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Abstract 

Adaptive applications have computational workloads and communication patterns which change unpre
dictably at runtime, requiring dynamic load balancing to achieve scalable performance on parallel machines. 
Efficient parallel implementations of such adaptive applications is therefore a challenging task. In this paper, 
we compare the performance of and the programming effort required for two major classes of adaptive ap
plications under three leading parallel programming models on an SGI Origin2000 system, a machine which 
supports all three models efficiently. Results indicate that the three models deliver comparable performance; 
however, the implementations differ significantly beyond merely using explicit messages versus implicit 
loads/stores even though the basic parallel algorithms are similar. Compared with the message-passing (us
ing MPI) and SHMEM programming models, the cache-coherent shared address space (CC-SAS) model 
provides substantial ease of programming at both the conceptual and program orchestration levels, often 
accompanied by performance gains. However, CC-SAS currently has portability limitations and may suffer 
from poor spatial locality of physically distributed shared data on large numbers of processors. 

1 Introduction 

Architectural convergence and software tools have made it possible for different programming models to 
be supported on the same platform. At present, the three leading programming models are explicit mes
sage passing, one-sided communication using symmetric private address spaces, and cache-coherent shared 
address space (CC-SAS). The message-passing paradigm is perhaps the most popular, and commonly im
plemented by using the MPI library. The SHMEM library is similar to MPI but uses symmetric address 
spaces for the individual processes. Thus, communication in SHMEM requires only one process to be ex
plicitly involved, and any process can specify remote data using their local name and the process identifier. 

0-7803-9802-5/2000/$10.00 (c) 2000 IEEE. 
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CC-SAS, on the other hand, assumes a global shared address space, leverages hardware cache-coherency 
features, and accesses remote data implicitly via ordinary loads. and stores.1 

Unfortunately, it is not obvious how these three programming lflOdels compare in terms of parallel per
formance and ease of programmability. Our previous studies [13, 14] have shown that even for non-adaptive 
applications, using different programming models significantly affects overall performance and requires 
varying amounts of programming effort. In this paper, we focus on adaptive applications in which the com
putational workloads and/or the communication patterns/volumes change at runtime, requiring dynamic load 
balancing to achieve scalable performance on parallel machines. Applications that exhibit such irregular un
predictable memory accesses and communication patterns have become increasingly important in scientific 
and engineering fields, as more complex phenomena and domains are studied. However, obtaining scalable 
performance for this class of applications on current state-of-the-art multiprocessor systems is a ch<dlenging 
task. 

Several researchers have investigated the parallel performance of various adaptive applications on differ
ent computer platforms. Martonosi and Gupta examined a wire routing program and found that, compared to 
a shared-memory implementation, the message-passing model reduced communication volume at the cost 
of compromising solution quality [6]. Singh et al. found CC-SAS, when implemented efficiently on the 
Stanford DASH machine, to provide substantial programming ease and likely performance advantages for 
hierarchical N-Body applications [16] and a number of graphics algorithms [15]. Dikaiakos and Stadel con
ducted performance comparisons of cosmological simulations on the Intel Paragon and KSR-2 machines, 
and found that the shared-memory version running on the KSR-2 outperformed the message-passing code 
running on the Paragon [2]. More recently, Oliker and Biswas examined the performance of a dynamic 
unstructured mesh adaptation algorithm using three different programming models and concluded that a 
multithreaded implementation on the Tera MTA was the simplest and showed the most promise [8]. How
ever, each programming paradigm in the last study was implemented on a different platform, making direct 
performance comparisons rather difficult. 

Application Layer 

...... ~:..1 
....... l .. ~~-~-~~ ... l .. 9.~-~~~~---

Programming Model Layer 

Communication Layer 

Figure 1: A layered framework for comparing different programming models. 

Most of these studies did not compare the algorithmic and coding implications of using various program
ming paradigms. The studies also differ substantially from ours since we use a common high-performance 
computer with sophisticated implementations of three different programming models. The use Gf a single 
platform makes the performance data and the code comparisons very relevant. Our overall research goal is 
to study the problem of programming models for adaptive applications in a layered framework as shown in 
Figure 1. The top layer is called the Application Layer. The applications selected for this work needed to 
satisfy the following criteria: 

• require irregular and unpredictable communication, as well as dynamic load balancing, 
• have wide applicability to problem domains that require high-performance computing, 
• require the use of large numbers of processors, and 
• be non-trivial to obtain scalable performance. 

1 The words process and processor are used synonymously throughout this paper. 
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Based on these requirements, we selected two typical applications: Dynamic Remeshing and N-Body as our 
test cases. Details of these applications are given in Section 2. For each application, we develop one or more 
programs for the different programming models using well-known algorithms. 

The middle layer in our framework is the Programming Model Layer, which provides different program
ming interfaces to the Application Layer. The two dominant parallel programming paradigms are message 
passing and cache-coherent shared address space. However, there exists another programming model called 
SHMEM which lies between these two extremes. A brief description of these models is given in Section 3. 

The bottom layer is called the Communication Layer and consists of the computation and communica
tion ~ardware, and low-level software. In this work, we focus on tightly-coupled distributed shared-memory 
multiprocessors. In particular, we selected the SGI Origin2000 platform, which has an aggressive commu
nication architecture and provides full hardware support for the CC-SAS model. The MP~ and SHMEM 
programming models are built in software but leverage the underlying hardware for a shared address space 
and efficient communication. In fact, the performance of the latter two models on this machine is comparable 
to or better than that on most systems not supporting the CC-SAS model in hardware. 

This layered approach allows us to confine our investigations to each individual layer, isolate the prob
lems if any, and find suitable solutions. For example, there are two different considerations in the Applica
tion Layer: at the algorithmic level and at the implementation or program orchestration level. We examine 
whether the algorithms that deliver the best performance for each programming model are similar. For non
adaptive applications, we found that the best-performing algorithms were similar across models [13], which 
is a positive indicator for application developers. If this is true for the two chosen adaptive applications, 
we will investigate if there are substantial implementation differences, and how they affect overall perfor
mance. In the Programming Model Layer, we compare the conceptual and programming complexities of 
the different paradigms, though these issues are sometimes quite subjective. We need to determine if the 
performance difference between programming models is caused by this layer. For example, in our previous 
study using regular applications [13], we found that the performance of the MPI implementation could be 
made competitive with the SHMEM and CC-SAS versions by eliminating an extra data copy and by opti
mizing the communication buffer management, although this had some programming implications. Finally, 
since all the programming models are built on the same Communication Layer, their performance is directly 
comparable. · 

We find that all three programming models for both the adaptive applications can achieve scalable per
formance on the Origin2000. The algorithms needed by the different programming models for best overall 
performance are similar, but the implementations differ significantly at the conceptual and program orches
tration levels, far beyond whether explicit messages or implicit loads/stores are used. Results indicate that 
compared with MPI and SHMEM, the CC-SAS strategy provides substantial ease of programming, often 
accompanied by performance gains. However, CC-SAS may suffer froin poor spatial locality of physically 
distributed shared data on large numbers of processors. 

More generally, if the applications are properly programmed, the parallel performance for these three 
programming models are quite similar. CC-SAS programs usually require less time to develop; however, 
many naive implementations will not achieve high performance. Significant insights about the application 
are needed to structure the programs to obtain better data locality and reduce synchronization. In fact, the 
technologi~s applied are often similar to those used in message-passing programs. For example, we build a 
high-level locally essential tree to reduce the page faults in the N-Body application and use a partitioner for 
load balancing in the Dynamic Remeshing application. The important practical advantage of the CC-SAS 
model is that these complex algorithms are simpler to implement in it because of the implicit naming and 
communication. A big disadvantage of CC-SAS is its loss of portability. Many supercomputing platforms 
still do not directly support this model. Compared with MPI, SHMEM is relatively easier to implement 
due to its one-sided communication and often delivers higher performance. But it is also limited by the 
portability problem. 
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The remainder of this paper is organized as follows. Section 2 gives an overview of the two adaptive 
applications being investigated in this work. In Section 3, we briefly describe the three parallel program
ming models: message passing using MPI, SHMEM, and CC-SAS. The implementation details for the two 
applications and the programming differences among the three models are described in Section 4. Perfor
mance results are presented and critically analyzed in Section 5. Finally, Section 6 summarizes our key 
conclusions. 

2 Adaptive Applications 

In this section, we give an overview of the two applications being investigated in this work. Dynamic 
Remeshing and N-Body are two typical adaptive problems that satisfy the Application Layer criteria men
tion in Section 1. For these kinds of irregular dynamic applications, the processor workloads and the in
terprocessor communication can change dramatically with time; thus, dynamic load balancing is a critical 
component. Communication also tends to be naturally fine-grained, which can be challenging. In designing 
efficient parallel implementations for these adaptive applications, data locality is another important con
sideration. In Section 4, we will focus on these two issues to analyze the algorithmic and implementation 
differences among the different programming models, and discuss the programming effort required for each 
application and paradigm. 

2.1 Dynamic Remeshing Problem 

Dynamic local mesh refinement is required to efficiently capture physical features of interest that evolve 
with time. It provides users the opportunity to obtain solutions that are comparable to those on globally
refined grids but at a much lower cost. Adaptive unstructured meshing is a powerful tool in the numerical 
modeling of physical phenomena on complex irregular domains. The mesh used in our experiments is the 
one often used to simulate flow over an airfoil. Mesh refinement is usually required around the leading edge 
of the airfoil, and along the shocks that form on the upper and lower surfaces at transonic Mach numbers. 
This physical scenario is simulated by geometrically refining the grid in these regions. Further details about 
this application can be found in [8]. 

INITIALIZATION MESH ADAPTOR LOAD BALANCER 

Initial Mesh ;--r-- Edge Marking 

t ! 

):~ Partitioning 

FLOW! OLVER ~N 
Matrix Generation-

~ 
Partitioning 

t t 
Solver -Refinement Remapping 

Figure 2: Flowchart of the Dynamic Remeshing problem. 

The flow-chart for the solution process is shown in Figure 2. The initial mesh is first partitioned, and a 
submesh is assigned to each process. An initial matrix is then generated from each submesh by assigning 
a random value in (0, 1) to each ( i, j) entry corresponding to the vertex pair (Vi, Vj) of the edges in the 
submesh. All other off-diagonal entries are set to zero. The matrix is made positive definite by setting the 
diagonal entries to a large value (diagonally dominant). The publicly-available Aztec library [18] is then 
used to solv~ the sparse linear system. Details of the matrix generation process and the solution phase are 
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given in [10]. After a specified convergence is attained, the mesh adaptor is invoked. Based on an error 
tolerance or geometric information, it marks the edges in the regions that need to be refined. However, the 
actual refinement is delayed until after the load balancer in order to reduce the data movement overhead and 
achieve better load balance in the adaptation phase. If the marked mesh will cause the current partitions to 
become unbalanced, the load balancer becomes responsible for repartitioning the mesh and remapping the 
data. After refinement, the matrices for the submeshes are regenerated and passed on to the solver. The 
entire cycle is then repeated until the computation is done. Extensive details about this mesh adaptation 
procedure and the dynamic load balancing strategy are given in [7, 9]. 

2.2 N-Body Problem 

The N-Body problem is a classical one, and arises in many areas of science and engineering such as as
trophysics, molecular dynamics, and graphics. Having specified the initial positions and velocities of the 
N interacting bodies, the problem is to find their positions after a certain amount of time. The Barnes-Hut 
method [1] is widely used to solve this problem today. It has three phases within each iteration of the sim
ulation. In the tree-building phase, an octree is constructed to represent the distribution of the bodies. It is 
implemented by recursively partitioning the three-dimensional space into eight subspaces until the number 
of bodies in each subspace is below a certain threshold. In the second phase, the force interactions between 
individual bodies are computed. Each body traverses the octree starting from the root. If the distance be
tween a body and the visited subspace (cell) is large enough, the entire subtree rooted there is approximated 
by the cell; otherwise, the traversal continues recursively with the children. In the third and final phase, each 
body updates its position and velocity based on the computed forces. 

3 Programming Models 

We chose an SGI Origin2000 machine as the common phttform to compare and contrast the different pro
gramming models. The Origin2000 is a scalable, hardware-supported cache-coherent non-uniform memory 
access (CC-NUMA) system, with an aggressive communication architecture. It therefore automatically 
supports the CC-SAS programming model. The MPI message-passing and SHMEM models are built in 
software butJeverage the machine's shared address space and the efficient communication features. We give 
here a brief description of all three programming models. 

3.1 Message Passing using MPI 

In the message-passing model, each process has only a private address space, and must communicate explic
itly with other processes to access their (private) data. Communication is performed via send-receive pairs, 
so processes on both sides are explicitly involved. The sender specifies whom to send the data but not the 
destination address; these are specified by the matching receiver whose address space they are in. The data 
typically is packed and unpacked at each end for efficient transfer. This model is perhaps the most difficult 
to program for irregular applications; however, the benefits lie in enhanced performance for coarse-grained 
communication and implicit synchronization through blocking communication. 

We used an improved version ofMPICH [13], the portable implementation of MPI for our experiments. 
It uses the Origin2000 shared address space and fast communication support to accelerate message passing. 
The MPICH performance was much better than the vendor-supplied implementation of MPI. We suspect 
that this is because MPICH uses one copy (instead of two), and lock-free queue management. It also allows 
the programmer to instrument the implementation so as to distinguish between wait time and time to copy 
remote data. MPICH is consistent with the message-passing model in that application data structures are 
only allocated in private per-process address spaces. However, the communication buffers for the send and 
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receive operations are allocated in the shared address space during the initialization phase; they include a 
shared packet pool for exchanging control information (all messages) and data (short messages), and buffer 
space for data (large messages). All copying of data to and fro!ll the buffers is done with the memcpy 
function. Note that while hardware support for load/store communicc:ttion is very useful, an invalidation
based coherence protocol, such as on most cache-coherent machines including the Origin2000, can make 
such producer-consumer communication inefficient compared to an update protocol or a hardware-supported 
but non-coherent shared address space. 

3.2 SHMEM 

The SHMEM library provides the fastest interprocessor communication for large messages. Basic~ly, each 
process has its personal address space as in message passing, but the address spaces are symmetric. Any 
process can name the variables in another process's address space by using the local name and the remote 
process identifier. The major primitives are the put and get commands. The get operation is used to 
copy a variable amount of data from another process (using bcopy that is similar to the memcpy used 
in message passing) and explicitly replicate it locally. A put is the dual of get; however, each is an 
independent and complete way of performing data transfer. Only one is used per communication, unlike 
explicit message passing which requires send-receive pairs. Thus, the communication becomes one-sided 
but remains explicit. 

In SHMEM, there is no concept of a uniformly addressable shared address space that all processes can 
access. However, the private address spaces of processes that contain the logically shared data structures 
are identical in their data allocation. By providing a global segmented address space and avoiding the need 
for matching send-receive operations, the SHMEM model delivers significant programming simplicity over 
MPI, even though it too does not provide fully transparent naming or replication. 

3.3 Cache-Coherent Shared Address Space (CC-SAS) 

In this model, remote data are accessed just like locally-allocated data (or data in a sequential program), us
ing loads and stores. A load/store cache miss causes the data to be communicated in hardware at cache line 
granularity, and automatically replicated in the local cache. Unlike the get/put operations in SHMEM, 
ordinary load/store operations are used to fetch/send data. The transparent naming and replication provides 
programming simplicity, particularly for dynamic fine-grained applications. In our parallel CC-SAS im
plementations, the parent process uses the Unix fork command to spawn off child processes, one for each 
additional processor, at the beginning of the program. These cooperating processes are then assigned chunks 
of work, while locks and barriers are used for synchronization. The child processes are finally terminated at 
the end of the last parallel section. 

4 Implementation Details 

In this section, we describe specific implementation details of our two adaptive applications using the differ
ent programming models. We compare only the MPI and CC-SAS versions, since SHMEM is similar to MPI 
except primarily for its one-sided communication. In other words, instead of using send-receive pairs as in 
MPI, the SHMEM model only needs either a put or a get. However, there is one other difference between 
MPI and SHMEM in the way they are used to dynamically allocate memory. In MPI, dynamic memory 
allocation is performed by invoking the malloc utility locally and independently in different processes. In 
SHMEM, if the program needs to allocate memory for symmetric variables, it must reserve exactly the same 
size of memory in all processes. In the future, we intend to make this transparent from SHMEM developers. 
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4.1 Dynamic Remeshing Problem 

For this application, we focus on the three main modules: Mesh Adaptor, Load Balancer, and Flow Solver, 
and then compare and contrast the MPI and CC-SAS implementations and program orchestrations th~t 
arise because of the nature of the programming models. We show that some of the differences are due to 
·reasons beyond using explicit communication messages rather than loads/stores, even though the same basic 
partitioning algorithm for load balancing and communication reduction is used. Overall, the CC-SAS model 
provides substantial ease of programming. 

Mesh Adaptor In the mesh adaptor module, all the edges of the unstructured mesh are first marked to 
indicate whether or not they need to be bisected, either based on geometric information or solution-driven 
error tolerance. However, the actual mesh refinement is delayed until after the load balancer module is 
executed. This delay has three beneficial side-effects: (i) it improves the load balance of the refinement phase 
since a larger fraction of the processors participate in the mesh adaptation, (ii) it reduces the communication 
volume needed for data remapping after the repartitioning since refinement is performed by the destination 
processors, and (iii) it increases data locality since the flow solver works on the newly-partitioned refined 
mesh. Detailed explanations of these side-effects are given in [7, 9]. 

In the MPI implementation, each process owns a submesh and maintains the necessary local data struc
tures to represent it. Thus, each mesh object (vertex, edge, element) has a local index. These local data 
structures and indices provide good data locality for the MPI program. However, in order to exchange infor
mation with other processes, each process also maintains a mapping between the local index and the global 
index (which is the index of the mesh object in the global mesh). 

In CC-SAS programs, a complete shared mesh is maintained. A potential drawback of this strategy 
is that the shared data structures cannot be easily changed without synchronization. Unfortunately, mesh 
refinement involves modifying several data structures by inserting new mesh objects and altering their re
lationships. This need for synchronization can be dramatically reduced by letting each process precompute 
its number of new vertices, edges, and elements, and applying the range to the global data structures. This 
enables the process to modify its partition of the data structures with only a few synchronizations, but at the 
cost of some additional complexity. However, MPI programs have to maintain a lot of extra data structures 
to track ownership of mesh objects and to orchestrate communication. 

Load Balancer Dynamic repartitioning to balance processor workloads is an essential phase in any par
allel adaptive mesh computation. As the numerical simulation evolves, various regions of the mesh are 
dynamically refined, leading to load imbalance that hurts the overall performance [7, 9]. Significant re
search has been done on parallel partitioning algorithms, and several state-of-the-art MPI software packages 
are currently available on the web [3, 19]. We chose ParMETIS [4] as the basic partitioner for this work 
because of its good overall performance and wide availability. 

ParMETIS is a multilevel partitioner that consists of three main phases: coarsening the graph to be 
partitioned, partitioning the coarse graph, and projecting the partitioned coarse graph back to the given 
initial graph. The coarsening is implemented by using a vertex-matching scheme where the "heaviest" edge 
incident on a vertex is collapsed. To find a match for vertices on partition boundaries, a try-confirm strategy 
is used. This is because in the MPI model, a message must be received from the remote process to confirm 
the matching, as other processes may also try to match their own boundary vertices with the same vertex. 
After the coarsening phase is complete, the coarsest graph is partitioned and the ownership of its vertices 
projected back to the initial graph. During this uncoarsening projection phase, each process reconsiders the 
ownership of its boundary vertices to reduce the overall edge cut and to further balance the workload. Due 
to private address spaces in MPI and the lack of global information, these decisions are made based on an 
incomplete local view. 

7 



A load balancer is simpler to implement in CC-SAS programs since all processes share the same global 
view. In addition, a load balancer enhances data locality, thereby reducing contention as well as the number 
of cache misses and page faults. The MPI try-confirm process in ParMETIS is no longer required as the 
communication to check for matchability is replaced by synchronization. When a process finds a matching 
vertex, it first locks it and checks whether it has already been matched. This procedure is obviously much 
easier to implement. The initial partitioning is straightforward because of the shared address space. Finally, 
when updating the ownership of boundary vertices in the uncoarsening phase, CC-SAS enables a decision 
to be made based on a consistent global view, which helps generate more balanced partitions. 

After the partitioning, data must be remapped among all the processes for the MPI implementation. 
In other words, each process may have to send/receive messages to obtain the data that corresponds to 
its assigned partition. This remapping phase is very expensive for large computational meshes.. In our 
application, remapping is performed in bulk fashion, as opposed to communicating several small individual 
messages. The advantages include the amortization of message start-up costs and good cache performance. 
The disadvantages are complexity and some extra work. Basically, data leaving a partition are first stripped 
out and placed in a buffer, then appropriately communicated, and finally integrated into the corresponding 
data structure of the destination processor. 

No explicit data remapping is necessary for program orchestration in the CC-SAS implementation. 
However, the quality of the partitioning nonetheless affects data locality. For instance, if data movement 
is minimized, most mesh objects will remain assigned to the same process before and after a partitioning, 
thereby enhancing data locality. Moreover, the new objects that are created by subdivision are not used by 
other processes during the refinement stage. 

Using a partitioner like ParMETIS rather than simply chopping off the data structures in CC-SAS guar
antees that each process is assigned a continuous submesh to work on, and that synchronization is only 
needed ori the subdomain boundaries. This greatly reduces the number of synchronization operations, and 
allows each process to obtain good temporal and spatial data locality. Otherwise, the CC-SAS implementa
tion is unable to achieve scalable performance [8]. 

Flow Solver The flow solver module consists of matrix generation and the actual numerical solver. The 
matrix generation step is application dependent, and as described in Section 2.1, a diagonally dominant pos
itive definite matrix is generated for each submesh. In the message-passing model, this requires collecting 
information from all neighbors of boundary vertices. In our implementation, the process owning a boundary 
vertex is responsible for gathering this data. In CC-SAS, there is no need for any explicit communication. 

Numerical solvers constitute an immense area of research. Our objective in this paper is to study only 
the effects of the various programming models. We have therefore selected the Conjugate Gradient (CG) 
algorithm which is the best-known Krylov subspace method for solving the linear system Ax = b. Algo
rithmic details about CG are given in [11]. In our work, we use the publicly-available Aztec library [18]. In 
the MPI version, the matrix A is partitioned by rows (each row corresponds to a vertex in the mesh) among 
the processes, based on the partitioning given by the load balancer. Each process prepares a list of the row 
indices of A that it owns, as well as those of the vectors x and b. 

The solver has been separated into two phases: matrix transformation and iterative solution. In the 
transform stage, the vertices are grouped as internal vertices (those that do not need communication with 
other processes), border vertices (those that need communication with other processes), and external ver
tices (those owned by other processes). Each process reorders its submatrix (based on internal, border, 
and external vertices in that order) into a nearly block diagonal form to obtain good data locality for the 
time-consuming iterative solution phase. In MPI programs, this involves expensive hashing, searching, and 
broadcast operations, due to all the data being in private address spaces. In Aztec, a large number of small 
messages are used for the communication. However, in our implementation, much of the vertex ownership 
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information can be provided during matrix generation without additional cost. Thus, the Aztec interface can 
be modified accordingly. Till date, we have accomplished these modifications only partially so that most of 
the matrix transformation work is still left within Aztec. We plan to complete this in the near future. In CC
SAS programs, a shared array is used to provide all the information needed by the reordering. Compared to 
MPI, the conceptual/orchestration complexity and programming effort are greatly reduced. 

The kernel of the CG iterative solver consists of a sparse matrix-vector multiply (SPMV), three vector 
updates, and three dot products. However, for many practical applications, the SPMV dominates the oper
ation count. The basic solver algorithm is similar across programming models except for the differences in 
explicit messaging versus implicit loads/stores. 

4.2 N-Body Problem 

The Barnes-Hut method [1] for solving theN-Body problem consists of three main phases: Tree-Building, 
Force Calculation, and Particle Update. For each of these modules, we compare below the MPI and CC-SAS 
implementations. 

Tree-Building Tree-building is the most complex step of the MPI implementation. In this phase, each 
processor builds a locally essential tree, which allows the force calculation phase itself to proceed without 
communication. In the first iteration, the domain is partitioned into a fixed number of particles which are 
distributed equally among the processors. Subsequent iterations use the previous distribution as the starting 
point. A popular message-passing implementation strategy uses the Orthogonal Recursive Bisection (ORB) 
partitioner [20]. We use a different approach. A cost distribution tree is computed in parallel, requiring the 
use of global communication. This cost represents the expected amount of work required to perform force 
calculation for the particles within a cell, and is used as the load balancing metric. If a cell's cost is greater 
(less) than a specified threshold, its space is recursively subdivided (collapsed) into eight (one) subspaces. 
Thus a limited global tree is created which represents the cost distributions. This tree is partitioned using the . 
costzones [16] technique, which assigns each processor a contiguous range of cells of approximately equal 
cost in Peano-Hilbert order. A data remapper uses the computed partitioning to distribute the cells and their 
corresponding particles, thereby creating a cost balanced local tree on each processor. A communication step 
is finally required to appropriately distribute the particle and cell information, thus allowing each processor 
to build its locally essential tree. 

We also implemented the ORB version in a manner similar to that reported in [5, 12], and found no 
significant performance differences with our costzones approach. Instead, using costzones allowed us to 
make easier comparisons with the CC-SAS implementation of theN-Body problem. 

The CC-SAS version of theN-Body simulation is obtained from the SPLASH-2 suite [21] and further 
optimized. The tree-building phase varies dramatically from the MPI implementation since only one global 
octree is created. Each process is responsible for those particles assigned to it based on the costs in the 
previous iteration. The global octree is built by concurrently adding particles to the single shared tree, using 
synchronization locks if necessary. When the cost (defined in costzones) of a cell exceeds a specified limit, 
that cell is dynamically subdivided into eight new subcells. To guarantee correctness, a synchronization lock 
is placed on a cell whenever a particle is inserted into it, or during cell subdivision. Unlike MPI, explicit 
communication is not required to compute the shared cost distribution tree. The particles are then partitioned 
using the costzones technique, by assigning each processor a contiguous section (in the Peano-Hilbert order
ing sense) of the global tree. This ordering strategy ensures cost balanced partitions and good data locality 
during the subsequent force calculation phase. Note that this partitioning approach is algorithmically simi
lar to that used in the MPI version; however, a data remapping phase is not required in CC-SAS. Since all 
the bodies are globally addressable, they can be reassigned to the processors without the need for explicit 
communication. 
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Force Calculation and Particle Update The force calculation is the most expensive phase of the N-Body 
problem. In this step, each body computes its force interaction with every other body (or cell) by recursively 
traversing the octree. The MPI implementation uses the locally essential tree, created in the tree-building 
phase, to perform a load balanced and communication-free force calculation. Each particle's cost is also 
kept track of, for building the cost distribution tree in the subsequent iteration. h_1 the third and final phase, 
each body updates its position and velocity based on the results of the force calculation. The message
passing version of the update phase is communication free, but suffers from some load imbalance. This 
is because the costzones partitioning scheme used in tree-building is based on the cost, not the number, of 
bodies. However, the computational overhead of the update phase is a function of the total number of bodies 
in each partition. An additional redistribution step to load balance the updates is not worthwhile, since this 
phase constitutes a relatively small portion of the overall N-Body simulation time. The SHMEM version of 
this algorithm was transformed directly from the MPI code, by replacing two-sided communications with 
one-sided communications. 

In CC-SAS, once the global shared tree has been built, the force calculation is computed in parallel 
without the need for synchronization. However, unlike the MPI version, implicit communication is required 
during this phase since the global tree is physically distributed among the processors. The particle update 
then proceeds in parallel, using the results of the force calculation. Once again, this step is synchronization 
free, but requires implicit communication. The CC-SAS update phase is also somewhat load imbalanced, 
for the same reasons as the imbalance in the MPI update. To increase data locality for the next iteration, 
bodies are reordered based on their processor assignment. The reordering step constitutes a small fraction 
of runtime, which is dominated by the force calculation. 

Overall, the CC-SAS implementation and conceptual orchestration are much simpler than MPI. Using 
synchronization locks to build a global tree in a shared address space is much less complex then creating a 
locally essential tree in a distributed-memory environment. However, the MPI force calculation and particle 
update proceed with only the use of local memory unlike the CC-SAS version which requires implicit 
communication. 

In Table 1, we list the number of essential source code lines for all three programming models for 
these two applications. Code sections for preparing test data, debugging, and comments are not included. 
SHMEM is very similar to MPI because the main difference between them is the communication model. 
The CC-SAS codes require far fewer lines due to its implicit communication that obviates the need to set 
up and maintain special data structures and communication buffers. This also leads to substantial ease in 
programming. 

Dynamic Remeshing N-Body 
Mesh Adaptor Load Balancer Flow Solver Total Total 

MPI 5,337 4,615 6,603 16,015 1,371 
SHMEM 5,579 4,100 5,906 15,585 1,322 
CC-SAS 2,563 2,142 3,725 8,430 1,065 

Table 1: The riumber"of essential source code lines for the two adaptive applications. 

5 · Performance Results 

The Origin2000 machine used for the experiments reported in this paper contains 64 300 MHz R12K MIPS 
microprocessors, and is located at Princeton University. Each processor has separate 32 KB primary instruc
tion and data caches, and a unified 8MB secondary cache with two-way associativity and a 128-byte block 
size. The entire machine has 16GB of main memory, with a page size of 16 KB. There are two processors in 
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each node sharing a non-coherent bus. Pairs of nodes are connected to a network router, and the interconnect 
topology across the 16 routers is a hypercube. 

Table 2 presents the sequential runtimes for both adaptive applications. For the Dynamic Remeshing 
problem, we simulate flow over an airfoil and geometrically refine regions corresponding to the locations 
of the stagnation point and the shocks [8]. The original mesh contains 28K triangles, and grows to ap
proximately 59K, 156K, 441K, 1M, and 1.3M triangles, through five levels of refinement. For this work, 
we study only the last four levels in detail. For example, referring to the 1.3M test case implies that the 
mesh adaptor increased the 1M-triangle mesh to 1.3M triangles. The load balancing, matrix generation, and 
ensuing iterative solution were then based on this newly-generated 1.3M mesh. For theN-Body problem, 
we also tested four cases: 16K, 64K, 256K, and 1M particles. These data sets comprise of two neighboring 
Plummer model galaxies that are about to undergo a merger [ 17]. However, unlike our Dynamic Remeshing 
simulation, each N-Body problem represents an independent experiment. One interesting parallel perfor
mance result is the superlinear speedups demonstrated by both applications in some of the test cases. This 
occurs partly because as the number of processors increases, a larger fraction of the problem fits in cache. 
The superlinear effect niay continue until the entire problem is accommodated in the combined caches of 
the processors. 

Dynamic Remeshing N-Body 
Number of Triangles Number of Particles 

156K I 441K I 1M I 1.3M 16K I 64K I 256K I 1M 
6.41 1 24.85 1 69.17 1 97.13 3.39 1 15.04 1 67.69 1 329.81 

Table 2: Sequential runtimes (in sees) for each test case of the two adaptive applications. 

Furthermore, we analyze the per-process wall-clock time by dividing it into four parts: BUSY (time 
spent in computation), LMEM (time waiting for local cache miss), RMEM (time waiting for remote com
munication), and SYNC time (time for synchronization). In CC-SAS programs, we cannot differentiate 
between LMEM and RMEM times using the available tools. Thus, we lump them together as MEM time. 

5.1 Dynamic Remeshing Problem 

The performance of the Dynamic Remeshing problem for varying numbers of triangles is presented in Fig
ure 3. In this rapidly adapting flow simulation, mesh refinement and the ensuing load balancer are invoked 
after ten iterations of the numerical solver. Future research will investigate the performance of this appli
cation under varying flow solver iteration requirements. It is important to note that a realistic application 
will consist of many mesh adaptations, and thus the solver-+ adaptor-+ load-balancer cycle. in Figure 2 will 
be executed that many times. Overall, the three programming methods show similar performance for the 
entire application across all test cases. For the smaller data sizes, MPI and SHMEM generally outperform 
CC-SAS. However, for our largest test case consisting of approximately 1.3M triangles, the CC-SAS imple
mentation has lower runtimes than the message-passing versions. 

Figure 4 presents the runtime breakdown for the 1.3M test case. CC-SAS has a lower BUSY time than 
MPI or SHMEM, but suffers from higher SYNC overheads. Also notice that the MEM time under all three 
programming models is relatively high. In order to understand the overall runtime behavior, each of the 
Dynamic Remeshing components must be examined individually. 

The mesh adaptor module is responsible for refining the mesh in specified regions in order to investigate 
localized flow phenomena in finer detail. As described in Section 4.1, this phase consists of edge marking 
and mesh subdivision. The parallel workload of the mesh adaptor is generally load imbalanced because the 
partitioning process is designed to optimize the performance of the costly flow solver phase. In MPI and 
SHMEM, each processor is responsible for refining its local region of the mesh. To build a consistent final 
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Figure 3: Runtimes (in millisecs) for the Dynamic Remeshing problem on 16, 32, and 64 processors for 
different data sets. 

mesh, coarse-grained communication is used across partition boundaries. CC-SAS, however, maintains 
a single shared mesh which is concurrently refined. The global address space allows a reduction in the 
programming complexity, but introduces a large volume of implicit communication for such irregularly 
structured computations. CC-SAS also incurs an additional algorithmic cost since synchronization locks 
are required to avoid possible race conditions during the subdivision phase. The number of synchronization 
points is minimized by precomputing the location of newly created triangles. 

Figure 5 presents the mesh adaptor runtimes for the 156K and 1.3M-triangle test cases. The distributed
memory implementation significantly outperforms CC-SAS for both data sizes due to its data locality and 
coarse-grained communication. We experimented with the CC-SAS version by reorganizing the data struc
tures in a localized fashion as in the message-passing cases. With the modifications, the mesh adaptor 
runtimes improved; however, the overall performance was unaffected as it had the same MPIISHMEM data 
remapping bottleneck. The performance difference between MPI and SHMEM is primarily in the local op-
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Figure 4: Time breakdown for the 1.3M data set size on 64 processors. 
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Figure 5: Runtimes (in millisecs) for the Mesh Adaptor module on 16, 32, and 64 processors for the 156K 
and 1.3M data sets. 

erations, and is probably caused by changes in the cache behavior due to the particular memory allocation 
method used. In fact, Figure 4 indicates that SHMEM has higher LMEM time, which may simply be a 
function of cache conflicts. For the 1.3M data set, the performance of the MPI and SHMEM mesh adaptor 
improves with larger numbers of processors. However, for almost every test case shown, CC-SAS perfor
mance degrades as the number of processors increases. The irregular nature of unstructured mesh subdivi
sion is inherently at odds with the globally shared mesh and thus causes an increase in the volume of implicit 
communication, memory latency, false sharing, and TLB misses [8]. In addition, the use of low-level syn
chronizations reduces performance for larger numbers of processors. In conclusion, the distributed-memory 
implementation of the mesh adaptor offers significant performance advantages over CC-SAS. 

The load balancing module is invoked after each iteration of the mesh adaptor, to rebalance the pro
cessor workloads and minimize interprocessor communication for the costly solver phase. Note that the 
partitioning is performed on the initial dual graph, which keeps the connectivity and partitioning complex
ity constant throughout the adaptive computation [7]. In the load balancing module, there is a significant 
algorithmic difference between CC-SAS and MPI. The MPI implementation calls ParMETIS · to compute 
a new partitioning, followed by a data remapping phase which appropriately distributes the mesh. This 
message-passing remapping phase incurs both the communication cost and the computational overhead for 
breaking down and rebuilding the data structures. In CC-SAS, a partitioning phase is used but data remap
ping is not required. Each processor is assigned its proper subdomain, but the actual data redistribution is 
performed during the transform phase of the flow solver. Thus, CC-SAS has a significant advantage during 
load balancing. 

Figure 6 presents the load balancing runtimes for the 1.3M data set. The total CC-SAS time is signifi
cantly lower than MPI and SHMEM since it does not perform data remapping. Interestingly, the CC-SAS 
ParMETIS implementation is itself also substantially faster than the original.MPI version. But partitioning 
time alone is not sufficient to rate the performance of a partitioner; one needs to investigate partitioning qual
ity as well. Partitioning quality is usually defined in two ways: the computational load imbalance factor-2 

2 The load imbalance factor is the ratio of the workload on the most heavily-loaded processor to the average load across all 
processors. 
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Figure 6: Runtimes (in millisecs) for Load Balancing (ParMETIS Partitioning and Remapping), and parti
tioning quality on 16, 32, and 64 processors for the 1.3M data set. 

and the edge cut. Figure 6 shows that the CC-SAS code gives better workload balance among the proces
sors (upto an 8% improvement) at the cost of a larger number of cut edges. Future research will examine 
shared-memory partitioning in detail. Notice that for all three paradigms, the ParMETIS time increases with 
larger numbers of processors, due to the partitioners' increased volume of computation and communication 
overheads. Finally; the data remapping time decreases with more processors. This is because remapping 
time is a function of the maximum communication among processors [7]. 

The flow solver is the most expensive module of our Dynamic Remeshing simulation. After each adap
tation and load balancing phase, the newly-generated mesh is converted to a matrix, as described in Sec
tion 2.1. A transform step then rearranges the matrix to improve data locality for the time-consuming CG 
iterative solution procedure. Recall that the number of rows and nonzeros in our matrix corresponds re
spectively to the number of vertices and edges in the underlying mesh. For example, the matrix generated 
from the 1.3M data set contains more than 488K rows and 1.9M nonzeros. The solution to this matrix re
quires 22 CG iterations. Figure 7 prese1Tts the runtimes of the numerical solver using the three programming 
paradigms for 156K and 1.3M triangles. These runtimes do not include the matrix generation overhead 
(which is about 11% of the total execution time for the largest test case running on 64 processors), since it 
is application dependent and beyond the scope of this paper. 

Overall, the runtimes of the flow solver are quite similar on all three programming models since their 
underlying algorithms are essentially identical. The implementation details, however, vary significantly. 
For the 1.3M case, there is a dramatic improvement in performance with increasing numbers of proces
sors. Partitioning the matrix into more (smaller) subdomains results in improved cache reuse and reduced 
solver times. The overhead of the transform in MPI and SHMEM is substantially higher than CC-SAS. The 
distributed-memory matrix transformation involves complex reordering based on internal, border, and ex
ternal vertices. This is necessary for efficient communication during the CG algorithm. The shared-memory 
transform, however, simply assigns a block of rows to each processor since no explicit communication is 
required. Nevertheless, SHMEM and/or MPI slightly outperform CC-SAS for the 1.3M test case. This is 
due to the efficient performance of the distributed-memory CG, which has better data locality and lower 
communication volume than the CC-SAS implementation. 
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Figure 7: Runtimes (in millisecs) for the Solver on 16, 32, and 64 processors for the 156K and 1.3M data 
sets. 

In summary, Dynamic Remeshing is an irregularly structured, dynamically adapting application, con
sisting of several distinct modules, each with its own performance characteristics. None of the programming 
models presented in this paper is best-suited for all these modules. The distributed-memory versions gener
ally have better data locality and consequently outperform CC-SAS during the mesh adaptation and iterative 
solution phases, because all the data is already in local memory. However, CC-SA.S has the advantage of a 
global address space, which reduces programming complexity and improves performance for a number of 
the modules. For example, during load balancing, the CC-SAS version of ParMETIS partitions the mesh 
faster than MPI or SHMEM. More importantly, CC-SAS does not require a remapping phase, which ac
counts for a significant overhead on large data sets. Finally, the CC-SAS transform phase of the flow solver 
outperforms both MPI and SHMEM. 

The total runtimes in Figure 3, show that the advantages of MPI and SHMEM lead to better overall 
performance for the three smallest data sets. The 1.3M test case shows the crossover point where CC-SAS 
becomes the fastest implementation. For this largest data set, the benefits of CC-SAS outweigh the advan
tages of MPI and SHMEM. Thus, none of the programming paradigms is a clear winner for this application 
in terms of overall performance. However, even though all three models use similar high-level algorithms, 
CC-SAS offers an inherent advantage by reducing the programming and orchestration overheads. 

5.2 N-Body Problem ' 

The performance of theN-Body simulation for varying data sizes is presented in Figure 8. The MPI and 
SHMEM implementations show similar behavior across all processor counts and data sets, since their un
derlying algorithms are the same. In fact, on 16 processors, all three programming paradigms have similar 
runtimes across all data sets. However, on 64 processors, performance differences between the two basic 
programming schemes begin to emerge. For the 16K data set, CC-SAS has a runtime advantage compared to 
MPI and SHMEM. All three implementations benefit from larger data sizes, but the effect is more dramatic 
for message passing. At 1M bodies, the MPI and SHMEM versions significantly outperform CC-SAS . 

. Figure 9 shows the runtime breakdown for the 16K test case using 64 processors. Here the BUSY times 
for MPI and SHMEM are significantly higher than CC-SAS. The message-passing versions require complex 
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Figure 8: Runtimes (in sees) for theN-Body problem on 16, 32, and 64 processors for different data sets. 

data movement and computations to build the locally essential tree, compared to the CC-SAS global tree 
implementation. For this test case, the CC-SAS paradigm not only simplifies the programming overhead, but 
also results in a reduced runtime. Figure 9 also shows that the MPI version suffers from high and imbalanced 
RMEM and SYNC times, compared to SHMEM. This is due to the disadvantages of having send/receive 
pairs in MPI which cause a higher communication overhead than the one-sided approach. 
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Figure 9: Time breakdown for the 16K data set on 64 processors. 
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Figure 10: Time breakdown for the 1M data set on 64 processors. 

Figure 10 shows the time breakdown for the 1M data set. The results are quite different compared to 
the 16K example. Since the data size is relatively large, the total execution time is dominated by the force 
calculation. The BUSY time for all three approaches is very similar. However, the MEM and SYNC times 
for CC-SAS are much higher than MPI and SHMEM. This is because in the message-passing implementa
tions, the locally essential tree-building time is now negligible, and the force calculation proceeds without 
the need for interprocessor communication. CC-SAS, on the other hand, uses a global shared tree which 
is physically distributed among all the- processors. This results in implicit communication during the force 
calculation which causes page faults (TLB misses) and increases memory latency. 

We can improve the performance of the CC-SAS implementation for this largest test case by locally du
plicating a subset of the remote cells. Note that this would not be a natural programming style for CC-SAS, 
and brings us closer to the message-passing style of data replication. Each processor explicitly creates a 
local copy of the remote cells which are frequently used during the force calculation. From our experiments, 
we found that the duplication can be limited to the first four levels of the tree, which is approximately 590 
(out of more than 366K) cells for the 1M data set. The improved implementation, cailed CC-SAS-NEW, is 
presented in Figure 11. Notice that CC-SAS-NEW outperforms the original CC-SAS implementation but is 

I .. 
E 
I= 

15 

10 

5 

0 
16 

MPI 
SHMEM 
CC-SAS 

32 

Number of Processors 
64 

CC-SAS-NEW 

Time (sees) 
P=16 P=32 P=64 
20.71 9.173 4.639 
19.22 8.869 4.576 
21.82 11.97 6.688 
19.70 9.983 5.287 

Figure 11: Runtimes (in sees) on 16, 32, and 64 processors for the 1M data set, including CC-SAS-NEW 
performance. 

17 



still slower than the message-passing versions. If all the remote cells required in the force calculation (not 
just a subset) were duplicated in CC-SAS-NEW, this programming strategy would effectively be the same 
as the locally essential tree of MPI and SHMEM. Thus for theN-Body problem, all three programming 
paradigms use the same algorithm to achieve best performance; however, their corresponding implementa
tions are quite different. 

6 Conclusions 

In this paper, we studied the performance of and the programming efforts for two different adaptive applica
tions (Dynamic Remeshing, N-Body) under three leading programming models (MPI, SHMEM, CC-SAS) 
on an SGI Origin2000 system. In order to keep our investigation tractable and modular, we used a layered 
approach. Results indicated that all three models mostly achieve similar performance; however, the imple
mentations differ significantly even though the same basic parallel algorithms are used. CC-SAS provides 
substantial ease of programming, and is often accompanied by performance gains. Unfortunately, CC-SAS 
currently has portability limitations and may suffer from poor spatial locality of the physically distributed 
shared data, in which case some of the programming advantages must be given up to obtain comparable per
formance. These observations are consistent with those in our previous study on regular applications [13]. 

TheN-Body simulation successfully achieved scalable performance across all three programming meth
odologies. The CC-SAS runtime on the largest test case was approximately 44% slower than MPI; however, 
the CC-SAS implementation required 22% less code. With some explicit data replication, we demonstrated 
that CC-SAS performance can be substantially improved to be within 20% of the message-passing versions. 
Further improvements are expected through more explicit control of data management. For certain projects, 
CC-SAS's programming advantages may outweigh the performance deficiencies. 

The Dynamic Remeshing problem showed comparable performance across all three programming mod
els, but did not scale well on a 64-processor machine even for the largest problem size considered. Pre
vious research examined the mesh adaptation and load balancing algorithms across various programming 
paradigms and architectures [8]. The Dynamic Remeshing simulation in this paper extended that work by . 
creating a complete adaptive application which combines a numerical solver with the original parallel mesh 
adaptation module. To understand the overall runtime behavior, each of the components must be examined 
individually. The solver phase was the most computationally expensive step and achieved scalable perfor
mance across all three programming models. However, the runtimes of the other critical modules did not 
decrease with increasing processor counts, creating a potential performance bottleneck. This was true of the 
parallel partitioner, whose computation 1md communication overheads grew with the number of processors 
across all three programming models. Another dramatic example of this slowdown behavior was seen in the 
CC-SAS mesh adaptor. For our largest test case running on 16 processors, this phase accounted for 16% of 
the overall runtime. However, on 64 processors, the CC-SAS mesh adaptation consumed more than 33% of 
the total execution time. We expect this trend to continue as the number of processors increases. These poor 
performance characteristics will be magnified in unsteady simulations which require fewer solver iterations 
between mesh adaptations. 

Achieving scalable performance for dynamic irregular applications is eminently challenging. Private ad
dress space methodologies have been making steady progress towards this goal; however, they suffer from 
complex implementation requirements. The use of a global address space greatly simplifies the program
ming task, but can degrade the performance of dynamic adaptive applications. Previous work [8] attempted 
to implement a dynamically evolving mesh adaptation code using shared-memory algorithms and OpenMP
style directives. This naive programming strategy resulted in extremely poor performance, compared to the 
MPI counterpart, since data locality issues were not properly addressed. In this paper, we have shown that it 
is possible to achieve message-passing performance using the CC-SAS programming technique by carefully 
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following the same high-level strategies. This approach focuses on spatial locality through methods such 
as data remapping and replication, which are traditionally not considered a part of the shared-memory pro
gramming paradigm. In addition, fine-grained synchronizations are generally non-scalable, and may need 
to be completely eliminated on..massively parallel systems. Future work with adaptive irregular applications 
will investigate whether CC-SAS can remain competitive with message-passing codes on larger numbers of 
processors. 
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