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Abstract. We study the maximum multiplicity M(k, n) of a simple transposition
sk = (k k + 1) in a reduced word for the longest permutation w0 = n n − 1 · · · 2 1,
a problem closely related to much previous work on sorting networks and on the “k-set”
problem. After reinterpreting the problem in terms of monotone weakly separated paths,
we show that, for fixed k and sufficiently large n, the optimal density is realized by paths
which are periodic in a precise sense, so that

M(k, n) = ckn+ pk(n)

for a periodic function pk and constant ck. In fact we show that ck is always rational, and
compute several bounds and exact values for this quantity with repeatable patterns, which
we introduce.
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1. Introduction

Write sk = (k k+1) for the adjacent transpositions in the symmetric group Sn. A reduced
word for a permutation w ∈ Sn is an expression w = si1 · · · siℓ of minimal length, and in this
case ℓ = ℓ(w) is called the length of w; we write R(w) for the set of reduced words of w.

There is a unique permutationw0 = nn−1 · · · 21 of maximum length
(
n
2

)
, called the longest

permutation. Reduced words ofw0 have been extensively studied, as maximal chains in the weak
Bruhat order [EG87], in total positivity and cluster algebras, and in the context of random sorting
networks [AHRV07]. It is not hard to see that the minimum multiplicity of sk in a reduced word
for w0 is min(k, n − k) (see Section 5), while the average multiplicity can be computed using
the Edelman–Greene bijection [Ede92]. This paper describes our study of the quantity M(k, n),
the maximum multiplicity of sk among all reduced words of w0. This problem is considerably
more difficult, as evidenced by its close connection to the well-known “k-set problem”. The
maximum multiplicity problem for reduced words of general permutations has been studied by
Tenner [Ten21], who gave bounds expressed in terms of permutation patterns.

Throughout much of this paper1 we consider monotone weakly separated paths or general-
ized wiring diagrams instead of reduced words themselves. From this perspective certain period-
icity phenomena appear which are obscured when considering reduced words or their associated
pseudoline arrangements.

1.1. Relation to the k-set problem

Given a collection A of n distinct points in R2, a k-set is a subset B ⊆ A of size k which can
be separated from A − B by a straight line in R2. The k-set problem, studied since work of
Lovász [Lov71] and Erdős–Lovász–Simmons–Straus [ELSS73] in the 1970s, asks for the max-
imum number of k-sets admitted by any collection A. This problem has since found application
in the analysis of some geometric algorithms.

A common approach to this problem proceeds by first applying projective duality to recast
the problem in terms of regions of height k in an arrangement of n lines, and then relaxing it
by considering arrangements of n pseudolines (curves in the plane such that each pair crosses
exactly once). Many of the strongest known results for the k-set problem work with this relax-
ation, and all available data [AFMLnS08] indicates that the answers in fact agree for lines and
for pseudolines. An arrangement of n pseudolines can equivalently be thought of as the wiring
diagram for a reduced word of w0, and in this context the problem becomes to maximize the
total number of sk’s and sn−k’s appearing. We show in Section 4 that there is a well-defined
slope ck defined by M(k, n) ∼ ckn and that this quantity is the same whether we consider the
total multiplicity of sk and sn−k or just that of sk, so that our original problem is very closely
linked to the (pseudoline version of) the k-set problem.

1.2. Relation to weak separation

Given a reduced word of a permutation w, we can associate a weakly separated collection to it,
and more specifically, a monotone weakly separated path. This process can be viewed as first

1An extended abstract of this work appears in the proceedings of FPSAC [GGJ+21].
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obtaining a plabic graph from the reduced word, and then taking certain face labels. Weakly sep-
arated collections are fundamental objects in the theory of the totally nonnegative Grassmannian
and related cluster algebras (see, e.g. [Pos18]). In particular, Oh–Postnikov–Speyer [OPS15]
constructed a bijection between reduced plabic graphs of any positroid M and certain maximal
weakly separated collections, establishing the purity property. Moreover, maximal weakly sep-
arated collections of

(
[n]
k

)
correspond to Plücker clusters of the Grassmannian Gr(k, n), which

behave nicely among other clusters. In fact, in this paper, we will very often think of a reduced
word via its corresponding monotone weakly separated path. We elaborate on this connection
in Section 2.

1.3. Outline and main results

In Section 2 we introduce monotone weakly separated paths and establish an equivalent version
of the main problem in these terms. Section 3 introduces arc diagrams and applies these to
give bounds and some exact values for M(k, n). Arc diagrams and their weights give a tool for
computing upper bounds on M(k, n), while repeatable patterns, also introduced in Section 3,
allow explicit constructions of reduced words for all n at once, and thus for determining lower
bounds on M(k, n). This technology allows us to show:

Theorem 1.1 (See Section 3). For k = 1, 2, 3, the quantity ck exists and we have c1 = 1, c2 =
3
2
,

and c3 =
11
6

. Furthermore, explicit reduced words realizing M(k, n) for k = 1, 2, 3 and n ∈ N
can be obtained from the repeatable patterns given in Section 3.

In Section 4 we introduce generalized wiring diagrams, which, for arbitrary fixed k, can be
used to reason about M(k, n) for all n simultaneously. We use these objects to show that for
all k the quantity

ck := lim
n→∞

M(k, n)

n

exists, is rational, and is equal to the corresponding limit which counts multiplicities of both sk
and sn−k. In fact, what we prove is much stronger:

Theorem 1.2 (See Section 4). For fixed k and sufficiently large n, ck is realized by diagrams
which are are periodic in a precise sense, so that computing ck reduces to a finite search for
repeatable patterns.

Finally, in Section 5 we discuss the problem (which is easy for the symmetric group) of
minimizing the multiplicity of sk in a reduced word for the longest element w0 in other finite
Coxeter groups.

2. Reduced words and weakly separated paths

In this section, we establish relations between reduced words and monotone weakly separated
paths. We say that two different sets I, J ⊂ [n] of cardinality k are weakly separated
ifmax I−J < min J−I ormax J−I < min I−J , and that a collection of cardinality k subsets
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1
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5
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123 124 134 234 345 346 456

Figure 2.1: The wiring diagram of the reduced word i = s3s2s1s3s2s3s4s3s5s4s3s2s1s3s2.

of [n] is weakly separated if each pair of sets is weakly separated. Note that being weakly sepa-
rated is not a transitive relation. A sequence of subsets (A0, A1, . . . , AN) is a monotone weakly
separated path if the collection {A0, . . . , AN} is weakly separated and for each i = 1, . . . , N ,
both Ai − Ai−1 =: {xi} and Ai−1 − Ai =: {yi} are singleton sets with xi > yi.

Given a reduced word si1 · · · siℓ = i ∈ R(w), and a fixed simple generator sk = (k k + 1),
let a1 < · · · < aN be the positions of all sk’s in i. We obtain permutationsw(j) = si1si2 · · · siaj as
the products of prefixes of i, wherew(0) = id. For j = 1, . . . , N , letAj = {w(j)(1), w(j)(2), . . . ,
w(j)(k)} be the set of values of w(j) on inputs 1, . . . , k, and write Pk(i) = (A0, A1, . . . , AN).

Definition 2.1. Given a reduced word i = si1 · · · siℓ of w ∈ Sn, its corresponding wiring di-
agram consists of wires labeled by 1, 2, . . . , n starting at levels 1, 2, . . . respectively from top
to bottom, traveling from left to right such that at each timestamp t, the two wires at levels it
and it+1 cross.

We will be mainly using wiring diagrams as visualizations for reduced words.

Example 2.2. Consider the following reduced word of the longest permutation w0 ∈ S6:

i = s3s2s1s3s2s3s4s3s5s4s3s2s1s3s2

with its corresponding wiring diagram shown in Figure 2.1. Now fix k = 3 where sk ap-
pears 6 times in i. We have the intermediate permutations w(0) = 123456, w(1) = 124356,
w(2) = 413256, w(3) = 432156, w(4) = 435216, w(5) = 436521, w(6) = 645321. Taking their
first k values, we obtained A0 = {1, 2, 3}, A1 = {1, 2, 4}, A2 = {1, 3, 4}, A3 = {2, 3, 4},
A4 = {3, 4, 5}, A5 = {3, 4, 6}, A6 = {4, 5, 6} as shown in Figure 2.1.

Proposition 2.3. Let Pk(i) be constructed as above. Then Pk(i) is a monotone weakly separated
path. Conversely, for any monotone weakly separated path P that starts with {1, 2, . . . , k}, there
exists a reduced word i such that Pk(i) = P .

Proof. Let i ∈ R(w) and Pk(i) = (A0, . . . , AN). If some Aj and Aj′ with j < j′ are not
weakly separated, then there exists a ∈ Aj − Aj′ and a′ ∈ Aj′ − Aj such that a > a′. By
definition, w(j) < w(j′) in the right weak Bruhat order, but (a, a′) is a left inversion of w(j), not
of w(j′), contradiction. In other words, if we consider the wiring diagram associated to i, the
wires labeled a and a′ must intersect from A0 to Aj , and intersect again from Aj to Aj′ , meaning
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that i cannot be reduced. As a result, {A0, . . . , AN} is a weakly separated collection. At the
same time, Aj = Aj−1−{x}∪{y} if we write (x y)si1 · · · siaj−1 = si1 · · · siaj−1siaj . And x < y

since i is reduced. Thus, Pk(i) = (A0, . . . , AN) is a monotone weakly separated path.
Now suppose that we are given a monotone weakly separated path P = (A0, . . . , AN)

with A0 = {1, . . . , k}. Start with w(0) = id. We are going to construct w(1), w(2), . . . with a
reduced word i along the way such that Pk(i) = P . Suppose that we have construc-
ted w(j) = si1 · · · sim and let x ∈ Aj − Aj+1, y ∈ Aj+1 − Aj with x < y. Suppose
that w(j)(a) = x and w(j)(b) = y with a ⩽ k < b. We can continue the construction
of i by w(j+1) = w(j)(sasa+1 · · · sk−1)(sb−1sb−2 · · · sk+1)sk. Here, sasa+1 · · · sk−1 moves x
from position a to position k while sb−1sb−2 · · · sk+1 moves y from position b to posi-
tion k + 1. In the end, the sk exchanges the values x and y. Therefore, we automatically
have {w(j+1)(1), . . . , w(j+1)(k)} = Aj − {x} ∪ {y} = Aj+1 as desired. The only thing left
to show is that the word i coming from such construction is reduced.

If i is not reduced, we can without loss of generality assume that in some step when we
are constructing w(j+1) from w(j), a simple generator sp exchanges a larger value at position p
with a smaller value at position p+ 1. Keep the notation as in the above paragraph. We cannot
have p = k since sk always exchanges Aj −Aj+1 at position k with Aj+1−Aj at position k+1.
So by symmetry, we assume p < k, and that such sp exchanges value x ∈ Aj+1−Aj at position p
with value z at position p + 1, with x > z. Since z < x, the values z and x must have been
switched before, when we are constructing w(j′+1) from w(j′), with j′ < j. By construction,
we are either moving z out of Aj′ to Aj′+1, or moving x into Aj′+1 from out of Aj′ . In both
cases, z /∈ Aj′+1 and x ∈ Aj′+1. As a result, x ∈ Aj′+1 − Aj+1, z ∈ Aj+1 − Aj′+1, but z < x.
As Aj+1 and Aj′+1 are weakly separated, we must have maxAj+1−Aj′+1 < minAj′+1−Aj+1.
But j′ < j, there cannot possibly be a monotone path from Aj′+1 to Aj+1. Contradiction. Thus,
this construction results in a reduced word i as desired.

Consequently, we say that Pk(i) is the monotone weakly separated path associated
to i ∈ R(w). Clearly, if Pk(i) consists of N + 1 subsets from A0 to AN , then there are
exactly N sk’s in i. Proposition 2.3 allows us to translate the problem of finding the maxi-
mal number of sk’s in R(w) to finding the longest monotone weakly separated path that starts
at {1, 2, . . . , k}.

3. Repeatable patterns and arc diagrams

This section introduces arc diagrams and repeatable patterns, and shows:

(i) M(1, n) = n− 1, for every integer n ⩾ 2,

(ii) (Theorem 3.7) M(2, n) =
⌈
3
2
n
⌉
− 3, for every integer n ⩾ 3, and

(iii) (Theorem 3.23) M(3, n) =
⌈
11
6
n
⌉
− 5, for every integer n ⩾ 4.
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3.1. Arc diagrams

Let k and n be positive integers such that 1 ⩽ k ⩽ n− 1. Suppose that P = (A0, A1, . . . , AN)
is a monotone weakly separated path from A0 = {1, 2, . . . , k} to AN = {n−k+1, . . . , n}. We
define the arc diagram D(P ) of P = (A0, A1, . . . , AN) to be the simple undirected graph on the
vertex set [n] = {1, 2, . . . , n} in which an edge (i, j) appears if and only if there exists a ∈ [N ]
such that {i, j} = (Aa−1 − Aa) ∪ (Aa − Aa−1).

We give a quick remark about the above definition of D(P ). Note that, for each pair {i, j},
if there exists a ∈ [N ] such that {i, j} = (Aa−1 − Aa) ∪ (Aa − Aa−1), then such an index a is
unique: the equation implies that in the corresponding wiring diagram, the ath sk-crossing from
the left is a crossing between wire i and wire j, and any two wires intersect exactly once in a
wiring diagram of a reduced word of w0. (See Figures 2.1 and 3.1 for an example.)

Example 3.1. When n = 6 and k = 3, an example of a monotone weakly separated path
isP = 123−124−134−234−345−346−456, realized in Example 2.2. Here, the shorthand ijk
represents the triple {i, j, k}. The arc diagram D(P ) of P is shown in Figure 3.1.

1 2 3 4 5 6

Figure 3.1: The arc diagram D(P ) of the monotone weakly separated path P in Example 3.1.

Given an arc diagram, we put each vertex i ∈ [n] of the diagram at the point (i, 0) ∈ R2 and
draw each edge (i, j) as a semicircle on the upper-half plane. Imagine that each semicircular
curve in the arc diagram has weight 1. For each curve, assume that the weight is distributed uni-
formly across the horizontal length (not the curve length). For example, if an edge e joins (1, 0)
and (4, 0), then there is weight 2/3 above [2, 4] coming from e. If we have a finite collection
of curves, define the total weight as the sum of individual weights. Note that M(k, n) is the
maximum possible total weight in an arc diagram.

Proposition 3.2. For any positive integers k and n with 1 ⩽ k ⩽ n− 1, we have

M(k, n) ⩽

(
1 +

1

2
+

1

2
+

1

3
+

1

3
+

1

3
+

1

4
+

1

4
+

1

4
+

1

4
+ · · ·︸ ︷︷ ︸

k terms

)
· n. (3.1)

Proof. Let P be a monotone weakly separated path from the set A0 = {1, 2, . . . , k} to the
set AN = {n − k + 1, . . . , n}. Perform the following auxiliary decoration using k different
colors col1, col2, . . . , colk. First, we color 1, 2, . . . , k in A0 so that i gets color coli. Each time
we go from Aj to Aj+1, if we have Aj+1 = Aj ∪{y}−{x}, then color y in Aj+1 the same color
as x in Aj . Also color the semicircle connecting (x, 0) and (y, 0) with the same color that we
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1 2 3 4 5 6 7 8 9 10 11

Figure 3.2: An example of the decoration performed in the proof of Proposition 3.2. The diagram
above is the decorated arc diagram of the monotone weakly separated path {1, 2, 3}, {1, 2, 4},
{1, 2, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {4, 5, 6}, {4, 5, 7}, {5, 6, 7}, {5, 7, 8}, {6, 7, 8}, {7, 8, 9},
{7, 8, 10}, {7, 8, 11}, {7, 10, 11}, {8, 10, 11}, {9, 10, 11}.

used to color x ∈ Aj and y ∈ Aj+1. For each number z ∈ Aj ∩ Aj+1, color z in Aj+1 the same
color as we color z in Aj . See Figure 3.2 for an example.

As a result of the decoration, the k numbers in AN are now colored with k different col-
ors. There is a permutation σ ∈ Sk such that for each i ∈ [k], the number n − k + σ(i) has
color coli. Now there are k continuous curves γ1, γ2, . . . , γk such that γi has endpoints (i, 0)
and (n− k + σ(i), 0), and has color coli from one end to the other.

From the coloring argument above, there are at most k pieces of different semicircles in the
vertical strip above [i, i + 1] for each i ∈ [n − 1]. Furthermore, for each t ∈ Z⩾1, there exist
at most t pieces that come from semicircles whose diameters are exactly t. Each such piece
contributes the weight of 1/t. Therefore, the weight of the arc diagram above [i, i + 1] is at
most 1+1/2+1/2+1/3+1/3+1/3+ · · · , and hence the total weight is at most the right-hand
side of (3.1).

By estimating the summation in Proposition 3.2, we obtain the following corollary.

Corollary 3.3. For any positive integers k and n such that 1 ⩽ k ⩽ n − 1, we have the upper
bound M(k, n) ⩽

√
2k · n.

Remark 3.4. Together with Theorem 4.3 below, our arguments above give a short proof of the
upper bound O(

√
k)·n for the pseudoline k-sets problem. It might be instructive to compare this

bound with the known upper bounds in the literature of the straight line setting. For the classical
planar k-sets problem, Pach, Steiger, and Szemerédi [PSS92] have shown the upper bound

O

( √
k

log∗ k

)
· n, (3.2)

which is slightly stronger than O(
√
k) · n. Our pseudoline setting is more general. We do not

know if the upper bound (3.2) of Pach–Steiger–Szemerédi holds for M(k, n) or not. This might
be an interesting direction to further investigate.

The upper bound in Proposition 3.2 can be slightly improved as follows. First, note that
the number of unit segments [i, i + 1] is actually n − 1 (instead of n). Second, note that the
segments [i, i + 1] near the ends (vertices (1, 0) and (n, 0)) should have smaller upper bounds
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because there are fewer than k pieces of curve above those segments. This improvement leads
to sharp results when k is small. For k = 1, we find that M(1, n) ⩽ n − 1, for every n ⩾ 2.
For k = 2, we find M(2, n) ⩽ 3n−5

2
, for every n ⩾ 3. Since M(2, n) is an integer, we

can write M(2, n) ⩽
⌈
3
2
n
⌉
− 3. We will see in the next subsection that these bounds in the

cases k = 1 and k = 2 are sharp.

3.2. k ⩽ 2 and repeatable patterns

In the previous subsection, we have seen that M(1, n) ⩽ n−1 for every n ⩾ 2. In fact, it is easy
to see that M(1, n) = n − 1. Indeed, the sequence ({1}, {2}, . . . , {n}) is a monotone weakly
separated path.

Things get more interesting when k = 2. In the previous subsection, we have also seen
that M(2, n) ⩽

⌈
3
2
n
⌉
− 3, for each n ⩾ 3. Now we claim that the inequality is in fact an

equality by giving explicit constructions using the idea of repeatable patterns.
In the definition below, if S is a finite set of integers and t is an integer, we write S + t to

denote {s+ t : s ∈ S}.

Definition 3.5. Let L and d be positive integers. A repeatable pattern R with parameters (L, d)
is a monotone weakly separated path R = (A0, A1, . . . , AL) which satisfies the following con-
ditions:

• AL = A0 + d, and

• for any positive integer m, the sequence(
A0,A1, A2, . . . , AL,

A1 + d,A2 + d, . . . , AL + d,

A1 + 2d,A2 + 2d, . . . , AL + 2d,

...

A1 +md,A2 +md, . . . , AL +md
)

is a monotone weakly separated path.

Example 3.6. The pattern 12−13−23−34 is a repeatable pattern with parameters (L, d)=(3, 2).
Here, we use the shorthand ab to denote {a, b}. By concatenation, the pattern gives the infinite
sequence

12− 13− 23− 34− 35− 45− 56− 57− 67− 78− 79− 89− · · · .

Any finite prefix of the infinite sequence above is a monotone weakly separated path.

Theorem 3.7. For each positive integer n ⩾ 3, we have M(2, n) =
⌈
3
2
n
⌉
− 3.

Proof. The first
⌈
3
2
n
⌉
− 2 terms of the infinite sequence in the previous example is a monotone

weakly separated path from {1, 2} to {n − 1, n}. Combine this construction with the upper
bound for M(2, n) above to finish.
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1 2 3 4 5 6 7

Figure 3.3: The arc diagram D(P ) of the monotone weakly separated path P in Example 3.8.

For general k, the existence of a repeatable pattern yields a lower bound for M(k, n). In
Section 4, we will see that for every positive integer k, the limit ck := limn→∞

M(k,n)
n

exists.
The existence of a repeatable pattern R with parameters (L, d) immediately yields the lower
bound ck ⩾ L

d
. It turns out, as Theorem 4.16 below shows, that ck = maxR L/d, where the

maximization is over all repeatable patterns R = (A0, A1, . . . , AL) with |A0| = k, and the ra-
tioL/d depends on the repeatable patternR. In particular, the maximum (not just the supremum)
exists.

3.3. Arc diagrams when k = 3, part i: decomposition algorithm

We use the “decomposition algorithm” (Algorithm 3.9) below to break the interval [1, n] in the
arc diagram into smaller non-overlapping intervals in a way that we can prove upper bounds of
weights for these intervals separately.

We will show that M(3, n) =
⌈
11
6
n
⌉
− 5, for n ⩾ 4. The cases n = 4 and n = 5 can be

readily taken care of. By using M(k, n) = M(n− k, n), we find that M(3, 4) = M(1, 4) = 3
and M(3, 5) = M(2, 5) = 5. For the rest of this subsection, assume n ⩾ 6.

Suppose that an arc diagram coming from a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n} is given. Write wt to denote the weight function, so that if I ⊆ [1, n] is an
interval, then wt(I) is the weight above I .

Example 3.8. Consider the following monotone weakly separated path

P = 123− 124− 234− 245− 246− 247− 267− 467− 567.

The arc diagram ofP is shown in Figure 3.3. The weights of the unit intervals of this arc diagram
are as follows: wt([1, 2]) = 1/2,wt([2, 3]) = 1,wt([3, 4]) = 2,wt([4, 5]) = 2,wt([5, 6]) = 3/2,
and wt([6, 7]) = 1.

We also define the weight limit function wtlim as follows. Declare wtlim([1, 2]) = 1,
wtlim([2, 3]) = 3/2, wtlim([n− 2, n− 1]) = 3/2, and wtlim([n− 1, n]) = 1. If 3 ⩽ i ⩽ n− 3,
we declare wtlim([i, i+1]) = 11/6. The weight limit function is also defined to satisfy the usual
additivity condition: wtlim(A ∪ B) = wtlim(A) + wtlim(B) if A ∩ B contains no nontrivial
interval.

Observe that for a unit interval [i, i + 1] ⊆ [1, n] (with i ∈ Z) to exceed its weight limit,
the only possible way is to have wt([i, i + 1]) = 2. Moreover, the unit intervals [1, 2], [2, 3],
[n− 2, n− 1], and [n− 1, n] never exceed their weight limits. These observations follow from
the definition.
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The “decomposition algorithm” (Algorithm 3.9) is given below. The input of the algo-
rithm is an arc diagram D that comes from a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n}. The output of the algorithm is the collection F = F(D) of intervals with
non-overlapping interiors.

Algorithm 3.9 (decomposition algorithm).

Input: an arc diagram D that comes from a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n}.

Begin with an empty collection F = ∅.

If for every i ∈ [n− 1], the unit interval [i, i+ 1] satisfies wt([i, i+ 1]) ⩽ 11/6,
then output F(D) = ∅, and we finish the algorithm.

On the other hand, if some unit interval exceeds its weight limit,
then write

[1, n] = L0 ∪H1 ∪ L1 ∪H2 ∪ L2 ∪ · · · ∪ Lm,

where L0 = [1, ℓ0], H1 = [ℓ0, h1], L1 = [h1, ℓ1], . . ., Hm = [ℓm−1, hm], Lm = [hm, n],
where 1, ℓ0, h1, ℓ1, . . . , hm, n is a strictly increasing sequence of positive integers such that
every unit interval in any Li has weight under or equal to its weight limit, and every unit
interval in any Hi has weight exceeding its weight limit.

For i = 1, 2, . . . ,m:

consider the interval Hi. We know from Proposition 3.16 (proved below)
that µ(Hi) ∈ {1, 2, 3, 4}.

Case 1. µ(Hi) = 4. Write Hi = [a, a + 4]. Add the intervals [a − 1, a + 2]
and [a+ 2, a+ 5] into the collection F .

Case 2. µ(Hi) = 3. Write Hi = [a, a+ 3].

Case 2.1. There is no semicircle connecting (a− 1, 0) and (a, 0) in D. Add the
interval [a− 1, a+ 3] to F .

Case 2.2. There is a semicircle connecting (a − 1, 0) and (a, 0) in D. Add the
interval [a, a+ 4] to F .

Case 3. µ(Hi) = 2. Write Hi = [a, a+ 2].

Case 3.1. There is no semicircle connecting (a− 1, 0) and (a, 0) in D. Add the
interval [a− 1, a+ 2] to F .

Case 3.2. There is a semicircle connecting (a− 1, 0) and (a, 0), but there is no
semicircle connecting (a+ 2, 0) and (a+ 3, 0) in D. Add the interval [a, a+ 3]
to F .

Case 3.3. There is a semicircle connecting (a−1, 0) and (a, 0), and also there is a
semicircle connecting (a+2, 0) and (a+3, 0) inD. Add the intervals [a−2, a+1]
and [a+ 1, a+ 4] to F .
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Case 4. µ(Hi) = 1. Write Hi = [a, a+ 1].

Case 4.1. There is no semicircle connecting (a− 1, 0) and (a, 0) in D. Add the
interval [a− 1, a+ 1] to F .

Case 4.2. There is a semicircle connecting (a− 1, 0) and (a, 0), but there is no
semicircle connecting (a+ 1, 0) and (a+ 2, 0) in D. Add the interval [a, a+ 2]
to F .

Case 4.3. There is a semicircle connecting (a − 1, 0) and (a, 0), and
also there is a semicircle connecting (a + 1, 0) and (a + 2, 0) in D.
If wt([a− 2, a+1]) ⩽ wtlim([a− 2, a+1]), then add the interval [a− 2, a+1]
to F . If wt([a−2, a+1]) > wtlim([a−2, a+1]), then add the interval [a, a+3]
to F .

Output F(D) = F , and we finish the algorithm.

Theorem 3.10 (decomposition theorem). Let n ⩾ 6 be a positive integer. Let D be an arc
diagram of a monotone weakly separated path from {1, 2, 3} to {n− 2, n− 1, n}. Let F(D) be
the collection of intervals obtained from Algorithm 3.9. Then

(a) any two different intervals in F(D) are non-overlapping, and

(b) any interval I ∈ F(D) satisfies wt(I) ⩽ wtlim(I).

The proof of Theorem 3.10 will be given in Section 3.4.

Corollary 3.11. For any positive integer n ⩾ 6, we have

M(3, n) ⩽

⌈
11

6
n

⌉
− 5.

Proof. Take any arc diagram D of a monotone weakly separated path from {1, 2, 3}
to {n − 2, n − 1, n} with the maximum possible weight so that M(3, n) = wt([1, n]). From
Theorem 3.10, we have

M(3, n) = wt([1, n]) = wt([1, n]− ∪F) +
∑
I∈F

wt(I)

⩽ wtlim([1, n]− ∪F) +
∑
I∈F

wtlim(I)

= wtlim([1, n]) = 1 +
3

2
+ (n− 5) · 11

6
+

3

2
+ 1 =

11n− 25

6
.

Since M(3, n) ∈ Z, we have that M(3, n) ⩽
⌊
11n−25

6

⌋
=
⌈
11
6
n
⌉
− 5, as desired.

3.4. Arc diagrams when k = 3, part ii: arc diagram chasing

Below we define a useful object called the bicolored arc diagram BiD(P ). By looking at
edges in BiD(P ), we are able to rule out some configurations of edges in the original arc di-
agram D(P ), a process we call arc diagram chasing. Using arc diagram chasing, we prove
Proposition 3.16, Lemmas 3.17, 3.18, 3.19, 3.20, and Proposition 3.21 which are then used in
the proof of Theorem 3.10.
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1 2 3 4 5 6

Figure 3.4: The bicolored arc diagram BiD(P ) of the monotone weakly separated path P in
Example 3.13.

Definition 3.12. Let P be a monotone weakly separated path P = (A0, A1, . . . , AN) from
A0 = {1, 2, 3} to AN = {n−2, n−1, n}. The bicolored arc diagram BiD(P ) is the multigraph
on the vertex set [n] = {1, 2, . . . , n} together with the coloring c : E(BiD(P )) → {black, red}
on the edges defined as follows. The black edges are precisely the edges in the (original) arc
diagram D(P ). The red edges are added sequentially. For each i ∈ [N ], let Ci denote the
pair (Ai − Ai−1) ∪ (Ai−1 − Ai). We add the red edges in N − 1 steps. In the j th step, consider
the two pairs Cj and Cj+1. Suppose that Cj = {a, b} and Cj+1 = {c, d}, with a < b and c < d.
If b ̸= c, add a red edge joining b and c. If a ̸= d, add a red edge joining a and d.

Example 3.13. The bicolored arc diagram BiD(P ) of P = 123 − 124 − 145 − 146 − 456 is
shown in Figure 3.4.

Proposition 3.14. The multigraph BiD(P ) is simple. In other words, each pair of different
nodes i, j ∈ [n] are either (i) joined by one black edge, (ii) joined by one red edge, or (iii) not
adjacent.

Before proving the proposition, we show a lemma about black edges.

Lemma 3.15. Let P = (A0, A1, . . . , AN) and C1, C2, . . . , CN be defined as in Definition 3.12.
Suppose that j is a positive integer such that 1⩽j⩽N −1. Write Cj={a, b} and Cj+1={c, d},
where a < b and c < d. Then one of the following six outcomes happens:

(i) a < b = c < d,

(ii) c < d = a < b,

(iii) a < c < b < d,

(iv) c < a < d < b,

(v) a < c < d < b,

(vi) c < a < b < d.
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p q r

(p < q < r)

p q r s

(p < q < r < s)

p q r s

(p < q < r < s)

Figure 3.5: A pair of consecutive curves Cj and Cj+1 in the C-sequence are in one of the three
configurations. The configuration on the left corresponds to outcomes (i) and (ii) in Lemma 3.15.
The middle one corresponds to outcomes (iii) and (iv). The right one corresponds to out-
comes (v) and (vi).

To visualize Lemma 3.15, consider Figure 3.5. If Cj and Cj+1 are curves from the C-
sequence, then they must follow one of the three configurations shown in the figure. (For each
configuration, there are two choices for which curve is Cj and which curve is Cj+1, so there are
six outcomes in total as listed in Lemma 3.15.)

Equivalently, Lemma 3.15 states that the four configurations shown in Figure 3.6 cannot
represent two consecutive curves in the C-sequence.

Proof of Lemma 3.15. Suppose, for the sake of contradiction, that none of the six outcomes
happens. Then either a = c, or b = d, or b < c, or d < a. Recall that we obtain Aj from Aj−1

by removing a and adding b, and we obtain Aj+1 from Aj by removing c and adding d. If the
first case, a = c, happens, then we would need two copies of a in the set Aj−1, a contradiction.
Similarly, if the second case, b = d, happens, then we would need two copies of b in the set Aj+1,
a contradiction. If the third case, b < c, or the fourth case, d < a, happens, then there would be
an element x ∈ [n], different from a, b, c, d, such that Aj−1 = {x, a, c} and Aj+1 = {x, b, d}.
Note that Aj−1 and Aj+1 are not weakly separated, a contradiction.

Proof of Proposition 3.14. For any pair of different nodes i, j ∈ [n], we know that the pair is
connected by at most one black edge. It suffices to show that for each new red edge added with
endpoints i and j, the nodes i and j have not already had a black edge or a red edge connecting
them.

Recall that the red edges are added in N − 1 different steps. Consider the red edges added
in the tth step. Following Definition 3.12, we consider the pairs Ct = {a, b} and Ct+1 = {c, d},
with a < b and c < d. Let χt and χt+1 denote the crossings in the wiring diagram which
correspond to Ct and Ct+1, respectively. We claim that the red edges constructed in this step
correspond to crossings which happen between χt and χt+1 (on different levels: sk′ with k′ ̸= 3).
With this claim, the proposition is proved, because we are selecting different crossings in each
of the N − 1 steps.

To establish the claim, we use Lemma 3.15. The pairs Ct and Ct+1 exhibit one of the six
outcomes as listed in the lemma. Consider the outcome (iii) (and one argues similarly for the
other outcomes). Note that wires a and b cross at χt, wires c and d cross at χt+1, and no other
crossings can happen on the third level. This means that wires a and d must cross somewhere
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p q r

(p < q < r)

p q r

(p < q < r)

p q

(p < q)

p q r s

(p < q < r < s)

Figure 3.6: If Cj and Cj+1 are curves from the C-sequence, then they cannot follow any of these
four forbidden configurations.

between χt and χt+1 on the (k′)th level for some k′ ⩾ 4. Similarly, wires b and c must cross
somewhere between χt and χt+1 as well on either the first or the second level.

The decomposition algorithm (Algorithm 3.9) uses the result that in D(P ) the length of
each µ(Hi) is at most 4, which follows from the following proposition.

Proposition 3.16. In D(P ), there is no index i such that all nine (black) edges {i, i + 1},
{i+ 1, i+ 2}, {i+2, i+3}, {i+3, i+4}, {i+4, i+5}, {i, i+2}, {i+1, i+3}, {i+2, i+4},
and {i+ 3, i+ 5} appear. (See Figure 3.7 for an illustration.)

Before proceeding to the proof, we give a quick explanation here how this proposition implies
that each µ(Hi) in Algorithm 3.9 is at most 4. If µ(Hi) is at least 5, then there must be an index i
for which the five intervals [i, i + 1], [i + 1, i + 2], . . . , [i + 4, i + 5] exceed their weight limits.
It is not hard to see that this implies wt([i, i + 1]) = · · · = wt([i + 4, i + 5]) = 2, and thus
arcs {i + j − 1, i + j} exist in D(P ) for j ∈ [5], and arcs {i + j − 2, i + j} exist in D(P )
for j ∈ [6]. These many arcs would contain the configuration as shown in Figure 3.7.

Proof of Proposition 3.16. Suppose, for the sake of contradiction, that there is such an index i.
Since there are at most three pieces of curves above each unit interval, we know that there are
no more black edges above the segment [i + 1, i + 4]. Above [i, i + 1], we now have two black
curves. Thus, there can be at most one more black curve whose right endpoint is i+1. Call this
curve, if it exists, ζ . Similarly, there is at most one curve connecting i+ 4 and some j > i+ 5.
Call this curve, if it exists, µ.

Call the nine curves in the proposition α, β, γ, δ, ε, η, θ, κ, λ, in the same order as displayed
in the proposition statement. These nine curves, together with ζ and µ, are all black curves above
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i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5

Figure 3.7: The nine curves in this configuration cannot simultaneously appear in the arc dia-
gram D(P ) of a monotone weakly separated path P .

the segment [i, i + 5]. Recall that we have the C-sequence C1, C2, . . . , CN which lists all the
black curves in BiD(P ). We will consider which two curves are consecutive in this sequence.

Consider the curve β. From Lemma 3.15, we know that none of δ, ε, η, θ, λ, and (µ) can
be consecutive to β in the C-sequence. (The parentheses about µ in the previous sentence serve
as a reminder that perhaps µ does not exist.) Moreover, α and β cannot be consecutive edges
in the C-sequence. Otherwise, there would be a red edge connecting i and i + 2 in BiD(P ),
contradicting Proposition 3.14 as the black curve η is already connecting i and i+2. Similarly, γ
cannot be a neighbor of β.

There are only two choices left for the neighbors of β: (ζ) and κ. If ζ does exist, then β cannot
be C1 (the starting curve in the C-sequence). We know β cannot be CN either. Thus, β must be
adjacent to both ζ and κ. If ζ does not exist, β must be adjacent to κ. In either case, we know β
and κ are neighbors in the C-sequence, and thus there must be a red curve connecting i + 1
and i+ 4 corresponding to a crossing between β and κ.

However, the same reasoning implies that θ and δ must be adjacent in the C-sequence as
well. There must be another red curve connecting i + 1 and i + 4 corresponding to a crossing
between θ and δ. This contradicts Proposition 3.14.

Lemma 3.17. Suppose that i is an integer with 4 ⩽ i ⩽ n − 4. Suppose that in D(P ), there
are indices i′ and i′′ with i′ ⩽ i − 3 and i′′ ⩾ i + 4 such that the edges {i − 1, i}, {i, i + 1},
{i + 1, i + 2}, {i − 1, i + 1}, {i, i + 2}, {i′, i}, and {i + 1, i′′} appear in the diagram. Let α
denote the curve connecting i − 1 and i. Let δ denote the curve connecting i + 1 and i + 2.
Let (β) and γ be the curves whose right endpoints are i− 1. Let (ε) and η be the curves whose
left endpoints are i+ 2.

Then either

• the neighbors of α in the C-sequence are (β) and γ, or

• the neighbors of δ in the C-sequence are (ε) and η.

Once again, the parentheses about β and ε in the lemma above mean “if it exists”. In the
case i = 4, there is only one curve whose right endpoint is i−1 = 3. We denote that curve by γ,
and β is non-existent. Similarly, ε is non-existent if and only if i = n− 4.

Proof of Lemma 3.17. Let ξ denote the curve connecting i − 1 and i + 1, and let ζ denote the
curve connecting i and i + 2. Suppose that the neighbors of α are not (β) and γ. Then by
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arc diagram chasing, ζ must be a neighbor of α. Therefore, in BiD(P ), we have a red curve
connecting i− 1 and i + 2 corresponding to a crossing between the crossings of α and ζ . This
shows that ξ cannot be a neighbor of δ. Thus, the neighbors of δ are (ε) and η.

The following lemma is a degenerate version of Lemma 3.17. The proof is essentially the
same as that of the previous lemma, so we omit it.

Lemma 3.18. We have the following properties of D(P ).

(a) Suppose that n ⩾ 7. Suppose that there is an index i ⩾ 7 such that the edges {1, 2},
{2, 3}, {3, 4}, {4, 5}, {2, 4}, {3, 5}, and {4, i} appear in D(P ). Let α denote the curve
connecting 4 and 5. Let the black curves whose left endpoints are 5 be (β) and γ. Then
the neighbors of α are (β) and γ.

(b) Suppose that n ⩾ 7. Suppose that there is an index i ⩽ n−6 such that the edges {n, n−1},
{n−1, n−2}, {n−2, n−3}, {n−3, n−4}, {n−1, n−3}, {n−2, n−4}, and {n−3, i}
appear in D(P ). Let α denote the curve connecting n− 3 and n− 4. Let the black curves
whose right endpoints are n− 4 be (β) and γ. Then the neighbors of α are (β) and γ.

(c) When n = 6, the edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, {3, 5} cannot simul-
taneously appear in D(P ).

Lemmas 3.17 and 3.18 deal with the situation where we encounter one unit interval of
weight 2. When there are two consecutive unit intervals of weight 2, arc diagram chasing gives
a result similar to Lemma 3.17 as follows.

Lemma 3.19. Suppose that i is an integer such that 4 ⩽ i ⩽ n−5. Suppose that in D(P ), there
are indices i′ and i′′ with i′ ⩽ i − 3 and i′′ ⩾ i + 5 such that the edges {i − 1, i}, {i, i + 1},
{i + 1, i + 2}, {i + 2, i + 3}, {i − 1, i + 1}, {i, i + 2}, {i + 1, i + 3}, {i′, i}, and {i + 2, i′′}
appear in the diagram. Let α denote the curve connecting i+2 and i+3. Let the curves whose
left endpoints are i + 3 be (β) and γ. Let δ denote the curve connecting i − 1 and i. Let the
curves whose right endpoints are i− 1 be (ε) and η.

Then both of the following are true:

• the neighbors of α are (β) and γ.

• the neighbors of δ are (ε) and η.

A degenerate version of Lemma 3.19 is Lemma 3.20 below.

Lemma 3.20. We have the following properties of D(P ).

(a) The edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, {3, 5}, and {4, 6} cannot simulta-
neously appear in D(P ).

(b) The edges {n − 5, n − 4}, {n − 4, n − 3}, {n − 3, n − 2}, {n − 2, n − 1}, {n − 1, n},
{n−5, n−3}, {n−4, n−2}, and {n−3, n−1} cannot simultaneously appear in D(P ).
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Given an arc diagram D(P ), we have seen in Algorithm 3.9 that we can decompose the
interval [1, n] into

[1, n] = L0 ∪H1 ∪ L1 ∪ · · · ∪ Lm,

where every unit interval in Li does not exceed its weight limit, and every unit interval in Hi

has weight 2. (In Algorithm 3.9, we defined this decomposition for arc diagrams with at least
one unit interval with weight 2. Here, we define it for any D(P ). For arc diagrams in
which every unit interval does not exceed its weight limit, we can simply let m = 0
and L0 = Lm = [1, n].) The following proposition gives some restrictions on the lengths of
the intervals L0, H1, L1, . . . , Hm, Lm.

Proposition 3.21. We have

(a) µ(L0) ⩾ 2,

(b) µ(Lm) ⩾ 2,

(c) for 1 ⩽ i ⩽ m− 1, the interval Li satisfies µ(Li) ⩾ 3, and

(d) for 1 ⩽ i ⩽ m, the interval Hi satisfies µ(Hi) ⩽ 4.

Proof. (a) and (b) are clear, because the unit intervals [1, 2], [2, 3], [n−2, n−1], [n−1, n] never
exceed their weight limits, by definition of wtlim.

(c). We will show that µ(Li) cannot be 1 or 2. First, suppose µ(Li) = 1. Then there is
some index j such that Li = [j + 2, j + 3]. Since wt([j + 1, j + 2]) = wt([j + 3, j + 4]) = 2,
the edges {j+1, j+2}, {j+3, j+4}, {j, j+2}, {j+1, j+3}, {j+2, j+4}, and {j+3, j+5}
must appear in D(P ). After drawing these six curves, we see that there are now three pieces of
curves above [j + 1, j + 2] and also there are now three pieces of curves above [j + 3, j + 4]. At
the moment, there are only two pieces of curves above [j + 2, j + 3], and thus there
must be another piece of curve above [j + 2, j + 3]. Since there can be no more curves
above [j + 1, j + 2] ∪ [j + 3, j + 4], the only option is to connect j+2 and j+3. However, this
would make wt([j + 2, j + 3]) = 2, a contradiction.

Second, suppose µ(Li) = 2. Then there is some index j such that Li = [j + 2, j + 4]. Note
that wt([j + 1, j + 2]) = wt([j + 4, j + 5]) = 2. By a similar argument as in the previous case,
we know that the following three pairs {j + 2, j + 3}, {j + 3, j + 4}, and {j + 2, j + 4} must
be connected by edges. However, this would make wt([j + 2, j + 3]) = wt([j + 3, j + 4]) = 2,
a contradiction.

(d) follows from Proposition 3.16.

Proof of Theorem 3.10(a). In Algorithm 3.9, we note that each interval we add toF(D) contains
either one or two unit intervals from

⋃m
i=0 Li. More precisely, Case 3.3 and Case 4.3 in the

algorithm are the only two cases that give intervals with two unit intervals from
⋃m

i=0 Li. Let F
andF ′ be two different intervals inF(D). From Proposition 3.21(c), we see that if eitherF orF ′

does not come from these two cases, then µ(F ∩F ′) = 0. The only potentially problematic case
is when both F and F ′ come from Case 3.3 or Case 4.3 and the overlap F ∩F ′ has length 1. We
will show that this is not possible.
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Suppose, for the sake of contradiction, that F and F ′ share an interior point. Then there must
be an index a such thatF∩F ′=[a+3, a+4]. This meanswt([a+1, a+2])=wt([a+5, a+6])=2,
and each of the three unit intervals [a + 2, a + 3], [a + 3, a + 4], and [a + 4, a + 5] has weight
at most 11/6. Since both F and F ′ come from Case 3.3 or Case 4.3, we see that the following
edges {a+ 1, a+ 2}, {a+ 2, a+ 3}, {a+ 4, a+ 5}, {a+ 5, a+ 6}, {a, a+ 2}, {a+ 1, a+ 3},
{a+ 4, a+ 6}, and {a+ 5, a+ 7} appear in D(P ).

After drawing these eight edges, we observe that there are already three pieces of curve
above [a+1, a+2] and another three pieces above [a+5, a+6]. At the moment, there are only
two pieces of curve above [a+2, a+3]. As no more curve can be added above [a+1, a+2], there
must be another curve γ whose left endpoint is a + 2. The right endpoint must be either a + 4
or a + 5. However, if the right endpoint were a + 4, then wt([a + 2, a + 3]) would be 2, a
contradiction. This forces γ to connect a + 2 and a + 5. Now, there are three pieces of curves
above [a+ 2, a+ 3], and also three pieces above [a+ 4, a+ 5].

Now consider [a+3, a+4]. At the moment, there is only one piece of curve above it, and so
we need two more pieces. On the other hand, no more curves can be added above [a+ 1, a+ 3]
or above [a+4, a+6]. This gives a contradiction. We have finished the proof of Theorem 3.10(a).

We have shown that the intervals in the collection F(D) do not overlap. Next, we show that
each interval has weight under or equal to its weight limit.

Proof of Theorem 3.10(b). Let I be an arbitrary interval in F(D).

Case 1. Suppose that I comes from some Hi = [a, a+ 4]. We have that the edges {a, a+ 1},
{a+1, a+2}, {a+2, a+3}, {a+3, a+4}, {a−1, a+1}, {a, a+2}, {a+1, a+3}, {a+2, a+4},
and {a+ 3, a+ 5} appear in D. Since there are three pieces of curve above [a, a+ 1], we know
that a ⩾ 3. With Proposition 3.16, we know that there is no edge connecting a− 1 and a in D.
This means that if a ⩾ 4, we have

wt([a− 1, a]) ⩽
1

2
+

1

2
+

1

3
=

4

3
,

whence wt([a − 1, a + 2]) ⩽ 4
3
+ 2 + 2 = 16

3
< 11

2
= wtlim([a − 1, a + 2]). If a = 3, we

have wt([a − 1, a]) ⩽ 1
2
+ 1

2
= 1, whence wt([a − 1, a + 2]) ⩽ 1 + 2 + 2 = 5 < 31

6
=

wtlim([a − 1, a + 2]). Thus, if I = [a − 1, a + 2], we have shown that wt(I) ⩽ wtlim(I). On
the other hand, if I = [a+ 2, a+ 5], the argument is analogous.

Case 2.1. We have some index a such that Hi = [a, a + 3] and I = [a − 1, a + 3]. There
is no edge connecting a − 1 and a. Since there are three pieces of curve above [a, a + 1], we
have a ⩾ 3. If a ⩾ 4, then

wt([a− 1, a+ 3]) ⩽

(
1

2
+

1

2
+

1

3

)
+ 2 + 2 + 2 =

22

3
= wtlim([a− 1, a+ 3]).

If a = 3, then wt([a− 1, a+ 3]) ⩽
(
1
2
+ 1

2

)
+ 2 + 2 + 2 = 7 = wtlim([a− 1, a+ 3]).
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Case 2.2. In this case, Hi = [a, a + 3] and I = [a, a + 4]. There is an edge connecting a− 1
and a. Therefore, by Proposition 3.16, there is no edge connecting a+ 3 and a+ 4. Hence, the
weight calculation is similar to Case 2.1.

Case 3.1 and Case 3.2. Also similar.

Case 3.3. In this case,Hi = [a, a+2]. Let us show thatwt(I) ⩽ wtlim(I) for I = [a−2, a+1].
By symmetry, the case when I = [a + 1, a + 4] is analogous. The following edges {a − 1, a},
{a, a+1}, {a+1, a+2}, {a+2, a+3}, {a− 1, a+1}, {a, a+2}, and {a+1, a+3} appear
in D(P ). Since there are three pieces of curve above [a, a + 1], we have a ⩾ 3. If a = 3, we
have no more curves above [a−1, a] = [2, 3], and so there must be a curve connecting a−2 = 1
and a− 1 = 2, contradicting Lemma 3.20(a). Therefore, a ⩾ 4. There must be one more curve
whose right endpoint is a. The left endpoint cannot be a − 2; otherwise wt([a − 1, a]) would
be 2. Thus, there is an index a′ ⩽ a− 3 such that there is a curve connecting a′ and a.

Similarly, we find that a ⩽ n− 5 and there is an index a′′ ⩾ a+ 5 such that there is a curve
connecting a+ 2 and a′′. Note that we now have the assumptions of Lemma 3.19 (with a, a′, a′′

here playing the roles of i, i′, i′′ in the lemma). Following the notations in the lemma, let δ denote
the curve connecting a− 1 and a. Let the curves whose right endpoints are a− 1 be (ε) and η.
By Lemma 3.19, we have that the neighbors of δ are (ε) and η.

Let κ denote the curve connecting a′ and a. We have that the left endpoints of κ, (ε), and η
are all distinct. (Otherwise, by a little bit of arc diagram chasing, there would be a red curve
with the same endpoints as κ in BiD(P ), contradicting Proposition 3.14.) We now check the
weight wt(I).

If a = 4, the curve ε is non-existent. The curve κ connects 1 and 4. The curve η connects 2
and 3. We have wt(I) = wt([2, 5]) = 31

6
= wtlim([2, 5]).

If a ⩾ 5, then ε exists. Suppose that the lengths of κ, ε, η are u+1, v, w, respectively. Since
the left endpoints of the three curves are all distinct, we have that u, v, w are distinct positive
integers. It is straightforward to compute wt(I) = 2

u+1
+ 1

v
+ 1

w
+ 7

2
. Note that the weight limit

is wtlim(I) = 11
2

. It is a pleasant exercise to show that for distinct positive integers u, v, w, we
have the inequality

2

u+ 1
+

1

v
+

1

w
⩽ 2,

which we will leave to the reader. This shows that wt(I) ⩽ wtlim(I).

Case 4.1 and Case 4.2. Also similar to Case 2.1 above.

Case 4.3. In this case, Hi = [a, a+1]. We would like to show that either wt([a− 2, a+1]) ⩽
wtlim([a − 2, a + 1]) or wt([a, a + 3]) ⩽ wtlim([a, a + 3]). Since wt([a, a + 1]) = 2, we
have that 3 ⩽ a ⩽ n − 3. Start by considering edge cases. If n = 6, then a = 3 and the
edges {1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {2, 4}, and {3, 5} appear in D(P ). This directly
contradicts Lemma 3.18(c). Assume now that n ⩾ 7. If a = 3, then we are in the situation of
Lemma 3.18(a). By using an argument similar to one in Case 3.3, we find that [3, 6] is under its
weight limit. The case a = n− 3 is analogous.
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Now assume 4 ⩽ a ⩽ n− 4. We see that there exist indices a′ ⩽ a− 3 and a′′ ⩾ a+4 such
that there are edges {a′, a} and {a + 1, a′′} in D(P ). We are in the situation of Lemma 3.17
(with a, a′, a′′ here playing the roles of i, i′, i′′ in the lemma). Following notations in the lemma,
let us denote the curve connecting a − 1 and a by α, and denote the curve connecting a + 1
and a + 2 by δ. Let the curves whose right endpoints are a − 1 be (β) and γ. Let the curves
whose left endpoints are a + 2 be (ε) and η. Lemma 3.17 says that either the neighbors of α
are (β) and γ, or the neighbors of δ are (ε) and η.

If the neighbors of α are (β) and γ, then by an argument similar to one in Case 3.3, we find
that [a−2, a+1] has weight under or equal to its weight limit. On the other hand, if the neighbors
of δ are (ε) and η, then the weight of [a, a + 3] is under or equal to its weight limit. We have
finished the proof.

3.5. Repeatable patterns for k = 3

We now establish the lower bound on M(3, n) by giving explicit repeatable patterns.

Definition 3.22. Let P = (A0, A1, . . . , AN) and Q = (B0, B1, . . . , BM) be sequences of k-
element sets of integers. Suppose that there exists an integer t such that AN = B0 + t. Then we
define the concatenation of P and Q to be the sequence

P ∗Q := (A0, A1, . . . , AN−1, B0 + t, B1 + t, . . . , BM + t) .

Therefore, a repeatable pattern R is a monotone weakly separated path such that for any
positive integer m, the mth-concatenation power R ∗R ∗ · · · ∗R of R is well-defined and is also
a monotone weakly separated path.

Now we construct optimal monotone weakly separated paths as follows. We define:

P4 = 123− 124− 134− 234,

P5 = 123− 124− 125− 145− 245− 345,

P6 = 123− 124− 125− 145− 245− 345− 456,

P7 = 123− 124− 125− 145− 245− 345− 456− 457− 567,

P8 = 123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 678, and
P9 =

123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 579− 589− 789.

We also define

P = 123− 124− 125− 145− 245− 345− 456− 457− 567− 578− 678− 789.

It is straightforward to check that P is a repeatable pattern with parameters (L, d) = (11, 6).
For each integer n ⩾ 10, define Pn := P ∗ Pn−6. It is also straightforward to check that

for every integer n ∈ Z⩾4, the sequence Pn is a monotone weakly separated path from {1, 2, 3}
to {n− 2, n− 1, n} with

⌈
11
6
n
⌉
− 4 terms. Combining these constructions with Corollary 3.11,

we have proved the following theorem.
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Theorem 3.23. For each positive integer n ⩾ 4, we have

M(3, n) =

⌈
11

6
n

⌉
− 5.

We end this section with a remark about the general formula for M(k, n). Considering the
formulas for k = 1, 2, 3, one might conjecture that in general there exist real numbers ak and bk
for which the formula M(k, n) = ⌈akn+ bk⌉ holds for every n ⩾ k + 1. Unfortunately, from
our computational results, we can show, for example by Fourier–Motzkin Elimination, that there
cannot be such a formula when k = 4. The formula for M(4, n) has to be somewhat more
complicated.

4. Periodicity for M(k, n)

Fix a positive integer k throughout this section. Define the constant

ck := lim
n→∞

M(k, n)

n
.

Our main goal of this section is to show that for any k, ck exists, is rational and can be achieved
by repeatable patterns.

4.1. Existence of ck

In Section 3, ck was explicitly computed for k = 1, 2, 3. To be precise, c1 = 1, c2 = 3
2
,

and c3 =
11
6

. Theorem 4.1 shows that this limit exists for all k ∈ N.

Theorem 4.1. The limit ck exists for any k ∈ N.

The proof rests on the following lemma.

Lemma 4.2. For positive integers k < n ⩽ m, we have

(a) M(k, n) ⩽ M(k,m), and

(b) M(k, n) +M(k,m) ⩽ M(k, n+m).

Proof. We prove part (b); part (a) follows since M(k,m) is nonnegative. It follows from the
basic theory of Coxeter groups (see [BB05]) that the longest permutation w0,n in Sn is less than
the longest permutation w0,n+m in Sn+m in the weak Bruhat order, if we view Sn ⊂ Sn+m as
those permutations fixing n+ 1, . . . , n+m pointwise. Thus we can write

w0,n+m = w0,n · u

with ℓ(w0,n+m) = ℓ(w0,n) + ℓ(u). The permutation u = u1 . . . un+m has u1 > · · · > um, so we
may write u = u′ · w0,m, again with Sm ⊂ Sn+m embedded in the standard way, and again with
lengths adding. For any reduced words i, i′ of w0,n and w0,m and a reduced word j for u′, this
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implies that the concatenation iji′ is a reduced word for w0,n+m. In particular, by choosing i, i′

to each maximize the occurrences of sk, we have:

M(k, n) +M(k,m) ⩽ M(k, n+m),

for all k.

Proof of Theorem 4.1. By Lemma 4.2(b), M(k, n) is subadditive function of n, so by Fekete’s
Lemma, the desired limit

lim
n→∞

M(k, n)

n

exists.

4.2. Asymptotic equivalence with the pseudoline k-set problem

As discussed in Section 1.1, in the context of the “k-set problem” it is natural to consider a
related problem, namely the maximization of the total number of appearances of sk and sn−k in
a reduced word. Let M̄(k, n) be the maximal total number of appearances of sk and sn−k in
the reduced words from Sn. The following theorem shows that the same slopes ck arise in this
version.

Theorem 4.3. For any k ∈ N, the following limit exists and is given by

lim
n→+∞

M̄(k, n)

n
= lim

n→+∞

M(k, n)

n
= ck.

Proof. Consider any reduced word and its wiring diagram. We say that a wire has type (i, j,±)
if its highest position is i and its lowest position is j, and + (−) means that the highest position
is to the left (right) of the lowest position. Note that no two wires share the same type (otherwise
they should intersect at least twice, but our word is reduced). Let a be the number of wires which
were at some moment at one of the k highest levels, and let b be the number of wires which were
at some moment at one of the k lowest levels. At most 2k2 wires are counted by both a and b,
so a+ b ⩽ n+ 2k2. Note that the number of sk depends only on these a wires and the number
of sn−k depends only on these b wires. Hence, the number of appearances of sk and sn−k in this
reduced word is at most M(k, a) +M(k, b) ⩽ cka+ ckb ⩽ ck(n+ 2k2).

Therefore M(k, n) ⩽ M̄(k, n) ⩽ ck(n + 2k2). Thus the limit limn→+∞
M̄(k,n)

n
exists and

is equal to ck.

Remark 4.4. We can similarly define numbersM(S, n) and M̄(S, n) for any finite subset S ⊂ N
and n ∈ N. Their asymptotics are still the same and well-defined, i.e.,

lim
n→+∞

M(S, n)

n
= lim

n→+∞

M̄(S, n)

n
∈ R.
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4.3. Generalized wiring diagrams

We now work towards showing the rationality of ck. We introduce the new tool of generalized
wiring diagrams; these are certain wiring diagrams with infinitely many wires which are some-
times allowed to “go to infinity”. Intuitively, these diagrams allow us to reason about wiring
diagrams for all n ∈ N simultaneously.

Definition 4.5. A generalized wiring diagram consists of countably many wires, labeled
by 1, 2, . . . starting at levels 1, 2, . . . respectively from top to bottom, traveling from left to right
such that at each timestamp t, either

• two wires at adjacent levels cross; or

• one wire goes to infinity ∞, intersecting all wires at lower levels.

A generalized wiring diagram is reduced if no pair of wires cross more than once.

To clarify, when two wires at level h and h + 1 cross as in the usual wiring diagrams, we
say that they cross at level h. And when a wire a at level h goes to infinity, we say that this
wire falls, and it creates intersections at levels h, h + 1, . . ., while the wires which were at
levels h+ 1, h+ 2, . . . before wire a falls go to levels h, h+ 1, . . . respectively, so that at every
timestamp, there is a wire at each level indexed by positive integers.

1

2

3

4

5

6

Figure 4.1: A reduced generalized wiring diagram.

Let W(k, n) be the set of reduced generalized wiring diagrams in which only wires labeled 1
to n ever occupy the first k levels.

Lemma 4.6. The maximum number of intersections on level k among diagrams in W(k, n)
equals M(k, n).

Proof. Let m(k, n) be the maximum number of intersections on level k among W(k, n). Then
we have m(k, n) ⩾ M(k, n) since a reduced word in Sn, which can be viewed as a wiring
diagram, is an instance of W(k, n).

Now for W ∈ W(k, n), at each timestamp t, let A(t) ⊂
(
[n]
k

)
be the set of wires that oc-

cupy the first k levels. Let (A0, A1, . . . , AN) be the sequence of A(t)’s where Ai = A(ti) if
step ti creates a crossing at level k. With the same reasoning as in Proposition 2.3, we show
that (A0, A1, . . . , AN) is a monotone weakly separated path. Since W is reduced, to go from Ai
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to Ai+1, we take away some wire a and add in some wire b with a < b and this shows mono-
tonicity. Then for i < j, if there exists b ∈ Ai \ Aj , a ∈ Aj \ Ai with a < b, then wire a
must cross wire b (strictly) prior to step ti and also (strictly) between ti and tj , contradicting W
being reduced. This shows that (A0, A1, . . . , AN) is weakly separated. Here, N is the number of
crossings at level k in W . By Proposition 2.3, there exists a reduced word in Sn with N copies
of sk. Thus m(k, n) ⩽ M(k, n) as desired.

We now consider a particularly nice set of reduced generalized wiring diagrams.

Definition 4.7. A reduced generalized wiring diagram W is simple, if there is no

(S1) Pair of wires a < b which intersects on a level other than k, and at the moment of their
intersection wires {a+ 1, . . . , b− 1} have already fallen; or

(S2) Wire a, which intersects with k wires with larger labels (not counting when wire a is going
to infinity).

We remark that (S1) implies that in a simple diagram, wire a and wire a+1 can only intersect
at level k. Also note that (S1) needs to be considered when the wire a is falling to infinity. In
particular, this means that in a simple diagram, the first step can only be an intersection between
wires k and k + 1, or wire k falling to infinity.

We write W̃(k, n) for the set of simple reduced generalized wiring diagrams from W(k, n).
And write W̃(k) =

⋃
n>k W̃(k, n) for the set of simple reduced generalized wiring diagrams

for fixed k.

Proposition 4.8. A diagram W ∈ W(k, n) can be transformed into a simple reduced dia-
gram W ′ ∈ W̃(k, n) without changing the number of intersections on level k.

Proof. Let W ∈ W(k, n) and let t be the first timestamp where W violates some condition in
Definition 4.7. If condition (S1) is violated by wires a < b crossing normally (not during while a
is going to infinity), we simply remove this intersection to obtain W̃ . The new diagram W̃ is
still reduced, because in order for some wire c to intersect the new wire a (or b) twice without
intersecting the previous a and b twice, c must be between a and b. However, (S1) says that c
has already fallen, so there are no such possibilities.

If condition (S1) is violated by wires a < b intersecting as a goes to infinity, we make sure
that wire b is the “first” violation of condition (S1), i.e. the highest (with the smallest level). We
expand this step of a going to infinity by letting wire a intersect those wires below a and above b
at this timestamp first, and then going to infinity. Next, as above, we uncross the intersection
between wires a and b by letting wire b go to infinity instead while wire a in W̃ takes on the role
of wire b in W after this timestamp. The same argument in the last paragraph shows that W̃ is
reduced. At the same time, the number of intersections at level k stays unchanged.

If condition (S2) is violated with wire a, then we assume that at time t, wire a crosses with bk
at level h where a < bk; moreover, wire a has already intersected with b1, . . . , bk−1 that are larger
than a. Let W̃ be obtained from W by replacing the intersection at time t with wire a going to
infinity. By reducedness, at time t, wires b1, . . . , bk−1 must be at a higher (smaller) level than
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wire a, so h ⩾ k. This says that the number of intersections at level k is the same in W̃ . If W̃
becomes not reduced, then there must be some wire c < a which is at level ⩾ h + 2 at time t
so that it intersects a the second time in W̃ at time t. However, since c < b1, . . . , bk and c is at
a lower (greater in value) level at time t, by condition (S2) and the minimality of t, wire c must
have fallen already. As a result, W̃ stays reduced.

We can continue the above process so that the end result W̃ is simple.

For a diagramW∈W(k, n) and a timestamp t, we can associate a permutationπ(t)
W =π(t)∈S∞

to it that records the positions of the non-fallen wires. To be precise, if a1 < a2 < · · · are the
labels of the non-fallen wires at time t, then aπ(t)(h) is at level h for h = 1, 2, . . .. Here, the infi-
nite symmetric group S∞ is the set of bijections on Z>0 with all but finitely many fixed points.
We also let f (t)

W = f (t) be the number of fallen wires of W at timestamp t and let κ(t)
W = κ(t)

be the number of intersections at level k that have happened. In particular, we always start
with f (0) = 0, κ(0) = 0 and π(0) = id.

Lemma 4.9. A simple reduced generalized wiring diagram W can be uniquely encoded by the
sequence {(f (t)

W , κ
(t)
W , π

(t)
W )}t defined above. In other words, given a sequence {(f (t), κ(t), π(t))}t,

there is at most one W ∈ W̃(k) such that {(f (t)
W , κ

(t)
W , π

(t)
W )}t = {(f (t), κ(t), π(t))}t.

Proof. Fix {(f (t), κ(t), π(t))}t and we will recover W ∈ W̃(k) step by step. Note that there is a
lot of redundancy in this encoding, as the information from f and π are almost sufficient.

At step t > 0, if f (t) = f (t−1) meaning no wires fall, we simply apply a crossing at level h
if π(t) = π(t−1)sh. The critical case is that f (t) = f (t−1) + 1 meaning that a wire falls at this
step. Note that from a permutation π(t−1), it is possible that deleting an entry (and flattening
the permutation) will result in the same permutation as deleting another entry. For example,
if π(t−1) = id, deleting any entry and flattening the values to 1, 2, . . . will result in π(t) = id. In
such cases, to uniquely reconstruct a simple diagram W , the conditions in Definition 4.7 become
important.

Suppose that at time t, letting the wire at level a go to infinity will result in the permuta-
tion π(t), i.e. deleting the entry at index a of π(t−1) and flattening the values to 1, 2, . . . give
us π(t), and letting the wire at level b > a go to infinity will result in the same permutation π(t).
Choose such minimal a and maximal b. We analyze the permutation u = π(t−1) ∈ S∞.

First, for every positive integer i such that i < a or i > b, u(i) must not lie in between u(a)
and u(b). Secondly, if u(a) > u(a + 1), then letting this wire at level a go to infinity results
in a double crossing with the wire at level a + 1 at this timestamp. Thus, u(a) < u(a + 1).
By comparing the two permutations obtained from u by deleting index a and b respectively,
we must have u(a + 1) < u(a + 2). This further implies u(a + 2) < u(a + 3) and so on.
Thus, u(a) < u(a + 1) < · · · < u(b). It is now clear that deleting any index between a and b
from u results in the same permutation π(t), and finally we claim that at most one choice is
possible. For a ⩽ c ⩽ b − 1, if wire c falls at time t, an intersection at level c between this
wire and the wire at level c + 1 is created. By the arguments above, all the wires with labels
between these two must have fallen (since they cannot exist before level a or after level b), and
by condition (S1) for simple diagrams, c = k. Thus, if b ⩽ k, only wire b is allowed to fall;
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if a ⩽ k < b, only wire b can fall if κ(t) = κ(t−1) and only wire k can fall if κ(t) = κ(t−1) + 1;
and the case a > k cannot result in any valid diagrams.

Example 4.10. We consider one optimal repeatable pattern of k = 2,

12− 13− 23− 34− 35− 45− 56− 57− 67− 78− 79− 89− · · · ,

discussed in Theorem 3.7 and shown in Figure 4.2, and use a (simple) reduced generalized wiring
diagram to describe it, shown in Figure 4.3.

1

2

3

4

5

6

Figure 4.2: An optimal repeatable pattern for k = 2.

In particular, the simple reduced generalized wiring diagram W̃ in Figure 4.3 can be obtained
from the wiring diagram W in Figure 4.2 via the simplification procedure in Proposition 4.8.
Observe that the permutations π(t)

W̃
are id, 132, 312, 21, id, 132, 312, 21, . . ., which are periodic

with period 4.
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Figure 4.3: An optimal repeatable pattern for k = 2 via simple reduced generalized wiring
diagrams corresponding to Figure 4.2.

4.4. Finiteness of configurations and proof of the main theorem

Let Tk be the set of all possible permutations π(t)
W at all timestamps t across all W ∈ W̃(k). In

this section, we will show that Tk is finite and resolve the rationality of ck.
For a simple reduced generalized wiring diagram W ∈ W̃(k), let Nt(W ) be the set of non-

fallen wires at timestamp t and let Et(W ) ⊂ Nt(w) be the set of non-fallen wires at timestamp t
that were on the first k levels at or before timestamp t.
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Lemma 4.11. For W ∈ W̃(k) and t, any wire a ∈ Nt(W ) \ Et(W ) does not intersect wires
with larger labels at time t or earlier.

Proof. Assume the opposite and let a ∈ Nt(W ) \ Et(W ) intersect some wire b > a at time t
or earlier. Note that the condition a ∈ Nt(W ) \ Et(W ) means that wire a has not yet fallen but
it has never been to the first k levels. Choose t to be minimal and then choose b to be minimal
among all such wires. The minimality of t means that wire a and wire b intersect at time t and
let h > k be the level of this intersection.

Each wire i strictly between a and b must intersect a or b at some time before t. If such a
wire i intersects a at time t′ < t, then the minimality of b is violated. So such a wire i must not
intersect a and must intersect b, at some timestamp t′ < t. If it does not intersect b by falling,
then i ∈ Nt′(W ) \ Et′(W ) since it has never been to level k or above, and the minimality of t
is violated. As a result, all such wires i have fallen at time t, and since h > k, condition (S1) is
violated.

Lemma 4.12. For W ∈ W̃(k) and t, |Et(W )| ⩽ k2 + 2k.

Proof. Assume the opposite that |Et(W )| ⩾ k2+2k+1. Let a1 < a2 < · · · be the set of wires
that have not fallen at timestamp t and let

z = max{i | ai ∈ Et(W )}.

Consider the set
A = {i | ai ∈ Et(W ), ai has intersected az}.

Since the wire az has been to the first k levels, there are at most k − 1 wires from a1, . . . , az1
that do not intersect az. This means |A| ⩾ (z − 1)− (k − 1) ⩾ k2 + k + 1.

Since |A| ⩾ k(k + 1) + 1, the Erdős–Szekeres Theorem says that we have either k wires
from A which intersect pairwise, or k+1 wires from A where no wires intersect. In the first case
where a setB ⊂ A of wires intersect pairwise with |B| ⩾ k, the smallest wire fromB then needs
to intersect k wires with larger labels, including k − 1 wires from B and az, contradicting (S2).
In the second case where a set B ⊂ A of wires have no intersections with |B| ⩾ k + 1, the
largest wire ai from B can never visit the first k levels, contradicting ai ∈ Et(W ).

Corollary 4.13. For any k, |Tk| ⩽ kk2+2k. In particular, |Tk| is finite.

Proof. Let W ∈ W̃(k) be simple and consider π = π
(t)
W ∈ Tk. As above, let a1, a2, . . . be

the labels of wires that have not yet fallen. Let z = |Et(W )| ⩽ k2 + 2k and consider the
Lehmer code code(π) where code(π)i equals the number of wires aj that have intersected ai,
where j > i. It is a classical fact that Lehmer codes uniquely characterize permutations in S∞.

If ai /∈ Et(W ), meaning that ai has not been to the first k levels, then by Lemma 4.11,
any aj with j > i does not intersect ai so has not been to the first k levels either. This
means that Et(W ) = {a1, a2, . . . , az} and that code(π)i = 0 for i > z. At the same time,
by (S2), each ai with i ⩽ z can only intersect at most k − 1 wires with larger labels.
So code(π)i ∈ {0, 1, . . . , k − 1} for i ∈ {1, 2, . . . , z}. As a result, the total number of pos-
sible permutations is bounded by kz ⩽ kk2+2k.
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A piece P is a segment of a generalized wiring diagram W containing the single move
(adjacent crossing or falling wire) occurring in W at some time t together with the information
of the permutations π−

P := π
(t−1)
W and π+

P := π
(t)
W . The piece P is simple (with respect to k)

if it can be obtained from a simple diagram W ∈ W̃(k). A series P1, . . . , Pr of pieces such
that π+

Pi
= π−

Pi+1
for all i may be concatenated into a pattern Q = P1 + · · · + Pr, which is

the segment of a generalized wiring diagram obtained by drawing P1, . . . , Pr next to each other,
together with the information of π−

Q := π−
P1

and π+
Q := π+

Pr
.

The following proposition shows that being simple is a local property of a generalized wiring
diagram: a diagram is simple if and only if all of its constituent pieces are simple.

Proposition 4.14. Let Q = P1 + · · · + Pr, where each piece Pi is simple with respect to k and
where π−

P1
= id, then Q ∈ W̃(k).

Proof. First note that Q, viewed as a generalized wiring diagram, is reduced, since each piece,
by virtue of coming from a reduced diagram and carrying with it the permutations π− and π+

clearly preserves reducedness when concatenated. The condition (S1) from Definition 4.7 is
also clearly preserved when we apply each piece, since it is equivalent to the condition that no
simple piece swaps two wires with adjacent labels, or has a wire fall from a level other than k
when the wire below it has label one larger, where we read labels from π−. Finally, to check
condition (S2), we can just check that for each index i and time t,

|{j < i | π(t)
Q (j) > π

(t)
Q (i)}| < k.

This is because, since Q is reduced, none of the wires with label higher than a
π
(t)
Q (i)

which

have crossed this wire can have fallen at or before time t, so |{j < i | π(t)
Q (j) > π

(t)
Q (i)}| is

this number of wires. Since this is a condition satisfied by all π(t)
W for W simple, it is satisfied

by π
(t)
Q = π−

Pt+1
.

We call a patternQ = P1+· · ·+Pr simple (with respect to k) if all of its constituent pieces Pi

are simple with respect to k. By Proposition 4.14, this does not conflict with our earlier definition
of simple diagrams.

Definition 4.15. For f ∈ N and π ∈ Tk, let K(f, π) be the maximum number of crossings
at level k among all simple patterns Q = P1 + · · · + Pr such that π−

P1
, . . . , π−

Pr
are

distinct, π−
P1

= π+
Pr

= π, and Q has f fallen wires. Since Tk is finite by Corollary 4.13, there are
finitely many simple patterns whose constituent pieces have distinct values of π−.

Theorem 4.16. For any k ∈ Z>0 we have:

ck = max
f∈N,π∈Tk

K(f, π)

f
. (4.1)

In particular, ck is rational.
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Proof. We first show that ck ⩾ maxf∈N,π∈Tk
K(f,π)

f
. Let (f0, π0) be such that K(f0, π0)/f0

achieves the maximum, and let Q be a simple pattern realizing K(f0, π0) crossings at level k,
with π−

Q = π+
Q, as in Definition 4.15. Choose R ∈ W̃(k) with π−

R = id, π+
R = π−

Q, and no fallen
wires. For any m ∈ N, consider the diagram

Dm := R +mQ = R +Q+ · · ·+Q︸ ︷︷ ︸
m copies

.

By Proposition 4.14, we have Dm ∈ W̃(k) since R and Q are simple. By Lemma 4.12, and
since Q has f0 fallen wires, we have Dm ∈ W̃(k, k2 + 2k +mf0). The number of intersections
on level k of Dm is the number r in R, plus mK(f0, π0). We conclude

ck ⩾ lim
m→∞

r +mK(f0, π0)

k2 + 2k +mf0
=

K(f0, π0)

f0
= max

f∈N,π∈Tk

K(f, π)

f
.

We now prove the upper bound on ck. Write M for the maximum on the right-hand side
of (4.1), and let W be any diagram from W̃(k). Express W uniquely as a sum of its constituent
simple pieces:

W = P1 + · · ·+ Pr.

Note that W has f (r) = f
(r)
W fallen wires and κ(r) = κ

(r)
W crossings at level k. Let i ⩽ j be a

closest pair of indices such that π−
Pi

= π+
Pj

, and write π for this common permutation. Consider
the encodings (f (i−1), κ(i−1), π) and (f (j), κ(j), π) immediately before and after the pieces Pi, Pj

respectively. Since π+
Pi−1

= π−
Pj+1

, we may form a new diagram W ′ = P1+ · · ·+Pi−1+Pj+1+

· · · + Pr by removing the piece Pi + · · · + Pj and W ′ ∈ W̃(k) by Proposition 4.14. This new
diagram has f (r)− (f (j)− f (i−1)) fallen wires and κ(r)− (κ(j)−κ(i−1)) crossings at level k. By
construction, we have

κ(j) − κ(i−1) ⩽ (f (j) − f (i−1))M.

Since W ′ remains simple, we can iteratively apply this procedure until we reach a
diagram W0 with all permutations distinct. By Corollary 4.13, there are finitely many such
diagrams, so there is some maximum possible number K0 of level-k crossings in W0.
Since W ∈ W(k, k2 + 2k + f (r)), we see that

M(k, k2 + 2k + f (r)) ⩽ K0 + f (r)M.

Dividing by k2 + 2k + f (r) and letting f (r) → ∞, we obtain

ck ⩽ M,

as desired.

Corollary 4.17. The optimal density ck can be achieved by a repeatable pattern, in the sense of
Section 3.
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Proof. Let (f0, π0) achieve the maximum in the right-hand side of (4.1), and letQ be the diagram
realizing f0, π0 as in the proof of Theorem 4.16, which, by the theorem, achieves the density ck.
Taking the labels of the wires occupying the top k levels in a reduced generalized wiring dia-
gram gives a monotone weakly separated path by the same reasoning as in Proposition 2.3, and
applying this operation to Q gives the desired repeatable pattern, by construction.

Proposition 4.18. Let pk(n) := M(k, n)− ckn. Then, for sufficiently large n, pk(n) is periodic
in n.

Proof. Let M(k, n, π) be the maximal number of intersections on level k among diagrams
from W̃ (k, n) having final timestamp π. Clearly M(k, n) = maxπ∈Tk M(k, n, π). Define
pk(n, π) := M(k, n, π)− ckn.

It follows from the proof of Theorem 4.16 that pk(n, π) is a bounded function of n and π.
Furthermore, since ck is rational, this function takes rational values of bounded denominator,
and thus pk(n, π) attains only finitely many different values. Thus we may find a < b ∈ N
so that pk(a, π) = pk(b, π) for all π ∈ Tk, since Tk is finite by Corollary 4.13. Now, it is clear
that pk(n, π) depends only on {pk(n−1, σ)}σ∈Tk . Thus we have that pk(n+b−a, π) = pk(n, π)
for all n ⩾ a and all π ∈ Tk. In particular, for n sufficiently large, pk(n) = maxπ∈Tk pk(n, π) is
periodic in n.

5. The minimization problem for finite Coxeter groups

In this section, we investigate a related question: for the longest element w0 of a finite Coxeter
group W , what is the minimum number of appearances of a generator si in R(w0), the set of
reduced words for w0. This question is very easy in type An−1 where W ≃ Sn. Namely, the
minimum number of occurrences of the simple transposition (i i+1) in R(w0) is min{i, n− i}.
We observe a surprising phenomenon with respect to these numbers and the Cartan matrix of W
(Theorem 5.2).

Throughout this section, let

W = ⟨s1, . . . , sn | (sisj)mij = id for all i, j⟩

be a finite Coxeter group generated by a set of simple reflections S = {s1, . . . , sn}. For w ∈ W ,
let ℓ(W ) denote the Coxeter length of w. For J ⊆ S, the parabolic subgroup WJ is the subgroup
of W generated by J , viewed as a Coxeter group with simple reflections J . Each left coset wWJ

of WJ in W contains a unique element wJ of minimal length, and the set {wJ | w ∈ W} of
these minimal coset representatives is called the parabolic quotient W J . Letting wJ ∈ WJ be
the unique element such that wJwJ = w, we have ℓ(wJ) + ℓ(wJ) = ℓ(w) and this is called the
parabolic decomposition of w. As W is finite, W J is finite and it contains a unique element wJ

0

of maximum length. We utilize the Bruhat order on W and W J , where u ⩽ w if u equals a
subword of a (or equivalently, any) reduced word of w. For convenience, we adopt the notation
that Ji := S − {si} for each si ∈ S. We refer readers to [BB05] for a detailed exposition on
Coxeter groups.

We start with an algorithm to compute the minimum number of si that appears in R(w) for
all w.
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Proposition 5.1. Fix w ∈ W and si ∈ S. Define a sequence of Coxeter group elements
w(0), w(1), . . . as follows: w(0) = wJi and w(k+1) = (w(k)si)

Ji if w(k) ̸= id, for k ⩾ 0. This
algorithm will eventually stop (at some w(N) = id). Then the minimum number of si that ap-
pears in R(w) is the k for which w(k) = id.

Proof. First notice that in this procedure, if w(j) ̸= id, then as w(j) ∈ W Ji , it must have a
single descent at si. As a result, ℓ(w(j+1)) ⩽ ℓ(w(j)si) < ℓ(w(j)) so we will eventually end
up at the identity. This procedure also produces a (class of) reduced word of w with k si’s
where w(k) = id.

Let k be such that w(k) = id and take an arbitrary reduced word si1si2 · · · siℓ of w. Pick out
the si’s in this reduced word as iaK = iaK−1

= · · · = ia1 = i where aK < aK−1 < · · · < a1.
For j = 0, 1, . . . , K−1, let u(j) = si1si2 · · · siaj+1

which is the product from si1 to the (j+1)th si

in this reduced word counted from the right. Also say u(K) = id.
Recall the following standard fact of Coxeter groups: if x ⩽ y, then xJ ⩽ yJ for any

subset J ⊂ S. This can be proved via an application of the subword property of Bruhat orders.
Also see [BB05].

We now show that u(j) ⩾ w(j) for j = 0, 1, . . . , k in the Bruhat order by induction. For the
base case, notice that both u(0) and w(0) are in the left coset wWJi and since w(0) is the minimal
coset representative, we have u(0) ⩾ w(0). Now assume u(j) ⩾ w(j) ̸= id for some j ⩾ 0.
By definition, both of them have a right descent at si so we have u(j)si ⩾ w(j)si by the fact
in the last paragraph with J = {si}. With another application of this fact with J = Ji, we
have (u(j)si)

Ji ⩾ (w(j)si)
Ji = w(j+1). At the same time, u(j+1) and u(j)si are in the same coset

of WJi by definition, so u(j+1) ⩾ (u(j)si)
Ji ⩾ w(j+1). The induction step goes through.

Finally, u(k−1) ⩾ w(k−1) ̸= id. This means u(k−1) ̸= id so K > k−1, K ⩾ k as desired.

Recall that a generalized Cartan matrix A of a Coxeter system (W,S) is a real n× n matrix
such that

• Aii = 2 for i = 1, . . . , n and Aij ⩽ 0 for i ̸= j,

• Aij < 0 if and only if Aji < 0 and AijAji = 4 cos2(π/mij) for i ̸= j.

We say that a generalized Cartan matrix A is restricted if mij = 3, or equivalently, there is a
single edge between si and sj in the Dynkin diagram, implies that Aij = Aji = −1. Note that
if (W,S) is simply-laced, then any restricted generalized Cartan matrix is the Cartan matrix. We
now state our main result of the section.

Theorem 5.2. Let W be a finite Coxeter group generated by S = {s1, . . . , sn} and let v ∈ Rn
>0

be such that vi is the minimum number of appearances of si in a reduced word of w0. Then there
exists a restricted generalized Cartan matrix A ∈ Rn×n of (W,S) such that Av ⩾ 0, where the
comparison is made entry-wise.

Proof. We make use of Proposition 5.1 for each type separately and provide the corresponding
restricted generalized Cartan matrix. Note that (Av)i = 2vi +

∑
j∼i Aijvj , where j ∼ i means

that the nodes i and j are adjacent in the Dynkin diagram. So Av ⩾ 0 is intuitively saying that
the value v at each node i is at least half of the weighted sum of its neighbors.
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For the classical types, we mainly argue about type Bn, whose Coxeter group W (Bn) is
isomorphic to the group of signed permutations. The argument for type Dn, whose Coxeter
groupW (Dn) is an index-2 subgroup ofW (Bn), is similar and we will omit unnecessary details.
The argument for type An is simpler. And for the exceptional types, we use Proposition 5.1 and
a computer to generate each vi, and then provide the matrix A directly.

Type Bn. Writing ī := −i, we adopt the convention that

W (Bn) = {w is a permutation on n̄, . . . , 1̄, 1, 2, . . . , n | w(i) = −w(̄i) ∀i}

which is generated by S = {s1, . . . , sn} where s1 = (1 1̄), si = (i−1 i)(i−1 ī) in cycle notation
for i = 2, . . . , n. The Dynkin diagram and the vi’s that we are about to compute can be seen in
Figure 5.1.

• • • • • • • •· · ·
s1 s2 s3 sn−2 sn−1 snlabels

vi’s n n n−1 n−2 4 3 2

Figure 5.1: minimal number of occurrences of each si in reduced words of w0 of type Bn, with
labels on top and vi’s on the bottom.

We write elementw ∈ W (Bn) in one-line notation given byw(1)w(2) · · ·w(n). The longest
element is w0 = 1̄2̄ · · · n̄ while the identity is id = 12 · · ·n. Fix some si ∈ S with i ⩾ 2 and we
now run through the algorithm in Proposition 5.1. Keep notations as in Proposition 5.1, we use
induction on k to show that

w(k) = 1 2 · · · i−2 n+1−k n−k n−k−1 · · · ī i−1 n−k+2 · · · n

for k ⩾ 1, where · · · indicates a sequence of consecutive increasing integers. We start
with w(0) = 12 · · · i−1 n̄ · · · i+1 i and then

w(0)si = 1 2 · · · i−2 n̄ i−1 n−1 · · · i+ 1 i.

Taking the parabolic quotient to obtain w(1) = (w(0)si)
Ji , where Ji = S \ {si}, we effectively

get rid of the signs in coordinates 1, . . . , i− 1 and sort these values, and also sort the values in
coordinates i, i+ 1, . . . , n respectively. This gives

w(1) = 1 2 · · · i−2 n n−1 · · · i+1 i i−1

as desired, establishing the base case. Checking the inductive steps is also done in the same way,
by writing down

w(k)si = 1 2 · · · i−2 n−k n+1−k n−k−1 · · · ī i−1 n−k+2 · · · n,

sorting the values without the signs in coordinates 1, . . . , i − 1 and sorting the values
while keeping the signs in coordinates i, . . . , n to obtain w(k+1) = (w(k)si)

Ji . Finally,
when k = n+ 1− i, we see that w(k) = si so we conclude that vi = n+ 2− i.
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To see that v1 = n, we notice in fact that every time s1 is applied to reduce the length of
a signed permutation, there is one less negative values among w(1), . . . , w(n), and every time
some other si is applied, where i ⩾ 2, the number of negative values among w(1), . . . , w(n)
stays the same. This directly gives v1 = n.

Finally, to specify a restricted generalized Cartan matrix A ∈ Rn×n, it suffices to spec-
ify A12 = −2 and A21 = −1. We check that Av = (0, 1, 0, . . . , 0, 0, 1)T ⩾ 0.

Type Dn. The same argument as in type Bn works in this case, by explicitly writing down the
signed permutations w(0), w(1), . . . for each si. We omit the tedious details here and provide the
answers for vi’s in Figure 5.2. Since type Dn is simply-laced, the restricted generalized Cartan

• • • • · · · • • •
•

•2 3 4 5 n−3 n−2 n−1

⌊n/2⌋

⌊n/2⌋

Figure 5.2: minimal number of occurrences of each si in reduced words of w0 of type Dn.

matrix is fixed. We check that Av ⩾ 0, which in fact has value 0 at most coordinates.

Type An−1. We quickly go over the algorithm in Proposition 5.1. Fix i ⩽ n−1
2

.
Let Zk = {w(k)(1), . . . , w(k)(i)} so that Z0 = {n− i+ 1, . . . , n}. To obtain Zk+1 from Zk, we
exchange the largest entry of Zk with the smallest entry of {1, . . . , n} \Zk. It is then immediate
that Zi becomes {1, . . . , i} so that vi = i. By symmetry of the Dynkin diagram, vi = n − i
for i ⩾ n−1

2
. We check again that most entries of Av are zeroes, except one or two positive

integers in the middle.

Type E6, E7, E8. The vi’s are shown in Figure 5.3. We check that each vi is at least half of the
sum of its neighbors.

• • • • •

•

2 4 6 4 2

3

• • • • • •

•

3 6 9 7 5 3

5

• • • • • • •

•

5 10 15 12 9 6 3

8

Figure 5.3: minimal number of occurrences of each si in reduced words ofw0 of typeE6, E7,E8.

Type F4. The vi’s are shown in Figure 5.4 and we specify A2,3 = A3,2 = −
√
2.

Type H3 and H4. The vi’s are shown in Figure 5.5 and we specify A2,3 = −2 cos2(π/5),
A3,2 = −2 for type H3, and A3,4 = −2 cos2(π/5), A4,3 = −2 for type H4.

Type In. Here, v1 = v2 = ⌈m12/2⌉ so we let A1,2 = −2 cos2(π/m12) and A2,1 = −2.
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• • • •
3 6 6 3

Figure 5.4: minimal number of occurrences of each si in reduced words of w0 of type F4.

• • •5
3 5 5

• • • •5
5 10 15 15

Figure 5.5: minimal number of occurrences of each si in reduced words ofw0 of typeH3 andH4.
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