
UC Irvine
ICS Technical Reports

Title
An approach to large-scale collection of application usage data over the Internet

Permalink
https://escholarship.org/uc/item/8vd356qq

Authors
Hilbert, David M.
Redmiles, David F.

Publication Date
1997

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vd356qq
https://escholarship.org
http://www.cdlib.org/

QL SAR

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

An Approach to Large-Scale Collection of Application
Usage Data Over the Internet

David M. Hilbert and David F. Redmiles

{dhilbert,redmiles} @ics.uci.edu

Technical Report UCI-ICS-97-40
Department of Information and Computer Science

University of California, Irvine
Irvine, California, 92697-3425

September 1997

ABSTRACT

Empirical evaluation of software systems in actual usage situations is critical in software engineer
ing. Prototyping, beta testing, and usability testing are widely used to refine system requirements,
detect anomalous or unexpected system and user behavior, and to evaluate software usefulness and
usability. The World Wide Web enables cheap, rapid, and large-scale distribution of software for
evaluation purposes. However, current techniques for collecting usage data have not kept pace with
the opportunities presented by Web-based deployment. This paper presents an approach and proto
type system that makes large-scale collection of usage data over the Internet a practical possibility.
A general framework forcomparing software monitoring systems is presented and used to compare
the proposed approach to existing techniques.

Keywords Internet-scaleusability testing, remote usability testing, usability data collection, distrib
uted event monitoring, agent-based architectures, human-computer interaction and software engi
neering

An Approach to Large-Scale Collection of Application
Usage Data Over the Internet

David M. Hilbert David F. Redmiles

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA

+ 1 714 824 3100

{dhilbert,redmiles) @ics.uci.edu

ABSTRACT

Empirical evaluation of software systems in actual usage
situations is critical in software engineering. Prototyping,
beta testing, and usability testing are widely used to refine
system requirements, detect anomalous or unexpected
system and user behavior, and to evaluate software
usefulness and usability. The World Wide Web enables
cheap, rapid, and large-scale distribution of software for
evaluation purposes. However, current techniques for
collecting usage data have not kept pace with the
opportunities presented by Web-based deployment. This
paper presents an approach and prototype system that
makes large-scale collection ofusage data over ^e Internet
a practical possibility. A general framework for comparing
software monitoring systems is presented and used to
compare the proposed approach to existing techniques.

Keywords
Internet-scale usability testing, remote usability testing,
usability data collection, distributed event monitoring,
agent-based architectures, human-computer interaction
and software engineering

1 INTRODUCTION

The Internet and World-Wlde-Web make it possible to
rapidly distribute prototypes and beta releases to large
numbers of users at low cost. In principle, the Internet
could become a large-scale test-bed for gathering data
about applicationuse with actual usersof the systemsbeing
tested. In practice, however, this can be difficult due to the
distribution of users, the time and labor involved in
collecting data, the lack of scalable tools for automatic data
collection, and the lack of proper incentives to support
high-quality voluntary data collection on the part of users.
As a consequence, most usability evaluations are limited to
small scale tests in the usability lab, and feedback from beta
testing is typically gathered manually by beta testers
themselves. Since data are collected manually, and because

beta testers pay the price of bug reporting while vendors
receive most of the benefit, the quality and quantity ofdata
is compromised. Typically only the most obvious or show-
stopping problems are identified.

Despite these challenges, large-scale, Internet-based
collection of usage data with prototype and beta releases
has the potential of providing useful empirical guidance for
application development. Data collection is also important
beyond initial prototype and beta evaluation stages. For
example, data about which application features are most
frequently used in practice can suggest which features to
optimize as well as how to best focus development and
testing effort. Continued collection is also necessary to
detect when usage patterns shift, thereby invalidating
results of data collected in earlier stages. Ongoing
collection is necessary to provide empirical guidance in
subsequent application maintenance and enhancement. The
result isongoing or "perpetual testing" [19] of usability that
incorporates empirical feedback into the development
process over its entire lifecycle.

We propose an approach to automatic usability data
collection that makes ongoing, large-scale use a practical
possibility. The specific contributions of our approach
include: (a) treating "usage expectations" explicitly in the
development process to improve design and focus data
collection, (b) a flexible and incrementally evolvable
monitoring architecture that separates evolution of
instrumentation from evolutionof application code, and (c)
event abstraction mechanisms embedded in instrumentation
to provide distributed filtering and multiple levels of
abstraction in collected data.

Like other forms of experimentation, usability testing
involves numerous, interrelated activities including:
hypothesis formation, data collection, data analysis, and
interpretation of results. Each of these activities may be
addressed using multiple techniques. This paperfocuses on
a particular technique, namely automatic usage monitoring,
for a specific activity, namely data collection, while
acknowledging that no single technique or activity is
sufficient in isolation. Weaddress hypothesis formation to a
certain degree, but refer readers to existing techniques for
storing and analyzing collected data [9][11][14][15]
[24][25]. Our approach compliments existing techniques

for hypothesis formation, data collection, analysis, and
interpretation.

We begin by discussing the state of the practice in
application usage monitoring and describe an approach for
extending this technique to large-scale use on the Internet.
The next section develops a general framework for
comparing software monitoring systems that is used to
compare the proposed approach with existing techniques.
Finally, we discuss the status of a working prototype
implementation and its evaluation followed by related work
and conclusions.

2 APPLICATION USAGE MONITORING

Application usage monitoring is a technique for collecting
data about human-computer interactions for the purpose of
evaluating application usability. Often referred to as
"monitoring" or "logging" techniques in the HCI literature
[2][18], usage monitoring involves instrumented
applications (or windowing systems) that log information
about user interactions while test subjects complete pre-
specihed tasks with interactive applications. The data
collected by these means are often us^ in conjunction with
other forms of data, such as video and/or experimenters'
notes, to identify potential flaws in user interface design.
Analysis is often aided by spreadsheets or other more
specialized analysis tools, and presented to developers
potentially resulting in changes to the system being studied.

Scalability is important in usage monitoring because it
impacts: who can be monitored (hand-picked subjects vs.
actual users), under what circumstances (usability lab vs.
specially configured workstations vs. natural conditions),
and for what duration (short experiments vs. "perpetual
testing"). Collecting usability information on a large scale,
however, is challenging. Existing tools are not designed for
large-scale use. To begin with, many of them do not
appropriately separate insUoimentation from application
code. As a result, independent evolution is not possible. In
order to modify the type, format, or amount of data that is
captured, the application must be modified and re-
delivered.

To avoid modifying instrumentation that is intermingled
with code, or as a result of inserting probes directly into the
windowing system, the practice has been to collect as much
data as possible — at very low levels of abstraction — and
to defer processing and analysis until after data have been
collected. This presents a problem for Internet-scale use.
The volume of events generated by a single user engaged in
a single session is extremely high. In the context of the
Internet, that volume must be multiplied by numerous
users, engaged in numerous sessions, at numerous
distributed sites. The network load that would be generated
by transmitting every mouse movement of even a small
percentage of the networked Microsoft Word users, for
example, would be staggering. Furthermore, experience
from testing in software engineering as well as HCI
suggests that data should be collected and analyzed at
multiple levels of abstraction [27].

2.1 Expectations in the Development Process
Before presenting our solution, we begin with a theoretical
discussion of expectations in the development process. This
discussion suggests a theoretically principled way of
focusing data collection and making large-scale usage
monitoring feasible.

When developers design systems, they have numerous
expectations about how users, and the operational
environments in which those systems are embedded, will
behave. We call these usage expectations [10]. When the
environment in which a system is deployed or its users
behave in unexpected ways, various problems may ensue.
These problems can lead to sub-optimal user and system
performance, and can, in some cases, escalate to the point
of posing threats to safety or security.

Developers' expectations are based on their knowledge of
the requirements, past experience in developing systems,
knowledge of the domain, knowledge of the specific tasks
and work environments of users, and past experience in
using applications themselves. Some of these expectations
are explicitly represented, for example, those that are
specific as requirements. Some are implicit, including
assumptions about usage that are encoded in screen layout,
key assignments, program structure, and user interface
libraries.

Forexample, implicit in the layoutof mostdata entry forms
is theexpectation that users will complete them from topto
bottom, with only minor variation. In laying out menus and
toolbars, it is usually expected that frequently used or
importantfunctions can be easily recognized and accessed,
and that functions placed on the toolbar will be more
frequently used than those deeply nested in menus. Such
expectations are typically not represented explicitly, and as
a result, frequently fail to be tested adequately.

Several benefits can be realized if mismatches between
developers' expectations and actual usage can be detected
and resolved. Once a mismatch is detected, it may be
corrected in one of two ways. Developers may change their
expectations about usage to better match actual use, thus
refining the system requirements and eventually making a
more usable system. For example, features that were
expected to be used rarely, but are used often in practice can
be made easier to access. Alternatively, users can adjust
their behavior to better match developers' expectations,
thus learning how to use the existing system more
effectively. For instance, learning that they are notexpected
to type full URL's in Netscape Navigator can lead users to
omit characters such as "http://".

2.2 Expectation-Driven Event Monitoring
We propose an approach to application usage monitoring
that is based on making usage expectations explicit. These
expectations are encoded in the form of agents that monitor
application usage and perform various actions when
encapsulated expectations are violated. Figure 1 depicts a
development process in which developers (and/or usability
specialists): (1) identify usability expectations to be
checked as applications are developed, (2) create agents to

Agenxt are delayed %>/application
or loaded via URL

Developen deeign
efplication and
create agentt /

9\

Agents observe users\as they interact
w/application

Agents report baA to developers
to o\fom eppUcation evolution

Figure 1. A development process augmented with agents for
collecting usability d^

monitor user interactions, (3) deploy agents with
applications via URL, and (4) receive feedback from agents
regarding mismatches in expected versus actual usage.

The particular action highlighted in Figure 1 and in this
paper in general involves agents reporting data back to
developers. However, agents can perform numerous actions
including: (1) notifying the user and/or developer of
mismatches, (2) reporting system slate and/or event history
for debugging purposes, (3) providing guidance or
suggestions to the user, or (4) collecting feedback directly
from the user [13].

Our prototype expectation-driven event monitoring system
(EDEM) provides developers with: (a) tools for defining
agents, (b) dynamic displays for visualizing the
components and events of the interface being monitored as
well as agent activity, and (c) an agent runtime system that
allows agents to be downloaded via URL to monitor user
interactions on client machines, while reporting data back
to centralized (or federated groups of) server machines.

Agents are currently represented as instances of a simple
Java™ template class with parameters corresponding to
triggers, guards, and actions. Triggers are specified in terms
of user interface event patterns that are continually checked
as users interact with the application. Guards are specified
in terms of predicates involving user interface component
state variables that are only checked once an agent trigger
has been activated. Actions may include arbitrary code, but
usually involve pre-supplied actions such as generating
higher level events for further hierarchical event processing,
interacting w/ users to provide suggestions an^or collect
feedback, and finally reporting data back to developers.
Figure 2 shows a simple agent editor that allows developers
to author agents without writing code. Figure 3 is an
example agent specification that was generated using the
editor depicted in Figure 2.

Once agents have been defined, they are serialized and
stored in ASCII format in a file that is associated with a
URL on a server machine. The URL is passed as a

|r% EDCM Aoml tdrtoi

Ir? lULHAqnril*lo>

iLiinSCT

Figure 2. A simple agent editor.

Upper-left: Thedeveloper expresses interest in detecting when a
userbegins editingtheStreet field in a hypothetical phoneservice
provision form.

Lower-right: Thedeveloper addsthe event sp)ecified upper-left to
an agent that will "fire" whenever a user edits the Street or City
fields while the ZIP field is empty.

edem.kernel.Agent!
naa)es"Eater ZIP field first",
eventP>aen>="A or B or

evemssViutor(2,
edem.kemeI.EventRecord[

naine="CilyText", 0TJes"con^x>neDt".eveiii="GOT_EDnr].
edem.ken)el.EventRecord[

namc="StaieTc*t". type="componcni".event=*'GOT_EDrr]].
craditionPanenis"A or B or
conditionssVector! I.

edem.keniet.C(MKlitionRecord(
naines"ZipTexi", iyp^"coinponem". condttion>edem.kenieI.CoBdttioa[

predicae="=",

key="value".
valuea"".

o^aies"fe]se"]]],
timeLimits"",
actioiiaedein.kenid.Acd<Mi(

TBaagBeTeiBZIP befixe Gly/Stale. QQrfitae can becompiciui auioaiflicalb'-''.
interTupiUaers"false".
feedbacks"inie".
log="true".
logTimc="felse".
logValues="false".
suininarys"tnie",
suininaryCounts"iTue"],

rcpeats"tnie",
efuri>leds"inie"]

Figure 3. An example agent specification generated using the
agent editor depicted above.

command-line argument to the application of interest.
Agents are then automatically downloaded to client
machines every time the application of interest is run.
Agents may therefore be modified, added, and deleted
incrementally without affecting the application that is being
monitored. Figure 4 depicts a high-level view of the EDEM

;C^Telopooent

Java Virtual Machine

i'''Application\Top Level Window EDEM ^
L/1 Components } & U1 Events [Active Agents

Property Queries

•
Property Values

Deveiopment Computer

Collected

Data

EDEM Server

Data I
Reports

IJser Computer

Agent Specs
Saved w/ URL

Agent
Specifications

X'it?

HTTP Server

Agent Specs
Loaded via URL

Java Virtual Machine y
/'AppUcationN Top Level Window^ EDEM ^

U1 Components) & C1 Events [Active Agents

Property Queries

Property Values %

Figure 4. EDEM system architecture.

Top: Usability analysts run EDEM on development computers
and define agents that monitor user interactions and perform
various actions. Agents are saved in ASCII format and associated
with a URL.

Middle: A standard HTTP server is used to field requests for
agent specifications and a specialized EDEM server is used to
receive and store agent data reports.

Bottom: When the user runs an EDEM-enabled application,
associated agent specifications are automatically downloaded via
URL and instantiated on the user's computer. Agents monitor
user interactions on the user's machine and report data to the
EDEM server (via SMTP") for later analysis bv usability analysts.

architecture. A description of how event filtering is
implemented to reduce the amount of data reported over the
network is more fully described in the "Implementation"
section.

The main contributions of our approach, thus far, include
treating usage expectations explicitly in the development
process and a flexible and incrementally evolvable
monitoring architecture. Treating usage expectations
explicitly helps developers think more clearly about the
implications of design decisions. Because expectations can
be expressed in terms of user interactions, they can be
monitored automatically, thereby allowing information to
be gathered on a potentially large scale. Expectations
provide a principled way of focusing data collection so that
data is only collected surrounding "critical incidents" in
which usability problems have actually been detected. Our
monitoring architecture provides a general solution for
allowing instrumentation to evolve flexibly in a large-scale,
distributed system, without requiring the systems being
monitored to be modified when monitoring needs change.

3 EVENT MONITORING FRAMEWORK

In this section, we develop a general framework for
comparing monitoring systems to help distinguish our
approach from existing techniques. Our framework is
related in some ways to other frameworks that have been
proposed for event-based software integration [3} and
internet-scale event observation and notification [22].
However, our framework differs in its focus on monitoring
and data collection issues as opposed to tool integration and
wide-area messaging issues. Further discussion of how our
framework compares to previous frameworks is presented
in the "Related Work" section.

3.1 Activity Space v. Event Space

First of all, we distinguish between the phenomena
occurring within the system being monitored and the
phenomena that is made visible to the outside world by the
monitoring system. These may or may not be identical. For
example, event monitoring systems frequently emit higher
level events based on computations involving lower level
activities occurring within the system being monitored. In
some cases, the word "event" is used to refer to both the
low level, transient system activities being monitored (e.g.
user interface events), and the higher level, persistent
information subsequently made visible to the outside
world. To avoid confusion, we distinguish between objects
and activities which reside in "activity space", and entities
and events which reside in "event space" (Figure 5).

Activity space is comprised of the objects and activities of
interest in the system being monitored. Objects may come
in "active" form — e.g. whole systems, subsystems,
software agents, software components, programming
language modules,and so forth — or "passive"fonn — e.g.
operating system files and directories, database tables and
rows, and so forth. Activities of interest are typically
manifested in terms of observable state changes, message
passing, method invocations, procedure calls, events, and so
forth. Objects and activities of interest are typically

transitory and often identified by non-persistent,
implementation-dependent identifiers in activity space.

Event space is characterized by events and entities that
correspond to objects and activities in system space.
Entities and events, however, have persistent names for use
in event-space. The mappings between objects in activity
space and entities in event space are sometimes invertible
so that objects can be queried or otherwise manipulated
ft^om event space. The mappings between activities in
activity space and events in event space are frequently not
invertible since events may be inferred or computed by
compilation of information about activities (with
information loss).

3.2 Monitoring Roles

There are three major roles thatare typically fulfilled inany
sophisticated monitoringeffort (Figure5):

• IVobes to capture dataaboutthesystem beingmonitored
• Distributors of captured data
• Consumers of data

These roles are logical in thatthe mechanisms instantiating
them may be loosely coupled, tightly coupled, or entirely
integrated.

Probes capture information about transitory objects and
activities in activity space and translate it into more
persistent information about entities and events for use in
event space. Distributors are responsible for distributing
collected information to consumers. Probes therefore
bridge the gap between activity and event spaces, while
distributors and consumers operate mainly in event-space.

33 Monitoriiig Activities
Probes,distributors, and consumers typicallyengage in the
following major activities (Figure 5):

• Observation

• Processing
• Notification

• Actions

Observation involves collecting basic information about
objects and activities in activity space. Observation can be
achieved through automatic synchronous detection
techniques or through polling. Observation is primarily
performedby probes for the purpose of making information
available to distributors and consumers.

Processing involves performing computations based on
basic information about objects and activities or entities
and events. Processing may involve pattern-matching,
filtering, or aggregation, potentially for the purpose of
generating higher-level events. Processing is frequently
performed by probes and/or distributors for the purpose of
filtering notifications as well as providing eventabstraction.
Consumers also engage in processing, and may ask probes
and/or distributors to performprocessingon their behalf.

Notification involves letting other interested parties know
about observations or results of processing, frequently

Activity Space

Objects &
Activities

[Event Spaa» ^

Entities

Events r

System

Probes aticm&

Distributon •"'Notification &
JB-: Proces-sing

Rgure 5. Probes translate information about objects and
activities in "activity space" into information about entities and
events for use by distributors and consumers in "event space".
Probes primarily observe, distributors primarily notify, and
consumers primarily process and take actions.

leading to further observation, processing, notification, and
actions. Notification is primarily performed bydistributors.

Actions are sometimes performed in response to
observations, processing, and notifications. Actions may
involve manipulating the system (e.g. to reconfigure it),
interacting with other systems (e.g. to store data),
manipulating probes or distributors (e.g. to register or
cancel interest in events), interacting with humans (e.g. to
inform them of critical conditions). Actions are primarily
performed by consumers. Consumers may also ask probes
and/or distributors to perform certain actions on their
behalf.

3.4 Summary

In summary, monitoring can be understood in terms of three
major roles and four activities. The roles include; probes,
distributors, and consumers. The activities include:
observation, processing, notification, and actions.
Approaches to monitoring differ in terms of how they
instantiate these roles and activities, and to what extend
activities can be distributed amongst components fulfilling
these roles in an overall monitoring architecture. This has
important implications on reusability of monitoring assets,
scalability of the monitoring effort, and ultimately the types
of evaluation that can be performed.

33 Applying the Framework

In terms of the concepts developed in this framework,
application usage monitoring can be characterized in the
following way. The objects of interest are user interface
components (such as text fields, buttons, and selection
lists). The activities of interest are user interface events
(such as key presses, mouse button presses, and list
selections). Observation is typically achieved by inserting
probes directly into application code or by tapping into the
windowing system's event queue. Probes also act as

distributors by writing collected data directly to a file or
other stream for later consumption. Processing is typically
performed after all data have been collected by usability
analysts who are the consumers. This may ultimately result
in actions involving changes to the system beingstudied.

Theproblem is that probes are intertwined with application
code and processing is deferred until after distribution. Our
approach separates probe code from application code and
allows processing to occur within probes so that filtering
can be performed prior to distribution.

4 IMPLEMENTATION

In our prototype implementation of EDEM, probes are
inserted by passing the top level ED of each window to be
monitored as well as each user interface event as it is
handled by the application. This is accomplished through
the use of two simple librarycalls. This is not necessary on
platforms where user interface components and events can
be observed as well as queried from a separate process
connected to the windowing system. Most windowing
systems do not support this fiinctionality, however.

There are subtleties involved in automatically mapping
implementation-dependent IDs to persistent names for use
in monitoring. We overcome this by allowing the developer
to provide a name (in code) for each component that is
expected to be prominent in monitoring. A non-robust
mapping can be generated automatically. Requiring the
developer to provide aliases for components is the most
robust and maintainable way to accomplish this mapping,
however, the details as to why this is the case are beyond
the scope of this paper.

Once thishas beenaccomplished, the component hierarchy
of the interface is detect^ automatically, and agents are
defined in terms of user interface components and events.
EDEM is implemented on top of an industry standard
model for components [26] that standardizes how arbitrary
software components make events,properties, and methods
available to one another. Agent triggers are specified in
terms of patterns of component events; agent guards are
specified in terms of predicates involving component
properties; agent actions may involve invocation of
component methods.

While separating instrumentation from application code is
important in allowing instrumentation and applications to
evolve independently, we do not enforce a separation
between the collection of data — tjqjicaily preformed by
probes — and filtering and abstraction — typically
performed by usability analysts after data have been
collected. This is because in order to do Intemel-scale
collection, data needs to be filtered close to the source to
avoid undue network traffic. This does not affect
application deployment because our architecture allows
event processing to be modified dynamically as new data
needs arise without impacting application code, as
described in Section 2 (Figure 4).

Filtering is accomplished by allowing event abstraction to
occur within probes. Instead of reporting every event that
occurs, agents detect significant patterns of lower level

events and generate higher level events for use in further
processing. Agents themselves conform to the component
standard described above and can therefore monitor one
another in the same way they monitor user interface
components. It is therefore possible to compose agents
hierarchically to detect patterns of events at increasing
levels ofabstraction. When an agent detects a pre-specified
pattern of lower level events, a higher level event is
automatically generated. Other agents can then detect
patterns of these higher level agent events just as they can
detect patterns of lower level user interface component
events. This allows a multi-level event model to be
constructed in which higher level, abstract events are
specified in terms of combinations of lower level events. A
multi-level event model for usability data collection has
been implemented using this approach and is described in
[13].

The main contributions of these aspects of our approach
include the following. First, by pushing event abstraction
mechanisms into probesand closer to the source,eventdata
can be compiled before being sent across the network.
Second, by allowing higher level events to be specified in
terms of lower level events, data can be collected and
analyzed at multiple levelsof abstraction.'

5 EVALUATION

It is important to evaluate to what extent the data collected
byagents is subsequently useful in design improvements. It
is also important to verify that the benefits of collecting
usability data outweigh the costs of authoring and
maintaining agents. To date our approach has been applied
within the context of a research demonstration project
conducted by Lockheed Martin C2 Integration Systems for
theGlobal Transportation Network (GTN) project.

The GTN is a system that gathers, integrates, and
distributes transportation-related information and acts as
the central clearinghouse of transportation information for
the Department of Defense. The system will eventually
become the U.S. Transportation Command's primary
command and control system and a fully integrated
component of the Department of Defense's command and
control infrastructure.

Ourinitial experience with the GTN suggests that the effort
and expertiserequired to author agents is not extensive, and
that significant data can nonetheless be captured. Also,
because our approach allows agents to be deployed
dynamically, investment in data collection is incremental,
and the number of agents can be kept down by focusing on
only a limited number of usability questions at any given
time. Further investigation within the context of the GTN
and evaluations with more quantifiable results are planned
for the future.

We are also addressing a number of other challenges that
must be overcome before the potential of Internet-scale
usability data collection can be realized. These challenges

1.Related work indistributed system monitoring and debugging is
discussed below.

range from technical to social, including: agent
representation, authoring, and maintenance; data storage
and analysis; integration of expectations into the
development process; privacy; and finally, non-disruptive
techniques for requesting user feedback to augment
automatically collected data.

Wth respect to agent representation and authoring, we are
investigating existing tools and techniques for constructing
state-based [30], rule-based [10], and mode-transition-
based [1] specifications. With regard to agent maintenance,
we have identified mitigating factors that minimize the
impact of maintenance issues [13]. With regard to data
storage and analysis, we are investigating numerous
existing techniques for managing and processing temporal
and sequential data [8][9].

With regard to integrating expectations into the
development process, we are investigating relationships
between expectations and usability requirements, cognitive
walkthroughs, use cases, and other artifacts that already
exist in the development process. With regard to privacy,
since we do not collect arbitrary low-level data for
unspecified purposes, but rather, higher level information
for specified purposes, it is easier to justify collection, and
users can be given discretionary control over what is
reported. Finally, with regard to non-disruptive collection
of user feedback, we have investigated various scheduling
and control mechanisms to limit agent execution and filter
agent requests for user attention [21].

It should be noted that developers cannot anticipate all
areas where usability may break down, thus automatic
detection of expectation violations is only part of a
complete usability engineering solution. Our system has
been designed so that users can determine for themselves
when undetected breakdowns have occurred, and use the
same reporting mechanisms to send information back to
developers including program state, event history, as well
as comments. Nonetheless, this approach is intended to be
used in conjunction with existing usability engineering and
evaluation techniques. It is not intendedas a replacement.

6 RELATED WORK

6.1 Application Usage Monitoring

As described above, current approaches to application
usage monitoring do not address issues of large-scale use.
Instrumentation is typically intermingled with application
code and too much low-level information is collected. The
strengths of current approaches involve techniques for
synchronizing event data with video data and observers'
notes [14], and techniques for analyzing data once they
have been collected [9][11][14]. While EDEM is primarily
intended for use in situations where video equipment and
human observers are not present, integration with existing
video synchronization techniques and post-facto analysis
tools is planned as future work.

Some experimenters have already begun to explore remote
usability evaluation using the Internet [12]. However, data
filtering and reporting is only partially automated in that
users must be trained to identify "critical incidents"

themselves, and then press a "report" button which sends
data about events immediately preceding and following the
user-identified incidents back to experimenters. This is
useful and is included as a feature of EDEM, however,
users are typically unaware of when their actions violate
developers' expectations. EDEM's automatic mismatch
detection is thus extremely important in collecting data
under general circumstances.

6.2 Software Process Event Monitoring
Numerous researchers have investigated techniques for
capturing software process event data for the purpose of:
analyzing and improving the software process [29],
validating the process with respect to a formal model [7],
generating a formal model based on process events [7], or
applying metrics to help guide the process (e.g., to
automatically apply analysis tools when changes to code
increase the likelihood of interface or control faults based
on softwaremetricsand historical data) [23].

While differing substantially in intent, EDEM bears some
similarity to systems such as Amadeus [23] and YEAST
[16] that detect process events and take pre-specified
actions in response. However, many critical process events
are difficult to detect automatically, including
communication, coordination, and decision making events
[29]. As a result, process event data is somewhat less
amenable to automatic collection than is user interaction
data. EDEM could, however, be used asa tool for collecting
process-related events in so far as those events can be
specified in terms of user interaction events occurring
within software tools supporting theprocess in question.

Future work may involve the use of EDEM to do pattern
discoveryin additionto pattern validation [7]. This involves
generating models to characterize unanticipated patterns in
event data as opposed to simply detecting when particular
patterns have been satisfied or violated. This, however, will
require either more network band-width and server disk-
space for data transmission and storage, or alternatively,
more sophisticated processing within the agents (i.e.
probes) themselves. In our prototype implementation, we
have attempted to be sensitive to utilization of network
band-width, server disk-space, as well as the use of client
processing resources. However, if network band-width and
server disk-space are not serious issues in a given
experimental situation, then pattern discovery may be
performed on servers with the help of separate analysis
tools once data have been collected.

6J DistributedSystemMonitoringand Debugging
Work in the area of distributed system debugging has also
led to approaches with characteristics similar to those found
in EDEM. Event-based behavioral abstraction (EBBA) is
an approach to distributed system debugging in which
models of expected program behaviors are created and
compared to actual behaviors exhibited by the program [4].
TAGS is a specification-based testing system that applies a
similar approach [20]. EDEM can be viewed as a
"debugging" or "testing" tool for userinterface designs that
compares models of expected use to actual use. However,

because these debugging and testing tools are primarily
designed for use in development situations as opposed to
ongoing use on client machines after deployment, they are
significantly heavier-weight than EDEM in terms of
memory, storage, and processing requirements.

Work in the area of distributed system monitoring has also
addressed some of the issues addressed by EDEM. Our
approach is similar to the Generalized Event Monitoring
(GEM) approach presented in [17] in that it distributes
event filtering and abstraction mechanisms as close as
possible to the sources of events, as opposed to performing
filtering and abstraction after distribution of event data.

6.4 Event Frameworks

While differing in focus, our monitoring framework is
related to other frameworks that have been proposed for
event-based software integration [3] and internet-scale
event observation and notification [22].

Barret et al. [3] provides an excellent semi-formal, object-
oriented framework for characterizing event-based tool
integration (EBI). The most notable difference between the
EBI framework our model and is that we explicitly
differentiate between the system of interest and probes. In
their model, the tools being integrated are analogous to the
system being monitored in our model, and wrappers are
analogous to our probes. However, tools and wrappers are
treated as a single logical entity in their model
("Participants"), and wrappers are thus not seriously
considered as potential loci of flexible and dynamically
configurable event processing and distribution activities
("Message Transform Functions" and "Delivery
Constraints" in their terminology).

Rosenblum and Wolf [22] provides a good overview of
several interrelated design dimensions that must be
considered in designing any Internet-scale event
observation and notification facility. Their framework
includes: an object model, an event model, a naming model,
an observation model, a time model, and a resource model.
In terms of these dimensions, our framework primarily
focuses on issues involved in the observation and resource

models. However, in terms of the roles and activities
introduced in our framework, the RosenblumAVolf
framework focuses primarily on issues associated with
event notification and processing in the realm of
distributors and consumers, without addressing in detail
how these roles and activities interrelate with the remaining
roles (namely probes) and activities (namely observation
and actions) identified in our framework.

7 CONCLUSIONS

The main contributions of this paper are an approach (based
on usage expectations) and an architecture (based on agents
that perform distributed event filtering and abstraction) that
together make large-scale collection of usability data on the
Internet a practical possibility. By treating usage
expectations explicitly in the development process, we
provide a principled way of focusing data collection. By
separating probes from application code, we provide an
architecture that allows event monitoring to evolve flexibly

and independently of applications being monitored. Finally,
by embedding event abstraction mechanisms within our
probes, we allow events to be filtered in a scalable way,
reducing network band-width requirements, and allowing
testing to address events at multiple levels of abstraction.

ACKNOWLEDGMENTS

The authors would like to thank J. Robbins and P. Oreizy
for their thoughtful comments. Thanks are also due to A.
Girgensohn, F. Shipman, A. Lee, and A. Turner who
worked on precursors to this workand continue to provide
insight and support. Finally, the authors acknowledge R.
Balzer and the other participants in an informal SIG
meeting on monitoring held during the Second Annual
Evolutionary Design of Complex Systems (EDCS)
Program Workshop and Demo Days, July, 1997. for
providing inspiration for some of the ideas developed in
this paper.

This work is financially supported by the National Science
Foundation, grant number CCR-9624846, and by the
Defense Advanced Research Projects Agency, and Rome
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-97-2-(X)2I. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright annotation thereon.

REFERENCES

1. J.M. Atlee andJ. Gannon. "State-based Model checking
of event-driven system requirements". IEEE Transac
tions on Software Engineering, Jan. 1993.

2. R.M. Baecker, J. Gmdin, W.A.S. Buxton,S. Greenberg,
eds. Readings in Human-Computer Interaction: Toward
the Year 2(X)0. Morgan Kaufmann Publishers, Inc., San
Francisco, CA, USA, 1995.

3. D.J. Barrett, L.A. Clarke. P.L. Tarr, and A.E. Wise. "A
Framework for Event-Based SoftwareIntegration".
ACM Transactions on Software Engineering and Meth
odology (TOSEM), Vol. 5, No. 4, Oct. 1996.

4. P.C. Bates."Debugging heterogeneous distributedsys
tems using event-based models of behavior". ACM
Transactions on Computer Systems, Vol. 13, No. 1, Feb.
1995.

5. N. Bevan and M. Macleod. "Usability Measurement in
Context". In Jacob Nielsen ed.: Usability Laboratories,
Special Issue of Behaviour and Information Technol
ogy, Vol. 13, No. 1 & 2, Apr. 1994.

6. J. Chen, Providing Intrinsic Support for User Interface
Monitoring. In proceedings of Human-Computer Inter
action - INTERACT "90.

7. J.E. Cook. "Process Discovery and Validation through
Event-Data Analysis".Ph.D. Thesis, Technical Report
CU-CS-817-96, University of Colorado, Sep. 1996.

8. S. Fickas and M. Feather. "Requirements Monitoring in
Dynamic Environments". In Proceedings of the Second
IEEE International Symposium on Requirements Engi
neering, York, England,Computer SocietyPress,Mar.
1995.

9. C. Fisherand P. Sanderson. "Exploratory sequential
data analysis: exploring continuous observational data".
Interactions, Vol.3, No. 2, ACM Press, Mar. 1996.

10. A. Girgensohn, D.F. Redmiles, andP.M. Shipman IE.
"Agent-Based Support for Communication between
Developers and Users in SoftwareDesign. In Proceed
ings of the Knowledge-Based Software Engineering
Conference '94. Monterey, CA, USA, 1994.

11.M.L. Hammontree, J.J. Hendrickson & B.W. Hensley.
"Integrated Data Capture and Analysis Tools for
Research and Testing on Graphical User Interfaces". In
Proceedings of CHr92, ACM Press, Monterey, CA,
USA, May 1992.

12.H.R. Hartson, J.C. Castillo, J. Kelso, W.C. Neale.
"Remote Evaluation: The Network as an Extension of
the Usability Laboratory", in Proceedings of CHI'96,
ACM Press, 1996.

13.D.M. Hilbert, I.E. Robbins, and D.F. Redmiles. "Sup
porting Ongoing User Involvement in Development via
Expectation-Driven Event Monitoring". Technical
Report UCI-ICS-97-19, Department of Information and
Computer Science, University of California, Irvine,
May 1997.

14.D.E. Hoiem, K.D. Sullivan. "Designing and Using Inte
grated Data Collection and Analysis Tools: Challenges
and Considerations". In Jacob Nielsened.: Usability
Laboratories, Special Issue of Behaviour & Information
Technology, Vol. 13, No. 1 & 2, Apr. 1994.

15.J. Kayand R.C. Thomas."StudyingLong-Term System
Use". Communications of the ACM, Vol. 38 No. 7, Jul.
1995.

16.B. Krishnamurthy and D.S. Rosenblum. "Yeast: A Gen
eral Purpose Event-Action System". IEEE Transactions
on Software Engineering, Vol. 21, No. 10, Oct. 1995.

17. M. Mansouri-Samani and M. Sloman. "An Event Ser

vice for Open Distributed Systems". In Proceedings of
the Joint International Conference on Open Distributed
Processing (ICODP) and Distributed Platforms (ICDP),
Toronto, Canada, May 1997.

18. J. Nielsen. Usability Engineering. Academic Press, AP
Professional, Cambridge, MA, USA, 1993.

19.L. Osterweil, L. Clarke, D. Richardson, and M. Young.
"EDCS Project Summary: Perpetual Testing". (URL:
search for "Perpetual Testing" using AltaVista).

20. D.J. Richardson. "TAOS: Testing with Analysis and
OracleSupport". In Proceedings of the 1994Interna
tional Symposium onSoftware Testing and Analysis,
Aug. 1994.

21. J.E. Robbins, D.M. Hilbert, and D.F. Redmiles. "Using
Critics to AnalyzeEvolving Architectures". In Proceed
ings of the Second International Software Architecture
Workshop. San Francisco, CA, USA, Oct. 1996.

22. D.S. Rosenblum andA.L. Wolf. "A Design Framework
for Internet-Scale Event Observation and Notification".
In Proceedings of theSixth European Software Engi
neering Conference/ACM SIGSOFT Fifth Symposium
on the Foundations of Software Engineering, Zurich,
Switzerland, Sep. 1997.

23. R.W. Selby, A.A. Porter, D.C. Schmidt, and J. Bemey.
"Metric-Driven Analysis andFeedback Systems for
Enabling Empirically Guided Software Development".
In Proceedings of the Thirteenth International Confer
ence on Software Engineering, 1991.

24.A.C. Siochi, R.W. Ehrich. "Computer Analysis ofUser
Interfaces Based onRepetition inTranscripts ofUser
Sessions", ACM Transactions onInformation Systems
Vol. 9, No. 4, Oct. 1991.

25. A.C. Siochi & D. Hix. "AStudy ofComputer-Sup
ported User Interface Evaluation Using Maximal
Repeating Pattern Analysis". In Proceedings of CHI'91,
New Orleans. LA, USA, ACM Press, Apr-May 1991.

26. Sun Microsystems. "JavaBeans""^ API Specification,
Version 1.01". Jul. 1997. (URL: http://java.sun.com/
beans/).

27. R.M. Taylorand J. Coutaz. "Workshop on Software
Engineering and Human-Computer Interaction: Joint
Research Issues". In Proceedings of the International
Conference on SoftwareEngineering *94, Sorrento,
Italy, May 1994.

28. P. Weiler. "Software for the Usability Lab: A Sampling
of Current Tools". In Proceedings of INTERCHr93,
Amsterdam, The Netherlands, ACM Press, Apr. 1993.

29.A.L. Wolfand D.S. Rosenblum. "AStudy in Software
Process Data Capture and Analysis". In ^oceedings of
the Second International Conference on Software Pro
cess, 1993.

30.J. Wing. "A Specifier's Introduction to Formal Meth
ods". IEEE Computer, Sep. 1990.

