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Abstract 20 

The rhizosphere is a hotspot for microbial C transformations, and the origin of root polysaccharides and 21 

polymeric carbohydrates that are important precursors to soil organic matter. However, the ecological 22 

mechanisms that underpin rhizosphere carbohydrate depolymerization are poorly understood. Using 23 

Avena fatua, a common annual grass, we analyzed time-resolved metatranscriptomes to compare 24 

microbial function in rhizosphere, detritusphere, and combined rhizosphere-detritusphere habitats. 25 

Population transcripts were binned with a unique reference database generated from soil isolate and single 26 

amplified genomes, metagenomes, and stable isotope probing metagenomes. While soil habitat 27 

significantly affected both community composition and overall gene expression, succession of microbial 28 

functions occurred at a faster time scale than compositional changes. Using hierarchical clustering of 29 

upregulated decomposition gene expression, we identified four distinct microbial guilds populated by taxa 30 

whose functional succession patterns suggest specialization for substrates provided by fresh growing 31 

roots, decaying root detritus, the combination of live and decaying root biomass, or aging root material. 32 

Carbohydrate depolymerization genes were consistently upregulated in the rhizosphere, and both 33 

taxonomic and functional diversity were high in the combined rhizosphere-detritusphere—suggesting 34 

coexistence of rhizosphere guilds is facilitated by niche differentiation. Metatranscriptome-defined guilds 35 

provide a framework to model rhizosphere succession and its consequences for soil carbon cycling. 36 

  37 
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INTRODUCTION  38 

The rhizosphere is a critical zone for C transformations in the terrestrial biosphere, since roots are the 39 

primary source of soil organic matter (1-3) and can significantly alter the rate of soil C turnover (4-6). 40 

Plants deposit a significant proportion of their photosynthates into soil as root biomass or exudates (7), 41 

and plant-derived polymeric carbohydrates such as cellulose and hemicellulose are the most abundant 42 

polysaccharides in soil (8, 9). These rhizodeposits create a high resource, high activity environment, and 43 

stimulate a bloom of microbial biomass (10) that undergoes ecological succession as roots grow and 44 

senesce (11, 12), selecting for organisms that benefit mineral nutrition (13) and overall plant health (14). 45 

Rhizodeposits also stimulate depolymerization by cellulases, chitinases, and proteases (15, 16) leading to 46 

higher rates of decomposition, and thus nutrient availability, in the region surrounding both living roots 47 

and decaying root detritus (17). However, the ecological controls of rhizosphere carbohydrate 48 

depolymerization are not well understood, which limits our ability to accurately model soil C dynamics 49 

(18) and plant-microbe interactions. 50 

Previous studies suggest that rhizosphere community assembly is due to selective processes such as 51 

niche differentiation or habitat filtering (19-21), and metagenome sequences indicate the rhizosphere 52 

selects for microbial genomes with functional capacities that are distinct from bulk soil, where 53 

carbohydrate active enzyme (CAZy) genes are enriched in the rhizosphere (19, 21-23). However, it is 54 

unclear if this large genomic potential translates to high carbohydrate degradation activity in the 55 

environment. Genomic composition represents the full functional repertoire of a microorganism, the 56 

“fundamental metabolic niche” that constrains all the potential habitats it could hypothetically occupy 57 

(24, 25). But microbial communities contain functional redundancy that is not necessarily realized or 58 

expressed in the ecosystem (26). To understand “realized” metabolic niches within complex rapidly 59 

changing microbial communities (26), it is essential to consider expressed functional measurements—60 

such as transcripts, proteins, or metabolites—that can reflect niche differentiation in real time (27, 28).   61 

Measurements of expressed functions provide a useful way to study community assembly based on 62 

shared activities rather than shared phylogeny, and allow us to define microbial guilds—cohorts of 63 
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organisms defined by similar function that is not dependent on phylogeny (29). In cases like the 64 

rhizosphere and detritusphere, where communities might logically be defined by functional traits rather 65 

than taxonomic relatedness, guilds defined by gene expression, rather than species, may be the most 66 

relevant parameter for understanding patterns of diversity (30), modeling community interactions (31), 67 

and identifying the gene transcripts that mediate root-accelerated decomposition. However, the ideal 68 

parameters for identifying or operationally defining guilds in microbial communities are unresolved. 69 

Microbial guilds have been identified previously by adding single substrates to soil and measuring 70 

subsequent increases in taxonomic relative abundance (32). We theorize that functional guilds can also be 71 

identified using population-resolved gene expression, where guild members turn on and off genes in a 72 

coherent spatial or temporal manner in response to the same habitat, resources, or environmental 73 

perturbations. Genome-centric analyses now allow us to track transcription in individual populations, 74 

which may be a more relevant approach than grouping transcripts across disparate classes or phyla (33).  75 

Using comparative metatranscriptomics, we studied microbial degradation of macromolecular plant 76 

compounds, hypothesizing that gene expression would reflect distinct functional succession patterns in 77 

different soil habitats (rhizosphere and detritusphere), consistent with niche differentiation. The 78 

transcripts were extracted from soil near live and decaying roots in microcosms containing Avena fatua, a 79 

common annual grass, growing in its native soil. Population transcripts measured over the course of three 80 

weeks were binned using a genome-resolved reference database specific to our experimental soil. We 81 

found that carbohydrate depolymerization was executed by a series of microbial guilds, with distinct 82 

spatial and temporal response patterns in gene expression. We tested whether these guilds had differing 83 

life history traits based on their preferred substrate (rhizosphere or detritusphere), and assessed whether 84 

carbohydrate depolymerization expression was controlled by: a) increasing population size, b) 85 

upregulating transcription, or c) synergistically upregulating transcription in response to combined 86 

resources (i.e., combined rhizosphere-detritusphere). Our work provides a mechanistic framework for 87 

understanding the drivers of rhizosphere succession and identifies carbohydrate/lignolytic gene transcripts 88 

mediating root-accelerated decomposition.  89 

90 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/611863doi: bioRxiv preprint first posted online Apr. 18, 2019; 

http://dx.doi.org/10.1101/611863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

METHODS 91 

Experimental Design  92 

The annual grass, wild oat (Avena fatua) was grown in two-chamber microcosms with a sidecar region 93 

designed to allow access to the rhizosphere (Fig. S1) (10, 16, 34). The outer wall of the sidecar was clear 94 

plastic, allowing us to monitor root growth and rhizosphere age. Microcosms were packed with soil (1.2 95 

g/cm3) collected beneath a stand of A. barbata at the Hopland Research and Extension Center (Hopland, 96 

CA, USA). The soil is a Bearwallow-Hellman loam, pH 5.6 with 2% total C (35). For half the 97 

microcosms, 50 g soil was amended with 0.4 g dried A. fatua root detritus and spread on top of 100 g of 98 

sidecar soil; root detritus (also called ‘root litter’) had been grown in sand, triple washed, aged 1 year, and 99 

chopped to 1 mm. Each microcosm also contained a 1 µm mesh ‘bulk soil’ bag, designed to exclude roots 100 

but allow moisture equilibration; these contained 2 g soil, either amended with 0.016 g detritus (bulk + 101 

detritus) or unamended (bulk). Plants were grown in the main chamber for six weeks before starting the 102 

experiment. Six days prior, the divider separating the main chamber and sidecar was replaced with a 103 

slotted divider, and microcosms were tilted 40°, allowing roots to grow into the sidecar.   104 

 105 

Root age was tracked in order to collect rhizosphere soil of defined age. New root growth was marked 106 

three days after the microcosms were tilted, and harvests took place 3, 6, 12 or 22 days later (Fig. S1). At 107 

each timepoint, we destructively sampled paired rhizosphere and bulk soil for two treatments (with and 108 

without detritus) with 3 biological replicates, collecting 48 total samples (24 rhizosphere, 24 bulk).   109 

 110 

Sample Collection 111 

Rhizosphere soil <2 mm from the root was excised with a scalpel. Root sections and adhering soil were 112 

placed immediately in ice cold Lifeguard Soil Preservation Reagent (MoBio), vortexed for 2 min on 113 

medium speed, and pelleted according to the Lifeguard protocol. Roots were removed using flame-114 
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sterilized tweezers and supernatant removed. Pelleted soils were frozen on dry ice and stored at -80°C. 115 

Bulk soils were processed identically. Approximately 1 g of soil was collected per sample. 116 

 117 

The remaining sidecar soil was collected for edaphic characterization. Soil pH was measured as per Fierer 118 

and Jackson (36) with a Corning 340 pH meter. Gravimetric moisture content was determined by 119 

measuring water loss from 10 g fresh soil after 2 days at 105°C. Total carbon (TC) was measured on a 120 

subset of the samples to calculate C addition due to the root material using an elemental analyzer IRMS 121 

(PDZ Europa, Limited, Crewe, UK). 122 

 123 

DNA/RNA Extraction 124 

DNA and RNA were co-extracted from 0.5 g of frozen soil using a phenol-chloroform extraction protocol 125 

(37, 38). DNA and RNA were separated using the Qiagen AllPrep kit. RNA was treated with TURBO 126 

DNase (Thermo Fisher Scientific) following the manufacturer’s protocol and concentrated by ethanol 127 

precipitation. RNA was visualized an Experion Electrophoresis System (Bio-Rad), and quantified using 128 

the Qubit RNA BR Assay Kit (Thermo Fisher Scientific).  129 

 130 

Single Amplified Genomes 131 

Rhizosphere and root endophyte microbial cells were sorted to create single amplified genomes (SAGs).  132 

Three grams of roots coated in rhizosphere soil were washed in 10ml of cell release buffer (0.5% Tween, 133 

2.24 mM Na pyrophosphate in PBS), vortexed for 1 min at full speed on a horizontal shaker, and soft 134 

pelleted at 2KxG for 2 min (repeated 4 times). Cells from the supernatant were stained with SYBR, 135 

imaged using a Zeiss Axioimager M2 (CNR Biological Imaging Facility, UC Berkeley), and counted 136 

using ImageJ (39). Glycerol was added to the supernatant at a final concentration of 15% and frozen at –137 

80° C prior to sorting. Roots were washed in PBS, shaken in 10% bleach (1 min), rinsed in water, dried 138 

by centrifugation, and frozen at –80° C prior to maceration using a sterile mortar and pestle prior to cell 139 

sorting. Thawed rhizosphere and root endophyte cells were isolated using fluorescence activated cell 140 
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sorting, amplified by multiple displacement amplification, and screened using 16S rRNA sequencing 141 

(40).  142 

 143 

Sequencing Library Preparation 144 

Metatranscriptomes, iTags (16S, ITS), and single amplified genomes (SAGs) were sequenced at the Joint 145 

Genome Institute (JGI); see Supplemental Methods for full details. Briefly, for metatranscriptomic 146 

libraries, ribosomal RNA was depleted using the Ribo-Zero rRNA Removal Kit (Epicentre) for Plants and 147 

Bacteria and reverse transcribed into cDNA. cDNA was sequenced (2x150bp) on an Illumina HiSeq2000 148 

sequencer using a TruSeq SBS sequencing kit (v3). For iTag analysis, paired DNA and RNA were 149 

amplified from the same nucleic acid extract prepared for metatranscriptomics. iTag libraries targeted the 150 

bacterial 16S V4 region (primers 515F, 805R) (41, 42) and the fungal ITS2 region (primers ITS9, ITS4) 151 

(43, 44) using barcoded reverse primers (41). Amplicons were sequenced (2x300bp) on an Illumina 152 

MiSeq sequencing platform using a MiSeq Reagent Kit (v3 600 cycle). Selected SAGs that successfully 153 

amplified 16S rRNA were sequenced using the Illumina NextSeq platform (40). 154 

 155 

Sequence Processing  156 

Metatranscriptomic raw reads were quality-trimmed (Q20) using fastqTrimmer, and artifacts were 157 

removed using DUK (45). Contaminating ribosomal RNA and transfer RNA were identified and removed 158 

with bowtie2 (46) by mapping reads against SILVA (47), Greengenes (48), IMG rRNA, GtRNAdb (49), 159 

and tRNADB-CE (50) databases. In total we sequenced 408 Gbp of RNA, and after in silico contaminant 160 

filtering, we obtained an average of 43 million paired-end metatranscriptomic reads per library (see Table 161 

S1 for repository IDs and sequencing statistics). We did not detect any bias towards rhizosphere or bulk 162 

soil in either sequencing library size (Figure S2) or gene diversity (Figure S3). 163 

 164 

Amplicons were analyzed on JGI’s iTag analysis pipeline (iTagger) (41), which created OTUs at the 97% 165 

and 95% identity level for bacterial 16S and fungal ITS, respectively. Contaminants were removed using 166 
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DUK, merged with FLASH (51), and dereplicated. Dereplicated sequences were sorted by decreasing 167 

abundance, clustered with USEARCH (52), and assigned taxonomy using the RDP classifier (53). SAG 168 

sequences were processed using BBTools (54). Sequences were filtered using BBDuk and mapped 169 

against masked contaminant references (human, cat, dog) using BBMap and BBMask. Reads with an 170 

average kmer depth <2 were removed. Normalization was performed with BBNorm and error correction 171 

with Tadpole (54). Sequences were assembled using SPAdes (version v3.7.1) (55); 200bp was trimmed 172 

from contig ends; contigs were discarded if length was < 2kbp or read coverage was < 2. Cross-173 

contaminated contigs were identified and removed using CrossBlock (54). Automated SAG 174 

decontamination was performed with ProDeGe (version 2.3) (56) and assemblies were discarded if the 175 

total size was < 200 kbp. Details about the final draft assemblies are listed in Table S2. 176 

 177 

Soil-Specific Reference Database 178 

Transcripts were mapped against a genome database specific to our Hopland CA experimental soil, 179 

composed of 96 metagenome-assembled genomes (MAGs) (NCBI PRJNA517182), 221 MAGs from a 180 

stable isotope probing (SIP) rhizosphere density gradient (57) (http://ggkbase.berkeley.edu/), 39 isolate 181 

genomes (58), and 29 single amplified genomes (SAGs) (this study; Table S1). Reference genomes were 182 

dereplicated using whole pairwise genome alignments at 98% nucleotide identity (59); we selected the 183 

highest quality representative based on completeness of single copy genes (60). To ensure we did not 184 

include multiple fragmented genomes from the same organism, genomes > 70% complete were clustered 185 

into groups that overlapped by at least 50%; genomes < 70% complete were clustered in a second round 186 

using a 30% overlap. The highest quality representative was selected for each cluster (score = # single 187 

copy genes – 2 * multiple single copy genes; the genome with the highest N50 was selected to break a 188 

tie). This resulted in 335 total genomes for our custom reference database (Table S3), composed of 214  189 

rhizosphere SIP-MAGs (64%), 53 soil MAGs (16%), 39 isolate genomes (12%), and 29 SAGs (9%). 190 

 191 

Gene Annotation and Counts 192 
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Gene prediction was performed on all genome bins using Prodigal in metagenome mode (61). Protein 193 

sequences were annotated using dbCAN2 (62) (accessed April 2017), KEGG (63), and ggKbase 194 

(http://ggkbase.berkeley.edu/). Proteins with CAZyme functional domains were manually curated to 195 

generate a consensus annotation: CAZymes without KEGG or ggKbase annotations were ignored, and if 196 

the KEGG and ggKbase annotations disagreed, KEGG was selected. Genes containing signal peptide 197 

signatures for extracellular protein transport were annotated using SignalP 4.1 (64). 198 

 199 

Trimmed and filtered reads were mapped against our soil-specific database using BBSplit (54). Reads that 200 

mapped ambiguously to multiple reference genomes were discarded to prevent double-counts. Transcripts 201 

were binned into population transcriptomes using a relaxed similarity cutoff (80% min identity) and 202 

should not be interpreted as genome transcriptomes. Gene counts were determined using featureCounts (R 203 

package: Rsubread).   204 

 205 

Data Analysis 206 

Metatranscriptomic and amplicon sequencing data were normalized using DESeq2 to account for 207 

differences in sequencing effort (65), except for Shannon diversity analysis, where reads were rarified and 208 

diversity indices calculated using QIIME 1.9.1 (66). At each time point, significant differential expression 209 

relative to bulk soil was determined using DESeq2, which adjusts p values for multiple comparisons. 210 

Ordination and graph visualization were conducted in R (67). Data were ordinated using non-metric 211 

multidimensional scaling (R package: vegan), and significantly different clusters were determined using 212 

adonis (68). Correlations between environmental data and ordination data were tested using envfit (R 213 

package: vegan).   214 

 215 

Carbohydrate Depolymerization CAZymes (d-CAZy)  216 

We selected population transcriptomes with 4+ upregulated carbohydrate depolymerization genes for 217 

further analysis, which identified 26 of the 335 populations. Target substrates for depolymerization 218 
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CAZymes (d-CAZy) were initially classified based on Berlemont and Martiny (69) and then refined into 219 

the following putative substrate categories using the consensus annotation described above: cellulose, 220 

xylan, xyloglucan, pectin, plant polysaccharides, microbial cell walls, starch and glycogen, xylose and 221 

cellulose oligosaccharides, oligosaccharides, mono- and disaccharides (see Table S7 for gene names and 222 

references). Area-proportional Venn diagrams were created to visualize the subset of the community that 223 

significantly upregulated d-CAZy transcripts relative to the total d-CAZy genomic potential (R package: 224 

venneuler). 225 

 226 

Guild Assignment 227 

We defined guilds based on d-CAZy expression over time and across treatments. Average d-CAZy 228 

differential gene expression (log2 fold change) relative to bulk soil was visualized using heatmaps (R 229 

package: pheatmap). One-dimensional hierarchical clustering was used to assign heatmap groups, which 230 

were classified as guilds based on resource preference and timing of peak gene expression. Maximum 231 

gene expression per enzyme per treatment was plotted by reference genome using ggplot2. Phylogeny is 232 

presented in accordance with current taxonomic nomenclature (70). 233 

 234 

Decomposition Strategies 235 

Decomposition strategies were assessed by evaluating gene expression levels relative to population 236 

abundance, and by comparing expression in the rhizosphere or detritusphere to the combined rhizosphere-237 

detritusphere. Expression levels of the housekeeping genes Gyrase A and B were used as proxies for 238 

population abundance, as gyrases often have stable expression patterns over a variety of treatment 239 

conditions (71). Populations that increased in abundance, with significantly higher gyrase expression 240 

relative to bulk soil (by DESeq2), where increased d-CAZy expression is partially attributable to a larger 241 

population size were assigned to the ‘Grower’ strategy. Populations where d-CAZy expression was 242 

upregulated above population size (based on per capita gene expression), and d-CAZy fold-change was 3-243 

fold higher than gyrase fold-change relative to bulk soil were assigned to the ‘Upregulator’ strategy. We 244 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/611863doi: bioRxiv preprint first posted online Apr. 18, 2019; 

http://dx.doi.org/10.1101/611863
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

use ‘Synergist’ to describe populations with 3-fold higher gene expression when combined resources 245 

were available (i.e., combined rhizosphere-detritusphere) compared to the rhizosphere or detritusphere 246 

alone.  247 

 248 

RESULTS 249 

Microcosm soil properties  250 

Root detritus additions increased soil carbon from 2.0% ± 0.1 to 2.8% ± 0.1. Gravimetric soil moisture at 251 

the time of harvest averaged 0.34 ± 0.067 g water g-1 dry soil, with the exception of the final timepoint, 252 

when microcosms had an average of 0.11 ± 0.013 g water g-1 dry soil due to plant transpiration (Figure 253 

S4a). The addition of root detritus significantly increased bulk soil pH by 0.14 pH units at the first 254 

timepoint, and this differenced decreased over time (Figure S4b). 255 

 256 

Rapid community and functional assembly in the rhizosphere and detritusphere 257 

Living roots and detritus rapidly altered bacterial community structure and functional assembly. All 258 

treatments diverged from bulk soil within 3 days, as seen by clear groupings in NMDS ordination space 259 

for both 16S cDNA and mRNA transcripts (Figure 1a and 1c, respectively). For 16S cDNA, the 260 

rhizosphere and detritusphere significantly shaped community composition (Figure 1) (see Table S4 for 261 

PERMANOVA F tables). Changes due to time explained 19% of the community variability, indicating 262 

that some taxonomic succession occurred within the treatments (Figure S5a). In contrast, fungal 263 

community composition, measured by ITS cDNA, was indistinguishable between rhizosphere and bulk 264 

soil (p > 0.1), and was instead significantly altered by both the detritus amendment and time (Figure 1b) 265 

(Table S4). 266 

 267 

Time was the dominant factor structuring bacterial gene expression; transcripts from the final (22-day) 268 

timepoint clearly separate from earlier time points for all treatments (Figure 1c) (Table S4). This shift is 269 
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correlated with both soil moisture (envfit: r2 = 0.87, p < 0.001) (Figure S5a) and time (envfit: r2 = 0.57, p 270 

< 0.001) (Figure S5b), likely because evapotransporation due to increased root biomass caused soil drying 271 

across all treatments at the final timepoint. When only the first three time points are considered (days 3, 6, 272 

12), the rhizosphere and detritus treatments are the dominant factors structuring community gene 273 

expression (Table S4).   274 

 275 

Early colonists of the rhizosphere rapidly increased in relative abundance within 3 days (16S cDNA, 276 

Table S5), and included Proteobacteria (Burkholderiaceae) and Verrucomicrobiota (Opitutaceae). Early 277 

colonists of the detritusphere included Fibrobacterota, Verrucomicrobiota (Chthoniobacteraceae, 278 

Opitutaceae), Armatimonadota, Bacteroidota, and Proteobacteria. In contrast, relatively few 279 

Actinobacteria and Acidobacteria significantly responded to either the rhizosphere or detritusphere on this 280 

timescale (3-22 days). 281 

 282 

Root detritus increased taxonomic and functional diversity 283 

Root detritus amendment increased the taxonomic and functional Shannon diversity of both rhizosphere 284 

and bulk soil, and the combined rhizosphere-detritusphere had the highest overall taxonomic diversity by 285 

the final timepoint (Tukey HSD analysis, Figure 2a). Shannon taxonomic diversity was calculated based 286 

on 16S rRNA genes. Root detritus amendment of bulk soil significantly increased KEGG functional 287 

diversity, and appeared to have a similar effect on rhizosphere soil, although the trend was not significant 288 

at p < 0.05 (Tukey HSD analysis, Figure 2b). Of our four treatments, rhizosphere soils (with and without 289 

root detritus) had the highest expressed functional diversity after 22 days of root growth. 290 

 291 

Roots stimulated expression of carbohydrate depolymerization transcripts 292 

We curated a set of CAZyme genes relevant for plant and microbial carbohydrate depolymerization (d-293 

CAZy, Table S7) and assessed expression of carbohydrate depolymerization transcripts relative to the 294 

bulk soil treatment. Overall, rhizosphere communities had the most significantly upregulated d-CAZy 295 
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genes (Figure 2c). The combined rhizosphere-detritusphere had the largest number of significantly 296 

upregulated d-CAZy genes, with the exception of the final time point, when unamended rhizosphere soil 297 

had the largest number of upregulated genes. This result was generally consistent across the four major 298 

CAZyme classes (auxiliary activity, carbohydrate esterases, glycoside hydrolases, polysaccharide lyases) 299 

(Figure S6). In the bulk soil, root detritus additions initially stimulated a large pulse of d-CAZy activity 300 

but this dropped dramatically over time; by the final timepoint, only 10-20% of the genes were 301 

distinguishable from bulk soil expression levels. 302 

 303 

Realized niches in rhizosphere and detritusphere  304 

The fundamental metabolic niche describes the full metabolic repertoire of a microorganism, and is 305 

represented by its total genomic content. For the individual populations in our reference database, we 306 

identified populations with statistically significant gene expression and compared it to genomic content in 307 

an effort to identify the ‘realized’ metabolic niches within our bacterial community (Figure 3). While 308 

many populations had the genomic capacity for carbohydrate depolymerization, only a small fraction 309 

significantly upregulated these genes relative to bulk soil by DESeq2.  Populations upregulating 310 

cellulases and xylanases relative to bulk soil across the three treatments were 11-15% and 10-19% of the 311 

total genomic potential, respectively (Figure 3). The relative expression patterns for gyrase A and B 312 

housekeeping genes indicate that the general population dynamics followed similar patterns by treatment 313 

as observed for functional genes. 314 

 315 

Guilds defined by temporal and habitat gene expression 316 

We assessed population gene transcription patterns over time and across habitats to define ecological 317 

guilds. The majority of differential gene expression came from 26 of our 335 reference genomes; these 318 

had at least four d-CAZy genes significantly upregulated relative to bulk soil. We note that 20 of them 319 

were derived from our rhizosphere SIP-metagenome database (Figure 4). These bacterial populations had 320 

distinct rhizosphere versus detritusphere transcriptional preferences (one dimensional hierarchical 321 
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clustering, Figure 4). We averaged d-CAZy differential expression per population to show broad 322 

differential expression patterns (Figure S7). Using statistical upregulation of depolymerization genes as a 323 

proxy for resource preference and guild membership, we defined “Rhizosphere,” “Detritusphere,” and 324 

“Aging Root” guilds, and a “Low Response” group where there was no discernable habitat preference.   325 

 326 

Carbohydrate depolymerization guilds undergo functional succession 327 

Transcriptionally-defined guilds captured a functional succession in carbohydrate depolymerization, for 328 

both polysaccharides and also oligosaccharide breakdown products. The Rhizosphere and Detritusphere 329 

guilds had high d-CAZy expression within the first 6 days, then between 12-22 days an additional Aging 330 

Root guild emerged (Figure 4). 331 

 332 

The Rhizosphere guild contained Proteobacteria order Burkholderiales and a Verrucomicrobiota 333 

population from the Opitutaceae (Figure 4, Group 1). Cellulases (endoglucanases), xylanases, and 334 

xyloglucanases were most highly expressed at 3 days, as were enzymes for potential breakdown products 335 

like cellulose- and xylan-oligosaccharide hydrolases (beta-glucosidases and beta-xylosidases, 336 

respectively) (Figure S7a-d). One Burkholderiaceae population did not follow this pattern, and instead 337 

had high d-CAZy expression at the final timepoint. Overall, xyloglucan hydrolases were characteristic of 338 

rhizosphere populations, and observed only once in the detritusphere (bulk + detritus) (Figure 5).   339 

 340 

The Detritusphere guild was phylogenetically diverse, including members from Proteobacteria, 341 

Myxococcota, Fibrobacterota, Bacteroidota, and Actinobacteroita phyla (Figure 4, Group 2). With the 342 

exception of the Rhizobiaceae population, members of the Detritusphere guild typically upregulated 343 

cellulases and xylanase (or both) soon after detritus was added (3, 6 days), and cellulose- or xylan-344 

oligosaccharide hydrolases for potential breakdown products (Figure 5).   345 

 346 
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In the Aging Root guild, Actinobacteriota populations from the Streptomycetaceae and Catenulisporales 347 

had high d-CAZy gene expression at the final timepoint (22 days) in the rhizosphere, and early gene 348 

expression in the detritus-amended treatments (Figure 4, Group 3). The Aging Root guild had almost no 349 

upregulated genes for starch, glycogen, cell wall, and disaccharide decomposition (Figure 5). 350 

 351 

Guild-based assessment of decomposition strategies 352 

We used metatranscriptomic expression patterns to determine the prevalence of three decomposition 353 

strategies within the microbial guilds (Figure 4): a.) increased population abundance, b.) upregulated gene 354 

expression (above per capita abundance), or c.) synergistic gene upregulation when combined resources 355 

were available (i.e., combined rhizosphere-detritusphere). We interpreted significant gyrase upregulation 356 

relative to bulk soil as a population increase (DESeq2, Figure S8).   357 

 358 

Decomposition strategies varied by guild membership, and were not mutually exclusive. All members of 359 

the Rhizosphere and Detritusphere guilds were “Growers” and increased in abundance (Figures 4 and S8). 360 

Rhizosphere guild populations were also “Upregulators” (3-fold higher gene expression per capita) 361 

(Figures 4 and S9). In contrast, enzyme expression in the Detritusphere guild tracked population levels; 362 

only one population was an “Upregulator”. Over half of the Aging Root guild did not change in 363 

abundance relative to bulk soil. This guild, composed entirely of Actinobacteriota and two Steptomyces 364 

populations, had “Upregulators” with populations sizes statistically indistinguishable from bulk soil.   365 

 366 

Three “Synergist” populations upregulated gene expression in response to combined resources, with 3-367 

fold higher gene expression in the combined rhizosphere-detritusphere compared to either habitat alone 368 

(Figures 4 and S10). These include Verrucomicrobiota (Opitutaceae) and Burkholderiales populations 369 

within the Rhizosphere guild, and a Fibrobacterota population from the Detritusphere guild. The 30S 370 

ribosomal protein S3 (RP-S3) from the Opitutaceae reference genome was 93% similar to the Opitutus 371 

terrae RP-S3 (by blastx (72)), an obligate anaerobe isolated from rice paddy soil. The Burkholderiales 372 
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and Fibrobacterota reference genomes were most closely related to uncultivated MAGs (RP-S3 85% 373 

similar to Rhizobacter MAG and 73% similar to Fibrobacterota MAG, respectively). Both the 374 

Optitutaceae and Fibrobacterota reference genomes contained CBB3 cytochrome oxidases (putatively, a 375 

microaerophilic version of cytochrome oxidase); these genes were actively expressed but not upregulated 376 

relative to bulk soil. At the early timepoints, the Opitutaceae population upregulated enzymes for xylan 377 

degradation (arabinoxylan arabinofuranosidase) and xylan breakdown products (xylan 1,4-beta 378 

xylosidase, alpha-D-xyloside xylohydrolase) (Figures 5 and S7d). The Fibrobacterota population 379 

synergistically upregulated endoglucanases, endo-1,4-beta-xylanases, and enzymes targeting their 380 

potential breakdown products (beta-xylosidase, cellobiose phosphorylase) (Figure S7h). At later 381 

timepoints, the Burkholderiales upregulated putative lignocellulosic enzymes such as endoglucanase, 382 

tannase and feruloyl esterase, and rhamnogalacturonan lyase (Figure S7e).  383 

 384 

DISCUSSION 385 

Rapid community and functional assembly in the nascent rhizosphere and detritusphere 386 

The soil microbial community surrounding roots undergoes a compositional succession corresponding to 387 

the phenological stages of plant growth (11, 12). However little is known about microbial gene expression 388 

during rhizosphere succession, and the temporal relationship between functional succession versus 389 

community changes. We used genome-centric, comparative metatranscriptomics to identify taxa 390 

mediating root-enhanced decomposition using carbohydrate gene transcripts. Since many soil taxa are 391 

non-cultivable by conventional methods, this approach offers insights into the physiologies of populations 392 

only known by sequencing (33). Our results, some of the first using a genome-centric metatranscriptome 393 

approach in soil, illustrate that different microbial populations have specialized functions and life 394 

strategies based on spatiotemporal differences in root habitats. 395 

 396 

We found community and functional assembly proceeded at different rates—while taxonomic 397 

composition underwent minor successional changes over three weeks, expressed functional composition 398 
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distinctly shifted between 12-22 days. mRNA has a short half-life relative to DNA, and is a sensitive 399 

indicator about ongoing ecological processes and near-real-time conditions experienced by cells (73). Our 400 

previous work indicates rhizosphere community composition continues to shift from three weeks until 401 

senescence (11), but the faster changes we observe for transcript inventories suggest microbes experience 402 

changes in rhizodeposits, environmental conditions (e.g. moisture, pH, O2), or other signals on the scale 403 

of days (77). The relative speed of functional shifts suggests that expressed functional succession occurs 404 

at a faster time scale than compositional changes, and possibly dictates the rhizosphere microbial 405 

community succession that occurs over longer time scales. This illustrates a benefit of using time-406 

resolved metatranscriptomics to assess activity of specific microbial populations and the processes that 407 

lead to community assembly, since organisms transcriptionally respond to stimuli on a shorter time scale 408 

than evinced by replication. 409 

 410 

SIP-metagenomes produced the most useful genomes for soil metatranscriptomics  411 

The proportion of population-specific transcripts mapping to our reference genomes illustrates the 412 

comparative benefits of the four sequence products in our custom database: single amplified genomes, 413 

isolate genomes, deeply sequenced bulk soil metagenomes, and rhizosphere stable isotope probing (SIP) 414 

metagenomes. Genomes derived from rhizosphere SIP-metagenomes proved to be the most relevant for 415 

transcript mapping, and the source of most of the populations with 4+ upregulated carbohydrate 416 

depolymerization genes.  In a previous study (57), these populations also showed high 13C-incorporation 417 

by rhizosphere 13C-SIP (unpublished data), where the plants were continuously-labeled with 13CO2 for 6 418 

weeks. Our results indicate that SIP-metagenome datasets may be a highly fruitful genomic resource for 419 

environmental metatranscriptomics and other omics analyses.  420 

 421 

Metatranscriptomic guilds provide a framework to understand rhizosphere succession  422 

By assigning expressed carbohydrate depolymerization genes to individual population genomes derived 423 

from our custom genome database, we stepped beyond gene-centric studies that have shown rhizosphere 424 
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gene expression with plant development (12) or environmental changes (74) and identified specific 425 

carbohydrate depolymerization guilds based on shared spatiotemporal gene expression.  426 

We used these guilds to evaluate decomposition strategies that underpin altered carbohydrate degradation 427 

rates commonly found surrounding roots (4). In macroecology, the guild concept is a common way to 428 

group populations as functional ecological units, based on their resource utilization traits or life history 429 

strategies (25, 29). In environmental microbiology, while next-generation sequencing allows us to group 430 

microbial communities taxonomically (75), taxonomy and function may not correspond (26, 30, 76). We 431 

identified four guilds based on spatiotemporal CAZy expression patterns (Rhizosphere, Detritusphere, 432 

Aging Root and Low Response). This ecological categorization framework may be particularly useful for 433 

phylogenetically ubiquitous microbial functions—for example, soil organic matter decomposition (32, 434 

76-78), stress, or nitrogen mineralization—where guilds are based on shared life history traits rather than 435 

phylogeny.  436 

 437 

Within each guild, many populations engaged multiple catabolic pathways for carbohydrate degradation, 438 

including potential degradation by-products such as cellulose- and xylose-oligosaccharides. For example, 439 

populations from the Rhizosphere and Detritusphere guilds not only expressed enzymes for cellulose and 440 

xylan degradation, but also their breakdown products. Recent work suggests that facilitative processes 441 

such as cross-feeding in large networks can act to stabilize coexisting competitors for resources (79-81). 442 

Genome-resolved metagenomic analyses indicate the importance of metabolic byproduct handoff in 443 

linking together interacting members of microbial communities (80, 81). The breadth of carbohydrate 444 

degradation pathways that Rhizosphere and Detritusphere guilds engage in may be a potential explanation 445 

for the stable, positive and repeatable interaction networks in the rhizosphere that we observed in a 446 

previous study (82). We hypothesize that complex cross-feedings networks promote coexistence within 447 

highly interconnected rhizosphere communities (79).  448 

 449 

Niche differentiation promotes coexistence of rhizosphere and detritusphere guilds 450 
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By combining taxonomy and function, genome-resolved metatranscriptomics, we examined both the 451 

‘potential’ and ‘realized’ metabolic niches (26, 33) of bacteria in our experiment. The niche 452 

differentiation concept asserts that organisms coexist by subdividing available resources, such as food or 453 

space (25, 32). As the number of niches increases in a system, so should the number of coexisting species 454 

(83). During root colonization in the combined rhizosphere-detritusphere, coexisting guilds began to 455 

develop, demonstrating that carbohydrate depolymerization preferences that were evident when root 456 

habitats were presented in isolation (rhizosphere or detritusphere), could coexist when combined. When 457 

detritus was added to the rhizosphere, the most populations predominantly demonstrated spatial and 458 

temporal coexistence rather than synergistic consumption of resources. These results are reflected by the 459 

higher functional alpha diversity in the combined rhizosphere-detritusphere; we saw approximately 460 

additive increases in functional diversity when a new resource (root detritus) was added to the system. 461 

Our work suggests that spatial and temporal niche differentiation promotes microbial coexistence in the 462 

rhizosphere and detritusphere. 463 

 464 

 465 

Guild-based assessment of carbohydrate degradation strategies 466 

We further assessed if our guilds had differing d-CAZy transcriptional strategies and evaluated if our 467 

increases in gene expression (a) tracked increases in population size (‘Growers’), (b) were upregulated 468 

per capita (‘Upregulators’), or (c) synergistically upregulated when both root exudates and detritus were 469 

available (‘Synergists’). These strategies were not mutually exclusive, and their prevalence varied 470 

according to guild membership. All organisms in the Rhizosphere guild were both ‘Growers’ and 471 

‘Upregulators,’  while the Detritusphere guild were primarily ‘Growers.’ Multiple studies have shown 472 

that the input of organic-C substrates can increase or decrease the rates of C degradation of surrounding 473 

soil organic matter, which is a phenomenon known as priming (4, 5, 84). Due to the large number of 474 

significantly upregulated decomposition transcripts in the rhizosphere, both with and without detritus 475 

amendments, this system has a high potential for increased rates of decomposition in the rhizosphere, as 476 
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was previously observed in this plant-soil system (6). This is consistent with the expectations for positive 477 

rhizosphere priming, where fresh organic matter provided by the rhizosphere stimulates the production of 478 

enzymes that can degrade soil organic matter (17, 85, 86).  479 

 480 

Based on the rhizosphere priming hypothesis, we would expect to observe “Synergists” in the combined 481 

rhizosphere-detritusphere.  Strikingly, we only observed 3 “Synergist” populations, and two of these were 482 

putative microaerophiles. This suggests that these populations may also be partitioning their niches based 483 

on changes in the edaphic environment, such as oxygen or pH, rather than simply by consuming 484 

combined resources alone.  The Verrucomicrobiota MAG is distantly related to Opitutaceae isolates 485 

derived from oxygen-limited rice patties and insect guts (87-90).  Fibrobacteres include cellulose 486 

degrading bacteria found in mammal rumens (91), termite guts (92), anaerobic cellulose reactors (93), and 487 

rice paddy soil (94).  Both MAGs contain cytochrome oxidases with high oxygen affinity (CBB3), which 488 

is associated with organisms living in microaerophilic environments (95).  High amounts of heterotrophic 489 

respiration can create microaerophilic zones in otherwise aerobic environments, such as the rhizosphere 490 

(96, 97).  The combined oxygen demand from both the rhizosphere and detritusphere may have been 491 

sufficiently high to create microaerophilic niche for root detritus decomposition, thus providing a possible 492 

mechanism for the observed synergistic response.  Both of these populations are rhizosphere inhabitants 493 

found in our other studies (11, 20) suggesting that this synergistic decomposition in the combined 494 

rhizosphere-detritusphere may be functionally significant in semiarid grasslands.  495 

 496 

During the functional succession of guilds, one guild emerged during the latter half of the experiment as 497 

the rhizosphere aged.  Interestingly, more than half of the Aging Root guild had population sizes that 498 

were indistinguishable from bulk soil based on gyrase housekeeping gene expression, but in some cases 499 

still were “Upregulators.”  Similarly, by 16S analysis, few Actinobacterial taxa changed in relative 500 

abundance in response to the treatments.  This suggests that these populations were actively utilizing 501 

carbohydrates and not appreciably changing their population sizes over the timescale we measured.  A 502 
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recent SIP study on forest soils found that Actinobacteriota only accumulated 13C after 21 days (98).  503 

Since SIP requires replication to increase enrichment of DNA (99), the authors hypothesized that this 504 

could be due to slow growth.  Our results support this hypothesis, and indicate that populations with 505 

minimal growth can still be active and functionally relevant in the community (100).  We also note that 506 

some Actinobacterial populations in the Detritusphere guild had significant d-CAZy transcription as early 507 

as 3 days. Thus metatranscriptomics provides a way to assess functional relevance that is independent of 508 

changes in taxonomic relative abundance. 509 

 510 

 511 

CONCLUSIONS  512 

Niche differentiation is central to theories of coexistence (25, 32, 83). Recent advances in metagenomic 513 

sequencing have allowed us to define the fundamental metabolic niches of representatives from poorly-514 

known phyla, for whom there are little phenotypic data (57, 101). Using genome-centric 515 

metatranscriptomics to define the realized metabolic niches for soil populations, we found that 516 

carbohydrate depolymerization guilds rapidly emerged during rhizosphere community assembly. Using 517 

these guilds, we determined the prevalence of three d-CAZy transcriptional strategies in the rhizosphere, 518 

and found that rhizosphere organisms upregulate decomposition transcripts in addition to increasing 519 

population sizes.  Further, these populations used both primary and breakdown products, and supports 520 

recent observations that metabolic handoffs link together interacting members of microbial communities 521 

(79-81).  Guilds dynamics of carbohydrate depolymerization during rhizosphere succession provides a 522 

key step towards developing microbially-constrained models to predict the fate of soil carbon. 523 
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 541 
 542 
Figure 1. Influence of living roots and root litter on soil microbial communities and their gene expression 543 
during 3 weeks of Avena fatua root growth (independent harvests at 3, 6, 12, 22 days), as represented by 544 
NMDS ordination. Microbial community composition was measured by (A) bacterial 16S cDNA 545 
amplicons and (B) fungal ITS cDNA amplicons. Expressed functional composition was measured by (C) 546 
mRNA transcripts. Symbols represent four experimental habitats: rhizosphere (filled symbols), bulk soil 547 
(hollow symbols); each with added root detritus (red), or without added root detritus (blue). Ellipses 548 
represent the standard error of the weighted average of the centroid scores (calculated by ordiellipse). n=3 549 
for each habitat and timepoint.  550 
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 551 

 552 
 553 
Figure 2. Taxonomic versus functional diversity in rhizosphere and bulk soils with and without detritus 554 
(+ D) harvested from Avena fatua microcosms over the course of 22 days. Average Shannon diversity for 555 
(A) 16S rRNA genes, and (B) KEGG functional genes derived from community mRNA transcripts. Error 556 
bars reflect one standard error. In order to make our results more comparable to a prior study of bacterial 557 
succession in the Avena rhizosphere, Shannon taxonomic diversity was calculated based on 16S rRNA 558 
genes (11). The different letters represent significant differences measured by Tukey HSD analysis at the 559 
final timepoint. (C) The cumulative number of significant differentially-upregulated decomposition CAZy 560 
(d-CAZy) genes relative to bulk soil, measured by DESeq. Treatments are: rhizosphere + detritus (red 561 
circle), rhizosphere (blue triangle), bulk soil + detritus (black square), and untreated bulk soil (grey cross).  562 
 563 
  564 
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 565 

Figure 3. Fundamental (genomic potential) versus realized metabolic niches (upregulated gene 566 
expression) for key carbohydrate degradation gene classes. Area-proportional Venn diagrams indicate the 567 
number of functionally active taxa by soil habitat relative to the total metagenomic capacity for 335 568 
assembled soil genomes. The outer circle (brown) indicates the number of unique genomes in the 569 
reference database with the genomic potential for the specified class of genes; inner circles reflect the 570 
number of taxa that differentially upregulated each class of genes relative to bulk soil for each treatment: 571 
rhizosphere (blue), rhizosphere + detritus (pink), and bulk soil + detritus (green). Overlapping regions 572 
represent shared niche space, with the number of genomes shared between different treatments. Genome 573 
classes analyzed include: gyrase A, B (housekeeping gene), oligosaccharide hydrolases (e.g., 574 
glycosidases, xylanases), cellulases, and xylanases (see Table S7 for full gene list). The bottom panel lists 575 
the number of active genomes by treatment, and the percentage of active genomes relative to total 576 
genomic potential is denoted in parentheses. 577 
 578 

  579 
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 580 
 581 
 582 

Figure 4. Time-series heatmap representing average decomposition CAZy (d-CAZy) gene expression per 583 
genome for 26 d-CAZy-responsive taxa during a 22-day Avena fatua microcosm experiment; responsive 584 
taxa significantly upregulate 4+ d-CAZy genes relative to bulk soil. Red indicates log2-fold gene 585 
upregulation in the treatment, blue indicates gene upregulation in bulk soil. Reference genome taxonomy 586 
is listed for the population transcriptomes (rows), as is the source of the genome: rhizosphere SIP-587 
metagenome (SIP-MG), soil metagenome (MG), cultured isolate genome (I), single amplified genome 588 
(SAG). Time (days) is indicated by the columns. Metatranscriptomic guild assignment was accomplished 589 
through one-dimensional hierarchical clustering and is denoted by the left gray bars and numbers; high d-590 
CAZy gene expression when living roots were present were assigned to the ‘Rhizosphere’ guild; high d-591 
CAZy expression when added detritus was present formed the ‘Detritusphere’ guild; high d-CAZy 592 
expression when living roots were present, but where expression peaked at the last timepoint, formed the 593 
‘Aging Root’ guild. Stars indicate decomposition strategy: blue stars indicate populations that 594 
significantly increased abundance (‘Growers,’ Fig. S8)); purple stars indicate populations where per 595 
capita gene expression was 3x > abundance (‘Upregulators,’ Fig. S9)); red stars indicate ‘synergist’ 596 
populations, where gene expression in combined rhizosphere-detritusphere was 3x > than rhizosphere or 597 
detritusphere alone (‘Synergist,’ Fig. S10)). Hyphens indicate no gyrase data was available for the 598 
calculation. 599 
 600 
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Figure 5. Upregulated decomposition CAZy genes for 26 bacteria classified into decomposition guilds 607 
defined in this study (Rhizosphere, Detritusphere, Aging Root, Low Response; see Fig. 4). Ovals and 608 
their size indicate maximum differential expression relative to bulk soil (log2-fold change) over the time 609 
course for the treatments: rhizosphere (blue ovals), rhizosphere + detritus (brown ovals), and bulk + 610 
detritus (yellow ovals). Genes are grouped by the enzyme’s putative target substrate: plant 611 
polysaccharides (cellulose, xylan, xyloglucan, pectin, other plant polysaccharides), microbial cell walls, 612 
starch and glycogen, xylan- and/or cellulose-oligosaccharides, other oligosaccharides, and mono- and di-613 
saccharides. Phylum abbreviations: g-Proteobacteria (g-Proteo), Verrucomicrobiota (Verruco), a-614 
Proteobacteria (a-Proteo), Myxococcota (Myxo), Actinobacteriota (Actino).  615 
 616 
  617 
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