there is a 

high degree of variability within subjects. This replicates prior work on center frequency 

variability, systematically mapping this variability across all bands. Spectral parameterization is 

also able to indicate if there is evidence for the presence of oscillatory activity, and also provides 

information on a new feature of interest, which is the peak bandwidth. Oscillation bandwidth has 

not traditionally been measured, and as such there is scant prior work to validate against or 

compare to.  

 Importantly, we find significant individual variability of aperiodic activity, consistent with 

other reports (Demuru & Fraschini, 2020). The observed between subject variability is consistent 

with prior results that aperiodic activity varies between subjects, relating to factors such as 

subject age (W. He et al., 2019; Voytek et al., 2015) and clinical diagnoses (Molina et al., 2020; 

Robertson et al., 2019). We extend these findings by demonstrating that there is also within 

subject variability, including across cortical location, and between different tasks states. 

Variability of aperiodic activity between states is consistent with work showing that it varies across 
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states such as anesthesia (Colombo et al., 2019) and sleep (Lendner et al., 2020). Here we show 

this variability is present in more subtle state shifts, such as being task and rest, and even 

between eyes-open and eyes-closed resting state conditions. 

 This measured variability is another demonstration that aperiodic activity is a dynamic 

and potentially informative feature of neural activity. The dynamics of aperiodic activity may be 

a measure of interest, as the aperiodic exponent is a putative marker of excitatory / inhibitory 

balance (Gao et al., 2017). The observed variability and dynamics of aperiodic activity – between 

cortical regions, brain state, and across subjects – are an exciting avenue for future work, 

including work that further investigates the putative interpretations and functional roles of such 

activity.  

Considering the variability of aperiodic activity is also important for methodological 

reasons. Measures proposed and interpreted as measuring oscillatory activity, but that do not 

consider aperiodic activity, are at risk of being confounded, and may actually relate to dynamic 

aperiodic activity, such as has been demonstrated for band ratio measures (Donoghue et al., 

2020). These potential methodological problems are all the more salient in light of the variability 

of aperiodic activity, which increases both the importance and difficulty of adjudicating between 

periodic and aperiodic changes in the data. This variability is also a challenge for methods such 

as spectral whitening, or relative power, which attempt to control for aperiodic activity, under 

the assumption that it is stationary.  

Recent investigations have examined oscillatory frequency bands across age, finding 

patterns of changes across bands (Hashemi et al., 2016; Vlahou et al., 2014), which are 

interpreted as changes in specific frequency bands. However, patterns of differences across 
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frequency bands are consistent with differences in aperiodic activity, which can exhibit as 

statistically significant differences in particular frequencies (Haller et al., 2018). Investigations 

which do not consider and measure aperiodic activity may be conflating changes in periodic and 

aperiodic activity, as has been demonstrated to be the case in band-by-band analyses of 

electrophysiological activity through development (W. He et al., 2019). Many of these known 

examples thus far reflect between subject comparisons, and these issues may also be 

exasperated by the dynamic nature of within subject aperiodic activity. 

Using the MEG dataset, we were also able to explore spatial distributions of source 

projected data. Notably while these results broadly recapitulate expected patterns of activity 

(Demirtaş et al., 2019; Frauscher et al., 2018b), the explicit parameterizations reveal details that 

are not possible with traditional approaches. For example, we show that there are band-specific 

patterns of the detectability of oscillatory peaks, and can also explore the variability of each 

isolated spectral feature. In doing so, we are able to demonstrate topographies of aperiodic-

adjusted periodic power, as well as a topographical gradient of the aperiodic exponent (Demirtaş 

et al., 2019).  

We also find that some spectral parameters, such as alpha power, can vary systematically 

over time. This replicates prior work on this topic (Benwell et al., 2019). We are also able to 

demonstrate that this effect appears to be specific to alpha power, as we do not find clear 

evidence in our data of aperiodic parameters also varying over time. Such variability across time 

is important as it challenges the assumed stationarity of spectral features (when absent of task 

manipulations).  
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 A key development of the current work is that it provides quantifications of spectral 

parameters across multiple, large, available datasets, of non-clinical participants. This serves to 

further demonstrate the scalability of the employed methods, and a proof-of-concept of 

mapping distributions and variability of these features.  Future work could seek to analyze and 

further integrate available data, which could be extended to offer quantified norms of spectral 

parameters for large populations of subjects. This can then be used as a comparison group, 

investigating, for example, if data from groups of interest, such as particular disease states, 

deviate from the comparison group, and, if so, in which parameters.  

 There are some limitations to the current work, which also highlight additional 

opportunities for future investigations. For example, though we explored and noted individual 

differences in measured oscillations, for several analyses at the group level, we still had to apply 

group level oscillation bands. Future work should investigate approaches for detecting and 

potentially clustering detected oscillations within subjects, as well as methods for acknowledging 

individual variation in group level measures. All the analyses here also examined relatively long 

segments of data. Future work should seek to investigate and seek to improve the temporal 

resolution of methods that allow for separating and measuring aperiodic and periodic activity, 

such that their dynamics through time can be further explored.  
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Conclusion  

Altogether, we find that there is significant within and between subject variability of 

periodic and aperiodic neural activity. This suggests potentially useful and informative variation, 

that may be productively investigated. It is also raises important methodological considerations 

– since multiple different overlapping features can all be shown to be dynamic, it illustrates and 

motivates the importance of careful adjudication of which features are changing in which ways, 

and what aspects of the data relate to covariates of interest, all of which can be done with spectral 

parameterization.  
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Conclusion 

 In this dissertation, we have examined methods of investigation for neural field data, and 

how they relate to the different components that comprise this data, in particular relating to both 

periodic (oscillatory) and aperiodic activity. Through this work, we have noted and investigated 

potential pitfalls with methods that do not explicitly consider and measure both components of 

the data, as well as the benefits and novel findings of doing so.  

 An overarching theme of this work is that how conceptualize the data we analyze is of the 

utmost importance – whether that be through explicit deliberation, or implicitly through the 

application of methods that embody particular assumptions. The methods and practices we 

employ are contextualized through a history of practice and the contingencies of the times in 

which they were developed. We can and should acknowledge this work, it’s history, and the large 

body of knowledge and practices it has propelled, while also being deliberate and consistently 

vigilant in evaluating and considering the methods we employ and the conceptualizations of the 

data that they embody.  

Through this work, I have also come to value and appreciate the power and utility of using 

and developing open-source software in science. In particular, there is great power and utility in 

developing openly available software tools while employing best practices from the field of 

software development. This allows for developing methods that can be rigorously tested, 

through the use of formal code tests as well as with the use of systematic simulation tests, and 

also easily shared, both in terms of portability of the code, and through the development of 

thorough code and module documentation. The transparency, shareability, and accessibility of 
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employing open-source practices has undeniably been a key factor in the success that we have 

had in developing and deploying new methods, and in them being adopted by others.  

This dissertation is focused primarily on the task of measuring and describing neural field 

data. This is but a small piece in the context of the broader task of interpreting and understanding 

the physiological generators, functional roles, and correlates of such activity. There is a large 

body of existing work on these topics, and I hope future work and the development of the 

methods here can aid in continuing to investigate, and ultimately, interpret and understand 

patterns of brain activity, and how they relate to the functional organization of brain activity. 

Notably, though much of this work started with the goal of better isolating and measuring 

oscillatory activity, I now find myself particularly excited by the somewhat lesser known, but 

clearly dynamic and interesting, signal component of aperiodic activity, which is now the topic 

of an increasing amount of work.  

 Altogether, and in conclusion, here we propose that explicit parameterization of spectral 

features of interest, embodied in a new method to parameterize neural power spectra into 

constituent components of aperiodic and periodic activity, is a well-motivated and productive 

method for continuing to investigate and attempt to understand the properties and workings of 

the brain, as seen through the lens of neural field data.  




