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Abstract

Performance-driven Analysis and Optimization in the Emerging System Architecture

Communication Paradigms

by

Zhizhou Zhang

Computation is increasingly complex, and our languages, systems, and design prac-

tices are changing to meet that shifting reality. That shift comes also with new chal-

lenges in debugging and optimization. In this thesis, we demonstrate that by adopting

performance-driven analysis and optimization around communication paradigms, we are

able to facilitate the development process and improve the performance of the programs.

Specifically, we show such improvements in improving the synchronization mechanism

in Golang by Hardware Transactional Memory (HTM), Critical Path Analysis (CPA) of

Remote Procedure Call (RPC), and optimizing programs by novel service of prediction

at Operating System (OS) level.
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Chapter 1

Introduction

There are increasing amounts of data generated every year and more computing power is

needed to process the data. To meet the raising requirement of the computation, simply

stacking more cores or machines is not enough. Each machine has physical limitations

and many of the computations are not easily scalable. Instead, more novel programming

languages, specialized tools and libraries, and new system architectures designs have been

developed to provide fast and effective support for demanding computation.

For instance, new programming languages like Rust, Go, and Swift are developed

since they can provide better support for concurrent programming, garbage collection,

modularity, and scalability. Such new features help programmers develop, debug, and

maintain more complex applications dramatically. At the same time, machine learning is

more widely applied to optimize the performance of complicated programs. The strong

capability of machine learning is able to find out solutions that easily outperform hu-

man experts in many scenarios. For application development, microservice designs are

gradually more popular in the industry and the modern data center. Compared with

the traditional monolithic design, microservices are noticeably superior in modularity,

scalability, and deployability.
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Introduction Chapter 1

However, the shift comes also with new challenges because of the complexity. Specifi-

cally many of the features like concurrent programming are error-prone, machine learning

methods are known for their indescribability, and microservices architecture is infamous

to debug and optimize due to the extreme complexity. We will break down the detailed

challenges of the new systems and tools below.

1.0.1 Concurrent programming

Golang [1] is one of the most representative new programming languages that has

gained substantial popularity recently. It has a wide application range including both

enterprise software [2] and open-source applications including Kubernetes [3] and li-

braries [4]. One of the reasons Go is popular is that Go has many syntax similarities to

C, which is prevalent to many developers already. But unlike C, Go supports concur-

rency as a first-class language component. Specifically, Go provides straightforward and

easy-to-use features for concurrent programming — any functions in Go can be scheduled

to run concurrently by simply prefixing the function call with the go keyword.

Although such a feature makes writing concurrent programs much easier in Go, pro-

grammers still need to explicitly manage the interaction between concurrently running

code. Normally there are two ways for the management: via passing messages through

channels [1] or explicitly synchronization control to the shared memory. In reality, the

latter approach is more widely used by developers. Among different synchronization ac-

cess control mechanisms, mutual exclusion via lock [5] is still the most prevalent way by

developers due to its simplicity [6].

However, it is well-known that locks can slow down the program by unnecessarily

serializing the concurrent execution, even if there is no shared memory accessed by con-

currently running code. There are many studies from the past in order to boost the

2
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lock-based program execution. One of the noticeable solutions to locks is transactional

memory (TM) [7]. Unlike lock, TM allows multiple pieces of code to be executed con-

currently and speculatively. If there is a conflict [8] detected, i.e. more than two pieces

of code touch the same memory and at least one of them is a memory write, at least one

piece of code will be rolled back and restart the computation. Otherwise, all executions

can proceed in parallel if no conflict has been detected.

TM is originally supported in software as STM [9, 10, 11, 12] and later available in

commodity hardware as Hardware Transactional Memory (HTM), including IBM, Intel,

and Arm [13, 14, 15]. However, despite the invention and research of TM over three

decades, the real-world application of TM to accelerate software has not gone too far.

There are several reasons that can potentially cause the gap.

One possible reason is that a lot of TM works from the past focused on designing and

implementing TM algorithms but only measuring the performance on synthetic bench-

marks (e.g., STMBench [16]) or evaluating selected concurrent data structures. When

it comes to the real-life applications [9, 17], TM was not able to generate convincing

performance.

Therefore, how to utilize the existing HTM techniques to boost real-world programs,

specifically in Go because of its concurrency-first philosophy, is an unsolved but worth-

while challenge.

1.0.2 Runtime Optimization

The runtime optimization problem is a set of challenges faced by developers frequently.

Consider when capable performance programmers find out the business-critical applica-

tion is running slowly but there is no obvious cause, normally they need to navigate

the potential optimization spaces for the trade-offs. However, the potential optimization

3
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spaces can be huge, and quite often it is difficult to make the decisions right away. For

instance, is it faster to run the code with Mutex lock as explicit synchronization control

than wrapping it optimistically in a transaction via TM? Should certain functions be in-

lined or compiled with different optimization levels? To answer the questions mentioned

above needs to balance a set of constraints. As our applications, system, and hardware

grow complicated, it is harder to characterize and understand all potential parameters in

the decision-making process, and even more difficult to find out an ideal solution using

ad-hoc heuristics.

Luckily, machine learning has proved a good fit to navigate the complex optimization

space and find out a good solution. The use case of machine learning approaches is not

limited to optimizing data structures [18], implementing state-of-the-art recommendation

systems [19], learning the structure and optimal access of the database [20], and improving

anomaly detection [21]. For another case of TVM [22], machine learning is able to produce

computing kernels that significantly outperform the design from human optimizers’.

Such a style of optimization is becoming more and more common in the past several

years and it makes little sense for each application to use its own internal ML frame-

work for parameter runtime optimization, where it elides the opportunities for sharing

of memory or exploiting common hardware resources.

On the other hand, many of the works mentioned above utilize complex machine-

learning models. Although they are capable to generate performant solutions, the high

cost of the training and inference hinders a broader application, especially when the

target itself is relatively simple. An ideal model should be able to generate accurate

results with relatively low latency.

Therefore, it is time to consider what type of new abstractions is necessary to facilitate

broader use of this important style of the runtime optimization problem and how to

provide low-cost but good quality results for runtime optimization.

4
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1.0.3 Microservices

Microservice architectures [23, 24, 25, 26, 27, 28, 29] have become the cornerstone

of modern service-oriented software systems. Unlike monolithic software development

and deployment, the microservice environment breaks down the business logic into indi-

vidually deployable programs. Such an approach allows fast development and scalable

deployment. Between the microservices, individual instances interact with each other

via remote procedure calls (RPCs). As the business grows larger, microservices increase

in number, and the interaction becomes much more complex. In addition, the RPCs

are often deeply nested, asynchronous, and hierarchical, which makes it extremely diffi-

cult to identify the source of the problems. However, understanding microservices of the

business-critical request and how to optimize them is very important for developers.

We can consider Uber’s backend as an example of microservice architecture. There

are around ∼4,000 microservices interacting with each other via RPCs. What is more,

each microservice hosts several APIs. In total, there are more than 40, 000 unique RPC

endpoints that can call each other in complex ways.

When a service request arrives at an entry point API to the backend system, it needs

multiple “hops“ through many RPCs before being fully serviced. The interactions are

also asynchronous, deeply nested, and can invoke multiple other downstream APIs. As a

result, it is extremely hard to identify which service(s) contribute to the overall end-to-

end latency when top-level request performance degradation is detected [30, 31, 32, 33,

34, 35, 36]. The answer to the question is very important in many scenarios, including

• Identifying potential opportunities to optimize top-level microservice

• Spotting bottleneck APIs that affect other endpoints

• Setting appropriate time-to-live threshold for RPCs

• Diagnosing error and outages conditions

5
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• Advising for computing and other datacenter management

Therefore, certain analysis is needed for better microservice architecture at the dat-

acenter scale.

1.0.4 Commonality of the Challenges

Although the three cases mentioned above are quite different in terms of the exact

reasons for the challenge, they share certain commonalities if we examine them carefully.

The fundamental challenge for the three cases is around communication paradigms.

Hardware lock elision (HLE) is focused on the synchronization mechanism between dif-

ferent cores or threads. How to utilize different communication schemes including trans-

actions and Mutex locks is the region of interest. Meanwhile, the key to solving runtime

optimization problems using machine learning is to find the proper abstraction of the

fundamental machine learning services and provide efficient implementation at the right

location accordingly. The communication paradigm is crucial to consider when we need to

design a component that allows Operating System (OS) to communicate with user-level

applications efficiently. Last but not least, communication paradigms are the cornerstone

of Remote Procedure Calls (RPCs), which implement the microservices at the datacen-

ter. In order to analyze the microservices well, it is required to understand the nature of

the RPCs and come up with appropriate tools.

In terms of how to solve these challenges, we propose to use performance-driven

analysis and optimization. The challenges are from real-world applications with spe-

cific performance requirements. They are also complex and dynamic in nature, hence

performance-driven analysis and optimization is one of the best-fitting methodologies.

Therefore, we present the thesis statement below after observing those commonalities.

6
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Thesis Statement

In this thesis, we demonstrate that by adopting performance-driven analysis and

optimization around communication paradigms, we are able to facilitate the devel-

opment process and improve the performance of the programs. Specifically, we show

such techniques in improving the synchronization mechanism in Golang by Hardware

Transactional Memory (HTM), optimizing programs by novel service of prediction

at the Operating System (OS) level, and analyzing the complex system within a

datacenter by Critical Path Analysis (CPA) of Remote Procedure Call (RPC).

For synchronization mechanism improvement in Golang, we propose a framework,

named GoCC, to utilize Hardware Transactional Memory to speed up certain Mutex

locks. The framework identifies Mutex locks from the source file, analyzes the valid

replacement candidates, rewrites the code with HTM automatically, and provides an

efficient runtime library. The analysis includes detailed and thorough static analysis at

the intermediate representation (IR) level so that the transformation from Mutex locks

to HTM is always safe and valid. The runtime library contains a lightweight controller

that can choose HTM or Mutex locks efficiently and effectively at runtime.

For prediction system service (PSS), we propose a new system-level service that can

provide a simple but effective prediction inspired by GoCC. The prediction can be shared

among different applications and tasks at both the user level and kernel level. The

prediction-based mechanism is particularly helpful for certain types of runtime optimiza-

tion problems. By effectively and efficiently guiding the decision at the runtime, PSS is

able to improve the performance of applications in different fields.

For microservices at datacenter scale, we adopt critical path analysis (CPA) on the

sampled trace to pinpoint the top contributor to the end-to-end latency. We built a tool

named CRISP to extract the critical path from the collected trace at Uber and developed

7
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tools to help programmers debug the service. CRISP also enhances anomaly detection

by reducing training and inferencing time and improving model accuracy.

In summary, we adopted performance-driven analysis and optimization around com-

munication paradigms for emerging programs and systems. We believe such an approach

is able to further help developers optimize and debug complex applications.

The structure of the rest of the thesis follows:

• In Chapter 2, we study on how to accelerate Mutex lock with Hardware Transac-

tional Memory (HTM) in Golang. We propose a framework named GoCC that is

able to identify, analyze, and replace the Mutex with HTM in the given Golang

source code. The procedure in the framework is sound, automatic, and efficient.

With the help of a newly designed runtime controller, GoCC is able to speed up

Golang programs with limited downside.

• In Chapter 3, we show how to solve several dynamic optimization problems with a

novel prediction system service (PSS). PSS is able to provide a cheap but efficient

prediction mechanism for a variety of tasks at both user-level and kernel-level and

allows model updates based on the correctness of the prediction. To validate the

broad applicability of PSS, we apply it in three different scenarios: Hardware Lock

Elision (HLE), parameter tuning for Just-In-Time (JIT) compiler, and page reclaim

of memory management in Operating System.

• In Chapter 4, we illustrate how to perform critical path analysis (CPA) on the

microservice traces and enable better debugging and optimization abilities for the

developers. We build a tool named CRISP, which is able to provide several popu-

lar tools for debugging, including flamegraph and heatmap. CRISP can also offer

significant speedup for anomaly detection and improve prediction accuracy notice-

ably. Besides, CRISP can also guide the hardware selection given the emerging

8
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microservice workload.

9



Chapter 2

Optimistic Concurrency Control for

Real-world Go Programs

2.1 Introduction

Golang [1] (or simply Go) is a modern programming language that has gained sig-

nificant popularity over the last decade. It is being used to write enterprise software [2]

(e.g., to implement backend services) in some of the largest technology companies as well

as to develop large and widely used open-source applications (e.g., Kubernetes [3]) and

libraries (e.g., Tally [4]). The design of Go is inspired by C, but unlike C, it supports

concurrency as a first-class language construct. Even more importantly, and unlike other

popular languages with first-class concurrency support (e.g., Java), the Go language goes

to great lengths to simplify concurrent programming by making concurrency easy to use

(and thus frequently used) by the developers [6] — any function in Go can be scheduled

to execute concurrently with the rest of the code as a goroutine [1] by simply prefixing

its call with the go keyword.

Although Go makes writing concurrent programs easier, it still requires programmers

10
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to manage interactions between concurrently executing code — this can be accomplished

either via passing messages through channels [1] or explicitly synchronizing accesses to

shared memory. Shared memory is used more often than message passing by Go devel-

opers, and mutual exclusion via locks [5] remains the most widely-used synchronization

mechanism across several applications [6]. It is, therefore, the focus of our work.

Locks may unnecessarily serialize concurrent execution, even if the code operates

on disjoint data. Our work aims to improve the performance of concurrent Go code,

particularly code hiding behind needlessly held locks. Our goal is to accomplish this while

retaining the correctness of concurrent execution. We utilize the concept of transactional

memory (TM) [7] to achieve this goal. The general idea behind TM is to decide on

whether two (or more) pieces of code can be executed concurrently based on whether

their accesses to the underlying data are conflicting [8] or not, that is, if at least one of

the accesses is a write. Conflict-free executions are allowed to proceed in parallel. On the

other hand, upon encountering a data access conflict, execution effects of at least one piece

of code have to be rolled back (i.e., undone), and the computation must be restarted. TM

machinery, which originally started in software (STM) [9, 10, 11, 12], is now available in

commodity hardware as Hardware Transactional Memory (HTM) [13, 14, 15]. However,

despite almost three decades of work in this area, TM’s promise of accelerating concurrent

computations for real-life software has not been quite fulfilled. We speculate that there

are two reasons why this is the case.

The first reason is that TM while being a single concept, may have different re-

alizations in terms of algorithms and implementations (e.g., eager vs. lazy version-

ing [37]) and different integration strategies at the language level (e.g., API-level so-

lutions [12] or the compiler-assisted atomic construct used to demarcate TM-managed

concurrent code [38]), resulting in different behavior from the programmer’s perspective.

Consequently, attempts to introduce TM as a separate language-level mechanism lead
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to significant semantic dissonance with respect to existing concurrency-related mecha-

nisms [39, 40].

The second reason is that a lot of TM (particularly STM) work was focusing on de-

signing and implementing TM algorithms but limiting empirical evaluation to synthetic

benchmarks (e.g., STMBench7 [16]) or measuring the performance of only selected con-

current data structures. Unfortunately, unlike what was expected, TM techniques did

not easily generalize to real-life applications [9]. A few attempts to apply TM to produc-

tion code were unsuccessful (e.g., an attempt to rewrite the Quake game server to use

TM [17]).

In this work, we attempt to rectify some of these limitations and show that TM can

be effective in accelerating real-life concurrent code. We focus less on the algorithmic side

of TM (we use state-of-the-art off-the-shelf HTM implementation from Intel), and more

on how and when to apply the TM machinery to maximize the benefit. Additionally,

we replace Go locks with HTM constructs without changing the code’s behavior in any

way, which allows us to completely bypass complications related to transactional memory

semantics. More specifically, we employ transactional lock elision (TLE) [41] — a well-

known technique that attempts to execute a lock-protected critical section as an atomic

hardware transaction, reverting to using the lock if these attempts fail.

Figure 4.9 depicts our solution. At a high level, our solution starts with using static

analysis to identify candidate lock-protected critical sections to be instead protected by

the HTM. Then we filter out non-desirable candidates using both static analyses (e.g., to

eliminate regions containing I/O operations) and dynamic analysis (to eliminate regions

where the application of the HTM would not be beneficial based on profile data collected

at runtime). Finally, we rewrite the code to have candidate regions use HTM constructs

provided by the HTM library we developed instead of Go locks [5]. Gocc transformations

are guaranteed to be safe; developer involvement is optional but highly recommended to
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let developers ultimately decide whether or not they want to use HTM.

In summary, this work makes the following contributions:

1. We present the design and implementation of a framework for identifying lock-protected

critical sections and select the best candidates for lock elision based on static analysis

and execution profiles of Go programs.

2. We describe the source-to-source code transformation to replace mutual-exclusion

locks in Go programs with HTM concurrency control constructs.

3. We introduce a library extending vendor-provided HTM primitives with intelligent

features such as runtime contention management. Specifically, we devise a lightweight

perceptron [42, 43] that learns whether eliding a lock via HTM at a call site [44] is

beneficial at runtime.

4. We demonstrate the effectiveness of Gocc for improving performance of real-life con-

current Go code by up to 10×.

2.2 Challenges

Locks are widely used in the real-world Go code and a significant amount of execution

time can be spent waiting to acquire them [6, 45, 46, 47, 48, 49, 50] 1. It is possible

to replace a lock with a transaction that enables a critical section to be speculatively

executed without actually holding the guarding lock. With the support of the HTM, such

replacements can result in significant speedups. However, there are several challenges in

performing these replacements correctly and robustly and ensuring that they deliver high

performance reliably.

First, automatically and accurately matching a lock with its corresponding unlock op-

1A limited study we performed in a large-scale industrial setting using thousands of different Go
services showed up to 30% execution time being spent in lock-related code in certain Go programs;
5-10% was quite common.
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m:=&sync.Mutex{}
for cond { 
  m.Lock()
   …
  m.Unlock()
 …
  m.Lock()
   fmt.Printf(“Hi”)
  m.Unlock()
}
m.Lock()
…
defer m.Unlock()

l:= OptiLock{} 
m:=&sync.Mutex{}
for cond { 
  l.FastLock(m)
   …
  l.FastUnlock(m)
 …
  m.Lock()
   fmt.Printf(“Hi”)
  m.Unlock()
}
m.Lock()
…
defer m.Unlock()

FastLock  
 (m *mutex)
{..}

FastUnlock
(m *mutex)
{..}

OptiLib

Dropped for 
low execution  

count

Dropped for 
HTM-unfriendly 

code (printf) 

Valid candidate 
with 

frequent use

Input: example.go Output: example.go

Analysis & 
Transformation

Review

HTM runtime

Figure 2.1: Gocc schematic diagram. Static analysis detects three legal lock-unlock
pairs in the input file example.go. The top one is a valid replacement candidate. The
middle one is filtered since it contains I/O operations in its critical section. The bottom
one is dropped due to the infrequent use via the information provided by profiles. The
transformed code calls optiLib, which executes the critical section via HTM. The re-
sulting diff is given to the developer for review.

eration to precisely identify critical sections is a complex problem. Real-world programs

can use locks with nesting intra- or inter-procedurally, which makes it significantly more

involved. Additionally, certain lock-compatible instructions (e.g., IO and privileged in-

structions) will not work with HTM. A critical section including such instructions will

not benefit from HTM.

Furthermore, Go provides a keyword that enables delaying lock release operation to

all exit points of a function by prefixing the Unlock() operation with the defer [51]

keyword2. It not only complicates matching an unlock with a lock operation, it may

unnecessarily lengthen a critical section, which according to a synthetic benchmark we

2Any function can be deferred in Go.
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wrote shows performance degradation. A scan of 21 million lines of industrial Go code,

which includes about 8000 Unlock() operations, shows that about 76% are prefixed with

the defer keyword. This indicates that handling defer statements is important.

Second, the Go language nuances [1] (e.g., pointer vs. value syntax, anonymous

Mutex fields, lambda functions, etc.) make it non-trivial to transform lock-based code to

HTM-based code.

Third, HTM has startup and commit overheads. Even in non-concurrent code, where

data-access conflicts do not happen, HTM can fail [52], and locks may outperform HTM,

particularly on tiny critical sections [53].

Fourth, the critical section size can be hard to estimate in general. If we make

the conservative design choice and do not replace the lock if the critical section size is

unknown, we can miss the opportunity to generate significant performance improvement.

Thus, we need some runtime mechanism that can handle critical sections of arbitrary sizes

with low overhead.

Fifth, when HTM aborts for a genuine data-access conflict, naively falling back to

using a lock can be detrimental to performance [54, 55]. Deciding when and how to

retry HTM-based executions or fall back to using fine-grained locks must be handled

very carefully to avoid pathologies [54, 55, 56].

Our tool, Gocc, attempts to solve the above challenges. Gocc is an end-to-end

system for improving the performance of lock-based Go code using HTM. We devise

a sophisticated program analysis to identify lock-protected critical sections (§ 2.5.2),

support lock-to-HTM code transformation including non-trivial Go features (§ 2.5.3),

and develop an efficient HTM library to handle issues manifested at runtime (§ 2.5.4).
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2.3 Related Work

Herlihy and Moss proposed transactional Memory (TM) [7] in 1993 as an alternative

to locks. While locks proactively prevent two or more threads from concurrently accessing

shared data, TM takes the opposite approach — concurrent accesses are allowed as

long as they do not conflict. A lot of work has been done around both software and

hardware implementations of transactional memory [10, 11, 12, 13, 14, 15, 57], but only

a few [9, 17, 58, 59] focused on evaluating the approach with real-life workloads, and

none have done this for Go.

Intel’s TSX extension of x86 instructions set [60] implementing HTM is of specific

interest here as it underlies parts of our implementation. It is widely available in modern

Intel CPUs and offers software interfaces providing subtly different functionality. The

RTM (Restricted Transactional Memory) interface allows programmers to execute arbi-

trary code as a hardware transaction. All operations within a transaction have atomic

execution behavior — they all either appear to happen instantaneously or the entire

transaction aborts and reverts the architectural state to before it was started. This can

be trivially used to emulate the behavior of mutual-exclusion locks. In fact, this is pre-

cisely the kind of functionality that the HLE (Hardware Lock Elision) interface provides.

However, HLE has been introduced mainly for backward compatibility with architectures

that are not TSX-enabled and is not only very simplistic (e.g., with respect to contention

management) but has also been shown to perform poorly compared to RTM [61]. Conse-

quently, our solution uses the RTM interface as the low-level implementation mechanism

to build a comprehensive TM-based alternative for mutual-exclusion locks.

Lock elision, whether in software or hardware or a hybrid fashion, including gaining

insights into them, has been extensively studied [62, 56, 63, 57, 64, 65, 66, 67, 68, 69, 57,

70, 14, 71, 72, 73, 74, 75, 76, 77]. Our work uses many of those techniques; for example,
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the basic design of our runtime controller was inspired by Wang et al. [75]. Additional

possibilities to bring more solutions from the literature to the design and implementation

of both our static analysis tool and runtime controller also exist. Other attempts to use

transactional memory for emulating mutual-exclusion locks exist as well [78, 79], but

they have to cope with higher overheads and semantics-related complications due to

using the STM, they target the Java language whose synchronization lock-like primitives

(i.e., monitors) are easier to handle due to their lexical scoping and, most importantly,

their evaluation is based exclusively on synthetic benchmarks.

2.4 Gocc Overview

A Go Mutex is a runtime object with Lock() and Unlock() operations on it. Two (or

more) critical sections guarded by the same Mutex will not execute concurrently. When

transforming locks into HTM, there are two possibilities.

1. A given Mutex guarding a set of critical sections is replaced with another object

supporting operations analogous to Lock()/Unlock() but provided by the HTM. As

a result, all critical sections previously guarded by the Mutex are now executed under

HTM’s control.

2. Lock()/Unlock() operations of the Mutex are replaced with their HTM equivalents

on a per critical section basis. As a result, some critical sections for a given Mutex are

still guarded by the same Mutex, while the others execute under HTM’s control.

The former is doable only if it is beneficial to transform all Lock()/Unlock() op-

erations using a given Mutex, and the Mutex object is defined in the code that we are

rewriting. Assessing the benefit of transforming the Mutex object would require in-

specting every critical section it protects. A “may alias” pointer analysis [80, 81] can

answer such a question. The “all-or-none” coarse-granularity of this approach makes it
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unattractive because the imprecision of pointer analysis overapproximates the critical

sections protected by a Mutex, disqualifying too many Mutexes from transformation.

This work adopts the latter approach, where we consider pairs of Lock()/Unlock()

operations in the code for transformation, which provides fine-grained control over trans-

formation. This approach has to handle pairing a lock with its corresponding unlock

and support interoperability of HTM (where the code is transformed) with locks (where

the code is not transformed). This kind of interoperability is well-studied in the litera-

ture [82, 83, 13, 84, 55] and is handled by our library.

Recall, from Figure 4.9, that input to Gocc is the source code for a Go package

along with its execution profiles. The output is a source code patch, where candidate

Lock()/Unlock() operations are replaced with calls to a custom HTM library. Gocc

consists of the following key components:

• Analyzer: performs static analysis on the input program and collects lock-unlock pairs

for transformation (§ 2.5.2).

• Transformer: rewrites the program by replacing Lock()/Unlock() with HTM, i.e.

FastLock()/FastUnlock(), which elide the lock (§ 2.5.3).

• Adaptive runtime (optiLib): implements HTM in Go and provides required runtime

mechanisms including retry and rollback (§ 2.5.4).

The source code patch choice, rather than a compiler transformation, is motivated by

the desire to keep the developers in the loop. Using HTM without developers’ knowledge

can prove unwelcome because developers often demand full visibility into their programs.

Developers are becoming performance and variance sensitive [85, 86, 87], and an acciden-

tal regression can become hard to diagnose. As a side effect, the choice of source-code

patch demands us to be surgical — injecting large, complicated HTM-handling boil-

erplate code is a non-starter. Consequently, we perform Lock()/Unlock() operations

replacements with API calls to HTM logic hidden in the optiLib open-source library
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and do so only in places where benefits of HTM are likely (e.g., we minimize the number

of modified code locations using execution profiles).

2.4.1 Gocc Guarantees and Limitations

• Gocc will transform properly synchronized code (i.e., where every lock operation will

have a corresponding unlock operation) into the equivalent code without changing the

code’s behavior. Code not meeting this criterion will be either not transformed or

transformed and its runtime behavior will be unchanged.

• Gocc considers only those lock-unlock pairs that seem to operate on the same lock

within the same function — inter-procedural Lock()/Unlock() operations are dis-

regarded. Note, however, that in a critical section protected by Gocc transformed

lock can make arbitrary function calls. The requirement to have both Lock() and

its matching Unlock() operation be present in the same procedure scope is only our

implementation choice and pragmatic in nature. Over 70% of the locks, we inspected

met this criterion.

• Gocc makes no effort to identify critical sections or code reachability in the presence

of reflection [88].

• Gocc, as implemented, does not statically detect HTM conflicts or capacity limitations

(see § 2.5.2 for the details).

2.5 Gocc Design and Implementation

Before diving into the details of Goccs design and implementation, we define some

common terminology.
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2.5.1 Terminology

Go’s sync package provides two kinds of shared memory objects: Mutex and RWMutex.

Gocc handles them both, but in the following sections, without the loss of generality, we

will only use the term Mutex for simplicity. From an HTM transformation viewpoint, an

RWMutex is no different from a Mutex, except RWMutex offers additional APIs for read-only

accesses.

A critical section CS is all code regions protected by a pair of lock and unlock

operations on the same mutex object m — the notation for calling lock/unlock operations

on m is m.Lock()/m.Unlock() where m is referred to as a receiver. Lock-point, abbreviated

with letter L (Unlock-point abbreviated with letter U), is a static location in the code

where the Lock() (Unlock()) function is invoked on a Mutex. LU-points is a set of L and

U points. LU-pair is a candidate pair of one lock-point paired with an unlock-point. In

the runtime context, fastpath/HTM-path means the use of HTM, and slowpath/fallback-

path means the use of the original lock.

We utilize the Abstract Syntax Tree (AST), program Control Flow Graph [89] (CFG),

and Static Single Assignment (SSA) [90] form of program representation prevalent in the

compiler literature. In a CFG, nodes are basic blocks [89] of straight-line code, and edges

are control flow relationships among them. Gocc first transforms the source code to the

AST form (which is also used for code transformation as described in § 2.5.3) and then

to the SSA form for CFG construction.

2.5.2 Analyzer

The goal of the analyzer is to find as many LU-pairs as possible. The LU-pairs that

protect HTM-incompatible critical sections (e.g., those including IO operations) must

be pruned. This filtering serves two purposes: it reduces the number of code changes
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and non-beneficial HTM transformations. Complicated lock usage patterns, several Go

language quirks, and pointer imprecision complicate the static analysis. A comprehensive

call-graph analysis is vital because critical sections often contain function calls.

Conflicts: A sophisticated static analysis may detect whether transactions conflict.

Answering this question, however, is unlikely to be valuable because developers typically

do not use a lock if a conflict is impossible. Assuming conflicts happen, there is no easy

way to statically determine whether transactions do not “typically” conflict. We do not

try to solve this problem and leave conflict resolution to optiLib.

Capacity: Although one can perform static analysis to estimate the memory foot-

print of a critical section, it may not be possible if the bounds of a loop are unknown.

Also, without knowing the target architecture’s HTM capacity, it would be premature

to filter out candidate critical sections this way. We leave the capacity-related decisions

also to optiLib.

In the rest of this section, we, first, define the scope of our transformation (§ 2.5.2);

then, describe the process of matching a lock with an unlock operation within a code

region assuming no lock nesting and no function calls in a CS; extend our analysis to

include nested locks (§ 2.5.2); expand the analysis scope toCSs that may contain function

calls (§ 2.5.2); detail special case of Go’s defer statement (§ 2.5.2); and finally discuss

profile-based filtering (§ 2.5.2).

Scope of Transformation

To simplify the analysis, if a Lock()/Unlock() operation is executed in the middle of

a basic block, we break such basic blocks in the CFG so that each lock-point begins a new

basic block and each unlock-point ends a basic block. A single-entry single-exit (SESE)

region [91] (simply region) of a CFG is our smallest granularity of lock transformation. A

region is a subgraph of a CFG. Control reaching any basic block in a region is guaranteed
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to have already executed a designated entry basic block; control leaving from any basic

block in the region is guaranteed to eventually pass through a designated exit basic block.

A function is the largest granularity of our lock transformation; a function always

forms a region because all exits from a function are considered to go through a dummy

basic block. This choice is pragmatic in nature since LU-pairs spanning multiple functions

are uncommon.

Regions can be nested within one another. A Program Structure Tree (PST) organizes

regions into a hierarchical tree [91]. We visit regions inside out from most-nested to least-

nested. Section 2.5.2 describes the region identification and visiting strategies, which are

not central to this work.

Splicing SESE regions for maximal LU-pairing

Although the classic definition of a program structure tree PST [91] provides hier-

archical access to SESE regions, one may miss certain lock matching opportunities if

multiple lock and unlock statements happen in a straight-line sequence, as shown in

Figure 2.2. In this example, there is no conditional execution or loops from the first

statement to the last hence, even though LU-points split the basic blocks, the standard

SESE would place all such basic blocks in a single innermost region without further nest-

ing. This would complicate which lock to pair with which unlock since the region has

more than one LU-pair.

We solve the pairing problem in such straight-line code sections by performing addi-

tional processing to splice a region further based on LU-points. The idea is simple; we

utilize the dominator and post-dominator trees [89] for the region. Only the nodes that

contain a lock-point are of interest in the dominator tree (DomTree). Only the nodes

that contain an unlock-point are of interest in the post-dominator tree (PDomTree).

We perform a post-order traversal of the DomTree. For each lock-point L in this
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traversal in DomTree, we look up L’s immediate post-dominator in the PDomTree,

which is an unlock-point U . We then perform the reverse test, we look up the immediate

dominator of U in the DomTree that is a lock-point, say, L̂. If L = L̂, we have the

innermost matching of a candidate LU-pair. We also check that their points-to sets

intersect. If no matches are found, we traverse up in the DomTree till a match is found

and drop the candidate L if none is found.

Matched pairs are no longer considered when matching other lock-points or unlock-

points during the rest of the post-order traversal of nodes higher-up in the DomTree.

This strategy breaks a straight-line sequence into the maximum number of LU-pairs, as

shown with demarcated SESE-regions in Figure 2.2.

Matching LU-pair in the Absence of Nested Locks

This subsection discusses analyzing a candidate region R.

LU-points in R may be operating on different locks, which should be pruned. Some

lock (unlock) operations may escape R, without a corresponding unlock (lock) operation

in R, which should also be pruned. Below, we formalize these aspects.

Definition 2.5.1 (Points-to set M(L) of a Lock point L). Every lock-point (L) operates

on some receiver mutex pointer p.3 Such a mutex pointer may point to one or more

mutex objects allocated in the program. The set of all possible Mutex objects that p may

point to in the program is the Points-to Set of L, denoted by M(L).

Similarly, the Points-to set of an Unlock point U is M(U). We employ Anderson’s

flow-insensitive may-alias analysis [92] to obtain M(L) and M(U) on the whole program.

3At the source level p can be either a pointer or an actual object value, but at the SSA level it is
always a pointer.
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A.Lock() 
 S1 
A.Unlock() 

B.Lock() 
  S2 
  C.Lock() 
  S3 
  C.Unlock() 
B.Unlock() 

D.Lock() 
  S4 
D.UnLock() 

E.Lock() 
 S2 
 F.Lock() 
  S3 
 E.Unlock() 
F.Unlock()

Figure 2.2: A straight-line sequence of statements that fall into a single region are further
spliced into regions based on matching a lock-point with the nearest post-dominating
unlock-point and unlock-point with the nearest dominating lock-point.

1

2 m := &sync.Mutex {}
3 m.Lock()
4 m.Unlock ()

Listing 2.1: Original lock-based code.

1 l := OptiLock {}
2 m := &sync.Mutex {}
3 l.FastLock(m)
4 l.FastUnock(m)

Listing 2.2: Transformed HTM code.

Definition 2.5.2 (Downward Exposed Lock-point (DELock)). A lock-point, L, with

points-to set M(L), is downward exposed in the region R, if there exists at least one path

from L to R’s exit without any unlock-point on any mutex in M(L).
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a.Lock()

c.Unlock()b.Unlock()
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{l,m}
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Figure 2.3: a.Lock() is Downward

Exposed.

c.Unlock()

b.Lock()a.Lock()
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Figure 2.4: c.Unlock() is not Upward
Exposed.

b.Unlock()

a.Lock()
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Figure 2.5: Region dominated by lock and post-dominated by unlock.

Definition 2.5.3 (Upward Exposed Unlock-point (UEUnlock)). An unlock-point, U ,

with points-to set M(U), is upward exposed in the region R if there exists at least one

path from R’s entry to U without a lock-point on any mutex in M(U).

DELock identifies lock-points that definitely do not have any corresponding unlock-

points in some execution paths in R; and UEUnlock identifies unlock-points that defi-

nitely do not have corresponding lock-points in some execution paths in R.

Figure 2.3 exemplifies a downward exposed lock-point. Mutex pointer a’s points-to set

{l,m}, has an empty intersection with b’s points to set {p}; although it has a non-empty
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intersection with c’s points-to set {m,n}. Figure 2.4 exemplifies an unlock-point that is

not upward exposed. Mutex pointer c’s points-to set {m}, has non-empty intersection

with a’s points-to set {m,n} and b’s points-to set {m, k}.

We eliminate all DELock(R) and UEUnlock(R) from the transformation in R.

The remaining lock-points in R are the complement of DELock(R), which is denoted

by DELock(R). Similarly, the remaining unlock-points in R are the complement of

UEUnlock(R), which is denoted by UEUnlock(R).

Definition 2.5.4 (Feasible-HTM-Pair). Let L ∈ DELock(R). Let U ∈ UEUnock(R).

L and U form a feasible HTM pair if all of the following conditions are true,

(1) M(L) ∩M(U) ̸= ϕ,

(2)
(
L Dom U

)∧ (
U PDom L

)
,

(3) The critical section C ⊆ R guarded by L and U contains no LU-point X such that

M(X) ∩
(
M(L) ∪M(U)

)
̸= ϕ, and

(4) C contains no HTM-unfriendly instructions.

Condition (1) filters out those LU-points that are guaranteed to be operating on

different Mutexes.

Condition (2) filters out infeasible control flows where unlock happens before lock

and vice-versa. Dom and PDom respectively represent dominator [89] and post-

dominator [89] relationships in a CFG. Figure 2.5 shows an example, where all paths

from lock-point a.Lock() are post-dominated by unlock-point b.Unlock(), whose all

incoming paths are dominated by a.Lock(). Additionally, the set-intersection of the

points-to set of mutex pointers a = {m, p} and b = {m,n} is non-empty. Any Feasible-

HTM-Pair on L and U , forms an SESE-region by itself, where the entry basic block has

L as its first instruction and the exit basic block has U as its last instruction. Condition

(2) intuitively finds correct candidate LU-pairs in the absence of nested locks because if
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a lock operation L is performed on every path reaching any code in C and an unlock

operation U is performed on every path exiting C, then LU must be operating on the

same Mutex. Section 2.5.2 justifies our choice of Dom/PDom relationships.

Condition (3) ensures that if we match an L with a U , there does not exist another

lock-point or unlock-point in the same region that may operate on a Mutex in the same

points-to set as that of L or U . The next subsection elaborates on lock nesting.

Condition (4) is an obvious requirement to ensure HTM does not abort. A region is

unsafe if it contains any IO instructions.

Since we use “may alias” to match a lock-point with unlock-point, it is possible (but

less likely) for our transformation to pair a lock with an unlock that may be operating on

two different mutex objects at runtime. However, at runtime, we can obtain and memorize

the address of the mutex object used at the lock-point, and compare it against the mutex

object offered to the runtime at the unlock-point. In case of an address mismatch of the

mutex objects used in the same LU-pair, we can abort the transaction and revert to a

safe state and fall back to using the locks. A mismatch is impossible without nested locks

because of the dominance and post-dominance relationship between the lock and unlock

in an LU-pair.

Justification for using the dominance and post-dominance relationship

The Dom and PDom requirements proposed in Definition 2.5.4: Condition(2) may

seem rather too strong. In a more complex control flow shown in Listing 2.3, Condition

(2) does not hold good because neither lock-point dominates any unlock-point; however,

both lock-points taken together guarantee a lock-point execution before executing an

unlock-point and similarly, both unlock-point taken together ensure that after executing

any lock-point, one unlock-point is guaranteed to execute. Thus, it would be valid to

transform all LU-points with HTM here.
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1 if cond1 {
2 m.Lock()
3 } else {
4 m.Lock()
5 }
6 if cond2 {
7 m.Unlock ()
8 } else {
9 m.Unlock ()

10 }

Listing 2.3: Complex locking control flow amenable for HTM.

1 if cond1 {
2 m.Lock()
3 // in critical section
4 }
5 // may be critical section
6

7 if cond2 {
8 // in critical section
9 m.Unlock ()

10 }

Listing 2.4: Complex locking control flow unsuitable for HTM.

A slightly different control flow in Listing 2.4, however, shows that the lack of Dom

and PDom relationship is not easy to handle. In this case, the execution of the lock-point

does not ensure the execution of unlock-point also or vice versa. Hence, transforming

both LU-points does not provide any guarantee.

Any “umbrella covering” analysis may artificially drag non-critical sections into crit-

ical sections. With this observation, we enforce condition (2).

Lock Nesting

Go supports nested locks, but reentrant [93] locks are not allowed. Condition (3)

in Definition 2.5.4 allows nested locks but demands that they operate on disjoint Mutex

objects.

HTM via Intel TSX allows nesting: if a nested transaction succeeds, hardware does

not commit it until the outermost transaction commits. If a nested transaction fails, the

control jumps to the starting code address of the nested transaction. This facility allows

us to safely transform locks into HTM even when they are nested.

Condition (3) in Definition 2.5.4 disqualifies a candidate LU-pair from the transfor-
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1 a.Lock() //outer region start
2

3

4 b.Lock() // inner region start
5 b.Unlock () // inner region end
6

7 a.Unlock () // outer region end

Listing 2.5: Nested Locks.

1 a.Lock()
2

3 l := OptiLock {}
4 l.FastLock(b)
5 l.FastUnlock(b)
6

7 a.Unlock ()

Listing 2.6: HTMized.

mation in the region R if there exists any other lock or unlock point whose lock/unlock

operation may be operating on the same mutex as those in the LU-pair.

As an example, in Listing 2.5, assume the mutex pointers a and b point to the same

points-to set. When inspecting the “inner region”, we find only one LU-pair, which obeys

all Feasible-HTM-Pair conditions in Definition 2.5.4. Consequently, the lock usage on b

in the inner region can be transformed to HTM. When inspecting the “outer region”,

however, we see conflicting LU-points, and hence the locking operations on a will not be

transformed. The resulting transformed code is shown in Listing 2.6, which is correct.

This approach complicates hand-over-hand locking [94, 95], sometimes used in the

concurrent linked-list traversal, shown in Listing 2.7. As before, assume all four LU-

points have a non-empty intersection of their points-to sets. When inspecting the inner

region, the LU-pair b.Lock() and a.Unlock() passes all tests in Definition 2.5.4. Hence,

they will be, incorrectly, paired and transformed to use HTM, as shown in Listing 2.8.

This transformation violates the programmer’s intention. Subsequently, when visiting

the outer region, condition (3) is violated, and hence the outer LU-pair will not be

transformed. One could have discarded the transformation of the inner region when the

conflict is visible in the enclosing region. However, we cannot distinguish this incorrect

pairing from the correct pairing in the previous case. Our solution is to always apply

the transformations on the candidates found in inner regions, and handle mismatches at

runtime via HTM aborts iff executing on the fastpath. As mentioned at the end of § 2.5.2,

a mismatch is easy to recognize at runtime by, first, making FastLock() store the address
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1 a.Lock() //outer region start
2

3

4 b.Lock() // inner region start
5 a.Unlock () // inner region end
6

7 b.Unlock () // outer region end

Listing 2.7: Hand-over-hand lock.

1 a.Lock()
2

3 l := OptiLock {}
4 l.FastLock(b)
5 l.FastUnlock(a)
6

7 b.Unlock ()

Listing 2.8: HTMized.

1 a.Lock()
2 b.Lock()
3 b.Unlock ()
4 a.Unlock ()

Listing 2.9: Perfectly nested locks.

1 a.Lock()
2 b.Lock()
3 a.Unlock ()
4 b.Unlock ()

Listing 2.10: imperfectly nested locks.

of the Mutex used at the lock-point in a field in OptiLock and, second, checking whether

the Mutex passed to FastUnlock() is the one present in OptiLock. The transactional

abort is needed (and possible) only on the fastpath. Section 2.5.2 details the correctness

of transforming nested locks into HTM via Gocc.

Interoperability of lock-nesting with HTM

Programs may use perfect nesting as shown in Listing 2.9 or imperfect nesting as

shown in Listing 2.10 (aka hand-over-hand locks [94, 95]).

The following cases arise depending on the kind of lock nesting and whether or not

the LU-pair is converted into HTM.

• Neither the inner nor the outer lock is transformed to HTM. This is always safe

because the behavior is the same as the original code in both perfect and imperfect

nesting.

• Both the inner and outer locks are transformed to HTM. If both inner and the

outer locks use the fast path and the transaction commits successfully, it ensures
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mutual exclusion and atomicity of both critical sections, and hence it is safe; it

also ensures that the entire transaction did not conflict with any other concurrent

operation. If both inner and outer locks use the respective slow paths, the behavior

is the same as the locks being untransformed (previous case) and hence obviously

safe. These two are true whether perfect or imperfect nesting. If one of the inner

or outer HTM falls back to its slowpath, the behavior becomes the same as one of

the following cases.

• Perfectly nested locks

Only the inner lock is transformed to HTM. This is safe because all instruc-

tions inside the HTM will appear to execute atomically and mutually exclusive

to the external observer. While performing the inner (and the only) transac-

tion, if the inner lock gets acquired by another thread, the transaction will

abort, and none of its state changes will be visible to the external world; the

outer lock will continue to be held. The inner transaction may be retried or

fall back on its slowpath. Falling back to the slowpath is the same as both

inner and outer locks not being transformed.

Only the outer lock is transformed to HTM. This is safe because the inner

lock operation, including lock acquisition and release, will be done transac-

tionally. If another thread acquires either the inner or the outer lock while

the transaction is in flight, the outer transaction will be aborted, and the

inner lock acquisition (if already done) will be rolled back, ensuring mutual

exclusion and atomicity of the entire region and the availability of the inner

and outer locks to others. If the transaction commits, mutual exclusion and

atomicity of the entire region are assured.
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• Imperfectly nested locks

Only the inner lock is transformed to HTM. This is represented by trans-

forming b.Lock() and a.Unlock() in Listing 2.10. If at runtime, fallback

path is taken at b.Lock(), a.Unlock() will also use the fallback lock be-

cause our implementation recognizes mismatched mutexes from FastLock()

to FastUnlock() on the same OptiLock object; hence, the behavior is as if we

did no transformation; and hence it is functionally same as the original code.

If at runtime the fastpath is taken at b.Lock(), at a.Unlock() we recognize

a mismatched mutex a vs. b and abort the transaction. The abort rolls

back all changes done between b.Lock() till a.Unlock() and falls back to the

slowpath. As stated before, slowpath is always correct, and hence the entire

behavior is the same as the original untransformed code.

Only the outer lock is transformed to HTM. This is represented by trans-

forming a.Lock() and b.Unlock() in Listing 2.10. If at runtime, the fallback

path is taken at a.Lock(), b.Unlock() will also use the fallback lock be-

cause our implementation recognizes mismatched mutexes from FastLock()

to FastUnlock() on the same OptiLock object; hence, the behavior is as if we

did no transformation; and hence the behavior is functionally same as the orig-

inal code. If at runtime, the fastpath is taken, at unlock time in b.Unlock()

we recognize a mismatched mutex a vs. b and abort the transaction. The

abort rolls back all changes done between a.Lock() till b.Unlock() including

the inner b.Lock() and a.Unlock(), thus discarding all changes in the entire

region. Subsequently, we’ll always take the slowpath route due to mismatched

mutexes, and hence the effect is the same as both inner and outer locks not

being transformed, which is always safe.
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It is straightforward to extend the argument to any depth of nesting using an inductive

argument that assumes that N -level nesting works (because 2-level nesting works) and

uses the same argument as above to prove that N + 1-level nesting is also correct.

Critical Sections with Function Calls

When the critical section protected by a candidate LU-pair contains function calls,

we need to extend the analysis beyond the current function. Conditions (1) and (2) in

Definition 2.5.4 are local to R. Conditions (3) and (4) require inter-procedural analysis.

We need to ensure that the transitive-closure of all code regions protected by a can-

didate LU-pair, including the blocks reachable via function calls, neither contains any

HTM-unfriendly instructions nor contains any LU-points whose points-to set may overlap

with the points-to sets of L or U . Otherwise, we discard the candidate LU-pair.

To accomplish this, we first build a static call graph using rapid type analysis [96, 97].

Next, we precompute summary information for each function on its own without its

transitive closure of function calls; the summary contains (a) the fit of the function for

HTM based-execution (i.e., no HTM-unfriendly instructions), and (b) the union of all

points-to sets of all LU-points in the function, denoted by P .

For a candidate LU-pair meeting all the conditions in Definition 2.5.4 within the

region R, we proceed to do inter-procedural analysis. Let F ∗ be the transitive closure of

all the function calls invoked inside the critical section C ⊆ R protected by a candidate

LU-pair. LU-pair is discarded if (a) ∃F ∈ F ∗s.t. F ’s summary contains HTM-unfriendly

instructions or (b) ∃F ∈ F ∗s.t. P∪(M(L)∪M(U)
)
̸= ϕ. The former is simply condition

(4) expanded to all functions, and the latter is condition (4) expanded to all functions.

We note that nested locks discussed in § 2.5.2 can be in different functions.
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The defer Statement

The defer [51] statement in Go, introduced in § 2.2, needs special attention. Go defers

the execution of functions prefixed with the defer keyword to the calling function’s return

point. The presence of defer Unlock() complicates our CFG-based dominance/post-

dominance analysis. Deferred unlocks extend the critical sections till function exit points.

Listing 2.11 shows a legal Go code, where the defer m.Unlock() appears even before the

call to m.Lock(). Condition (2) in Feasible-HTM-Pair will treat this pair as an invalid

candidate for transformation because the lock-point does not dominate the unlock-point.

We address this case by interpreting defer m.Unlock() in a CFG by (a) introducing

a synthetic m.Unlock() statement at the end of each basic block that returns control from

the function, and (b) discarding the presence of m.Unlock() in its original position during

the analysis. This allows us to reuse the previously described dominance relationship.

During transformation, however, Gocc simply replaces a defer Unlock() with a defer

FastUnlock() in its original place, as shown in Listing 2.12.

Multiple defer calls are executed in a last-in-first-out (LIFO) order of encountering

the defer statement at runtime. This complicates the dominance and post-dominance re-

lationship; for simplicity, we discard any function that contains multiple defer Unlock()

statements. We found none in the packages used in our evaluation.

Profiles to Filter Hot Critical Sections

Profiling is a built-in feature in Go, which takes callstack samples via timer [98] or

hardware performance counter [99] interrupts. One can take CPU profiles of a go program

either at launch time by simply passing a -cpuprofile flag or from an already running

program, for a specified duration, by accessing an exposed profiling port.

Go profiles are in the pprof format.
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1 func DeferExample () {
2

3 m := &sync.Mutex {}
4 defer m.Unlock ()
5 m.Lock()
6 // critical section
7 }

Listing 2.11: defer Unlock.

1 func DeferExample () {
2 l := OptiLock {}
3 m := &sync.Mutex {}
4 defer l.FastUnlock(m)
5 l.FastLock(m)
6 // inside HTM
7 }

Listing 2.12: HTMized.

The pprof Go package [98] allows us to programmatically navigate the callstack sam-

ples presented as weighted call graphs, where the nodes represent functions and edges

represent caller-callee relationships. The functions are annotated with their inclusive and

exclusive execution times.

When profiles are available, we use them to filter the regions where negligible exe-

cution time is spent, even before applying the static analysis. In fact, this is the first

filtering step we perform before making the aforementioned LU-pair identification. We

treat any critical section (including the entry and exit) where the aggregated execution

time is less than 1% of the total execution time as insignificant.

2.5.3 Transformer

Since our end product is a code patch, we perform the transformation on the AST form

of the program. Go AST can be serialized into source code via Go format [100] package.

To this end, the transformer maps the candidate set of LU-pair operations found during

the SSA-based analysis phase (described in § 2.5.2) to AST nodes [101]. It then replaces

the LU-pair operations with calls to FastLock()/FastUnlock() in optiLib. It also

passes the original Mutex object as a pointer to the calls to FastLock()/FastUnlock()

since the underlying lock object is necessary for lock elision (fastpath) as well as for

slowpath. Figure 2.6 shows an example AST transformation. The transformation itself

is mechanical but challenging. In the following sections, we discuss several Go features

that pose special challenges in transforming the AST.
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Figure 2.6: Example of AST transformation from m.Lock() to optiLib.FastLock(m).
Some AST nodes are omitted for brevity.

1

2 // pointer form
3 m := &sync.Mutex {}
4 m.Lock()
5 m.Unlock ()
6

7 // value form
8 n := sync.Mutex {}
9 n.Lock()

10 n.Unlock ()

Listing 2.13: Both Mutex pointer m
and Mutex value n invoke Lock/Unlock
using the same dot dereferencing
operator.

1 l := Optilock {}
2 // pointer form
3 m := &sync.Mutex {}
4 l.FastLock(m)
5 l.FastUnlock(m)
6

7 // value form
8 n := sync.Mutex {}
9 l.FastLock (&n)

10 l.FastUnlock (&n)

Listing 2.14:
GOCC transformation passes m as-is
to FastLock()/FastUnlock() but &n to
FastLock()/FastUnlock().

Go pointer vs. value: Go syntax does not distinguish accessing a field of a composite

type (e.g., struct) via an object-pointer or an object-value; both use the same AST dot

operator as exemplified in Listing 2.13. However, FastLock() and FastUnlock() must

receive a pointer to the Mutex object to perform the elision correctly. Hence, if the LU-

pair uses a Mutex value, its address needs to be passed to FastLock()/FastUnlock(),

and if the LU-pair uses a Mutex pointer, it should be passed as is.

We address this issue in the transformer by querying the type information [102] for

each receiver object subject to transformation. If the receiver identifier is a Mutex value

type, we insert the additional address-of operator before the Mutex identifier in the

AST and pass it to FastLock()/FastUnlock(). If the receiver identifier is a pointer to
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1 type AStruct struct {
2 x int //not anonymous
3 *sync.Mutex // anonymous
4 }
5 func main{} {
6

7 a := AStruct {}
8 a.Lock()
9 a.Unlock ()

10 }

Listing 2.15: Locking on an unnamed
field of a struct.

1 type AStruct struct {
2 x int // not anonymous
3 *sync.Mutex // anonymous
4 }
5 func main{} {
6 l := OptiLock {}
7 a := AStruct {}
8 l.FastLock(a.Mutex)
9 l.FastUnlock(a.Mutex)

10 }

Listing 2.16: Unnamed mutex
transformed to HTM.

a Mutex type, we pass it as is.

Go anonymous fields: Go allows programmers to define a struct that has fields with-

out names. For instance, Listing 2.15 shows a struct AStruct that has an anonymous

*sync.Mutex field. Operations on this anonymous mutex are performed by simply using

the name of the enclosing struct variable as shown on Line 8. Hence, our transformation

needs to be cognizant of whether the original LU-pair operations are performed on an

anonymous mutex. By inspecting the type information [102] of the access path [103]

used to invoke the lock/unlock operation in the AST, we determine whether or not the

operation is performed on an anonymous mutex field. Upon determining the operations

to be on an anonymous mutex, we pass the address of the anonymous Mutex to optiLib

by simply suffixing the operation access path with Mutex as shown in Listing 2.16, Line 8

(where access path simply consists of variable a). This transformation composes of the

previously described pointer vs. value operations.

Anonymous goroutines: Go supports anonymous goroutines [104], which are nested

inside other functions as shown in Listing 2.17; these goroutines run concurrently. Our

transformation introduces a new OptiLock variable in transformed functions. OptiLock’s

declaration should be in the scope that encloses both Lock and Unlock operations, but

it should not be shared by other concurrent executions because it maintains a goroutine-
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1 m := &sync.Mutex {}
2 for i:=0;i<10;i++ {
3 go func() {
4

5 m.Lock()
6 // CS
7 m.Unlock ()
8 }()
9 }

10 //wait all

Listing 2.17: Anonymous goroutines
create concurrent units of execution on
anonymous functions.

1 m := &sync.Mutex {}
2 for i:=0;i<10;i++ {
3 go func() {
4 l := OptiLock {}
5 l.FastLock(m)
6 // CS
7 l.FastUnlock(m))
8 }()
9 }

10 //wait all

Listing 2.18: The OptiLock needed for
the transformation should be placed in
the innermost function scope.

specific state. Hence, we make OptiLock a variable in the stack of each goroutine. We

add the declaration to the innermost function body as shown on line 4 in Listing 2.18.

A bottom-up AST walk from LU-pair to be transformed allows us to easily detect the

innermost enclosing anonymous function scope.

2.5.4 Adaptive HTM Runtime: optiLib

optiLib implements all the intelligent runtime control needed to perform HTM in lieu

of locks. It is in charge of starting and committing transactions in critical sections, as well

as falling back to the lock when necessary. It is responsible for inter-operating with locking

operations on the same mutex that may not be transformed to use HTM. In the event

of aborts, it is responsible for determining the cause of the abort and deciding whether

and how many times to retry. If, accidentally, the code rewriting matches lock-point

with a programmer-unintended unlock-point, optiLib is responsible for detecting and

recovering from the mistake. Finally, it is responsible for understanding and dynamically

adjusting to changing contention.

We implement optiLib using TSX [60] for Intel platforms. optiLib is carefully

implemented to ensure correctness under all circumstances. Equally important, it is

implemented with the utmost attention to performance. Every instruction and its place-

ment are carefully planned to minimize any overhead of its own. optiLib uses Intel
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RTM; it does not use the Hardware Lock Elision (HLE) [61] because it does not provide

the fine-grained control we need. optiLib introduces a data structure: OptiLock, which

has two fields: a boolean slowPath and a *sync.Mutex lkMutex. slowPath is set to true

if the lock is not elided at runtime. lkMutex always holds the address of the fine-grained

lock being elided. OptiLock supports FastLock()/FastUnlock() operations, both need

a *sync.Mutex argument, which is the mutex receiver object being elided at the original

call sites of Lock()/Unlock(). Try locks and timed locks [105, 106] are absent in Go; it

is trivial to support them in optiLib.

The FastLock() implementation uses sophisticated mechanisms described previously

by others [82, 55, 83] to interoperate slow and fast paths concurrently. Stated succinctly,

the FastLock(), waits for the fine-grained lock to be available before starting the hard-

ware transaction; on starting a transaction, it first checks if the fine-grained lock is already

held and unconditionally aborts if it is already held; if it is not held, the act of checking

adds the lock word to the transaction read-set, and hence, if a concurrent execution on

the slowpath acquires the same lock during the transaction, the fastpath immediately

aborts ensuring mutual exclusion. Any two threads in the fastpath can run concurrently

as long as they do not conflict with their memory accesses.

Reading the internals of the original sync.Mutex object is straightforward and has

no performance penalty; FastLock() simply de-references the first word of the Mutex

pointer passed into the function, which contains the lock status. The FastUnlock(),

based on slowPath value, either commits the transaction or invokes the unlock on the

mutex object. It also safeguards against accidental incorrect code patches by ensur-

ing that the mutex object passed into FastLock() and stored in the lkMutex field of

OptiLock matches the mutex object presented to FastUnlock(). In case of a mismatch,

FastUnlock() restores safety by aborting the transaction (iff on fastpath), and subse-

quently enforces the slowpath.
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Dynamic adjustment via perceptron

It would not be fruitful to attempt HTM if doing so has already proved to be unsuc-

cessful for whatever reason. Gocc learns and adapts to HTM behavior and decides

whether to use HTM for the already transformed LU-points, the fallback being the

original lock. For this purpose, Gocc uses a featherlight, hardware-inspired “hashed

perceptron” [43].

The hashed perceptron predictor hashes feature weights into one or more tables.

Then at the prediction time, it uses indexes to access feature weights from the tables

and adds up all the relevant weights. If the sum exceeds a threshold, the prediction

will be regarded as positive (e.g., “HTM should be taken”). Otherwise, the result will

be viewed as negative (e.g., “HTM should not be used”). The weights will be updated

based on the correctness of the predictions. If operations on a given Mutex have been

HTM-friendly/unfriendly, we want to utilize this information. Similarly, if a code location

has been HTM-friendly/unfriendly irrespective of the Mutex used, we want to use this

information as well. Hence, the two input features for the perceptron are the Mutex

and the calling context [107, 44] of lock/unlock invocation. The address of the Mutex

serves as the Mutex feature, and the address of OptiLock serves as a unique identifier for

the calling context feature. Updating the same perceptron weight for the Mutex feature

by different goroutines would create a conflict (and potentially a performance collapse).

Hence, we instead XOR the Mutex address with the address of the OptiLock to produce

a conflict-free feature input.

Our perceptron implementation creates two 4K-entry arrays as the global weight ta-

bles (GWT). The weights take an integer number ranging from -16 to 15. At runtime,

FastLock() and FastUnlock() functions index into GWT by taking the lower-12 bits

of the two features. Perceptron operations are done outside the transaction. The up-
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repo stars
contrib
utors

com
mits LoC

Lock 
points

Unlock 
points violates 

dominace

Candid
ate 
pairs

unfit  for HTM
Nested alias 
locks

Transformed 
Pairs w/o profiles

Transformed 
Pairs w/ profiles PairedProf(defer)

total (defer) intra/interproc intra/interproc total (defer) total (defer)

tally 450* 27 95 2.4k 54 56 (28) 2 52 2/29 0/0 21 (14) 7 (7) 7
zap 4.5k* 7 163 3.3k 8 8 (4) 0 8 3/0 0/0 5 (1) 6 (0) 0
go-cache 11.6k* 71 322 18k 96 230 (6) 68 28 0/2 0/0 26 (4) 10 (2) 0
fastcache 59k* 40 673 33k 24 24 (2) 2 22 2/2 0/0 18 (0) 7 (4) 0
set 967* 8 48 2.4k 16 16 (10) 0 16 0/2 0/0 14 (8) 8 (2) 2

Table 2.1: Go package characteristics and their behavior using Gocc

dates and reads from GWT are lock-free but racy — perfection is not required here, but

high-performance is necessary. Experiment results from § 2.6.2 show the effectiveness of

perceptron learning in protecting against poor HTM performance.

Perceptron weight update: Perceptron weight updates happen in the FastUnlock()

function after successfully finishing the critical section, whether on fast or slow path.

If the perceptron decides that the lock should be used, there will be no update to

the weights as the lock will always succeed. When the perceptron indicates to use the

HTM and the execution finishes on the fastpath, the corresponding weight in the cell will

be increased (because the perceptron makes a correct decision, it should be encouraged

to use the HTM more frequently). On the other hand, if perceptron determines to use

HTM, but HTM fails and falls back to slowpath, the weights will be decreased (because

HTM does not work for the current call, perceptrons should be penalized for incorrect

recommendations to improve future predictions).

Weight decay: We keep a counter, in each cell in GWT, to record the number of lock

calls that go to the slowpath directly as a result of perceptron decision. If a lock has been

used consecutively for a certain number of times and exceeds the threshold, we reset the

weight of the perceptron cell and subsequently try HTM. Without this reset, perceptron

would get stuck on the slowpath, preventing the benefits of the HTM execution in the

future. We set this threshold to 1000 continuous decisions. Section 2.5.4 summarizes our

FastLock()/FastUnlock() implementations including the perceptron logic.
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1 func (ml *OptiLock) FastLock(l *sync.Mutex) {
2 ml.lkMutex = l
3 compute indices and fetch perceptron weights
4 if lockCounter > threshold {
5 reset perceptron weights
6 }
7 if perceptron decision == HTM {
8 trial := MAX_ATTEMPTS
9 for {

10 if trial > 0 {
11 if lock already held {
12 spin with pause till lock held
13 }
14 status := TxBegin ()
15 if status == Txstarted {
16 if lock is held {
17 abort LockHeldError
18 }
19 return
20 } else {
21 trial --
22 if (aborted for LockHeldError) {
23 continue // retry
24 }
25 if ( ! TxAbortRetry) {
26 // includes MutexMismatchError aborts
27 slowpath := true
28 htm fails := true
29 take original lock
30 break
31 }
32 // retry
33 }
34 }
35 }
36 } else {
37 lockCounter ++
38 slowpath = true
39 take original lock
40 }
41 }
42

43 func (ml *OptiLock) FastUnlock(l *sync.Mutex) {
44 if slowPath {
45 l.Unlock ()
46 if htm fails == true {
47 compute indices decrease perceptron weights
48 }
49 } else {
50 if l != ml.lkMutex {
51 abort MutexMismatchError
52 }
53 TxCommit ()
54 compute indices and increase perceptron weights
55 lockCounter = 0
56 }
57 }

Listing 2.19: Pseudo-code of FastLock() and FastUnlock()

Algorithm of optiLock

Listing 2.19 provides a sketch of the algorithm we use in optiLib.

42



Optimistic Concurrency Control for Real-world Go Programs Chapter 2

Alleviating HTM overhead

HTM brings overhead for very short critical sections as described in § 2.2 above,

even under single-core execution. optiLib avoids using HTM if it recognizes a single

OS-thread in a Go process. optiLib employs runtime.GOMAXPROCS(0) API for this

purpose.

2.6 Gocc Evaluation

We evaluate Gocc on an 8-core (×2-way SMT [108]) Intel Coffee Lake CPU with

a total 32GB memory, running Linux 5.4.0. The CPU has 32KB L1I and L1D cache,

256KB L2 cache, and 16MB L3 cache. The Go version is 1.15.2.

Table 2.1 shows the list of applications and libraries we employ. In the absence of

standard benchmarking for Go, we selected packages that are popular open-source Go

projects (column 2 in Table 2.1), focus on high performance, utilize lock-based Go con-

currency, and provide thread-safe APIs. In particular, Zap and Tally are foundational

logging and metrics collection packages used in production go programs by many orga-

nizations. Additionally, since we evaluate the projects using their own benchmark suites

(more on this below), we only selected projects that feature concurrent benchmarks or

whose benchmarks could be straightforwardly converted to be concurrent.

From a static analysis viewpoint, we see that all applications contain several locks.

Defer unlocks are common (column 7). The “violates dominance” column shows how

many LU-points were discarded since they did not meet the dominance relationship. The

number is typically low except for go-cache, which has several functions with a repeating

pattern of unlocks that do not post-dominate the candidate lock. The “candidate pairs”

column shows how many LU-points remain for further analysis. Each column to the right

progressively shows the reasons for which a candidate LU-pair was rejected. Rejection

43



Optimistic Concurrency Control for Real-world Go Programs Chapter 2

due to nested aliased locks is not found in these packages. The second-to-last column

shows how many LU-pairs were finally rewritten to use OptiLock, including how many

of them contain defer Unlock(). The last column shows the numbers after we retain

only those locks where the functions contain at least 1% of execution time in execution

profiles. Overall, Gocc transforms several LU-pairs in each application. Using profiles

significantly reduces the number of transformed LU-pairs.

We run all the benchmarks within each repository five times and report the median.

We believe the benchmarks accompanying the code best represent its desired character-

istics. As some benchmarks are written for a single thread setting, we rewrite them to

introduce concurrency to utilize HTM-enabled parallelism fully. We adopt the standard

testing package from Go[109], which runs each benchmark for a certain amount of time

and reports the throughput as nanoseconds per operation. We wrap the benchmark codes

with RunParallel [110] helper function to get parallel performance if it was not already

done so. Using more CPU cores, ideally, increases throughput (i.e., reduces average

nanoseconds per operation). Then we compare the throughput from locks vs. HTM — a

positive percentage means Gocc’s rewrite did better, and a negative percentage means

the baseline did better. We vary the number of CPU cores available for benchmarks from

1 to 8. Unlike HPC codes that run on all cores on a server, Go services often use 2-4

cores.

2.6.1 Results on Popular Go Programs

We categorize the benchmarks in each package into two groups:

1. Concurrency non-sensitive benchmarks either have no locks or do not spend much

time in critical sections, or our transformation does not result in any performance

difference. For these benchmarks, we only show the aggregate (geomean) results
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unless noted otherwise. They appear as “non sensitive” in our charts, and the number

in the parenthesis indicates how many benchmarks are in this group.

2. Concurrency sensitive benchmarks exercise modified locks non-trivially. We might

have impacted them positively or negatively. For these, we present data from each

benchmark and also present an aggregate result (“sensitive” in our charts).

The “all” part of our charts is the geomean taken over all benchmarks. Sometimes this

number looks small because of a large number of non-sensitive benchmarks.

In what follows, we provide the details of performance evaluation on the aforemen-

tioned Go packages. The total number of benchmarks is large; hence, we dive deeply

only into benchmarks with large speedups. Tally [4] is a fast, buffered stats collection

library and Figure 2.7 shows its results. For the HistogramExisiting benchmark, Gocc
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achieves more than 660% speedup on 8 cores reducing the original time per operation

from 65 ns/ops down to around 8.47 ns/ops at 8 cores. Moreover, the HTM delivers scal-

able performance. This benchmark uses a Mutex lock on a read-only Exists operation,

and hence, is a natural candidate to demonstrate speedup as HTM eliminates unneces-

sary serialization. Conversely, the baseline has a scalability collapse, where the time per

operation increases from 20.4 ns/ops to 65 ns/ops for 1 to 8 cores. ScopeReporting1

holds three independent RWMutexes at different points in time and accesses read-only

data. However, since the RWMutex also involves a counter increment and a decrement,

its overhead as a result of cache invalidation does not scale well. Thus, even eliding

RWMutex proves highly beneficial. The speedup for ScopeReporting10 is lower than

that for ScopeReporting1 because it performs 10x more work inside the critical section.

Overall, in the sensitive group, we see a 10% performance drop with a single CPU but

145%, 283%, and 267% improvements with 2, 4, and 8 CPUs, respectively. In the non-

sensitive group, the overall performance drop is within the margin of error. Among all

the 27 benchmarks of tally, we see up to 18.7% speedup at 8-CPUs.

go-cache [111] is an in-memory key-value store. It contains benchmarks that exercise

repeatedly accessing the same item in a small map. The benchmarks contain both non-

cached accesses, similar to how Go programmers often use a map and cached accesses

provided by the go-cache layer to demonstrate the effectiveness of the library. All

benchmarks employ RWMutexs for concurrent map read access. Unlike the rest of the use

cases, the benchmark files themselves contain locks, which Gocc transforms into using

HTM.

Figure 2.8 shows our empirical results. Gocc speeds up four benchmarks in go-cache

that were directly accessing the map without the library-provided cache. In each case, we

can see more than 100% speedup; the biggest speedup is 742%. The speedups come from

eliminating contended atomic operations involved in entering and exiting from a reader
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lock. The performance scales well with increased parallelism because while the lock-

based approach incurs more and more contention, the HTM approach remains conflict-

free throughout. The other benchmarks, the majority of which employ the go-cache,

are mildly improved, but more importantly, they were not degraded as a result of trans-

formation via Gocc.

go-datastructures [112] is a collection of performant, thread-safe data structures.

We apply Gocc on the set subdirectory, which contains concurrency benchmarks. The

results are shown in Figure 2.9. The Len benchmark computes the length of the set,

and it is sped up by ∼1000% in the 8 cores setting. Len has a short critical section that

has a higher entry and exit cost due to atomic operations when using aRWMutex. HTM

performance shows scalability since the HTM version remains conflict-free, whereas the

lock-based version collapses with increased contention. The Exists benchmark is similar

to Len, where each goroutine searches one item in a set containing only one item. It scales

almost as well as Len, but more work is done in the critical section, which amortizes

RWMutex’s overhead, and slightly reduces HTM’s advantage. The Flatten benchmark

reads 50 elements from a shared map into a private array, with a layer of caching that

eliminates repeated map scanning. It holds a Mutex to serialize concurrent accesses to

the map/cache. The HTM version avoids serialization and shows scalable performance

for 1-4 cores. At 8 cores, the number of conflicts resulting from updating the cache rises,

which makes perceptron not use the HTM, and hence there is no speedup. The Clear

benchmark has true conflicts, and there is no speedup, but the HTM does not significantly

degrade the performance. Overall, utilizing Gocc results in more than 100% geomean

performance gain while introducing less than 4% slowdown in a single core setting.

Zap [113] is a library that implements fast and structured logging in Go. Being

a logging library, it has several IO operations, and hence Gocc rewrote fewer locks.

Compared with other repositories, the improvement on zap is relatively mild. Due to
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arguably mild speedups on Zap, a large number of benchmarks, we omit a deeper analysis

of Zap results. Slowdowns are rare, the biggest being 7%. Overall, we observed a mild

∼ 4% geometric mean speedup with the best case 28% speedup.

Fastcache [114] is a fast, scalable, in-memory cache. The transformed code delivers

a maximum of 35.60% speedup and a geomean of 15.65% speedup across all benchmarks.

In the CacheGet benchmark, goroutines repeatedly invoke the Get function, which

uses an RWMutex to protect a shared map. Get has inter-procedural nested but non-

conflicting locks, all of which are transformed into HTM. Get looks up a key in the

map and returns a value blob. The critical section of Get contains a few atomic add

instructions, which update shared variables. Transactional conflicts on the shared atomic

adds are fewer at low core numbers, and the speedup is visible; however, at larger core

counts, the conflicts increase, and the speedup vanishes. Fortunately, the perceptron

kicks in and avoids any performance collapse.

The CacheHas benchmark is virtually the same as CacheGet, but its critical section is

shorter since it does not return a populated value buffer. Hence, the speedups are higher

due to fewer conflicts, but it follows the same performance pattern as CacheGet.

In the CacheSetGet benchmark, each goroutine has two loops: the first loop repeat-

edly invokes Set and the second loop repeatedly invokes Get. The Set function, which

inserts a key-value pair into the map, may raise a panic if certain constraints are vi-

olated. Hence, Gocc does not modify a Lock() present in Set. The Get function is

already described previously.

Since all goroutines first attempt Set, where Go’s default locks are being used, the

runtime recognizes it as a starved mutex and takes away the time slice of some of the

goroutines. This runtime behavior reduces the number of lock contenders and, as a result,

a few goroutines monopolize the lock. These goroutines quickly finish their series of Set

operations and proceed into calling Get in a loop. The contention is lower on Get also

48



Optimistic Concurrency Control for Real-world Go Programs Chapter 2

since the load is now split between Get and Set with some goroutines on hold. The net

effect is a high throughput for the whole benchmark.

It is worth noting that the only other benchmark which invokes the Set function is

the non-sensitive benchmark CacheSet. Even though CacheSet exhibits no performance

improvement, and CacheGet shows mild performance improvement, their composition in

CacheSetGet leads to secondary effects causing much higher performance gain at higher

core counts.

2.6.2 Perceptron Evaluation

We assess the effectiveness of perceptron using the Tally benchmarks. We com-

pare the performance with and without the perceptron machinery. In the absence of

the perceptron, we always attempt HTM. In the results presented in Figure 2.11, we

can observe that the perceptron is effective in eliminating any performance loss. For

example, CounterAllocation and SanitizedCounterAllocation are HTM-unfriendly

benchmarks and cause aborts frequently. Perceptron quickly learns to move away from

HTM and keeps using the slowpath. Therefore, there is a minimal performance loss for

the perceptron case.

Finally, we set up a synthetic benchmark — a conflict-free critical section with 1000

counter updates — to evaluate the overhead of the perceptron machinery. We measured

the perceptron prediction overhead to be 0.65% and weight update overhead to be 0.73%

for a total of only 1.38%.

2.7 Conclusions

Gocc is a source-to-source transformation tool to speed up lock-based pessimistic

concurrency control in Go programs with Hardware Transactional Memory. Gocc com-
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Figure 2.11: Results on Tally to show the effectiveness of perceptron. NP =⇒ No
Perceptron.

bines thorough static analysis with intelligent runtime control to expose additional paral-

lelism available in Go programs. Gocc keeps the developer in the loop, minimizes code

changes via execution profiles, and targets only those critical sections that are likely to

improve with HTM. The experimental results from real-world Go packages show that

Gocc delivers significant (up to 10×), scalable performance for concurrent Go code that

uses locks while exhibiting rare and relatively small slowdowns.

The reason Gocc works is because it focuses on the communication paradigm, i.e.

concurrency control, between different goroutines. To achieve a performance improve-

ment, Gocc includes performance-driven analysis and components like the hash-based

perceptron runtime controller. The use of perceptron also inspires us with broader ap-

plications and the design of Prediction System Service (PSS) in the next chapter. Also,

the use between lock and TM can be generalized into slow-path fast-path paradigms that

will be covered in the following chapter. We believe other synchronization mechanisms
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like channels can be also studied for potential benefits in performance in the future.
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Chapter 3

A Prediction System Service

3.1 Introduction

When the low-hanging fruit of obviously inefficient implementation has been stripped

away and the performance of an application is still a critical concern, capable performance

programmers often find themselves attempting to navigate a complex set of trade-offs.

When is it faster to just lock this data structure versus wrapping it optimistically in a

transaction? When should I just execute the unoptimized version of this function versus

investing the time to make it faster? When should the operating system pull this resource

so it can go to a better use somewhere else? Answering such questions is a matter of

balancing a set of conflicting forces. As our applications, systems, and hardware grow

increasingly complex, it is hard to understand (or even characterize) all of the forces

relevant to good decision making – and even more difficult to navigate those forces with

simple ad-hoc heuristics.

Of course, the fact that machine learning has proved particularly capable of navi-

gating exactly this type of complex optimization space is not something that has been

lost on application researchers. Machine learning techniques have been demonstrated
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for optimizing data structures [18], implementing state-of-the-art recommendation sys-

tems [19], improving anomaly detection [21], and learning the structure and optimal

access of databases [20]. In the case of TVM [22], the optimising compiler could produce

machine learning kernels that beat human optimisers’, leading to significant performance

improvements.

This style of optimization is bound to become increasingly common in the coming

years and it makes little sense for each and every application to roll out their own in-

ternal embedded ML framework for dynamically controlling a few parameters. Such an

approach requires each application to support their own machine learning code base and

elides opportunities for sharing of memory or exploiting hardware resources. Instead,

it is time to consider the question of what new abstractions are necessary to lower the

barrier to entry and sustainably support this important style of optimization.

While the process of learning a good response from noisy examples is well covered

in the machine learning literature, actually deploying the ability to make predictions

in a manner useful for software optimization requires some innovation. Because these

predictions are often (by the nature of targeting performance-critical code) directly on

the critical path, their utility is a function of both their accuracy and their latency. A

prediction service must be both cheap (in terms of computational overhead) and it must

be good enough (providing enough performance benefit to be comparable to or better

than a hand-tuned approach).

In this work, we argue that it is possible and worthwhile to introduce a common,

simple, shared prediction mechanism to a variety of runtime tasks and that the right

location for this mechanism is as a system service. A system-wide prediction service can

operate usefully with as few as two API functions and can be made to both be easily

reusable across the software stack and allow for additional innovation on both sides of

the interface. By functioning as a service, the operating system can enable sharing of
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training information across user applications when desired or restrict usage according to

system policy. The service can also be provided within the kernel for use by runtime

services that otherwise rely on domain-specific heuristics to make performance decisions.

To explore the potential of a PSS to enable optimization, we prototype this change to

a full operating system and examine, both qualitatively and quantitatively, the capability

of our nascent service to ease optimization across three different scenarios calling back to

the questions at the beginning of the introduction: transactional lock elision, JIT param-

eter tuning, and page reclaim. These scenarios exercise the interface in user and system

mode, across multiple languages, and in both aiding online decisions and parameter tun-

ing settings. Specifically, Transactional Lock Elision [115] via Hardware Transactional

Memory (HTM) is a classic example of a fastpath-slowpath heuristic employed by soft-

ware; we will show how our predictor guides this decision on when to use HTM (fastpath)

and when to fallback to locks (slowpath). Just-in-Time (JIT) compilation always has a

tension between high compile time if highly optimized and low code quality if not well

optimized while offering a whole search space of possible optimization parameters; we will

illustrate a way to employ PSS to quickly arrive at optimization parameters that improve

program speed as compared to the existing parameter tuning solution provided by the

human-optimised PyPy runtime. Page reclaim in the Linux kernel under high congestion

relies on a careful, heuristic-driven consideration of memory usage and storage device

utilisation in order to maintain global performance; we show that introducing PSS to the

kernel can significantly outperform human-optimised heuristics developed within the last

year. Specifically we:

• Introduce the novel concept of prediction as a system service

• Demonstrate that an exceedingly simple interface providing only predict, update,

and reset is all that is required to be useful for software optimization.
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• Develop a complete proof-of-concept implementation capable of providing Linux

processes with useful and actionable predictions in 4.19 ns.

• Evaluate the effect of these prediction-driven optimizations across a variety of both

user and kernel mode applications and demonstrate the resulting system perfor-

mance improves Transactional Lock Elision by 34% on average, PyPy JIT param-

eter tuning by 15% on average over microbenchmarks and 12% over macrobench-

marks, and provides a 33% average latency reduction for page reclaim.

We begin with more description of the concepts and requirements of Prediction as

a Service in Section 3.2 followed by details of our prototype implementation and the

reasoning behind our latency-optimized software architecture in Section 3.3. Section 3.4

describes the application use scenarios in detail and is followed by a more detailed quanti-

tative evaluation, related work, and conclusions in Sections 4.7.3, 4.8, and 3.7 respectively.

3.2 Prediction as a Service

If one were to take a careful catalog of all of the performance optimization techniques

available, there is no question that a particularly large chapter would be required for those

driven by prediction. Operating systems can predict the next set of disk pages required by

applications and speculatively bring them into main memory [116, 117]. Memory access

patterns of CPU cores or OS threads can be learned and the OS can automatically migrate

page frames from a remote NUMA socket to a local socket to reduce latency [118]. Lock

implementations can have a spin-and-then-block [119, 120] logic which spins for a set time

before falling back to heavyweight OS-facilitated blocking. Transactional memory [7]

(both in software and hardware) can dynamically and speculatively adjust to observed

contention [121, 122, 123].
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While these techniques rely on a prediction, most are not explicit about the predictive

nature of their ability to achieve a speedup. Instead, most hide their predictive nature in

the choice of a parameter or in a set of criteria used to make a selection. Unfortunately:

1) Parameter choices are often ad-hoc, relying on limited use cases and/or hard-won

domain-specific expertise making such approaches fragile and hard to scale. 2) Even

when well informed by data, most parameter choices are still static, meaning they are

unable to adapt to the changing machine state or objectives. Profiles can help gather

information on effective parameters, but profiling requires either well-understood use-

cases or the ability to gather useful information in production with low overhead. Both

of these are possible, but 3) Complex dynamic approaches for either prediction or profiling

increase application complexity which, in turn, makes the system harder to support across

multiple platforms and increases the code footprint significantly. Finally 4) There is no

effective way to share developments. Programmers can spend non-trivial amounts of time

optimizing the code in one specific language given a predetermined interface, but as we

cross languages, as we have collections of smaller services, and as we seek to exploit

hardware to help in the process, there is little opportunity for reuse.

In contrast, an ideal system would be straightforward to understand and simple

to use. Users should only need to specify a target function, candidate solutions, and

feedback. A prediction service would generate a prediction (informing, for example, which

equivalent code path take) and update the model based on feedback. To be effective the

prediction service must be low overhead both in terms of training and inference. The

service will need to provide useful predictions as early as possible, to avoid long warm-up

overheads, and provide those predictions with very low latency, to avoid eating into all of

the potential performance improvements such predictions might provide. The prediction

service should also be suitably general purpose, allowing it to be applied to a wide

range of applications, possibly written in multiple programming languages. It should not
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only work with one or a few domain specific scenarios.

An effective target for such an optimization, in turn, needs to be both measurable

(meaning that it is possible to determine the “goodness” of the prediction to inform

learning) and correctness preserving (meaning paths under all possible predictions are

equally correct even if not equally desirable).

3.3 Design and Implementation of a PSS

Informed by the requirements above, a Prediction System Service (PSS) provides a

standard interface and straightforward prediction and update procedures. At a high level,

the PSS takes input of the programmer’s choice and returns the value of the prediction.

In our proof of concept we limit ourselves to predictions along a single dimension where

the return values can be interpreted as “predict true” when positive and “predict false”

when negative and the magnitude of the return value shares some degree of confidence

in the prediction (particularly useful when the costs of mispredictions are asymmetric

or when true and false are used iteratively to narrow in on some balance point). The

system then attempts to optimize its predictions over time based on feedback in the form

of updates.

3.3.1 System Interface

PSS can be implemented with two core functions, predict and update, and one state

management function, reset, with behavior as follows:

Predict: Given input features and stored weights, predict generates a binary result

prediction which determines which path to take. The format of the input features can
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Figure 3.1: Design of Prediction System Service

be different depending on the prediction scenario. The function signature is

int predict(int* features, int len)

where the input is an array of user-specified features for predict with length of len and

the returned prediction value is an integer. The number and value of features can be

changed by users for different scenarios.

Update: Based on the predicted and observed results, PSS will update the stored

model parameters accordingly depending on whether the prediction was correct or not.

The function signature can be viewed as

void update(int* features, int len, bool dir)

58



A Prediction System Service Chapter 3

where the input parameter contains a feature array and its length like predict and one

Boolean variable to indicate whether the prediction is correct or not.

Reset: This function allows the users to initialize the stored PSS data, either by section

or in totality. It can be called if certain environment parameters of the prediction have

been changed or to completely wipe the PSS data. As an example, when some data need

to be reused without initializing all data used by PSS for prediction, we can use this

function to selectively clear only some data. The function signature can be viewed as

void reset(int* features, int len, bool all)

where the input feature array and length are similar to the previous two cases and there

is an additional boolean variable to indicate whether to wipe out the entire PSS data or

clean a specific entry.

3.3.2 Prediction Unit Design

While there are many possible implementations of a PSS, for our proof of concept

implementation we wanted to pick a design that we knew would have consistently low

latency and that would help us test our hypothesis that even relatively simple predictions

would be an important step beyond the state of the art in many potential optimizations.

As such, for this effort, we limit our evaluation to an online perceptron predictor [42].

Given an input feature vector, the predictor simply calculates the weighted sum of the

input and compares it with a threshold value. If the sum surpasses the threshold, the

result will be regarded as positive, otherwise the return value will be negative. During

update, the prediction from the perceptron is compared to the actual outcome. If the

prediction is correct, the weight will be increased. Otherwise, the weight will be decreased
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as a penalty.

The hash-based perceptron predictor has been proven to be highly versatile yet can be

both executed and updated in very short order (in either software or hardware) [124, 125,

126]. While more sophisticated predictor designs are possible to consider with hardware

support in the future, we prioritize low latency software implementations in this work.

Currently, PSS is designed to support up to 16 features with 1024 entries for each

feature. Each feature can be a parameter that potentially has an impact on the target

function and it can have up to 1024 values for each individual feature. The feature data

is hashed to reduce the chance of conflict with other features and stored in a weight

matrix. Once the predicted result is obtained, it can be compared with a threshold (like

zero) to generate binary decisions. If the value surpasses the threshold, the prediction

will be regarded as true, otherwise the prediction is considered false.

Predictor Model Extensibility

Since the system interface is not tied to the implementation, the underlying predictor

model can be replaced easily if the users have specific needs. When low latency is

preferred, other relatively simple models can be used, such as decision trees [127], linear

regression [128], and naive Bayes algorithm [129]. On the other hand, if accuracy is

prioritized more complicated model can be deployed, including XGBoost [130], k-nearest

neighbors (KNN) [131], and neural networks [132].

Parameter Types

The API described above mainly focuses on numeric parameters like the length of the

array. But PSS can accept categorical parameter types like the type of the color after

some preprocessing or transformation. For example, if those categories exist in some

sort of embedded space then they can be exposed to a predictor through hierarchy or
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projection.

3.3.3 Reduced Latency Predictions with vDSO

In modern Operating Systems (OS), a user-level application cannot touch the kernel’s

memory space directly for a whole variety of reasons. Instead, interactions with the

kernel are typically supported by system calls (syscall) — unfortunately, syscalls carry

with them a significant amount of context switch overhead which conflicts directly with

our stated goal of achieving low latency.

Fortunately, we are not the first to grapple with such a limitation and there are now

multiple different mechanisms to build from, most notably virtual system calls (vsyscall)

and virtual dynamic shared objects (vDSO). A vDSO is a Linux kernel mechanism that

allows a portion of kernel memory space to be accessible in user space via a small shared

library. The system presents to user space a map to the corresponding kernel data and

programs such that it can access that memory directly. This facilitated direct read-out

means there is no context switch involved in satisfying a vDSO read request which, in

turn, leads to significant speedups [133]. In our experiments, this reduces the latency

by more than a factor of 16x (from 68ns with syscall down to 4.19 ns) and, even more

importantly, translates to real and noticeable improvements in application runtime.

Of course, vDSOs have their own limitations. By definition, it can be only used in a

read-only manner since user mode cannot modify the kernel memory without a syscall

and we must provide data as part of the update process.

Therefore, we design PSS in a way that combines a mix of syscalls and vDSOs.

Specifically, we implement predict via vDSO since no writing to kernel data is involved.

For update, we choose a syscall as the means to modify PSS model within kernel space.

To further reduce the syscall overhead from update calls, we adopt a batch update
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mechanism that pools together multiple update calls into a single system call. A local

buffer aggregates updates and allows us to amortize the boundary crossing. In addition,

asynchronous syscall can be also explored to further reduce the overhead.

Advantages of a System Service One of the most interesting aspects of a system-

service approach to prediction is that learning can happen across application invocations,

a feature we demonstrate in application studies. While this is technically possible in

application space, it requires the system to save and restore application-level files which

is a poor match for the model of increasingly short-lived processes called in reaction to

dynamic events. A system library has the additional advantage of being able to be used

across kernel-space applications. Lastly, by utilising a vDSO that connects to kernel

space, system policy can be enforced around the use of PSS, for example, to restrict

which users or which programs can use the service and how information is shared across

those programs.

3.4 Use-Case Scenarios

To demonstrate the usefulness of the services described above, in this section, we

present the application of PSS in three different scenarios chosen to demonstrate the

generality of the service.

3.4.1 PSS in Hardware Lock Elision

Synchronizing accesses to shared variables is a critical performance limiter in shared-

memory multicore systems. While locks are one of the most frequently used mecha-

nisms to safely manage sharing among many threads, locking is an inherently pessimistic

method of synchronization where execution is potentially serialized and locking and un-
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1 void TxLock(mutex *m) {

2 int * features = {perf cnt, remain retry} // 2 features

3 if (predict(features, /*len=*/ 2) == USE HTM) {
4 tryingHTM = true

5 while(m->isLocked ()) ; // spin
6 slowPath = false;
7 for (int i := 0; i < MAX_RETRIES; i++) {
8 if (tx_begin () == SUCCESS) {
9 if (m->isLocked ()) {

10 tx_abort (); //abort
11 }
12 // transaction started
13 return;
14 }
15 }
16 } else {

17 tryingHTM = false

18 }
19 slowPath = true;
20 m->lock(); // slow path
21 }
22 void TxUnlock(mutex *m) {

23 int * features = {perf cnt, remain retry} // 2 features

24 if (! slowPath) {
25 tx_commit ();

26 update(features,/*len*/2, /*reward*/+1)

27 } else {
28 m->unlock ();

29 if (tryingHTM)

30 update(features,/*len*/2, /*reward*/-1)

31 }
32 }

Listing 3.1: Hardware Lock Elision with PSS.

locking costs are paid whether or not concurrent executions conflict in accessing data.

In contrast, Transactional Memory [7, 54, 134, 135, 136] (TM) allows threads to execute

through a set of guarded transactions optimistically and relies instead on the run-time

detection of conflicts with an accompanying roll back when serialization is determined

to be required. If one wishes to keep to the semantics of critical sections assumed by

locks, TM can still be useful in allowing the system to speculatively execute through

lock-protected critical sections through a class of techniques known as Hardware Lock

Elision [137, 59, 138].

Of course, there is a balance to be struck between optimism and pessimism. Each

lock under different use scenarios may benefit from a different approach and it is not

straightforward to achieve good performance in practice due to the high costs of both

rollback and of overly pessimistic locking.
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Listing 3.1 presents a typical method for eliding locks using HTM. The original code

is shown with a white background color and the additions we made to patch with PSS

are highlighted in a gray background. There are two functions at the heart of the eliding

lock implementation: TxLock, which is called at the beginning of a critical section, and

TxUnlock, which is called at the end of the critical section. The input to both functions

is a mutex object with lock/unlock/isLocked operations on it that can potentially be

replaced by HTM. For interoperability with the lock, the HTM path is not tried until

the lock is held (Line 5).

The transaction starts at Line 8 and the lock status is checked again to ensure it was

not taken in the meantime by another thread and an explicit abort (Line 10) is issued

if that is the case. The successful start of the transaction (tx begin()) will result in a

return from the function and will allow execution to continue into the critical section.

Any failure due to conflict, capacity, explicit abort, or unsupported instruction, will cause

the tx begin() to return a non-success return code. On failure, retries are attempted a

fixed number of times after which the algorithm falls back to the slow path of taking the

underlying lock at Line 19. A special flag slowPath is set to indicate the corresponding

action at the end of the critical section. This design performs well when most transactions

succeed. However, in reality, it may not be known ahead of time whether lock-elision for

a critical section is beneficial. For various reasons, the transactions can fail: notably due

to increased contention and increased conflicts, due to increased memory footprint that

may not fit within the HTM implementation’s capacity, or due to the execution path

using unsupported instructions.

Listing 3.1 shows the minor modifications (gray background) to the baseline that are

required to enable PSS to guide the HTM vs. lock decision at runtime. At a high level,

the idea is to utilize HTM if it is likely to succeed and rollback to lock if the transaction

is likely to fail. Instead of having a fixed trial number mechanism, PSS allows the system
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to easily make the lock/HTM decisions at runtime. The output of the prediction directly

informs the path through the code taken. In order to make reasonable predictions from

the PSS, we use two parameters. The first is a thread-level performance counter from past

transactions. We use an integer to store the past performance and each bit represents one

transaction attempt. A value of ‘1’ means the transaction finished successfully whereas

’0’ suggests the transaction failed. The second parameter is the number of retries left

before hitting the maximum retry number (MAX RETRIES).

The same two features will be used for the calls to predict and update. The first

argument to predict is this feature vector and the second argument is the feature length

(2). If the result of predict is above the threshold (USE HTM), the program attempts the

HTM path, otherwise, it falls back to using the underlying lock without trying the HTM.

The feedback to the prediction is given after the critical section ends, in the TxUnlock()

function. If the perceptron recommended taking the HTM path (tryingHTM is true),

then a successful fastpath rewards the perceptron by invoking the update API function

with +1 (Line 9); however, if the perceptron recommended the HTM path but the HTM

failed, we penalize it with a negative reward of -1 (Line 30). To avoid the perceptron

becoming trapped in only the lock path after several failed predictions, a predetermined

threshold is also set.

3.4.2 Page Reclaim and Congestion Wait

When memory gets tight, the operating system memory management subsystem

starts to reclaim already used pages for later use. During the reclaim process, pages

with modified contents need to be written out before the reclaim can occur. However, if

the devices that the pages will be written out are already congested with other traffic,

there is very limited benefit to adding extra I/O requests.
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To mitigate congestion problems in the Linux kernel, a tracking mechanism for block

devices was proposed in 2002 [139] which was adopted in v2.5.39 [140]. If the devices are

congested, the memory management sub-system would not create any new I/O requests

before the congestion is resolved. This idea has been extended in various ways and such

a mechanism still exists in Linux kernel 5.15 as congestion wait() [141].

Unfortunately, over the years developers have found that there are several limitations

to the congestion-wait mechanism. First, congestion tracking suffers from an inherent

race condition as the degree of device congestion can change before the query returns to

the caller. Second, accurate tracking of congestion has become more difficult as storage

devices have come to support longer command queues. As a result, congestion wait() is

used in practice only when the timeout expires, which is not at all what it was originally

intended to do [142].

To overcome the limitation mentioned above, in 2021 it was proposed that all in-

stances of congestion-wait in the source code should be completely eliminated [143]. The

proposed new design reclassifies the original congestion wait into three sub categories

and handles each one differently:

• When there are too many dirty or writeback pages, sleep until enough pages are

cleaned or a timeout expires

• When there are too many isolated pages, sleep until enough of them are put back

into the LRU system or reclaimed

• When there is no progress in page reclaim, the direct reclaim task sleeps until

another reclaim task proceeds with some acceptable efficiency

The third point specifically measures the efficiency of another reclaim task by dividing

the number of pages reclaimed by the number of pages scanned: nr reclaimed
nr scanned

. In the most
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recent patch, the efficiency threshold is set at a fixed value of 12.5%. However, as the

proposer of this technique rightly points out, the fixed threshold value may not work for

all scenarios. Here we see yet another opportunity to apply PSS to optimize control of

the system, in this case dynamically optimizing the sleep condition instead of relying on

a fixed ratio.

We input several parameters into PSS and dynamically decide if the current reclaim

task should sleep or not. The parameters include the rounded values of nr reclaimed

and nr scanned as well as the ratio of nr reclaimed
nr scanned

. Since PSS only takes integer inputs

currently, we use the reciprocal of the ratio and rounded to the closest integer, i.e.

floor( nr scanned
nr reclaimed

). If the returned result is greater than or equal to 0, the task will not

go to sleep.

For this use case update is not as straightforward as predict — how does one know

that the prediction was “wrong”? While we don’t have direct access to ground truth,

we can instead assume that entering the page claim throttle function is a negative sign

for the last decision since overall page reclaim is a procedure that we want to minimize.

Therefore, we keep a timer via ktime get() to measure the timestamp of the last entrance

of the function and the duration between two entrances. If the duration becomes longer,

it means that the page reclaim has been invoked less frequently and we will reward the

weights that lead to such a decision. Otherwise, it suggests that the reclaim happens

more often and we will penalize the weights accordingly. In the end, even though we are

inferring prediction and misprediction indirectly, we are able to limit the scope of our

code changes to only the original function, consider reclaim throttle.
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3.4.3 JIT Parameter Tuning for PyPy

Python is one of the most popular languages because of its simple syntax. How-

ever, the default interpreter implementation (CPython) suffers from slow execution speed

brought by the extra interpreter layer. To recover some of that performance, Just-In-

Time (JIT) compilation can be used to translate frequently executed code snippets into

machine code that can be executed directly. PyPy is one of the most popular tools for

doing so, in part because of its efficient tracing-based JIT compiler [144].

Unlike a method-based JIT that compiles an entire method at a time, a trace-based

JIT only considers the frequently executed code paths (a.k.a., ”hot path”) within a

method.

In PyPy specifically, there is a critical parameter named threshold, which decides

whether a loop is hot or not. The default value of threshold happens to be 1039, meaning

a loop will trigger the JIT tracing mechanism on the code path only after the loop has

been executed 1039 times.

Like threshold, there are 16 other parameters in PyPy that control the tracing and

compilation mechanism [145]. We detail the subset of the parameters we utilise and their

default values in Table 3.1.

parameters Default Descriptions

decay 40 amount to regularly decay counters by
function threshold 1619 number of times a function must run for it to become traced from start
loop longevity 1000 a parameter controlling how long loops will be kept before being freed
threshold 1039 number of times a loop has to run for it to become hot
trace eagerness 200 number of times a guard has to fail before we start compiling a bridge
trace limit 6000 number of recorded operations before we abort tracing with ABORT TOO LONG

Table 3.1: List of selected PyPy JIT parameters.

While it is well understood that these parameters are critical, most prior work seeks to

find an single static set that strikes that balance. One of the most commonly used meth-

ods of achieving such tuning is genetic algorithm (GA). For instance, Yu et al. [146] use

68



A Prediction System Service Chapter 3

1 def main():
2 features = {performance counters}
3 for i in range(iteration):
4 run the workload
5 if predict(features , len) == True:
6 set more aggressive JIT parameter
7 else:
8 set more conservative JIT parameters
9 if curItrTime < prevItrTime:

10 update(features , +1)
11 else:
12 update(features , -1)

Listing 3.2: Integration of PSS with PyPy JIT

GAs to optimize parameters for Spark while Li and Jiang [147] show that GAs can find

PyPy parameters that can significantly outperform the default JIT parameters. How-

ever, GA and other static parameter tuning approaches require both expensive upfront

overhead and a set of “representative“ programs while to training. A large amount of

data, machine and load dependence of results, and the significant design space explo-

ration time required to make improvements all potentially limit the applicability of such

an approach.

Using PSS, we can tune the JIT parameters on-the-fly without additional data collec-

tion and model training cost. Inspired by Li and Jiang [147], we choose the parameters

within a set of prefixed values. The default value is multiplied by 1
4
, 1

2
, 2, and 4 to get

the 4 new settings. The only exception is trace limit of 4X, which is set to 16000 instead

of 24000 because of a range limit.

Listing 3.2 sketches the use of PSS in the PyPy JIT. After each iteration, we record

the performance including the number of instructions and the execution time. More

counter information can also be used if available, such as branch prediction and cache

performance. We then feed this information into the perceptron as input features. The

perceptron returns the decision on whether more aggressive optimization should be used

or not and the JIT configurations will be set accordingly.

Once the timing information is collected with the new parameters, we compare it with

the duration from the previous iteration. If the new parameters speed up the execution,
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Benchmark Description
intruder Network intrusion detection
labyrinth Maze routing
yada Delaunay mesh refinement
SSCA2 Graph kernel
vacation Travel reservation system
kmeans K-means clustering
genome Gene sequencing

Table 3.2: Benchmarks used from STAMP/HTMBench.

the corresponding weight will be increased; otherwise it will be decreased.

The input feature for the use case includes detailed information from PAPI [148] like

the number of instructions and potentially different cache levels’ hit rates. To better

utilize them, we round the raw values before passing them to the perceptron. The

rounding keeps only the most significant figures of a given integer. For example, 1234

will be rounded to 1000, 6276 will be rounded to 6000, and 1999 will be rounded to 2000.

Rounding allows the perceptron to learn common input and prediction patterns.

3.5 Evaluation

We evaluate PSS on an 8-core (×2-way SMT [108]) Intel Coffee Lake CPU with a

total 32GB memory, running Linux 5.15.0. The CPU has 32KB L1I and L1D cache,

256KB L2 cache, and 16MB L3 cache.

For each applications in the three examples, we use STAMP/HTMBench [149, 75]

as the HTM workload, MMTests for page reclaim benchmarks [150], and PolyBench-

Python [151] and python-macrobenchmarks [152] as the PyPy JIT benchmarks.

In this section, we define the word iteration to describe the number of a dividable

subroutine internally repeated in a benchmark program. And we use benchmark run to

refer to one whole run of a benchmark.
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Figure 3.2: Performance of HTMBench and PSS HLE normalised to vanilla STAMP.

3.5.1 Hardware Lock Elision Results

We choose Stanford Transactional Applications for Multi-Processors (STAMP) [149]

as the workload for HLE. STAMP is a collection of applications targeted for transactional

memory research. The description of the benchmark programs can be found in Table 3.2.

We use the recommended parameters for simulation setup.

HTMBench is the state-of-the-art benchmark suite of HTM and it is implemented

using Intel’s TSX [60]. It provides an efficient profiler to analyze HTM and offers op-
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Figure 3.3: Performance improvement of PSS with 20 iterations on PolyBenchPython

timizations that generate nontrivial speedups. We compare our PSS implementation

against HTMBench [75] and vanilla STAMP with HTM support as the baselines. We

vary core count over 1, 2, 4, 8, and 16 cores. We run each program five times and report

the median value of the results.

The result of STAMP is plotted in Fig 3.2, which shows the performance improvement

of HTMBench and PSS over vanilla STAMP. Overall, the overhead of using PSS is

relatively low. The most slowdown comes from 1 thread setting for kmeans-high in

Fig. 3.2(f), where PSS optimized code generates 7.02% performance degradation. In

most of the other cases, the slowdown is less than 5%. On the other hand, PSS optimized

code can clearly show benefits over the vanilla baseline or even HTMBench in selected

cases like Fig. 3.2(a) and 3.2(i). For instance, PSS leads to 87.62% of improvement for

16 threads setup in genome, which is 11% higher than HTMBench.

In terms of overhead, HTMBench has state-of-the-art implementations of STAMP

after extensive profiling and optimization. On the other hand, baseline code patched

with PSS is only trained a few hours and it performs very close to HTMBench or even

outperforms it in several cases.
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Figure 3.4: Performance improvement of PSS with 50 iterations on PolyBenchPython

3.5.2 PyPy JIT Results

Benchmark Setup.

We use version 7.3.3 of PyPy as the JIT compiler and PolyBenchPython [151] with

python-macrobenchmarks [152] as the workloads. PolyBenchPython is a benchmark

suite with 30 commonly used kernels for scientific computing and it is representative as

microbenchmarks. On the other hand, python-macrobenchmarks contains some of the

most popular python applications on a macro-level, including Flask [153], Django content

management system (CMS) [154], Gunicorn [155] and more.

For PolyBenchPython, we run the benchmark using the default list implementation

of the array and MINI as the input data size. Since the original PolyBenchPython

already uses PAPI [156] counters, we include some of them as input features to PSS.

Specifically, we use the execution time and the ratio between L1D hit and L1D miss as

parameters for PSS. Each benchmark is executed 10 times and we report the time spent

in the first 20 and 50 iterations. The baseline is the program with the default JIT setting

while the modified JIT is the program patched with PSS, dynamically changing the JIT

configuration parameters as we described in Section 3.4.3.
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Figure 3.5: Result of macrobenchmarks.

PolyBenchPython Results.

The result of PyPy JIT parameter tuning is presented in Figure 3.3 and 3.4. On

average, PSS can improve the performance of the 30 programs by 15.38% and 11.11% for

20 and 50 iterations, respectively. For the first 20 iterations, the largest improvement is

over 120% while the largest slowdown is only around 6%. For 50 iterations, the largest

performance gain and loss are smaller since most of the commonly executed code is

already jitted in the late iterations. However, the improvement is still significantly larger

than the slowdown. We believe this setup of optimization can be potentially useful for

Function-as-a-Service (FaaS) applications, which tend to run short computation tasks

over and over.
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Macrobenchmark Result.

The result of the macro benchmark is plotted in Fig 3.5. We choose 4 benchmarks

that can easily demonstrate performance iteration-wise and we simply use the iteration-

wise runtime as the parameter for PSS. We run 3000 iterations for aiohttp and gunicorn

and 1800 iterations for djangocms and flaskblogging. Each benchmark runs 5 times and

we plot the averaged result iteration-wise.

It is clear that PSS can speed up the macro-benchmark with better dynamic parame-

ter tuning. For the four benchmarks, the performance improvements are 22.17%, 2.54%,

6.3%, and 18.66%, respectively. From the two sets of benchmarks, we demonstrate the

functionality and performance benefits of PSS for both micro and macro-benchmarks of

Python.

Latency-Sensitive Applications.

Figure 3.5 also contains the result of using syscall as prediction instead of vDSO. From

the results, it is clear that for the latency sensitive applications, implementation using

vDSO performs better than syscall. The syscall-based results either have less speedup as

shown in Figures 3.5(b), 3.5(c), and 3.5(d)) or generate significant slowdown as shown

in Figure 3.5(a).

3.5.3 Page Reclaim and Memory Management

Benchmarks and Methodology.

We follow the experiments mentioned in the original patch [157]. We ran mmtests [150]

on the original 5.15.0-rc3 kernel, the patched kernel [158], and the kernel with dynamic

control from PSS. MMtests is a benchmark framework aimed at performance testing of

the Linux kernel. Specifically, we ran a test named stutterp, which sweeps a different
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Figure 3.6: Average latency of MMTests. Each mmap-N represents a run with N worker
threads. The larger the number, the higher the memory pressure.

number of “worker” processes and inspects the impact of the direct reclaim. There are

four types of workers in stutterp:

• One “anon latency” worker: creates mmap mappings then measures the duration to

fault the mapping.

• X file writers: flexible I/O tester (fio) that randomly writes X files. The total size

of the files equals the preset dirty ratio.

• Y file readers: fio that randomly reads small files.

• Z anon memory hogs: continually map memory with the ratio (100−dirty ratio)%.

The total estimated working set size (WSS) is (100 + dirty ration)% of memory. The

motivation of stutterp is to maximise the total WSS with file and anonymous memory.

During execution, some anonymous memory has to be swapped and it is very likely that

dirty/writeback pages reach the end of the LRU.
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Results.

The result of stutterp is plotted in Fig. 3.6. It shows the performance improvement

compared with 5.15.0 vanilla kernel. The number after mmap indicates the number of the

worker threads mentioned above and larger worker counts means higher memory pressure

for the system.

From the plot it is clear that PSS can outperform the baseline implementation now

merged into the kernel. The improvement is much higher for the 21, 30, and 48 workers

setups and PSS achieved slight improvement where the baseline suffers significant per-

formance loss for 12 workers. For 7 workers, all the implementations perform worse than

the vanilla code, but the slowdown is less for PSS code after several iterations.

Another benefit we can observe from the figure is that the performance of PSS is

improving over multiple benchmark runs. It does not show a monotonic increase, but

shows improvement as the general trend over time. On the other hand, we tried to run

the baseline version multiple times and we did not observe any noticeable improvement.

3.6 Related Work

Since prediction is a key feature of the system software stack, there have been many

different implementations which have been demonstrated to take advantage of common

system operations and communication patterns for prediction to improve performance

and other system metrics. Kraska et. al. [159] and Mitzenmacher et. al. [160] survey

recent work which make use of prediction and machine learning for systems.

SmartChoices [161] is the most relevant work to our proposed system service for pre-

diction. Similar to PSS, it also proposes a set of interface functions that software can use

to make predictions, as well as ability to do on-the-fly learning. However, their proposed

system is based on Reinforcement Learning which requires significantly more resources
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for training and incurs higher latency compared to a simple perceptron-based predictor.

Thus, it has limited applicability in resource-limited systems which only require simple

and fast predictions.

Other than the work mentioned on prediction memory access and synchronization

mentioned in Section 3.2, there have been several other synchronization algorithms which

have a fastpath/slowpath or other variants [162, 163, 164, 165, 123, 166, 167] and the

decision to dynamically choose the correct variant is predicted based on the past behavior

and current conditions.

Low-level runtime systems for dynamically adjusting to power and energy consump-

tion employ lightweight prediction mechanisms [168, 169, 170, 171]. Esmaeilzadeh et

al. present a learning-based technique to accelerate approximate programs [172]. In

their work, programmers can label a code region to approximate and then a NN model

will be trained to emulate the region. Once the training is complete, the original code

region will be replaced by the invocations to a low-power Neural Processing Unit via

an ISA extension. Furthermore, system failure prediction [173, 174, 175, 176, 177, 178]

has also attracted a lot of attention in recent times due to very large scale systems and

increased failure rate. Finally, searching for the set of compiler optimizations and their

order of application employs various prediction techniques based on past learnings and

behaviors [179, 180, 181, 182, 183].

There are many studies focused on how to automatically tune the configuration set-

tings for different kinds of software systems. In general, those studies can be classified into

two groups. The first group utilizes a certain type of search-based algorithm, including

hill-climbing [184], genetic algorithms [146], and ParamILS [185]. The second group tries

to find the optimal configurations by reduction, including the iterative experiment [186]

and similarity measurement [187].

Our proposed system service prediction is flexible enough to be used and bring per-
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formance benefits in most of these prediction scenarios and avoid the complications of

parameter tuning. Compared to traditional approaches, our proposed service offers ad-

vantages in terms of lower effort and resources needed with on-the-fly tuning and better

reusability.

3.7 Conclusion

The effective end of processor frequency scaling and the continued drive for higher

performance and lower energy utilization means that application-targeted software opti-

mization will only continue to grow in importance in the field. While there are sure to

be many application specific optimizations that do not rely on prediction, a surprisingly

diverse class of optimizations, from hot-path/cold-path, to parameter tuning, to resource

optimization, and beyond are more easily and readily enabled through support from a

simple to call and low-latency software service. The move to a new abstraction that is

useful in the process of optimization helps us step away from both the fragile heuristics so

common in production code today while avoiding inheriting the complexity of complete

application-embedded prediction frameworks. A system service for prediction has the

potential to enable performance optimizers to spend their time worrying more about the

discovery of new opportunities for specialization and tuning, and less about how exactly

one should navigate the space of trade offs such opportunities live in. Even if there are

times when such a service might not be appropriate for a final deployment, a predic-

tion service can still be helpful in the development process by speeding up the sorting

of promising optimization opportunities from those that will offer little gain even with

well-crafted heuristic control. A core idea of prediction as a service is the decoupling of

the creation of optimizations and the specific decision of how and when exactly to apply

those optimizations.
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We demonstrate the utility of Prediction as a System Service across three application-

targeted optimization scenarios, and in all three cases find performance improvements.

As to be expected such an approach is highly latency sensitive, but we are able to demon-

strate a creative new use of vDSOs that can allow applications to extract predictions in

an average of 4.19ns. In all of the cases we examined this new optimization pattern with

operating system service support is able to meet or beat the best known hand-crafted

methods with a fraction of the complexity of existing hardware. We believe this ap-

proach would be of particular interest to the community as it also opens the door for

new and creative uses of architectural support for assisting in prediction with low la-

tency, language level opportunities for the exploitation of prediction services, and further

innovation in the system-level abstractions appropriate to more fully support dynamic

control of software optimization.

For future work, we believe multiple directions can be explored on top of the current

proof-of-concept implementation. For instance, how to share PSS among multiple ap-

plications like VMs and containers and handle the security concern effectively. Another

interesting topic is to measure the performance impact of multiple threads or processes

to access the PSS simultaneously.
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Chapter 4

CRISP: Critical Path Analysis of

Large-Scale Microservice

Architectures

4.1 Introduction

Microservice architectures [23, 24, 25, 26, 27, 28, 29] have become the lifeblood of

modern service-oriented software systems. As opposed to monolithic software develop-

ment and deployment, in a microservice environment, the business logic is broken into

individually deployable programs, which allow fast development and scalable deploy-

ment. Individual microservice instances interact with one another via remote procedure

calls (RPCs). As microservices evolve with the business, they grow in number and their

interactions become complex.

Uber’s backend is an exemplar of microservice architecture. Uber has ∼4,000 mi-

croservices interacting with each other via RPCs. Each microservice hosts a handful of

APIs, leading to a total of about 40, 000 unique RPC endpoints that can call one another
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Figure 4.1: Complex microservice RPC call graph at Uber collected via Jaeger tracing.

in complex ways, as depicted in Figure 4.1. Hereafter, we use the terms endpoint and

API interchangeably to mean a uniquely named functionality provided by a service. We

use the terms operation and RPC interchangeably to mean an instance of invocation of

such an API.

A service request arriving at an entry point API to the Uber backend systems under-

goes multiple “hops” through numerous microservice RPCs before being fully serviced.

The life of a request results in intricate microservice interactions. These interactions are

deeply nested, asynchronous, and invoke numerous other downstream APIs. As a result

of this complexity, it is very hard to identify which underlying service(s) contribute to the

overall end-to-end latency [30, 31, 32, 33, 34, 35, 36] experienced by a top-level request.

Answering this question is critical in many situations. For example:

• Identifying optimization opportunities for a top-level microservice (e.g., reducing tail

latency)

• Identifying bottleneck APIs that affect numerous endpoints

• Setting appropriate time-to-live values for RPCs
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• Diagnosing outages and error conditions

• Planning for computing and other capacity management

The critical path [188] is the longest chain of dependent tasks in a microservice

dependency graph. Reducing the critical path length is necessary to reduce the end-to-

end latency of a request. Hence, latency optimization efforts benefit from prioritizing the

services that are on the critical path.

We have developed a tool, CRISP 1, to pinpoint and quantify performance prob-

lems in microservice architectures. CRISP uses the RPC tracing facility provided by

Jaeger [189] and constructs the critical path through a request’s graph of dependencies.

The critical path may vary among requests; hence, CRISP computes the critical path

per request. It then aggregates and summarizes critical paths from millions of requests.

Finally, it presents them as digestible and actionable insights via rich heat maps [190] and

flame graphs [191]. CRISP provides knobs to dissect the details with different percentile

values that help in performance diagnoses.

As a full-fledged performance analysis tool, CRISP caters to various use cases via

the following rich set of capabilities that scale to work on millions of traces:

• Top-down analysis: A top-down analysis of any specific endpoint of interest. This

capability allows service owners to deep dive into their specific endpoint and pinpoints

and quantifies bottlenecks encountered in the RPC dependency graph. Improving these

bottlenecks should be the first-order priority to reduce the latency of the endpoint.

• Bottom-up analysis: A bottom-up analysis over all endpoints, which bubbles up and

ranks by the impact of those interior APIs that cause the most latency across most

endpoints. Optimizing these interior APIs reduces latency across numerous endpoints.

• Neural network-based anomaly detection: An automated anomaly detection

system, which detects whether a request is exhibiting abnormal behavior compared

1named taking letters from critical and span
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Figure 4.2: Critical path(s) of createOrder endpoint shown as a flame graph via CRISP
after processing 100K Jaeger traces.

with the past history of the endpoint. The system is trained per endpoint using an

autoencoder-decoder machine learning technique [192]. This system is set up to expe-

dite problem detection and alert developers. Basing the abnormality detection on the

divergence in the critical path as opposed to the full call graph [192] not only makes

the training and inference faster but also reduces false alerts.

Practical deployment of CRISP at Uber over a fifteen-month period working on 40K

endpoints while processing ∼ 200GB of traces with ∼18 million spans in ∼ 256 hours of

CPU time per day has resulted in the following impact:

• Detection and narrowing down the causes of five latency impacting bugs in two business-

critical services

• Identification of a 1.5× tail latency lengthening due to hardware choice and the result-

ing guidance for future hardware selection

• Up to 27.77× speedup in training, up to 66.85× speed up in inference, and 50%

reduction in false alerts in identifying abnormality of service behaviors over the state

of the art [192]

The rest of this work is organized as follows: Section 4.2 motivates CRISP with a use

case at Uber, Section 4.3 describes the Jaeger tracing framework, Section 4.4-4.6 describe

the methodology, internals, and features of CRISP, Section 4.7 evaluates CRISP at

Uber, Section 4.8 discusses the related work, and Section 3.7 offers our conclusions.
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4.2 Motivating Example for CRISP

Fulfillment [193] at Uber is a platform to orchestrate and manage the lifecycle of

orders and user sessions with millions of active participants. The Fulfillment platform

is a foundational Uber capability that enables the rapid scaling of new verticals. The

platform handles more than a million concurrent users and billions of trips per year that

span over ten thousand cities. The platform handles billions of database transactions

a day. Hundreds of Uber microservices rely on the platform as the source of truth for

the accurate state of the trips and driver or delivery sessions. Events generated by the

platform are used to build hundreds of offline datasets to make critical business decisions.

Over 500 developers extend the platform using APIs, events, and code to build more than

120 unique fulfillment flows.

The createOrder endpoint allows capturing the requester’s intent in the Uber back-

end. Intent can be to request a ride from one of the ridesharing lines of products, food

booked and dispatched by one of the courier partners, or a package be delivered to a

customer. This endpoint has a complex task dependency graph necessary for: a) de-

termining order risk such as user fraud, sufficient user balance via authentication hold,

b) ensuring the fare presented to the requester in the shopping phase is still valid, c)

determining the benefits the requester is eligible for, d) enriching data with location

information, and e) creating an order in the backend to start the matching process.

The tasks in this endpoint have grown organically as requirements evolved. This has

led to an increase in p95 latency to 6 seconds, affecting user experience. The service

itself is written in Java, and highly (both macro and micro) optimized using periodic

profiling. However, the profiling offered no insights into downstream calls, where most

time is spent. Quantitative insight into the causes of the latency was hard to analyze

by looking at individual traces because each trace contains thousands of nested and
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overlapping RPCs.

There are numerous sampling- and instrumentation-based profilers [194, 195, 196, 98]

for intra-service profiling. However, they do not collect metrics at the individual request

level. The Fulfillment microservice (as most other microservices) is highly threaded;

the work of an individual request may be partitioned among multiple threads within a

process as well as multiple threads may be handling independent requests simultaneously.

In such a setup, traditional profilers fail to highlight the causes of latencies incurred at

an individual request level. Also, traditional profilers fail to capture IO waiting, task

dependencies, and serialization patterns.

With CRISP, the development team performed a top-down critical path analysis of

this endpoint over 100K traces (∼200GB of traces) and visualized the results as a flame

graph as shown in Figure 4.2. Navigating the “hot” critical paths via the flame graph

not only corroborated an existing hunch while offering quantitative guidance but also

shed light on new optimization opportunities lurking in the wild. Below, we enumerate a

few defects and optimization opportunities that became evident by inspecting CRISP-

provided insights.

Async flow optimization: decideOrderRisk contributes to about 68% of the end-

to-end P50 latency, revealing the following optimizations: a) aggressively use cache in

FraudScore to reduce its latency and b) parallelize the calls beneath this big endpoint

(e.g., PaymentAuthHold and FraudScore). In the long term, the team envisions using

an asynchronous invocation of paymentAuthHold and using notification to the requester

when a provider is assigned.

Unnecessary API serialization: There was an unnecessary serialization between

GetVenues and GetAccessPts. These two RPCs can be done in parallel.

Avoidable server roundtrip for validation: FareValidate contributes to about

5% of the end-to-end P50 latency. This is a call that need not be performed every time.
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Trusted edge devices (e.g., company mobile app) can validate at the edge improving

performance for trusted users and falling back to server validation if the fare has expired

based on fare expiry TTL; untrusted apps will use the full server validation.

Caching over DB fetch: GetMarketplaceBenefits contributes to about 5% of

the P50 latency. This can be served via a cache rather than a database read to fetch

requester benefits.

4.3 Background

In this section, we first describe the microservice tracing infrastructure at Uber and

then enumerate its shortcomings.

4.3.1 Distributed Tracing at Uber

Microservices run over several physical hosts, usually owned by multiple teams, and

written in multiple languages. It is impossible to use traditional profilers [195, 194, 197] to

gain insight into the events involved in processing a request. Because each physical host

can have a separate clock, it is intractable to infer causality using time alone. Distributed

tracing [198] encodes causality information in a distributed context, which is propagated

across process boundaries. It provides a way to infer states across various services for

the lifetime of a request.

At Uber, Jaeger [189] is used as the distributed tracing system. Jaeger provides

clients for generating trace data and components for storage and retrieval of traces.

Microservices instrumented with Jaeger clients produce OpenTracing [189] -compliant

spans when receiving new requests and attach distributed context information (trace ID,

span ID, custom key-value pairs). The “span” [199] is the primary building block of a

distributed trace, which represents a serial unit of work done in a distributed system.
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Each span contains the following information:

• API name

• Start and finish timestamps

• Custom key-value pairs

• Span context and references (described below)

Each span may reference other spans with a causal relationship by span context. A

span may reference a parent with the ChildOf relationship, indicating that the parent

span waits for the child to finish a certain task. Multiple child spans can be referenced

by the same parent and run concurrently.

While the source code is always instrumented, the overhead is controlled by a dynamic

sampling rate, which is adjusted based on the traffic received by Internet-facing endpoints.

No data is collected for traces that are not sampled. Specifically, adaptive sampling sets

a target QPS for traces on a per root service-endpoint basis, which ensures that the

number of samples on the external API request remains roughly constant. Jaeger does

not support tail-based sampling [200].

Figure 4.3 depicts the Jaeger deployment at Uber. Jaeger is deployed as multiple

components, with a jaeger-agent running on every host. All applications running on

this host send spans to jaeger-agent over UDP [201]. jaeger-agent then forwards

these spans to a jaeger-collector, which then buffers spans onto the Kafka [202]

distributed event streaming platform. The spans buffered in Kafka have multiple con-

sumers: jaeger-ingester, which inserts them into Docstore[203], a distributed SQL

database, and allows for retrieving full traces; jaeger-indexer, which inserts them

into Sawmill[204], a schema-agnostic logging platform that allows user-friendly search

on spans fields. Additionally, spans are consumed by Apache Flink [205] jobs to produce

multi-hop dependency graphs. Depending on the sampling configuration in effect, the

backend processes around 400K-1M spans per second, which is approximately 20TB each
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Figure 4.3: Jaeger deployment at Uber.

day. Variance is common due to diurnal patterns.

4.3.2 Difficulties with Large-Scale Jaeger Traces

Despite their power, Jaeger traces are highly complicated. Jaeger provides a UI to

filter traces by time ranges and also provides a UI to view the trace as a callgraph, as

well as an expandable tree over a timeline. In spite of these facilities, the users of this

manual workflow often complained about the following limitations to analyze endpoint

latencies:

• Only first-level insights are possible from drilling down into microservice latencies and

errors.

• Using a few Jaeger traces is insufficient to reach a reliable conclusion. Users can

visualize and navigate only one Jaeger trace at a time. There is no aggregate summary

of traces.
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• A single Jaeger trace can be so complex that it is not humanly possible to browse

and understand the details. Endpoints commonly have thousands of nodes in the

RPC graph with 25-deep call chains and up to 40 spans overlapping in time. It is

cumbersome to manually understand the critical path due to the asynchronous nature

of calls.

• There is a lack of regular, performance-driven feedback tooling to optimize the workflow

or downstream systems.

These challenges introduce a barrier to our developers in effectively using Jaeger to

either detect anomalous situations or identify optimization opportunities.

4.4 CRISP Methodology

The fundamental difficulty in making sense out of a Jaeger trace is due to the com-

plexity of the graph. Our premise is that while the whole graph is interesting in terms

of data richness, it brings a lot of noise. There are many RPCs and call paths that are

insignificant for a high-level analysis and optimization task. With this understanding,

we shrink the graph to its quintessential element—the critical path—and aggregate many

traces into a single summary that is still rich with call path information.

Critical Path Analysis[188, 206] (CPA) is a well-studied concept over directed acyclic

graphs (DAG) formed out of computing graphs in parallel computing. The nodes in the

DAG represent tasks (units of serial execution) and the edges represent dependencies

between tasks. A node with an out-degree greater than one “spawns” children’s tasks

and a node with an in-degree greater than one waits (“syncs”) for the children to finish.

Total work is the sum of weights of all nodes and the critical path is the longest weighted

path in the DAG.

[Critical Path] In a task graph G = (V,E) made of task vertices V and their depen-
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dency edges E, with two special vertices S (start node) and F (finish node), the critical

path is a maximal-weight path from S to F . G may contain more than one critical path.

The critical path identifies the sequence of dependent computations that consume the

most time. To speed up the service, it is strictly necessary to boost the components on

the critical path.

RPCs among microservice operations have a parent-child hierarchical relationship

and can be construed as a parallel computation DAG. The deriving critical path from

Jaeger traces, however, has the following challenges:

• Unlike a traditional parallel computing DAG seen in the academic literature, the Jaeger

traces do not provide clear “spawn” and “sync” events in the DAG.

• The parent spans in Jaeger traces carry no dependence information and so the infor-

mation of the last “sync“ child span is not directly available.

• In order to obtain the last “sync“ child span, clock information is needed. However,

the clocks on different machines where spans are collected are not time-synchronized.

• The critical path across all requests may not be unique. Services have diurnal patterns

and different traces may exhibit different critical paths, which need to be aggregated,

and yet “hot” critical paths need to be bubbled up.

• Since the service codes keep evolving, the critical path keeps changing.

We address these challenges in the next section.

We also mention in passing that the CPA is not a performance analysis panacea.

Once the exposed latency on the critical path is eliminated, a new critical path may

emerge which necessitates the need for an iterative profiling and optimization approach.
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4.5 Critical Path Analysis

In this section, we detail how we compute, aggregate, and represent critical paths

from many Jaeger traces for a given endpoint.

4.5.1 Deriving Critical Path from a Single Trace

CRISP’s trace analysis exploits a map-reduce paradigm to process millions of traces

belonging to each endpoint. To this end, each process loads an input Jaeger trace file

(JSON format) and builds an n-ary tree, where each parent node is the RPC caller and

the children nodes are the immediate downstream callees.

In order to compute the critical path through the trace, we need a computational

DAG. To accomplish this under Jaeger/Opentrace trace format, we make use of the start

and end times of children’s spans. The start time in every immediate child creates a

“spawn” event in the parent and splits its span at that point in time. Similarly, the end

time in every immediate child creates a “sync” event in the parent and splits its span

at the point in time. Thus, we transform the tree into a logical DAG for critical path

construction.

Figure 4.4 shows an example DAG constructed from Jaeger traces by looking at span

start and end times. In Figure 4.4, the span A is the root span, which invokes spans B,

X, and D. The span B in turn invokes span C. The start time T1 and its end-time T6

of B create a spawn and sync points on A, respectively. Similarly, the spans X and D,

create further segments in A. Similarly, B’s child C, creates the spawn and sync points

on B at T3 and T4, respectively.

Limitations of Jaeger/Opentrace format: One key limitation of the Jaeger is that

the parent spans (a.k.a., caller) do not contain dependence information. Specifically,
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they lack the information of both start and end of callee RPC. Instead, it is the callee

that stores both the ID of its parent and callee’s start and end time (per callee’s

local clock) in its own span. The implication of the constraint is that the dependency

relationship needs to be inferred via clock information recorded in the callee span.

In addition, the inference can be inaccurate because of the clock skew that will be

discussed in Section 4.5.2. Traditionally, the computation of the critical path depends on

the last returned child of the parent spans [207]. In Jaeger traces, the last arriving child

information is not directly recorded in the parent span. Instead, the last arriver needs

to be inferred using the span end time for each child, which will be based on each child’s

local clock. Without correctly handling the clock skew, the critical path analysis can go

wrong.

One may extend Jaeger tracing by making the callee return additional data to the

caller. Unfortunately, ensuring that these changes are adopted universally across thou-

sands of services is an engineering hurdle. Such changes also require support from differ-

ent RPC libraries used by our system. Our solution, in contrast, does not require such

large-scale system-wide changes but yet produces high quality results as we describe in

the rest of this section.

Critical Path Algorithm

We, first, describe how we compute the critical path in a trace assuming perfectly

synchronized clocks in this subsection. We expand to handle unsynchronized clocks in

Section 4.5.2.

The process of computing the critical path (CP shown in Listing 4.1) on the logical

DAG starts at the root node R—the endpoint under study. We sort all its children by

their span end time and pick the last finishing child (LFC). The entirety of LFC is on

the critical path. Let LFCs be the start time of the LFC; we ignore all children spans
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Figure 4.4: Trace with root span A, its children B, X, and D. B further calls C. CRISP
further segments each parent traces based on the start and end time of its children. The
red-colored blocks represent the critical path through the trace.

1 de f CP( root ) :
2 path = [ root ]
3 i f l en ( root . c h i l d ) == 0 :
4 r e turn path
5 ch i l d r en = sortDescendingByEndTime ( root . c h i l d r en )
6 l f c = ch i l d r en [ 0 ]
7 path . extend (CP( l f c ) )
8 f o r c in ch i l d r en [ 1 : ] :
9 i f happensBefore ( c , l f c ) :

10 path . extend (CP( c ) )
11 l f c = c
12 r e turn path

Listing 4.1: Pseudocode to compute critical path.

of R that may start or end in the time intervening between the start and the end of

LFC. We now look for the next child of R whose end time immediately precedes LFCs

and perform the same procedure iteratively until no child is left to process. Time not

attributed to any child of R is attributed to the root span itself.

The process is also recursive. Once an LFC is identified, it recursively calls CP on

its own children to distribute its time under its children. The result of the CP algorithm

is a sequence of graph nodes with time associated with each one of them. Applying

this algorithm to the trace shown in Figure 4.4, the critical path is represented by the

fragments A1B1C1B3A5D1A7.

There are two types of metrics associated with each node of the critical path —

inclusive time and exclusive time. The “exclusive” time does not include the time spent

94



CRISP: Critical Path Analysis of Large-Scale Microservice Architectures Chapter 4

A
B
C

D

B
M
Y

C

A B C

D

B M

C

A B C

D

M
…

trace 1

trace N

…
A

X

Trace DAGs critical path as 
Critical CCT (CCCT)

Aggregate 
CCCT

A

Figure 4.5: From trace to DAG to critical path (CCCT) to aggregate critical calling
context tree. In the trace DAGs (left of the diagram) the x-axis is the flow of time.
Horizontal lines are Jaeger spans and vertical lines are caller-callee relationships. Red-
colored horizontal spans are on the critical path.

in a node’s callees. The “inclusive” time is the total wall clock time from the start to the

end of the RPC on the specific node.

Since every node on the critical path encodes the information on how it was called,

and since all call paths originate from a common root — the endpoint under investigation

— it enables us to merge all call paths into a calling context tree (CCT) [208] by looking

at their common prefixes. Consider the critical path A1B1C1B3A5D1A7 for the trace in

Figure 4.4. This path encodes the following call and return information: A calls B calls

C returns to B returns to A calls D returns to A. With this, we can infer that there

are the following call chains involved on the critical path: A, A → B, A → B → C,

A → B, A, A → D, and A. We can merge all these call paths into a CCT and call it

a Critical Calling Context Tree (CCCT). This process is presented in the center section

of Figure 4.5. The calling context information makes it not only rich but also helps in

aggregating critical paths from multiple traces described later in Section 4.5.3. A level

of aggregation happens immediately within each trace processing: if the same endpoint

appears multiple times on the critical path, we sum them as long as their call chains are

exactly the same. For example, in the previous A1B1C1B3A5D1A7 critical path example,
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Figure 4.7: Actual traces due to clock
drift. Red lines show the corresponding
critical path.

we merge the multiple occurrences of call paths A∗ and A∗ → B∗. This merger discards

the ordering relationship between events, which we do not need for further analysis.

4.5.2 Challenges with the Clock Drift

The span start and end times recorded in Jaeger traces are both callee’s local-machine

time stamps converted to the standard UTC time. Machine clocks on two different

physical machines drift [209, 210, 211] despite their periodic NTP-based synchronization.

As a consequence of using local clocks, our critical path algorithm (if not corrected) can

go wrong and sometimes lead to significant misattribution.

Span overlap problem: Figure 4.6 shows an ideal trace where the three spans A,

B, and C are invoked one after another by the parent P . Most of the time should

be attributed to the children. Figure 4.7 shows the trace for this example from our

production, where the time recorded for the children spans have a small overlap; there is

an overlap between the end of A and the start of B and the end of B and the start of C.

In this case, the critical path is not attributed to span B and instead attributed to the

parent. Due to the clock drift, more than 50% of our traces recorded this type of span

overlaps causing misattribution in critical paths.

We conducted a detailed study on the impact of such clock drift. Figure 4.8 plots the

time overlap recorded in Jaeger traces of two sequentially invoked RPCs sampled over
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Figure 4.8: Distribution of time overlap recorded in Jaeger for two sequentially in-
voked RPCs. A positive value shows an overlap. The mean is 204.21µs and the max is
1696.00µs.

118K traces. A positive value shows overlap and a negative value shows non-overlap.

More than 50% of samples show an overlap. The P50 overlap is 204µs and the maximum

overlap is 1696µs.

Based on this empirical observation, we tuned the happensBefore(A, B) part of our

CP algorithm with the following relaxation:

• Aend − threshold < Bstart, and

• No other children of the parent of P of A can start or end in the overlapped time range

The first condition allows a small threshold amount of overlap between the end of

the previous span with the start of the next span. The second condition ensures that in

the region of the allowed overlap, there is no other spawn and sync event, which ensures

the parent-child serialization. The threshold is set to 1ms.

Span overflow and underflow problems: In addition to the overlap, there can be

overflow and underflow of child spans due to the clock drift. We enumerate these problems

along with our pragmatic solutions below:
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• A child span C may start before the start of the parent span P . In such cases, we

truncate the start time of C till the start time of P . This may involve the recursive

truncation of C’s descendants.

• A child span C may end after the end of the parent span P . In such cases, we truncate

the end time of C to the end time of P . This may involve the recursive truncation of

C’s descendant.

• Although rare, a child span C may end before the start time of parent span P . Simi-

larly, a child span C may start after the end time of the parent span P . In these cases,

we completely drop the subtree formed by C for CPA.

This tailoring fixed our CP algorithm. The total time truncation over millions of traces

was under 5% giving us the confidence that a significant part of the data was retained.

4.5.3 Aggregating Critical Paths

While one trace can be compressed into its essential critical path and represented as

a CCCT, it may not be representative. Hence, we need to inspect numerous traces to

derive a “typical” shape of the critical path. Distinct traces may exhibit different critical

paths based on many things, such as calling parameters, scheduling decisions, system

load, time of the day, and network delays, to name a few. Hence, a summary of typical

components on the critical path is desired.

To this end, we merge all critical paths (represented as CCCTs) into a weighted,

aggregate CCCT. We follow the tree merging process done in HPCToolkit [195]. The

aggregate CCCT succinctly summarizes all call paths leading to critical path nodes in

all traces; it captures the quantitative aspect by associating higher weights to those call

paths that are often on the critical path. The weights of the nodes in such a tree would

be the summation of the weights of the constituent call paths. Specifically, we provide
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Figure 4.9: Schematic diagram of CPA over Jaeger traces.

different percentiles (e.g., P50, P95, P99) of the latency values, which are widely used

for QoS purposes. Figure 4.5 exemplifies this process.

4.5.4 Workflow for Continuous CPA

Figure 4.9 depicts the workflow followed by CRISP for performing critical path anal-

ysis of microservice traces for all endpoints. The components belonging to CRISP are

marked by the outermost rectangular box.

All services are instrumented to produce Jaeger traces during their RPCs. The in-

strumentation is enabled across languages such as Go, Java, Node.JS, and Python. The

RPCs emit Jaeger spans into a common data store, which can be queried via SQL-style

queries.

The CRISP workflow runs as a daily job. The workflow begins by collecting a list

of endpoints. Each endpoint can be handled in parallel. Hence, we dedicate a handful of

machines that shard the list of endpoints among them.

For each endpoint, CRISP queries the Jaeger data store (via sawmill-query) service

to fetch a list of traceIDs. This query is set up to obtain the last two weeks’ worth of

traces. We then use these traceIDs to fetch the actual JSON traces (jaeger-query) ser-

vice. We exploit IO parallelism here to fetch many traces concurrently. We compute the

critical path over each trace in parallel using the map-reduce paradigm. The set of criti-
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cal paths obtained is fed into an aggregating process that summarizes and produces the

daily critical path report for each endpoint (top-down analysis) and also produces overall

metrics aggregated over all endpoints (bottom-up analysis). The results are injected into

blob storage that can be easily navigated by a varied set of users, including service own-

ers, performance engineers, and capacity managers. An offline anomaly detection model

is also trained per endpoint result.

4.6 CRISP Features

We have developed tools to inspect critical paths for top-down performance analysis

of specific endpoints, bottom-up analysis over all endpoints, and automatic anomaly

detection over traces. We describe these features in this section.

4.6.1 Top-Down Analysis

We store the results of our CPA for each endpoint into profiles for investigation by

service owners. CRISP provides the following means of visualization of CPA over each

endpoint.

Flame graph: Flame graph [191] is a powerful way to visualize hierarchical call paths

arising from profiling. The interactive visualization is easier to digest and investigate.

Since we maintain the summarized critical paths as aggregate CCCTs, which are formed

of many weighted call paths, it naturally avails itself to be represented as a flame graph.

If we chose all traces to represent a single flame graph, the critical path found in P99

latencies may dominate the flame graph and mask the other common cases. For that

reason, we show three different flame graphs for different percentiles of latency values

(e.g., P50, P95, and P99). We also produce differential flame graphs [212] that show how
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Figure 4.10: Example heat map from 1000 traces. The result is sorted by the P50
percentile value of the exclusive time of each operation. Each cell is the accumulated
time in µs.

the critical paths change between two percentile values.

Heat map: Flame graphs are useful for navigating call chains but developers sometimes

need access to an actual Jaeger trace that represents a given data so that they can inspect

it in further detail. For this reason, CRISP provides the heat map view (see Figure 4.10),

where the rows are the endpoints and the columns represent individual traces. Each cell

in the heat map represents the exclusive time on the critical path and each cell is gradient

colored based on its contribution (exclusive time) to the total latency. In this view, we

collapse the call paths and accumulate the metrics from all call paths, reaching the same

endpoint in a single row. However, for exploration, the developers have access to the top

5 call chains (not shown) for each endpoint, which is available by hovering over any row.

In this view, the user can also choose percentile values and inclusive or exclusive metrics

to sort the rows. Each column is also sorted by a high to low contribution for a given

chosen metric. Selecting any trace takes the user to the Jaeger-UI to inspect the trace.
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4.6.2 Bottom-Up Analysis

The objective of the bottom-up analysis is to derive insights from all endpoints and

to bubble up those interior APIs improving which will improve many endpoints. The

bottom-up analysis is a data-intensive process and needs access to critical paths from all

endpoints. For this reason, we retain the aggregate CCCT computed for each endpoint

from the top-down process, along with some additional statistics related to the overall

graph structure. Once all endpoints are processed, the bottom-up analysis runs; it ag-

gregates the statistics from each endpoint and quantifies the impact of each API over all

other endpoints. The output of the bottom-up analysis is a descending priority list of top

APIs that are often in many endpoints. Additionally, the bottom-up analysis produces

various histograms over all traces taken together, which include the total number of times

any API appears in any graph, the total number of times an API appears on the critical

path, the number of unique APIs on the critical path, the critical path length, and the

maximum degree of concurrency in a trace, among others. These graphs are intended to

inform infrastructure and hardware engineers to better understand the current needs of

our systems and aid capacity planning for the future.

4.6.3 Anomaly Detection

We also employ CRISP to pinpoint whether a new incoming trace (for a given end-

point) deviates from the normal execution behavior. For this purpose, we have trained

a machine learning model and used it for inference.

During the offline training, we encode the critical path (CCCT) for each trace of an

endpoint into feature vectors, which we call service critical path vectors (SCPV). We feed

several SCPVs into an autoencoder to learn the normal execution pattern of the given

service. During the online inference, the learned model will infer whether the given new
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Figure 4.11: An example CCCT (left), the letters indicate name and the numbers indicate
the exclusive time on the span. The corresponding SCPV (right).

trace is abnormal or not based on an anomaly score.

The architecture design, training, and inference of the autoencoder are derived from

TraceAnomaly [192], which is the state-of-the-art framework for anomaly detection in

microservices trace. The neural architectural details are described in the next subsec-

tion. The key difference between CRISP and TraceAnomaly is in the data encoding.

TraceAnomaly uses a service trace vector (STV) which encodes every path in the trace

and, in contrast, CRISP encodes only on the call paths for those spans that are on the

critical path spans. SCPV encoding: Figure 4.11 exemplifies encoding the critical path

present as a CCCT into an SCPV. For each node in CCCT, it assigns weights based on

its exclusive execution time. Notice that endpoint C occurs twice on the critical path,

thus it is also encoded twice in the SCPV, given the call chain is different. The training

set is a 2D matrix where each column is a feature (call path) and each row is the feature

values of a given trace. Using the call paths of spans only on the critical path, compared

with the prior work that used all call paths in the entire graph, offers significant benefits.

It reduces the feature dimensions; it reduces the training and inference time; and, most

importantly, it improves the model accuracy. The impact of the CCCT-based encoding

is substantial and evaluated in Section 4.7.3.
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Figure 4.12: Differential flame graph for the getDriverTask endpoint. Red colors indi-
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Figure 4.13: Architecture of neural network for anomaly detection.

4.6.4 Autoencoder Model Architecture

We choose the Deep Bayesian Network for anomaly detection given it is capable of

learning complex patterns from the trace. We adopt the model from TraceAnomaly [192],

which is the state-of-the-art framework for microservice trace based anomaly detection.

Specifically, we adopt Variational Auto-Encoder (VAE) [213] to model the distribution

pattern from the normal execution. VAE is an unsupervised learning that does not

require a label, which can be expensive to obtain in our setting due to the volume of

traces. Figure 4.13 depicts the architecture of VAE. It has three components: encoder,

posterior flow, and decoder.

The encoder contains 1 hidden layer (hϕ(x)) to learn the hidden features of SCPV.
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The goal is to learn the mean µz(0) and the standard deviation σz(0) of the SCPV. z(0) is

sampled from diagonal Gaussian N (µz(0) , σz(0)I) and served as the latent variable to fit

the distribution. ϵ is a small constant vector that has been introduced to avoid numerical

issues during the training [192]. SoftPlus is defined as SoftPlus(x) = log(1 + exp(x)).

For the next step, posterior flow allows the network to learn more complex patterns

of the trace. The input is z(0) and after passing length of K flow it will become as z(K).

Then, z(K) will be passed into the decoder network to extract hidden features. Simi-

larly, the purpose of those hidden features is to derive the mean µx and standard devia-

tion σx of the input trace vector. After that, the reconstructed x will be sampled from

N (µx, σ
2
xI)

4.6.5 Inference

When a new trace is given, the log-likelihood value will be computed against the model

to detect whether the trace is abnormal or not. If the trace x is significantly different

than the normal trace, the value of a trace log pθ(x) is noticeably smaller than the value

of the normal traces. Instead of manually setting the threshold of anomaly, we follow the

work from Liu et al. [192] and use Kernel Density Estimation (KDE) [214] to learn the

distribution of the normal traces log-likelihood. Specifically, we adopt the p-value [215]

approach and set the value as 0.001 to check if the probability of the log-likelihood value

not following the learned distribution.

If the trace contains any unseen call chain, it will be regarded as abnormal. Training

is a continuous process since the code evolves and the call paths keep changing over time.

We use a sliding window of last 14 days of trace to keep our model up-to-date.
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4.7 Experience and Evaluation

In Section 4.7.1, we describe one of our findings by applying the top-down analysis

of CRISP at Uber, in Section 4.7.2 we show valuable characteristics of microservices at

Uber by applying the bottom-up analysis of CRISP. In Section 4.7.3, we empirically

evaluate the anomaly detection capability of CRISP and in Section 4.7.4 we describe

how we employed CRISP in guiding future hardware selection to reduce tail latency in

our services.

4.7.1 Tail Latency Investigation via Top-Down Analysis

getDriverTasks is a business-critical endpoint in the driver-presentation service re-

sponsible for returning the task plan that a driver needs to perform. A sample task

plan could be: passenger mask check, pickup passenger, pickup food, drop off passen-

ger, and drop off food. This endpoint assembles the task plan and enriches it by calling

numerous other microservices such as courier-task-platform. Figure 4.12 shows the dif-

ferential flame graph for the getDriverTask endpoint. The graph plots a difference

between the critical paths seen in the traces with the P50 latency vs. P95 latency for the

getDriverTask endpoint. The red-colored boxes show the growth in percentage time

spent in P95 with regards to P50. The getTaskCompletionStatus API was absent in

the P50 traces, whereas it occupies 47% of the total execution in P95 traces, contributing

to the same amount of addition to the tail latency. This endpoint dependency makes a

call to Cassandra—an expensive database read. Based on this insight from CRISP’s dif-

ferential flame graph views, we identified the root cause of performance variance and high

tail latency. We recommend caching with timestamp filtering optimization as opposed

to a database read to reduce the tail latency.

Trace processing overheads: Table 4.1 shows the overhead of analyzing the
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getDriverTasks endpoint discussed in this section running on 16 cores of an Intel Xeon

Skylake machine clocked at 2.4 GHz.

Table 4.1: Overhead of top-down analysis of getDriverTasks.

Num Traces Trace size Processing time Memory usage
10k 6.8 GB 48 sec 2.1 GB
20k 14 GB 109 sec 4.2 GB
40K 28 GB 232 sec 8.5 GB
80K 56 GB 553 sec 17.6 GB

Sparse sampling vs. quality of CPA: We observed that the sampling rate does

not qualitatively affect the aggregate critical path results. We conducted an experiment

where we first produced an aggregate critical path from 1 million traces. We also produced

critical paths from randomly sampled 100K and 10K traces from the same data set. We

noticed that the attribution of the top 20 services on the critical path, whether for 10K

or 100K samples, was essentially the same as the one produced from 1M traces.

4.7.2 Systemic Insights via Bottom-Up Analysis

In this section, we show the result of running CRISP with bottom-up analysis on the

collected trace dataset and some insight associated with the data. The dataset includes

more than 1 million traces, ∼4k services, and ∼40k endpoints. It takes around 4 hours

on 32-cores of a Intel Xeon Skylake machine clocked at 2.4 GHz.

Total RPCs per request: Figure 4.14 is a histogram of the total number of RPCs

made per request, which is same as the total number of spans in a trace. On average

there are 112 spans in a trace. However, there exist several large ones with a maximum of

275K spans. Such scale brings significant challenges for the developer to debug without

proper reduction of the graph size.

Total endpoints in a trace: Figure 4.15 is a histogram of the total number of
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Figure 4.14: Histogram of the number
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Figure 4.15: Histogram of number of
unique endpoints per trace.
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Figure 4.16: Distribution of latency
among all traces.
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Figure 4.17: Histogram of longest call
chain per trace.
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Figure 4.18: Histogram of the number
of unique caller for each endpoint.
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Figure 4.19: Histogram of the number
of spans on the critical path per trace.
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Figure 4.20: Histogram of the degree of
the concurrency (max no. of overlap-
ping spans) per trace.
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Figure 4.21: Histogram of the number
of unique endpoints on the critical path
per trace.
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unique endpoints found in each trace. At most each trace has 1400 unique endpoints.

Latency distribution: Figure 4.16 plots the histogram of latencies observed in each

of ∼ 1M traces. The tail is several orders of magnitudes longer than the mean or median.

RPC depth: Figure 4.17 is a histogram of the longest call chain found in each trace.

The depth of the call chain is another measure of the complexity of traces. The average

RPC depth is 8.5. The maximum observed depth is 36.

Unique caller: Figure 4.18 is a histogram of the number of the unique callers for

each endpoint across one million traces. The number differs wildly as the mean value is

just above 2 but the maximum value is 620.

Degree of concurrency: Figure 4.20 is a histogram of the maximum number of

spans that overlap in time in each trace. This number gives the degree of concurrency

(and hence a measure of the complexity) in our traces. Overall, the microservices show

a high degree of concurrency. On average, the degree of concurrency is 21. The degree

of concurrency often grows to 100s for more complicated services. The maximum degree

of concurrency we observed in ∼ 1M traces was 3076.

Total RPCs on the critical path: Figure 4.19 is a histogram of the number of

spans on the critical paths, which counts the number of RPCs made on the critical path.

Besides a few outliers, the length of the critical path is short. On average, there are 33

RPCs on the critical path (in contrast, the entire graph in Figure 4.14 shows 112-275K

RPCs in traces). The short critical path length allows the developer to investigate and

debug easily.

Endpoints on the critical path: Figure 4.21 is a histogram of the unique end-

points on each critical path. Compared with the number of endpoints in the entire trace

(Figure 4.15), the number of the endpoints on the critical path is an order of magni-

tude smaller (the maximums are 1400 vs. 140). The 10x size-reduction matches our

observation of the 6 services we test for anomaly detection.
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Table 4.2: Evaluation results for large online services. Inference time is measured with
1000 traces. (TA∗=TraceAnomaly.)

No. of
Unique

endpoints

Max
no. of
spans

No. of callpaths/
features

Training Time CRISP
training
speedup

Inference Time CRISP
inference
speedup

Precision Recall

TA∗ CRISP TA∗ CRISP TA∗ CRISP TA∗ CRISP
STV SCPV

Service 1 214 1429 5117 1186 70m (GPU) 46m (GPU) 1.52X 2.24s (GPU) 1.21s (GPU) 1.85X 1.0 0.998 0.986 0.992
Service 2 969 1724 9725 1860 100m (GPU) 50m (GPU) 2.00X 3.54s (GPU) 1.40s (GPU) 2.54X 1.0 1.0 0.958 0.984
Service 3 734 5320 20321 2154 150m (GPU) 50m (GPU) 3.00X 5.64s (GPU) 1.36s (GPU) 4.15X 1.0 1.0 0.5 0.982

Service 4 912 20001 25347 2715 1184m (CPU)
56m (GPU)
219m (CPU)

21.14X (GPU)
5.41X (CPU)

56.67s (CPU)
1.56s (GPU)
9.26s (CPU)

36.33X (GPU)
6.12X (CPU)

1.0 1.0 0.928 0.978

Service 5 768 6562 26404 2336 811m (CPU)
51m (GPU)
177m (CPU)

15.90X (GPU)
4.58X (CPU)

42.90s (CPU)
1.36s (GPU)
5.81s (CPU)

31.54X (GPU)
7.38X (CPU)

1.0 0.998 0.5 0.982

Service 6 1477 10992 28968 1151 1305m (CPU)
46m (GPU)
148m (CPU)

27.77X (GPU)
8.82X (CPU)

78.88s (CPU)
1.18s (GPU)
4.48s (CPU)

66.85X (GPU)
17.61X (CPU)

1.0 1.0 0.912 0.977

4.7.3 Empirical Analysis of Anomaly Detection

Here, we will evaluate CRISP’s anomaly detection on six critical endpoints.

Methodology: We collect traces for six microservices in real production over a 14-

day period. The training data for each case includes 20,000 traces and the testing data has

500 unseen traces for normal and abnormal data. To generate abnormal inference data,

we drop 20% of the nodes in the graph and randomly shuffle the duration of the nodes as

described in [192, 216, 217]. We did not use real anomalous traces for evaluation since

we do not have a large number of labelled anomalous traces (i.e., we have a lot of false

negatives). Also, the labeled data contains false positives and coordinating with hundreds

of developers to verify the veracity of labeling is non-trivial. We use TraceAnomaly [192]

as the baseline against which we compare our results. We adopt the same architecture

of the autoencoder and reuse their code. The main difference is that we use CRISP to

preprocess the trace before feeding it into the autoencoder so that only paths appearing

on the critical path information are included. A fundamental assumption is that any

noticeable difference in the trace must impact the critical path.

Hardware: We use two machines in our evaluation: a CPU-only machine with 256

GB memory and a CPU+GPU machine with 128 GB memory. Most of the experiment

is done on a machine with GPUs. It has 2 Quadro RTX 5000 GPUs and 2 socket Intel

Xeon Gold 5218 CPU at 2.30GHz. The CPU machine has 2 sockets with Intel Xeon
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Silver 4214 CPU at 2.20GHz. Both machines run on Linux 4.14. The reason to use two

machines is that for some experiments, the training data for TraceAnomaly cannot fit

the GPU memory, whereas CRISP’s training data always fits on GPU memory. In such

cases, for a fair comparison, we also run the experiment on the 256 GB CPU-only.

Table 4.2 shows the empirical evaluation results of anomaly detection on 6 large

online services at Uber. It captures the essential features such as the number of RPCs,

unique endpoints, and call path diversity in these services. It also shows the training and

inference time with both STV (prior art from TraceAnomaly) and SCPV (our work) data.

Finally, the last 4 columns present the model accuracy in terms of precision and recall. In

summary, using critical path via CRISP reduces the training time and inference time and

improves the recall performance on top of the state of the art. Training speedup: From

the table, we can observe that CRISP offers up to 22× speedup for training compared

with TraceAnomaly. Even the smallest speedup is more than 50%.

The reason for the speedup is that the training data from CRISP (SCPV) is one

magnitude smaller than TraceAnomaly (STV) up to 25× for Service 6. The number of

unique call paths on the critical path is significantly smaller than the total number of call

paths in the entire graph (also see Figures 4.14-4.21). Furthermore, when the number

of the trace and the dimension of the feature vector is large, the size of the training

data of TraceAnomaly can easily exceed the memory of the GPU, which makes it unable

to train. For such cases (Service 4, 5, and 6), we can still see more than 4× speedup

even if we train both TraceAnomaly and CRISP on CPU machines. When CRISP is

trained on the GPU machine, the speedup can easily exceed 15×. The faster training

allows for more practical deployment. Inference speedup: Similar to training speedup,

the reduction in inference data size leads to a faster inference of CRISP. The smallest

speedup is more than 1.85× whereas the largest speedup is over 66×. This lower latency

allows us to batch many inferences together to exploit GPU throughput.
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Precision: From Table 4.2, we can see that both TraceAnomaly and CRISP are ca-

pable of detecting the abnormal trace accurately. Autoencoders are capable of capturing

the complex pattern of the graph. TraceAnomaly works slightly better than CRISP on

2 services, but overall accuracy is very high for both methods.

Recall: The recall is the part that differentiates the quality of results between

TraceAnomaly and CRISP. Recall measures how many of the actual positives the model

captures through labeling it as positive, (i.e., True Positive
True Postive+False Positive

). When the recall is

closer to 1, it indicates that the model makes fewer false-positive predictions (an anomaly

in this case). From Table 4.2, it is clear that CRISP outperforms TraceAnomaly by a

noticeable margin. Particularly for Service 3 and 5, half of the positive prediction of

the anomaly is false, meaning all normal traces for inference are labeled abnormal by

TraceAnomaly. To make sure the prediction is actually incorrect, we asked the service

owners and verified that the normal inference testing traces are not showing any ab-

normal behaviors. On the contrary, CRISP’s recall is close to 1. For Service 1 and 2,

the performance of CRISP is slightly better than TraceAnomaly, as both models make

relatively accurate predictions. CRISP shows more than 5% improvement for Service 4

and 6.

CRISP produces superior results on services with a large number of call paths. For

instance, there are 912 endpoints in Service 4 but the total call paths is 25,347. Since

there is more diversity among the shapes of the call chains on the entire graph, the SCPV

encoding fails to capture its full variety; consequently, unseen call paths easily trigger a

false positive in TraceAnomlay. In contrast, the critical path remains fairly stable when

trained over a large corpus of traces, and consequently CRISP has fewer false positives.
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4.7.4 CPA in Hardware Selection

In addition to the parent-child transitive relationships and times, Jaeger traces also

contain additional information, such as the hostname on which the span was executed.

Uber’s data center consists of diverse hardware CPU SKUs. Services can be installed on

different hardware versions. Hence, an API may run on different hardware on different

requests.

We collected the critical path for one of our important services using CRISP and

identified that a downstream operation was on the critical path. We further clustered

the samples from the profiles by the CPU versions on which they were running. The

violin plot in Figure 4.22 shows how the latencies vary on 2 prominent CPU SKUs: Intel

Xeon Silver 4212 running at 2.2 GHz (SKU-A) and Intel Xeon Silver 4212R running at

2.4 GHz (SKU-B).

The two SKUs are identical (same vendor, microarchitecture, cache size, etc.) with

the only exception being that their CPU clock speeds are different. This mild (9%) dif-

ference in the clock speed has a profound impact on the behavior of the plotted service.

The P50 value for SKU-A is 15% higher than that on SKU-B. Moreover, the tail latency

on SKU-A is 1.5x higher than the one on SKU-A. To summarize, a slightly faster CPU

clock proves to have a significant impact on reducing the tail latency and overall latency.

This difference has a significant impact on the overall capacity allocation since tail la-

tency (e.g., P95) is often used in capacity allocation. This observation demands further,

systematic investigation into classifying critical path components as CPU SKU sensitive

vs. insensitive; also, such categorization helps data center-wide microservice schedulers

to favor SKU-sensitive services on the critical path onto the SKUs where they exhibit

superior performance.
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Figure 4.22: Violin plots of the exclusive execution time of a critical path operation with
two different CPUs. The latency is in µs.
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4.8 Related Work

Critical Path Analysis (CPA) has been extensively explored in the shared-memory

parallel programming paradigm [188, 206, 218, 195, 219, 220, 221, 222, 223] but less

explored in distributed parallel systems. Unlike shared-memory and structured parallel

programs, microservices use distributed parallel computing environments and are un-

structured in nature.

Barford and Crovella [224] utilize critical path analysis for profiling and understanding

TCP transactions and improve data transfer latency in web applications; however their

scale is significantly smaller than the 4K services deployed over millions of CPU cores

that we handle. Bohem et al. [225] employ tracing and CPA for MPI programs in HPC

environments; this approach has not been employed in microservice environments. Kaldor

et al. [226] develop an end-to-end tracing system (Canopy) for tracking requests from

web-browsers/mobile to backend services; it handles billions of traces. A distinguishing

feature of CRISP compared with Canopy is the use of CPA, which significantly reduces

the data needed for analysis.

Qiu et al. [217] propose a fine-grained resource management framework based on mi-

croservice traces using CPA. They employ the insights for scheduling and other resource

management to reduce CPU utilization. However, their work does not cover industry-

scale deployment; they also do not facilitate performance bug or anomaly detection and

cannot provide bottom-up system-wide performance insights.

Fields et al. [207] explore a hardware predictor to analyze the criticality of instructions

by using CPA and use it to guide dynamic instruction scheduling. Venkataramani et

al. [223] propose Global Critical Path (GCP) to predict system-level performance and

optimize the performance of highly concurrent self-timed circuits. These approaches rely

on the precise last arriver information, which is readily available in these cases. Our
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critical path computation in microservices also depends on knowing the last arriver.

Unlike the aforementioned approaches, we do not have direct access to the last arriver

in our distributed system. As a result, we need to use clock information from different

hosts and adjust for clock skew to heuristically infer the last arriver.

Multiple tools have been developed to profile and debug large distributed and parallel

systems. lprof [227] constructs request flow from logs and it is as good as the quality of

logs; it has not been evaluated on microservices; it also does not provide CPA and hence

suffers from a voluminous noisy data. Mace et al. [228] developed Pivot as a dynamic,

extensible tracing system for inter-operating applications. Pivot employs a happen-before

relationship between events to establish causality. Pivot does not build a critical path and

hence pays equal attention to any causal relationship unlike CRISP. Chow et al. [229]

build a system that utilizes a large number of request traces to validate hypotheses about

causal relationships. Edgar [230] provides a summarized view of request traces, logs, and

metadata in distributed systems. It does not employ sophisticated analyses or automated

anomaly detection.

Several works have focused on microarchitectural aspects of microservices [231, 232,

233, 234, 36]. Most of these works are focused on how microservices utilize microarchi-

tectural features, but ignore the end-to-end user request; in contrast, CRISP takes a

higher-level approach and looks at the entire flow of requests through a chain of services.

Multiple works have studied anomaly detection in distributed systems. Liu et al. [192]

use Deep Bayesian Network to detect the performance anomaly in an unsupervised man-

ner. They utilize machine learning to learn the normal behavior pattern of the given

dependency graph and try to detect the anomaly online. Gan et al. [216] propose a root

cause analysis system for large-scale microservices using machine learning. The system

uses Conditional Variational Autoencoders (CVAE) [235] to automatically generate the

counterfactual training data. These approaches have used the entire call graph, leading

117



CRISP: Critical Path Analysis of Large-Scale Microservice Architectures Chapter 4

to significant training and inference time. In contrast, CRISP uses only the critical

path(s), leading to dramatic speedups while producing higher quality results.

4.9 Conclusions and Future Work

Microservices are the preferred architecture choice in modern service-oriented software

systems. Large-scale microservices have tens of thousands of endpoints with complex,

nested, and asynchronous. Prior work in profiling microservices has either focused on

tracing techniques, which produce a lot of data, but lack in delivering insights, or on

micro-architectural optimization within a service, ignoring the full picture of the life

of a request through myriad services. This work develops a tool, CRISP, which uses

critical path analysis (CPA) over RPC traces to bubble-up interesting activities and

discard noisy events. CRISP provides rich developer insights both for service owners and

infrastructure engineers. In a short three-month deployment period, CRISP’s analyses

have sifted over 4,000+ services, 40,000+ endpoints, hundred of millions of traces, and

tens of terabytes of data at Uber; as a result, CRISP has bubbled-up profiling results that

helped developers understand and optimize important services. Employing the critical

path, as opposed to the whole RPC trace, speeds up the training of models and on-the-fly

inference for anomaly detection while also producing noticeably higher quality results.

Our future work involves enhancing CRISP to address other use cases such as setting

the TTL values for downstream calls and bubbling up those downstream services that

often return errors. We plan to expand our anomaly detection to include developers in

the loop and improve traces with labelled data.
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Conclusion

In this thesis, we present how to utilize performance-driven analysis and optimizations to

investigate communication paradigms and offer concrete improvement in three different

scenarios.

For HLE, we present a source-to-source transformation framework, Gocc, that con-

sumes lock-based pessimistic concurrency programs in the Go language and transforms

them into optimistic concurrency programs that use Hardware Transactional Memory

(HTM). Gocc performs rich inter-procedural program analysis to detect and filter lock-

protected regions and performs AST-level code transformation of the surrounding locks

when profitable. Profitability is driven by both static analyses of critical sections and dy-

namic analyses via execution profiles. A custom HTM library, using perceptron, learns

concurrency behavior and dynamically decides whether to use HTM in the rewritten

lock/unlock points. Given the rich history of transactional memory research but its lack

of adoption in any industrial setting, we believe this workflow, which ultimately pro-

duces source-code patches, is more apt for industry-scale adoption. Results on widely

adopted Go libraries and applications demonstrate significant (up to 10×) and scalable

performance gains resulting from our automated transformation while avoiding major
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performance regressions.

Inspired by Gocc and to better facilitate application performance programming and

certain runtime optimization, we propose a software optimization strategy enabled by

a novel low-latency Prediction System Service (PSS). Rather than relying on nuanced

domain-specific knowledge or slapdash heuristics, a system service for prediction encour-

ages programmers to spend their time uncovering new levers for optimization rather than

worrying about the details of their control. The core idea is to write optimizations that

improve performance in specific cases, or under specific tunings, and leave the decision

of how and when exactly to apply those optimizations to the system to learn through

feedback-directed learning. Such a prediction service can be implemented in any number

of ways, including as a shared library that can be easily reused by software written in

different programming languages, and opens the door to both new software optimization

patterns and hardware design possibilities. As a demonstration of the utility of this

approach, we show that three very different application-targeted optimization scenarios

can each benefit from even a very straightforward perceptron-based implementation of

the PSS as long as the service latency can be held low. First, we show that PSS can

be used to more intelligently guide hardware lock elision with resulting speedups over

a baseline implementation by 34% on average. Second, we show that a PSS can find

good configuration parameters for PyPy’s Just-In-Time (JIT) compiler resulting in 15%

speedup on average. Last, we show PSS can guide the page reclamation task within a

kernel memory management subsystem to reduce the average memory latency by 33%

on average. In all three cases, this new optimization pattern with service support is able

to meet or beat the best-known hand-crafted methods with a fraction of the complexity.

For microservices analysis at datacenter, we present CRISP — a tool to perform

critical path analysis (CPA) over a large number of traces collected from RPCs in mi-

croservices environments. CRISP provides three critical performance analysis capabil-
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ities: a) a top-down CPA of any specific endpoint, which is tailored for service owners

to drill down the root causes of latency issues, b) a bottom-up CPA over all endpoints

in the system — tailored for infrastructure and performance engineers — to bubble up

those (interior) APIs that have a high impact across many endpoints, and c) an on-the-fly

anomaly detection to alert potential problems. We have applied CRISP’s capabilities

on Uber’s entire backend system composed of ∼40K endpoints that cater to real-time

requests from more than 100 million active daily users worldwide. Using the critical path

as the basis of performance analysis has a) helped us identify five performance issues

and optimization opportunities across two business-critical microservices, b) guided us

in our future hardware choice that reduces end-to-end latencies, and c) reduced the false

positives in anomaly detection by up to 50% while speeding up the training and inference

by up to 28× and up to 67×, respectively, over the state of the art.

The three chapters illustrate how we provide better performance and easier debugging

and developing for the programmers by targeting the communication paradigms from

different angles: synchronization mechanism for Gocc, user-kernel communication in

PSS, and analysis of complex Remote Procedure Calls (RPCs) in CRISP.

In the future, we believe more opportunities can be explored if we focus on the

communication paradigms with proper methods like performance-driven analysis and

optimizations. For HLE, more evaluations can be done on real-world applications with

precise lock elision and effective runtime control over Mutex and HTM. For PSS, more

models and parameter types can be implemented as long they follow the abstract APIs.

More runtime optimization scenarios can potentially benefit from machine learning ca-

pabilities provided by PSS. For microservices, more analysis and tools can be developed

to facilitate the developer debugging and optimizing the microservice architecture. For

instance, how to find out the common error message on business-critical microservices

can be a valid research direction for the future.
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