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Abstract

This report presents two approaches to the design of the lateral controllers for commuter
buses based on Sliding Mode Control (SMC). The objective of the control is to track the
lane centerline. SMC is selected because of passenger load uncertainties and variations in
the road tire interaction. Importance is given to reduction or elimination of the control
chatter inherent in the SMC systems involving switching functions. The first controller uses
the sensor output which is a combination of yaw and lateral error. The combined error is
forced to stay on a manifold by SMC. The second controller achieves tracking objective by
providing a yaw rate to the vehicle so as to keep the lateral error dynamics stable. The
two controllers are shown to differ only in the position of an integrator which gets naturally
introduced in the closed loop. The controllers are compared by performing simulations for
a range of parameters. It is concluded that though the performance of the controllers is
comparable for the present application, one of them is theoretically better.

Keywords: Advanced Vehicle Control Systems, Sliding Mode Control, Chatter reduction.
Lateral control.
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Executive Summary

Lateral control of vehicles in the light of Intelligent Transportation Systems (ITS) and Au-
tomated Highway Systems (AHS) has been an active research subject in recent years. Much
of the work in past has been concentrated in the area of light vehicles. Peng and Tomizuka
(1993) applied Frequency Shaped Linear Quadratic (FSLQ) control to the problem of lateral
(steering) control of the passenger car. Pham et al. (1994) applied Sliding Mode Control
(SMC) to the problem of combined lateral and longitudinal control of passenger cars. Ack-
ermann et al. (1995) applied SMC in a different manner from to the problem of the lateral
control of passenger cars. In this report lateral control of the commuter buses is considered.
The motivation for a separate consideration to the problem of lateral control of buses comes
through the following. Commuter buses are roughly 10 times heavier than the passenger
vehicles. Hence the system response to the steering angle command is sluggish. Also there
is greater likelihood of tire force saturation during cornering. The behavior of the vehicle
is nonlinear at the saturation point of the tires. Furthermore, bus parameters such as the
mass and moments of inertia change often and over wider ranges (mass could change from
10,000 kg. to 16,000 kg.) and the buses are more prone to roll over than passenger vehicles.
Due to the above mentioned characteristics, robust or adaptive control is essential for the
lateral control of commuter buses. In this report, we study the use of the SMC methodology,
which is known for its robustness to parametric uncertainties. Two SMC based approaches
are considered and compared to each other. Only lateral and yaw dynamics of the buses
are considered in the design of these controllers. One design is similar to what was used
by (Pham et al. 1994) for control of passenger vehicles. A linear combination of lateral
error and yaw error which in effect gives the lateral displacement of a point other than the
center of cravity (CG) of the vehicle is fed back to the controller which sets the command
for the steering angle. The combined error becomes input to the SMC. In the second SMC
approach, the steering angle rate becomes the control command as against the steering angle
in the first approach. We apply this control algorithm to the problem of the lateral control
of commuter buses. In this controller, the problem is reformatted into a strict feedback form
so that the desired yaw rate can be set to make the lateral dynamics stable. The SMC is set
so that the actual yaw rate matches the desired rate.

A feature common between the two SMC approaches is that an integrator can be naturally
introduced in the feedback loop. The integrator is ideally suited to counteract disturbances
such as wind gusts. While SMC is effective for such disturbances, the presence of integral
control assures static robust performance when the signum function, which appears in SMC,
is replaced by saturation function to eliminate chattering. The introduction of the integrator
in the second SMC design is somewhat more natural. Apart from retaining the asymptotic
tracking property while filtering the chatter, it can be thought of as actuator dynamics and
would thus give a better representation of the actual system in the simulations. Simula-
tion results confirm that the two SMC based controllers provide excellent lane following
performance.
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1 Introduction

Lateral control of vehicles in the light of Intelligent Transportation Systems (ITS) and Au-
tomated Highway Systems (AHS) has been an active research subject in recent years (Peng
and Tomizuka, 1993). Much of the work in past has been concentrated in the area of light
vehicles. Peng and Tomizuka (1993) applied Frequency Shaped Linear Quadratic (FSLQ)
control to the problem of lateral (steering) control of passenger cars. Pham et al. (1994)
applied Sliding Mode Control (SMC) to the problem of combined lateral and longitudinal
control of passenger cars. Ackermann et al. (1995) applied SMC in a different manner
from Pham et al. (1994) to the problem of the lateral control of passenger cars. In this
report lateral control of commuter buses is considered. Commuter buses are roughly 10
times heavier than the passenger vehicles. Hence the system response to the steering angle
command is sluggish. Also there is more likelihood of tire force saturation during cornering.
The behavior of the vehicle is nonlinear at the saturation point of the tires (Peng, 1992),
(Bareket and Fancher, 1989). Furthermore, bus parameters such as the mass and moments
of inertia change often and over wider ranges and the buses are more prone to roll over than
passenger vehicles. Due to the above mentioned characteristics, robust or adaptive control
is essential for the lateral control of commuter buses. In this report, we study the use of
the SMC methodology, which is known for its robustness to parametric uncertainties. Two
SMC based approaches are considered and compared to each other. Only the lateral and
yvaw dynamics of the buses are considered in the design of these controllers. One design is
similar to what was used by Pham et al. (1994) for control of passenger vehicles. A linear
combination of lateral error and yaw error which in effect gives the lateral displacement of a
point other than the center of gravity (CG) of the vehicle is fed back to the controller. The
combined error becomes input to the SMC. Another control presented is in the line of Ack-
ermann et al. (1995). We apply this control algorithm to the problem of the lateral control
of commuter buses. In this controller, the problem is reformatted into a strict feedback form
so that the desired yaw rate can be set to make the lateral dynamics stable. The SMC is set
so that the actual yaw rate matches the desired.

A feature common between the two SMC approaches is that an integrator can be naturally
introduced in the feedback loop. The integrator is ideally suited to counteract disturbances
such as wind gusts. While SMC is effective for such disturbances, the presence of integral
control assures static robust performance when the signum function, which appears in SMC,
is replaced by saturation function to eliminate chattering.

The remainder of the report is organized as follows. Section 2 states the problem formulation
along with the dynamic model of a commuter bus. The SMCs are developed in section 3.
Section 4 presents simulation of the closed loop system for a commuter bus model (Daimler
Benz) under various conditions of speed and mass. Conclusions are presented in section 5.



2 Lateral Control Problem for Commuter Buses

In general the control objectives in lateral control of road vehicles for lane following are as
follows:

1. Keeping lateral error at a selected point, e.g. at the center of gravity (CG) close to
zZero.

2. Maintaining the vehicle orientation parallel to the road orientation.

3. Ensuring passenger comfort.

It is known that the orientation error, i.e. the yaw of the vehicle relative to the road
orientation, cannot be made zero on a curve (at steady state) for vehicles which have front
wheel steering only (Matsumoto and Tomizuka, 1992). Thus the goal is to keep the lateral
error of a certain point on the vehicle body zero while maintaining as narrow a bound as
possible on the yaw error.

2.1 The vehicle model

In this section, we describe the dynamic equations and the parameters of the vehicle model.

l
ro@ L2 h »
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i

Figure 1: The bus model and description of parameters
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Figure 2: The description of the states, input and the output

The complex and simplified models of the passenger vehicle were derived by Peng (1992)
and Patwardhan (1994). The vehicle model for the commuter bus is essentially the same
with modification to accommodate weight shift due to roll and substitution of the tire model
in (Peng, 1992) by a tire model suited to buses. Details of the tire model appropriate for
commuter buses are given in (Bareket and Fancher, 1989). The model given in figure 1
shows all the translational and rotational modes of the bus and it has twelve states, two
for each rotational and translational degree of freedom. We will use this complex model
in simulations. Open loop simulations show that the pitch dynamics are negligible. Roll
dynamics though not as small are not considered because the coupling between the roll and
the steering input is rather weak. Thus, for the controller design, we consider only the lateral
and yaw dynamics. The dynamic equations of the bus model for control design purpose are:

i =~ = ’wymm 204, ( — éla)/Vi — 20, (5 + él)/Vi + 2C 6

] 6 = QZQCar(y - 6[2)/‘/95 - ZZlcaf(g) —|— 6[1)/‘/95 —|— 2[10af5
6—f2( )+ by6

where,

y = Vehicle velocity along the lateral principle axis of the sprung mass of the vehicle in m/s,
i = Vehicle linear acceleration in the lateral principle direction m/s?,

¢ = Yaw rate of the vehicle in rad/s (refer figure 2),

¢ = Angular acceleration of the vehicle in the yaw direction in rad/s?,

V. = Longitudinal velocity of the vehicle (component along the road) in m/s,

m = Mass of the vehicle kg (10,000 — 16, 000),

I, = Yaw moment of inertia in kgm?* (171,050),

l; = Longitudinal distance of the front axle from the center of gravity in m (3.67),
Iy = Longitudinal distance of the rear axle from the center of gravity in m (1.93),
C,, = Cornering stiffness of the rear tires in K N/rad (425),



C., = Cornering stiffness of the front tires in K'N/rad (213),

K., = Wind drag coefficient in Ns?/m?,

6 = steering angle ( input ) rad,

fix) 2 (=miVe = Kuyilgl = 200, (5 — i) Vi = 20, (3 + ) /Vz) /m,
x is the state vector comprising of [y, 1, ¢, ¢],

b 220, /m,

fa(x) £ (260, (5 — éb)/V, — 26,Co (5 + éh)/V,.) /1. and

by £ (24,C.,)/ 1.

The values in the parentheses are nominal or the range of values. Since we will be interested
in keeping the lateral error of a certain point on the vehicle zero, we define the lateral error
at this point as y,;. This point is located ds distance ahead of the C'G' of the vehicle and is
shown in figure 1. A lateral error sensor is located at this point. Note that y, is defined as

Ys = yr + ds(€ — €q) (2)

where,

y, = Lateral position of the center of gravity of the vehicle with respect to the road center.
ds is the distance of the lateral error sensor from the CG of the vehicle (as shown in figure 1).
€4 is the yaw angle of the road with respect to a global coordinate system (see figure 2).

e is the yaw angle of the vehicle with respect to the same global coordinate system as in the
definition of ¢4.

The road orientation €, is never going to be present in our formulation except when occurring
as +(€ — ¢g). But we will be needing its time derivatives. Road yaw rate, given by €; = V,p
where p is the road curvature, is assumed available. For the control design, we will require
that the third time derivative of the the desired yaw be piecewise continuous. In practice,
the road curvature data can be filtered to achieve the desired smoothness. One method
to filter the road curvature which changes discontinuously is to have preview information
for a fixed distance ahead and then use this to smooth out the radius of curvature. This
is (approximately) illustrated in figure 3. This is not unreasonable as in the present I'TS
scenario, (particularly so in the context of Partners for Advanced Transit and Highways
(PATH) of California), the availability of road curvature data ahead of time is assumed.

Road Center-line

/

/

Radius of Curvature T ‘

Bus

Time ———>

Figure 3: Filtering the road curvature “disturbance” by “preview”



3 Controller Design

We present two SMC based controllers in this section for lateral control of buses. As stated
earlier, one of the aims of the controller is to keep the bus lateral error zero and yaw error
bounded at all times. Ride comfort has to be maintained. Additionally steering angle is
limited to approximately 0.5 rad and the steering angle rate to 0.5rad/s.

The assumptions for the controller design are :

o All states are assumed available.
o f5(x) is sufficiently smooth.

e Road yaw rate, €;, which will occur in the controller design is sufficiently smooth.

3.1 Sliding Mode Controller Design - 1

The formulation of the control law follows from Pham et al. (1994). One goal is to make
the combined lateral and longitudinal error zero. In order to use notation consistent with
Slotine (Slotine and Li, 1991), obtain the dynamic equation for ys.

Noting the definition of y, given in equation (2),
Ys = yjr + ds(é — ). (3)
From geometry, (refer figure 2),

Y, = ycos(e — €g) + T sin(e — €g)
Ve = —ysin((e — €1)) + @ cos((€ — €4))

From equations( 3) and ( 4) we get,
Ys = cos(e — €q) + @ sin(e — eg) + (€ — €g)(—ysin (e — €q) + & cos (€ — €g)) + ds(€ — €)
Assuming # and (€ — ¢;) are small, we get,

Us 2 i+ (€ — €) Vi + ds(€ — &)
= f1(x) 4+ 610 + ds(fa(x) + b20 — €5) + Vi (é — €a).
We define

b= b+ d;b,
f(x) = [i(x) + ds f2(x) + Vi (é — €a) — dséq



Thus we can write the plant equations as

d )
—Ys = Ys
dt
(7)

d
i, = b6
e f(x)+

Note that due to uncertainties in the bus parameters, we know only the estimates of f(x)
and b in terms of the nominal values of the plant parameters and current state. Let these be
f(x) and b. We see that the plant as described above has relative degree two with respect
to the given input output pair 6 and ys.

Define sliding surface variable s as
A
s =€+ Ae, A > 0. (8)

Where e, the tracking error, is the difference in the actual lateral error at the sensor y, and
the desired lateral error at the sensor y,,. If we device a control law such that

55§—77|5|7 77>07 (9)

then we are assured to reach the sliding surface s = 0 within finite time given by s(t = 0)/n.
Our job is now to construct, given the bounds on f(x) and b, a control law such that system
is driven to the sliding surface in the way prescribed by equation (9). We do this as follows.

Assume
F>|f-fl  and
bonin < b < bynas (10)
Define
U= —f 4 (Fsg) = MNts — Js,) (11)

Where y;, is the desired lateral velocity at the sensor and yj, is the desired lateral acceleration
at the sensor location. Note that in our application these are identically zero. We have
retained them for generality. The control input required to satisfy equation (9) is given by

§ = (i — k sgn(s)) /b (12)

such that

U

kZﬂ(F+77)+(ﬂ_1) )
B = (bmas/bmin)"* (13)

Note that uncertainties in V., K., m, I, C,,, C,, etc are taken care of by appropriate
choice of k. Sliding mode at s = 0 is guaranteed to take place. As a result, the lateral error
at the sensor will go to zero. i.e.,

yr +ds (e —eq) — 0. (14)



But nothing can be said about the yaw error (e — ¢;) or the lateral error y, at the CG. Given
s = 0 and small steering input 6, some “local” stability of the yaw and the lateral dynamics
at CG can be shown. Note that the assumptions are weak and hold only for a small steering
angle. If we assume that the steering angle remains small, then (refer figure 4),

ng ~ ‘/1,(6 — éd). (15)
This equation combined with equation (3) gives,
Ys 2 Vio(e —€q) + ds(€ — €y). (16)

Thus we see that,
s =0 = (é—€)+ Vi/ds(e—€q) — 0

Hence, for local stability of yaw error in the above sense, V,./d; should be greater than zero.
Similar conclusion can be derived for the lateral error dynamics about the CG.

Figure 4: Scenario on a curve with small steering angle

Another problem appears as chatter in the input to the plant due to the presence of ksgn(s)
in the controller output. One way to smooth the control is to use sat(s/®) in place of sgn(s)
in the control law. @ is the boundary layer around the sliding surface where the control law
is linear in s. Precisely, the control law is given by

§= (i — k sat(s/®)) /b
sat(s/®) =1 o <s
sat(s/®) = s —P<s<®
sat(s/®) = —1 5 < =0
(17)

where , k,s,?) are same as defined earlier. This method to eliminate chatter results in a
compromise on tracking error. The reason is that the control law given by equation (17)
satisfies a relaxed version of condition given by equation (9). The relaxed version is given

by

d
s>0 = E[s—@]g—n, n >0
d
s< -0 = a[s—l—q)] n (18)



A remedy is to redefine the sliding variable s as

¢
s=é+2de+ )\2/ e(r) dr (19)

0

= (D 4+ AYo(t) (20)

where

o(t)= [ elr) 1)

v(t) can be considered the output of the augmented plant (see figure 5). The relative degree
of the augmented plant with respect to the new output and input 6 has become three.
Adopting the same SMC design methodology as earlier, we construct an input which will
ensure the satisfaction of equation (18). Note that this condition ensures that the system
reaches a band 2@ thick around s = 0 in finite time and stays there. The control law is given
by equation (17) with s given by equation (19) and @) given by

i=—f+(,)— 20 — A% (22)

The gain k remains as defined in equation (10). Though the above control law does not
imply the convergence of tracking error, e, the tracking error will be close to zero when the
combined effect of the disturbances and uncertainties is nearly constant in the region |s| < ®.
The overall system is depicted in figure 5. Note the presence of an integrator in the path
from y; to 0.

Ys=e
)
PLANT 1/s
v
S
—  Modified S.M.C. D+L)(D+A) =

Figure 5: Block diagram of controller one

3.2 Sliding Mode Controller Design II

It is clear that the first controller does not guarantee, theoretically, that the yaw or the
lateral dynamics of the CG will be stable in the large. In fact, after the addition of the
boundary layer, tracking error convergence in y, is also not assured. Another approach was
applied to this problem by Ackermann et al. (1995) and the following approach is same

8



. The problem is tackled in two stages. First we find out a desired yaw rate such that it
stabilizes the lateral dynamics at the sensor. Then we construct —using conventional SMC
methodology— a controller which tracks the desired yaw rate.

Consider the following kinematical equation that we saw before.
ys = yr + ds(6 - 6‘d) (23)

If we can provide yaw rate ¢ such that

f= (et b té b0 (24)

then
Y+ kys =0 (25)

is attained.

We are assured stable dynamics in y, provided the actual yaw rate is kept close to the desired
rate. We construct a SMC which will track the desired yaw rate described by equation (24).

The system in consideration is described by equation (1) which, restated is,

d
]Z%G — QZQCQT(?) - 6[2)/‘/95 - ZZlcaf(g) —|— 6[1)/‘/95 —|— 2[10af5

€ = fg(X) + 625

(26)
Define the desired yaw rate given by equation (24) as ¢,. and the tracking error o by
o=é—¢ (27)
sliding surface parameter s as
s2d,o+ M, 0 A>0 (28)
As in the previous section, we construct a control law such that
38 < —nls], n>0 (29)

Thus the sliding mode s = 0 is reached in finite time. Since A > 0, the tracking error goes
to zero asymptotically on the sliding surface. Then, noting equation (24), ys goes to zero
asymptotically. Because of the particular definition of the sliding surface, the equivalent
control, given by s = 0, contains the first time derivative of the steering input ¢.

§=0 = d(64+)15)=0
= fo(x) 4 bab + M fo(X) 4+ Abad — & — M(é) =0



Which means that é has to be selected to satisfy the last equality. Thus we have to redefine
the control input as 6. The dynamically extended system becomes

4.

i

d

—ﬁ_fz( )-I—bz

2 (x,0) + byd™
output = ¢, input = 6*

Note that this extension is in the form of an integrator before the plant. We could, though,
have used any first order filter instead.

Let the estimate of f* be f* and the estimate of b, be | by . Note that the estimates are in
terms of the nominal parameter values and system state. Their bounds in terms of by,,i,,
bamar and I are given by

b?minSbZSmeax |f*_f*|§F

we construct a control law 6* given by

A~

0" = (it — k sgn(s))/by (30)

where,

N

u=—f"47E —ANé=é).
and k& must satisfy

k> B(F+n)+ (81 B = (bamas/bamin) "

This control law assures that the condition given by equation (29) hold. Let us look at the
preceding material from a different view. It is of interest to note that the sliding variable s
can be constructed from the sensor output, y,, and its derivatives: i.e., noting equations (23),

(24) and (28),

s=(D+MNd
= (D 4 \)(dsé — dsé,)
= (D + AN)(ds¢ + 4, + kys — dsey)
= (D + A)(ys + kys)
= (D +X)(D + k)ys

sO

Overall system is depicted in figure 6. We can see that this algorithm introduces an integrator
in the feedback loop. The integrator is placed before the plant. It is of interest to compare
this structure with the one in figure 5. The SMC scheme in figure 6 induces chattering of 6*
which is filtered by the integrator.

10



1/s PLANT

S.M.C. (D+Kk)(D+ 1)

Figure 6: Block Diagram of the second controller seen as input filtering

4 Simulations

Simulations were performed for the following scenario. The bus has an initial condition such
that the yaw error, lateral error and their time derivative are zero. dg and V. are 6m. and
25m/s. respectively. The road is straight for the first second i.e., €; = 0, and then there is a
right curve of radius 400m. Though the vehicle model used in the design of the controllers
considered only the yaw and the lateral dynamics, the simulations are performed on the full
twelve state model incorporating all six degrees of freedom of the vehicle. All controllers
were realized in digitized form with a sampling period of 3ms.

1. Controller 1 (design I). Simulations were performed for sliding surface pole, A = 5.6
for the controller without integrator term and with A = 2.6 for the controller with the
integrator term. We present simulations done with the first controller without integral
term so that we have a reference to judge the relative performance with respective to
this “normal” controller. The boundary layer thickness was kept at a uniform value of
0.04 in both cases. The parameter variation was introduced in the inertia of the bus.
In the following figures (7 - 15) “Heavy plant” means that the inertia was 1.3 times the
nominal inertia. “Light plant” means that the inertia was about 1/1.3 of the nominal
value. Along with the lateral error y,, its components, y, and (e — ¢;)d;s (shown as
er*ds, where er stands for (e — ¢;)) are also plotted.

In controller 1, without the addition of the integral term in the definition of the sliding
surface, a steady state tracking error in y, appears due to the introduction of the
boundary layer (see figures 7 - 9). This is rectified by the addition of the integrator
on the output side of the plant. Theoretical claims cannot be made about asymptotic
tracking in general. Nevertheless, we see that in the present case the addition of the
integrator works (see figures 10 - 12). That the steering rate is below the specified
limit of 0.5rad/s cannot be verified. The tracking performance is satisfactory. Since
all states are assumed available, this is unrealistically good.

2. Controller 2 (design II). Simulations were performed for the sliding surface parameter
A = 2.6. The value of the parameter k in equation 24 was taken as 2.5. figures 13 — 15
show that for all the parameter ranges the steering angle is smooth for the controller

11



2. The steering rate sent out by the controller is, however, switching. We can see that
this chatter is filtered quite effectively by the integrator (see figure 6). The steering
angle rate is well within the 0.5 rad/s. limit. The tracking performance, judged by ys,
is satisfactory.

entering the curve of r = 400 m at 1 sec.

E T T T T T T T T

I= |
()
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v=25.0m/s
0. 5 4 6 8 _10 12 14 16 18 20
time sec.

g O-O T T T T T T T T T
[}
o 0.04 .
S controller1 without integral term
g’ 0.0; .
o)
2 0 .
n

_00 | | | | | |

5 4 6 8 _10 12 14 16 18 20
time sec.

Figure 7: Simulation for first controller and light plant
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entering the curve of r =400 m at 1 sec.

0.4 : : : : : : : : x

0.2 | erds .
0 ye ]

0.2 yr v=250m/s 1

V4554 6 8 10 di2 14 16 18 20
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0.06 x x x x x x x x x
0.04 + 1

controller1 without integral term

0.02 |
0 A
002546 8 10 42 14 16 18 20
steering angle (rad) v/s time sec.
Figure 8: Simulation for first controller and nominal plant
0.4 entering the curve of r = 400 m at 1 sec.
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lateral errors (m) v/s time sec
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Figure 9: Simulation for first controller and heavy plant
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entering the curve of r = 400 m at 1 sec.

T T T T T T T T
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Figure 10: Simulation for first controller and light plant (Integrator added)

entering the curve of r = 400 m at 1 sec.
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Figure 11: Simulation for first controller and nominal plant (Integrator added)
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entering the curve of r = 400 m at 1 sec.
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Figure 12: Simulation for first controller and heavy plant (Integrator added)
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Figure 13: Simulation for second controller and light plant
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entering the curve of r =400 m at 1 sec.
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Figure 15: Simulation for second controller and heavy plant
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5 Conclusion

Two SMC based controllers were applied to the problem of lateral control of commuter buses.
The reduction of the chatter, which appears in the control action due to the presence of the
stgn function in SMC design, was one of the objectives. Boundary layer was added to smooth
the control in the first approach. This prompted addition of an integral term in the definition
of the sliding surface, which showed up as an integrator at the output end of the plant. In
simulations, the tracking error, after addition of the integral term in the definition of the
sliding surface, converged to zero. However, we lose the robust asymptotic property of the
Sliding Mode Control design methodology. In general lateral error convergence to zero cannot
be guaranteed. Also, since we are introducing the integrator on the output side, integrator
windup may be a problem. In the second controller, an integrator naturally appeared in the
feed back loop but at the input of the plant. This eliminated the chatter in the input to
the plant. The ideal sliding mode was maintained. Hence asymptotic error convergence to
zero is guaranteed. From an implementation point of view, the simulations with the second
controller gives a more realistic idea of the tracking performance, as a steering actuator can
be naturally inserted at the place of the integrator in figure 6.

The performance of the controllers with regard to the ride quality could not be addressed.
But there is a possibility, using the second approach, filtering off those frequencies in the
plant input which may potentially excite roll dynamics. This is the topic of future research.
Also, given the present scenario for passenger vehicles, assumption that all the states are
available through measurement is not reasonable. So issues regarding use of observer and
proper sensors need to be addressed.

17



References

1]

Peng, H. and M. Tomizuka. 1993. “Preview Control for Vehicle Lateral Guidance in
Highway Automation,” ASMFE Journal of Dynamic Systems, Measurement and Control,
Vol. 115, No. 4, pp. 678-686.

Pham, H., K. Hedrick and M. Tomizuka. 1994. “Combined Lateral and Longitudinal
Control of Vehicles,” Proceedings of the American Control Conference, Baltimore, Mary-

land, pp. 1205-1206.

Ackermann, J., J. Guldner, W. Sienel, R. Steinhauser. 1995. “Linear and Nonlinear
Controller Design for Robust Automatic Steering,” IEFEE Trans. on Control Systems
Technology, Vol 3, pp. 132-143.

Bareket Z..Fancher P. 1989. “Representation of Truck Tire Properties in Braking and
Handling Studies, Influence of Pavement and Tire Conditions on the Friction Charac-

teristics,” UMTRI-8933

Peng, H. 1992. “Vehicle Lateral Control for Highway Automation,” PhD dissertation,
University of California, Berkeley.

Patwardhan, S., 1994, “Fault Detection and Tolerant Control for Lateral Guidance of
Vehicles in Automated Highways,” PhD dissertation, University of California, Berkeley.

Slotine, J. and W. Li. 1991. Applied Nonlinear Control, Prentice Hall.

Utkin, V. 1978. Sliding Modes and Their Application in Variable Structure Systems,
MIR Publisher, Moscow.

Matsumoto, N. and M. Tomizuka. 1992. “Vehicle Lateral Velocity and Yaw Rate Control
with Two Independent Inputs,” ASMFE Journal of Dynamic Systems, Measurement and
Control, Vol 114, pp. 606-612.

18





