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Interaction of a rotational relatlvlstlc electron beam with a 
magnetized plasma 

K. R. Chu• and N. Rostokert 
Laboratory of Plasma Studies and School of Applied and EngiMering Physics, CorMll University, Ithaca, New 
York 14850 

(Received 31 January 1973; final manuscript received 30 November 1973) 

In the presence of a uniform magnetic field, it is possible to form a hollow rotational 
relativistic electron beam which gyrates as a whole about its axis while propagating 
axially along the magnetic field. Here, the interaction of a rotational beam front with 
a dense magnetized plasma is studied. Starting from the two-fluid equations for the 
plasma, it is shown that under the conditions ai - a1 » A, Sl, » v,, and Q, « "'• where 
a1 - a1 is the beam thickness, A is the plasma skin depth, Q is the gyro frequency, and 
v is the momentum transfer collision frequency, the beam current will not only be 
axially neutralized as usual but also angularly neutralized by a drift plasma current. 
The subsequent decay of these counter currents will in return induce upon the beam 
an axial retarding force capable of dissipating most of the beam axial energy in a few 
nsec. In addition to Ohmic heating the plasma electrons, a significant portion of the 
beam axial energy lost in the above manner will be transformed into ion energies 
through the action of a current sustained radial electrostatic field. Possible applications 
to plasma heating and beam trapping in astron type machines are discussed. 

I. INTRODUCTION 

In recent years, the development of high voltage pulsed 
electron generators made it possible to produce intense 
relativistic electron beams with current up to 2 MA and 
electron energy up to 15 Me V. The beam pulse contains 
total energy up to many megaJoules and lasts from 50 to 
100 nsec. 

Besides the obvious problem of beam generation, the 
main concern during the early phase of the development 
was for the propagational properties of the beam inside a 
pre-ionized or beam-generated plasma. Theoretical re
sults1-1 on beam propagation have been in general agree
ment with the experiments.\)..16 

Recently, the beam programs have been diversified 
into various areas of thermonuclear fusion-oriented ap
plications. For example, the high current of the beam 
may be used for magnetic field shaping in confinement 
devices such as the astron on the one band, 17- 19 and the 
intense energy density of the beam may be used for 
plasma heating on the other. 

Confining our attention to the two areas of applica
tions outlined above, we find it to be of theoretical as well 
as practical interest to study the interaction of a hollow, 
cylindrical, and rotational relativistic electron beam with 
a magnetized background plasma. By a rotational beam, 
we mean that each beam electron, in addition to its 
propagation velocity, is gyrating about the beam axis 
under the influence of an axial applied magnetic field. 
This model can be realized by, for example, 

i. injecting an electron beam at nearly right a_ngles into 
a uniform magnetic field. 19 Each beam electron so in
jected will follow a helical orbit with short pitch dis
tances. As a result of the continuous injection and the 
inevitable beam velocity spread, the electrons will super
impose into a hollow rotational beam as our model 
describes, or 
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ii. passing a noruotational hollow electron beam 
through an axially symmetric cusp magnetic field. The 
beam wilJ thus gain a rotational velocity through the 
Jb, X B, force, where Jb, is the beam axial current density 
and B, is the radial cusp magnetic field. A detailed 
description of this method can be found elsewbere.20.21 

In . the astron experments, a primary step is to trap a 
rotallonal electron beam in the magnetic mirror configu
ration to form the E layer. Difficulty arises because the 
electrons do not easily get trapped as the simple adiabatic 
theory has predicted. A method that has been used to 
improve trapping efficiency is to surround the beam path 
with resistive rings.22 Nebenzahl13 has shown that the 
energy dissipated in the rings by the beam induced ring 
currents is at the cost of beam axial energy, while the 
rotational velocity of the beam remains unchanged. As a 
result, the beam may be slowed down considerably on its 
way to the magnetic mirror end, with an increased 
probability of being reflected back. 

However, this method would not work if there is a 
dense plasma present, since the beam can no longer 
interact with the external rings when shielded by a dense 
plasma. Under such conditions, it would be highly desir
able to have the plasma, a resistive medium itself, serve 
the purpose of the rings. In this paper, such a trapping 
scheme is studied. Assuming Q, » v,, Q; « ,,,, and a2 - a1 

» A, we will show that the beam currents (axial and 
angular) will be fully neutralized by counter flowing 
plasma currents whose subsequent decay can indeed 
produce an efficient retarding force on the beam. To 
parallel the resistive ring trapping method further, all the 
energy dissipated by the plasma counter currents is at the 
cost of the beam axial energy alone. 

As a consequence of the enormous beam axial energy 
release during its retardation stage, significant plasma 
heating will take place. This is perhaps a potentially more 
important aspect of the whole scheme, because not only 
the plasma electrons will be Ohmic heated by the counter 
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FIG. l. A hollow rotational relativistic electron beam propagating in 
a dense masnetized plasma. 

currents, but the ions will also be heated by a persistent 
space charge electric field required to sustain the angular 
counter current. It should be pointed out that in the 
heating process the plasma counter currents carry very 
little energy of their own. They essentially serve as 
"channels" through which the beam could strongly inter
act with the plasma. This is comparable to a heating 
mechanism proposed by Lovelace and Sudan24 in connec
tion with a nonrotational relativistic electron beam. In 
their proposal, the beam-induced plasma counter current 
also plays a similar role. However, there is a major 
difference in the way ions are heated. In Lovelace .and 
Sudan's case, ion heating is due to ion sound turbulence. 
In the present case, the ions are electrostatically heated. 

We will now tum to the theoretical aspects of the 
problem and look at some new complications introduced 
by the rotational motion of the beam. 

In most of the earlier treatments of electron beam and 
plasma interactions, the electron dynamics of the plasma 
have been the main concern, while ions were assumed to 
be stationary. The same treatment will not be adequate 
here for the following reason. We will soon show that the 
angular counter current, which flows perpendicular to the 
applied magnetic field, is carried by drifting electrons. 
Therefore, there exists a radial space charge electric field 
to provide the E x B electron drift velocity. Under this 
electric field, ions will no longer be stationary, therefore 
consideration of ion dynamics becomes essential. 

Furthermore, the formation of an angular counter 
current also depends crucially on the collisional effects of 
the plasma particles, since, in the absence of collisions, 
the orbit theory states that the Ex B drift velocities of 
ions and electrons are equal and in the same direction, 
and thus add up to zero net drift current. 

ln Sec. II, the model and mathematical formulation are 
presented. In Sec. III, under the assumptions ~. » v, and 
!2; « v;, analytic solutions are obtained through a series 
of expansions. In Sec. IV, counter currents and their 
decay mechanisms are discussed. In Sec. V, a strong axial 
retarding force on the beam is shown to result from the 
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decay of counter currents (the angular one in particular) . 
Its significance for the trapping of the beam into an 
astron type machine is considered. In Sec. VI, plasma 
heating and detailed energy transfer processes are dis
cussed. We show that the total energy is conserved. 

II. MODEL AND FORMULATION 

Our model as depicted in Fig. I consists of the 
following: Inside a uniformly magnetized plasma (B 
= Boe,), a hollow cylindrical relativistic electron beam, 
whose axis coincides with the z axis, is rotating rigidly 
(vb8 = rw) and propagating axially with a constant veloc
ity voe,. We assume (i) that the beam is semi-infinite and 
of uniform density; (ii) that each individual beam elec
tron is gyrating independently about the beam axis so 
that w ~ eBo/ (ymc), where y is the average relativistic 
factor of the beam electrons; (iii) that the plasma density 
is I012/ cm3 or more and much denser than the beam; and 
(iv) that the system is at a steady state in the frame for 
which the beam has no axjal velocity. 

The semi-infinite beam model is conveniently extenda
ble to a finite length one since the latter can be modeled 
by superimposing two semi-infinite beams of opposite 
charges. 

In setting up the model, we have virtually assumed that 
the beam motion will not be disturbed by its own fields 
or those due to the plasma. This assumption will prove to 
be self-consistent with we show a posteriori that the beam 
would be both charge and current neutralized. 

Our main effort is to find the responses of the plasma 
to beam penetration and their effects as produced back 
on the beam. Except for a few changes, the formulation 
presented here is similar to our previous paper. 8 We 
describe the plasma dynamics by the cold plasma two
fluid equations 

av, e ( I ) at + < v •• v > v. = - m E + c: v. x s - v. v,. (I) 

dV; e ( l ) at + ( V; • v) V1 = M E + c V; x B - /!, V;' (2) 

where a phenomenological momentum relaxation term is 
added to each equation, and m is the electron mass, M is 
the ion mass, 11, is the electron momentum transfer 
collision frequency, and 11, is the ion momentum transfer 
collision frequency. 

By virtue of assumption (iv), we can combine t and z 
into one variable by defining Z = z - Vo t , where IZ l is 
the distance from z to the beam front. 

Substituting a/az by a/az, and a/at by - vo3/3Z into 
Eqs. (1) and (2), linearizing and Fourier transforming the 
resulting equations, we obtain 

(-s + v,)8v.(k) = - (e/ m)8E(k) - n.sv. x e, (3) 

(- s + P;)8v,(k) = (e/ M)8E(k) + Q,8v1 x e,, (4) 

where fl, = eBo/ (mc), !21 = eBo/ (Mc), and we have de
fined s = ik, vo for simplicity. 

For later convenience, we introduce a new frame (see 
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FIG. 2. X space and k space. 

Fig. 2) defined bye., e1, e3 where 

e, = k/k, e3 = (l/k.1. )k )( e,, and e1 = e3 )( e,. 

In terms of these unit vectors, 

e, = e1(k.1./k) cos(a - 8) + e1(is/kvo) cos(a - 8) 

+ e3 sin(a - 8), 

e, = e,(k.1./k) sin(a - 8) + e1(is/ kvo) sin(a - 8) (5) 

- e3COS(a - 8), 

e, = · - e, (is/kvo) + e1 (k.1./k ). 

Transforming Eqs. (3) and (4) into the new frame, we 
then derive Ohm's law in k space. The result is 

8J(k) = 11oe{811,(k) - 811.(k)) = er· 8E(k), (6) 

where the conductivity tensor er is given in Appendix A. 

It is advantageous to use the Green's function method 
to treat the variable r, namely, we first obtain the 
responses of the plasma to a shell current of infinitesimal 
thickness expressed by 

Jb(x,r') = (- nbe/ 21Tr)S(- Z)8(r - r')(rwe, + voe,), (7) 

where 

S(x) = {~ for x > 0 
for x < 0 

is the step function, and 8{x) •is the Dirac delta function , 
then integrate the results over r' over the actual beam 
thickness. Henceforth, we will denote the Green's func
tions by writing them explicitly as functions of r' as in Eq. 
(7). 

Combining Ampere's, Faraday's, and Ohm's laws, we 
obtain the Green's function equation for the electric field 
in k space 

( k 2 + ~ - kk -
4~s er) • 8E(k,r' ) = ~s J b(k ,r'), 

c c c (8) 

where the shell current 

Jb( k,r') = J J b(x,r') exp(- ik • x)d3x 
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= kC; ~0

8) (-islo(k.1. r')e, + kJ. 110Jo(k.1. r ' )e2 

+ ikr'w./i(k.1. r')e3] 

serves as the source term, Jo and J, are Bessel functions of 
order zero and one, respectively, and 8 is an infinitesi
mally positive number. 

With er substituted for by its explicit expression, Eq. (8) 
becomes 

a • 8E{k, r' ) = k2 sll(s)Jb(k, r ' ), (9) 

where 

Ll(s) = 41T(s - v,)[(s - v.)2 + ~;][(s - v,)2 + m1 
and a is given in Appendix B. 

Inverting the matrix [a) yields the expression for the 
electric field 

£-E( ') k
2
sll(s) J (k ') 

u k,r = D(k.1. ,s) ic • b ,r , (10) 

where 

D(k.1. ,s) = det lal 

and 

[ic) = adjoint matrix of [a ). 

We are now able to calculate the magnetic field 
through Faraday's law 

8B{k,r') = (ikc/ s)e, X8E{k, r ' ) ( 11) 

and the plasma current density through Ohm's law 

With the help of Eq. (5), we obtain 8J in the cylindrical 
frame 

8J,(k, r') = 8J.(k,r' )(k.1./k) cos(a - 8) 

+ 8J2(k,r1 )(is/ k110) cos(a - 8) 

+ 8J3(k,r1
) sin(a - 0), 

8J,(k,r' ) = 8./i( k ,r' )(k.1./k) sin(a ,_ O) 

+ 8J2(k ,r' )(is/ k110) sin (a - 8) 

- 8J3(k,r 1
) cos(a - 0), 

8J,(k ,r' ) = - 8./i(k ,r' )(is/kvo) + 8J2( k ,r' )(k.1./k ), 

and similar expressions for the electric and magnetic 
fields. 

We now obtain the x space quantities by perform
ing and inverse Fourier transform of their corresponding 
k space expressions. In doing so, we note that the a 
integrations are facilated by the standard integrals 
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2, { I } {J0(k.lr)} Jo do: exp[ik.1 lr cos(a - B)] c~s(a - B) = 21T iJ
1
(k.) 

sm(a - 0) 0 

thus 

818 (x,r' ) 

81,(x,r') 

8£,(x,r') 
8E,(x,r') 

8£,(x,r') 

= inbe
2 

(
00 

k .idki f_ ;"'dsA(s) exp(sZ/v0) 

(2'1T) }o -;,,, D(k.i ,s) 

m(k.i 's, r' )J., (k.i r) 
W, (k.i, s, r' )lo(k.i r) 

X,(k.i , s, r' )Ji (k.i r) 
x,(k.1, s, r')J., (k.i r) 
X,(k.i, s, r' )Jo(k.i r) 

(13a) 

8B,(x,r') = -(c/vo)8E,(x,r'), (l3b) 

8B,(x,r') = inbe
2 

("' k .idk.i J_;"' A(s) exp(sZ/vo) 
(2'1T) }o -1<0 (s - 8)D(k.i, s) 

x Y .. (k1 , s, r ')J0(k1r), (13c) 

As expected, under this condition, the ratio of the Hall 
component of the ion mobility tensor to that of the 
electrons (see Appendix D) is much less than one 

where the functions m through Y, are given in Appendix 
C. All of them are of the form of a function of k.i and s Therefore, a radial electric field will drive a net electron 
times a Bessel function of argument ki r'. drift current 81, in the plasma. 

Thus far, the solutions are obtained exactly but in an 
integral form are not readily subject to analytic analysis. 
In the next section, we shall seek analytic solutions for 
restricted but realistic parameter regimes. 

Ill. NONOSCILLA TORY SOLUTIONS 

The s integrations of Eqs. (13) will now be carried out 
by the method of contour integration. The essential use 
we are going to make of this method is that by locating 
only a few pertinent poles, we can extract from Eqs. (13) 
all the desired information despite the complexity of their 
forms. 

We inten9 to reduce the integrands to a solvable form 
by order of magnitude considerations of the parameters 
therein, such as 11, wp, and Q, etc. To this end, it is 
necessary to consider the following: 

i. Our primary interest lies in the case in which a 
substantial drift angular.counter current will be induced 
by the beam because, firstly, the radial electric field 
associated with this current can lead to significant heat
ing of ions (treated in detail later). Secondly, with our 
rigid beam assumption and linearization of the equations 
of motion, we have practically neglected the effects of the 
beam self-magnetic field on the motion of the beam or 
plasma particles. This would be self-consistent if the 
beam is fully current neutralized. 

It was argued in Sec. I that the formation of a drift 
angular counter current is highly dependent on the 
collisional effects. From the same argument, we infer a 
condition under which the existence of such a current is 
possible, namely, 

Q, » 11, , Q; « II;. (14) 

Physically, the condition implies that the ions are un
magnetized. 

816 Phys. Fluids, Vol. 17, No. 4, April 1974 

ii. In distinction to other phenomena involved, the 
counter plasma currents and related quantities are non
oscillatory in nature, and have a decay time longer than 
11,- 1 because of the inductive effect. These two properties 
enable us to narrow our effort to the determination of 
poles (denoted by subscript)) satisfying 0 < Sj < 11 •. This 
way we can leave the oscillatory poles alone, which, in 
general, have imaginary parts much greater than 11 •• 

iii. All the integrands in Eqs. (13) are proportional to 
the product of k.i and two Bessel functions (of order 0 or 
1) with argument~ k.i a, where a is the average radius of 
the beam. A close look at their behavior shows that the 
dominant contribution to the integrals would be in the 
neighborhood of kl. ~a-•, provided the other factors of 
the integrands are relatively smooth over this range of kJ.. 
When the poles are determined, it can be shown a 
posteriori that this is indeed the case. Since a ~ c/ w 
~ c/Q., we thus have k.i c ?: Q, for the dominant range 
of ki. 

iv. Finally, we add the assumption Wp » 11., where 

w; = 4'1Tfl-Oe2/ m. 

This assumption merely states that the collective plasma 
behavior is not critically damped. 

To sum up, we have grouped all the parameters 
according to their order of magnitude as follows: 

Wp, g,, k1 llo , k J. C » II, , II;, Sj , II; » g;. (15) 

It should be noted that, in reaching these relations, we 
have made only one special assumption, the inequalities 
in (14). 

With the help of (15), we can now expand the inte
grands and thereby neglect all but the lowest order terms. 
The lengthy expansions will not be given here. However, 
we point out one essential detail about the way the 
approximation was carried out. Since no assumptions 
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were made about the relationship of parameters belong
ing to the same group, we have seen to it that the terms 
to be dropped were unambiguously of next order com
pared to any of the remaining ones. For example, when 
two terms, such as Q, Q; and v, P;, kJ.. c and w,, etc., were 
not comparable according to (15), they were both re
tained. 

kJ.. c may take smaller values will apparently not nullify 
our results. 

With all higher order terms neglected, we are· then able 
to determine the poles, carry out the contour integration 
over s (see Fig. 3), and obtain the solutions regarding 
current neutralization. It should be noted that the solutions 
so obtained are only the nonoscillatory part of the total 
solutions, although, for simplicity, we shall not mark them 
explicitly. 

Since kJ.. c belongs to the largest parameter group for 
reasons given earlier, the fact that kJ.. is a variable and 

SJ,(x,r') = 

nbe S(-Z) (rxidkJ..J..(kJ..r)[kJ..r'w.li(~\'') ± (sj - si)(s; - v;) expfoZ/vo) 
27T )o 1 + kJ.. A j-i (s1 - s2)(sj - S3) 

_kt >,•Q,Jo(kJ.. r) ~ (sj - s1)fo - v,)fo - P;) ( Z/ >] 
(1 + klA.2)2 tf't (s; - s1)(s1- s2)fo - S3) exp si Vo ' (16a) 

SE,(x,r') = %~, SJ,(x,r'), (16c) 
Wp 

SE,(x,r') = 2nbevoS(-Z) (rxidkJ.Jo(kJ..r) {kJ..v,Jo(kJ..r') ( k1A.2v,Z ) 
w; )o (l + kV.2)2 exp (1 + kl A2)vo 

_ klA.2Q,[r'w.li(kJ.. r') - kJ.A.2Q,Jo(kJ.. r ')] ~ (s1 ·_ s1)s;(s1 - v;)s1 - v,) 
(I +kl A.2)2va tft (s; - s1)fo - si)(s; - s3) 

x exp(s1 Z/vo)} (16d) 

SE,(x,r') = -(vo/c)SB,(x,r') 

= -2nbe S{-Z) (rxidk J.(k ){kJ. r'wJ..(kJ.. r') 
w; )o ! 

1 J.. ' 1 + kl "A.2 

(16e) 

( , -2nbe irxi SB, x,r) = --S(-Z) dkJ..Jo(kJ..r) 
c 0 

(16!) 

where A = c/wp is the plasma skin depth, and 

s, = k1A.2v,/(l + kV • .2), s J = (I+ k1A.2)v, +kl A.iv.± {[(l + kV,2)v; - klA.2v,]2 - 4kn.2(1 + k1 A.2)Q,Q;}'12 
2. 2(1 + kl A.2) 

817 Phys. Fluids, Vol. 17, No. 4, April 1974 K. R. Chu and N. Rostoker 817 



One has to turn to numerical methods to solve Eqs. 
(16) in their present forms. However, these integrals can 
be carried out approximately for realistic parameter 
regimes. A generally known condition for substantial 
current neutralization is a » X. This condition is easily 
satisfied for our problem, since for a hollow beam of 
reasonable physical size, we have a ~ 3 cm, and by 
assumption, no ~ !012/cm3 or X ::::; 0.5 cm. We recall that 
the dominant value of k l. centers at k.1. ~ a··•, thus for all 
practical purposes, kl A.2 ~ X2/a2 « I . As a result, the last 
term in each of the integrands in Eqs. ( 16) only gives 
contributions of order (X2/a2

) or higher compared to the 
other terms. T o a first approximation, we shall neglect 
those higher-order terms. 

In order to simplify the expressions for s2 and SJ, we 
assume 

(17) 

which should generally hold in the light of the relation 
a» A.. 

With this assumption, we can expand the square roots 
in s2 and s3 to obtain 

where 

r> and'< are the larger and smaller of rand r', respectively, 
Ii and Kr are modified Bessel functions, and as an 
approximation, we have replaced k.1. in the exponential of 
Eq. (19) by its average value a- 1

• 

Owing to an attached condition set forth earlier for this 
last approximation, Eq. (20a) is valid for IZ/l.1. I ::::; 1 only. 
For IZ/'1. I > 1, the exponential factor will change the 
behavior of the integrand such that its dominant value is 
no longer in the neighborhood of k l. ~ a- •. In other 
words, Eq. {20a) (and equations derived later in the same 
manner) is valid until 0)9 decays to about half of its full 
value. It will be apparent later that this is in fact the same 
limitation resulting from our constant velocity beam model, 
because long before the plasma currents decay away, the 
beam axial velocity will be so reduced that the model breaks 
down. Our main concern, however, will be the front portion 
of the beam where all results are valid. 

Similarly, we obtain from the rest of Eqs. ( 16) 

oJ,(x,r') 

(18) ~~;~gS(-Z)exp (~)10('{)Ko(~) . {20b) 

where vi== ve(l + nenifvevi) is the effective collision fre
quency in the perpendicular direction . 

Note that all the poles (s, through s3) are consistent 
with the condition 0 < s, < v. set forth before. 

Substituting Eq. (18) into Eq. (l6a) gives 

oJ,(x,r') = 

n&;:'ws(-2) la"" k l. dk.1. .J..(kJ.r)J1(k1r') 

{ 
1 ( kl x2 

v 1.z ) 
x 1 + kl X2 exp --( l_+_k_l....,X2,.,....)11_0 __ 

_ kl l.2 Q,Q, exp [ ( 1 _ kl A.
2
Q.Sl ) v1ZJ} 

(1 + klA.2 )2zii (1 + k1A.2)vf llo • 

( 19) 

The second term, which has a decay time ~ v;', is due 
to the ion relaxation effect. We shall neglect this term 

oE,(x,r') = (411S"l,/w;)oJ9(x,r') , (20c) 

oE,(x,r') ~ ~2~~~11:\~; S(-Z) exp( f. )1o(~>)Ko(~>), 
(20d) 

oE,(x,r') = - (110/c)oB,(x,r') 

~ ~~(:2w:
2 

~21) S(-Z) exp ( ~ )r' J, ( ~) K1 (~>), 
(20e) 

oB,(x,r') ~ 2n~ew S(- Z) 

for r < r ' 

forr>r' , 

(20f) 
because its magnitude is of order (1.2/a2

) compared with where 
the first term by virtue of (17). 

Using standard integral tables,25 from Eq. (19) we 
obtain 

, nb ew ( Z ) , ( '< ) ( r> ) 0J9(x ,r) ~ 
211

>..2 S(-Z) exp r;_ r Ii ~ Ki ~ , 

(20a) 
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In the remaining part of the paper, Eqs. (20) will be 
used to look into the physical aspects of the problem. 

IV. CURRENT NEUTRALIZATION 

The beam-induced plasma current SJ, may be calcu
lated from its Green's function by an integration over the 
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beam cross section. Assuming the hollow beam has inner 
radius a, and outer radius al, we then obtain from Eq. 
(20a) 

SJ,(x) = J.."' SJ,(x,r')2'1Tr' dr' 

= nberw S(-Z) exp(~.) 

(21) 

where the integral was solved exactly by employing the 
following relations: 

J x•+I {L(x) } dx = x•+• { I.+1(x) } 
K.(x) - K.+1 (x) 

I.(x)K.+i(x) + I.+i(x)K.(x) = l/x. 

Since r./>., a,/>., a1/>. » I, the asymptotic expressions 
for modified Bessel functions may be used: 

I.(x) - (2'1TXt'12e" 
(22) 

K.(x) - ('1T/2x)l12 e-" 

thus 

6J,(Z < 0) ~ nberw exp(~) 

[ l(ay
12 

(a r) 1 - 2 7 exp i ~ 

1 (a y 1
2 

( r a ) J - 2 7 exp ~ 2 
, for a1 < r < ai, 

where, as we shall do henceforth, the factor S(-Z) has 
been replaced by "'Z < O" in the parenthesis. 

IU,(Z < 0) = (noec/Bo)f>E,(Z < 0). 

Thus f>J, is explicitly shown to be an E x B drift current 
(Fig. 4). [Drift type counter currents were also found by 
Lee and Sudan using a different geometry. SJ 

~n contrast to the axial counter current which is always 
dnven by an axial electric field, the angular counter 
can be driven by either a radial electric field through 
SJ, = -noeµ,,,SE,, or by an azimuthal electric field 
through f>J, = -noeµ.,,6E,, whereµ_,, andµ..,, are, respec
tively, the Hall and diagonal component of the electron 
mobility tensor as de~ned in Appendix D. In our case, 
n. » v. or µ,,, » µ..,,, it is thus clear that the former 
mechanism has taken place because it requires a smaller 
driving electric field. 

f>E, is produced by a net space charge p given by 
Poisson's equation. For a, < r < ai, 

p(_z < 0) = Pb + f>p(_Z < 0) 

-( ~ r Io ( f y Kl (I) l {24) 

where Pb = -noe is the beam charge density. 

Since n, ~ yw and aw ~ c, Q, is related to a by 

n. ~ye/a. {25) 

Eliminating wand n. in Eq. (24) by means of Eq. {25) 
and neglecting the modified Bessel functions, we obtain 

Thus, as a result of its rotation, the beam is actually 
slightly overneutralized. 

Assuming ai - a, » ~. we find that the angular beam 
current is almost totally neutralized by SJ, except within The calculation for other quantities from their Green's 
the skin depth>. from both boundary surfaces. functions is the same as for f>J,. From Eq. (20b), we 

obtain 
Outside the beam, we obtain 

nbew ( Z) f>J,(Z < 0) = Texp T;_ 

By use of Eqs. (22), these currents can be shown to 
drop sharply and exponentially away from the beam 
boundaries with a decay distance>.. 

For the radial electric field, Eq. (16c) yields 

6E,(Z < O) = (4'1TQ,/w;)6J,(Z < O) 

which then gives 
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8Er 

FIG. 4. 8£, x Bo drift mo
tion of plasma electrons. 

. . . . . 
8Er 

~ [ a2 Ii (I) Ko ( X) - a, Ii ( X) Ko ( X) J r > a2 

l - 4 ( 7 r2 exp (a, ; r) -4 ( 7 ri exp ( r ~ a2), 

a1 < r < a2 

~ (a1 lo ( X) K1 ( X) - ailo ( X) K1 (I) ]. r < a, · 
(26) 

The axial beam current is also shown to be neutralized 
as one would expect from earlier works on nonrotational 
beams. In fact, the rotational motion of the beam only 
affects the axial current neutralization through second
order terms which are shown in Eq. (16b), but later 
neglected to a first approximation. 

The two decay distances: 

li = (a2 + i\2)vo/>h\ = (a2 + i\2)vofi\2(1 + n.nJv.v i )v.. for oJo 

and 

t1 = (a2 + 'A2)vo/>..2v,, for 13}, 

can be interpreted as follows. The first term in the 
denominator of h apparently originates from the colli
sional damping of electron current, as does the whole 
expreesion for 10• The second term in the denominator of 
I,_ is due to a different decay mechanism special to the 
angular counter current. In Eq. (24) we have shown the 
existence of a net space charge necessary to sustain 8J1 . 

This space charge, however, is subject to neutralization 
by radial flow of the plasma particles. Because of their 
small collision to cyclotron frequency ratio, the plasma 
electrons are mainly drifting angularly rather than flow
ing radially under the influence of 8 E,. As a result, their 
charge neutralizing effect, expressed by the first term in 
the denominator of Ii. , is limited although by no means 
negligible for the time scale under consideration. On the 
other hand, the ions, little affected by the magnetic field, 
are obstructed only by collisions. Their charge neutraliz
ing effect may therefore be much greater than that of the 
electrons despite their larger inertia. To illustrate this 
point quantitatively, let us compare the diagonal compo
nents of the mobility tensor for the two species (see 
Appendix D). 
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This is precisely the ratio of the two terms in the 
denominator of /J. . So, clearly, it is the ion radial flow that 
accounts for the second term. We also note that the 
magnitude of this term could considerably exceed that of 
the first term within our assumptions. 

The gradual space charge neutralization caused by the 
radial flow of the plasma particles will be accompanied 
by the slowing down of the electron velocity. hence the 
decay of 8J8 • 

The factor (a2 + A.2)/A.2 in h and fi1 is attributable to the 
strong inductive property of the system, namely, when
ever a current changes its magnitude, a proper electric 
field will be induced to accelerate the plasma particles in 
such a way as to counter the change. For our present 
case, Eqs. (20b,d) and (20a,e) give 

f 8£, (Z < O~ = 41ra
2
vo ~ f 8J, (Z < 0~ (

2
?) 

l§E, (Z < o)J c2 az 1§1, (z < o)J 

Here, 13£, and 8£, are explicitly shown to be propor
tional to the decay of 8J, and 8J,, respectively. It is these 
inductive rate fields that give rise to the lengthening 
factor (a2 + >..2)/A.2 in /J. and 11. 

In addition to 8£,, the decay of 8J, also induces a 
radial magnetic field 8B,. From Eqs. (20a,e), 

8B,(Z < O) = (-41ra2/c)(a/az)8J,(Z < O). (28) 

It will be shown, in the next two sections, that the 
perturbed fields in Eqs. (23), (27), and (28) provide the 
essential mechanisms for beam-plasma interactions. 

From Eq. (20f), we obtain 

8B,(Z < O) = w"},,,B0/yc2 

exp (~)Ko ( X) [ ailz (I)- aU2 ( X) ]. for r > a2 

-~(a~ - r
2
{1 - exp(~) J 

+exp (~)1o(f)(a?K2 (x) - r
2K2(f) J 

+exp(~)Ko(f) [r
2

12 ( f ) - aU2( I)], 
for a1 < r < a2 

- ~(a~ - af) [I - exp ( ~) J 
+exp(~ lo(x) [a~K2 ( x )-al Ki( x) J 

for r < a1, 

where 

The total axial magnetic field is 

B,(Z < 0) = Bo+ 8B,(Z < O) 
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_(Bo{ l - 2~2.(ai - r2)[1 - exp (Z/h )]}a1 < r < a2 

- Bo{l - 2~;2 (ai - anfl - exp (Z/ /.L )J}r < a1 . 

(29) 

As shown in Eq. (29), B, gradually decays from Bo to 
zero and possibly to negative values as Z becomes more 
and more negative. We obtain therefrom the condition 
for axial magnetic field reversal 

If nb ~ 1011/cm3
, this condition can easily be s atisfied. 

V. RETARDING FORCES ON THE BEAM- BEAM 
TRAPPING 

Now that the . beam-induced. currents and fields are 
known, we shall look into the effects of the induced fields 
on the beam itself, and show 

i. that the beam electrons feel no net angular force, 
hence their angular momentum remains constant, and 

ii. that the decay of 81, and SJ, each results in an axial 
retarding force on the beam. 

The force on one beam electron due to the beam
induced electromagnetic fields is 

(30) 

where 

vb= rw e, +voe, . 

To prove (i), we simply take the () component of Eq. 
(30) and recall Eq. (13b), thus 

F 0 = -e1{SE,+ (vo/c)SB,] = 0. 

The result is obvious in the beam frame in which the 
beam electron has only an angular velocity, hence feels 
no angular magnetic force. The angular electrostatic 
force in this frame also vanishes since the magnetic flux 
through any beam cross section is a constant, and no 5 
E~ will be induced. 

With SE, and SB, calculated from Eqs. (23) and (28), 
respectively, Eq. (30) then yields the explicit expression 
for F,. 

F, = l fo + F,.L , (3la) 
where 
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FZ.L = -(e/c)rwSB, 

(3 lc) 

and the symbols "II" and " l." have been used to 
distinguish quantities associated with {JJ, and SJ,, respec
tively. 

As shown in Eq. (27), when fJJ, decays, SE, will be 
induced to inhibit the decay. For the oppositely moving 
beam electrons, however, SE, causes the retarding elec
tric force F,g as shown in Eq. (31 b ). 

F, .L is a magnetic force due to oB,. That the decay of 
SJ, would generate SB, is not as apparent as that it would 
generate SE,. It can be conveniently viewed the following 
way. Near the beam front where the current is almost 
fully neutralized, the magnetic field is essentially the 
applied field Boe,. However, the spatial decay of SJ, leads 
to the gradual emergence of Jb6 .away from the beam 
front. Because of its diamagnetic nature, this net unneu
tralized beam angular current has the effect of pushing 
the originally axial magnetic field lines out of the beam 
and thereby gives them a radial component (see Fig. 5). 

Both F,11 and F,.l point to the opposite direction of 
beam axial velocity, hence statement (ii) .is verified. 

The retarding force F, has some favorable properties 
for trapping of electron beam between magnetic mirrors. 
For example, it is produced locally by the beam itself, 
thus free from the shielding effect of the plasma, a 
problem often arising when the retarding fields originate 
externally. For the usual experimental parameters, F, can 
reach a magnitude capable of slowing down the beam 
considerably in less than a meter. Furthermore, the work 
done by F,, instead of being dissipated externally as in the 
case of resistive ring trapping, is converted into the 
plasma internal energy. In the next section we shall show 
that this last advantage proves to be a significant heating 
mechanism for the plasma. 

As a numerical example, we apply the results to the 
Cornell astron experiment.19 At injection into a magnetic 
mirror, a relativistic electron beam (y = 2) of 60-nsec 
duration is made to assume a helical orbit by an applied 
magnetic field (200 G). The pitch distance (6 cm) is only 
slightly larger than the beam diameter, therefore, the 
over-all beam shape and its motion roughly fi t our hollow 
rotational beam model. 

Granted full counter currents are induced, their retard
ing effect on the beam can be conveniently measured by 
a parameter f defined as the fractional beam axial energy 
loss per unit length. The average axial energy per beam 
electron is (y - Y.1. )mc2

, where 

y = (l/mc)y m2c2 + p"/,, +pl, , (32a) 

and 

Y.L = (l/mc)ym2 c2 + p'f,, . (32b) 
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Thus, 

f = F,/(y - yi)mc2
• (33) 

From Eqs. (31) pnd (33), we obtain 

(34) 

where, for clarity, we have neglected the skin depth 
effects represented by the modified Bessel function terms. 

The known parameters are: a ~ 9 cm, vo ~ 3 
x 109 cm/sec, Sle ""yw ;:::; 3 x 109 rad/sec, Sl; ::::: 105 rad/ 
sec (note aw » v0). Thus, on the right-hand side of Eq. 
(34), the first term, Which Originates from the QJZ decay, 
is negligible compared with the second term, which orig
inates from the 6J0 decay. 

The beam and plasma densities are approximately: 

nb ~ l011/cm3
, no~ 5 X l012/(cm)3

, 

so w, ~ 1.4 X 1011 rad/sec, "A ~ 0.23 cm, '1. ~ 480 m, 
and exp(Z/'1_) ~ I. Accurate values of 11, and P; are not 
available for lack of knowledge of plasma temperature. 
Let us for the moment assume 11, ~ 108/sec and 111 

~ 5 x 106/sec so that the condition in Eq. (14) is satisfied 
and Eq. (34) is applicable. Sub&tituting these values into 
Eq. (34) gives f ~ 0.01/cm. 

As this example illustrates, in a distance of 50 cm, 
about half of the beam axial energy will be dissipated 
away by F,. 

A comment is in order here. Equation (34) is based on 
the assumption of constant beam current. If the beam 
current decays, the result would be a partial cancellation of 
the induced fields and therefore a reduction of Ft- Colli
sional decay of the beam current will be too slow to be 
important. However, beam electron loss during its propaga
tion could be a significant cause of beam current decay and 
hence reduce the effectiveness of the trapping mechanism in 
our discussion. Such consideration leads us to emphasize 
the SleSlJvev1 term in vJ. of Eq. (34). Since this term 
originates from an efficient decay mechanism (neutrali
zation of 6Er by the ions) unique to the drift angular 
counter current, it can be adjusted so as to compensate 
for the negative effect of beam current decay. In reality, 
when the beam current decay becomes nonnegligible, the 
contribution from this term may very well be the decid
ing factor for efficient beam retardation. 

In the Cornell astron experiment, a neutral back
ground gas of several hundred microns had to be used for 
sufficiently rapid plasma generation. At this pressure 11, 

was probably comparable to or even much greater than 
n., thus only an insignificant part of the observed angular 
counter current {80% of the beam current was neutral
ized26) could be of the drift type, while most part of it was 
of the resistive type (i e., 818 = ao £ 8) • Therefore, the 
relatively low trapping efficiency (1-10%) as observed in 
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lheir experiment may be attributable to the absence of 
the drift current decay mechanism described here. If this 
was indeed the case, better trapping efficiency should be 
obtainable by preionizing the plasma to the conditions, 
Eq. (14), suitable for drift current induction. 

VI. ENERGY TRANSFER PROCESSES-PLASMA 
HEATING 

We shall now look into the various mechanisms 
through which the beam loses its axial energy, and 
show that the total energy is conserved. For clarity, the 
skin depth effects, which are of secondary importance in 
the discussions to follow, will again be neglected. All the 
expressions to be derived in this section apply to the 
region occupied by the beam. 

The loss rate for beam axial energy density, denoted by 
Pb, can be obtained from Eqs. (3 la,b,c) 

+ r 2w2 v, exp (~)]. {35) 

The axial plasma current &/z driven by OEz is producing 
Ohmic heat at the rate 

(36) 

where 7J = mv./ (no e2
) is the scalar res1st1v1ty of the 

plasma for current flowing parallel to the magnetic field. 

Apart from the exponential factor, P1r- is identical to 
the first term of Eq. (35). We shall show later that the 
difference goes into the magnetic field associated with the 
gradually emerging net axial current. 

In order to account for the second term of Eq. {35), it 
is necessary to calculate ov. and ov; separately. These two 
quantities can be formally obtained from the basic equa
tions in the same manner as the other quantities. Alter
natively, the mobility tensors, as shown in Appendix D, 
will yield ov, and ov; to our order of approximation. 
Insofar as SE is known, the alternative method will be 
used. Thus, 

FIG. 5. Magnetic field lines are pushed oul of the beam as the un
neutralized diamagnetic beam angular current increases spatially away from 
the beam front. 
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Sv., = /J.m SE, + /Lrr9 S E1 

~ [nbrwf2ia2/nov;(a2 + .\.2)]exp(Z/ l.1. ), 

Sv,, = µ.,,, lS E, + µ.,,, lS E, 

~ (nbrw/n0) exp(Z/ /J. ), 

Sv;, = µ;,,SE, + µ.,,,SE, 

~ (nbrwf2;/nov1)exp(Z/h), 

Svi9 ~ 0. 

(37a) 

{37b) 

{37c) 

(37d) 

It should be pointed out that o Ver and 6 V ir• although 
approximately equal, are of entirely different origins. SV., 
is the EX B drift velocity, but SV;, is driven by SE,. 

From Eqs. (37), we obtain the power dissipated 
through the cross field current of plasma electrons 

Pi.. = -noe(Sv,,SE, + Sv,,SE,) 

mni r2 w2 a2 v. ( 22) a2 
2 

= no(a2 + .\.2) exp T; = 02 + A.2 riSJ, (38) 

and the power dissipated through the radial ion current. 
(Note that P.1.. (or Pii.) a: v,, but P.1.; a: v; 1

• The reason is 
that P.1.. (or P .... ) results from a nearly constant current SJ, 
(or SJ,) in the plasma, while P.1.1 results from a nearly 
constant electric field, SE,, in the plasma.) 

PJ..1 = noeSv1,SE,, ~ (mnfr2w2Q,Q/ nov1)exp(2Z/ h), 

= (mrt,rt;/n0 e2v1)SJ,2. (39) 

Again, apart from the exponential factor and an order 
(A.2/ a2) term, the sum of PJ..• and PJ..; is precisely the second 
term of Eq. (35). As before, the difference due to the 
exponential factors becomes magnetic field energy. 

PJ..• apparently represents the Ohmic power generated 
by SJ,, while P.1.1, which feeds energy to the ions, involves 
the following process. To begin with, ions are accelerated 
radially by SE, with a tendency to neutralize 'the space 
charge, to which the magnitude of both SE, and SJ, are 
proportional. As SJ, thus decays, lSE8 and SB, will be 
induced, Eqs. (27) and (28). SE, causes the electrons to 
drift radially against oE, {at the expense of beam axial 
energy) so as to oppose the space charge neutralization 
and maintain the strength of SE,. Meanwhile, oB, will 
produce a retarding forc.e on the beam, Eq. {3 lc), and 
thereby extract its energy. (The energy gained here 
becomes the work done in the last process.) The over-all 
result is that ions continuously gain energy from the 
electric field energy, oE;/877, which is simultaneously 
replenished with the beam axial energy through the 
actions of SE, and SB,. 

To show the conservation of energy, we denote the 
fraction of Pb that goes into beam self-magnetic field 
energy by P,,,. From Eqs. (35), (36), (38), and (39), we 
obtain 
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.-.... 2TTa2 d 1112 
~ C2 dt I > 

where J, = (Jb8 + SJ,)e, + (lb: + SJ,)e, is the combined 
beam and plasma current. 

Initially, J, ~ 0, so a larger fraction of Pb goes into 
plasma heat than into magnetic field energy. As J, grows, 
the reverse gradually becomes true. It may be deduced 
that, after oJ finally decays away, the total heat going 
into the plasma roughly equals the unneutralized self
magnetic field energy of the beam. As noted in Sec. III, 
however, all our final expressions are valid only for the 
initial stage where J, S i'6. It can be shown that oJ 
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FIG. 6. (a) Plot of Eq. (40) for different parameters. Solid line: 
a = 3 cm. Dashed line: a = 10 cm. (b) Plot of deuterium ion heating 
time vs the average kinetic energy it would reach. Note that t1 is a 
decreasing function of ( W,) . (c) Plot of beam electron axial energy vs 
total energy for different angular to axial velocity ratios. 
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decays hyperbolically (i.e., ~ z-1) . instead of exponen
tially, at IZI » Ii. fi1• As a result, the total beam energy 
loss is infinite, although still equally partitioned between 
thermal and magnetic field energy. This unphysical situ
ation is apparently created by the inapplicability of the 
constant velocity beam model at the later stages where 
the beam should have long been exhausted of its axial 
energy. 

Janes et al.21 proposed a device called HIPAC in which 
ions may be accelerated in a strong electrostatic potential 
well created by an electron cloud. At Cornell University, 
the availability of intense relativistic electron beams has 
led to the study of similar heating methods for plasma 
ions. The ion heating mechanism in this discussion is elec
trostatic in nature but features a relatively smaller electric 
field 8 E, capable of self-sustaining. (Because SE, is asso
ciated with SJ,, Eq. (22b), its lifetime is considerably 
l~ngthened by the inductive effect.] 

If SJ, in Eq. (23) is approximated by n"ec. SE, then 
takes the simple form 

Eliminating Bo in favor of y and a by use of Eq. (25), 
we obtain 

Substituting into Eq. (40) the parameters previously 
used for the Cornell astron experiment, we obtain SE, 
~ 2.2 kV/cm. 

The ion mean free path, d,, at the assumed pressure (0.5 
Torr) is approximately 0.5 cm, so its average kinetic 
energy, ( Wi), is ( Wi) = (iMSvl).. ~ I.I keV. 

Ion heating time t; is approximately 

t1 ""' 2Md, e8E, ""' . . ,..._ [ ·/ JI ,..._ { 30 nsec, for deuterium 
80 nsec, for mtrogen 

For fully ionized plasmas, d, increases sharply with the 
ion energy. Assume d;;:::: a2 - a1, a rough estimate of 
( W; ) and t; is 

(W) ~ Ha2 - a1)8E, 

[
2M(a2 - a1) ] ' ( A )' 

t; ~ eBE, ~ 32(a2 - a1) ( W;) nsec. 

(41) 

In Eq. (41), a2 and a1 are in cm, ( Wi) in keV, and A is the 
ion mass number. 

Since BE, ex y/a, the ions can attain considerably 
higher energies if ultrarelativistic electron beams are 
used. For example, for y ~ I 0, a ~ 3 cm, no ~ 20nb, 
and a2 - a, = 2 cm 

( W;) ~ 80 keV 

t; ~ 7 nsec, for deuterium . 

Plots of 8Er and !1 are shown in Figs. 6a and b. It is 
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seen that the heating of ions can be accomplished on an 
extremely short time scale- an important advantage con
sidering the short duration of the beam. 

The beam electron axial energy is shown in Fig. 6c as 
a function of its total energy and angular to axial velocity 
ratio. 

It should be noted that if the ion thermalization 
process is too slow, a high ion loss rate may result from 
their being accelerated toward the wall by 8£,. In appli
cations to the astron machine, the main objective is to 
achieve beam trapping. Ion loss during the trapping stage 
should not be a serious problem. A compensating advan
tage, on the other hand, is gained by beam electrons, for 
which 8 E, provides an electrostatic potential well, hence 
is expected to produce stabilizing etf ects. 

For heating oriented experiments, directed ion velocity 
may be deflected by a strong applied magnetic field as 
well as by collisions. For example, the gyro-radius of a 
50-keV deuterium ion in a 10-kG field is about 4.6 cm, 
therefore accelerated ions will mostly turn around before 
hitting the wall. 

An experimental verification of the theory can be 
performed with only minor modifications of the existing 
intense relativistic electron beam facilities. 

A crude design is shown in Figs. 7a and b to relate the 
theory to practical laboratory parameters. The first stage 
is to produce a rotational beam From a nonrotational one 
by passing it through a cusp magnetic field. The second 
stage is intended specifically for electrostatic heating of 
ions by making use of the drift angular counter current. 
By the time the beam reaches the right-hand magnetic 
mirror end, it would have lost most of its axial energy to 
the plasma. Reflection from this mirror end is desirable 
but not necessary. for heating purposes. 

For the parameters shown in Fig. 7a and initially 
assuming r;;:::: T. ~ I eV, the conditions in Eq. (14) are 
then satisfied: 

Q,(~ I.Ix 1011 ) » J1,(;.S I.I x 1010), 

Q;( ~ 2.9 x 107
) « J11( ~ 1.8 x 108 ) , for deuterium, 

where J1, and 111 are based on Coulomb collisions. Conse
quently, the results derived in this section are applicable 
which indicate that in 8.5 nsec, an annular hot ion region 
with an average energy of 60 keV will be created in the 
plasma. This hot ion region then quickly heats the rest of 
the plasma. The total energy absorbed by ions during this 
period is 

no( Wi ) ~ l J/ cm3 

and the available beam energy, calculated from Eqs. 
(32a,b). is 

The accurate values of v, and v, are hard to estimate, 
nevertheless, they play a significant role. To allow this 
uncertainty, the plasma density (or the mixture of plasma 
and neutrals) should be controllable so that the condition 
( 14) could be reached. The same is true for astron type 
experiments for which beam trapping is emphasized. 
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BEAM 
INJECTION 

(a) 

FIG. 7. (a) An experimental design for plasma heating by an intense relativistic electron beam (I.= 500 k.A, y = 12). (b) Cross-section view. 
Fig. 7(a). Upper: some plasma particle trajectories. Lower: radial distribution of ion kinetic energies. 

VII. DISCUSSION 

We have presented a theory which starts with a cold 
plasma and ends up with a plasma many keV hot. 
Needless to say, our lowest order theoretical treatment 
will break down at some point in the time development. 
We have assumed constant collision frequencies and, by 
the use of linearized cold plasma fluid equations, we have 
also neglected the thermal effect, finite ion gyro-radius 
effect, and the effect of the perturbed magnetic field, etc. 
Simple as it is, this picture is nevertheless fully self 
consistent during the initial stage of the interaction when 
the plasma is still cold and the beam is substantially 
charge and current neutralized. 

The question is then: "to what extent will the beam 
and plasma interact the way as predicted before any of the 
unaccounted-for phenomena set in to destroy the subsequent 
processes?" To answer this question quantitatively, one has 
to go through considerably more complicated work. There
fore, for the moment, we will content ourselves with some 
qualitative considerations. 

In our description, the plasma particles are contin
uously flowing out of the beam regions, Eqs. (37a) and 
(c). If this goes on indefinitely, there will apparently be 
the problem of plasma depletion. However, the desired 
effects (beam retardation and plasma heating, etc.) take 
place so fast that they can normally be accomplished in 
about JO nsec. On this time scale, the amount of plasma 
inside the beam shell (r < 01) will be sufficient to supply 
the radial flow. Furthermore, the plasma drain inside the 
shell can later be replenished by the plasma drawn in 
axially from the open ends.28 (Note that the beam length 
is finite in reality.) 

Thermal effects have been neglected throughout be
cause generally one would not expect them to play a role 
comparable to SE,, which is many kV / cm in amplitude, 
until the plasma reaches a temperature of as many keV. 

In the framework of fluid formulation, we argued that 
a net electron drift current would be induced if Q. » v. 
and Q; « v;. The latter condition may seem to be a 
serious limitation, especially for hot plasmas; however, in 
the framework of Vlasov formulation, which takes into 
account the finite ion gyro-radius effects, one would 
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expect this condition to be replaced by an alternative but 
much less restrictive one, namely, 

ion gyro-radius 2 02 - 01 • (42) 

Under this last condition, the ion gyrational and preces
sional motion would be strongly impeded by the lack of 
physical space just as they would be impeded by colli
sions under the condition Q, « v;. Furthermore, condi
tion (42) would almost certainly hold for general experi
mental conditions; therefore, by imposing the collisional 
ion condition (Q; « v;) in the fluid approach, one has, in 
fact, to a large extent taken care of the essential physical 
consequence of finite ion gyro-radius effects. 

Finally, let us consider the effects due to time varia
tions of collision frequencies. Angular current neutraliza
tion takes place on a time scale of Q; '. Thereafter, the 
plasma begins to heat up rapidly and the ions become 
less and less collisional. Eventually, the condition Q; « v; 
breaks down. This development, however, is not expected 
to change the present results significantly, since we just 
argued that this condition was more of a special assump
tion to account for the finite ion gyro-radius effects 

t=t2 ----------------·---------

I f {to 

FIG. 8. Calculated space charge and potential distribution (1 $ to) 
and conjectured development of them at later times (1 = 11, t1). to < t1 

< 1,, a, = ion .gyro-radius. 
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(which is not inherent in the fluid approach) than a 
stringent requirement for the existence of drifl counter 
current. On the other hand, as we see from Eq. (39), the 
increase in plasma temperature (or the decrease in ion 
collision frequency) is, in fact, a constructive develop
ment in the sense that it will result in enhanced ion 
heating. In this sense also, the electrostatic ion heating 
mechanism in our discussion is complementary to the 
usual Ohmic heating mechanism for electrons. Eqs. (36) 
and (38), whose efficiency decreases drastically as the 
plasma temperature increases. As a third consequence of 
the decrease of collision frequencies, the ion thermaliza
tion process may become so slow that the ions possess a 
radially directed gross velocity just as they emerge from 
the beam outer boundary. As a result, electrons and ions 
are likely to separate ending up with the streaming ion 
energy converted back into electric field energy again. 
The width of the potential well thus formed will approx
imately be the ion gyro-radius, which is the distance a 
collisionless ion can travel in the radial direction (Fig. 8, 
t = t1). The eventual disappearance of the potential well 
(Fig. 8, t = t2) will be accompanied by further plasma 
heating, possibly through ion hybrid oscillations or instabil
ity induced anomalous phenomena. 
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APPENDIX A 

<111 = [w;/k 2vJA(s)] 
{-k2vJ(s - v,)(s - v,)[(s - v,)(s - v,) + Q,Q;] 

+ Q~s2 [(s - v;)2 + nm. 
<122 = [- w;/ k 2A(s)]{k 2(s - v,)(s - v,) 

[ (s - P,) (s - P;) + Q, Q;] 

+ kl Qa(s - vt)2 + Q;j}, 

an = [-w;/A(s))(s - v,)(s - v,)[(s - v, )(s - v1) + Q,Q; ], 

<112 = a2 1 = [i/ k 2voA(s)]ki w;n!s[(s - v,)1 + Q:), 

au= - oi1= [1/kA(s)]k.1. w;Q.(s - v,)(s - v.}2, 

<123 = -anfi/kvoA(s)]w;n.s(s - v,)(s - v,)2
, 

where 

826 

il(s} = 47T(S - v.}[(s - v.}2 + Q: ] 

[(s - V; )
2 + Q?], 
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APPENDIX B 

a11 = swi(k2(s - v,)(s - v,)!(s - v,!(s - v,) -r sz. ~l. j 

- 11; 2Q; s2[(s - v1)2 + ~2.1 ]} 

-t- k2s2 (s - v.)!(s ·- v,)2 + n;][(s - i·.f + Q?], 
« 22 = sw;{k 2(s - v,)(s - v1)[(s - v,)(s - v, ) + Q, Q,J 

+ k zn;[(s - v;/ + ~~.21 } 

+ k 1c2(s - v, )[(s - v.Y + n;)l(s - 11;.- . Q~ i. 
X [k l -· ~l vo·l ,. -2 ] 

.I • ,i, ._ i "0 1' 

0' 33 ·= l!-'.JJ;s(." - vJ)(s - V1)!( s - V~)(s - V; ) ... n6n,I 

- 1l-c2
(S - lle)[ (S - Ve )2 + n!J[(S - 11 ; )2 ... r~~ j 

x r it~ - s2"02l'n' 1. 

U12 = (11 2 1 = - if.\ t•(/:.•;n;s2l( s - V;)2 + n~ I. 
U13 = - ·a 31 = - kki w; Q,s(S - V,) (s - V, y, 
au = -a)l = - iki vo' w; Q,s2(s - v, )(s - v,)2, 

where 

APPENDIX C 

W,(k.i. ,s.r') = [ks(u · K)i1 + ikkJ. vo(u • rc)n]Jo(k.i. r ' ) 

- k2(ot • rc)11 r 'wJ1(k.1. r' ), 

W,(k J. ,s.r' ) = [s2v;' (u• rc)11 -r ik.l s(u· ic)12 

+ ik1 s(u • ic )i, - k 2vo(u • ic)n ]Jo(k, r' ) 

- [sv ; '(u • ic)u + ikJ. (u • rc)21]kr 'wJ,(kJ. r' ), 

X,(k!. ,s, r' ) = [- kJ. SK11 

- i(s2 vo·' + k j Vo )K21 + k l SKn]lo(kJ. r') 

+ [isvO"' K 1) + k1 1e, ,Jkr'wJ,(k j r ), 

X,(k1 ,S, r') = [s2 vo1 K11 + 2ikSK11 - k 1 VoK22 ]Jo(k~ r) 

- [svo1 
Kn + ik l K21 ]kr' wJ1 (ki r' ). 

X,(k1 , s, r ' ) = [ksK11 + ikk1 Vo Kn]lo(k.l r ' ) 

- k 2r 1wK1d1(k J. r ) 

Y,(k1.s.r') = -ki. cX,(k J. . s,r' ). 

APPENDIX D 

Using Eqs. (20) in Sec. I II, we can show that terms on 
the left-hand side of Eqs. (I) and (2) are of order p,.2 / a 2

) 

compared to those on the right-hand side. To a first 
approximation, we may neglect them and derive from 
Eqs. (I) and (2) the mobility tensor for each species of the 
plasma. 

Employing the cylindrical coordinate system for which 
B = Boe •• we obtain 

where 

ov, = p.. • oE 
ov1 = p., • oE. 
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JI, -Q. 
0 ,,; + Q; ,,; + Q~ 

-e Q, "· #-'< = - ,,; + Q; ,,; + Q; 
0 m 

0 0 
"· 

JI, -1 
0 

Q; 1f." 
-e I JI, 

0 ~-
Q, . Q; m 

0 0 
"· 

and 

JI; Q; 
0 

vf + m .,,; + m 
e -11; JI; 

0 1'1 = M ,,; + m ,,; + m 
0 0 

JI; 

Q; 
0 

JI; 
e 

-QI ~ -
0 MP; 

J11 

0 0 

The second expressions for µ being valid for the case 
Q, » v, and Q, « v1. 
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