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ARTICLE

Trade-offs between individual and ensemble
forecasts of an emerging infectious disease
Rachel J. Oidtman 1,2,3✉, Elisa Omodei 2, Moritz U. G. Kraemer 4,5,6, Carlos A. Castañeda-Orjuela 7,

Erica Cruz-Rivera7, Sandra Misnaza-Castrillón7, Myriam Patricia Cifuentes 8, Luz Emilse Rincon8,

Viviana Cañon9, Pedro de Alarcon 10, Guido España1, John H. Huber1, Sarah C. Hill 4,11,

Christopher M. Barker 12, Michael A. Johansson 13, Carrie A. Manore14, Robert C. Reiner, Jr. 15,

Isabel Rodriguez-Barraquer16, Amir S. Siraj1, Enrique Frias-Martinez 17, Manuel García-Herranz 2✉ &

T. Alex Perkins 1✉

Probabilistic forecasts play an indispensable role in answering questions about the spread of

newly emerged pathogens. However, uncertainties about the epidemiology of emerging

pathogens can make it difficult to choose among alternative model structures and assump-

tions. To assess the potential for uncertainties about emerging pathogens to affect forecasts

of their spread, we evaluated the performance 16 forecasting models in the context of the

2015-2016 Zika epidemic in Colombia. Each model featured a different combination of

assumptions about human mobility, spatiotemporal variation in transmission potential, and

the number of virus introductions. We found that which model assumptions had the most

ensemble weight changed through time. We additionally identified a trade-off whereby some

individual models outperformed ensemble models early in the epidemic, but on average the

ensembles outperformed all individual models. Our results suggest that multiple models

spanning uncertainty across alternative assumptions are necessary to obtain robust forecasts

for emerging infectious diseases.
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Pathogen emergence, or the phenomenon of a novel or
established pathogens invading a new host population, has
been occurring more frequently in recent decades1. In the

last 40 years, more than 150 pathogens of humans have been
identified as emerging or re-emerging2,3. In these situations, host
populations are largely susceptible, which can result in dynamics
ranging from self-limiting outbreaks, as with Lassa virus4, to
sustained pandemics, as with HIV5, depending on the pathogen’s
traits and the context in which it emerges. When emergence does
occur, mathematical models can be helpful for anticipating the
future course of the pathogen’s spread6–8.

A necessary part of using models to forecast emerging patho-
gens is making decisions about how to handle the many uncer-
tainties associated with this unfamiliar microbes8. Given the
biological and ecological diversity of emerging pathogens, there is
often considerable uncertainty about various aspects of their
natural histories, such as their potential for superspreading9, the
role of human mobility in their spatial spread10,11, drivers of
spatiotemporal variation in their transmission6,12, and even their
modes of transmission13. In the case of MERS-CoV, for example,
it took years to determine that the primary transmission route
was spillover from camels rather than sustained human-to-
human transmission14. A lack of definitive understanding about
such basic aspects of natural history represents a major challenge
for forecasting emerging pathogens.

Inevitably, different forecasters make diverse choices about
how to address unknown aspects of an emerging pathogen’s
natural history, as they do for numerous model features. This
diversity of approaches has itself been viewed as part of the
solution to the problem of model uncertainty, based on the idea
that the biases of different models might counteract one another
to produce a reliable forecast when viewed from the perspective of
an ensemble of models15. This idea has support in multi-model
efforts to forecast seasonal transmission of endemic pathogens,
such as influenza and dengue viruses16–20, with ensemble fore-
casts routinely outperforming individual models. These successes
with endemic pathogens have motivated multi-model approaches
in response to several emerging pathogens, including forecasting
challenges for chikungunya21 and Ebola22, vaccine trial site
selection for Zika23, and a multi-model decision-making frame-
work for COVID-1915,24.

Although there has been increased attention to multi-model
forecasting of emerging pathogens in the last few years, these
initiatives have involved significant effort to coordinate forecasts
among multiple modeling groups25,26. Coordination across
multiple groups has clear potential to add value beyond what any
single modeling group can offer alone. At the same time, using
multiple models to hedge against uncertainties about a pathogen’s
natural history could potentially improve forecasts from a single
modeling group, too16,18. This could, in turn, improve ensemble
forecasts based on contributions from multiple modeling groups.
An ensemble-based approach by one modeling group that con-
tributes to forecasts of seasonal influenza in the United States
demonstrates the success that a single modeling group can
achieve with an ensemble-based approach27 and that such an
ensemble can contribute value to an ensemble of forecasts from
multiple modeling groups18. Similar approaches have not been
widely adopted for forecasting emerging pathogens by a single
modeling group (although see ref. 28), despite the heightened
uncertainty inherent to emerging pathogens.

Here, we evaluate the potential for an ensemble of models that
span uncertainties in pathogen natural history but share a com-
mon core structure, to accurately forecast the dynamics of an
emerging pathogen. We do so in the context of the 2015–2016
Zika epidemic in Colombia, which was well-characterized epi-
demiologically (Fig. 1)29 and involved potentially consequential

uncertainties about (i) the role of human mobility in facilitating
spread across the country30, (ii) the relationship between envir-
onmental conditions and transmission of this mosquito-borne
virus6,12, and (iii) the number of times the virus was introduced
into the country31. In this retrospective analysis, we used data
assimilation to update 16 distinct models throughout the epi-
demic period and assessed the forecast performance of all models
relative to an equally weighted ensemble model. This allowed us
to quantify the contribution of variants of each of the three
aforementioned uncertainties to model performance during dif-
ferent phases of the epidemic. In doing so, we sought to not only
assess the performance of the ensemble model relative to indi-
vidual models but also to learn about features of individual
models that may be associated with improved forecast accuracy
over the course of an epidemic.

Results
General forecast performance. Before any data assimilation had
occurred, our 16 models (see Table 1) initially forecasted very low
incidence across most departments over the 60-week period of our
analysis (Fig. 2 top row, Supplementary Fig. 12). Even so, short-
term forecasts over a 4-week horizon were consistent with the still-
low observed incidence at that time (Fig. 1 purple, Supplementary
Fig. 18). By the time twelve weeks of data had been assimilated into
the models, forecasts over the 60-week period of our analysis were
considerably higher than the initial forecasts and better aligned
with the observed trajectory of the epidemic (Fig. 2 second row,
Supplementary Fig. 13). Over those first 12 weeks, model para-
meters changed modestly (Supplementary Fig. 6) and correlations
among parameters began to emerge (Supplementary Figs. 7–10).
We observed a more substantial change in the proportion of
individual stochastic realizations (where the nth stochastic reali-
zation is the nth “particle” generated from some set of parameters
~θt;n at time t) resulting in an epidemic, with those particles
resulting in no epidemic being filtered out almost entirely by week
12 (Supplementary Fig. 1). Because each particle retained its sto-
chastic realization of past incidence across successive data assim-
ilation periods, stochastic realizations of past incidence were
inherited by particles much like parameter values. By week 24,
many of the models correctly recognized that they were at or near
the epidemic’s peak and forecasted a downward trajectory for the
remainder of the 60-week period of our analysis (Fig. 2 third row,
Supplementary Fig. 27). The particle filtering algorithm replaced
nearly half of the original particles by that point (Supplementary
Fig. 2), with the new particles consisting of stochastic realizations
of past incidence selected through data assimilation and updated
every four weeks with forward simulations based on either original
or new parameter combinations. As the end of the 60-week period
of our analysis was approached, parameter correlations continued
to strengthen (Supplementary Figs. 7–10), our estimate of the
reporting probability increased (Supplementary Fig. 6), and only
around 20% of the original particles remained (Supplementary
Fig. 1).

Model-specific forecast performance. To quantify the forecast
performance of individual models over time, we used logarithmic
scoring (hereafter, log scoring) to compare forecasts of cumulative
incidence 4 weeks into the future to observed values at depart-
mental and national levels. We assessed log scores once the first case
was reported nationally for spatially coupled models (i.e., models
with explicit human mobility), and once the first case was reported
in each department for nonspatial models (i.e., models with no
explicit human mobility). Log scores were generally high for spa-
tially coupled models early in the epidemic, given that observed
cases and forecasts were both low at that time (Supplementary
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Fig. 18a–c). By week 12, as cases were reported in more depart-
ments, the accuracy of forecasts from nonspatial models improved
(Supplementary Fig. 18d onward). Forecast performance around
the peak of the epidemic differed considerably across models and
departments, with forecasts from non-spatial models being some-
what lower than observed incidence and forecasts from spatially
coupled models being somewhat higher (Supplementary Fig. 14,
Supplementary Fig. 18f–j). Around the peak of the epidemic,
forecasts from spatially coupled models generally had higher log
scores in departments with lower incidence (e.g., Nariño). Later in
the epidemic (weeks 40–56), some models continued to forecast
higher incidence than observed in some departments, despite
having passed the peak incidence of reported cases (Supplementary

Fig. 16). In particular, models that used the dynamic instead of the
static formulation of the reproduction number (i.e., the temporal
relationship between R and environmental drivers is dynamic
instead of static) were more susceptible to this behavior (note lower
log scores in “Rt” versus “R” models in Supplementary Fig. 18k–o),
given that their forecasts were sensitive to seasonal changes in
temperature and mosquito occurrence.

Next, we used these log scores in an expectation–maximization
(EM) optimization algorithm32 to identify an optimal weighting
of retrospective model-specific forecasts into an ensemble forecast
(Supplementary Figs. 25–29) in each forecasting period (Supple-
mentary Fig. 17). To learn how model assumptions affected the
inclusion of different models into the optimally weighted
ensemble for each forecasting period, we summed and then
normalized models’ ensemble weights across each class of
assumption (Fig. 3). Over the course of the epidemic, changes
in weighting for the assumptions about human mobility and
spatiotemporal variation in transmission, but not about the
number of virus introductions into the country, closely followed
patterns in the trajectory of the national epidemic. Spatially
coupled models had most or all of the weight in the early and
late stages of the epidemic, while non-spatial models had most of
the weight around the peak of the epidemic (Fig. 3b). Although
the non-spatial models somewhat under-predicted incidence in
the middle stages of the epidemic, this was often to a lesser extent
than the spatially coupled models’ over-predictions of incidence
(Supplementary Fig. 3). As a result, the EM algorithm achieved a
balance between the over- and under-predictions of these
different models.

Fig. 1 Temporal and spatial variation of Zika incidence, temperature, and mosquito occurrence probability in Colombia. a Weekly Zika incidence from
August 9, 2015 to October 1, 2016 with all 31 mainland departments approximately ordered from south to north. b Points indicate average temperature
data and lines indicate temperature by the department. c Points indicate average mosquito occurrence probability and lines indicate mosquito occurrence
probability by the department. d–f Mobility matrices under three different assumptions of mobility (CDR-informed denotes a mobility matrix derived from
call data records), with departments ordered south to north on the y-axis and north–south on the x-axis. Tan indicates high rates of mobility, dark purple
indicates low rates of mobility, white indicates no movements.

Table 1 Different model assumptions regarding the role of
human mobility in facilitating pathogen spread across the
country, the relationship between environmental conditions
and transmission of ZIKV, and the number of times the virus
was introduced into Colombia.

Human mobility Transmission
potential

Number of ZIKV
introductions

CDR-informed Fixed R6 One
Gravity model Dynamic R12 Two
Radiation model
No human mobility

The suite of 16 models reflected factorial combinations of these three assumptions.
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The maximum ensemble weight in any forecasting period was
0.802, held by one model with a static R, two ZIKV introductions
into the country, and CDR-informed human mobility 12 weeks
after the first reported Zika case (Supplementary Fig. 17).
Combined, the two models with static R and CDR-informed
human mobility data had the most instances of a nonzero
ensemble weight (Supplementary Fig. 17), occurring in 13 of 15
assimilation periods, with an average weight of 0.18. Around the
peak of the epidemic, nonspatial models had the highest ensemble
weight, reflecting the accuracy of short-term forecasts in some
departments (e.g., Magdalena and Vaupés) and their overall
accuracy in nationally aggregated forecasts (Supplementary Fig. 11).
Near the end of the epidemic, the ensemble weight for models with
a static R (Fig. 3c) increased as their forecasts more closely matched
the downturn of incidence later in the epidemic relative to models
with dynamic R (Supplementary Fig. 20). This was likely the result
of mosquito occurrence probability and temperature becoming
more favorable for transmission in many departments later in the
epidemic (Supplementary Figs. 21 and 22), causing the dynamic R
models to forecast a late resurgence in Zika incidence.

Target-oriented forecast performance. Short-term changes in
incidence are an important target of infectious disease forecasting, but
there are other targets of potentially greater significance to public
health decision-making. To explore these, we evaluated the ability of
the 16 models—and an evenly weighted ensemble—to forecast three
targets at the department level: peak incidence, week of peak inci-
dence, and onset week, which we defined as the week by which ten
cases were first reported. We evaluated models based on log scores of
these targets. Summing log scores across departments to allow for
comparisons across different forecasting periods (Fig. 4), we found

that, on average, the ensemble model outperformed every individual
model for all three forecasting targets (indicated by the ensemble
model’s location on the y-axis). Early in the epidemic, spatially cou-
pled models with a static R performed only slightly better (up to 1%)
than the equally weighted ensemble (Fig. 4). For the remainder of the
epidemic, the equally weighted ensemble model outperformed all
individual models (Fig. 4). Such small changes in forecast perfor-
mance when averaging over space shows that differences in forecast
performance across space dominate relative to those across time.

By summing log scores across forecasting periods to allow for
comparisons across departments (Fig. 5), we found that some
individual models outperformed the ensemble model in forecast-
ing the peak incidence and the week of peak incidence. In
departments on the Caribbean Coast that experienced inter-
mediate epidemic sizes (e.g., Antioquia, Sucre, and Atlántico),
spatially coupled models with a static R outperformed the
ensemble model at forecasting the peak week by about 10%
(Fig. 5a). At those same locations, the equally weighted ensemble
performed better than or similar to those same models at
forecasting peak incidence and onset week (Fig. 5b, c). Over
forecasting periods and departments, the nonspatial models
consistently had lower average forecast scores than the spatially
coupled models (indicated by their location on the y-axis in
Figs. 4 and 5). This trend appeared because initial forecasts from
nonspatial models were not updated until the first case appeared
in each department, while initial forecasts from spatially coupled
models were updated when the first case appeared in the country.

Discussion
We assessed the potential for a suite of individual models that
span a range of uncertainties, and ensembles of these models, to
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Fig. 2 Observed incidence (navy points) with the median forecast for 16 models (black lines) with the equally weighted ensemble model (green band)
for Antioquia, Norte de Santander, Cauca, and Amazonas at five points throughout the epidemic. Plotted departments reflect differences in population,
epidemic size, and geographic regions of Colombia and are represented by each column. The vertical pink line indicates the point at which the forecast was
made (also labeled on the right axis), with data to the left of the line assimilated into the model fit. Forecasts to the right of the vertical line change as more
data are assimilated into the model, while the model that fits the left of the vertical line do not change. The green band reflects the 50% credible interval of
the equally weighted ensemble model.
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accurately forecast the dynamics of an emerging pathogen.
Results from the general forecast performance analysis demon-
strated that once we began assimilating data into models, fore-
casts rapidly became more accurate. Models were initialized with
a wide range of parameter values33, with many initial parameter
combinations producing unrealistic forecast trajectories, but after
only four assimilation periods (12 weeks), nearly 100% of those
parameters that produced zero infections were dropped. Similar
to other retrospective forecast analyses16,34, as more data were
assimilated into the models over time, the model fits and forecasts
generally became more closely aligned with temporal trends in
the data. This was because the particle filter allowed model
parameters to continually adapt to noisy data35. There were still
some exceptions where the particle filter could not fully com-
pensate for shortcomings of the transmission model, such as the
drastic underestimates of incidence in departments with sub-
optimal conditions for transmission (e.g., static R model in
Risaralda in Supplementary Fig. 20). At the same time, the
broader suite of models buffered against shortcomings of any
single transmission model.

In the model-specific forecast performance analysis, we
identified clear temporal trends related to when models with a

static R versus a dynamic R should be included in an optimally
weighted ensemble. In contrast, there were no clear temporal
trends in weighting regarding the assumption about the number
of times the virus was introduced into the country, potentially
reflecting that, even with multiple introductions, the most
transmission may have been linked to a single introduction31.
Models with a dynamic R had higher weights in the ensemble at
the peak of the epidemic, while models with a static R had
higher weights at the beginning and end of the epidemic. This
was likely due to temporal shifts in temperature and mosquito
occurrence probabilities dominating forecasts of transmission
potential for the models with a dynamic R. For example, in the
latter parts of the epidemic when reported cases were declining,
mosquito conditions and the temperature became more suitable
for transmission in many departments. This caused models with
a dynamic R to forecast a resurgence in ZIKV transmission in
those departments, while models with a static R forecasted a
downturn in incidence that was more similar to the observed
dynamics. This finding that susceptible depletion may have been
more influential than temporal variation in environmental
conditions for the Zika epidemic is consistent with recent
findings for SARS-CoV-236.

Fig. 3 Ensemble weight partitioned across assumptions about the role of human mobility in driving transmission, drivers of spatiotemporal variation in
R, and the number of ZIKV introductions. a Weekly Zika incidence aggregated to the national scale. b–d Proportion of ensemble weight across
assumption type colored by explicit assumption.
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Through the model-specific forecast performance analysis, we
also found that spatially coupled models had higher ensemble
weights in the early and late stages of the epidemic, while non-
spatial models had higher weights around the peak of the epi-
demic. The importance of including spatially coupled models in
the optimally weighted ensemble early in the epidemic supports
the general notion that human mobility may be particularly
predictive of pathogen spread early in an epidemic7,30,37,38. In
part, temporal shifts in weighting around the peak of the epi-
demic were due to more accurate nationally aggregated forecasts
from the non-spatial models. This result was consistent with a
previous modeling analysis of the invasion of the chikungunya
virus in Colombia, which showed that models fitted indepen-
dently to subnational time series recreated national-level patterns
well when aggregated39. A shift in ensemble weights toward non-
spatial models around the peak of the epidemic was also due to
less accurate department-level forecasts from the spatially

coupled models. At that point in the epidemic, the prevalence was
at its highest, which means that we would expect local epidemics
to be more endogenously driven and less sensitive to pathogen
introductions across departments.

In the target-oriented forecast performance analysis, we found
that the equally weighted ensemble generally outperformed
individual models, with a few key exceptions. In the months
leading up to the peak of the epidemic, spatially coupled models
with a static R had slightly, but consistently, higher forecast scores
with respect to peak week and onset week. Like the model-specific
analysis results, this result illustrates the importance of human
mobility in facilitating the spread of an emerging pathogen across
a landscape30. Individual models outperforming the equally
weighted ensemble model in the early phase of the epidemic is
not wholly surprising given that non-spatial models were repre-
sented equally in that ensemble throughout the epidemic. Non-
spatial models may be realistic when locations have self-

Fig. 4 Model-specific forecast scores are relative to the equally weighted ensemble model for each assimilation period and forecasting target. a
Timing of peak week (within two weeks). b Incidence at peak week. c Onset week. Forecast scores are averaged over the department. Models are ordered
on the y-axis by the average forecast score for each forecasting target. Model names on the y-axis are abbreviated such that "R'' or "Rt'' indicates
assumption about spatiotemporal variation, "1'' or "2'' indicates a number of introduction events, and “CDRs”, “gravity”, “radiation'”, or “nonspatial”
indicates the human mobility assumption. In the heat plot, blue indicates individual model performed better than the ensemble model in a given
department, red indicates individual model performed worse than ensemble model, and white indicates individual model performed roughly the same as
the ensemble model.
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sustaining epidemics, but they are not appropriate for capturing
early phase growth and its dependence on importations40.
Another instance when individual models had higher forecast
scores than the equally weighted ensemble was with respect to
peak week for spatially coupled models with a static R in
departments along the Caribbean Coast. Compared to dynamic R
models, the static R models more accurately forecasted peak week
in these departments (e.g., Magdalena, Cesar, and Sucre), as they
did not forecast a late-stage resurgence in transmission. The equal
weighting of the dynamic Rmodels in the ensemble, therefore, led
to overall lower peak week forecast scores for the ensemble
relative to static R models. Still, our results indicating that an
equally weighted ensemble mostly outperformed individual
models adds to the growing literature highlighting the importance
of ensemble methods in epidemiological forecasting16,17,27,41,42.

We considered both equally and optimally weighted ensembles
and found that the equally weighted ensemble had a lower root
mean square error than the optimally weighted ensemble
(RMSE= 0.640 and 0.705, respectively)—therefore providing
slightly more accurate forecasts of the observed data (Supple-
mentary Fig. 23). With the optimally weighted ensemble, which
we updated at each data assimilation period, we found that model
weights changed over the course of the epidemic Supplementary
Fig. 17). Although this is intuitive given the changing nature of an
emerging epidemic through time8, it may be problematic in
practice. It is almost as if the ensemble weights require their own
forecast. On the one hand, promising new advances in ensemble
modeling27,41—such as adaptive stacking for seasonal influenza
forecasting43—are being used to address this issue of identifying
optimal, adaptive weights without training to historical data. On

Fig. 5 Model-specific forecast scores are relative to equally weighted ensemble model for each department and forecasting target. a Timing of peak
week (within 2 weeks). b Incidence at peak week. c Onset week, or the week by which ten cumulative cases occurred. Forecast scores are averaged over
the department. Models are ordered on the y-axis by average forecast score for each forecasting target, with model names abbreviated in the same manner
as Fig. 4. Departments are ordered on the x-axis from high to low for overall incidence. In the heat plot, blue indicates individual model performed better
than the ensemble model in a given department, red indicates individual model performed worse than ensemble model, and white indicates individual
model performed roughly the same as the ensemble model.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25695-0 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:5379 | https://doi.org/10.1038/s41467-021-25695-0 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the other hand, is an emerging pathogen context, establishing
optimal model weights by way of model fitting and forecast
generation is often reliant on available incidence data (rather than
historical data) that is highly variable44, given the delayed nature
of data reporting45. In this context, our results demonstrate that it
is preferable to use an equally weighted ensemble to buffer against
uncertainty in optimal ensemble weights. As is also being
demonstrated in forecasts of COVID-19, equally weighted
ensembles can provide accurate forecasts26,44,46 and maybe a
better reflection of the considerable structural uncertainty
inherent to models of emerging pathogen transmission24.

A few limitations of our study should be noted. First, while an
equally weighted ensemble approach allowed us to consider
contributions of several alternative model assumptions, there was
high uncertainty associated with these forecasts (sometimes
spanning orders of magnitude, see Supplementary Fig. 24).
Potential end-users of these types of forecasts could consider high
levels of uncertainty to be problematic for decision-making47,
though if the uncertainty does not affect the choice of a control
measure, then the uncertainty may not be as relevant48. In the
future, ensemble approaches aimed at increasing precision and
reducing uncertainty27,49 could be used in conjunction with
equally weighted ensembles. Second, we considered alternative
models across only three assumptions. With ZIKV transmission,
there are additional structural uncertainties that could be con-
sidered, such as the role of sexual transmission50. In real-time
applications of our or other Zika forecasting models, it could be
worthwhile to explore these types of ZIKV-specific structural
uncertainties. Relatedly, the static and dynamic R had minor
differences in their formulations, such that the static R also
included a socioeconomic index. In future work, it could be
interesting to explore if the inclusion of this time-independent
variable affected the dynamic R. Third, in this analysis, we did not
explicitly consider delays in reporting that likely would have
occurred had these forecasts been generated in real time51. In that
context, temporally aggregating data to a wider interval (e.g., at
2-week intervals rather than 1-week intervals) could potentially
help mitigate the effects of reporting delays to some extent.
Fourth, we assumed that the reporting probability was constant
through time. Although this is a standard assumption52 given the
lack of data to inform a time-varying relationship for this
mechanistic element53, it would be interesting to include and test
a reporting dynamics model (e.g., the reporting probability scales
with incidence54) as an additional component included in our
ensemble framework. Fifth, we conducted this analysis at the
departmental level instead of this municipality level, which could
obfuscate meaningful differences across regions of a single
department29. In future work, it would be useful to test and assess
our forecasting algorithm and outputs at different spatial scales39.

As the world is reminded of on a daily basis with COVID-19,
pathogen emergence is an ongoing phenomenon that will con-
tinue to pose threats in the future55. A better understanding of an
emerging pathogen’s natural history could help to reduce
pathogen-specific structural uncertainties, but these insights may
not always occur in time to inform model development for real-
time forecasting8. Our results highlight important trade-offs
between individual and ensemble models in this context. Speci-
fically, we demonstrated that an equally weighted ensemble
forecast was almost always more accurate than individual models.
Instances in which individual models were better than the
ensemble, or greatly improved the ensemble, also provided
insight. For example, incorporating human mobility into models
improved forecasts in the early and late phases of an epidemic,
which underscores the importance of making aggregated mobility
data available early in an epidemic56. The range of outcomes
resulting from alternative modeling assumptions in model-

specific forecasts demonstrates why it will continue to be
important to address structural uncertainties in forecasting
models in the future.

Methods
Data. We used passive mandatory surveillance data for reported cases of Zika,
from the National Surveillance System (Sivigila) at the first administrative level (31
mainland departments) in Colombia. To span the beginning, peak, and tail of the
epidemic in Colombia, we focused on the 60-week period between August 9, 2015
and October 1, 2016. We used the version of these data collated by Siraj et al.29, as
well as modeled values of weekly average temperature and estimates of the
department-level population from that data set. For some models, we worked with
monthly estimates of mosquito occurrence probability (i.e., dynamic R models)
obtained from Bogoch et al.57, and for others, we worked with time-averaged
estimates (i.e., static R models) from Kraemer et al.58.

For models that relied on cell phone data to describe human mobility, we used
anonymized and aggregated call detail records (CDRs). Every time a user receives
or makes a call, a CDR including the time, date, ID, and the tower (BTS) providing
the service is generated. The positions of the BTSs are georeferenced and so the
aggregated mobility between towers can be tracked in time. We used this
information to derive daily mobility matrices at the municipality level in Colombia
from February 2015 to August 2015. Mobility matrices captured the number of
individuals that moved in each given day from one municipality to another (i.e.,
that appeared in BTSs of different municipalities). The change for each day was
captured by comparing the last known municipality to the current one. No
individual information or records were available.

As these data did not align with the time frame of the epidemic, and to calculate
a mobility matrix at a department level, we computed a representative mobility
matrix by summing all available CDRs within the municipalities of each
department and normalizing them to sum to one relative to the sum of CDRs
originating from that department. In five departments (Amazonas, Cudinamarca,
Guainía, Vaupés, and Vichada), the proportion of CDRs linking callers within the
same department was below 60%. Given that this implied an unrealistically low
proportion of time spent within an individual’s department of residence, we
interpreted those values as idiosyncrasies of the data and not representative of
human mobility59. Thus, for those five departments, we replaced the proportion of
within-department CDRs with the mean proportion of within-department CDRs
from all other departments. We then re-normalized the number of CDRs
originating from each department in our mobility matrix to sum to one.

Summary of models. To produce weekly forecasts of ZIKV transmission across
Colombia, we sought to use a computationally efficient model with the flexibility to
include relevant epidemiological and ecological mechanisms. We used a previously
described semi-mechanistic, discrete-time, and stochastic model60 that had been
adapted and used to model mosquito-borne pathogen transmission61,62. Using this
model, we were able to account for the extended generation interval of ZIKV using
overlapping pathogen generations across up to five weeks of the generation interval
distribution of ZIKV62. Furthermore, we could specify this model to be either
spatially connected or nonspatial—a key assumption that we considered in our
analysis.

We considered a suite of 16 models that spanned all combinations of four
assumptions about human mobility across Colombia’s 31 mainland departments,
two assumptions about the relationship between environmental conditions and the
reproduction number (R), and two assumptions about how many times the Zika
virus was introduced to Colombia (Table 1). Twelve of 16 models allowed for
spatial connectivity across departments60, while four models were nonspatial.
There were up to two steps in the transmission process: transmission across
departments (for spatially connected models) and local transmission within
departments.

Across departments, we simulated the movement of individuals using a spatial
connectivity matrix (H), the dth column of which corresponds to the proportion of
time spent by residents of department d in all departments~d. Using this matrix, we
redistributed infections in department d in week t (Id,t) across ~d as a multinomial
random variable

I0~d; t � multinomial ðId; t ;H~d; dÞ; ð1Þ

where the first and second arguments represent the number of trials and the
probabilities of the outcomes, respectively. By taking this Lagrangian approach to
modeling human mobility, transmission across departments in our model can
occur either by infected visitors transmitting to local susceptibles or susceptible
visitors becoming infected by local infecteds, but not between infected visitors and
susceptible visitors in a transient location. The relative occurrence of these events
depends on the prevalence of infection, susceptibility, local transmission potential,
and mobility patterns of a given pair of departments.
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Within each department, we defined a variable representing the effective
number of infections that could have generated new infections in week t (I00d; t) as

I00d; t ¼ ∑
5

j¼1
ωGI
j I0d;t�j; ð2Þ

where ωGI
j is the probability that the generation interval is j weeks63. The

relationship between I00d; t and the expected number of new local infections in week
t+ 1 (Id,t+1) follows

Id;tþ1 ¼ βd;t
I00d; t
Nd

Sd;t ; ð3Þ

where βd,t is the transmission coefficient, Nd is the total population, and Sd,t is the
total susceptible population prior to local transmission in week t. We accounted for
the role of stochasticity in transmission by using the stochastic analog of Eq. (3),
such that

Id;tþ1 � negative binomial βd;t
I00d; t
Nd

Sd; t ; I
00
d; t

� �
ð4Þ

where the first and second arguments are the mean and dispersion parameters,
respectively60.

To allow for comparison of the model’s simulations of infections (Id,t) with
empirical data on reported cases (yd,t), we applied a reporting probability (ρ) to
simulated infections to obtain simulated cases (Cd,t), such that Cd,t ~ binomial(Id,t, ρ).
Using this, we defined the contribution to the overall log-likelihood of the model and
its parameters from a given department d and week t as

‘d;tð~θtÞ ¼ ln negative binomialðyd;t þ 1 j ϕ;Cd;t þ 1Þ
� �

; ð5Þ

where ϕ is a dispersion parameter that we estimated to account for variability in case
reporting beyond that captured by ρ. Shifting yd,t and Cd,t by one in Eq. (5) was
intended to safeguard against ℓd,t being undefined in situations where Cd,t= 0.

Assumptions about human mobility. We allowed for spatial coupling across
departments in 12 of 16 models. In these models, we informed H in three alter-
native ways: (i) with mobility data extracted from mobile phone CDRs, (ii) with a
gravity model, or (iii) with a radiation model (Fig. 1d–f). For the gravity model, we
used parameters previously fitted to CDRs from Spain and validated in West
Africa11. For the radiation model, we calculated human mobility fluxes according
to the standard formulation of this model64, which depends only on the geographic
distribution of the population. In four of 16 models, we assumed that departments
were spatially uncoupled (Table 1), such that each department was modeled
individually with its own set of parameters. In those models, each department’s
epidemic was seeded independently with its own set of imported infections. Further
details about the spatially uncoupled models can be found in the
Supplementary Text.

Assumptions about environmental drivers of transmission. We parameterized the
transmission coefficient, βd,t, based on a description of the reproduction number,
Rd,t, appropriate to environmental drivers for department d and time t. We con-
sidered two alternative formulations of Rd,t that was informed by data that were
available prior to the first reported case of Zika in Colombia. Specifically, both of
these alternative formulations used different outputs from previous modeling
efforts6,12, and because of this, they contain slightly different components. Both
formulations were defined such that

βd;t ¼ kRd;t ð6Þ
where k is a scalar that we estimated over the course of the epidemic to account for
the unknown magnitude of ZIKV transmission in Colombia. In addition to the
summary below, further details about these formulations of Rd,t are provided in the
Supplementary Methods.

The formulation of βd,t that we refer to as “dynamic” is defined at each time t in
response to average temperature at that time (Td,t) and mosquito occurrence
probability at that time (OPd,t). This relationship can be expressed generically as

βd;t ¼ k~Rd;tðTd;t ;OPd;t jc;ψ; α; vÞ; ð7Þ
where c, ψ, α, and v are parameters governing the relationship among Td,t, OPd,t,
and ~Rd;t . We informed the component of ~Rd;t related to mosquito density with
monthly estimates of OPd,t, which derive from geostatistical modeling of Aedes
aegypti occurrence records globally57. Other components of ~Rd;t , which include
several temperature-dependent transmission parameters, were informed by
laboratory estimates12. Given that this formulation of ~Rd;t was not validated against
field data prior to the Zika epidemic in Colombia, we estimated values of c, ψ, α,
and v over the course of the epidemic.

The formulation of βd,t that we refer to as “static” is defined as a time-averaged
value that is constant across all times t. Temporal variation in Td,t is still accounted
for, but its time-varying effect on Rd,t is averaged out over all times~t to result in a
temporally constant Rd. Mosquito occurrence probability is also incorporated
through a temporally constant value (OPd)58. The relationship among these

variables can be expressed generically as

βd; t ¼ k�RdðTd;~t ;OPd ; PPPdÞ; ð8Þ
where PPPd is purchasing power parity in department d (a feature not included in
the dynamic model)65. This input is an economic index that was intended to serve
as a proxy for spatial variation in conditions that could affect exposure to mosquito
biting, such as housing quality or air conditioning use6. Given that this formulation
of �Rd was informed by data from outbreaks of Zika and chikungunya prior to the
Zika epidemic in Colombia, we did not estimate its underlying parameters over the
course of the epidemic in Colombia.

Assumptions about introduction events. Although many ZIKV infections were likely
imported into Colombia throughout the epidemic, we assumed that ZIKV intro-
ductions into either one or two departments drove the establishment of ZIKV in
Colombia31. Under the two different scenarios, there was either one introduction
event into one department or there were two independent introduction events into
two randomly drawn departments. For each parameter set, the initial number of
imported infections was seeded randomly between one and five in a single week,
the timing of which was estimated as a parameter. Following the initial intro-
duction(s), we assumed that ZIKV transmission was driven by a combination of
movement of infected people among departments and local transmission within
departments, as specified by each model.

Data assimilation and forecasting. For each particle, we produced a single forecast
to “initialize” the model prior to the first reported case in Colombia. Beginning with the
time of the first reported case in Colombia, we then assimilated new data, updated
parameter estimates, and generated forecasts every four weeks, consistent with the four-
week frequency used by Johansson et al. in an evaluation of dengue forecasts16. We
specified 20,000 initial parameter sets (~θ1;n), indexed by n, by drawing independent
samples from prior distributions of each parameter66 (see Supplementary Methods).
Each parameter set was used to generate a corresponding particle: a stochastic reali-
zation of the state variables (Id,1,n and Cd,1,n). At each assimilation period, we normalized
log-likelihoods summed across departments over the preceding four weeks to generate
particle weights,

ωðt; nÞ ¼
∑d ∑

t
τ¼t�3 ‘d;τ

ð~θt;nÞ
∑n∑d ∑

t
τ¼t�3 ‘d;τ

ð~θt;nÞ
: ð9Þ

Proportional to these particle weights (ω(t, n)), we sampled 18,000 sets of corresponding

parameters (~θ
resampled

t ) and state variables (fIresampled
d;t ;Cresampled

d;t g) from time t with
replacement and used them at the next data assimilation step four weeks later, where
boldface indicates a set of parameters or state variables, respectively, overall n. In doing
so, information including the initial prior assumptions (~θ1;n) and the likelihoods at each
four-week period was assimilated into the model sequentially over time. Given that
particle filtering algorithms are susceptible to particle drift—or the convergence of
particles onto very few states through iterative resampling33—we also generated 2,000
new parameter sets at each data assimilation step. To do so, we drew random samples
of model parameters from a multivariate normal distribution with parameter means

and covariances fitted to the resampled 18,000 parameter sets (~θ
resampled

t ). Whereas the
18,000 resampled parameter sets already included simulated values of state variables
Id,t,n and Cd,t,n through time t, the 2000 new parameter sets did not and so we informed

initial conditions of Inewd;t with draws from Iresampled
d;ι:t for those parameter sets at the time

they were created. Together, the 18,000 resampled parameter sets (~θ
resampled

t ) and the

2000 new parameter sets (~θ
new

t ) constituted the set of parameter sets used as input for

the next data assimilation step (~θtþ4 ¼ f~θresampled

t ;~θ
new

t g). We also used this new set of
parameters as the basis for forecasts made at time t, which simply involved simulating
forward a single realization of the model for each parameter set.

Evaluating forecast performance. At each of the 15-time points at which we
performed data assimilation through the 60-week forecasting period, we created an
ensemble forecast that evenly weighted contributions from each of the 16 models46.
To populate this ensemble, we specified 20,000 total samples, with 1250 samples
from each model. We assessed the model-specific performance of individual and
ensemble forecasts using log scores, which are forecast scoring rules that assess
both the precision and accuracy of forecasts67. For a specific forecasting target, z,
and model, m, the log score is defined as logf mðz�jxÞ, where fm(z∣x) is the predicted
density conditioned on the data, x, and z* is the empirical value of the target Z16.

We computed log scores for departmental and national incidence over each
four-week assimilation period. Following17, we used an EM algorithm to generate
ensemble weights for each model in each assimilation period. For each model, we
computed 32 log scores (i.e., one for each department and one nationally). To
compute the ensemble weight for a given model feature, such as the static R
assumption, we summed the weights of all models with that feature.

We assessed target-oriented forecast performance using log scores for three
forecasting targets: timing of peak week (within two weeks), incidence at peak
week, and onset week, which we defined as the week by which ten cumulative cases
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occurred. These choices were motivated by forecasting assessments for influenza
and dengue16–18,68 and deemed applicable to public health objectives for
forecasting an emerging pathogen such as Zika. For peak week and onset week, we
used modified log scores18, such that predictions within two weeks of the correct
week were considered accurate. We evaluated a total of 7680 log scores, reflecting
three targets for each of 16 models in each of 31 departments plus at the national
level and at each of 15-time points at which data assimilation occurred.

As log scores only yield a relative measure of model performance, we used
forecasting scores18 as a way to retrospectively compare forecast performance for
different forecasting targets. Whereas log scores are preferable for comparing
performance across models on the same data, forecasting scores are preferable for
comparing forecast performance across data composed of different locations and
times. A forecasting score is defined simply as the exponential of the average log
score, where the latter reflects an average over one or more indices, such as models,
time points, targets, or locations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mobile phone data set used in this study is proprietary and subject to strict privacy
regulations. Access to this data set was granted after reaching a non-disclosure agreement with
the proprietor, who anonymized and aggregated the original data before giving access to the
authors. Access to the dataset is controlled and restricted under strict security and privacy
measures due to the company’s policy towards preserving customer’s data privacy (in
accordance with existing data protection regulations) as well as protecting business secrecy.
The data could be available on request after negotiation of a non-disclosure agreement.
The response to any request shall be provided within the next 15 business days. The contact
person is Pedro A. de Alarcón (pedroantoniode.alarconsanchez@telefonica.com). The
epidemiological, meteorological, and demographic data are publicly available from Siraj et al.29

(Dryad repository: https://doi.org/10.5061/dryad.83nj1) and additionally available on GitHub
(https://github.com/roidtman/eid_ensemble_forecasting).

Code availability
The code used to fit models, produce forecasts, analyze forecast outputs, and produce
figures are available on GitHub (https://github.com/roidtman/eid_ensemble_forecasting)
and Zenodo (https://doi.org/10.5281/zenodo.5176776).
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