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 This dissertation will explore two different methods of generating enzymatically-amplified 

signals in response to cell surface features. The first method uses a variation on traditional 

catalyzed reporter deposition employing the enzyme laccase to covalently deposit a fluorescent 

ferulic acid derivative. This enzyme has distinct properties that make it more suitable for use with 

catalyzed reporter deposition in living systems. The second portion of this thesis focuses on the 

development of xanthine methylating enzymes as a reporter protein. It demonstrates how synthetic 

juxtacrine signaling receptors can be used to induce expression of enzymes capable of methylating 



xxix 

 

a variety of xanthines to produce a detectable, biocompatible small molecule reporter. This 

approach required heterologous expression of many xanthine methyltransferase enzymes in human 

cells for the first time so that their properties could be evaluated. In addition to being potentially 

useful as a reporter protein, the use of xanthine methylating enzymes in mammalian cells has 

potential connections to synthetic biology and the development of synthetic paracrine signaling 

pathways using small molecules.  
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CHAPTER 1 
 

1. Introduction  

1.1 Early Use of Tinctorial Methods in Histology 

Exogenous agents have been used since the dawn of microscopy to colorize samples to help 

visualize their features. The processes of using dyes to stain or selectively stain samples are 

referred to as tinctorial methods. Early microscopists Leeuwenhoek and Hooke both used 

cochineal, a dye extracted from cochineal beetles, to stain samples.1 Iodine was used to colorize 

starches in plants. Haematoxylin extracted from tropical logwood tree was used as a crude nuclear 

stain.1 The key feature of these dyes was that they differentially colored features within samples. 

By selectively staining some features and not others, these dyes allowed microscopists to 

distinguish cellular compartments and organelles and gain insight into their composition. Being 

able to distinguish a feature from its surroundings is essential to careful observation. 

1.2 Development of Immunofluorescence Microscopy 

 The origin of fluorescence microscopy can be traced back to 1904, when August Köhler 

made an ultraviolet light microscope for the purpose of producing higher resolution images using 

the shorter wavelength light.2 He noted the emission of light at a longer wavelength from the 

samples. This phenomenon was used to develop a microscope specifically to look at the light re-

emitted from a sample in 1911 by Oskar Heimstädt,3 but the technique did not become especially 

useful until exogenous fluorescent compounds began being added to samples.2 A rudimentary epi-

fluorescence microscope was developed in 1929 by Ellinger and Hirt which was used to image 

fluorescent fluorescein and trypaflavin in rodent tissue.  
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 The specificity of fluorescent staining took a dramatic leap forward in 1941,4 when Coons 

et al. reacted anthracene isothiocyanate with antipneumococcus I and II antibodies.5 They noted 

that this would not be useful in mammalian tissues due to the blue autofluorescence that interfered 

with observations. The following year, Coons et al. produced antibodies fluorescently-labeled with 

fluorescein isocyanate which could be easily observed in tissues.5 This method of making 

fluorescent antibodies is still in use, albeit with slight modifications (e.g. fluorescein 

isothiocyanate is used today).  

 In 1966, Graham and Karnovsky reported the first use of the antibodies labeled with the 

enzyme horseradish peroxidase for microscopy.6 Parallel work by Nakane and Pierce 

demonstrated the same principle with acid phosphatase as well as horseradish peroxidase.7 Rather 

than stoichiometrically labeling a target with a fluorophore, this technique uses the catalytic 

properties of the bound enzyme to oxidize a large amount of 3,3’-diaminobenzidine (DAB) which 

can be seen via light microscopy. The use of enzymes to enhance signal obtained from specimens 

was further developed by Bobrow, et al. in the technique of catalyzed reporter deposition 

(CARD).8 In this elaboration on the use of horseradish peroxidase, a biotinylated tyramide probe 

is deposited instead of DAB, but the initial approach was not suitable for microscopy. Later 

improvements on this technique enabled indirect9,10 and direct11 fluorescent detection using 

microscopy. These advances led to an even better ability to resolve specific, minute features and 

gain an even better understanding of biological world. 

1.3 Reporter Proteins 

 The microscopy techniques discussed above were powerful tools for studying fixed 

microscopy specimens, but were much less useful for studying dynamic, living samples. Proteins 

that have easily detected features or produce easily detected enzymatic products are known as 



3 

 

reporter proteins. Reporter proteins are immensely valuable in the study of living systems because 

they do not require an organism or tissue to be fixed and unchanging in order to detect their 

presence. In the 1980s, firefly luciferase,12 bacterial luciferase,13 and β-galactosidase14 were all 

developed as reporter proteins for biological studies. By the end of the decade, transgenic mice 

expressing luciferase were available as a new research tool.15 In 1994, green fluorescent protein 

(GFP) was first used as a reporter protein16 and unlike other reporter proteins it did not require an 

exogenous substrate. Subsequent improvement of GFP led to its proliferation in research as a 

valuable tool. Development of different colored fluorescent proteins only further increased the 

value of this class of reporter proteins.17,18 Reporter proteins have revolutionized the study of living 

organisms and will continue to be a valuable tool in the future. 

 This dissertation will explore the development of new tools for use in generating amplified 

signals from biological systems with enzymes. Recent work will be presented which demonstrates 

a derivative of CARD using laccase that has features more suitable for use in living systems. 

Additional work will be presented which documents the development of xanthine methylating 

enzymes as enzymatic reporters for mammalian cells. In conclusion, I can only adapt the closing 

sentiment3 Oskar Heimstädt from his work developing the fluorescence microscopy: if and to what 

degree my research will be used by others only the future will show. 
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CHAPTER 2 
 

2 Laccase-Mediated Catalyzed Fluorescent Reporter Deposition for Live Cell Imaging 

2.1 Abstract 

Catalyzed reporter deposition (CARD) is a widely established method for labeling 

biological samples analyzed using microscopy. Horseradish peroxidase, commonly used in CARD 

to amplify reporter signals, requires the addition of hydrogen peroxide which may perturb samples 

used in live-cell microscopy. Herein we describe an alternative method of performing CARD using 

a laccase enzyme, which does not require exogenous hydrogen peroxide. Laccase is an oxidative 

enzyme which can carry out single-electron oxidations of phenols and related compounds by 

reducing molecular oxygen. We demonstrate proof-of-concept for this technique through the non-

targeted covalent labeling of bovine serum albumin using a fluorescently-labeled ferulic acid 

derivative as the laccase re-porter substrate. We further demonstrate the viability of this approach 

by performing live-cell CARD with an antibody-conjugated laccase against a surface bound target. 

CARD using laccase produces an amplified fluorescence signal by labeling cells without the need 

for exogenous hydrogen peroxide. 

2.2 Introduction 

Laccases (EC 1.10.3.2, benzenediol:oxygen oxidoreductase) are a  family of enzymes 

which couple the reduction of molecular oxygen to the oxidation of a substrate, typically a phenol 

or aromatic amine. Laccases carry out four one-electron oxidations of its substrate and use these 

electrons to reduce oxygen to water. This process is mediated by a cluster of four copper atoms in 

its active site. Laccases are found in many organisms, notably fungi19 and plants, but also in 

insects20 and bacteria,21 and they show variable substrate specificity across species.  
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Owing to the versatile nature of the chemical transformation they carry out, laccases have 

been adopted or proposed for use in many industrial processes.22 Much of laccase’s utility in 

industry has focused on decolorizing dye23 or treating wood pulp used to produce paper.24 

Moreover, laccase has been suggested as a useful agent for treating contaminated water,25 and 

removing phenol constituents in various food or beverages26. In academic research, laccase has 

been used for the chemical transformations of small molecules,27 production of polymers,28 as an 

enzyme in ELISA,29–31 and in biosensing applications.32 This research has led to the development 

of modified laccases with a variety of properties, including stability in organic solvents33 and 

improved reactivity in biological media.34 

Catalyzed reporter deposition (CARD) is a technique that is frequently used in the 

preparation of tissues or cells for microscopy.8 In this technique, an analyte-dependent reporter 

enzyme is used to deposit an easily-detectable reporter molecule near the desired target. This is 

often achieved by modifying the enzyme with an affinity tag, typically by linking it to an antibody, 

and using it to chemically activate a biotin-labeled or fluorophore-labeled substrate.35,36 The 

activated substrate can then covalently bind to the targeted cell (Figure 2.1 A).8 Enzyme turnover 

allows for many more fluorescent labels to be deposited per antibody delivered compared to an 

antibody that has been directly labeled with a fluorescent tag. This approach has been widely used 

with horseradish peroxidase (HRP) but has also been used with other enzymes such as alkaline 

phosphatase.36  

More recently, genetically encoded engineered ascorbate peroxidase (APEX) has been 

used for amplified imaging in cells for fluorescent microscopy,37 electron microscopy,38 and 

proteomic labeling.39 Unlike typical CARD methodologies, APEX uses a genetically encoded 

reporter enzyme as a label. The addition of heme during cell culture allows for reconstitution of 
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enzyme activity that can subsequently be used to deposit a probe (e.g. biotin-phenol). Using 

reporter enzymes to provide an amplified signal for imaging and labeling has proven to be a useful 

tool in studying biological systems in many different contexts.35,39–43  

One caveat of using a peroxidase such as HRP or APEX is that these techniques use 

exogenous hydrogen peroxide as the oxidizing agent. Hydrogen peroxide has been shown to have 

a number of effects on cells at various concentrations, including inducing differentiation, 

proliferation,44 DNA lesions,45 and apoptosis.46 Even at lower concentrations, hydrogen peroxide 

is recognized to alter cell signaling,47 particularly in sensitive cells like neurons.48 These effects 

are highly dependent on the specific conditions and identity of the cells in question.49 The diversity 

of effects over a range of concentrations makes it difficult to predict what might happen upon 

addition of hydrogen peroxide to any given cell line. As a result, CARD with peroxidases can have 

limitations when used for live cell imaging. 

We hypothesized that laccase could be used to carry out CARD for live cell fluorescence 

microscopy imaging. This seemed plausible because laccase and HRP can both oxidize various 

phenolic substrates and carry out similar chemical transformations of their substrates albeit via 

distinct mechanisms.50–52 Since laccase uses oxygen as the oxidizing agent and produces water, 

cells would not be exposed to unnecessarily levels of hydrogen peroxide required by HRP. Because 

laccases oxidize their substrates to products that are identical to those produced by peroxidases, 

these products are expected to react with tyrosine residues to form adducts (Figure 2.1 B).53  
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Figure 2.1: A) Graphical depiction comparing direct labeling to CARD. The fluorescent label is covalently 

attached to the targeting group in direct labeling, whereas the fluorescent label is covalently deposited in 

the area near the target in CARD. B) Schematic representation of the way by which AF488-FA could 

covalently bind to tyrosine residues in a protein. C) Structure of AF488-FA which consists of ferulic acid 

bound to Alexa Fluor 488 via a cadaverine linker. 

2.3 Results 

To test whether laccase could serve as a suitable enzyme for carrying out CARD, we used 

two commercially available laccases derived from different organisms: Chinese lacquer tree 

(Toxicodendron vernicifluum, formerly Rhus vernicifera) and turkey tail mushroom (Trametes 

versicolor). Initial attempts at verifying previously reported enzyme activities and pH optima using 
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syringaldazine54–56 were difficult to reproduce, possibly due to the heterogenous quality of the 

enzyme preparations. Reproducibility was considerably improved by triturating the enzyme 

powder with a minimum quantity of buffer in a hand homogenizer before adding the remaining 

quantity of buffer. This suspension was then syringe filtered to remove large particles and 

concentrated via spin filtration to produce a transparent, stable solution of laccase.  

To assess the viability of using laccase to perform CARD, we selected ferulic acid as a 

suitable substrate due to its high rate of reaction with our chosen laccases.56 We designed a probe 

(Figure 2.1 C) consisting of Alexa Fluor 488 conjugated to ferulic acid via a cadaverine linker. 

The probe was synthesized by reaction of succinimidyl ferulate with Alexa Fluor 488 cadaverine 

and subsequently purified by semi-preparative HPLC. The resulting probe (AF488-FA) was 

dissolved in dimethyl sulfoxide and was used in all subsequent CARD tests. 

We tested the ability for laccase to perform CARD first in an untargeted fashion (Figure 

2.2 A). By co-incubating laccase with the probe and a soluble protein target, bovine serum albumin 

(BSA), we expected that some of the probe should be oxidized to the ferulic acid semiquinone. 

The oxidized probe could then react with tyrosine residues on the protein target, leading to 

conjugation. After performing such an incubation, the solutions were subjected to repeated 

washing and spin dialysis. Washes included both denaturing and ethanolic conditions to ensure 

that non-covalently bound AF488-FA was removed. Both laccases were found to be able to modify 

BSA in solution but T. versicolor laccase provided better conjugation yields at pH 7.0 150 mM 

phosphate buffer, 19.5 μM AF488-FA, and 0.5% (w/v) BSA (Figure 2.2 B). Variable 

concentrations of BSA showed that increasing concentrations of BSA do not noticeably increase 

non-specific binding (Figure 2.2 C). 
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Figure 2.2: A) Representation of non-targeted labeling of BSA with AF488-FA using laccase. BSA in the 

general proximity of a laccase can be covalently labeled when activated AF488-FA diffuses close to it and 

reacts with amino acid residues (e.g. tyrosine) in its structure. B) Fraction of AF488-FA bound to BSA after 

washing with various concentrations of laccase showing superior performance of T. versicolor at all enzyme 

concentrations. Refer to Supplementary Information for detailed conditions. C) Dependence of BSA 

modification on BSA concentration 

We set out to determine if laccase could be used to fluorescently label the surface of living 

cells with AF488-FA via CARD. We labeled cells with a biotinylated primary antibody followed 

by a laccase-streptavidin conjugate (laccase-SA) (Scheme 2.1 A). Our approach mimicked the use 

of a primary antibody followed by an enzyme-conjugated secondary antibody for fluorescent 

labeling of fixed cells as in CARD. The modular nature of this approach could allow the laccase-

SA to be used for other biotinylated antibodies or targets. In addition, an antibody that has laccase 

attached to it could be easily prepared by pre-incubating the laccase-SA with a biotinylated 

antibody.   
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To create the laccase-SA, streptavidin and laccase were modified with amine-reactive 

succinimidyl 6-hydrazinonicotinate acetone hydrazone (HyNic-NHS) and succinimidyl 4-

formylbenzoate (4-FB-NHS), respectively, using a Solulink protein-modification kit (Scheme 2.1 

B). The derivatized proteins were subsequently reacted with one another to yield the streptavidin-

laccase conjugate. The resulting product was found to have 1.1 laccases per streptavidin molecule 

based on the optical detection of the hydrazone formed between HyNic and 4-FB. Conjugation 

was further validated by measuring laccase enzymatic activity using syringaldazine57 as a 

colorimetric substrate. 

 

Scheme 2.1: A) A biotinylated primary antibody can interact with a target on the surface of a cell (1). The 

streptavidin moiety of a laccase-SA can bind to biotin on the primary antibody (2). Exposure to the AF488-

FA probe will cause the probe to become activated by the laccase (3). The activated probe can react with 

amino acids on the cell surface proteins nearby (4).  B) Synthesis of HyNic-modified streptavidin, 4-FB-

modified laccase, and streptavidin-laccase conjugate.  

To test laccase CARD on live cells, we chose to target epidermal growth factor receptor 

(EGFR) on the surface of A431 cells. A431 is a human squamous cell carcinoma cell line that has 
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high levels of surface-expressed EGFR.58 EGFR has been intensively studied as a therapeutic and 

imaging target, and has been used as a model system for surface receptor internalization and 

recycling.59  

For our imaging experiments, we grew A431 cells in 8-well chamber slides. Prior to 

imaging, the cells were sequentially incubated with the biotinylated anti-EGFR primary antibody 

at 4 °C for 30 min, laccase-SA for 15 min at room temperature, and the AF488-FA in phosphate 

buffer at 37 °C for 30 min. The low temperatures were used to minimize receptor internalization.60 

As a comparison, cells were also treated with commercial Alexa Fluor 488-labeled streptavidin 

(SA-488) (4 fluorophores/protein) using the same duration, temperature,  and concentration of 

streptavidin as was used for the streptavidin-laccase conjugate. The confocal fluorescence 

microscopy images of these cells indicate substantial signal amplification of the laccase-SA and 

AF488-FA treated cells compared to the Alexa Fluor 488-streptavidin conjugate (Figure 2.3 A 

and Figure 2.7). 

We set out to quantify the amplified fluorescence signal produced by this method for a 

population of cells. Cells were grown in a black-bottomed 96-well culture plate and were 

fluorescently labeled with laccase/AF488-FA or SA-488. The cells were fluorescently labeled 

using the same methods as were used for microscopy. The total fluorescence for each well was 

measured on a plate reader (Figure 2.8). These data also indicate that the total fluorescence was 

greater for the laccase-SA treated cells than for the SA-488 treated cells. This indicates that the 

quantity of fluorophores deposited per cell and thus the total fluorescence was amplified relative 

to the stoichiometric labeling method. These results could be readily improved with further 

research and optimization of conditions such as concentration of AF488-FA, duration of 

incubation, or identity of the fluorescent substrate.  
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To qualitatively assess the specificity of this approach in a mixed cell population, we 

labeled and imaged co-cultured cells. A431 cells (+EGFR) and mCherry-expressing HEK293 cells 

(-EGFR) were grown together in chamber slides and were prepared in the same manner as other 

live-cell imaging experiments. The epifluorescence microscopy images obtained (Figure 2.4 B 

and Figure 2.9) show that the EGFR-expressing A431 cells (-mCherry) show high levels of probe 

deposition by AF488-FA whereas the EGFR-deficient HEK293 cells (+mCherry) do not. This 

demonstrates that CARD with laccase can selectively label live cells expressing a target of interest 

in mixed cell populations.   

We then tested whether CARD with laccase changes the uptake of epidermal growth factor 

(Figure 2.10). A431 cells were labeled with laccase, as before, but were subsequently treated with 

20 ng/μL Alexa Fluor 555 EGF Complex (EGF-AF555) for 1h at 4 °C to allow EGF-AF555 to 

bind. Cells were then incubated at 37 °C for 30 minutes to elicit endocytosis.61 Confocal 

microscopy of these cells shows that the overall signal is diminished in cells treated with the anti-

EGFR antibody compared to those without. Puncta are observed in both cases, but this suggests 

that the primary anti-EGFR antibody used for CARD with laccase reduces the overall intensity of 

EGF-AF555 signal observed. As a result, CARD with laccase could plausibly inhibit EGF 

signaling to some degree. This observation is likely caused by a combination of two factors: direct 

antibody interference with the EGF binding site on EGFR and receptor endocytosis during laccase 

labeling.62 Optimization of the amount of primary antibody needed could potentially improve EGF 

receptor/ligand binding.  
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Figure 2.3: A) Confocal microscopy images of A431 cells treated with biotinylated anti-EGFR primary 

antibody followed by either laccase-SA/AF488-FA or SA-488. Control cells (“-1° Ab”) were subjected to 

the same conditions but without the primary antibody. Scale bar = 50 µm. B) Epifluorescence microscopy 

images of merged AF488 and mCherry channels of co-culture of A431 cells and mCherry-expressing 

HEK293 cells. Scale bar = 50 µm All microscopy images here are window-leveled identically. 

2.4 Conclusions 

We have demonstrated that laccase can be used to fluorescently label proteins via CARD. 

Antibody-targeted laccases enable biomarker dependent amplification of imaging signals. We 
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selectively labeled live cells with AF488-FA and imaged them without fixation, even in the 

presence of other cell types. This technique allows for signal amplification in a manner akin to 

APEX or CARD with horseradish peroxidase, but it does not require exogenous hydrogen 

peroxide. While this improvement does not obviate potential issues with covalent modification 

proteins in situ, it removes a barrier to using CARD in live cells. With further evaluation of other 

laccases and laccase substrates, this technique could be modified to accept different reporter 

substrates and have improved reactivity, optimal pH, ion sensitivity, etc. We envision that laccase-

based CARD techniques could be potentially useful for many labeling applications and could serve 

as a basis for an improved method of performing amplified reporter deposition of live cells in 

biomarker fluorescence imaging, electron microscopy, and proteomics. 

2.5 Experimental Procedures 

2.5.1 Materials and Instrument Details 

Laccases (Trametes versicolor and Toxicodendron vernicifluum), syringaldazine, 

dicylcohexylcarbodiimide solution, and THF purchased from Sigma Aldrich (St. Louis, MO). 

trans-Ferulic acid was purchased from Tokyo Chemical Inc. (Tokyo, Japan).  All other reagents 

and solvents were obtained from Fisher Scientific. Solulink Protein-Protein Conjugation kit (S-

9010) was purchased from TriLink Biotechnologies (San Diego, CA).  Biotinylated anti-EGFR 

antibody clone 528 (#MA5-12872), AlexaFluor 488-cadaverine, streptavidin-AlexaFluor 488, and 

AlexaFluor 555 EGF Complex (EGF-AF555) were purchased Thermo Fisher (Waltham, MA). 

Fetal bovine serum (FBS) was purchased from Corning (Corning, NY). All unspecified products 

(e.g. buffer components, etc.) were purchased from Fisher Scientific (Waltham, MA). 

pHR_Gal4UAS_tBFP_PGK_mCherry63 was a gift from Wendell Lim (Addgene plasmid # 

79130). pLP1 (gal-pol) and pLP2 (rev) were obtained from Invitrogen (Waltham, MA). pCMV-G 
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was obtained from the Friedmann lab.64  No unexpected or unusually high safety hazards were 

encountered. 

UV-Vis spectroscopy for BCA assay, fluorophore concentration determination, and 

kinetics assays were performed on a Nandrop 2000 (Thermo Fisher, Waltham, MA).   

Reverse-phase HPLC purification was performed using an Agilent 1100 series Infinity 

HPLC (Santa Clara, CA). Agilent Zorbax SB-C18 semi-prep column (ID 9.4 x 250 mm, 5 µm, 80 

Å) using a water/acetonitrile gradient containing 0.1% trifluoroacetic acid using a variable 

wavelength detector wavelength of 495 nm. High resolution mass spectroscopy was collected on 

an Agilent Infinity 1260 LC and tandem Agilent 6230 high resolution time of flight (TOF) mass 

spectrometer managed by the UCSD Department of Chemistry and Biochemistry Molecular Mass 

Spectroscopy Facility.  

Confocal fluorescence microscopy imaging was performed on an Axio Observer Z1 

motorized inverted microscope (Carl Zeiss Microscopy GmbH, Germany) with Yokogawa CSU-

X1 spinning disk confocal unit to and an Evolve 512x512 EMCCD camera (Photometrics, Canada) 

using ZEN imaging software (Carl Zeiss Microscopy GmbH, Germany). Fluorophores were 

excited with laser diodes (488 nm; 30 mW). Epifluorescence microscopy imaging for coculture 

experiments was performed on an Axio Observer D1 inverted microscope (Carl Zeiss Microscopy, 

GmbH, Germany) with an Axiocam MRm camera (Carl Zeiss, Microscopy, GmbH, Germany) and 

an HBO-100 mercury arc lamp epifluorescence source (Carl Zeiss Microscopy, GmbH, Germany). 

A 49008 ET mCH/TR filter cube (Chroma Technology Group, Bellows Falls, VT) and 38 HE filter 

cube (Carl Zeiss Microscopy, GmbH, Germany) were used for imaging of fluorophores. Images 

were processed using Image J65 with Fiji.66 Microscopy images shown in a given figure are 

window-leveled in the same manner as one another.  
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2.5.2 Synthesis of N-succinimidyl ferulate (NHS-FA) 

 

Scheme 2.2: Synthesis of N-succinimidyl ferulate 

 

250 mg of ferulic acid (1.27 mmol, 1 eq.) and 146 mg (1.26 mmol, 1 eq.) of NHS were 

dissolved in 5 mL tetrahydrofuran. This solution was chilled over ice and 1.91 mL (1.91 mmol, 

1.5 eq.) of 1 M dicyclohexyl carbodiimide (DCC) was added to the reaction. The reaction was 

monitored with TLC (1:1 hexane:ethyl acetate). After 24 hours, the reaction filtered over a medium 

frit and rotary evaporated to dryness. The residue was suspended in methylene chloride causing 

formation of a white precipitate. The solution was filtered through a short plug of silica and 

purified by column chromatography (1:1 hexane:ethyl acetate).  
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2.5.3 Synthesis of AlexaFluor 488-cadaverine-ferulate (AF488-FA) 

 

Scheme 2.3: Synthesis of AlexaFluor 488-cadaverine-ferulate (AF488-FA) 

 

Solutions of AlexaFluor 488-cadaverine and NHS-FA in DMF were prepared at 2.0 mg/mL 

and 1.0 mg/mL, respectively. 100 μL (0.31 μmol) of the AlexaFluor 488 cadaverine solution, 180 

μL (0.65 μmol, ~2 eq.)  of the NHS-FA solution, and 8 μL (0.046 μmol, 0.15 eq.) of 

diisopropylethylamine were combined and incubated at 45 °C for 8 hours while shaking. The 

solution was concentrated in vacuo, dissolved in acetonitrile, and purified by HPLC. Recovered 

yield: 0.13 mg (53%) as determined by UV-Vis spectroscopy.  HRMS (ESI-TOF) calculated for 

[C36H33N4O13S2]
- ([M]-) 793.1491, found 793.1484 (Figure 2.4) 

Table 2.1: HPLC gradient conditions for purification of A488-FA 

Time[a] Water +  

0.1% TFA 

Acetonitrile + 

0.1% TFA 

0 min 95% 5% 

5 min 80% 20% 

12 min 70% 30% 

15 min 70% 30% 
[a] The product eluted at approximately 12-12.4 min. 
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2.5.4 High-Resolution Time-of-Flight Mass Spectrometry of AF488-FA 

 
Figure 2.4: HRMS spectrum of AF488-FA 

 

Table 2.2: HRMS results data for AF488-FA 

Mass 

Measured 

Theoretical 

Mass 

Delta 

(ppm) 
Composition 

793.1484 793.1491 -0.9 [C36H33N4O13S2]- 

 

2.5.5 Laccase Resuspension  

Laccase was brought into solution prior to modification and conjugation. To suspend, 

laccase was triturated with warm (~37 °C) buffer (typically pH 7.0 150 mM sodium phosphate 

buffer) in a Dounce homogenizer. Buffer was added in small portions and removed, being careful 

to not pipet any enzyme powder that remains undissolved. This was continued until all buffer had 

been thoroughly triturated with the enzyme. The resulting suspensions were dark and turbid with 

[M]-  
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some visible sediment. These were incubated at 37 °C for 1 hour with gentle shaking. After 

incubating, the samples were centrifuged at 5,000 rcf for 5 minutes. The supernatant was syringe 

filtered with a 0.22 micron filter to remove large particles. The resulting transparent, light 

brown/yellow solution was concentrated with a centrifuge filter (e.g. Amicon Ultra 10 kDa or 

similar) to produce a dark yellow-brown solution that lacked turbidity. This solution was stable 

for 1 month at 4 °C without significant loss of activity.  

Protein concentration of these solutions were determined with BCA assay and enzymatic 

activity was determined with a syringaldazine assay.  

2.5.6 Syringaldazine Laccase Activity Assay 

A 0.216 mM solution of syringaldazine was prepared in methanol. Laccase was suspended 

in an appropriate buffer at the desired pH.  2.2 mL of buffer and 0.5 mL of laccase solution were 

added to a UV-Vis cuvette with a stir bar and the solution was allowed to reach 37 °C in a UV-Vis 

spectrometer. Upon equilibration, 0.3 mL of the 0.216 mM syringaldazine solution (pre-warmed 

to 37 °C) was added and A530 was measured every 5 seconds for 10 minutes. From the linear 

portion of the resulting graph, units of laccase activity was calculated as follows:  

 

Figure 2.5: Equation for determining laccase activity 

 

This same protocol can be adapted to a microscale format where measurements of 2 

microliter samples are taken at longer time intervals on the pedestal of the Nandrop instead of in a 

cuvette. The above equation can be used slight alteration. Care should be taken to use 1 cm 

absorbance measurements instead of 1 mm absorbance measurements in this case.  
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2.5.7 Kinetic data of T. versicolor and T. vernicifluum 
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Figure 2.6: Representative kinetic curves of T. vernicifluum and T. versicolor at final concentration of 

0.0167 mg/mL in 3 mL pH 7.0 150 mM sodium phosphate buffer with 10% MeOH, and 0.0216 mM 

syringaldazine at 37 °C. 

If too many units of laccase are added to this assay, the absorbance from the colored 

product will begin to disappear over the observation scale of a kinetics experiment as the product 

is likely further oxidized. In this case, the amount of enzyme added to the assay and it should be 

decreased and the assay repeated.  

2.5.8 Non-targeted BSA Labeling Assay 

Variable enzyme concentration experimental conditions: Incubation conditions: pH 7.0 

phosphate buffer, 37 °C, 90 min, 19.5 µM AF488-FA, 0.5% (w/v) BSA.  The sample was then 

concentrated and subsequently washed in a 30k MWCO spin filter with: 1 × 8M urea, 1 × 50%(v/v) 

EtOH in pH 7.0 phosphate buffer, 5 × pH 7.0 phosphate buffer. Concentration of bound and 

unbound AF488-FA was determined spectrophotometrically using UV-Vis.  

Variable BSA experimental conditions: Same as above but a fixed concentration of enzyme 

at 0.1 mg/mL final concentration.   
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2.5.9 Protein-Protein Conjugation 

A slightly modified version of the SoluLink protein conjugation protocol was followed. In 

brief: The proteins to be modified were suspended/buffer exchanged into 250 mM sodium 

phosphate pH 8.0 and protein concentration was determined with BCA assay. The protein was 

concentrated to a >2 mg/mL for optimal reaction. The manufacturer-provided protein-conjugation 

excel spreadsheet was used to determine the amount of the S-4FB and S-HyNic reagents to add 

using a 10x excess of the succinimidyl ester. S-HyNic was reacted with laccase and S-4FB was 

reacted with streptavidin. They were incubated for 4 hours.  

After reaction, the proteins were desalted using a buffer exchange column into pH 6 150 

mM sodium phosphate. Protein concentration was determined using BCA assay and degree of 

modification was assessed by UV-Vis (as per manufacturer instructions). Modified laccase and 

streptavidin were combined at a 1:2 ratio and incubated at room temperature overnight. It is critical 

to not add the TurboLink catalyst. This catalyst is aniline based and will act as a substrate to laccase 

under the reaction conditions causing formation of a dark polymeric precipitate.  

Resulting product was subjected to spin filtration with a 100kD MWCO to eliminate 

unconjugated laccase. UV-Vis was used to estimate degree of labeling of the proteins. Protein 

concentration was determined with BCA assay. Activity per mg of protein was determined with 

the syringaldazine laccase assay to further validate the degree of labeling determined by UV-Vis. 

2.5.10 Cell Culture 

A431, HEK293, and HEK293T cells (American Type Culture Collection), were cultured 

in DMEM with glutamine and pyruvate (GIBCO Thermo Fisher, Waltham, MA) 10% FBS 

(Corning, Corning, NY).  Cells were detached for passaging using TrypLE Express (Thermo 
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Fisher, Waltham, MA). LabTekII 8-well chamber slides were purchased from Nunc (Thermo 

Fisher, Waltham, MA).  

2.5.11 Lentiviral Production and Transduction 

HIV1-based lentivirus vectors were produced by transient co-transfection of HEK293T 

cells. HEK293T cells in ten 150 mm dishes were co-transfected by polyethyleneimine (PEI) 

method with pHR_Gal4UAS_tBFP_PGK_mCherry, pLP1 (gal-pol), pLP2 (rev), and pCMV-G1.  

12 µg of pHR_Gal4UAS-tBFP_PGK_mCherry, 12 μg pLP1, 10 μg pLP2, 6 μg pCMV-G, and 90 

μg PEI were used per 150 mm plate. Conditioned media at day 1, 2, and 3 post-transfection were 

collected, filtered through a 0.45 micron filter, and concentrated by centrifugation at 7000 rpm for 

16 hours at 4 °C with a Sorvall GS-3 rotor. The resulting pellets were resuspended with buffer 

containing 10 mM Tris HCl, pH 7.8, 1 mM MgCl2, and 3% (w/v) sucrose.  

HEK293 cells were transduced with the resulting lentivirus by adding 30 microliters of 

concentrated virus to the HEK293 cells that were grown in a single well of a 24-well plate with 1 

mL of DMEM with 10% FBS. The medium was changed after 2 days. Fluorescence revealed 

mCherry expression was sufficient for co-culture experiments.   

2.5.12 Live-Cell Microscopy Protocol 

Cells were grown in 8 well chamber slides (Nunc LabTek II) to a desired confluency (~70-

90%). Culture medium was removed carefully by gently aspirating it from the corner of a slide 

with a pipette while tilting the slide. Being gentle is important as to not disrupt the monolayer of 

cells. Cells were incubated with biotinylated anti-EGFR antibody at a concentration of 0.002 

mg/mL in whole media (including FBS) at 4 °C for 30 min. Longer incubation times can be used 

to improve labeling, but the kinetics of EGFR receptor internalization do not allow for particularly 

long labeling times (e.g. overnight at 37 °C). The cells are then washed three times by gentling 
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rocking them in room temperature Ca- and Mg-free Hank’s Balanced Salt Solution. The 

supernatant is aspirated and replaced with either streptavidin-AlexaFluor 488 (SA-488) or the 

laccase-streptavidin conjugate.   

The laccase-streptavidin conjugate was added to each well to a final concentration of 0.002 

mg/mL. SA-488 was added to a final concentration of 0.00084 mg/mL. This concentration 

corresponds to an equivalent concentration of streptavidin as the laccase-streptavidin. These were 

incubated at room temperature for 15 min and then the cells were washed as before. For SA-488-

treated cells, the media was replaced with pH 7 phosphate buffer. For laccase-streptavidin treated 

cells, the media was replaced with AF488-FA at 19.5 μM in pH 7 phosphate buffer. The samples 

were then incubated for 30 min at 37 °C. They were then washed as above and pH 7.4 phosphate 

buffered saline was added. The cells were then promptly imaged.  

For fluorescent labeling experiments with EGF-AF555, after labeling cells with laccase, 

cells are washed with ice cold PBS and 20 ng/ µL EGF-AF555 in cold 0.3% (w/v) BSA in DMEM 

and cells were incubated for 1hr at 4 °C. Cells were then incubated at 37 °C for 30 minutes to 

promote receptor endocytosis.   
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2.5.13 Microscopy of Laccase-Streptavidin with AF488-FA and Streptavidin-Alexa Fluor 

488 

 
Figure 2.7: A) Fluorescence confocal microscopy images of signal amplification from probe deposition by 

laccase-streptavidin as compared to streptavidin-AlexaFluor 488. Images are taken under the same 

conditions and window-leveled identically. B) Images brightened to show similar pattern of fluorescence 

labeling for both SA-488-labeled and AF488-FA. Scale bar = 50 μm.  
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2.5.14 Plate reader assay of Laccase/AF-488 and SA-488 cells 

 
Figure 2.8: Bulk fluorescence measurements of cells obtained with a fluorescence plate reader, after being 

treated by the same method used for microscopy.  
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2.5.15 Representative Co-Culture Microscopy Images 

Figure 2.9:  More example representative images of mCherry-expressing HEK293 (red) and AF488-FA 

labelled A431 cells (green). The top row of images are at 20x magnification and the lower row are at 40x 

magnification. All fluorescent images were acquired with epifluorescence microscopy.   
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2.5.16 Fluorescent Epidermal Growth Factor Internalization Microscopy Images 

Figure 2.10:  Confocal microscopy images of A431 cells treated with biotinylated anti-EGFR primary 

antibody followed sequentially by laccase-streptavidin, AF488-FA, and EGF-Alexa Fluor 555 conjugate. 

Cells were incubated for 30 minutes at 37 °C to elicit endocytosis. Control cells (“-1° Ab”) were subjected 

to the same conditions but without the primary antibody. Scale bar = 25 µm. All microscopy images here 

are window-leveled identically. 
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 Chapter two, in full, is a reprint (with co-author permission) of the material as it appears in 

the publication: Cisneros, B. T., Devaraj, N. K., Laccase-mediated catalyzed fluorescent reporter 

deposition for live cell imaging. ChemBioChem 2019, 20. I would like to thank Neal Devaraj for 

his scientific oversight and assistance in preparing the manuscript. The author of the dissertation 

is the primary author of this manuscript.  
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CHAPTER 3 
 

3 Heterologous Expression of Methylxanthine Synthesis Enzymes in Mammalian Cells and 

Use as a Reporter Protein 

3.1 Abstract 

This work makes progress toward the development of methylxanthine synthesis enzymes 

as reporter enzymes that can produce a detectable small molecule output for use in mammalian 

cells. Previously, a variety of enzymes involved in caffeine synthesis (methylxanthine synthesis 

enzymes) from plants have been characterized in vitro and have been heterologously-expressed in 

yeast or bacteria. In this work, I heterologously express caffeine synthesis enzymes from tea, 

coffee, and guarana in human cells. I show that they have similar patterns of activity with a set of 

xanthine substrates in human cells as they do in vitro. I show the effect that several structural 

modifications have on the function of some of these enzymes. I demonstrate that the activity of 

these enzymes can be used as a reporter for juxtacrine cell-cell signaling by coupling the 

expression of methylxanthine synthesis enzymes to synNotch activation by surface-expressed GFP 

on adjacent cells.  

3.2 Introduction 

This project attempted to solve some of the problems faced when using laccase for 

amplified imaging. Although catalyzed reporter deposition using laccase can generate an 

amplified, detectable signal in response to a cell surface marker,67 its ability to selectively deposit 

a probe is limited by the properties of the antibody used for targeting. For the in vitro and in vivo 

labeling of rare targets, background will contribute a disproportionate amount to the signal 
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observed.68 Given that human immune cells can respond with sensitivity and specificity to their 

specific targets, I had the larger overall vision of using engineered cells, akin to those used in CAR-

T immunotherapy for cancer, as a vector for a receptor-reporter system that could be used to 

detecting cell surface targets in a large animal target. Unfortunately, the most obvious reporter 

choices—luciferase and fluorescent proteins—are unsuitable for use in large animal models.69,70 

As such, I sought an enzymatic reporter capable of producing a small molecule that could be 

detectable in the blood or urine instead of a reporter that would generate light. This led me to the 

study of caffeine synthesis, as these small molecules were known to be non-toxic enough for 

humans to consume willingly. 

3.3 Background 

Xanthine is ubiquitous in life as a degradation product of the purine bases found in DNA. 

Xanthine has three nitrogen atoms that can be methylated (at positions 1, 3, and 7, respectively). 

As such, methylxanthines as a group (Figure 3.1) includes monomethylxanthines (1-

methylxanthine, 3-methylxanthine, 7-methylxanthine), dimethylxanthines (1,3-dimethylxanthine, 

1,7-dimethylxanthine, and 3,7-dimethylxanthine), and 1,3,7-trimethylxanthine. The methylated 

derivatives of xanthine are of significant human interest.  

Several methylxanthines have notable pharmacologic properties that are of relevance to 

humans: theophylline, theobromine, and caffeine particularly. Theophylline and its derivatives are 

used in medicine often for their effects on the respiratory system or as stimulants.71 Theobromine 

is a mild stimulant found in chocolate.72 Caffeine is a stimulant drug and is by far the xanthine 

derivative of most interest to people. It is consumed by roughly 85% of Americans on a daily 

basis73 and the cultivation of caffeine-containing plants is of immense economic value in the 
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present day and historically.74 As summarized75 by poet Dale Pendell: “Every office, large or 

small, has its shrine, however modest, to the coffee plant.”  

 

Figure 3.1: Structures of the xanthine derivatives pertinent to this research 
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A majority of caffeine consumed by people is derived from coffee (Coffea spp., namely 

Coffea arabica) with most of the remainder coming from tea (Camellia sinensis), and a smaller 

contribution yet from other plants like guarana (Paullinia cupana) and yerba mate (Ilex 

paraguariensis).76 While humans have developed ethnobotanical relationships with these plants in 

the distant past, there are many other species that are not consumed for their pharmacological 

properties that produce caffeine and a menagerie of methylxanthines metabolites.  

Despite being found in many plants, the species that produce caffeine prodigiously are not 

close relatives of one another.77 Within those plants, enzymes performing different steps of the 

caffeine biosynthesis are more closely related than enzymes which perform the same step in 

different organisms.78 This suggests that caffeine synthesis has arisen multiple times by way of 

convergent evolution by co-opting enzymes that carry out other functions in plants (e.g. production 

of odorants or hormones). Work in comparative genomics and evolutionary reconstruction of 

ancestral enzymes has produced strong evidence in support of this view.78–81  

The study of enzymatic production of caffeine began with examinations of plant extracts 

to identify the location of purine alkaloids82 followed by studies examining the various enzymatic 

transformations that plant extracts could perform.83 Careful study of individual transformations 

led to the identification of the major enzymes and their genes in coffee, tea, and guarana.84–90 More 

recently, genome sequencing data has become available and is being used to build a more thorough 

understanding of the enzymes involved in caffeine synthesis.79–81,91–93 Because this work will not 

be focused on the nuances of caffeine production and regulation in plants, I will limit the discussion 

to the dominant enzymes in coffee, tea, and guarana (Scheme 3.1 and Scheme 3.2).  

In coffee, the dominant pathway involves conversion of xanthosine to 7X (I), 7X to 37X 

(II), and 37X to 137X (III). This is carried out by CaXMT1 (Coffea arabica xanthosine 
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methyltransferase 1, also known as CaXRS1), CaMXMT (Coffea arabica methylxanthine 

methyltransferase), and CaDXMT (Coffea arabica dimethylxanthine methyltransferase). Coffee 

additionally contains the multi-functional enzyme CCS1 (coffee caffeine synthase 1) which can 

perform carry out steps II and III, but this enzyme does not appear to be primarily responsible for 

caffeine production in coffee.89 In tea, TCS2 (tea caffeine synthase 2) carries out step I and TCS1 

(tea caffeine synthase 1) carries out steps II and III. In guarana, steps I-III are carried out by PcCS1 

(Paullinia cupana caffeine synthase 1), PcCS2 (Paullinia cupana caffeine synthase 2), and PcCS 

(Paullinia cupana caffeine synthase), respectively.78 All these methylating enzymes use S-

adenosylmethionine (SAM) as a methyl donor. 

 

Scheme 3.1: Pathway for biosynthesis of caffeine in tea and coffee. The cleavage of ribose from 7-

methylxanthosine after step I is not shown, as the mechanistic details are yet unknown.   

 

 

Scheme 3.2: Pathway for the biosynthesis of caffeine in guarana 
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 After key enzymes and pathways were identified, researchers attempted to reconstitute 

caffeine synthesis pathways in E. coli94,95 and S. cerevisiae.95,96 Several of these attempts were 

successful at generating large quantities of caffeine from liquid cultures of bacteria or yeast using 

glucose as a starting material. The overall simplicity of the caffeine synthesis pathway and the 

successful reconstitution of it in other organisms suggested to me that it may be feasible to 

introduce this pathway to mammalian cells.  

3.4 Heterologous Expression of Methylxanthine Synthesis Enzymes  

I set out to determine if caffeine synthesis enzymes could be heterologously expressed in 

mammalian cells. Several methylxanthine synthesis enzymes from three plants were chosen to 

potentially express in mammalian cells: CaXMT1, CaMXMT, CaDXMT, CCS1 from Coffea 

arabica; TCS1 and TCS2 from Camellia sinensis; and PcCS from Paullinia cupana. In addition, 

I chose to express two putative ancestral enzymes CamelliaAncCS and PaulliniaAncCS2, hereafter 

referred to as CsAncCS and PcAncCS2, respectively. Previous work suggested that these two 

enzymes may possess the ability to produce some quantity of paraxanthine.97 This activity has not 

been previously observed in any known xanthine methylating enzymes. The whole set enzymes 

chosen ought to cover a wide range of transformations in the pathways for methylating xanthines.  

Table 3.1: Dominant methylation activity of natural xanthine methylating enzymes 

Source Enzyme 
Dominant Reaction(s) 

N-7 methylation N-3 methylation N-1 methylation 

Coffea arabica 

CaXMT1 XR → 7X - - - 

CaMXMT - - - 7X → 37X 

CaDXMT - - 37X → 137X - 

CCS1 - 17X → 137X 37X → 137X 7X → 37X 

Camellia sinensis 
TCS2 XR → 7X - - - 

TCS1 - 17X → 137X 37X → 137X 7X → 37X 

Paullinia cupana PcCS - - 37X → 137X - 
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 I then constructed expression vectors for each of the chosen enzymes. I chose to use pSBBi-

RP and pSBBi-GB98 as a basis for my vectors due to several advantages for future studies. The 

expression cassette within pSBBi vectors is part of a Sleeping Beauty transposon, allowing it to 

be stably integrated into the host cell’s genome in the presence of Sleeping Beauty 

transposase.99,100 The cassette encodes constitutive expression of a selectable antibiotic resistance 

gene and a fluorescent protein as well as a constitutive expression of a gene-of-interest. This allows 

for rapid generation of stable cell lines as well as the ability to include multiple, independent 

antibiotic selectable markers or fluorescent reporters in a single cell, if so desired. 

 I then produced stable cell lines expressing each of the xanthine methylating enzyme genes 

I had chosen to study. I transiently transfected human embryonic kidney cells, HEK-293T, with 

each plasmid and pSB100X101 to stably integrate the specific methyltransferase gene into the cells’ 

genomes. I then performed an antibiotic selection using puromycin or blasticidin (for pSBBi-RP 

and pSBBi-GB plasmid variants, respectively). All enzymes were inserted into the pSBBi-RP 

backbone except for CaXMT1 and TCS2 which were inserted into pSBBi-GB. This was done to 

enable more facile co-expression and orthogonal selection for future researchers. All cells 

produced showed strong and stable integration of the transposon as observed by fluorescence 

microscopy. Pellets of the transduced cells were visibly tinted from the fluorescent reporter protein 

as well. Doubling time slightly slowed across all transduced lines, but cell morphology remained 

unchanged. Because all of these enzymes were expressed in HEK-293T cells, cells will be referred 

to simply by the enzyme name, e.g. CCS1 cells.  

3.5 Xanthine Methyltransferases Are Functional in Mammalian Cells 

 With cell lines successfully expressing my chosen xanthine methylating enzymes, I then 

set out to determine if these enzymes were active in human cells and if their observed 
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methyltransferase activities were consistent with those observed in vitro for these enzymes. To do 

this, I grew cells in 12-well plates and exposed them to a fixed concentration (200 µM) of each of 

the following substrates: xanthine (X), 1-methylxanthine (1X), 3-methylxanthine (3X), 7-

methylxanthine (7X), 1,3-dimethylxanthine (13X, theophylline, or TPH), 1,7-dimethylxanthine 

(17X, paraxanthine, or PX), 3,7-dimethylxanthine (37X, theobromine, or TBR), and xanthosine 

(XR) (for enzymes with expected activity against this substrate). After 72 h of growth, the 

supernatant was harvested and analyzed by high performance liquid chromatography.  

Table 3.2: Expected Methylation of Xanthine Substrates by Methyltransferase Enzymes 

 1-N Methylation 3-N Methylation 7-N Methylation 

Substrate X 3X 7X 
37X 

(TB) 
X 1X 7X 

17X  

(PX) 
XR 1X 3X 

13X  

(TP) 
CaXMT186         +    

CaMXMT86,102       + +     

CaDXMT86    +   + +     

CCS189  +  +  + + +     

TCS278 + + +     + + + + + 

TCS184  +  + + + + +    + 

PcCS85    +   +      

CsAncCS97 +  +  +  +      

PcAncCS297   +  +  +    +  

Product    1X 
13X 

(TP) 

17X 

(PX) 

137X 

(CAF) 
3X 

13X 

(TP) 

37X 

(TB) 

137X 

(CAF) 
7X 

17X 

(PX) 

37X 

(TB) 

137X 

(CAF) 

Table 3.3: Observed Methylation of Xanthine Substrates by Methyltransferase Enzymes. “+” indicates 

observed activity, “-” indicates unobserved activity, “tr.” indicates trace activity, filled dark grey squares 

indicate tests were not performed, and boxed squares indicate a discrepancy with previous reports.  

 1-N Methylation 3-N Methylation 7-N Methylation 

Substrate X 3X 7X 
37X 

(TB) 
X 1X 7X 

17X  

(PX) 
XR 1X 3X 

13X  

(TP) 
CaXMT1 - - - - - - - - + - - - 

CaMXMT       +      

CaDXMT - - - + - - + + - - - - 

CCS1 - + - + - + + + - - - - 

TCS2 - - - - - - - tr. + - tr. - 

TCS1 - + - + + + + + - - tr. + 

PcCS - - - - - - - - - - - - 

CsAncCS + tr. tr. - + - + - - - - - 

PcAncCS2 tr. - tr. - + - + - - - + - 

Product 1X 
13X 

(TP) 

17X 

(PX) 

137X 

(CAF) 
3X 

13X 

(TP) 

37X 

(TB) 

137X 

(CAF) 
7X 

17X 

(PX) 

37X 

(TB) 

137X 

CAF 
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The activity for each enzyme to the given substrates consistent with previous 

reports in the literature. Several reported activities for various substrates were not observed 

likely due to the low reported activity with the enzyme for those substrates (e.g. TCS2 with 

many substrates). However, several activities were observed which had not previously been 

reported. Trace formation of 37X from 3X was observed with TCS1, trace formation of 1X 

from X was observed with PcAncCS2, and trace formation of 13X was observed from 3X 

with CsAncCS. Extracted ion intensity from mass spectrometry was too low to definitively 

verify the formation of these products, but the reliable appearance of these peaks with 

retention times that match other known methylxanthines is certainly suggestive. 

Representative chromatograms showing separation of the various xanthine derivative 

peaks are shown in Figure 3.2. 
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Figure 3.2: Representative chromatograms of TCS1 cells with various xanthine derivatives. Product peaks 

are shown in red with an asterisk. 

 

3.5.1 Production of 7-Methylxanthine From Xanthosine by TCS2 and CaXMT1 Can Be 

Verified by Reconstituting Caffeine Synthesis Pathways 

As shown above (Figure 3.2), when XR was supplied as a substrate multiple peaks are 

produced even though TCS1 is not known to cannot act on xanthosine. The low retention time 

peak in the XR chromatogram appears to consist, at least in part, of xanthine. This is evidenced by 

the presence of a small amount of the same product being formed from xanthosine as is formed 

from xanthine, i.e. 3X is found as a product in X and XR chromatograms for TCS1. This is 
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consistent with xanthosine being degraded to xanthine as part of normal purine degradation 

pathways.103  

 

Figure 3.3: Comparison of product peaks for TCS1 and TCS2 cells for control, 7X, and XR substrates 

demonstrating difficulty of demonstrating 7X production of TCS2 with XR. Chromatograms were aligned 

to a background peak found in all conditions. Differences in elution time result from differences in column 

condition when samples were analyzed. 37X is not produced in TCS1 despite presence of peak with nearly 

identical retention time as 7X. Relative peak abundances for the two peaks differs between TCS1 and TCS2. 

Unfortunately, the other peak present when XR is used as a substrate has a nearly identical 

retention time to the 7X. As such, the presence (and integrated intensity) of the 7X product peak 

could not be used to definitively show that TCS2 and CaXMT1 definitively synthesize 7X from 

XR in mammalian cells. It was evident that this peak did not contain 7X in enzymes which did not 

methylate XR, such as TCS1. TCS1 is highly active toward 7-methylxanthine and yet no 

theobromine was produced from XR whereas a similarly sized peak of 7X causes formation of 

large quantities of theobromine.  

To verify that this peak contained 7X for CaXMT1 and TCS2, I decided to use other 

caffeine synthesis enzymes to convert any 7X present into products that could be clearly identified. 
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I conducted experiments with three conditions: CCS1 cells alone, CaXMT1/TCS2 cells alone, and 

co-cultured CCS1 cells with CaXMT1/TCS2 cells. All three conditions were cultured in 400 µM 

XR and harvested after 72 h. As shown in Figure 3.4 and Figure 3.5, CCS1 cells alone with XR 

produced a single peak in the chromatogram. TCS2 cells produce the same peak which overlaps 

with a 7X peak. When TCS2 and CCS1 were co-cultured, however, the intensity of the 7X peak 

decreased and the presence of a 37X peak appeared. This was confirmed by comparison to 

authentic theobromine.  The same scenario was true for CaXMT1. As such, this demonstrated that 

CaXMT1 and TCS2 definitively produced 7-methylxanthine from xanthosine in mammalian cells.  

 

Figure 3.4: Overlaid chromatograms for HPLC of TCS2 cells, CCS1 cells, and TCS2 cells + CCS1 cells 

grown in 400 µM XR for 72 h.  
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Figure 3.5: Overlaid chromatograms for HPLC of CaXMT1 cells, CCS1 cells, and TCS2 cells + CCS1 

cells grown in 400 µM XR for 72 h.  
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3.5.2 Endogenous Xanthine Can Be Used for Production of Methylxanthines 

  

Figure 3.6: Control, X, and XR chromatograms for CsAncCS. Product peaks are colored red and marked 

with an asterisk.  

CsAncCS cells were particularly active against the substrate xanthine and produced 1X 

and 3X in large quantity (Figure 3.6). As with other xanthine-modifying enzymes, use of XR as a 

substrate provides the same products as X but with lower yields. Of particular interest in this 

example is the presence of 3X and 1X in the control sample in small but detectable quantities. 

Indeed, 1X and 3X can be found in the other chromatograms for CsAncCS with different substrates 

(refer to Supplemental Data) This suggests that CsAncCS has a low enough Km for xanthine that 

it can produce methylated products it in a detectable yield with only intracellular xanthine pools 

as a substrate. It also demonstrates the plausibility of completely de novo caffeine synthesis in 
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mammalian cells, as conceivably these products could be successively methylated to become 

caffeine. 

3.5.3 Highly Active Enzymes Slow Cell Growth in the Presence of Preferred Substrates 

 Upon harvesting the cell media, I had observed that the phenol red indicator in the medium 

was noticeably pinker (thus more basic) in some of the wells in some plates. Microscopy showed 

that there were fewer cells in these wells indicating that cell growth was slower, but cell growth 

was not similarly diminished for cells grown in 200 µM caffeine. This effect was therefore not 

caused by some toxic effect of the caffeine being produced. The substrates that slowed cell growth 

varied from cell line to cell line, and the degree to which it inhibited cell growth varied too. 

Comparing the HPLC results with these patterns revealed that cell growth was slowed when the 

enzyme expressed was highly active with a substrate, e.g. CCS1 cells showed slowed growth when 

exposed to paraxanthine, with which it is highly active.  

The methylation of xanthine substrates by the methylxanthine synthesis enzymes requires  

S-adenosylmethionine (SAM). SAM is the primary methyl donor in cells and is essential for the 

synthesis of polyamines, glutathione,104 and phosphatidylethanolamines.105 Through many direct 

and indirect mechanisms, SAM can regulate cell proliferation in a cell-type specific 

manner.104,106,107 CCS1 cells in 300 µM paraxanthine were cultured with and without supplemental 

300 µM SAM. At 72 hours, I qualitatively evaluated the cells via light microscopy and did not 

observe any difference in how much either group had proliferated. Samples of the cell medium 

were analyzed by HPLC and the concentration of caffeine produced in each was determined. The 

medium was found to contain 104.0 µM caffeine for CCS1 cells without supplemental SAM and 

only 46.8 µM caffeine for CCS1 cells with supplemental SAM. This showed that even if SAM 
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depletion caused hindered proliferation, this concentration of supplemental SAM is not effective 

in increasing proliferation and in fact causes decreased production of caffeine.  

 

Figure 3.7: Effect of supplemental SAM on caffeine synthesis in CCS1 cells. Decreased caffeine 

concentration is observed after 72h of incubation when cells are grown with 300 µM SAM compared to 

cells grown without it.  

One plausible explanation for this observed effect is a combination of inhibition by S-

adenosylhomocysteine (SAH) and the insufficiency of SAM regeneration pathways. SAH binds 

to most methyltransferases with higher affinity than SAM,77,108 a fact noted as a possible 

explanation for discrepancies in reported in vitro Km values for enzymes.109 If SAM is being 

depleted within a cell (i.e. the balance between SAM and SAH is not correct) this indicates that 

the throughput for the SAH recycling pathway is not sufficient to replenish the SAM that is being 

consumed. Supplying excess SAM would not increase methyltransferase activity, as SAH would 

continue to build up and further competitively inhibit the SAM binding sites in methyltransferase 

enzymes. Future attempts at maximizing methylxanthine synthesis in mammalian cells should 

consider modifications to the pathways for recycling SAH or supplementation with other small 

molecules that would increase efficiency of SAH recycling. 
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3.6 Effect of N-terminal Glutathione Transferase Fusion on CCS1 and TCS1 Activity 

In previous work, fusion proteins of caffeine synthesis pathway enzymes and glutathione 

transferase (GST) or thioredoxin (Trx) have been made and studied.89 These types of protein 

fusions are often made to improve the stability of the expressed protein, increase protein 

yield/solubility, or be used as an affinity tag for purification (for GST).110 It is notable that the 

isolated protein from these experiments had improved Km compared to the native protein. Native 

CCS1 had a Km value of 125.6 µM whereas the Trx-fusion had a Km value of 75.1 µM.89 Native 

CaMXMT had a Km value of 873 µM whereas the GST-fusion had a Km value of 50 µM.89,102 One 

possible explanation is that the improved activity of the fusion protein relative to the native protein 

was due to improved stability of the fusion protein during the purification process.87 However, the 

redox activity of Trx or dimerization of GST could conceivably contribute to altered enzymatic 

activity.  

The strong dimerization of GST was of interest as previous studies of CaXMT, CaMXMT, 

and CaDXMT have demonstrated that these enzymes all form homodimers and heterodimers 

readily.111 Many enzymes112 are known to have enhanced activity or show activity only when 

dimerized such as caspase-9113 and guanylate cyclase.114 No studies have been done which 

examine the effects of enhancing or inhibiting the ability for caffeine synthases to dimerize. As 

such, I decided to make plasmids encoding GST fusions of CCS1 and TCS1 and transformed cells 

with these to determine if this modification has any effect in mammalian cells.   

 I prepared the N-terminal GST fusion plasmids, transduced HEK-293T cell lines, and 

selected them as before. The N-GST fusions and wild type enzymes cell lines were plated, grown 

in and media was harvested at 72h. Even though selection conditions are identical, the non-

deterministic nature of the transduction and selection process can generate cell populations that do 
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not necessarily express equivalent amounts of protein. Direct comparisons of product yields cannot 

necessarily inform you about overall changes in enzyme activity. Both CCS1 and TCS1 have 

highest reaction velocity and lowest Km with paraxanthine as a substrate. Since this will best 

approximate the maximal performance of the enzyme and this reaction velocity should be least 

affected by the concentration of substrate, the yield of caffeine or theobromine in the other 

compared reactions will be normalized to the yield of paraxanthine for the same enzyme.  

Table 3.4: Effect of N-terminal GST fusion on Relative Product Yields for CCS1 and TCS1 in mammalian 

cells 

Reaction Product 
Relative Yield†  

CCS1 CCS-G TCS1 TCS1-G 

17X → 137X 137X 1.0  1.0  1.0  1.0  

7X → 37X → 137X 37X 0.45  0.60  0.76  0.35  

137X 0.10  0.072  0.025    --     

37X → 137X 137X 0.57  0.56  0.15  0.029  
†Relative Yield = YieldProduct/Yield17X→137X for a given enzyme at [17X] = 200 µM 

Table 3.5: Effect of N-terminal GST fusion on Methylation Equivalents Consumed for CCS1 and TCS1 in 

mammalian cells 

Reaction 
Relative Methylation Equivalents Consumed†  

CCS1 CCS-G TCS1 TCS1-G 

17X → 137X 1.0  1.0  1.0  1.0  

7X → 37X → 137X 0.55  0.67  0.79  0.35  

37X → 137X 0.57  0.56  0.15  0.029  
†Relative Methylation Equivalents Consumed = (2xRel. Yield137X + Rel. Yield37X)  

for reaction with 7X. Otherwise, RMEC = Relative Yield 

 

From these data, it is apparent that the N-terminal GST fusions of CCS1 had relatively little 

effect on its activity compared to CCS1. The improved relative yield with 7X is consistent of an 

improved Km for 7X. However, the N-terminal GST fusion of TCS1 had notably worse relative 

activity with 7X and 37X as substrates. The substantially decreased relative yield of with 7X and 

37X as substrates for TCS1-G suggests an increase of the Km or a decrease in the maximum 
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reaction velocity. Without an absolute quantification of enzyme present and data about the growth 

rate of the cells in question, the specific changes to enzyme kinetics cannot be determined. 

Regardless, N-terminal GST fusions of TCS1 do not appear to have any advantages over their 

wild-type counterparts in mammalian cells. Any future studies on protein dimerization would need 

to consider the deleterious effects of protein fusion on the activity of the xanthine methylating 

enzymes.  

3.7 Effect of CCS-CTS Deletion on CCS1 Activity 

CaXMT1 and CCS1 share a high degree of sequence similarity (Figure 3.7), yet they have 

quite distinct methylation specificity. These enzymes show a high sequence similarity, yet 

CaXMT1 is capable of 7-N methylation whereas CCS1 is capable of 3-N and 1-N methylation. In 

their studies as to which residues contribute to 3-N methylation activity, Mizuno, et al. found that 

the deletion of a 13-amino acid motif from CCS1 had a pronounced change on its activity.115 When 

compared to wild-type CCS1, the relative methylation activities (normalized to 7-methylxanthine) 

of CCS1-delC13 increased 3.5-fold for paraxanthine and 2.6-fold for theobromine. It is not clear 

whether this is caused by an increase in overall enzyme activity with paraxanthine and theobromine 

or simply a decrease in activity with 7-methylxanthine. Regardless, this work suggests seems as 

though the CCS-CTS extended region plays a role in making CCS1 more selective for 

methylxanthines over dimethylxanthines.  
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Figure 3.7: Sequence alignment of CCS1, CCS1-delC13, and CaXMT1. The boxed region is the CCS-CTS 

extended region.  

I decided to make a CCS-CTS extended region deletion mutant and see if this effect would 

be borne out in mammalian cells as well. Cells were transformed with a plasmid containing the 

CCS-CTS extended region deletion mutant, CCS1(delC13). CCS1 and CCS1(delC13) cells were 

plated and allowed to incubate with the typical panel of substrates and harvested after 72h. In 

addition, three more conditions were assessed at 72h which matched the substrate concentrations 

used by Mizuno, et al.: 1000 µM 7X, 17X, and 37X.115  
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Table 3.6: Effect of CCS-CTS extended region deletion on Relative Yield for CCS1 in mammalian cells 

Reaction Product 

Relative Yield†  

CCS1 CCS1(delC13)   

200 µM 1000 µM 200 µM 1000 µM 

17X → 137X 137X 1.0  0.77  1.0  0.86  

7X → 37X → 137X 37X 0.45  0.69  0.44  0.73  

137X 0.10  0.051  0.084  0.050  

37X → 137X 137X 0.57  0.79  0.60  0.80  
†Relative Yield = YieldProduct/Yield17X→137X for a given enzyme at [17X] =200 µM 

Table 3.7: Effect of CCS-CTS extended region deletion on Relative Methylation Equivalents Consumed 

for CCS1 in mammalian cells 

Reaction 

Relative Methylation Equivalents Consumed†  

CCS1   CCS1(delC13)   

200 µM 1000 µM 200 µM 1000 µM 

17X → 137X 1.0  0.77  1.0  0.86  

7X → 37X → 137X 0.55  0.74  0.52  0.78  

37X → 137X 0.57  0.79  0.60  0.80  
†Relative Methylation Equivalents Consumed = (2 x Rel. Yield137X + Rel. Yield37X)  

for reaction with 7X. Otherwise, RMEC = Relative Yield 

 

 In contrast to the results90 observed by Mizuno, et al., I observed little meaningful 

difference between CCS1(delC13) and CCS1 at either 1000 µM or 200 µM substrate 

concentration. In both cases, increasing the concentration of paraxanthine from 200 to 1000 µM 

decreased the total relative yield of caffeine produced. Increasing theobromine concentrations 

modestly increased the relative yields of caffeine (by 39% and 33% for CCS1 and CCS1(delC13), 

respectively). Increasing 7-methylxanthine concentration increased the relative methylation 

equivalents consumed but decreased the yield of caffeine itself. This is likely due to the enzyme 

having a higher affinity 7-methylxanthine compared to theobromine. The total yield of products 

was slightly higher for CCS1(delC13) (refer to Supplemental Data), but this does not control for 

protein concentration per cell and so I cannot make a firm statement about changes in absolute 

enzyme activity. In addition, these experiments take place at 37 °C and at a different pH than the 
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in vitro experiments that were used to study the mechanisms of N-3 methylation by CCS1. It is 

possible that such changes could alter protein structure in such a way that affects the selectivity 

compared to the conditions used by Mizuno, et al.  

If one conceives of cells simply as containers for enzymes, one would assume that 

increasing the substrate concentration ought to increase the reaction rate and thus increase total 

yield after a given period of time. In my experiments, the total relative methylation equivalents 

consumed slightly decreased at 1000 µM paraxanthine for both enzymes and slightly increased for 

7-methylxanthine and theobromine at 1000 µM. This suggests that whatever increases in reaction 

velocity that might be seen due to the higher substrate concentration can be counteracted by 

increased cell toxicity, depletion of SAM, or some other mechanism. This suggests that choice of 

what substrate concentration to use to maximize total product yield might be informed as much by 

optimizing culture growth as it does by optimizing enzyme kinetics.  

3.8 Synthesis of Methylxanthines as a Juxtacrine Signaling Reporter 

 To connect the synthesis of methylxanthines with other synthetic biological signaling 

pathways, I decided to test if methylxanthine synthesis enzymes could be made as a product of 

juxtacrine cell signaling. and if small molecule production could be used as a proxy measure for 

cell-cell contact. I chose to use synthetic Notch receptors116–120 (synNotch) as a way of transducing 

extracellular binding events to produce a reporter enzyme.  

 Notch is an important developmental receptor that is ubiquitous in multicellular life.121,122  

Unlike many receptors, it has a comparatively simple mode of signal transduction wherein tension 

produced by binding to its target reveals protease cleavage sites.121 After cleavage, the intracellular 

domain can directly act as a transcription factor.123 Research has demonstrated that the 

extracellular domain can be replaced124 and that the intracellular transcription factor domain can 
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be replaced with unnatural transcription factors.125 This has led to the development of synNotch 

receptors that can be designed to respond to any number of targets and induce any number of 

intracellular events with synthetic transcription factors.63,116 These have the feature of generating 

a stoichiometric response (one signaling event to one transcription factor) which ought to provide 

a more linear signal response curve to a given stimulus which is well suited for an output that is 

intrinsically amplified (i.e. enzymatic output).63 

 

Figure 3.8:  Depiction of how cell-cell contact between target cells and reporter cells can induce caffeine 

synthase enzyme expression upon juxtacrine signaling via synNotch. Expressed caffeine synthase can 

transform an existing substrate to the desired product. Inset: LaG17 binds surface-expressed GFP in K562 

cells and subsequent cleavage events liberate TetRVP64 which translocates to the nucleus and interacts 

with the tetracycline response element (TRE) to induce gene expression. The expressed enzyme is capable 

of converting the surrounding paraxanthine (17X) to caffeine (137X).   

I chose to use a LaG17-synNotch-TetRVP64 receptor for my experiments. This receptor is 

targeted against surface-expressed GFP using the anti-GFP nanobody LaG17126 fused to the Notch 

core domain. The intracellular transcription factor is TetRVP64, an extended variant of the typical 

tetracycline trans-activator (tTA) with four repeats of VP16 instead of one. This trans-activator 
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can interact with a tetracycline response element (TRE) before an ORF and it can induce gene 

expression in the typical Tet-Off fashion.127 I designed a reporter construct with a tight tetracycline 

regulatory element128 (TetO7 and minimal CMV promoter) followed by a fusion of mCherry and 

a caffeine synthase (CCS1, TCS1, or MXMT) separated by a self-cleaving P2A sequence. This 

P2A sequence allows for two proteins to be generated from a single transcript.129 The caffeine 

synthase was placed downstream of the P2A element so that the only change to its sequence would 

be the addition of single amino acid residue after the P2A cleavage site. The synNotch and reporter 

constructs were inserted into orthogonally-selectable Sleeping Beauty plasmids (pSBBi-BH and 

pSBBi-GB backbones, respectively). HEK-293T cells were transduced with each pair of the 

plasmids and selected with the appropriate antibiotics. Cells with synNotch and a TRE reporter 

are called reporter cells, for short. 

 

Figure 3.9: Portions of the chromatograms from coculture of target cells with LaG17-synNotch-TetRVP64 

+ TRE mCherry-P2A-CCS1 reporter cells. Inset shows more detail of the caffeine peak highlighting the 

relationship between target:reporter ratio and quantity of caffeine produced. 
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 I then co-cultured the reporter cells with varying ratios of K562 cells expressing surface 

GFP (target cells) and 200 µM paraxanthine (Figure 3.7 and Figure 3.8) When no target cells 

were present, only trace amounts (~1.0 µM) of caffeine was detected. This is likely due to baseline 

activation of the synNotch receptors. At a 3:1 ratio of target:reporter cells, 14.5 µM of caffeine 

was detected. A linear relationship was observed for these target:reporter cell ratios. The total 

amount of caffeine produced was notably lower than the amount produced by cells which 

constitutively produce CCS1. This suggests that improvements could yet be made in maximizing 

the yield obtained from reporter cells. Induction of reporter enzyme was also verified by qPCR 

using synNotch as a reference gene (see Supplemental Data). Reporter production was also 

demonstrated in cell lines with CaMXMT and TCS1 enzymes as well (see Supplemental Data). 

These experiments establish the viability of using induced methylxanthine production as a proxy 

for cell-cell contact in contexts where the feedstock is not limiting.  

 

Figure 3.10: Final caffeine concentration for various target:reporter ratios. The linear regression 

demonstrates dose-response relationship for inducible enzyme expression and product production.  
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3.9 Attempts at Expanding the Functionality of SynNotch Receptors  

In the process of using the synNotch receptor to induce expression of methylxanthine 

synthesis enzymes, I considered possible modifications to the synNotch platform that would add 

more functionality. I tested three variations of synNotch: 1) using a peptide for targeting, 2) in situ 

assembly of synNotch using a benzylguanylated targeting group and a SNAPtag-synNotch fusion, 

and 3) use of an amplifiable intracellular domain producing the intracellular response upon 

stimulation.  

  

Figure 3.11: Depiction of LaG17 synNotch and synNotch variations tested. Top: Typical synNotch contains 

a targeting domain (red), Notch core, and an intracellular transcription factor (blue). Notch core comprises 

Lin-12 Notch repeats (orange), heterodimerization domains (green), and transmembrane domain (dark 

blue). Middle: synNotch targeting variants include peptide-targeted Exendin-4 (Ex4) synNotch and modular 

SNAPtag synNotch. SNAPtag synNotch can react with the pictured benzylguanylated targeting groups. 

Bottom: synNotch variant using amplifiable hybrid transcription factor TetRElk1. 

One variation of synNotch employed use of a peptide as a targeting group instead of using 

an antibody. Exendin-4 (Ex4) is a high affinity peptide hormone found in the saliva of H. 
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horridium, the gila monster.130 It interacts with the glucagon-like peptide 1 receptor (GLP-1R) and 

stimulates glucose-responsive insulin secretion in beta cells of the pancreas. A synthetic derivative 

of exendin-4 where the terminal carboxylic acid is simply amidated is used as a therapy for type 2 

diabetes under the name exendatide.131 The relative beta-specificity of Ex4 has also been used by 

researchers to target beta cells for MRI, PET imaging, and fluorescent imaging.132–135 As such, I 

thought that this might be a potentially interesting affinity group to use to target GLP-1R. 

 To make the Ex4-synNotch fusion I inserted Ex4 and a small flexible linker136 into LaG17-

synNotch-TetRVP64, replacing the LaG17 nanobody, and inserted ORF into a selectable Sleeping 

Beauty transposon plasmid pSBBi-BH. I transduced HEK-293T cells with pSBBi-BH Ex4-

synNotch-TetRVP64 along with the reporter plasmid pSBTRE-GB mCherrry-P2A-CCS1.   

I then made the lentiviral transfer vector pHR SFFV GLP1R(S301A)-GFP plasmid which contains 

a GLP-1R-GFP fusion with a S301A mutation137 to help maintain high membrane localization of 

the protein. I lentivirally transduced K562 cells with the GLP1R(S301A)-GFP plasmid and co-

cultured these cells with the Ex4-synNotch cells as before. Unfortunately, no fluorescence was 

observed via microscopy after co-incubation for 72h, regardless of the number of target cells 

included. When 200 µM 17X was included in the culture medium, no formation of caffeine was 

observed. The native Notch protein sometimes includes variable repeats of the EGF repeat unit 

and previous work has shown that this can sometimes rescue activity of a receptor.63 The same 

experiments were performed with Ex4-EGF-synNotch-TetRVP64 instead, but no activity was 

observed in these experiments either.  

 I then went on to test whether a SNAPtag-based synNotch receptor would be viable. 

SNAPtag is an engineered version of the O-6-methylguanine DNA methyltranferase enzyme 

which forms a covalent adduct upon reaction with a modified O-6-benzylguanine derivative.138,139 
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This allows for the facile formation of a covalent bond between an arbitrary molecule tagged with 

a benzylguanine and a SNAPtag-protein fusion. In this concept, a receptor would be a modular 

base unit that could be programmed to respond to a target by incubation with a benzylguanylated 

targeting group. I decided to test this with two targeting groups: biotin and the LaG17 nanobody. 

 

Scheme 3.3: Mechanism of how SNAPtag synNotch is covalently modified with a targeting group, 

demonstrated with BG-biotin. 

 

 The avidin-biotin interaction is well-known and used in many different biochemistry 

techniques to rapidly form strong interactions between elements.140,141 This property has been 

widely used in techniques such as bioID,142 affinity pulldowns,143 and enzymatic amplifications.144 

Because of its strength and specificity, I thought that it could serve as a potentially viable targeting 
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group. Avidin and streptavidin, the most common of the proteins used to bind biotin, are both 

tetrameric.141 I was concerned that surface expression of the avidin or streptavidin monomers 

might not allow the appropriate tetramers to form that are required for high affinity interaction 

with biotin. While tetrameric streptavidin has a Kd of ~10 fM for biotin,140 a single monomer of 

streptavidin has a Kd of only 1.7 µM for biotin.145 An engineered streptavidin monomer with 

modifications inspired by the dimeric biotin-binding protein rhizavidin from Rhizobium etli, 

however, has a Kd of 2.8 nM for biotin.146 It has previously been used as a surface target in yeast.146 

As such, I made the appropriate plasmids and lentivirally transduced K562 cells with surface-

expressed monomeric streptavidin (K562-mSA-EGFP-TM) and synthesized two biotin-

benzylguanine compounds, BG-Biotin and BG-PEG4-Biotin. I chose to synthesize the PEG4 

linker version with the idea that there could be too much steric hindrance from the SNAPtag biding 

binding pocket for benzylguanine to allow the biotin moiety to interact with monomeric 

streptavidin.  

 As with the other fusions, I prepared plasmids coding for a SNAPtag-synNotch-TetRVP64 

fusion and transduced them in HEK-293T cells along with the Tet-inducible TRE mCherry-P2A-

TCS1 reporter to make the reporter cells. I co-cultured cells, as before, but used three different 

methods of exposing the BG-Biotin or BG-PEG4-biotin to cells: pre-incubation with reporter cells, 

pre-incubation with target cells (K562-mSA-EGFP-TM), or addition during co-culture. After 72h 

cells were assessed via fluorescence microscopy, but no production of fluorescent reporter was 

observed in any of the conditions tested. When incubations were performed in the presence of 100 

µM 17X, no formation of caffeine was observed for any conditions tested.  

Current synNotch receptors use single chain antibodies (scFVs) or camelid VH antibodies 

(nanobodies) fused to the Notch core domain as a means to recognize the intended target.63,147 
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While this approach is effective, synNotch receptors can only be developed against targets for 

which a high quality scFv or nanobody exists. However, the process of producing a fusion protein, 

transfecting cells, and testing each cell line is time consuming. I considered that one possible 

solution would be to make a modular synNotch receptor with an extracellular SNAPtag domain 

instead of an affinity domain. If a suitable commercially-available antibody were modified with a 

benzylguanine group (e.g. via reaction with an NHS-ester of benzylguanine) then perhaps a 

functional synNotch receptor could be assembled in situ. This would forego the need to construct 

a new genetic construct for every potential target and allow for more rapid screening of viable 

antibody-synNotch pairings. 

 I then decided to test if it was possible to reconstitute a receptor similar to LaG17-

synNotch-TetRVP64 in situ by using a benzylguanylated LaG17 nanobody with cells expressing 

SNAPtag-synNotch-TetRVP64 and a TRE mCherry-P2A-CCS1 reporter. I expressed and purified 

LaG17 which contained a had SGKGSKGSKSK added to the C-terminal portion of the protein 

from E. coli. I reasoned that the additional lysine residues would increase the probability of having 

a C-terminal benzylguanylation that seemed most likely to form a receptor with a similar structure 

to the reference LaG17-synNotch after reaction with SNAPtag-synNotch. I reacted the purified 

protein with BG-GLA-NHS (the N-hydroxsuccinimide activated ester of 4-

aminomethylbenzylguanine with a glutaric acid linker) and used the benzylguanylated LaG17 for 

cell culture experiments. As before I tested pre-incubation with the target cells, pre-incubation 

with the reporter cells, and addition during cell culture. In all experiments antibody was added to 

0.1 µM. Fluorescence microscopy of the cells revealed no production of fluorescent reporter for 

any condition tested. When incubated with 17X, no production of caffeine was detected either. 
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 There are two plausible reasons for the failure of the SNAPtag-synNotch receptor in these 

experiments. One possibility is the that the receptor binding group reacts with the SNAPtag domain 

and forms the desired product but that interaction of this simply does not result in the appropriate 

structural change in Notch to transduce a binding event. The second possibility is that the strength 

of the interaction with the target is too weak to survive the force needed to cause the structural 

change that is key in transducing biding events in Notch signaling. This latter explanation could 

be the case for the avidin- and GLP-1R-targeted synNotch receptors. This cannot be the case with 

the membrane-bound GFP-targeted synNotch receptor, however, as LaG17-synNotch is capable 

of transducing a binding event when the whole receptor is produced as a single protein. In this 

case, a possible explanation is that the additional length of the SNAPtag and short linker are acting 

similar to an extra EGF-repeat. Extra EGF-repeats have been shown to diminish the ability of 

synNotch receptors to transduce signals when the receptor functions normally without it.63  

3.10 Attempts at Making an Amplifiable SynNotch Receptor 

 One key distinction between synNotch and many other receptors is that it generates a 

stoichiometric response instead of an amplified response because the cleaved intracellular portion 

of Notch acts directly as a transcription factor. However, by not having steps of amplification it 

means that there are fewer ways that synNotch can be made to interact with other natural and 

synthetic gene circuits other than through its ability to control gene expression. I wanted to make 

a synNotch receptor whose product was a hybrid transcription factor that was regulated by another 

cellular process. 

 TetRElk1 is a hybrid regulated transcription factor148 that is combination of the DNA-

binding, regulatory, and dimerization domains from tTA2s with the regulatory and transcriptional 

activation domains of Elk-1. Activation of MAPK ERK Kinase 1 (MEK-1) results in activation of 
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extracellular signal-related kinase (ERK) which then phosphorylates TetRElk1to produce 

phospho-TetR-Elk1.148 Phospho-TetRElk1 is a transcriptional activator, whereas TetRElk1 is not. 

I hypothesized that this should make a “gated” synNotch which could transduce a juxtacrine 

signaling event, but the cleaved portion of it would not serve as a promoter unless another process 

caused activation of ERK. Anti-caffeine synthetic receptor pDB395149 is built upon a mouse 

fibroblast growth factor receptor fragment1 (mFGFR1405-822) fused to an anti-caffeine nanobody 

(aCaffVHH). Homodimerization of this protein causes activation of MAPK (downstream of MEK 

1/2) which is suitable for being rerouted through TetRElk1. pDB395 has been demonstrated to 

provide substantial activation of a reporter with as little as 0.1 µM caffeine.149  

To test this, I made pSBBi-BH LaG17-synNotch-TetRElk1 and transduced cells with it 

and pSBTRE-GB mCherry-P2A-CCS1. I then transiently transfected these cells with synthetic 

caffeine receptor pDB395. I observed that with 0.1 µM caffeine there was substantial activation 

of reporter circuits as observed by fluorescence microscopy even in the absence of GFP-expressing 

target cells. It is not clear why this had such high baseline activation, but no further attempts were 

made to develop this system. This conceptual approach may have merit, but it may require use of 

a transcription factor that is not subject to so much amplification. The low level “leaky” activation 

of synNotch122 may be enough to enable downstream signaling that, when amplified, becomes 

substantial.   

3.11 Plausibility of Cell-Cell Signaling Using Methylxanthine Synthesis and Synthetic 

Caffeine Receptors 

Recent work by Bojar, et al.149 has generated several different caffeine receptors that can 

be used for synthetic biology applications which have sensitivities to caffeine ranging from 0.01 

uM to 100 uM.149 These receptors are all built around the dimerization of an anti-caffeine camelid 
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heavy-chain-only antibody fragment called aCaffVHH.150–152 When aCaffVHH is fused to proteins 

that transduce a signal upon dimerization, the net result is that the presence of caffeine can induce 

the downstream signaling event. Although these are described as caffeine receptors, they are not 

exclusively responsive to caffeine149 and do display some sensitivity to dimethylxanthines; 

theophylline, paraxanthine, and theobromine all show some activation of the STAT3-based 

caffeine receptor at 1 µM according to work in Bojar, et al., with these dimethylxanthines being 

listed in order of decreasing receptor activation.  

 

Figure 3.12: Simple circuit for cell-cell signaling from a caffeine (or other methylxanthine) producing cell 

to a detector cell containing DB326. DB326 homodimerizes in the presence of caffeine and activates JAK1 

which activates the phosphorylation and dimerization of STAT3. The STAT3P dimer can then enable the 

expression of a STAT3-inducible reporter gene 

The differential activation of the receptors for the dimethylxanthines is a result of how this 

antibody was developed.  Caffeine was not used as a target and instead a 1,3-dimethylxanthine 

derivative with an extended alkyl carboxylate in the 7-position was used.152 This allowed 

conjugation of the target molecule to proteins and peptides used for the selection process. As such, 

the regions of caffeine which interact with aCaffVHH dimers are more likely to be the N-1 and N-

3 methyl groups. Indeed, this pattern of reactivity is observed in binding thermodynamics151 and 

in cross reactivity with dimethylxanthines during immunoaffinity chromatography.150 Recent 



62 

 

crystallography of the caffeine-aCaffVHH dimer further demonstrates that the N-1 and N-3 methyl 

groups are oriented toward the antibody when bound.  

I had initially been interested in exploring the possibility of detecting caffeine production 

by cells using a paraxanthine feedstock due to the high activity of enzymes toward it and 

comparatively low Km. Unfortunately, signal produced by DB326 starts to notably increase for 

theophylline at only 1 µM,149 far below the Km of any enzymes tested for any substrate. If 

dimethylxanthines achieve lower activation of this receptor than caffeine, then it was plausible that 

monomethylxanthines ought to achieve even less activation of this receptor than 

dimethylxanthines. This could allow for concentrations of a feedstock at levels closer to ideal for 

the enzymes without eliciting too much spurious activation of the receptor. Previous work 

developing a water quality immunoassay for caffeine using different monoclonal and polyclonal 

anti-caffeine antibodies indicated that xanthine produced negligible signal (<0.002% and <0.008% 

for mAb and pAb immunoassays, respectively).153 I wanted to test the feasibility of using xanthine 

or monomethylxanthine as a feedstock to generate products detectable by pDB326 receptors.  

 I transduced HEK-293T cells with pDB326 with the typical Sleeping Beauty method to 

produce DB326 cells. These were selected with antibiotics, but unlike Bojar, et al., I did not 

perform a clonal selection and expansion. I plated and transfected DB326 cells with a plasmid 

containing a STAT3-inducible secreted embryonic alkaline phosphatase (SEAP) reporter gene154 

(PSTAT3-SEAP-pASV40, pLS13). Initial experiments showed only modest SEAP activity as 

determined by assay with 4-nitrophenylphosphate (pNPP). However, repeat of this transfection 

with pLS13155 and constitutive STAT3 (PhCMV-hSTAT3-pA, pLS15) notably increased the signal.  

 Based on these data, X, XR, and any of the monomethylxanthines are suitable to use with 

DB326 up to at least 50 µM without eliciting substantial receptor activation above background. It 
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is also apparent that optimization of the genetic circuit—namely clonal expansion of pDB326 cells 

and optimization of how much pLS13 and pLS15 are used—will be necessary to maximize signal 

while minimizing baseline (unstimulated) receptor activation.  

 

Figure 3.13: Cross Reactivity of Non-Preferred Xanthine Substrates with the STAT3-based caffeine 

receptor pDB326 assessed by SEAP assay. Error bars show standard deviation of duplicate experiments. 

100 µM concentrations were not performed in duplicate.  

3.12 Discussion and Future Work 

 This work has set the stage for small subset of future possible studies. There are two broad 

areas that deserve future investigation: fundamental studies of the properties of the caffeine 

synthesis pathways and enzymes, and further elaboration on mammalian synthesis of 

caffeine/methylxanthines. The findings from the former would go a long way to improving the 

viability of the latter research direction.  

As more recent work has begun to reveal, the canonical pathway from xanthosine to 7-

methylxanthine to theobromine to caffeine is not the only way to make caffeine.78,156,157  Given 

that the roles that convergent evolution and enzyme exaption78,97 have played in the development 

of the known caffeine biosynthesis pathways, it is not unreasonable to assume that may be diversity 

among the pathways in less-studied organisms. The potential role of theophylline in caffeine 
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biosynthesis in Ilex paraguariensis156 is certainly suggestive of what surprises may lie in parts of 

the natural world that remain unstudied.  

What is the role of hetero/homo-dimerization in coffee caffeine synthases? There is 

experimental111 and structural158 evidence for dimer formation yet its functional importance has 

not been determined. It is tempting to speculate on the potential for metabolon formation,159 

particularly since the dimerization interface is conserved within the coffee enzymes and is also 

found in the structurally-related salicylic acid methyltransferase class of enzymes.160 While the 

interface is on the small side of protein dimerization surfaces,158,161 that does not necessarily 

preclude it from conferring beneficial properties of dimerization162 on caffeine synthesis enzymes. 

One possible next step in this direction is to design enzyme dimer fusions which would effectively 

force enzymes to adopt a dimer-like structure and see if this alters the enzymatic activity.  
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Scheme 3.4: Pathways for improved xanthine and xanthosine synthesis used previously. A) Shows the 

degradation of guanine used to increase xanthine concentrations in E. coli;163 B) Shows cyclical 

interconversion of xanthine, xanthosine monophosphate (XMP), and xanthosine used in S. cerevisiae.96 

While I have reconstituted and evaluated many methylxanthine synthesis enzymes, none 

of my work tackled the generation of the small molecule feedstock required for methylxanthine-

generating cells. It is not unreasonable to achieve de novo formation of caffeine (or other 

methylxanthines) which originates from the pools of nucleotides that are already present in cells. 

Prior research demonstrated that caffeine can be made de novo in E. coli163 and S. cerevisiae.96 

Successful production of large quantities of methylxanthines de novo in mammalian cells would 

likely require the same type of modifications that were needed in these other hosts (Scheme 3.4). 

In S. cerevisiae,96 intracellular pools of xanthine were converted to xanthine monophosphate 

(XMP) by xanthine phosphoribosyltransferase 1 (XPT1) followed by hydrolysis with PA0065 (a 
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5′-nucleotidase from Pseudomonas aeruginosa) to form xanthosine. A different approach was 

taken in E. coli, where guanine deaminase 1 (GUD1) from yeast was used to enhance conversion 

of endogenous guanine into xanthine and TCS1 alone was used to triply methylate xanthine into 

caffeine. While I have shown that endogenous xanthine is sufficient to produce limited quantities 

of 1X and 3X using CsAncCS, much optimization could be done to maximize the yield. Either of 

these approaches would be worth trying in human cells, depending on the subsequent enzymatic 

transformations. Intracellular concentration of xanthine has been reported to be 20 µM in human 

cells.164 Even if xanthosine was the desired end product there would likely be benefit of combining 

these approaches to use GUD1 to effectively enhance the concentration of products in the 

xanthine/XMP/xanothosine pool.  

  As mentioned previously, recent work has generated several viable synthetic caffeine 

receptors. Although I have laid some of the groundwork for using caffeine or other 

methylxanthines for cell-cell communication, there is much room for exploration of this concept.  

As I mentioned before, a simple example one could implement would enable detection of caffeine 

(or another methylxanthine) by reporter cells with DB326 (or another synthetic receptor) akin to 

the process shown in Figure 3.12. In this scheme, some feedstock present in solution like a 

monomethylxanthine could be methylated to become a dimethylxanthine or caffeine within 

producer cells. Because the monomethylxanthine does not strongly stimulate the receptor at the 

provided concentration, only upon buildup and diffusion of the methylated products (perhaps even 

caffeine) would DB326 be stimulated beyond background activation. This method of cell-cell 

communication could be construed as a form synthetic paracrine signaling and could be used as 

part of a self-organizing synthetic tissue. 
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Figure 3.14: Schematic diagram of a hypothetical self-limiting caffeine production circuit. In this circuit, 

a caffeine synthase is ordinarily constitutive promoter SV40 UAS. The resulting caffeine synthase can go 

on to produce caffeine which can bind to DB395 (mFGFR1405-822-aCaffVHH) and cause it to homodimerize. 

This can activate MEK 1/2 and lead to downstream phosphorylation of TetRElk-1. Phospho-TetRElk-1 will 

bind to the TRE promoter to induce Gal4-KRAB. Gal4-KRAB represses the SV40 UAS promoter, halting 

expression of the caffeine synthase.  

Alternatively, one could easily imagine using a caffeine receptor co-expressed in a cell 

which produces methylxanthines to set a limit on how much caffeine is made (Figure 3.14). For 

example, a caffeine receptor could be used to induce production of Gal4-KRAB in a cell with 

constitutive caffeine synthase production controlled by a SV40/UAS promoter. In this situation 

the caffeine synthase enzyme would be unregulated until the caffeine concentration reached a high 

enough level to trigger the receptor. That would then result in repression of the enzyme responsible 

for caffeine production. Alternatively, one can imagine using one of the selective methylxanthine 

degrading enzymes from Pseudomonas putida CBB5165 within a population of cells producing 

methylxanthines to limit production to a single product, e.g. theobromine, by selectively degrading 

others. The existence of so many functional proteins that can act upon caffeine and its metabolites 

could allow for a huge variety of experimentation in making gene circuits and synthetic cell-cell 

communication.  
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 Finally, one could envision using production of methylxanthines as a reporter for otherwise 

invisible cellular states in a human recipient of a cell transplant. There are increasing numbers of 

cellular transplant therapies in clinical use or trials including transgenic immune cell transplants 

and islet cell transplants.69,166–169 Unlike in animal studies, where it is common to include a non-

invasive reporter for a functional endpoint, e.g. luciferase expression coupled to T-cell receptor 

activation in CAR-T, there is not an easy way to probe within the human body to look at cellular 

states. The poor penetrance69 of luminescence in larger animals is enough of a problem to limit its 

use without even considering issues with systemic luciferin administration in humans.70 

Methylxanthines are well tolerated by humans and are not produced in endogenously. In a patient 

abstaining from caffeinated products, if methylxanthine synthesis were used as a reporter for some 

cellular state, it could serve as a unique, readily detectable biomarker for the correct functioning 

of the cellular therapy. Quantifying methylxanthines is not as convenient as quantifying 

luminescence, but it is feasible and compatible with human bodies.  

3.13 Conclusion  

I have demonstrated that enzymes involved in the biosynthesis of methylxanthines can be 

heterologously expressed in human cells and that many of these enzymes retain useful activity. I 

have shown that the endogenous levels of xanthine are sufficient to produce detectable 

monomethylxanthines in CsAncCS-expressing cells. I have assessed the effect of GST-fusion on 

CCS1 and TCS1 activity in human cells. I have shown that CCS-CTS deletion has relatively little 

effect on CCS1 activity in human cells compared to its effect in vitro. I have shown that enzyme 

activity can be induced using a synNotch receptor upon stimulation with correct target cells. I have 

also attempted to make several modifications to the synNotch receptor to increase the number of 

ways it could interact with its target without success.  I have shown that quantity of target cells 
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used to stimulate a population of receptor/reporter cells correlates well with the quantity of 

methylxanthine product produced in response, suggesting that this technique could be used as a 

method of quantifying cell-cell interactions. Finally, I have demonstrated the potential viability of 

using a monomethylxanthine as a feedstock to produce dimethylxanthines or caffeine in situ for 

cell-cell signaling purposes.  

3.14 Experimental Methods  

3.14.1 Materials  

All chemicals and reagents were of reagent grade or better. Unless otherwise stated, all 

reagents were purchased from Fisher Scientific (Waltham, MA) or Sigma Aldrich (St. Louis, MO). 

All solvents for reactions were anhydrous and purchased from Sigma Aldrich (St. Louis, MO). All 

solvents for liquid chromatography were HPLC grade or higher and were purchased from Sigma 

Aldrich or Fisher Scientific. Theobromine, theophylline, and 1-methylxanthine were purchased 

from Tokyo Chemical Industrial Co., Ltd. (Tokyo, Japan). 3-Methylxanthine was purchased from 

AK Scientific (Union City, CA). Xanthine was purchased from Chem Impex International (Wood 

Dale, IL). 7-Methylxanthine was purchased from Carbosynth (San Diego, CA). Caffeine was 

purchased from Alfa Aesar (Tewksbury, MA). Biotin-PEG4-N-hydroxysuccinimide ester was 

purchased from Click Chemistry Tools (Scottsdale, AZ).  

 Mammalian Cell Culture Supplies: Dulbecco’s Modified Eagle’s Medium (DMEM), 

HBSS, PBS, TrypLE, TRIzol Reagent, blasticidin S hydrochloride, and puromycin 

dihydrochloride were purchased from Thermo Fisher Scientific (Waltham, MA). Heat-inactivated 

fetal bovine serum was purchased from Omega Scientific (Tarzana, CA). Primocin was purchased 

from Invivogen (San Diego, CA). Cell culture dishes and flasks were purchased from VWR 

(Radnor, PA). Poly-L-lysine was purchased from Sigma Aldrich (St. Louis, MO). Accutase was 
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purchased from Innovative Cell Technologies (San Diego, CA). HEK-293T and K-562 cells were 

purchased from American Type Culture Collection (Manassas, VA).  

Bacterial Cell Culture Supplies: Carbenicillin-containing (100 µg/mL) and kanamycin-

containing (50 µg/mL) LB agar plates were purchased from Biopioneer (San Diego, CA). 

UltraPure Agarose, His-Pur Ni-NTA resin, and LB broth powder were purchased from Thermo 

Fisher Scientific (Waltham, MA). DH5a competent E. coli cells were obtained from Zymo 

Research (Irvine, CA). NEB Stable and BL21(DE3) competent E. coli cells were obtained from 

New England Biolabs (Ipswich, MA). Frozen aliquots of these cells were prepared with the “Mix 

& Go!” Transformation Kit (Zymo Research, Irvine, CA).  

Biochemistry Supplies: All restriction enzymes, Q5 polymerase, HiFi Assembly 2X master 

mix, T4 DNA ligase, KLD enzyme mix, and murine RNAse inhibitor were purchased from New 

England Biosciences (Ipswich, MA). Maxima H-minus RT was purchased from Thermo Fisher 

Scientific (Waltham, MA). Pre-cast SDS-PAGE gels were purchased from Bio-Rad (Hercules, 

CA). 

3.14.2 Plasmid Construction  

3.14.2.1 General Information 

SynNotch plasmids pHR_SFFV_LaG17_synNotch_TetRVP64, pHR_Gal4UAS_tBFP_ 

PGK_mCherry, pHR_EGFPligand, pHR_pGK_LaG17_synNotch _Gal4VP64, and pHR_SFFV 

were a gift from Wendell Lim (Addgene plasmid # 79128, 79130, 79129, 79127, and 79121, 

respectively). The Sleeping Beauty transposase plasmid pCMV(CAT) T7-SB100 was a gift from 

Zsuzsanna Izsvak (Addgene plasmid # 34879). The plasmid GLP1R-Tango170 was a gift from 

Bryan Roth (Addgene plasmid # 66295). The Sleeping Beauty plasmids pSBBi-RP, pSBBi-GB, 

pSBBi-BH, and pSBTet-GB were a gift from Eric Kowarz (Addgene plasmid # 60513, 60520, 
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60515, and 60504, respectively). Plasmids pMD2.G and pCMV-dR8.2 dvpr were a gift from 

Didier Trono (Addgene plasmid # 12259 and 8455). Plasmid pACYC-GST was a gift from Cheryl 

Arrowsmith (Addgene plasmid # 62329) Plasmid pSNAPf was purchased from New England 

Biolabs (Ipswich, MA). Plasmid pET-11A(+)-PP, a modified version of pET-11A(+) containing a 

Precission protease cut site, was a gift from the Partho Ghosh (University of California, San Diego) 

lab.  

All commercial or gifted plasmids were transformed into NEB Stable (for lentiviral 

plasmids) or DH5α (for all other plasmids) chemically competent cells according to the provided 

manufacturers’ protocols. Minipreps and maxipreps were performed according to manufacturer’s 

instructions using the Plasmid Miniprep Kit II and the Plasmid Maxi Kit, respectively, from 

Biomiga (San Diego, CA). Resultant plasmids were saved in water at -20 °C. Design and planning 

for plasmids was performed using SnapGene software (GSL Biotech; available at snapgene.com). 

All primers were synthesized by Eton Biosciences (San Diego, CA). All cloning operations were 

verified by sequencing performed by Eton Biosciences.  

3.14.2.2 Preserving E. coli Cell Stocks  

For frozen stocks of cultures, 0.5 mL of cultured LB was mixed with 0.5 mL of 50% (v/v) 

glycerol in water (autoclave sterilized) and immediately frozen at -80 °C. When many samples 

were saved for a short duration, a small portion (<5 µL) of cultured LB was pipetted) onto an agar 

plate, left at room temperature for several hours, and then stored at 4 °C for up to 2 weeks.    

3.14.2.1 Agarose Gel Electrophoresis 

Typically, a 0.8-1.0% (w/v) agarose gel was prepared by adding an appropriate amount of 

low melting agarose to 50 mL 1X TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA). 

This is heated in an 800W microwave in 30s increments until the gel is fully dissolved, swirling 
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the flask after each microwave treatment. After cooling slightly, 10,000X Gel Red or Gel Green 

(Biotium, Hayward, CA) is added to a final concentration of 1X (5 µL / 50 mL gel). After this the 

gel is pour into the mold and allowed to solidify at room temperature or 4 °C. 10X Loading buffer 

is added to the sample to a final concentration of 10-15% (v/v). The sample is mixed thoroughly, 

loaded into the gel alongside an appropriate ladder, and run at 120-140V until the bands had 

traveled sufficiently through the gel (>40 min).  The completed gel is visualized using a [Gel 

Imager] or a Blue Light Gel Imager.  

For visualizing small nucleic acid segments (<1000 bp), a 2% (w/v) agarose gel is prepared 

instead.  

3.14.2.2 Gel Extraction 

Gels intended to be subjected to gel extraction are prepared with Gel Green instead of Gel 

Red. After electrophoresis finishes, the desired bands are excised as neatly as possible using a new 

and clean razor blade on a blue light transilluminator. The bands are transferred into pre-weighed 

1.7 mL centrifuge tubes. The DNA in the excised bands is extracted using a Qiaquick Gel 

Extraction Kit (Qiagen, Hilden, Germany) or a Monarch Gel Extraction kit (New England Biolabs, 

Waltham, MA) by following the manufacturer’s instructions. Large plasmids (>10kb) were 

preferentially extracted using the NEB kit with a slight modification of the manufacturer’s 

protocol: after the gel is dissolved using the appropriate buffer, a volume of water equal to the 

mass of the excised band is added to the dissolved gel prior to loading on a spin column. Otherwise, 

the manufacturers’ protocols were followed as written. 

3.14.2.3 Restriction Digest 

For a typical single or double digestion, at least 500 µg of DNA template was diluted with 

3 µL of 10X CutSmart buffer and enough water such that the final volume will be 30 µL after the 
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addition of the desired restriction enzyme(s). The restriction enzymes were always the final 

component added, typically using 0.25 µL of each enzyme. The samples were briefly vortexed to 

mix and then were digested for a minimum of 30 min at 37 °C on a thermal cycler. Depending on 

the nature of the sample and the downstream application, digested samples were: heat inactivated 

by incubating at 65 °C for 10 min and used directly, purified using a spin column, or run on an 

agarose gel and gel extracted.  

Samples using restriction enzyme SfiI were digested at 50 °C for 45-60 min. Because the 

enzyme cannot be heat-inactivated, the digested fragment was always gel extracted or spin 

purified. 

3.14.2.5 HiFi Assembly  

Primers for HiFi assembly were typically created using the online NEBuilder Assembly 

Tool v2.2.6 from New England Biolabs (Ipswich, MA; available at nebuilder.neb.com). Primers 

were checked for off-target binding using SnapGene and for primer-dimer formation using the 

OligoAnalyzer Tool from Integrated DNA Technologies (Coralville, IA; available at 

www.idtdna.com/pages/tools/oligoanalyzer). The HiFi assembly was performed according to the 

manufacturer’s instructions with the following modifications. The PCR products being assembled 

were treated with DpnI (0.25 µL DpnI directly to finished PCR reaction, incubated 15 min at 37 

°C, then purified as usual) to ensure no PCR template carryover. The quantity of components for 

each reaction was determined by Table X.X. The HiFi assembly reaction was assembled at half 

scale (5 µL total) and incubated for 45 minutes at 50 °C and E. coli cells were transformed by the 

typical method. 
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Table 3.8: Reference for quantity of insert (ng) needed for a HiFi Assembly using 50 ng of vector 

  Size of Insert (kb) 

  3.0 2.5 2.0 1.5 1.0 0.75 0.5 0.25 
S

iz
e 

o
f 

V
ec

to
r 

(k
b

) 
14 21.4 17.9 14.3 10.7 7.1 5.4 3.6 1.8 

13 23.1 19.2 15.4 11.5 7.7 5.8 3.8 1.9 

12 25.0 20.8 16.7 12.5 8.3 6.3 4.2 2.1 

11 27.3 22.7 18.2 13.6 9.1 6.8 4.5 2.3 

10 30.0 25.0 20.0 15.0 10.0 7.5 5.0 2.5 

9 33.3 27.8 22.2 16.7 11.1 8.3 5.6 2.8 

8 37.5 31.3 25.0 18.8 12.5 9.4 6.3 3.1 

7 42.9 35.7 28.6 21.4 14.3 10.7 7.1 3.6 

6 50.0 41.7 33.3 25.0 16.7 12.5 8.3 4.2 

5 60.0 50.0 40.0 30.0 20.0 15.0 10.0 5.0 

 

3.14.2.6 T4 Ligation 

T4 ligations were performed according to manufacturer’s instructions with minor changes 

to their protocol. All reactions were performed at half scale—10 µL instead of 20 µL —using 

fragments derived from restriction enzymes that generate sticky ends. The reactions were 

incubated at 25 °C for 30 minutes, 65 °C for 10 minutes, and 0 °C for 5 minutes. Then 2 µL of the 

reaction was promptly used to transform E. coli cells by the typical method.  

3.14.2.7 Site-Directed Mutagenesis 

 Primers were designed using the NEBaseChanger v1.2.9, (available at 

nebasechanger.neb.com). Samples were amplified using Q5 polymerase as per the manufacturer’s 

provided method, but with 30 amplification cycles instead of 25 amplification cycles. The kinase, 

ligase, and DpnI (KLD) treatment step was performed with a final volume of 5 µL instead of 10 

µL. The entire KLD-treated sample was used to transform E coli cells by the typical method. 
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3.14.3 Mammalian Cell Culture 

3.14.3.1 General Information 

 All mammalian cell culture was carried out in a biosafety cabinet using appropriate sterile 

technique. Cells were counted using a Bio-Rad TC20 cell counter. Adherent cells were detached 

with TrypLE. Cells were split when cultures reached >90% confluence for adherent cells or when 

the concentration exceeded 1.5 x 106 cells/mL for suspension cells. Antibiotics were not used 

routinely. All cell culture media consisted of 10% FBS in DMEM. Cells were tested for 

mycoplasma every 6 months.  

  

3.14.3.2 Lentivirus Production 

HEK-293T cells were grown to approximately 90% confluence in a 10-cm dish coated with 

poly-L-lysine to prevent detachment of cells. Plasmids were diluted to 250 µL in OptiMEM so 

that the final solution contained 8 µg pMD2.G, 18 µg pCMV-d8.2 dvpr, and 12 µg of the GOI-

containing vector plasmid. A polyethyleneimine solution (114 µL of 1 µg/µL) is diluted to 250 µL 

using OptiMEM. The plasmid and PEI solutions are then combined and gently mixed and left to 

incubate at room temperature for 30 minutes. The solution is gently pipetted carefully across the 

whole surface of the plate and the plate was gently rocked side-to-side to mix. Conditioned media 

was collected at 24-hour intervals for 3 days, concentrated using a 100 kMW Amicon spin filter 

and frozen at -80 °C if not used immediately. 

3.14.3.3 Lentiviral Transduction 

 A desired quantity of lentivirus concentrate was diluted in DMEM +10% FBS containing 

8 µg/mL polybrene.  K562 cells were centrifuged, washed once with HBSS, and resuspended with 

the cell culture medium containing lentivirus and polybrene to a final concentration of 2x105 
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cells/mL. 2 mL of this cell suspension was added to a well in a 6-well plate. The plate was sealed 

in two zipper-top bags and centrifuged in a pre-warmed swinging bucket centrifuge for 90 min at 

33 °C at 1000 RCF. After incubating the plate for 24 hours at standard cell culture conditions, the 

medium was replaced with fresh cell culture medium and the cells were cultured as usual, splitting 

when the concentration exceeded 1x106 cells/mL. After approximately 1 week, the cells were 

sorted to retain GFP-positive cells by flow-assisted cell sorting.   

3.14.3.4 Cell Sorting 

Cells to be sorted were detached using Accutase instead of TrypLE. The detachment was 

halted by addition of an excess of HBSS or PBS. The cells were pelleted by centrifugation. The 

supernatant was removed and the cells were washed 3 times with sort buffer (0.5% (w/v) BSA, 

and 25 mM HEPES in pH 7 PBS). The cell suspension was passed through a 40 µm cell strainer 

to produce a single-cell suspension. The cells were counted and then diluted to a final concentration 

of 3 to 7 million cells/mL.  

Cells were sorted as the experiment needed using a BD Influx cell sorter (BD Biosciences, 

San Jose, CA) by staff at the UCSD Human Embryonic Stem Cell Core Facility at Sanford 

Consortium for Regenerative Medicine (La Jolla, CA). After sorting, they were re-plated at the 

desired concentration in 50% conditioned medium / 50% fresh medium with Primocin at a final 

concentration of 100 µg/mL. The Primocin is maintained in culture medium of sorted cells for at 

least 1 week after sorting to ensure the cells do not become contaminated.   

3.14.3.5 Sleeping Beauty Transduction and Selection 

 HEK-293T cells were plated in poly-L-lysine-coated 24-well plates and grown until ~90% 

confluent in 500 µL of medium. Typically, 475 ng of transposon plasmid and 25 ng of pSB100X 

were diluted to 50 µL with Opti-MEM medium. 1.5 µL of Lipofectamine 2000 was added to 50 
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µL of Opti-MEM. The Lipofectamine 2000 and DNA solutions were mixed gently with a pipette 

tip and incubated at room temperature for 30 minutes. The prepared DNA lipoplexes were 

carefully pipetted over the surface of each well and the plate was gently rocked side to side to mix. 

The cells were left to grow for 24 hours in the incubator. 

 The next day, cells were inspected on the microscope to check for presence of the 

fluorescent reporter from the Sleeping Beauty transposon plasmid. If strong fluorescence was not 

observed, the cells are incubated for an additional 24 hours before re-inspecting. If strong 

fluorescence was not observed after 48 hours, the cells were discarded, and the transduction was 

repeated. Once strong fluorescence was observed, the culture was split to a 12-well plate well in 1 

mL of medium containing puromycin, blasticidin, or hygromycin at the concentrations shown in 

Table 3.11. Approximately every 3 days, the selection antibiotic concentrations were increased to 

concentrations shown in the same table. Once the final concentration was reached, the selection 

antibiotics were maintained for a further 14 days. During this time, the cells populations were 

expanded and aliquots were frozen on day 14 upon cessation of antibiotic use. 

Table 3.9: Antibiotic Selection Concentrations 

Approximate 

Day 

[Puromycin] 

 (µg/mL) 

[Blasticidin S] 

(µg/mL) 

[Hygromycin] 

(µg/mL) 

1 0.5 7.5 62.5 

4 1.0 15.0 125.0 

7 1.5 22.5 187.5 

10 2.0 30.0 250.0 

 

 To transduce cells with two plasmids, the same process is carried out except the initial 

transduction includes two plasmids instead of one. In this case, the total quantity of DNA and 

lipofectamine were increased to 750 ng and 2.25 µL, respectively. The initial selection was started 

at the lowest listed concentration of each antibiotic, but the concentration was only increased when 
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it was visually evident that there were enough cells to continue the selection. The single-selection 

antibiotic schedule is too aggressive for a double selection.   

3.14.3.5 RNA Extraction and Isolation 

 Cells were grown on a poly-L-lysine-coated 24-well plate for 72 hours at varying ratios of 

target (K562-GFP) and reporter cells (LaG17-synNotch-TetRVP64 / TRE mCherry-P2A-CCS1). 

At the end of the experiment the culture medium was removed and the cells were washed 3 times 

with HBSS. 300 µL of TRIzol was added to each well, gently pipetting the viscous solution to help 

distribute the TRIzol across the cells. It was left to sit for 5 minutes and then recovered from the 

wells. The TRIzol extract was centrifuged for 2 minutes at 10,000 RCF to pellet any cell debris 

and 250 µL of it was transferred to a new tube with an equal volume of ethanol.  

The Direct-zol RNA Mini Prep kit (Zymo Research, Irvine, CA) was used to purify the 

RNA according to manufacturer’s instructions. The optional DNAse I digestion step was 

performed. The purified RNA was eluted in 25 µL of water.  

3.14.3.6 Enzyme Substrate Activity Assay 

 Cells that constitutively expressed the various xanthine methylating enzymes were all 

screened in the same fashion. Cells (0.5 mL of 2x105 cells/mL) in standard medium were added to 

each well of a poly-l-lysine-coated 12-well plate. After 24 hours, 1 mL of 300 µM of one of the 

enzyme substrates was added to each well (final volume = 1.5 mL). These were incubated for 72 

hours under standard conditions in a cell culture incubator. At 72h, the cell medium supernatant 

was removed in its entirety from each well and transferred to a pre-weighed sample tube. The tube 

was weighed, and its weight was recorded. The tubes are centrifuged for 2 minutes at 16,000 x 

RCF and 30 µL used for HPLC analysis. Metabolite peaks on the chromatogram from the diode 

array detector at 272 nm are positively identified by comparison with known standards. The peaks 
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are integrated and the concentration is determined using a calibration curve of known 

concentrations for each substance. The concentration is then scaled to what the concentration 

would have been without evaporation (i.e. it is multiplied by ratio of the masses of unevaporated 

medium to recovered medium). This is necessary because evaporation across the wells of a 12-

well plate is much greater at wells that are closer to the outer edge of the plate and can distort 

results otherwise.  

 Table 3.10: Plating Diagram for Enzyme Substrate Activity Assay in a 12-Well Plate 

200 µM X 200 µM XR 200 µM 1X Variable 

200 µM 3X 200 µM 7X 200 µM 37X Variable 

200 µM 13X 200 µM 17X 200 µM CTRL Variable 

 

3.14.3.7 Juxtacrine Signalling-Induced Expression of Caffeine Synthesis Enzymes 

 For all experiments, HEK-293T cells were doubly transduced (via Sleeping Beauty, as per 

usual) with pSBBi-P LaG17-synNotch-TetRVP64 and pSBTRE-GB mCherry-P2A-CCS1 (or the 

equivalent MXMT/TCS1 plasmid) and selected with blasticidin and puromycin, as described 

previously. These cells are referred to hereafter as reporter cells. The reporter cells were plated at 

an areal density of 40,000 cells/cm2 with a culture medium volume to surface area ratio of 1 mL/5 

cm2, e.g. a T-25 flask would have 1 million reporter cells seeded and 5 mL of culture medium 

added. A relevant methylxanthine (1,7-dimethylxanthine for TCS1 and CCS1 and 7-

methylxanthine for MXMT) was included at 200 µM. Target cells, K562 expressing surface GFP, 

were seeded simultaneously at any desired ratios. This plating scheme can be scaled for 24-well 

plates, 12-well plates, and T-25 flasks easily. The cell culture medium is harvested at 72 hours and 
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is analyzed by the typical method with HPLC. For qPCR experiments, RNA is extracted by the 

method in Section 3.14.3.7.  

3.14.3.8 Verification of 7X Production by TCS2/CaXMT1 by Co-Culture 

  

3.14.4 LaG17 Protein Production and Purification  

BL21(DE3) competent E. coli cells (New England Biolabs, Ipswich, MA) were 

transformed with pET11-A+ eLaG17_(GSK)3_PP_Hisx6 by the standard heat shock method and 

grown on kanamycin-containing agar plates. A single colony was picked and grown overnight in 

a 10 mL starter culture while shaking at 37 °C. The next day, this was used to inoculate 1 L of LB 

which was grown at 37 °C with shaking. When this culture reached 0.6 OD600, it was cooled in an 

ice water bath and IPTG was added to a final concentration of 1 mM to induce protein expression. 

It was then shaken for a further 20 h at 18 °C.  

After 20 h, the culture was centrifuged at 5000 x RCF in a Beckman Coulter Avanti JXN-

26 with a JLA-8.10000 rotor for 30 minutes at 4 °C to pellet the E. coli cells. The supernatant was 

decanted and the pellet was transferred to a 50 mL tube and frozen at -80 °C overnight. The next 

day, the pellet was resuspended in ice cold 10 mL of wash buffer (pH 8, 25 mM imidazole, 100 

mM NaCl, 50 mM Tris-HCl, 5% (v/v) glycerol) containing 1 mM PMSF. While on ice, the 

suspension was sonicated for four times using a Branson Sonifier probe sonicator. Each cycle 

consisted of 30s sonication followed by a 90s delay. The duty cycle was set at 40% and the output 

control was set to 4. The bacterial lysate was centrifuged for 30 min at 10,000 x RCF and 4 °C to 

pellet cell debris. The supernatant was carefully removed and added to a tube containing 0.5 mL 

HisPur NiNTA Resin (Thermo Fisher Scientific, Waltham, MA) that had been washed and 

equilibrated with wash buffer, as per manufacturer instructions. The lysate supernatant was gently 
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inverted with the resin in a tube overnight at 4 °C to allow the His-tagged protein to bind to the 

resin. 

After incubation, the resin and lysate supernatant solution was transferred to a spin column 

and centrifuged at 700 x RCF. The sample was washed 3 times with 1 mL of wash buffer, and then 

eluted successively with three 0.5 mL portions of wash buffer with 250 mM imidazole and one 0.5 

mL portion of wash buffer with 500 mM imidazole. Samples of the washes and elutions were 

checked via SDS-PAGE to determine if they contained the desired protein.  

The elution fractions were combined and concentrated using a 3 kDa molecular weight 

cutoff microcentrifuge filter. The buffer was exchanged to 1X PBS with 1 mM DTT using the 

same filter. 0.1 mg of His-tagged Precission Protease (a gift from the Partho Ghosh Lab) was added 

and the volume was brought up to 1 mL. The sample was gently tumbled overnight at 4 °C. The 

next morning, the buffer was exchanged to 1X PBS using a 3 kDa molecular weight cutoff 

microcentrifuge filter. The sample was tumbled with 0.2 mL of His resin (washed and equilibrated 

with 1X PBS) for two hours at 4 °C. It was then washed 3 times with PBS (0.4 mL each). This 

column was not eluted with a high concentration of imidazole so that the His-tagged Precission 

protease and any uncleaved LaG17 would remain bound. The elution fractions were combined, 

and protein concentration was determined by UV-Vis using a calculated extinction coefficient 

determined by the ExPASy ProtParam tool.171 

3.14.5 LaG17 Labeling with BG-GLA-NHS 

To 250 µL of a 1.56 mg/mL (102 µM) LaG17 solution, 2.3 µL of an 85% pure 10 mg/mL 

BG-GLA-NHS in DMSO was added. This corresponds to 1.5 eq. BG-GLA-NHS per LaG17. The 

reaction was tumbled overnight at 4 °C, concentrated via spin dialysis with a 3K MWCO filter, 

and resuspended in sterile PBS.  
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3.14.6 Microscopy 

Epifluorescence microscopy imaging for coculture experiments was performed on an Axio 

Observer D1 inverted microscope (Carl Zeiss Microscopy, GmbH, Germany) with an Axiocam 

MRm camera (Carl Zeiss, Microscopy, GmbH, Germany) and an HBO-100 mercury arc lamp 

epifluorescence source (Carl Zeiss Microscopy, GmbH, Germany). Images were processed using 

Image J65 with Fiji.66 Microscopy images shown in a given figure are window-leveled in the same 

manner as one another.  

3.14.7 Liquid Chromatography 

 Reverse phase high performance liquid chromatography (HPLC) and liquid 

chromatography with mass spectrometry (LCMS) were performed on an Agilent Infinity 1260 

series (Santa Clara, CA) with diode-array detector (DAD) and a single quad mass spectrometer. 

An Agilent Polaris 5 C18-A column (180Å, 4.6 x 250 mm, 5 µm) or Polaris 5 C18-A (180Å, 10.0 

x 250 mm, 5 µm) were used for all separations involving xanthine derivatives. The standard 

gradient conditions used can be found in the Table 3.13, but this method was modified as needed 

to account for degrading column conditions when necessary. For example, the solvent composition 

may be held at 83% water for an extended duration to allow for all peaks to fully elute before the 

acetonitrile concentration is increased. All quantifications were performed by integrating 

chromatogram peaks from absorbance at 272 nm and calculating the concentration of the substance 

using a linear regression obtained from a standard curve of known concentrations.  

Reverse-phase HPLC purification was performed using an Agilent 1100 series Infinity 

HPLC and an Agilent Zorbax SB-C18 semi-prep column (ID 9.4 x 250 mm, 5 µm, 80 Å) using a 

water/acetonitrile gradient containing 0.1% trifluoroacetic acid using a variable wavelength 

detector wavelength of 280 nm.  
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Given the sample composition has a high ionic content, future revisions of the above 

method would likely use buffer solvents A and B instead of pure solvents.  

Table 3.11: Generic HPLC method for separation of xanthines 

Time 

(min) 

% Solvent A  

(H2O + 0.1% TFA) 

% Solvent B 

(ACN + 0.1% TFA) 

0 92 8 

14 83 17 

16 5 95 

20 5 95 

27.5 92 8 

36 92 8 

  

3.14.8 Synthesis of BG-GLA 

 

Scheme 3.5 Synthesis of BG-GLA 

 

Adapting a previously published protocol,172 6-((4-(aminomethyl)benzyl)oxy)-7H-purin-

2-amine (BG) (50.0 mg, 185 µmol, 1 eq.) and 1.2 mL of dimethylacetamide were added to a 

nitrogen-flushed 1-dram vial equipped with a stir bar. The sample was heated to 80 °C for 5 
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minutes with stirring to fully dissolve the BG. The sample was allowed to cool to room 

temperature. DMAP (10.0 mg, 81.9 µmol, 0.44 eq.) and DIEA (32.0 µL, 184 µmol, 1 eq.) were 

added to the reaction and it was left to stir overnight at room temperature. The reaction was added 

to a 15 mL of DI water using a Pasteur pipette and the pH was brought to ~4-5 using 1 M HCl. 

This caused a white precipitate to form. The precipitate was collected by gravity filtration through 

a filter paper and was dried under a high vacuum. It was used without any further purification. 

Yield: 52% (37.0 mg, 96.3 µmol). MS (ESI) m/2z [M-2H]- calc 1597.06; found 1597.65. HPLC 

(ELSD) Eclipse Plus C8 4.6 x 50mm 3.5 µm / H2O:MeOH / 0-15min 5%-95% MeOH, 15-22min 

95% MeOH. 

3.14.9 Synthesis of BG-GLA-NHS 

 

Scheme 3.6 Synthesis of BG-GLA-NHS 

 

Adapting a previously published method,172 BG-GLA (37.0 mg, 96.3 µmol, 1 eq.) was 

dissolved in 3.2 mL DMAc in a 2-dram vial equipped with a stir bar and cooled to 0 °C in an ice 

bath. N-hydroxysuccinimide (13.4 mg, 116 µmol 1.2 eq.) and N-ethyl-N′-(3-
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dimethylaminopropyl)carbodiimide hydrochloride (EDC-HCl) (33.0 mg, 172 µmol, 1.8 eq.) were 

added, with the excess of EDC-HCl being added to compensate for the slightly degraded quality 

of the reagent. The reaction was allowed to warm to room temperature and was stirred for 24 hours. 

The reaction was poured into 180 mL of diethyl ether which caused formation of a precipitate. The 

ether was transferred to six 50-mL centrifuge tubes which were centrifuged at 5000 rcf for 15 min 

at 4 °C to pellet all of the precipitate residue that coated the sides of the tube. The diethyl ether 

was decanted off and the pellets from each were removed with a spatula and transferred to a single 

tube. The tube was centrifuged as before and the pellet was removed with a spatula and transferred 

to a new tube. HPLC analysis showed sufficiently high purity (~85%), as estimated via integration 

of the A280 absorbance peaks, for its intended use. As such, the product was used without further 

purification. It was dissolved in DMF and aliquots were stored at -80 °C.  Recovered Yield: 86% 

(40.0 mg, 86.3 µmol), Estimated Product Yield: 71% (34 mg, 71 µmol) Eclipse Plus C8 4.6 x 50 

mm 3.5 µm / H2O:MeOH / 0 min 50% MeOH, 15-22 min MeOH. 

3.14.10 Synthesis of BG-Biotin 

 

Scheme 3.7 Synthesis of BG-Biotin 
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6-((4-(aminomethyl)benzyl)oxy)-7H-purin-2-amine (11.5 mg, 42.5 µmol, 2.9 eq.), biotinyl 

N-hydroxysuccinimide ester (5.00 mg, 14.6 µmol, 1 eq.), and DIEA (12.75 µL, 73.2 µmol, 5.0 

eq.) were added to 1 mL of anhydrous DMF in a 1-dram vial equipped with a stir bar. The reaction 

was stirred for 24 hours at room temperature. The solvent was removed under reduced pressure, 

taken up in methanol and purified by semi-preparative HPLC (DAD at 280 nm) Eclipse Plus C8 

4.6 x 50 mm 3.5 µm / H2O:MeOH / 0 min 50% MeOH, 15-22 min MeOH. Recovered Yield: 81% 

(5.87 mg, 11.8 µmol) solid. MS (ESI) 2m/z: [M+H]2+ calc 249.11; found 294.2.  

 

3.14.19 Synthesis of BG-PEG4-Biotin 

 

Scheme 3.8 Synthesis of BG-PEG4-Biotin 
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6-((4-(aminomethyl)benzyl)oxy)-7H-purin-2-amine (16.6 mg, 61.4 µmol, 2.4 eq.), biotin-

PEG4-N-hydroxysuccinimide ester (15.0 mg, 25.5 µmol, 1 eq.), and DIEA (18.75 µL, 107.6 µmol, 

4.2 eq.) were added to 1 mL of anhydrous DMSO in a scintillation vial equipped with a stir bar. 

The reaction was stirred for 24 hours at room temperature. The solvent was removed by heating 

under a high vacuum until dry. The residue was taken up in methanol and purified by semi-

preparative HPLC (DAD at 280 nm) Eclipse Plus C8 4.6 x 50 mm 3.5 µm / H2O:MeOH / 0 min 

50% MeOH, 15-22 min MeOH. Recovered Yield: 64% (12.23 mg, 16.4 µmol).  solid. MS (ESI) 

m/2z [M+2H]2+ calc 372.68; found 372.8.  

3.14.20 Reverse Transcriptase-qPCR Analysis of Induced CCS1 Expression  

3.14.20.1 Induced CCS1 Expression 

 By the method in 3.14.3.7, CCS1 reporter cells were grown with a target cell:receptor cell 

ratios of 0:1, 0.25:1, 0.5:1, 1:1, and 1.5:1 in a 24-well plate. RNA was harvested at 72 h. 

3.14.20.2 qPCR Protocol 

Primers for qPCR were chosen by entering the whole gene of interest into PRIMER-

BLAST173 and using a maximum primer length of 150 bp. The reverse transcriptase primer was 

chosen by selecting a primer which overlapped with the last 2-5 bp of the GOI and ended in a G 

or a C which had a melting temperature of approximately 55 °C.  

Samples were prepared according to Table 3.9 and Table 3.10. Reverse transcription was 

carried out at 50 °C for 45 minutes, followed by inactivation at 85 °C for 5 min.  
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Table 3.12: Reverse Transcription Primer Premix Recipe  

Component Volume 

Water 85.0 µL 

GOI Primer Stock (100 uM) 7.5 µL 

Housekeeping Gene Primer 

Stock (100 uM) 
7.5 µL 

Table 3.13: Reverse Transcription Reaction Component Recipe 

Component Volume 

RT Primer Premix 1.0 µL 

10 mM dNTPs 1.0 µL 

RT Buffer 4.0 µL 

Maxima H-minus RT 1.0 µL 

Murine RNAse Inhibitor 0.5 µL 

Purified RNA 1.0 µL 

Water 1.5 µL 

Table 3.14: qPCR and Reverse Transcriptase Primers Used 

Name Sequence (5′ to 3′) 

Notch-Forward ATCAAGCGCTCTACAGTGGG 

Notch-Reverse ACATTGCCGGTTGTCGATCT 

Notch-RT GAGGATGACTGCACACATTG 

CCS1-Forward ACGACCTGTTCCAGAACGAC 

CCS1-Reverse CGGGGAACAGTCTGCTGTAG 

CCS1-RT GTGCATGGATTCCTCGG 

 

 The qPCR plate was prepared such that each well contained 25 µL: 12.5 µL of SYBR 

Green qPCR Master Mix, 6.25 µL of reverse transcriptase product dilution (10 µL reverse 

transcriptase product and 52.5 µL water), and 6.25 µL of qPCR primer dilution (7.5 µL of 100 µM 

forward primer, 7.5 µL of 100 µM reverse primer, and 610 µL water). Three replicates of each 

condition for each primer set were plated, i.e. 3 replicate samples of of 5 target:receptor cell ratios 

for two different genes. This was analyzed by qPCR on a Biorad CFX-96 real time PCR thermal 

cycler to obtain CT values. CT values were analyzed by the 2-ΔΔCT method174 using CCS1 as a gene-

of-interest and synNotch as a reference gene. Data were plotted as fold-change with error bars as 

standard deviation of three replicates. 
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3.15 Supplemental Data 

3.15.1 Constitutive Xanthine Methylating Enzyme Expression Plasmid Maps and Notes 

 Nomenclature:  The plasmid backbone is named first followed by the identity of the gene-

of-interest inserted into the backbone. Fusions between components are indicated with dashes. 

Minor insertions, deletions, or mutations are not noted unless they were performed intentionally 

for specific effect.  

 Restriction Cloning with SfiI: Directional insertion of DNA into plasmids using SfiI can be 

easily performed using when distinct 5′ and 3′ SfiI recognition sequences. For simplicity’s sake, 

flanking primers were designed such that they would result in a sequence like that found in Figure 

3.15.  

 

Figure 3.15: Example of 5′ and 3′ SfiI sites and design considerations for restriction cloning primer design 
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3.15.1.1 pSBBi-GB CaXMT1 

 
Figure 3.16: Plasmid map for pSBBi-GB CaXMT1 plasmid.  

Construction Notes: 

 CaXMT1 was PCR amplified with flanking primers containing 5′ and 3′ SfiI cut sites. 

pSBBi-GB and this were each digested with SfiI and ligated with T4 ligase.  



91 

 

3.15.1.2 pSBBi-GB GST-CaXMT1 

 

Figure 3.17: Plasmid map for pSBBi-GB GST-CaXMT1 

Construction Notes: 

 This plasmid was constructed by HiFi assembly of N-terminal GST from pACYC-GST 

with pSBBi-GB CaXMT1 
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3.15.1.3 pSBBi-GB TCS2 

 

Figure 3.18: Plasmid map for pSBBi-GB TCS2 

 

 Construction Notes: 

 TCS2 was PCR amplified with flanking primers containing 5′ and 3′ SfiI cut sites. pSBBi-

GB and this were each digested with SfiI and ligated with T4 ligase.  
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3.15.1.4 pSBBi-RP CaDXMT 

 

Figure 3.19: Plasmid map for pSBBi-RP CaDXMT 

Construction Notes: 

 CaDXMT was PCR amplified with flanking primers containing 5′ and 3′ SfiI cut sites. 

pSBBi-RP and this were each digested with SfiI and ligated with T4 ligase.  
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3.15.1.5 pSBBi-RP CaMXMT 

 

Figure 3.20: Plasmid map for pSBBi-RP CaMXMT 

Construction Notes: 

 CaMXMT was PCR amplified with flanking primers containing 5′ and 3′ SfiI cut sites. 

pSBBi-RP and this were each digested with SfiI and ligated with T4 ligase.  
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3.15.1.6 pSBBi-RP CCS1 

 

Figure 3.21: Plasmid map for pSBBI-RP CCS1 

Construction Notes: 

 CCS1 was PCR amplified with flanking primers containing 5′ and 3′ SfiI cut sites. pSBBi-

RP and this were each digested with SfiI and ligated with T4 ligase.  
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3.15.1.7 pSBBi-RP CCS1(delC13) 

 

Figure 3.22: Plasmid map for pSBBi-RP CCS1(delC13) 

Construction Notes: 

 CaDXMT1 was PCR amplified with flanking primers containing 5′ and 3′ SfiI cut sites. 

pSBBi-RP and this were each digested with SfiI and ligated with T4 ligase.  

 



97 

 

3.15.1.8 pSBBi-RP CsAncCS 

 

 
Figure 3.23: Plasmid map for pSBBi-RP CsAncCS 
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3.15.1.9 pSBBi-RP GST-CCS1 

 

Figure 3.24: Plasmid map for pSBBi-RP GST-CCS1 
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3.15.1.10 pSBBi-RP GST-CCS1(delC13) 

 
 
Figure 3.25: Plasmid map for pSBBi-RP GST-CCS1(delC13) 
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3.15.1.11 pSBBi-RP GST-PcCS 

 
 
Figure 3.26: Plasmid map for pSBBi-RP GST-PcCS 
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3.15.1.12 pSBBi-RP GST-TCS1 

 

Figure 3.27: Plasmid map for pSBBi-RP GST-TCS1 
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3.15.1.13 pSBBi-RP TCS1 

 
Figure 3.28: Plasmid map for pSBBi-RP TCS1 
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3.15.1.14 pSBBi-RP PcAncCS2 

 
Figure 3.29: Plasmid map for pSBBi-RP PcAncCS2 
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3.15.1.15 pSBBi-RP PcCS 

 
Figure 3.30: Plasmid map for pSBBi-RP PcCS 
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3.15.2 SynNotch Receptor Plasmid Maps and Notes 

3.15.2.1 pSBBi-BH Exendin4-EGF-SynNotch-TetRVP64 

 
Figure 3.31: Plasmid map for pSBBi-BH Exendin4-EGF-SynNotch-TetRVP64 
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3.15.2.2 pSBBi-BH Exendin4-SynNotch-TetRVP64 

 
Figure 3.32: Plasmid map for pSBBi-BH Exendin4-SynNotch-TetRVP64 
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3.15.2.3 pSBBi-P Exendin4-EGF-SynNotch-Gal4VP64 

 
Figure 3.33: Plasmid map for pSBBi-P Exendin4-EGF-SynNotch-Gal4VP64 
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3.15.2.4 pSBBi-P Exendin4-EGF-SynNotch-TetRVP64 

 
Figure 3.34: Plasmid map for pSBBi-P Exendin4-EGF-SynNotch-TetRVP64 
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3.15.2.5 pSBBi-P Exendin4-SynNotch-Gal4VP64 

 
Figure 3.35: Plasmid map for pSBBi-P Exendin4-SynNotch-Gal4VP64 
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3.15.2.6 pSBBi-P Exendin4-SynNotch-TetRVP64 

 
Figure 3.36: Plasmid map for pSBBi-P Exendin4-SynNotch-TetRVP64 
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3.15.2.7 pSBBi-P LaG17-SynNotch-Gal4VP64 

 
Figure 3.37: Plasmid map for pSBBi-P LaG17-SynNotch-Gal4VP64 
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3.15.2.8 pSBBi-P Lag17-SynNotch-TetRELK1 

 
Figure 3.38: Plasmid map for pSBBi-P Lag17-SynNotch-TetRELK1 
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3.15.2.9 pSBBi-P LaG17-SynNotch-TetRVP64 

 
Figure 3.39: Plasmid map for pSBBi-P LaG17-SynNotch-TetRVP64 
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3.15.2.10 pSBBi-P SNAPtag-EGF-SynNotch-Gal4VP64 

 
Figure 3.40: Plasmid map for pSBBi-P SNAPtag-EGF-SynNotch-Gal4VP64 
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3.15.2.11 pSBBi-P SNAPtag-EGF-SynNotch-TetRVP64 

 
Figure 3.41: Plasmid map for pSBBi-P SNAPtag-EGF-SynNotch-TetRVP64 
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3.15.2.12 pSBBi-P SNAPtag-SynNotch-Gal4VP64 

 
Figure 3.42: Plasmid map for pSBBi-P SNAPtag-SynNotch-Gal4VP64 
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3.15.2.13 pSBBi-P SNAPtag-SynNotch-TetRVP64 

 
Figure 3.43: Plasmid map for pSBBi-P SNAPtag-SynNotch-TetRVP64 
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3.15.3 Targets for SynNotch Receptor Plasmid Maps and Notes 

3.15.3.1 pSFFV mSA-EGFP-TM 

 

Figure 3.44: Plasmid map for pSFFV mSA-EGFP-TM 
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3.15.3.2 pSFFV GLP1R(S301A)EGFP 

 

Figure 3.45: Plasmid map for pSFFV GLP1R(S301A)EGFP 
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3.15.3.3 pHR_EGFPligand 

 

Figure 3.46: Plasmid map for pHR_EGFPligand 
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3.15.4 Tet-Inducible Plasmids 

All Tet-inducible plasmids were made from a deletion mutant of pSBTet-GB wherein the rtTA-

P2A was deleted. This backbone was named “pSBTRE-GB” to distinguish it from the parent 

plasmid. The reporter constructs (mCherry-P2A-GOI) were inserted downstream of the tight TRE 

promoter via HiFi assembly.   

3.15.4.1 pSBTRE-GB mCherry-CCS1 

 

Figure 3.47: Plasmid: Plasmid map for pSBTRE-GB mCherry-CCS1 
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3.15.4.2 pSBTRE-GB mCherry-P2A-CCS1 

 

Figure 3.48: Plasmid: Plasmid map for pSBTRE-GB mCherry-P2A-CCS1 
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3.15.4.3 pSBTRE-GB mCherry-P2A-TCS1 

 

Figure 3.49: Plasmid map for pSBTRE-GB mCherry-P2A-TCS1 

 



124 

 

3.15.4.4 pSBTRE-GB mCherry-P2A-MXMT 

 

 
Figure 3.50: Plasmid map for pSBTRE-GB mCherry-P2A-CaMXMT 
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3.15.5 Other Plasmids 

3.15.4.1 pET11-A+ eLaG17-SGKGSKGSKSK-Hisx6 

 
 
Figure 3.51: Plasmid map for pET11A+ eLag17-SGKGSKGSKSK-Hisx6 
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3.15.6 HPLC Chromatograms 

Retention times can be somewhat variable between samples. This is due to slowly 

degrading column condition as well as position in sequence. Samples earlier in the sequence elute 

differently than those later in a sequence due to column equilibration with the buffer constituents 

present in cell culture media. In the future, HPLC solvents probably should be buffer instead of 

just solvent + 0.1% TFA. Chromatographs were integrated in ChemStation and the peak area was 

used to calculate yield of products based on standard curves. When a product peak overlapped 

with a peak present in the control sample, the appropriate cell line’s spectrum was integrated over 

the same time span as the peak and the result was subtracted from the integrated value for the 

sample in question.  
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3.15.6.1 HEK-293T LaG17-synNotch-TetRVP64 + TRE mCherry-P2A-CCS1 / K562-GFP 

Co-Culture 

 
Figure 3.52: Chromatograms showing the formation of caffeine resulting from the coculture of 

receptor/reporter cells HEK-293T LaG17-synNotch-TetRVP64 + TRE mCherry-P2A-CCS1 with  K562-

GFP target cells in the presence of paraxanthine 
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3.15.6.2 CaDXMT1 

 

Figure 3.53: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for CsAncCS. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.54: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CsAncCS. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.3 CaMXMT 

 

Figure 3.55: 7X and control chromatograms from DAD (272 nm) for CaMXMT. Products are marked with 

an asterisk and are labeled in red.  
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3.15.6.4 CaXMT1 

 

Figure 3.56: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for CsAncCS. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.57: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CsAncCS. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.4 CaXMT1-G 

 

Figure 3.58: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for CsAncCS. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.59: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CsAncCS. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.5 CCS1 

 

Figure 3.60: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for CsAncCS. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.61: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CsAncCS. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.6 CCS1-G 

 

Figure 3.62: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for CCS1-G. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.63: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CCS1-G. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.7 CCS1(delC13) 

 

Figure 3.64: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for CCS1(delC13). Products 

are marked with an asterisk and are labeled in red.  
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Figure 3.65: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CCS1(delC13). 

Products are marked with an asterisk and are labeled in red.  
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3.15.6.8 CsAncCS 

 

Figure 3.66: Control, X, XR, 1X, and 3X chromatograms from DAD 272 nm for CsAncCS. Note the 

presence of 3X and 1X in all samples. This likely comes from conversion of endogenous xanthine. Products 

are marked with an asterisk and are labeled in red.  
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Figure 3.67: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for CsAncCS. Note the 

presence of 3X and 1X in all samples. This likely comes from conversion of endogenous xanthine. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.9 PcAncCS2 

 

Figure 3.68: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for PcAncCS2. Products 

are marked with an asterisk and are labeled in red.  
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Figure 3.69: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for PcAncCS2. Products 

are marked with an asterisk and are labeled in red.  



145 

 

3.15.6.10 PcCS 

 

Figure 3.70: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for PcCS. Products are 

marked with an asterisk and are labeled in red. 
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Figure 3.71: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for PcCS. Products are 

marked with an asterisk and are labeled in red. 
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3.15.6.11 TCS1 

 

Figure 3.72: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for TCS1. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.73: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for TCS1. Products are 

marked with an asterisk and are labeled in red.  



149 

 

3.15.6.12 TCS1-G 

 

Figure 3.74: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for TCS1-G. Products are 

marked with an asterisk and are labeled in red.  
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Figure 3.75: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for TCS1-G. Products 

are marked with an asterisk and are labeled in red.  
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3.15.6.13 TCS2 

 

Figure 3.76: Control, X, XR, 1X, and 3X chromatograms from DAD (272 nm) for TCS2. Products are 

marked with an asterisk and are labeled in red. 
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Figure 3.77: 7X, 37X, 13X, 17X, and control chromatograms from DAD (272 nm) for TCS2. Products are 

marked with an asterisk and are labeled in red. 
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3.15.6.14 LaG17-synNotch-TetRVP64 + TRE mCherry-P2A-MXMT / Target Cell 0:1 and 

1:1 Co-culture 

 

Figure 3.78: Chromatograms from DAD (272 nm) for co-culture experiment of LaG17-synNotch-

TetRVP64 + TRE mCherry-P2A-MXMT / Target cells at 0:1 and 1:1 ratios with 200 µM 7X. Integration 

of control chromatogram was subtracted from each of the experimental conditions to determine 

concentrations. 
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3.15.6.14 LaG17-synNotch-TetRVP64 + TRE mCherry-P2A-TCS1 / Target Cell 1:1 Co-

culture 

 

Figure 3.79: Chromatogram from DAD (272 nm) for co-culture experiment of LaG17-synNotch-

TetRVP64 + TRE mCherry-P2A-TCS1 / Target cells 1:1 ratios with 200 µM PX. Integration of control 

chromatogram was subtracted from each of the experimental conditions to determine concentrations. 

Concentration of caffeine (not corrected for evaporative loss) was determined to be 32.1 µM.  

 

3.15.7 Gene Block Sequences 

The following are the Gene Block sequences ordered for the named genes. Start and stop codons 

are bolded. Names of enzymes are underlined. 

 

PcCS 
GCCACCATGGATATGAAAGATGTGCTTTGTATGAACACAGGAGAAGGAGAAAGCAGCTACTTGCTCAATTCTAAATT

CACGAACGTAACAGCAATCAAATCAATCCCAACCCTAAAGAGGGCAATTGAATCACTCTTCAAGGAAGAATCACCAC

CATTTGAACACCTCCTAAATGTGGCAGATTTGGGGTGTGCTTCAGGCTCAACTTCAAATACCATAATGCCAACCGTA

GTCCAAACAGTGGTCAACAAATGCAGAGAATTGAATCACAAAATCCCAGAGTTTCAATTCTACTTGAATGATCTACC

ATCTAATGACTTCAACACACTCTTCAAGGGATTGAATGGTTTTGTGGGTAGTGGTGGTGAAGAATTTGAAAATACTT

CATGTCTTGTGATGGGTGCTCCTGGTTCTTTTCATGGGAGGCTCTTTCCTTTGAATACAATTCATCTTGTTTACTCT

AATTATTCTGTTCATTGGCTCTCCAAGGTACCGGATCTTAGAGATGAAAAAGGTAATCCAATAAACAAAGGAACATT

TTACATATCGAAAACAAGTCCTAGTGGTGTAAGAGAAGCGTACCTTGCTCAATTTCAAAAAGACTTCACATTGTTTC

TAAAGTCACGTGCTGAGGAGATGGTGTCCAATGGTCGAGTTGTGTTGGTTCTCCATGGAAGACTCTCTCAAGATTTC

TCCTGCGAAAAAGAACTTCAATTACCTTGGTTAATTCTCTCCCAAGCCATATCTCGCTTGGTTTCCAAGGGATTGAT

AGATGAAGAGAAATTGGATTCATTTGAGGTACCATACTACACACCATCAGTGCAAGAAGTGAAAGAATTAGTAGAGG

GAGAGGGATCGTATGCGGTGGAGCTCATGGAAACATTTACAATCAGGATCGGAGCCCGAAATGAGGGCATCTGGAGT

GATGCCCGAGGGTTTGGGAACAATCTCAGATCAATCACAGAGACAATGATTTCACACCACTTTGGACCTCAAATTCT

TGATGAATTGTATGATGAGATTCAAGATCTGCCTCTACAAGATTTTGCTACTCAATGTAGCTTTGTTGTTGGTTTGA

AGAGAAATGGAAGTAGCTAA 

 

CaDXMT 
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CATTGGCCTCTGAGGCCACCATGGAGCTCCAAGAAGTCCTGCATATGAATGGAGGCGAAGGCGATACAAGCTACGCC

AAGAACTCATTCTACAATCTGTTTCTCATCAGGGTGAAACCTATCCTTGAACAATGCATACAAGAATTGTTGCGGGC

CAACTTGCCCAACATCAACAAGTGCATTAAAGTTGCGGATTTGGGATGCGCTTCTGGACCAAACACACTTTTAACAG

TTCGGGACATTGTACAAAGTATTGACAAAGTTGGCCAGGAAAAGAAGAATGAATTAGAACGTCCCACCATTCAGATT

TTTCTGAATGATCTTTTCCAAAATGATTTCAATTCGGTTTTCAAGTCGCTGCCAAGCTTCTACCGCAAACTTGAGAA

AGAAAATGGACGCAAAATAGGATCATGCCTGATAGGCGCAATGCCTGGCTCTTTCTACGGCAGACTCTTCCCCGAGG

AGTCCATGCATTTTTTACACTCTTGTTACTGTTTGCATTGGTTATCTCAGGTTCCCAGCGGTTTGGTGACTGAATTG

GGGATCAGTGCGAACAAAGGGTGCATTTACTCTTCCAAAGCAAGTCGTCCGCCCATCCAGAAGGCATATTTGGATCA

ATTTACGAAAGATTTTACCACATTTCTTAGGATTCATTCGGAAGAGTTGATTTCACGTGGCCGAATGCTCCTTACTT

GGATTTGCAAAGAAGATGAATTCGAGAACCCGAATTCCATAGACTTACTTGAGATGTCAATAAACGACTTGGTTATT

GAGGGACATCTGGAGGAAGAAAAATTGGACAGTTTCAATGTTCCAATCTATGCACCTTCAACAGAAGAAGTAAAGTG

CATAGTTGAGGAGGAAGGTTCTTTTGAAATTTTATACCTGGAGACTTTTAAGGTCCCTTATGATGCTGGCTTCTCTA

TTGATGATGATTACCAAGGAAGATCCCATTCCCCAGTATCCTGCGATGAACATGCTAGAGCAGCGCATGTGGCATCT

GTCGTTAGATCAATTTTCGAACCCATCGTCGCAAGTCATTTTGGAGAAGCTATCATGCCTGACTTATCCCACAGGAT

TGCGAAGAATGCAGCAAAGGTTCTTCGCTCCGGCAAAGGCTTCTATGATAGTCTTATCATTTCTCTCGCCAAAAAGC

CAGAGAAGTCAGACGTGTAAGGCCTGTCAGGCCCATT 

 
TCS1 

CATTGGCCTCTGAGGCCACCATGGAGCTAGCTACTGCGGGGAAGGTGAACGAAGTGTTGTTCATGAACAGAGGAGAA

GGAGAAAGTAGTTATGCACAAAACTCTTCTTTCACGCAACAAGTGGCCTCAATGGCACAGCCAGCGCTAGAAAATGC

AGTTGAAACTCTCTTCTCCAGAGATTTCCACCTTCAAGCTCTTAACGCAGCGGACTTGGGTTGTGCAGCGGGTCCAA

ACACATTCGCAGTGATTTCTACGATCAAGAGAATGATGGAAAAGAAATGCAGGGAATTGAATTGCCAAACACTGGAA

CTTCAGGTTTACTTGAATGATCTTTTTGGAAATGATTTCAATACCCTCTTCAAAGGCCTGTCGTCTGAGGTTATTGG

TAACAAATGTGAGGAAGTTCCGTGTTATGTGATGGGAGTACCGGGGTCTTTCCATGGCCGGCTTTTTCCTCGTAACA

GCTTACATTTAGTTCATTCCTCTTACAGTGTTCATTGGCTTACTCAGGCACCAAAAGGACTCACAAGCAGAGAAGGC

TTGGCATTAAACAAGGGGAAGATTTACATATCAAAGACAAGCCCTCCTGTTGTAAGAGAAGCCTACTTATCTCAATT

TCATGAAGATTTCACAATGTTTCTCAATGCTAGATCCCAAGAGGTGGTTCCAAATGGTTGTATGGTGTTGATACTTC

GTGGTAGGCAATGTTCTGATCCTTCAGACATGCAGAGCTGCTTTACTTGGGAACTATTAGCTATGGCCATTGCTGAA

TTGGTTTCACAGGGATTGATAGATGAAGATAAATTAGACACCTTCAATATACCCAGCTATTTTGCATCACTTGAGGA

AGTGAAAGATATAGTGGAGAGGGACGGATCATTCACAATTGATCATATAGAGGGGTTTGATCTTGATAGCGTAGAAA

TGCAGGAGAATGATAAATGGGTTAGAGGGGAAAAGTTTACCAAGGTTGTCAGGGCCTTCACAGAGCCTATAATTTCA

AACCAGTTTGGACCTGAAATCATGGACAAACTATATGACAAATTCACTCACATTGTAGTTTCAGATTTGGAAGCAAA

GCTACCGAAGACCACAAGTATCATCCTAGTGCTTTCCAAGATTGATGGATAGGGCCTGTCAGGCCCATT 

 

CaXMT1 

GAACTGCAAGAGGTGCTGAGAATGAACGGCGGCGAGGGCGATACAAGCTACGCCAAGAACAGCGCCTACAATCAGCT

GGTGCTGGCCAAAGTGAAGCCCGTGCTGGAACAGTGTGTGCGCGAACTGCTGAGAGCCAACCTGCCTAACATCAACA

AGTGCATCAAGGTGGCCGACCTGGGCTGTGCCTCTGGACCTAATACTCTGCTGACCGTGCGGGACATCGTGCAGAGC

ATCGACAAAGTGGGCCAAGAGAAGAAGAACGAGCTGGAACGGCCAACCATCCAGATCTTTCTGAACGATCTGTTCCC

CAACGACTTCAACAGCGTGTTCAAGCTGCTGCCCAGCTTCTACCGGAAGCTGGAAAAAGAGAACGGCCGGAAGATCG

GCTCCTGCCTGATTGGAGCTATGCCCGGCTCCTTCTACAGCAGACTGTTCCCCGAGGAATCCATGCACTTTCTGCAC

AGCTGCTACTGCCTGCAGTGGCTGTCTCAGGTGCCATCTGGCCTGGTTACAGAGCTGGGCATCTCCACCAACAAGGG

CAGCATCTACAGCTCCAAGGCCTCCAGACTGCCAGTGCAGAAGGCCTACCTGGACCAGTTCACCAAGGACTTCACCA

CCTTTCTGCGGATCCACAGCGAGGAACTGTTCAGCCACGGCAGAATGCTGCTGACCTGCATCTGCAAAGGCGTGGAA

CTGGACGCCAGAAACGCCATCGACCTGCTGGAAATGGCCATCAACGACCTGGTGGTGGAAGGACACCTGGAAGAGGA

AAAGCTGGACAGCTTCAATCTGCCCGTGTACATCCCCAGCGCCGAGGAAGTGAAGTGCATCGTGGAAGAAGAGGGCA

GCTTCGAGATCCTGTACCTGGAAACCTTCAAGGTGCTGTACGACGCCGGCTTCAGCATCGACGACGAGCACATCAAG

GCCGAGTACGTGGCCTCTTCTGTGCGGGCCGTGTATGAGCCTATTCTGGCCAGCCACTTCGGCGAGGCCATCATTCC

CGACATCTTCCACAGATTCGCCAAGCACGCCGCCAAAGTGCTGCCTCTCGGAAAGGGCTTCTACAACAACCTGATCA

TCAGCCTGGCCAAGAAGCCCGAGAAGTCCGACGTGTAAGGTAACTA 

 

CCS1 

GAACTGCAAGAGGTGCTGCACATGAATGGCGGCGAGGGCGATACAAGCTACGCCAAGAACAGCAGCTACAACCTGTT

CCTGATCAGAGTGAAGCCCGTGCTGGAACAGTGCATCCAAGAGCTGCTGAGAGCCAACCTGCCTAACATCAACAAGT

GCTTCAAAGTGGGCGACCTGGGCTGTGCCAGCGGACCTAATACCTTTAGCACCGTGCGGGACATCGTGCAGAGCATC

GACAAAGTGGGACAAGAGAAGAAGAACGAGCTGGAACGGCCTACCATCCAGATCTTTCTGAACGACCTGTTCCAGAA

CGACTTCAACAGCGTGTTCAAGCTGCTGCCCAGCTTCTACCGGAACCTGGAAAAAGAGAACGGCCGGAAGATCGGCT
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CCTGCCTGATTGGAGCTATGCCCGGCTCCTTCTACAGCAGACTGTTCCCCGAGGAATCCATGCACTTTCTGCACAGC

TGCTACTGCCTGCACTGGCTGTCTCAGGTGCCATCTGGCCTGGTTACAGAGCTGGGCATCTCTGCCAACAAGGGCTG

CATCTACAGCTCCAAGGCCAGCGGGCCTCCTATCAAGAAGGCCTACCTGGACCAGTTCACCAAGGACTTCACCACCT

TTCTGCGGATCCACAGCGAGGAACTGATCAGCAGAGGCCGGATGCTGCTGACCTTCATCTGCAAAGAGGACGAGTTC

GATCACCCCAACAGCATGGACCTGCTGGAAATGAGCATCAACGACCTGGTCATCGAGGGCCACCTGGAAGAGGAAAA

GCTGGACAGCTTCAACGTGCCCATCTACGCCCCTAGCACCGAGGAAGTGAAGCGGATCGTTGAGGAAGAGGGCAGCT

TCGAGATCCTGTACCTGGAAACCTTTTACGCCCCTTACGACGCCGGCTTCAGCATCGACGATGACTACCAGGGCAGA

TCTCACAGCCCTGTGTCCTGTGATGAGCACGCCAGAGCTGCTCACGTGGCATCTGTTGTGCGGAGCATCTACGAGCC

TATCCTGGCCTCTCACTTCGGCGAGGCCATTCTGCCTGATCTGAGCCACCGGATCGCCAAGAATGCCGCCAAGGTGC

TGAGAAGCGGCAAGGGCTTTTACGACAGCGTGATCATCAGCCTGGCCAAGAAGCCCGAGAAGGCCGATATGTAGGGT

AACTA 

 

CamelliaAncCS 

AGTAGGCCTCTGAGGCCACCATGGAAGAAGTGAAAGAGGCCCTCTTCATGAACAGAGGCGAGGGCGAGTCTAGCTAC

GCCCAGAATAGCAGCTTCACCCAGAAAGTGGCCAGCATGACCATGCCTGTGCTGGAAAACGCCGTGGAAACCCTGTT

CAGCAAGGACTTCCATCTGCTGCAGGCCCTGAATGCCGCCGATCTTGGATGTGCCGCCGGACCTAATACCTTCACCG

TGATCAGCACCATCAAGCGGATGATGGAAAAGAAGTGCCGCGAGCTGAACTGTCAGACCCTGGAACTGCAGGTCTAC

CTGAACGACCTGCCTGGCAACGACTTCAACACCCTGTTTAAGGGCCTGTCCTCCAAGGTGGTCGTGGGCAACAAGTG

CGAAGAGGTGTCCTGCTACGTGATGGGAGTGCCTGGCAGCTTTCACGGCAGACTGTTCCCCAGAAACAGCCTGCACC

TGGTGCACAGCAGCTACTCCGTGCATTGGCTGTCTCAGGCCCCAAAGGGCCTGACCAGTAGAGAAGGACTGGCCCTG

AACAAGGGCAAGATCTACATCAGCAAGACAAGCCCTCCAGTCGTGCGCGAGGCCTACCTGTCTCAGTTCCACGAGGA

CTTCACCATGTTTCTGAACGCTCGGAGCCAAGAGGTGGTGCCCAATGGCTGTATGGTCCTGATCCTGCACGGCAGGC

AGAGCAGCGACCCCAGCAATATGGAAAGCTGCTTCACCTGGGAGCTGCTGGCCATTGCCATTGCCGAACTGGTGTCC

CAGGGCCTGATCGACGAGGACAAGCTGGACACCTTCAACGTGCCCTACTACACCCCTAGCCTCGAGGAAGTGAAGGA

CATCGTCGAGAGAGAGGGCTCCTTCACCATCGACCACATGGAAGGCTTCGAGCTGGACAGCCCTCAGATGCAAGAGA

ACGACAAATGGGTCCGAGGCGAGAAGCTGGCCAAAGCCGTCAGAGCCTTTACCGAGCCTATCATCAGCAATCAGTTC

GGCCACGAGATCATGGATAAGCTGTACGACAAGTTCACCCACATCGTGGTGTCCGACCTGGAAGCCAAGATTCCCAA

GACCACCAGCATCATCCTGGTGCTGAGCAAGATCGTGGGCTAATTCGAAGGCCTGTCAGGCCCTTA 

 

TCS2 

AGTAGGCCTCTGAGGCCACCATGAAGGAAGTGAAAGAGGCCCTCTTCATGAACAAAGGCGAGGGCGAGAGCAGCTAC

GCCCAGAATAGCAGCTTTACCCAGACCGTGACCAGCATGACCATGCCTGTGCTGGAAAACGCCGTGGAAACCCTGTT

CAGCAAGGACTTCCATCTGCTGCAGGCCCTGAATGCCGTGGATCTGGGATGTGCTGCCGGACCTACCACCTTCACCG

TGATCAGCACCATCAAGCGGATGATGGAAAAGAAGTGCCGCGAGCTGAACTGTCAGACCCTGGAACTGCAGGTCTAC

CTGAACGACCTGCCTGGCAACGACTTCAACACCCTGTTTAAGGGCCTGCCTAGCAAGGTCGTGGGCAACAAGTGTGA

AGAGGTGTCCTGCTACGTCGTGGGAGTGCCTGGCTCTTTTCACGGCAGACTGTTCCCCAGAAACAGCCTGCACCTGG

TGCACAGCTGTTACTCCGTGCACTGGCTGACACAGGCCCCAAAGGGCCTGACCTCCAAAGAAGGACTGGCCCTGAAC

AAGGGCAAGATCTACATCAGCAAGACAAGCCCTCCAGTCGTGCGCGAGGCCTACCTGTCTCAGTTCCACGAGGACTT

CACCATGTTTCTGAACAGCCGCAGCCAAGAGGTGGTGCCCAATGGCTGTATGGTCCTGATCCTGAGAGGCCGGCTGA

GCAGCGATCCTAGCGATATGGGCAGCTGCTTCACCTGGGAACTGCTGGCCGTGGCCATTGCCGAACTGGTTTCTCAG

GGACTGATCGACGAGGACAAGCTGGACACCTTCAACGTGCCCAGCTACTTCCCCAGCCTGGAAGAAGTGAAGGACAT

CGTCGAGCGGAACGGCAGCTTCACCATCGACCACATGGAAGGCTTCGAGCTGGACAGCCCCGAGATGCAAGAGAACG

ACAAATGGGTCCGAGGCGAGAAGTTCGCCACAGTGGCCAGAGCCTTTACCGAGCCTATCATCAGCAATCAGTTCGGC

CACGAGATCATGGATAAGCTGTACGAGAAGTTTACCCACATCGTGGTGTCCGACTTCGAGGCCAAGATTCCCAAGAT

CACCAGCATCATCCTGGTGCTGTCCAAGATCGTGGGCTAATTCGAAGGCCTGTCAGGCCCTTA 

 

CaMXMT 

AGTAGGCCTCTGAGGCCACCATGGAACTGCAAGAGGTGCTGCACATGAACGAAGGCGAGGGCGATACCAGCTACGCC

AAGAACGCCAGCTACAATCTGGCCCTGGCCAAAGTGAAGCCCTTCCTGGAACAGTGCATCAGAGAGCTGCTGCGGGC

CAACCTGCCTAACATCAACAAGTGCATCAAGGTGGCCGACCTGGGCTGTGCCTCTGGACCTAATACTCTGCTGACCG

TGCGGGACATCGTGCAGAGCATCGACAAAGTGGGCCAAGAGGAAAAGAACGAGCTGGAACGGCCTACCATCCAGATC

TTTCTGAACGACCTGTTCCAGAACGACTTCAACAGCGTGTTCAAGCTGCTGCCCAGCTTCTACCGGAAGCTGGAAAA

AGAGAACGGCCGGAAGATCGGCTCCTGCCTGATTTCTGCCATGCCTGGCAGCTTTTACGGCCGGCTGTTCCCCGAGG

AATCCATGCACTTTCTGCACAGCTGCTACAGCGTGCACTGGCTGTCTCAGGTGCCATCTGGCCTGGTTATCGAACTC

GGCATCGGAGCCAACAAGGGCAGCATCTACAGCAGCAAGGGCTGCAGACCTCCAGTGCAGAAGGCCTACCTGGACCA

GTTCACCAAGGACTTCACCACCTTTCTGCGGATCCACAGCAAAGAGCTGTTCAGCCGGGGCAGAATGCTGCTGACCT

GCATCTGCAAGGTGGACGAGTTCGACGAGCCCAATCCACTGGACCTGCTGGACATGGCCATCAACGACCTGATCGTG
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GAAGGCCTGCTGGAAGAAGAAAAGCTGGACAGCTTCAACATCCCGTTCTTCACCCCTAGCGCCGAGGAAGTGAAGTG

CATTGTGGAAGAGGAAGGCAGCTGCGAGATCCTGTACCTGGAAACCTTCAAGGCCCACTACGACGCCGCCTTCAGCA

TCGACGATGATTACCCTGTGCGGAGCCACGAGCAGATCAAGGCCGAATATGTGGCCAGCCTGATCAGAAGCGTGTAC

GAGCCTATCCTGGCCAGCCACTTTGGCGAGGCCATCATGCCTGATCTGTTCCACAGACTGGCCAAGCACGCCGCTAA

AGTGCTGCATATGGGCAAGGGATGCTACAACAACCTGATCATCAGCCTGGCCAAGAAGCCCGAGAAGTCCGACGTGT

AATTCGAAGGCCTGTCAGGCCCTTA 

 

PaulliniaCupanaAncCS2 

AGTAGGCCTCTGAGGCCACCATGGACGTGAAGGACGTGCTGTGCATGAACAAAGGCGAGGGCGAGAGCAGCTACCTG

CTGAACAGCAAGTTCACCAACATCACCGCCGTGAAGTCTATCCCCACACTGAAGAGAGCCATCGAGAGCCTGTTCAA

AGAGGAAAGCCCTCCATTCGAGCATCTGCTGAACGTGGCCGATCTGGGCTGTGCCTCTGGCAGCACAAGCAACACCA

TCATGAGCACCGTGGTGCAGACCGTGGTCAACAAGTGCAGAGAGCTGAACCACAAGATCCCCGAGTTCCAGTTCTAC

CTGAACGACCTGCCTAGCAACGACTTCAACACCCTGTTCAAGGGCCTGAGCGGCTTTGTTGGCTCTGGCGGCGAGGA

ATTCGAGAACACCAGCTGTCTGGTCATGGGAGCCCCTGGCAGCTTTCACGGCAGACTGTTCCCTCTGAACACCATCC

ACCTGGTGTACAGCAACTACAGCGTGCACTGGCTGAGCAAGGTGCCCGACCTGAGAGATGAGAAGGGCAACCCCATC

AACAAGGGCACCTTCTACATCAGCAAGACAAGCCCCTCTGCCGTGCGCGAAGCTTATCTGGCCCAGTTCCAGAAGGA

CTTCACCCTGTTTCTGAAGTCCAGAGCCGAGGAAATGGTGTCCAACGGCAGAGTGGTGCTGGTGCTGCATGGAAGGC

TGAGCCAGGATTTCAGCTGCGAGAAAGAACTGCAGCTGCCTTGGCTGATCCTGTCTCAGGCCATCAGCAGACTGGTG

TCTAAGGGACTGATCGACGAGGAAAAGCTGGACAGCTTCGAGGTGCCCTACTACACCCCTAGCGCTCAAGAAGTGAA

AGAGCTGGTCGAAGGCGAAGGCAGCTACGCCGTGGAACTGATGGAAACCTTCACCATCCGGATCGGCGCCAGAAACG

AAGGCATTTGGAGCGACGCCAGAGGCTTCGGCAACAACCTGAGATCCATCACCGAGACAATGATCAGCCACCACTTC

GGCCCTCAGATCCTGGACGAGCTGTACGACGAGATCCAGGACCTGCCACTGCAGGACTTCGCCACACAGTGCAGCTT

TGTCGTGGGCCTGAAGCGGAATTAATTCGAAGGCCTGTCAGGCCCTTA 

 
CaXMT1 

GAACTGCAAGAGGTGCTGAGAATGAACGGCGGCGAGGGCGATACAAGCTACGCCAAGAACAGCGCCTACAATCAGCT

GGTGCTGGCCAAAGTGAAGCCCGTGCTGGAACAGTGTGTGCGCGAACTGCTGAGAGCCAACCTGCCTAACATCAACA

AGTGCATCAAGGTGGCCGACCTGGGCTGTGCCTCTGGACCTAATACTCTGCTGACCGTGCGGGACATCGTGCAGAGC

ATCGACAAAGTGGGCCAAGAGAAGAAGAACGAGCTGGAACGGCCAACCATCCAGATCTTTCTGAACGATCTGTTCCC

CAACGACTTCAACAGCGTGTTCAAGCTGCTGCCCAGCTTCTACCGGAAGCTGGAAAAAGAGAACGGCCGGAAGATCG

GCTCCTGCCTGATTGGAGCTATGCCCGGCTCCTTCTACAGCAGACTGTTCCCCGAGGAATCCATGCACTTTCTGCAC

AGCTGCTACTGCCTGCAGTGGCTGTCTCAGGTGCCATCTGGCCTGGTTACAGAGCTGGGCATCTCCACCAACAAGGG

CAGCATCTACAGCTCCAAGGCCTCCAGACTGCCAGTGCAGAAGGCCTACCTGGACCAGTTCACCAAGGACTTCACCA

CCTTTCTGCGGATCCACAGCGAGGAACTGTTCAGCCACGGCAGAATGCTGCTGACCTGCATCTGCAAAGGCGTGGAA

CTGGACGCCAGAAACGCCATCGACCTGCTGGAAATGGCCATCAACGACCTGGTGGTGGAAGGACACCTGGAAGAGGA

AAAGCTGGACAGCTTCAATCTGCCCGTGTACATCCCCAGCGCCGAGGAAGTGAAGTGCATCGTGGAAGAAGAGGGCA

GCTTCGAGATCCTGTACCTGGAAACCTTCAAGGTGCTGTACGACGCCGGCTTCAGCATCGACGACGAGCACATCAAG

GCCGAGTACGTGGCCTCTTCTGTGCGGGCCGTGTATGAGCCTATTCTGGCCAGCCACTTCGGCGAGGCCATCATTCC

CGACATCTTCCACAGATTCGCCAAGCACGCCGCCAAAGTGCTGCCTCTCGGAAAGGGCTTCTACAACAACCTGATCA

TCAGCCTGGCCAAGAAGCCCGAGAAGTCCGACGTGTAAGGTAACTA 

 

CCS1 

GAACTGCAAGAGGTGCTGCACATGAATGGCGGCGAGGGCGATACAAGCTACGCCAAGAACAGCAGCTACA

ACCTGTTCCTGATCAGAGTGAAGCCCGTGCTGGAACAGTGCATCCAAGAGCTGCTGAGAGCCAACCTGCC

TAACATCAACAAGTGCTTCAAAGTGGGCGACCTGGGCTGTGCCAGCGGACCTAATACCTTTAGCACCGTG

CGGGACATCGTGCAGAGCATCGACAAAGTGGGACAAGAGAAGAAGAACGAGCTGGAACGGCCTACCATCC

AGATCTTTCTGAACGACCTGTTCCAGAACGACTTCAACAGCGTGTTCAAGCTGCTGCCCAGCTTCTACCG

GAACCTGGAAAAAGAGAACGGCCGGAAGATCGGCTCCTGCCTGATTGGAGCTATGCCCGGCTCCTTCTAC

AGCAGACTGTTCCCCGAGGAATCCATGCACTTTCTGCACAGCTGCTACTGCCTGCACTGGCTGTCTCAGG

TGCCATCTGGCCTGGTTACAGAGCTGGGCATCTCTGCCAACAAGGGCTGCATCTACAGCTCCAAGGCCAG

CGGGCCTCCTATCAAGAAGGCCTACCTGGACCAGTTCACCAAGGACTTCACCACCTTTCTGCGGATCCAC

AGCGAGGAACTGATCAGCAGAGGCCGGATGCTGCTGACCTTCATCTGCAAAGAGGACGAGTTCGATCACC

CCAACAGCATGGACCTGCTGGAAATGAGCATCAACGACCTGGTCATCGAGGGCCACCTGGAAGAGGAAAA

GCTGGACAGCTTCAACGTGCCCATCTACGCCCCTAGCACCGAGGAAGTGAAGCGGATCGTTGAGGAAGAG
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GGCAGCTTCGAGATCCTGTACCTGGAAACCTTTTACGCCCCTTACGACGCCGGCTTCAGCATCGACGATG

ACTACCAGGGCAGATCTCACAGCCCTGTGTCCTGTGATGAGCACGCCAGAGCTGCTCACGTGGCATCTGT

TGTGCGGAGCATCTACGAGCCTATCCTGGCCTCTCACTTCGGCGAGGCCATTCTGCCTGATCTGAGCCAC

CGGATCGCCAAGAATGCCGCCAAGGTGCTGAGAAGCGGCAAGGGCTTTTACGACAGCGTGATCATCAGCC

TGGCCAAGAAGCCCGAGAAGGCCGATATGTAGGGTAACTA 

 

3.15.8 Mass Spectrum for BG-Biotin 

 

Figure 3.80: Mass spectrum for BG-Biotin. Shows m/2z [M+2H]2+ calc 249.11; found 249.2.  
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3.15.9 Mass Spectrum for BG-PEG4-Biotin 

 

Figure 3.81: Mass spectrum for BG-PEG4-Biotin. Shows m/2z [M+2H]2+ calc 372.68; found 372.8. Also 

shows m/2z [M+H+Na]2+ calc 383.67; found 383.15.  

 

3.15.10 LaG17 SDS-PAGE 

 
Figure 3.82: SDS-PAGE gel of crude and purified LaG17. 
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3.15.11 CCS1 and CCS1(delC13) Product Yields 

Experimental conditions were the same as in the standard substrate activity assay. 

Concentrations are stated as final concentration in 1.5 mL after normalizing for evaporative loss 

in wells.  

Table 3.15: Yield of products produced by CCS1 and CCS1(delC13) at 200 µM or 1000 µM substrate 

  Concentration (µM)  

Enzyme [Substrate] 7X 37X 17X Substrate 

37X 137X 137X 137X Product(s) 

CCS1 200 µM 102.1 7.7 116.6 114  

 1000 µM 66.6 15.1 85.1 148.2  

CCS1(delC13) 200 µM 121.3 8.4 133.6 143.3  

 1000 µM 73 14 100.3 167.1  

 

 

3.15.12 Substrate Activity Assay Product Yields 

Yields are calculated from concentration determined per well multiplied by volume of each well.  
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13.15.13 qPCR Experiment Results and Data 

13.15.13.1 qPCR Data Tables 

Table 3.17: Raw Ct Values for qPCR of Juxtacrine-Induced CCS1 Reporter Cells 

Sample Name  Ct for CCS1 Ct for Notch  

CCS1 0-1 15.92387 13.67257 

CCS1 0-2 15.92719 13.57328 

CCS1 0-3 16.31047 13.49401 

CCS1 0.25-1 16.02952 12.78988 

CCS1 0.25-2 16.00682 13.21113 

CCS1 0.25-3 15.84349 13.71481 

CCS1 0.5-1 13.85773 11.30057 

CCS1 0.5-2 15.30472 12.01477 

CCS1 0.5-3 15.55745 13.07764 

CCS1 1.0-1 15.23175 13.43937 

CCS1 1.0-2 15.36848 13.32988 

CCS1 1.0-3 15.28742 13.37788 

CCS1 1.5 -1 12.21545 12.32589 

CCS1 1.5 -2 12.34758 11.36882 

CCS1 1.5 -3 12.65342 11.52799 

 

Table 3.18: Calculated Average Fold-Changes for qPCR of Juxtacrine-Induced CCS1 Reporter Cells 

Sample  Fold-Change 

Fold-Change  

– 1 Std. Dev.  

Fold-Change  

+ 1 Std. Dev.  

CCS1 0:1 1.00 0.847 1.18 

CCS1 0.25:1 0.842 0.606 1.17 

CCS1 0.5:1 0.811 0.334 1.97 

CCS1 1.0:1 1.47 1.39 1.57 

CCS1 1.5:1 3.50 2.38 5.16 
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13.15.13.2 qPCR Data Figures 

 

 
Figure 3.83: Graph of qPCR results showing CCS1 induction (as fold-change) at various target:reporter 

cell ratios relative to synNotch.  

 

 
Figure 3.84: Graph of qPCR results showing CCS1 induction (as fold-change) at various target:reporter 

cell ratios relative to synNotch. The x-axis position indicates target:reporter cell ratio.  
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13.15.14 Additional Co-cuture Experiment Data and Results 

Table 3.19: Data for plot of [Caffeine] vs Target:Reporter Cell Ratio for LaG17-synNotch + TRE mCherry-

P2A-CCS1 / Target Cell Co-Culture Experiment. Cells were incubated in 200 µM PX for 72 h. 

Target:Reporter 

Cell Ratio 

[Caffeine] 

(µM) 

0.00 1.03 

0.25 3.68 

0.50 3.15 

1.00 5.19 

1.50 7.15 

2.00 9.06 

2.50 9.03 

3.00 14.5 

 

Table 3.20: Data for plot of [Caffeine] vs Target:Reporter Cell Ratio for LaG17-synNotch + TRE mCherry-

P2A-CCS1 / Target Cell Co-Culture Experiment with High Target:Reporter ratios. Cells were incubated in 

200 µM PX for 72 h. 

Target:Reporter 

Cell Ratio 

[Caffeine] 

(µM) 

0.1 1.69 

0.2 1.86 

0.5 3.70 

1.0 10.14 

1.5 9.55 

2.0 13.8 

3.0 13.5 

4.0 12.0 

5.0 15.7 
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Figure 3.85: Plot of caffeine concentration (not evaporation-loss corrected) vs Target:Receptor cell ratio 

for higher cell ratios showing appearance of a plateau in response. Maximal response appears to be the 

same as in previous  

 

Chapter three, in part, is being prepared for submission for publication of the material. 

Cisneros, B. T., Devaraj, N. K. The dissertation author is the primary investigator and author of 

this material.  
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