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Abstract. Understanding the L→H and H→L transitions is crucial to successful

Iter operation. In this paper we present novel theoretical and modelling study results

on the spatio-temporal dynamics of the transition. We place spatial emphasis on the

role of zonal flows and the micro→macro connection between dynamics and the power

threshold (PT ) dependencies. The model studied evolves five coupled fields in time

and one space dimension, in simplified geometry. The content of this paper is a.)

the model fundamentals and the space-time evolution during the L→I→H transition,

b.) the physics origin of the well known ∇B-drift asymmetry in PT , c.) the role of

heat avalanches in the intrinsic variability of the L→H transition, d.) the dynamics of

the H→L back transition and the physics of hysteresis, e.) conclusion and discussion,

with a special emphasis on the implications of transition dynamics for the L→H power

threshold scalings.
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1. Introduction

Understanding of (low)L→(high)H transition physics is crucial to a successful Iter.

Nevertheless, the power requirement for accessing the H-mode or the back transition

dynamics from the H to L-mode has been remaining unclear. The L→H power threshold

scalings[1, 2] remains only a ’blunt instrument’ for progress. Then, it begs the question

of can we understand the physics behind the experimental scalings from theory and

microphysics experiments?

Recent experiments have revealed the physical mechanism behind the L→H

transition from the limit-cycle oscillation(LCO) of Er interacting with turbulent

fluctuations[3]. The pre-transition LCO is also observed in NSTX, ASDEX-Upgrade,

EAST etc[4, 5, 6, 7]. The experimental results show limit-cycles in the Er and turbulence

fluctuations in phase space, suggesting a strong similarity to the two predator-one

prey model[8]. The predator-prey model describes interacting zonal flow(ZF) and

mean flow(MF) shear suppression of turbulence and MF-ZF competition. The model

recovers an L→H transition triggered by ZF shearing and a pre-transition limit-

cycle oscillation(LCO) due to interplay among turbulence, ZF, and MF. Thus, the

experimental observation of the LCO indicates that ZF shearing, i.e. micro-physics,

can connect with the macro dynamics of the L→H transition.

With regard to the pre-transition LCO, spatio-temporal structure of this sort has

now been identified in DIII-D[6] and TJ-II[9]. A Doppler backscattering system (DBS)

has measured local density fluctuation and total E × B flow, with high spatial and

temporal resolution. This measurement has provided a new picture of the I-phase as

an evolving flow layer structure of LCO. The LCO structure resembles a propagating

wave. To relate these findings to the two predator-one prey hypothesis of ZF trigger and

mediation, at least a one space dimension version of the multi-predator-prey model[10] is

necessary here. Such a one-dimensional model can predict the spatio-temporal evolution

of the pedestal through the L→H transition, as well as the spatial structure of the LCO.

In this paper, we present novel theoretical results on the spatio-temporal dynamics

of L→H transition, with a special emphasis on the role of zonal flows. The model

effectively couples mesoscale evolution of fluctuation intensity (n 6= 0) and zonal flow

(n = 0) shear to transport evolution of profiles and mean shear. The coefficients in this

mean field model are determined by the underlying primitive equations. Universality

classes for the model coefficients are discussed in Ref. [11].

The remainder of this paper is organized as follows. In Section 2, we introduce

the model fundamentals and the space-time evolution during the L→I→H transition.

In Section 3, we show the physics origin of the well known ∇B-drift asymmetry in PT .

In Section 4, we discuss the role of heat avalanches in the intrinsic variability of the

L→H transition. In Section 5, we introduce the H→L back transition and the physics

of hysteresis. In Section 6, we conclude and discuss remaining issues.
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2. L→I→H Evolution

We have significantly extended an earlier 2 predator- 1 prey model[8] to develop a 5-field

reduced mesoscale (envelope) model which evolves turbulence intensity (I), zonal flow

shear (V ′ZF), ion pressure (pi), density (n), and mean poloidal mass flow (〈vθ〉) in radius

and time, in a simplified geometry. Free boundary conditions are imposed and SOL

coupling is neglected. Mean E×B velocity (〈VE〉) is calculated via radial force balance.

The details of this model are given elsewhere[10], so we do not repeat them here. We

remark that reduced models are necessary to address the L→H transition problem, since

no ’first principles’ simulation has successfully confronted this phenomenon.

We have investigated the space-time evolution of the L→H transition using our

new model. The model captures the essential physics of ZF and mean flow interaction,

turbulence suppression by ZF and MF shearing, and poloidal flow evolution, including

that driven by turbulence. We also have elucidated how ZF shearing mediates the

transition. These findings are in good agreement with findings from several DBS and

probe experiments[6] and point to the crucial role of ZFs in the transition dynamics.

The specific results of this study are:

(i) Studies with a slow power ramp reveal an L→H transition via an ’intermediate’

I-phase, characterized by a train of nonlinear waves, which, locally, are limit-cycle

oscillations (LCOs). These are illustrated in Figs. 1 and 2. The I-phase is initiated

near, but not at the LCFS. In this model, the mean flow shear peak nucleates at the

fixed edge boundary. This result, a consequence of boundary conditions, should be

compared with results from DIII-D, where the total E × B flow velocity negative

well nucleates at the edge region and rises to be positive away from the LCFS.

(ii) The I-phase is a multi-predator-prey oscillation of turbulence intensity, zonal flow

and mean flow shear. There is a clear threshold to access the I-phase, which is set

by zonal flow damping. The LCO at a given radius is seen as a slice through an

inward propagating nonlinear wave, which appears as a slowly oscillating region of

expanding width, as shown in Fig. 2. Mean flow shear growth begins after the onset

of I-phase, with a clearly identifiable lag time. Thus the L→I→L loop has finite,

though not necessarily strong, hysteresis. MF shear increases during the LCO.

(iii) The LCO period increases approaching the transition (see Fig. 1). Approaching

the transition, turbulence peak rises but becomes shaper in space and time (see

Fig. 2a). This is also observed in a spectrogram from HL-2A experiments[12]. The

I-phase terminates abruptly at transition, with rapid growth of mean flow shear.

At the transition, edge gradients increase from their I-phase value, and pedestals

in density, and temperature begin to expand inward. The width of the I-phase

ZF region sets the initial scale of the H-mode pedestal. Local turbulence intensity

peaks just prior to transition. Growth of mean flow shear locks in the transition to

H-mode.

(iv) The phase delay between turbulence and zonal flow increases from π/2 to π
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during the I-phase, consistent with the model[8] and also DIII-D results[6] (see

Fig. 3). The diamagnetic shear oscillates with growing amplitude in I-phase, then

increases abruptly at the L→H transition. The growth of the diamagnetic flow shear

amplitude occurs only in I-phase, not in L-mode. The peak of the ZF shear increases

just prior to transition. This is consistent with analysis of EAST experiments, which

indicate that ZF shearing is dominant just prior to the L→H transition[13, 14].

(v) The actual transition event can be abrupt, even if the power ramp and LCO evolve

slowly. This picture is consistent with experiments. The pedestal expands after the

L→H transition.

(vi) Numerical studies reveal that two types of ’transition’ occurs sequentially. With a

slow power ramp, L→H transition occurs via a transition to I-phase, which clearly

manifests a quasi-periodic oscillation. On the other hand, during a fast power ramp,

the I-phase is compressed into a single burst of ZF, leading to a transition without

an LCO, as shown in Fig. 4. Here how fast the ramp must be so as to prevent

an LCO depends on the ramp rate, as compared to the period of the limit-cycle.

These features resemble that observed in TJ-II, shown in Fig. 7 of Ref. [15].

As shown in Fig. 5, studies of power threshold with various ZF damping and

neoclassical poloidal viscosity indicate that larger neutral CX increases the power

threshold. More generally, increasing ZF damping increases the power threshold,

suggesting that ZF is fundamental to the transition. During the evolution of the ZF

acts as ’holding pattern’, in which to store large fluctuation energy without increasing

transport, (since n = 0 for ZF), thus allowing the mean flow shear to grow as profiles

steepen. Mean flow shear, however, ultimately is required to ’lock in’ the state of

quenched turbulence. Without mean shear growth, the LCO of I-phase will persist

indefinitely. Therefore the ZF damping should enter the power threshold condition,

but does not exclusively determine it. At least, the trend that stronger ZF damping

γdamp raises the power threshold PT is relevant to the empirical scaling in the higher

density region, because γdamp ∝ νii ∝ n. More systematic and quantitative study of the

power threshold requires modification of mean flow evolution by SOL-edge interaction,

as discussed in Section 3.

These results also suggest implications for future steady state experiments. We

note that neutral CX can damp zonal flows in experiments[16], indicating that high

edge neutral density is unfavorable to transition, as shown in Fig. 5. This finding can be

related to the long established experimental lore concerning the power threshold, ’dirty

machines’, re-cycling, etc. The results have implication for the recovery of H-mode in

steady state operation, should it be lost. In such a case, wall saturation and consequent

increased re-cycling can ultimately lead to strong CX damping of ZFs, making it difficult

to recover the H-mode, should a back-transition occur. This suggests that proper wall

conditioning, or reduction of wall impurity saturation, is necessary throughout the long

pulse H-mode operation, because the ZF shearing necessary to trigger the transition

may be more difficult to achieve.
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3. Physics of the ∇B-Drift Asymmetry.

One of the most persistent puzzles in L→H transition phenomenology is why power

threshold are lower for lower-single-null (LSN) configurations (with ∇B drift into the

X-point) than for upper-single-null (USN) configurations (with ∇B-drift away from

the X-point). Here, we briefly summarize recent progress on a model which links this

asymmetry to the interplay of magnetic shear and E×B shear induced eddy tilting and

its affection on Reynolds stress generated E ×B flows[17].

Simply put, either magnetic or electric field shear acts to tilt eddies. Thus, the

local radial wave number is given by,

kr(θ) = kr(θ0) + [(θ − θ0)ŝ− V ′Eτc]kθ (1)

where the first term is due to magnetic shear tilting, which varies with angle θ, and the

second term is E ×B shear tilting, which grows in time. Hereafter, we take τ = τc, the

correlation time and thus the eddy life time and θ0 = 0. Given the structure of kr(θ),

the total non-diffusive (i.e. ’residual’) Reynolds stress is

〈ṽrṽθ〉 = 〈ṽr2(0)〉F 2(θ)[−θŝ+ V ′Eτc] (2)

The θ-dependence of eddy tilting is shown in Fig. (6). Now the ’point’ is readily

apparent from observing that 〈θF 2(θ)〉θ will trend to vanish unless there is an imbalance

between contributions to the flux surface average from θ > 0 and θ < 0 – i.e. an up-

down asymmetry, as for LSN vs USN! The remaining question is to determine when

the magnetic shear induced stress adds or subtracts to the E × B shear induced stress

and the related flow production. To do that, the electric field shear must be computed

self-consistently, by solving the poloidal momentum balance equation:

∂t〈vθ〉+ ∂r〈ṽrṽθ〉 = −γCX〈vθ〉 (3)

where

〈ṽrṽθ〉 = −χθ∂r〈vθ〉+ Πŝ + ΠV ′
E

(4)

so

∂tvθ + ∂r(Πŝ + ΠV ′
E

) = −(γCX − ∂rχθ∂r)[VE + V∗i]. (5)

Here we have used radial force balance while neglecting toroidal flow, have

accounted for turbulent viscosity (χθ) and frictional damping (γCX) and retained

magnetic shear (Πŝ) and electric field shear (ΠV ′
E

) driven residual stresses. Of course,

〈VE〉′ in the latter also must satisfy radial force balance. Equation (5) is solved while

imposing the boundary conditions Er = −3∂rTe (i.e. determined by SOL physics) at

the LCFS and VE = −V∗i in the core. Assuming gyro-Bohm (GB) turbulence and

using standard parameters, we calculate VE/cs and V ′E, as shown in Fig. 7. It is readily

apparent that favorable (i.e. LSN) configurations give a larger and stronger edge electric

field shear layer than do unfavorable (i.e. USN) configurations. The effect is significant –

maximum shears are twice as strong for LSN than for USN. The corresponding Reynolds
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force is plotted in Fig. (8). We also note that the effect is not poloidal symmetric, when

variation in θ is considered. Thus, the flux surface averaged Reynolds stress cannot be

inferred from a single point measurement.

Future work will aim to integrate this analysis into the model discussed in Section

2. Along the way, the treatment of the SOL boundary conditions will be generalized.

4. Intrinsic Variability, Heat Avalanches, and Noisey Transitions

It is well known that the L→H transition exhibits significant variability. The scatter

in PT trends is large. Also, many anecdotes exist describing sudden transitions

in stationary, slightly subcritical states. In particular, I-phase→H-phase transition

appear noisey and unpredictable. Many observations have been reported, which

describe prolonged (i.e. > 100msec) I-phases at constant Pin, followed by sudden

L→H transitions. All this suggests that variability exists, and may be both extrinsic,

induced by the control system, heating, etc. system noise, and intrinsic, induced by

the stochastic character of the plasma dynamics. Intrinsic variability can impact the

transition via noise, as suggested some time ago[18], but not pursued since. Here we

argue that edge heat flux variability is a prime candidate for the origin of intrinsic noise

in the L→H transition. Such intrinsic variability associated with heat flux fluctuations

is relevant to the L→H transition in Iter, which will operate close to threshold.

The classic example of the effects of variability in the heat flux is the well known

observation that, for Pin ≤ PT , a sufficiently large sawtooth heat pulse can trigger

a transition upon its arrival at the LCFS[19]. This demonstrates the sensitivity of

the transition to the (local) surface heat flux, and not (global) power. More recently,

studies of edge turbulence on EAST have noted that sawtooth heat pulses coherently

modulate measured edge Reynolds stresses 〈ṽrṽθ〉 and zonal flows, thus establishing the

macro→micro connection[7]. Interestingly though, in addition to the familiar coherent

response, the EAST studies observed stochastic, high frequency modulations, suggestive

of an ensemble of ’micro-pulses’. Consistent with this, EAST results also indicated

that significant negative stochastic spikes in Er occur. This ’stochastic spiking’ is

suggestive of the ’noisey transition’ hypothesis, in turn begging the question of what is

the physical origin of the spikes? An obvious and likely candidate is heat avalanching.

Heat transport (and turbulence) is flux driven, so local gradients adjust to match the

heat flux. This leads to interaction of adjacent cells or eddies to form avalanches, as

in sand pile SOC models[20]. Avalanches are finite life time ’transport events’, with

a scale laval > ∆r, the turbulent correlation length. Symptoms of avalanching are the

appearance of a 1/f spectrum in the heat flux fluctuations and a non-Gaussian tail of

the heat flux PDF[21]. Avalanches have been observed in many simulations of transport

and micro-turbulence[22, 23]. These considerations suggest that the edge is continuously

bombarded by an ensemble of micro heat pulses which are due to the nature of flux-

driven turbulence. Such avalanches are a natural source of intrinsic variability.

There are many obvious questions concerning the effects of avalanching. Does heat
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flux noise trigger subcritical transitions, where ”subcritical” ≡ 〈Q〉 − Qcrit < 0 ? Here

Qcrit is the critical surface heat flux for transition, and corresponds to PT . Does the

nature of the noise matter – i.e. is subcritical transition attained more easily? Is

there a clear trend in whether or not the transition is achieved as one explores the

space of heat flux variance (σ2) vs. deviation from threshold (Qcrit − 〈Q〉)/Qcrit. More

fundamentally, what is the most meaningful formulation of the stochastic transition

problem? To address these questions with our model, we observe that the model

is local and diffusive albeit flux driven. In particular, intensity evolution and heat

balance give ∂tI = γ(R/LT − R/LTc, · · ·)I and Q = −n(χturb + χneo)∇T , respectively.

Thus, the fluctuation(including ZF) source γI ' (γ0/nT )fT IQ/(χturb + χneo). Here fT
is a threshold function, which introduces strong nonlinearity near threshold. Noting

that χturb ∼ χ0I, it follows that γI ∼ (γ0/nT )fT IQ/χneo close to threshold and

∼ (γ0/nTχ0)Q above threshold. As the pre-transition edge is strongly turbulent, we

see that fluctuation energy directly tracks the heat flux in the regime of interest. To

model the intrinsic variability of avalanching, we introduce a fluctuating component to

the heat flux, so now Q = 〈Q〉 + Q̃(t). The frequency spectrum of Q̃ is adjustable, i.e.

〈Q̃2〉ω ∼ ω−α, α = 0, 1, 2, · · · so as to model states of white noise (α = 0), avalanching

(α = 1), diffusive transport (α = 2) etc.

Results of model studies confirm that heat flux variability indeed can induce

subcritical transitions. Fig. 9a shows a stationary I-phase, at subcritical 〈Q〉. Adding

white noise results in a subcritical transition, after a time delay, as shown in Fig. 9b.

Interestingly, adding much weaker noise with a 1/f frequency spectrum results in a

subcritical transition after a slightly long time delay. Fig. 10 confirms the result that

subcritical transitions occur more easily for 1/f than for white noise of equal net

intensity. We speculate this is because 1/f noise has more power at lower frequencies,

with stronger autocorrelation, which facilitates stronger and more prolonged feedback.

This hypothesis is supported by Fig. 10 which shows plots of noise intensity vs.

Qcrit − 〈Q〉 for white (a.), 1/f (b.), and 1/f 2 (c.) noise. Note the model difference

between the domains of transition in Figs. 10a and 10b, while the results of Figs. 10b

and 10c are rather similar. This points to the key role of low frequency heat flux

variabilities in the transition.

To conclude this section, we remark on the lessons for experimentalists which it

conveys. First, to assess intrinsic variability, it is essential to characterize heat avalanche,

and turbulence spreading, especially near the edge (i.e. from No Man’s Land to the

LCFS). DBS and ECEI are natural candidates. Second, given that avalanches occurs

on mesoscale lmess > ∆c, it would be useful to determine the thickness of the influence

layer around the LCFS. By influence layer, we mean the zone from which perturbations

which trigger the transition may originate. Finally, fast externally driven modulation

experiments, and perhaps stochastic modulation experiments, would be of great interest.
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5. H→L Back Transitions and the Physics of Hysteresis

There is growing interest in H→L back transitions, since Iter will operate close to

threshold (P ∼ PT ), with limited control (〈τresp〉 > τE, where τresp is the response

time of the control system). Thus, H→L transition dynamics and the understanding of

hysteresis are critical. Hysteresis also gives a fundamental clue as to the ’order’ of the

transition. Some of the major questions concerning H→L back transition dynamics are:

(i) What is the fundamental process of the back transition? Is there a feedback loop?

(ii) does the plasma re-visit I-phase in the course of the back transition? Doing so

would ensure a ’soft landing’ after the back transition – an outcome which clearly

is desirable;

(iii) How do we describe and quantify hysteresis? How do profiles affect hysteresis?

Which transport channel exhibits the shortest hysteresis?

Here, we use our model to investigate these questions. We focus on an idealized model

of ELM-free back transition dynamics – i.e. a scenario of a ramp down from P > Pcrit.

This allows us to separate transport from MHD and ELM physics. Similar physical

experiments would be enlightening!

First, regarding the fundamental nature, of the back transition, Fig. 11 shows quite

clearly that in at least this case it is fundamentally a process of turbulence spreading into

a quiescent region. Figure 11 shows the advance of the turbulent core into the pedestal

(c.f. the evolution of the dashed blue curve). It also shows the drop in the mean shear

(red curve), as the region of maximal flow curvature – the ’corner’, where the turbulent

core connects to the steep gradient pedestal – collapses toward the LCFS. Finally, we

see that the ZF intensity (green curve) is dragged along by the turbulence, as it must

be. Thus, we see that the back transition is indeed a process where by the interface

between the turbulent core and the quiescent or neoclassical pedestal advances toward

the boundary. This turbulence spreading process is regulated by nonlinear couplings

(i.e. D0), zonal and mean flow control parameters (i.e. damping) and the transport

coefficient which determine the mean flow shear.

As feedback loop structure, since turbulence spreading is the key process, it’s

apparent that the feedback mechanism is: a drop in heat flux Q → a decrease in

〈vE〉′2 →invasion of the quiescent zone by turbulence →an increase in transport →a

drop in ∇T →a decrease in 〈vE〉′2, etc. Two key open questions here are: i.) how much

spreading can the pedestal tolerate before complete collapse?, ii.) does the threshold

power for back transition PTB correspond to that for which the spreading front penetrate

the LCFS. There questions will be answered in a future paper.

Second, regarding the question of the dynamics of H→L back transition, recent

cases from DBS studies on DIII-D[24, 25] suggest that the answer is ’yes!’ – the

system does pass through the I-phase during the H→L back transition. Indeed, the

LCO behavior seen in the forward transition is mirrored in the back transition, with

the ZF oscillation frequency increasing as the back transition progresses and relative
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physics between fluctuation and E × B velocity evolving the same way. Of course, the

ZF velocity peaks at the beginning of the back I-phase, but then decreases.

We emphasize, though, the key that in the back transition, the LCO is nucleated

at the pedestal shoulder, since that is the site of residual turbulence in H-mode. This

is related to the fundamental character of the back transition, which is a process of

turbulence penetration from an active core into the quiescent pedestal. The results of

model studies are shown in Fig. 12a,b,c. Figure 12b shows a slower ramp down than

Fig. 12a, while Fig. 12b shows a faster ramp down. Figure 12c shows clearly that an

I-phase and LCO appear on route from H-mode to L-mode. Note here, though, that the

LCO frequency increases during the back I-phase, and the zone of ZF and turbulence

activity slowly expands toward the LCFS. As before, the LCO induces ∇p oscillations

which drive Dα bursts. These, then, may correspond to their so called ’Type-III ELMs’

reported during the back transition[26].

Figure 12b examines the same case, with a 5 times slower ramp-down. Results are

similar, with a more extended I-phase. Fig. 12c shows a 10 times faster ramp down.

There, only a single burst of ZF activity occurs. The collapse to L-mode proceeds

quickly. Thus, it seems that the landing will not always be ’soft’, as the duration of

I-phase in the back transition depends upon the ramp down rate.

Turning to the critically important question of hysteresis, we note that this question

is both i.) highly relevant to Iter, ii.) fundamental to the nature of the bifurcation

transition, and thus of great interest. However, it’s curious to note that in distinct

contrast to the plethora of papers on L→H dynamics and the extensive databases for

threshold power, there are very few, if any, dedicated studies of back transition and no

databases for hysteresis. Indeed, a fundamental question hysteresis is how to quantify it,

in terms of physical quantities, other than the global PL→H/PH→L ( a holdover from the

days of global scaling). Of course, we realize that the physical underpinning of hysteresis

phenomena is the difference in transport between the L (strongly turbulent) and H

(neoclassical/weakly turbulent) regions. However, the questions of which channel?, what

quantity? etc. remain unanswered. Here, we define hysteresis in a transported quantity

as the ratio of the H-mode pedestal inverse scale length of that quantity to its pre-

transition counterpart, i.e. 1/LA,per/1/LA,L = LA,L/LA,per. This in turn suggests that

the corresponding Nusselt number NuA = DA,L/DA,ped is the natural parameter with

which to describe hysteresis. Note that DA,ped is the effective pedestal diffusivity. In

the case of Ti, DTi,ped = χi,neo but for density Dn,ped = Dn,resid, the residual turbulent

transport in H-mode. Note then that we expect hysteresis to be relative, i.e. some

gradients will relax faster than others. Relative hysteresis is naturally described by

pedestal or residual Prandtl number Prped ≡ Dn,ped/χi,ped etc. Thus, relative hysteresis

between density and temperature, should appear as a finite area loop in the phase

portrait of 1/Ln vs 1/LTi , with area scaling inversely with Prresid.

Model studies of hysteresis in scale lengths Ln, Lp and quantities n, p have been

carried out. The studies are straightforward (i.e. ramps up, then down) and net

hysteresis is calculated by measurement of the area of the hysteresis loop at r/a = .95.
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Figure 13a shows that measured hysteresis indeed tracks Nusselt number, which varies

as (χi,neo,0/χi,neo). Here χi,ped ∼ Dn,ped ∼ χi,neo, through Dn,ped and χi,neo differ by a

numerical factor. χi,neo,0 is a normalizing factor. The evident deviation from linear

proportionality of hysteresis to Nu at large Nu is likely due to difficulties in accurate

measurement of loop area. Figures 13b,c show the relative hysteresis of 1/Ln and

1/LT , for two different values of Prped ≡ Dn,ped/χi,neo. Relative hysteresis is evident,

and increases with 1/Prped, as it should. Finite relative hysteresis implies that the

H→L relaxation dynamics will not be the same in all quantities. Fig. 14a,b shows

hysteresis loop in scale lengths 1/Lp and 1/Ln vs heat flux Q, while Fig. 14c,d shows

the corresponding loops for quantities p, n. Interestingly, the gradient scale lengths

hysteresis plots are different from the quantity hysteresis plots. The former have a

(crudely) rectangular shape while the latter one rather clearly triangular. Of course,

there is no a-priori reason to expect these two sets of figures to be equivalent. This

observation illustrates the need to identify the most physically relevant quantities in

terms of which to define hysteresis.

Finally, we explore the macro-micro connection in Fig. (15). The dependence of

ZF damping on ion collisionality is equivalent to a dependence on χi,neo. Thus for

equal ramp down rates, there should be a relation between χi,neo and back-I phase LCO

frequency. This is confirmed in Fig. (15), which shows higher LCO frequency for longer

χi,neo (indicative of smaller Nu.

We now summarize this discussion of hysteresis and discuss its implication for

experiment. Model studies indicate

(i) hysteresis in lengh scale tracks Nu, as expected. Further study of hysteresis near

criticality is required.

(ii) relative hysteresis appears, and is related to Prped. Thus, we expect the H-mode to

be more resilient in L−1n than in L−1Ti .

(iii) different quantities (T, L−1T , · · ·) exhibit different hysteresis behavior. Scale length

hysteresis seem more fundamental than quantity hysteresis, as scale length are more

directly linked to the driving flux.

(iv) hysteresis appears linked to pedestal profile structure, since the back transition

develops from the pedestal shoulder.

Some of the implications for experiment are:

(i) study of ELM-free back transitions are illuminating, so as to isolate transport

physics from MHD physics.

(ii) fluctuation studies during the back transition should track the turbulence invasion

front, and attempt to determine the lag, if any, between changes in vE and changes

in intensity.

(iii) regarding the important subject of hysteresis,

• hysteresis should be characterized in terms of local physical quantities. Studies

of scale length vs. Nu would be especially illuminating.
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• relative hysteresis studies of 1/LTi vs 1/Ln and 1/LTi vs 1/LVφ would be

interesting, both on their own account and for their implications concern in,

pedestal transport.

• I-phase dynamics should be studied in connection with hysteresis.

We conclude this section with the observation that back transition dynamics is

an ideal testing ground for this or any other model. This is because the lack of data

and experience on back transitions necessarily forces the model to function in predictive,

rather than explanatory, mode. Predictive tests of models against back transition ’stress

tests’ should be pursued.

6. Conclusion – toward the Power Threshold.

We conclude by commenting on the ’bottom line’ question in L→H transition physics,

namely the power threshold. It is now rather clear that PT (n) follows a curve with a

minimum[2], as sketched in Fig. 16. For low n, PT (n) decreases, reaches a minimum

and then increases with n, roughly, linearly. From our understanding of L→H transition

dynamics (i.e. this model), we know that:

(i) the ZF ’triggers’ the transition;

(ii) the L→H transition is ’2 step’ : L→I and I→H;

(iii) at higher density, the two steps are not distinguishable without detailed analysis;

(iv) zonal flow damping is proportional to νii+νCX and thus density and neutral density.

Of course, the two steps are severely compressed by a fast power ramp. In that case,

the I-phase is just a short burst of ZF activity.

Thus, the model discussed here captures the essential physics of PT in the high n

branch. Interestingly, though:

• at low density, where PT (n) drops with n, a window for an identifiable and distinct

I-phase range opens;

• the lower PT bound of that window – namely Pcrit to access I-phase – falls roughly

on the low n extrapolation of the high n linear proportionality, which seems related

to zonal flow damping.

Thus, it seems that ZF damping continues to control access to I-phase at low density,

but additional physics enters the I→H transition in that regime. At high density,

L→I and I→H are macroscopically indistinguishable. Noting that low density is where

electron-ion decoupling occurs, we speculate that the low density I→H threshold may

be addressed by this model via:

(i) separately evolving Te and Ti including coupling and boundary conditions;

(ii) adopting Fundamenski et al.’s approach to linking Te,LCFS to divertor heat

transport[27]. This seems quite relevant at low density.
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Success here would recover the basic structure of the PT (n) curve in the context

of a model which already successfully captures the dynamics of the L→I→H transition.

Work is ongoing.
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Figure 1. Spatio–temporal evolution of turbulence intensity (a) I, (b) ZF shearing

energy E0, and (c) logarithm of MF shearing energy ln(EV ) as functions of time

t during a power ramp (2 × 105 < t < 4 × 105) and as a function of radius

(0.5 < r/a < 1.0).
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pp. IAEA–CN–197/EX/P7–17, 2012.
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Figure 2. three-dimensional color maps of the time evolution of (a) turbulence

intensity I, (b) ZF energy E0, and (c) MF shearing energy ln(EV ) as functions of

time t (during the slow power ramp regime (2 × 105 < t < 4 × 105)) and radius

(0.5 < r/a < 1.0). These pictures show nonlinear waves propagating inward from the

edge layer as the transition develops. What locally appears as a limit cycle is actually

a slice of propagating nonlinear wave in the edge layer.
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Figure 3. Time evolution of turbulence intensity I(blue solid line), ZF energy E0

(green solid lines) and mean square MF shear EV (red bold lines) at various radial

location of (a) r/a = 0.975, (b) r/a = 0.950, and (c) r/a = 0.925. The arrow indicates

inward propagation of the mean flow peaks. At constant phase, the innermost radius

leads in time, suggesting inward propagation.
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Figure 4. Spatio-temporal evolution of turbulence (a) I, (b) E0, and (c) ln(EV ) as

a function of time t during a fast power ramp 2× 104(a/cs) < t < 4× 104(a/cs), and

radius (0.5 < r/a < 1.0). (d) Time evolution of turbulence intensity I (blue chain

line), ZF energy E0 (green solid line), and MF shearing energy EV (red dotted line).

This figure shows that at the L→H transition t = 2.72 × 104(a/cs), the turbulence

quenches at a faster rate, the ZF increases before the transition and damps after the

transition, and MF shear rapidly increases at and just after the transition. (e) The

evolution of the product quantity P⊥ = αIE0. The product quantity exhibits a peak

just before the transition and quenches after the transition. (f) An evolution of η,

showing a single burst at t = 2.72× 104(a/cs).
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Figure 5. Spatio-temporal evolution of ZF energy E0 in cases with a fixed slow heat

flux power ramp and various ZF dampings.

Figure 6. Poloidal cross section of a LSN shaped plasma. The magnetic shear effect

is noticeable over the whole surface, and the flux expansion close to the X-point.
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Figure 7. (a) Radial profile of electrostatic velocity for unfavourable (light gray) and

favourable (dark grey) configurations. (b) Associated electric shear.

Figure 8. Radial derivative of the Reynolds stress across the profile for a favourable

configuration with a ballooning envelope, averaged over the flux surface (full curve) or

taken locally at the outboard midplane (dashed line).
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Figure 9. Spatio-temporal evolution of ZF energy with increasing heat flux during

(2.0 < t < 3.0) × 105(a/cs) to just below the L→H power threshold, and keeping in

t > 3.0× 105(a/cs), for the cases (a) without noise, (b) with white noise (σ2 = 10−1),

and (c) with 1/f noise (σ2 = 10−3).
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Figure 10. Scan of transition onsets with noise intensity (σ2) vs different subcriticality

(∆Q), and with different noise colors: (a) white, (b) 1/f , and (c) 1/f2 noises.
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Figure 11. Profiles of turbulence intensity, zonal flow energy, and mean flow shearing

energy as a function of radious r/a, with time interval ∆t = 1800(a/cs) from (a)

through (d).
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Figure 12. Spatio-temporal evolution of turbulence, zonal flow energy, mean flow, and

heat flux, in cases with (a) a ramp at a reference speed, (b) 5 times slower ramp-down

speed, and (c) 10 times faster ramp.
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Figure 13. (a) Plots of the area of hysteresis in L−1p , L−1n , and L−1T , compared with the

scaling of A ∼ Nu. (b,c) Relative hystereses, plots of L−1T vs L−1n with (b)Prneo = 0.25

and (c) Prneo = 1, exhibiting less strength of relative hysteresis in larger Prneo.
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Figure 14. Hystereses with plotting heat flux intensity Qa vs (a) L−1p , (b) L−1n , (c)

L−1T , (d) p, (e) n, and (f) T .
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Figure 15. Spatio-temporal evolution of zonal flow energy, with different neoclassical

heat diffusivity χneo
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Figure 16. Schematic cartoon of the power threshold dependency on n. I-phase onset

is roughly observed on the low n extrapolation of the high n linear proportionality.




