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EPIGRAPH

¿Quién escribe tu nombre con letras de humo entre las estrellas del sur?

Ah déjame recordarte cómo eras entonces, cuando aún no existías.

—Pablo Neruda
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Professor Brian Keating, Co-Chair

Polarbear is an experiment designed to measure the polarization of the

cosmic microwave background (CMB). These measurements have scientific objec-

tives spanning particle physics, cosmology, and astrophysics. The field of CMB

polarization is rapidly evolving, with extraordinary progress being made on sev-

eral fronts including the recently claimed detection of gravitational waves generated

during cosmic inflation.

This dissertation describes the Polarbear instrument and the measure-

ments taken during its first season of observations. The results include the first

evidence for a non-zero CBB
` power spectrum at sub-degree angular scales, consis-

tent with theoretical expectations.
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Chapter 1

Introduction

Less than a century has elapsed since the publication of the general theory

of relativity [1], and efforts in that time have yielded profound changes to our un-

derstanding of cosmology. Theoretical and observational progress has allowed us

to develop and test precise physical theories about the history, shape and composi-

tion of the universe. Near the end of the twentieth century, observational evidence

began to converge on the Lambda-Cold Dark Matter (ΛCDM) model, which has

now become the “standard model” of cosmology. In many respects this model

is surprisingly simple, and has now survived more than a decade of increasingly

strenuous observational tests. These tests have come from a diverse range of ob-

servations spanning many different measurement techniques and cosmic distance

scales. Measurements of the cosmic microwave background (CMB) have played a

particularly important role in formulating and testing ΛCDM.

This dissertation describes experimental efforts to measure polarization of

the CMB with the Polarbear experiment. CMB polarization is a field which

allows even stricter tests of the ΛCDM model as well as enables probes of new

and otherwise untestable physics. Using CMB polarization measurements, the

BICEP2 experiment has recently reported the detection of gravitational waves

generated during inflation [2]. If confirmed, this implies that CMB polarization

measurements can probe physics at the grand unification energy scale, which is

completely inaccessible to any other current experimental technique.

We begin with a brief overview of cosmology and the CMB, including a

1



2

discussion of its polarization and the goals behind measuring it. It is not our aim

to re-derive well known results available in the literature, but instead to provide

a broad overview of the context in which the questions this dissertation addresses

are being asked.

1.1 General Relativity and the Expansion of the

Universe

General relativity is the conceptual framework that underpins our theo-

retical understanding of the expanding universe. The idea that the universe we

see today emerged from a hotter, denser primordial universe via the expansion of

space is a general expression of the Big Bang theory, and forms the basis of modern

cosmology. We will briefly discuss general relativity and how it motivates such an

idea.

1.1.1 The Metric in General Relativity

Distances and time intervals can be described for a coordinate system by us-

ing the 4×4 metric tensor gµν , with a line element ds written as ds2 = gµνdx
µdxν 1.

For a given coordinate system, the associated metric tensor tells us how to deter-

mine physical distances and time intervals via an integral over line elements along

some path of interest. This is a mathematical construction which general relativity

uses to describe the nature of space.

In general relativity, the Einstein field equations determine the form of

the metric gµν given a distribution of energy (in all its forms, including matter),

and energy moves along geodesic curves determined by the metric. Effectively,

matter and energy tell space how to bend, and the bending of space tells matter

and energy how to move [3]. In this way, general relativity describes space as a

dynamical object that changes in response to the energy it contains.
1There is an implied sum on µ and ν over the three spatial and one temporal dimensions by

the standard Einstein summation convention.
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The Einstein field equations are ten coupled, non-linear differential equa-

tions, which in practice admit few exact analytic solutions. This is equivalent

to saying that for most arbitrary distributions of matter and energy, the metric

gµν cannot be determined exactly. However, exact solutions are possible under

assumptions of symmetries that simplify the problem.

1.1.2 The Cosmological Principle

An example of such a symmetry, known as the Cosmological Principle, re-

quires that the distribution of energy (and thus space) be the same everywhere

(homogeneous) and further contain no preferred direction (isotropic)2. This as-

sumption is manifestly violated in the modern universe, yet it is believed to be

close to correct in the early universe and even to hold today when considered only

at sufficiently large distance scales. The metric that follows under these assump-

tions is known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, and

yields a line element in co-moving coordinates of3 [4]:

ds2 = −dt2 + a2(t)
(dx2 + dy2 + dz2)

[1 + κ
4a2(t)

(x2 + y2 + z2)]2
, κ = 0,±1. (1.1)

The value of κ determines the type of spatial curvature, with κ = 0 implying

that space is flat. For flat space, this metric behaves like the normal Minkowski-

space metric of special relativity, except for the scaling of spatial distances by

the scale factor a(t) which up to this point has been an arbitrary function of the

time coordinate t. Thus we see that the physical distances between two spatial

coordinate points can grow or shrink as a function of time, corresponding to an

expansion or contraction of space.

1.1.3 The Friedmann Equation

Deriving the FLRW metric above relies only upon symmetery arguments

and not general relativity. It falls to general relativity to determine the scale factor
2While these conditions are typically stated separately, isotropy at all points in space implies

homogeneity [4], though isotropy at one particular point does not.
3We have chosen to work in natural units where c = ~ = kB = 1 and thus c is omitted here.
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a(t) as a function of time given a physical distribution of matter and energy obeying

the Cosmological Principle. If we define the Hubble rate and critical densities as:

H(t) ≡ ȧ(t)

a(t)
, ρcrit(t) ≡

3H2(t)

8πG
, (1.2)

we can write the Friedmann equation, which governs the evolution of the scale

factor, as4 [5]:

H2(t) =
8πG

3

(
ρ(t) +

ρcrit(t)− ρ(t)

a2(t)

)
=

8πG

3
ρ(t)− κ

a2(t)
, (1.3)

and the Friedmann acceleration equation as:

ä(t)

a(t)
= Ḣ(t) +H2(t) =

4πG

3
(ρ+ 3P). (1.4)

Here κ is defined as before, ρ is equal to the summed density of all the constituents

of the universe5, P is equal to the pressure, and over-dot notation is used to indicate

derivatives with respect to t. We see from equation 1.3 that ρ > ρcrit implies that

κ = 1 and space is positively curved, ρ < ρcrit implies that κ = −1 and space is

negatively curved, and ρ = ρcrit implies that κ = 0 and space is flat.

A tremendous amount of detail and intellectual effort is hidden by this

summary, but it describes the theoretical picture of the expanding universe in its

simpliest form. We are left with differential equations that determine a(t) in terms

of the density ρ and pressure P which homogeneously and isotropically fill space.

In fact, we see that a flat universe will continue to expand as long as it maintains

some energy density.

In 1927, Edwin Hubble published his studies of Cepheid variables indicating

that galaxies were receding away from us at a rate (~v) proportional to their distance

(~r) [6], at which time the framework outlined above was already understood [7].

Hubble’s law ~v = H~r is exactly what would be expected in a homogeneous and

isotropic universe with ȧ(t) = a(t)H, with H constant6. It was thus possible to
4The second equality generally holds only for a specific choice of normalization for a(t). For

κ = ±1, a(t) must take on values that reflect the curvature of the universe. For κ = 0, a(t) may
be fixed to an arbitrary value at a given time [4]. Typically this is chosen so that a(now) = 1.

5For ΛCDM this means matter (both dark and normal), radiation, and dark energy.
6This is of course where H gets its name, although it is now known to not be constant.
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attribute the observed recession to a global expansion of the universe of the sort

described by a(t) instead of to some special location of the Earth or the Milky

Way.

The implications of this interpretation are striking. Both the history and

fate of the universe are determined by the equations for a(t) and how the elements

composing ρ and P respond to changing physical distances of the space they in-

habit. Reversing the picture, it is possible to envision the universe as it must have

existed in a much smaller, hotter, and denser form.

1.2 The CMB

With the experimental detection of and theoretical explanation for the ex-

panding universe, it became possible to theorize about observable consequences of

the universe beginning in a much more compact form. While we will focus here

on the CMB, there have been other significant areas of investigation, not the least

of which is Big Bang nucleosynthesis (BBN). The correct prediction of elemental

abundances that were created in the early universe is a great triumph7 of the Big

Bang theory. In fact, it was in the context of early investigations into BBN that

Gamow, Alpher, and Herman initially predicted the existence of the CMB [9, 10],

though they only predicted an energy density for the radiation and seem not to

have appreciated its spectral characteristics, nor that it would be observable [11].

Russian physicists Doroshkevich and Novikov predicted early in 1964 [12] that the

CMB would have a black body spectrum, that it should be detectable, and in fact

suggested that a particular Bell Laboratories antenna located at Crawford Hill,

New Jersey would be a suitable instrument for detecting it.

Later that same year, Penzias and Wilson made their now famous serendip-

itous discovery of this radiation [13] using the very antenna identified by Doroshke-

vich and Novikov8.

This radiation was understood [14] to have been produced in the early hot
7Except for lithium; see i.e. [8].
8Though an English translation of the work was published, it was not noticed in the West

until later and Penzias and Wilson were unaware of it at the time of their discovery.
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and dense universe: photon energies and number densities were high enough to

maintain the matter in the universe in an ionized state. As the universe expanded

and cooled, the radiation could no longer maintain the ionization, electrons “recom-

bined9” with protons, and the photons began to free-stream through the universe

as their mean free paths grew to be larger than the causal horizon of the universe.

We will return to this picture below.

In their paper, Penzias and Wilson describe the radiation as 3.5K ± 1K

and isotropic. The isotropy of the radiation is a key feature: the radiation must

be nearly isotropic in order for the FLRW metric to be a reasonable description

of the universe. However, in order for gravitational instability to have led to

the structures we observe in the modern universe there must have been some

variations in density, which can be shown to lead to variations in the observed

temperature [16]. The detection of the CMB thus began a nearly thirty year quest

to find this anisotropy.

In 1992, the Cosmic Background Explorer (COBE) satellite experiment

succeeded in detecting these spatial anisotropies with its Differential Microwave

Radiometer (DMR) instrument [17]. The Far Infared Absolute Spectrometer (FI-

RAS) instrument on the same satellite measured the spectrum of the CMB to be

a nearly perfect blackbody at 2.725K ± 0.002K [18,19]. The Nobel committee, in

awarding the Nobel Prize for the work done with FIRAS and DMR, proclaimed

that these measurements “marked the inception of cosmology as a precise science.”

The anisotropies that COBE DMR detected in the CMB are on the order of

10−5. The incredible uniformity of the early universe is a crucial feature, allowing

the coupled nonlinear Einstein and Boltzmann equations needed to describe the

evolution of the early universe to be handled within the framework of linear per-

turbation theory. That is, because the universe used to be so close to homogeneous

and isotropic, we can use those assumptions as a starting point to understand more

complicated behavior. While the most striking feature of the CMB is its incredible

uniformity, an understanding of how anisotropies in the CMB today originate from
9This odd choice of terminology (electrons and ions are stably combining for the first time!)

originates from the study of HII regions where electrons and ions are continuously “recombining"
[15].
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inhomogeneities in the early universe is what has made the CMB such a powerful

tool.

1.2.1 Deviations from the Cosmological Principle

In order to account for the subtle anisotropies and inhomogeneities that

must have been present in the early universe, it is necessary to introduce the

perturbations Ψ(~r, t) and Φ(~r, t) into the metric [5] (cf. equation 1.1):

ds2(t, ~r) = −(1 + 2Ψ(t, ~r))dt2 + a2(t)(1 + 2Φ(t, ~r))(dx2 + dy2 + dz2) (1.5)

where we have now chosen to describe only flat space10 (κ = 0), a choice which is

justified observationally. Here Ψ corresponds to perturbations to the Newtonian

potential, and Φ corresponds to perturbations to the spatial curvature.

Because we know that these time and space dependent deviations from

isotropy are small, the approach that is taken to understand the evolution of the

early universe is to solve for the dynamics keeping terms to linear order in Φ and

Ψ.

This linearity allows solutions to the time-evolution of the perturbation

fields to be simplified even further. The initial conditions Φ(t0, ~r) and Ψ(t0, ~r) can

be expanded into a set of complete basis functions whose time-evolution is simpler

to calculate, and then the results can be understood as the sum of the time-evolved

basis functions [20], e.g. for the spatial curvature we can write:

Φ(t0, ~r) =
∑
k

φkfk(~r)

Φ(t, ~r) =
∑
k

φkFk(t, ~r)
(1.6)

with Fk a solution to the linearized governing equations and with Fk(t0, ~r) = fk(~r).

There are many possible choices for fk. In the CMB community it is most

common to choose harmonic plane waves as a basis so that f~k ∝ ei
~k·~r, making the

φk Fourier coefficients. The dynamics of each Fourier mode can then be tracked
10This expression also ignores vector and tensor modes for simplicity.
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independently. This choice of basis is particularly convenient because the time

dependence factors out as:

F~k(t, ~r) = Tk(t)f~k(~r) (1.7)

where Tk is known as the transfer function. A fair amount of physical intuition

can also be gained from looking at the solutions in this form. Another choice of

basis function is:

fk(~r) = δ
(3)
D (~r − ~rk) (1.8)

where δ(3)
D is the three dimensional Dirac delta function corresponding to a point-

like perturbation in real space. Results from this basis are useful for generating a

somewhat different intuitive picture [20,21]. What must be done with any choice of

basis is to determine how initial perturbations evolve with time - that is, determine

Fk(t, ~r).

1.2.2 Time Evolution of Perturbations

For a given k-mode in the Fourier basis, the Einstein equations can be used

to determine how the metric perturbations Φ and Ψ evolve with time. This can

be shown to be [22,23]:

k2Φ + 3
ȧ

a

(
Φ̇− ȧ

a
Ψ

)
= −4πGa2δρk2

(
Φ̇− ȧ

a
Ψ

)
= 4πGa2δp (1.9)

where δρ and δp are the perturbations to the total density and momentum fields,

with contributions from each individual species indexed by j: δρ =
∑

j δρj and

δp =
∑

j δpj where δρj and δpj are perturbations to all the different species that

contribute to energy and momentum densities in the unvierse. In the above equa-

tions the dot notation has now been used to denote derivatives with respect to

conformal time η(t) ≡
∫ t

0
dt′

a(t′)
for convenience, and we will now make the switch

to using η as our time coordinate. We then need to establish what components of

the universe contribute to the density and momentum perturbations and account

for how these perturbations interact with each other and with the metric.
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For ΛCDM the different species that contribute11 to δρ and δp are: photons,

normal matter (ions and electrons), cold dark matter, and neutrinos12 [23]. The

interactions of these species with each other and with the metric is handled via the

Boltzmann equation. The Boltzmann equation deals with phase-space distribution

functions f(η, ~r, ~p), where f is a product of probabilities for a particle to exist at a

particular point in space (~r) and to have a particular momentum (~p) at that point

at a given time η.

For instance, if we parameterize the photon distribution by its temperature

T we can define the photon perturbation field Θ(η, ~x, ~n) ≡ δT
T

(η, ~x, ~n) where the

direction ~n now plays the role of momentum. Letting:

Θ(η, ~x, ~n) =

∫
d3k

(2π)3
ei
~k·~xΘ(η,~k, ~n) (1.10)

we can construct a differential equation for Θ(η,~k, ~n) that describes the interactions

between photons and electrons via Thomson scattering as well as interactions with

the metric perturbations which affect photon energies via the expansion of space

or gravitational redshifting.

Exact Results

We are interested in comparing to measurements of the CMB, and so calcu-

lating Θ today is our primary aim. However, the photon field couples to electrons

and the metric and because these are coupled in different ways to all the other per-

turbations, systems of differential equations describing the time evolution of the

distribution functions for all the perturbations must be solved simultaneously. To

achieve the accuracy required to compare to actual measurements these equations

must be solved numerically. The required equations and techniques for achieving

rapid and accurate numerical solutions are described in [22–25]. Software pack-

ages are used to compute observable quantities today given the spectrum of initial
11Note that while dark energy (Λ) is currently the dominant energy component in the uni-

verse, it is not perturbed in the ΛCDM model and is only part of the homogeneous background
evolution.

12Models that include massive neutrinos effectively treat them as a warm dark matter contri-
bution [24].
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perturbations. While numerical calculations are required for comparison to exper-

iment, a qualitative picture can also provide some insight.

Interpretation

When the temperature T of the photon field is sufficiently high, enough

photons have energies above the χ = 13.6 eV ionization energy of hydrogen to

maintain the baryons in a completely ionized state. As the universe expands, T

drops (T ∝ 1
a
) because photon energies are redshifted due to expansion. When

T � χ the universe ceases to be ionized and the photons “free-stream” through the

universe. With some important exceptions to be discussed later, the features we

observe in the CMB today were formed before this process of “recombination” as

the universe became neutral for the first time. The point at which recombination

occurs is largely a function of temperature.

The largest scale k-modes that affect the Θ which we observe today had a

wavelength longer than the causal horizon of the universe at recombinaiton. These

long wavelengths were thus not subject to causal evolution before recombination

and so reflect the initial13 perturbations. An initial perturbation that increases

the density14 ρ will increase the gravitational potential perturbation Ψ. This leads

to two effects: 1) there is a gravitational redshift effect due to photons leaving

the potential well of the perturbation with δT
T

= Θ = Ψ and 2) there is a time

dilation effect caused by the potential well that delays the time at which the plasma

recombines and leads to an offset term of Θ = −2
3
Ψ [15]. The result is:

δT

T
= Θ =

Ψ

3
(1.11)

as a perturbation in the temperature field that we observe today. This is known

as the Sachs-Wolfe effect [16].

At k-scales where the wavelengths of modes are smaller than the causal
13Post-inflation, if inflation is the correct theory of the early universe.
14A perturbation to the density that does not affect the relative number densities of species

being considered is called adiabatic, whereas isocurvature perturbations affect relative number
densities without affecting overall density. Current observations are consistent with only adiabatic
perturbations being present [26].
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horizon at recombination, the picture is more complicated. These modes are af-

fected by causal physics and altered from their initial state prior to recombination.

Well before recombination, the scattering rate of photons off electrons is high, and

the result is that the photons and baryons are “tightly coupled”. The competing

influences of gravity and photon pressure lead to acoustic effects in the photons

and baryons, which in the tightly coupled limit can be treated as a single fluid [5].

In the Fourier-mode decomposition, the result is oscillating acoustic waves

whose crests are hot, over-dense regions and whose troughs are cold, under-dense

regions. In the simplest approximation the amplitude of these perturbations oscil-

late in time like cos[krs(η)] or sin[krs(η)] depending on initial conditions. Here rs
is the sound horizon:

rs(η) ≡
∫ η

0

dη′cs(η
′), (1.12)

with cs the speed of sound, which is also a function of time because it depends on

the ratio of photon and baryon densities. These waves oscillate in time until re-

combination, when the photons no longer provide pressure to drive the oscillations

and the acoustic behavior ceases [5].

The picture in the position-space basis with a point like perturbation is even

simpler: a spherical shell of photon and baryon over-density expands outward

at the sound speed cs from the initial point until recombination. More precise

calculations show dispersion in the expanding shell, but lead to a similar qualitative

picture [20, 27]. The physics in this picture is identical to the oscillating plane

waves, merely expressed in a different basis. In both cases, the sound horizon rs at

recombination plays a crucial role in determining the anisotropies that are encoded

in the photons as they free-stream away after recombination.

We expect anisotropy to be enhanced at k-scales where the oscillating plane

waves have reached a maximum or a minimum at recombination (k = nπ/rs,

n = 1, 2, ...)15, or equivalently at the scale of the sound-horizon in real space. We

are able to measure these effects today because they are imprinted on the photon
15Here we have assumed only the cosine mode is present, which, as predicted by inflation, is

consistent with observations.
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field at last scattering, generating the anisotropies in the CMB we measure today.

In most literature, the temperature anisotropies we observe today are de-

scribed as a result of the photon-baryon fluid being either hotter or colder than

the unperturbed background at the time of recombination. This is a paradox: the

timing of recombination in a given region of space is a function of the temperature

there, and thus cold regions recombine earlier and hot regions recombine later.

All recombination happens at the same photon temperature16, and thus hot and

cold regions emit photons of the same temperature as they recombine. The reason

that information about the inhomogeneities is preserved is because the universe is

expanding: regions that are colder recombine first and are thus more redshifted

and correctly appear colder; regions that are hotter recombine later and are thus

less redshifted and appear hotter [15].

Given an exact distribution of initial inhomogeneities, we could predict the

map of the full CMB sky as we observe it today. However, because we have no

knowledge of the precise initial conditions, the meeting point between theory and

experiment must be chosen elsewhere.

The initial inhomogeneities (perturbations) are predicted to be Gaussian

random fluctuations that are nearly independent of the spatial scale k, and this

prediction is in good agreement with current observational evidence. These inho-

mogeneities are processed until last scattering as described above, leaving some

spatial scales with enhanced inhomogeneities relative to others. With the assump-

tion of initial Gaussian fluctuations and an understanding of how physics affects

the growth or suppression of those inhomogeneities before last scattering, it is pos-

sible to predict statistical properties of the observed anisotropies today, serving as

a point for comparison between theory and experiment. In the CMB community,

the meeting point is chosen to be the power spectrum of the anisotropies, which is

the spherical harmonic transform of the two-point angular correlation function on

the sky.
16The conditions for recombination are also weakly dependent on density, but higher density

serves to delay recombination and lower density to advance it, which does not solve the paradox.
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1.2.3 CMB Power Spectra

The power spectrum of the full sky is based on the spherical harmonic

transform. We begin by transforming a single field as measured on the sky. For

instance, in the case of the temperature anisotropies, the full sky anisotropies

Θ(θ, φ) are represented as:

Θ(θ, φ) =
∞∑
`=1

∑̀
m=−`

aT`mY`m(θ, φ), (1.13)

where the T in aT`m represents temperature, and Y`m(θ, φ) are the standard spherical

harmonics functions which are normalized as:∫
dΩY`m(θ, φ)Y ∗`m(θ, φ) = δ``′δmm′ . (1.14)

aT`m represents the strength of the temperature anisotropy in a particular spherical

harmonic Y`m. The angular period of a single harmonic mode is given by `, with

the approximate relationship that the number of periods over the full sphere is

given by 360◦

`
. The parameter m relates to the orientation and phase of the modes

with respect to the sphere.

For our theoretical sky, each coefficient a`m is drawn from a Gaussian dis-

tribution of mean zero and a variance related to the expected level of anisotropy

at the given angular scale `. All values of a`m at a given ` are drawn from the

same distribution [5]. Of course, an important task of experiments is to confirm

this assumption of Gaussianity; thus far no evidence of non-Gaussianity originat-

ing from last scattering has been found [28]. For a truly Gaussian field, the only

quantity left to characterize is then the variance of the modes at a particular an-

gular scale `. The power spectrum is an estimate of that variance. We define the

power spectrum C` as:

C` =
1

2`+ 1

∑̀
m=−`

a`ma
∗
`m = 〈a`ma∗`m〉, (1.15)

and in particular for the temperature power spectrum:
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CTT
` =

1

2`+ 1

∑̀
m=−`

aT`ma
T∗
`m = 〈aT`maT∗`m〉. (1.16)

An example measurement of the CTT
` power spectrum along with the best fit

ΛCDM theory curve are shown in figure 1.1. It is typical to plot the power spectra

normalized by the factor `(` + 1)/2π, as is done in figure 1.1. This “flattens” the

spectra, making it decay more slowly as a function of `, and makes the acoustic

features more visible.
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Figure 1.1: The CMB CTT
` power spectrum as measured by the WMAP [29] and

SPT [30] experiments. The WMAP measurements are shown in green and the
SPT measurements in red. A fit to the ΛCDM model is shown with a blue solid
line.

The clearly visible peak structure in figure 1.1 corresponds to the enhanced

inhomogeneity at different k scales where the Fourier modes have reached maxima

or minima at the surface of last scattering, as described above. It is interesting

to note that when viewed as an angular correlation function, the multiple peaks

seen in the power spectrum correspond to a single peak at the scale of the acoustic

horizon at last scattering. The shape of the single correlation function peak con-
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tains the same information that is extracted from the multiple harmonics seen in

the power spectrum [31].

When measuring small portions of the sky, as an experiment such as Po-

larbear does, the spherical harmonic transform can be approximated as a Fourier

transform. This both simplifies the calculations and provides a more intuitive pic-

ture of what each mode represents. The use of Fourier space also greatly simplifies

the representation of CMB polarization, as we will see later. 2D Fourier space can

be conveniently represented on a plane in polar coordinates. Each point on the

2D Fourier plane represents a mode in the power spectrum, equivalent to a value

of a`ma∗`m, with the radial coordinate ` = 2π|~k| and azimuthal coordinate ϕ~̀. `

specifies the period of each mode and ϕ~̀ specifies the orientation angle of the wave

vector for the mode. An example of this representation, generated via simulation,

is shown in figure 1.2 for the TT power spectrum. In this case the value of CTT
`

can be formed as an azimuthal average over rings at radius `. We will use notation

like:

CTT
` = 〈TT ∗〉ϕ~̀

(1.17)

to indicate this azimuthal averaging process. Equation 1.17 serves as the equivalent

of equation 1.16 in flat space.

The CTT
` power spectrum has been well characterized, and fitting model

parameters to the peak structure has lead to the firm establishment of ΛCDM as

the leading theory of cosmology. We now turn our focus to the polarization of the

CMB.

1.3 Polarization of the CMB

Similar to the temperature anisotropies, any polarization generated at last

scattering will be preserved in the radiation field reaching us today. Measuring

polarization anisotropies can provide a powerful additional window into the physics

of the early universe. We first introduce terminology required to characterize

polarization in the context of CMB measurements, and then discuss mechanisms
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Figure 1.2: A simulated TT power spectrum in 2D Fourier space. The first four
acoustic peaks are visible as azimuthally symmetric areas with higher values. The
region outside of 50 < ` < 1700 is masked out. The resolution shown represents
the actual number of Fourier modes that would be sampled on a 20◦×20◦ region
of the sky.

for generating polarization in the CMB.

1.3.1 Polarization Representation

Polarization can be characterized at each point on the sky by both a mag-

nitude and an angle describing the direction of polarization. In the CMB field,

the Stokes parameters are typically used to represent polarization. In terms of the

electric field strength along two axes x and y, the four Stokes parameters are [32]:
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I = |Ex|2 + |Ey|2,
Q = |Ex|2 − |Ey|2,
U = 2Re(ExE∗y),

V = −2Im(ExE
∗
y).

(1.18)

The Stokes parameter I represents the total power in the radiation field, and Q

and U represent the linear polarization. V represents circular polarization which

is not expected in the CMB and most CMB polarization experiments, including

Polarbear, do not measure it. The simple geometric interpretation of Q and

U , that each can be treated as the difference in polarized power oriented along

orthogonal sets of axes, is shown in figure 1.3.

y

x

Q

y

x

U

Figure 1.3: A visualization of the Q and U Stokes parameters. Q is shown on
the left: positive Q (red) is proportional to polarized power along the x-axis and
negative Q (black) is proportional to polarized power along the y-axis. U is shown
on the right: it is defined identically to Q on a set of axes rotated by 45◦ with
respect to the x- and y-axes.

The linear polarization at any point can be represented as a linear combi-

nation of Q and U , so that measuring Q and U at each point corresponds to a full

measurement of the linear polarization. Because sky maps are typically shown in

terms of right ascension (RA) and declination (DEC), we align the definition of Q

and U to these coordinates, choosing positive Q to run along RA and negative Q

to run along DEC.
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We now seek a way to construct power spectra of CMB polarization using

equation 1.15, analogous to what was done in equation 1.16 for temperature. We

thus need to form Fourier transforms of polarization quantities. Directly trans-

forming Q and U results in quantities representing polarization angles in a basis

fixed to the coordinates because the definition of Q and U is coordinate system

dependent. For comparison between theory and experiment, it is necessary to

define quantities which characterize polarization in a way that is not coordinate

system dependent. This transformation to coordinate independent quantities can

also be done in a way that nicely separates physical mechanisms for generating the

polarization.

1.3.2 E and B Decomposition

We begin by forming the 2D Fourier transforms of Q(~x) and U(~x), which

we will call Q(~̀) and U(~̀). These quantities represent Fourier transforms of the

polarization with the orientation of the polarization of a particular Fourier mode

fixed to the coordinates in which the transform is done. As an alternative, we may

choose to fix the polarization orientation of a particular Fourier mode relative to

the orientation of its wave vector. With this choice, the amplitude of the Fourier

mode is fixed with respect to the coordinate system in which polarization angles

are measured.

As a particular choice of such a system, we can define E-modes to be those

with polarization orientations fixed to be parallel or perpendicular to their wave

vectors, and the complimentary B-modes to be those with polarization orientations

fixed at ±45◦ relative to the wave vector. This choice of basis completely represents

linear polarization, just as Q and U do, but does so in a coordinate independent

way.

With these definitions, E(~̀) and B(~̀) may be found from Q(~̀) and U(~̀)

via:

E(~̀) = Q(~̀) cos(2ϕ~̀) + U(~̀) sin(2ϕ~̀)

B(~̀) = −Q(~̀) sin(2ϕ~̀) + U(~̀) cos(2ϕ~̀),
(1.19)
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and the inverse operation of transforming from E(~̀) and B(~̀) to Q(~̀) and U(~̀) is

performed as [33]:

Q(~̀) = E(~̀) cos(2ϕ~̀)−B(~̀) sin(2ϕ~̀)

U(~̀) = E(~̀) sin(2ϕ~̀) +B(~̀) cos(2ϕ~̀).
(1.20)

An example of single E- and B-modes represented in real space, along with their

accompanying polarization orientations, is shown in figure 1.4.

Figure 1.4: Example E- and B-modes. The amplitude of either E or B at
each point is shown with a black (negative) and white (positive) color scale. The
direction of polarization associated with each point is shown in red. The left panel
shows an example of an E-mode, characterized by polarization directions oriented
parallel or perpendicular to the wave vector of the mode. The right panel shows
an example of a B-mode, characterized by polarization directions oriented at ±45◦
relative to the wave vector of the mode.

The nature of E and B polarization is non-local: it is not possible to make a

measurement of polarization at a single point in space and characterize it as either

E or B. Therefore measurements of polarization are performed as measurements

of Q and U , but these are converted to E and B over the part of sky under

consideration before comparison with theoretical expectations. Measurements of

E(~̀) and B(~̀) can be azimuthally averaged to produce CEE
` and CBB

` , as was

done for T (~̀) in equation 1.17, which again is the meeting point for theory and
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experiment. More generally, we may also investigate cross-power spectra between

the different fields as:

CXY
` = 〈XY ∗〉ϕ~̀

(1.21)

with X, Y ∈ [T,E,B].

1.3.3 Generation of Polarization in the Primordial CMB

Shortly before last-scattering, electrons and photons are interacting via

Thomson scattering. For certain patterns of unpolarized but anisotropic incom-

ing radiation, Thomson scattering can induce a net polarization in the scattered

radiation.

Defining the outgoing radiation we receive today to be directed along n̂

with polarization ε̂i and incoming radiation from direction n̂′ with polarization

direction ε̂′j, the differential cross section for Thomson scattering is [32]:

dσ

dΩ
=

(
e2

mc2

)2

|ε̂i(n̂) · ε̂′j(n̂′)|2. (1.22)

By summing over the two incoming polarization directions at each direction n̂′

and integrating over all directions of incident radiation with an intensity f(n̂′)

dependent on the incoming direction, it can be shown [5] that the net polarization

of the outgoing radiation is proportional to the spherical harmonic quadrupole of

f . Thus Thomson scattering will produce net linear polarization if and only if the

scattering electron is surrounded by a radiation field with a quadrupole intensity

pattern.

The oscillating acoustic waves generated by the perturbations discussed

above produce such quadrupole patterns, and this is the dominant mechanism for

generating CMB polarization. It can be shown [5] that an individual 3D Fourier

mode of a density perturbation will generate a quadrupole pattern with maxima

and minima out of phase with the density maxima and minima. These quadrupole

moments are always oriented such that the polarization scattered toward an ob-

server is parallel or perpendicular to the Fourier mode wave vector. This is because
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the scalar density perturbations have no property that breaks the symmetry around

the axis perpendicular to the wave vector. The same will hold true in projection

on the sky: the polarization orientation will remain parallel or perpendicular to

the orientation of the 2D wave vector. Thus the polarization generated by den-

sity perturbations can only be E-mode polarization, and any observed B-mode

polarization must be generated by a different physical effect.

The temperature fluctuations and E-mode polarization are produced by the

same physical mechanisms, though they are out of phase. We therefore expect to

see acoustic peak structure in CEE
` , and for the T and E fields to be correlated.

CEE
` and CTE

` were first measured in 2002 [34] and have been well-characterized

by many experiments.

Generation of B-mode Polarization

There are two frequently considered mechanisms for generating B-mode

polarization: the presence of gravitational waves at the surface of last scattering

[35, 36], and the influence of gravitational lensing of CMB photons between last

scattering and our observations today [37,38]. These two mechanisms have distinct

signatures which peak at different angular scales.

Gravitational waves at the surface of last scattering lead to quadrupole

temperature anisotropies for local electrons, leading to polarization of the scat-

tered light. Unlike the quadrupoles associated with density fluctuations, these

quadrupoles produce both E- and B-mode polarization because the helicity states

of gravitational radiation break the symmetry around the wave vector axis. The

BICEP2 collaboration recently announced a detection of B-modes consistent with

expectations for polarization created by gravitational waves generated by infla-

tion [2]. If confirmed, this would be the most direct evidence of the theory of

inflation, which posits an exponential expansion of the universe that creates per-

turbations of the kind described above as well as gravitational waves from quantum

vacuum fluctuations. The energy scale of inflation, as implied by the BICEP2 re-

sult, would be 2× 1016 GeV, thirteen orders of magnitude higher than the physics

accessible to current particle accelerators [39].
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B-modes generated by gravitational lensing are created after last scattering.

Lensing-generated polarization was detected shortly before the gravitational wave

B-modes [40–43], and are the primary target of measurements described in this

dissertation.

1.3.4 Gravitational Lensing of the CMB

Massive large-scale structures between the last-scattering surface and our

galaxy deflect the trajectory of CMB photons. This leads to distortions of both

the temperature and polarization anisotropies; here we consider the effects on

polarization.

In the weak lensing limit, polarization represented on the sky by Q(n̂)

and U(n̂) from a particular direction n̂ may be written in terms of the polarized

emission at last scattering (Q̃ and Ũ) as [38]:

[Q± iU ](n̂) = [Q̃± iŨ ](n̂+ ~d(n̂)), (1.23)

where ~d(n̂) represents the angular deflection of photons arriving from direction n̂,

known as the lensing deflection field. The deflection field represents the integrated

history of deflections for each point on the sky. It is related to the line-of-sight

integral over the gravitational potential Ψ(Dn̂) via ~d(n̂) = Oφ(n̂):

φ(n̂) = −2

∫
dD

Ds −D
DDs

Ψ(Dn̂), (1.24)

where D is the comoving distance along the line of sight and Ds is the distance to

the last-scattering surface [38]. As can be seen from 1.23, these subtle deflections

remap polarization on the sky without rotating it. Qualitatively, we may interpret

this effect as redirecting the wave-vector of a mode without re-orienting its polar-

ization, which intuitively explains why gravitational lensing can generate B-mode

polarization from primordial E-mode polarization.

More quantitatively, given a single primordial E-mode E(~̀) = δ(~̀− ~̀′) we

will generate observed E- and B- modes as:
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∆E(~̀) =
cos(2ϕ~̀~̀′)

(2π)2
W (~̀, ~̀− ~̀′)

∆B(~̀) =
sin(2ϕ~̀~̀′)

(2π)2
W (~̀, ~̀− ~̀′),

(1.25)

with ϕ~̀~̀′ ≡ ϕ~̀′ − ϕ~̀ and:

W (~̀, ~̀− ~̀′) = −[~̀ · (~̀− ~̀′)]φ(~̀− ~̀′). (1.26)

Thus in general, lensing will create both B-modes and new E-modes from a sin-

gle primordial E-mode, but with different characteristic patterns in Fourier space.

We may integrate over many primordial E-modes using equation 1.25 to create

the final ∆E and ∆B we measure. These changes to E and B generated by gravi-

tational lensing correlate E and B across different parts of Fourier space, creating

non-Gaussianity. This non-Gaussianity is a key distinction between the B-modes

generated by gravitational lensing and the B-modes generated by gravitational

waves, which should be Gaussian.

The value of 〈φ(~̀)φ(~̀)〉ϕ~̀
=Cφφ

` may be calculated theoretically using nu-

merical techniques very similar to those used to calculate theoretical CMB power

spectra, though also including non-linear corrections for later-time effects [44]. φ(~̀)

is expected to be Gaussian distributed in the same way the other CMB fields are.

At the percent level, the sum of neutrino masses affects Cφφ
` , which will ultimately

allow precise measurements of Cφφ
` to constrain or measure neutrino masses [45].

The theoretical lensing potential predicts the angular deflections ~d(n̂) to

be on the scale of a few arcminutes, but with correlations of the deflection field

on the scale of several degrees. A theoretical value for the correlations between

the magnitude of the deflections Cdd
L =[L(L+ 1)]2Cφφ

` /2π across different angular

scales |~L| is shown in figure 1.5.

Given knowledge of Cφφ
` and CEE

` , the induced CBB
` spectrum can be cal-

culated. The ΛCDM prediction for the CBB
` spectrum generated from the gravi-

tational lensing of E-modes is shown in figure 1.6. Measuring this spectrum was a

primary target of the first season of Polarbear observations.

As can be seen in figure 1.6, the signals Polarbear is interested in mea-
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Figure 1.5: The ΛCDM theoretical Cdd
L power spectrum, with d in units of radi-

ans, created by the distribution of large scale structure in the universe.
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Figure 1.6: The theoretical CBB
` power spectrum induced by gravitational lensing

of E-mode polarization. CBB
` is shown on the left with a log scale for comparison

to CTT
` and CEE

` . CBB
` is shown alone on the right on a linear scale.

suring (CBB
` ) are orders of magnitude lower than those that had been measured

when the experiment began (CTT
` and CEE

` ). This requires an instrument that is

both very sensitive and that has excellent control over systematic errors.



Chapter 2

The Polarbear Instrument

Polarbear is an experiment designed to measure the CMB B-mode po-

larization generated by primordial gravitational waves as well as the B-mode po-

larization generated by gravitational lensing. The first season of Polarbear

observations has focused on measuring the lensing B-mode signal. The experi-

ment is comprised of a cryogenic receiver (Polarbear-1) containing a bolometric

focal plane mounted on the Huan Tran Telescope and operates from the James Ax

Observatory site in Chile.

2.1 Chilean Observation Site

The Chilean observatory site, known as the James Ax Observatory, is lo-

cated at latitude -22.958◦, longitude 292.214◦, and an elevation of over 5,200 me-

ters. Observing from this location in the Atacama desert in northern Chile provides

a number of advantages to Polarbear. As a ground-based experiment, the most

important fundamental noise source that Polarbear must contend with is the

atmosphere. In the frequency range of interest to Polarbear, molecular oxygen

and water dominate the atmospheric absorption and emission that the instrument

is subjected to. The high altitude, dry site in the Atacama Desert, with precip-

itable water vapor frequently under 1 mm, is thus one of the best in the world for

mm-wave observations. The location in the Southern Hemisphere provides access

to the southern sky which has a greater area with low galactic foreground con-

25
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tamination as compared to the northern sky. The latitude of the site means that

sky patches of interest rotate in orientation relative to the telescope as they rise

and set, allowing the telescope to acquire data from scanning across patches at

different angles over the course of an observation. This is in contrast to the South

Pole, another prime observation site with arguably better atmospheric conditions,

where sky patches do not change orientation as the Earth turns. This variation

in scan angle helps to average over systematic effects that would otherwise be a

greater source of contamination in the data [46].

2.2 The Huan Tran Telescope

2.2.1 Optical and Mechanical Design

The Huan Tran Telescope (HTT) has an off-axis Gregorian1 design that

satisfies the Mizuguchi-Dragone condition. The Mizuguchi-Dragone condition sets

the tilt between the symmetry axes of the conics for the primary and secondary

reflectors, and is chosen to minimize cross-polarization and astigmatism over a

large diffraction-limited field of view [47, 48]. Off-axis telescopes provide the ad-

vantage of unobstructed apertures because they do not need secondary support

structures which obstruct the beam, scattering or diffracting light in ways that

create potentially polarized sidelobes. The Gregorian-Dragone design is one of the

two offset dual-reflector designs that has become common for CMB experiments,

the other being the crossed-Dragone. The Gregorian design has the advantage of

a smaller secondary as compared to the alternative crossed design. This smaller

sub-reflector allows for easier baffling to prevent far sidelobes due to scattering

at the receiver window. The smaller secondary also allows for greater mechanical

simplicity of the telescope structure. One disadvantage that the Gregorian de-

sign suffers from is a smaller diffraction-limited field of view as compared to the

equivalent crossed-Dragone design [49].

A ray-traced optical diagram of HTT is shown in Figure 2.1. The primary
1The term Gregorian indicates the use of a parabolic primary reflector and elliptic secondary

reflector.
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and secondary reflectors are visible along with the re-imaging optics and focal plane

that are located inside of the cryostat. HTT has a 2.5 meter precision primary

reflector that was machined from a single cast piece of aluminum to have a 53µm

RMS surface accuracy. A lower precision guard ring, fabricated separately from

eight individual panels, extends the surface to 3.5 meters in diameter. Only the

precision primary reflector surface is used in the main beam of the instrument,

with the guard ring designed to deflect any spillover to the sky. The high surface

accuracy and monolithic design of the primary and secondary mirrors limit loss

due to both diffuse scattering and polarized scattering that occurs at mirror panel

interfaces. The 2.5 meter primary aperture gives a ∼ 3.5 arcminute beam at 150

GHz, the central operating frequency of Polarbear-1, allowing the experiment

to probe up to ` ∼ 2500, sufficient for characterizing the peak of the lensing B-

mode spectrum at ` ∼ 1000.

Also pictured in figure 2.1 are the co-moving ground shield, prime focus

baffle, and secondary reflector enclosure. These baffles are designed to prevent

stray light from entering the main optical path of the telescope and contaminating

the data with signals from the ground. The co-moving ground shield is reflective,

while the secondary and prime focus baffles are absorptive. Baffling of the ab-

sorptive type fills stray light paths with an absorbing material which contributes

optical loading to the detectors but does not introduce time-dependent signals as

the telescope scans.

The HTT was constructed by VertexRSI2. The mechanical specifications

and achieved performance are summarized in Table 2.1.

The only aspect in which performance of the telescope has failed to meet ex-

pectations is in pointing reconstruction. We believe that this is at least partly due

to a lack of sufficient coverage in pointing measurements to create a better point-

ing reconstruction model over the azimuth and elevation ranges of Polarbear

science observations. The true mechanical repeatability limits of the telescope will

not be known until more detailed measurements are made. However, on the ba-

sis of simulations and potential impact on CBB
` it was decided that the achieved

2Now a part of General Dynamics SATCOM Technologies.
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Figure 2.1: Left: The Huan Tran Telescope at the James Ax Observatory in
northern Chile. Called out in the image are (i) the primary guard ring, (ii) the
precision primary mirror, (iii) the co-moving ground shield, (iv) the prime focus
baffle, and (v) the secondary reflector enclosure. The secondary reflector and
cryostat are not visible because they are surrounded by their respective enclosures.
Right: A ray-trace schematic of the telescope optics. The focus created by the
dual-reflector design is re-imaged by cold optics to the flat focal plane. Figure
from [50].

pointing error and associated loss of resolution was acceptable for the first science

publications [41–43] and this dissertation.

2.2.2 Thermal Calibration Source

A thermal calibration source is located behind HTT’s secondary mirror.

A light pipe runs from this source through a small hole in the secondary mirror,

allowing the detectors in the cryostat to see the calibration source. The light pipe

has a diameter of 0.125 inches and the thermal source is regulated to a temperature

of 700◦ C. The effective intensity of the source varies across the focal plane from

about 35-85 mK. A chopper is located between the heat source and the light pipe,

allowing the source to be chopped over a range of different frequencies. A polarizer
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Table 2.1: HTT mechanical specifications and achieved performance.

Description Specified Achieved

Azimuth Travel ±200◦ ±200◦

Elevation Travel −1◦ to +122.5◦ +3◦ to +120◦

Azimuth/Elevation Velocity 4 ◦/s 4 ◦/s

Azimuth/Elevation Acceleration 2 ◦/s2 4 ◦/s2

Pointing Reconstruction 10 arcseconds 25-40 arcseconds

can optionally be added to the end of the light pipe and rotated, but this polarizer

is not used in normal operations. For more detail about this calibration source

and how it is used, see Section 3.1.2.

2.2.3 Observation Strategy

For the first season of observations, Polarbear has focused on scanning

three different sky patches totaling 30 square degrees. These patches are named

“RA4.5,” “RA12,” and “RA23” based on the approximate RA coordinate of the

patch centers. The patches are chosen to have a low level of foreground contam-

ination, provide overlap with data from other experiments, and to maximize the

observing efficiency based on the time of day each patch is above the observing

horizon of 30◦ elevation. These sky patches are shown in figure 2.2.

The observation strategy Polarbear employs to scan the CMB is to fix

a particular center azimuth and elevation and scan back-and-fourth in azimuth

around the center point while leaving the elevation of the telescope fixed. We refer

to this scan pattern as a constant elevation scan (CES). CESs sample different parts

of the sky by allowing the sky patch to drift past as the telescope scans around

the chosen central azimuth and elevation. The central azimuth and elevation are

chosen to match the central RA and DEC of the sky patch halfway through the

CES. Each CES lasts 15 minutes, which is the time required for the sky patch to

drift through the scan center.

There are important motivations for scanning the telescope at a constant



30

Figure 2.2: The three Polarbear sky patches observed during the first season
of observations are shown overlaid on a full-sky 857 GHz intensity map from Planck
[51]. Figure from [43].

elevation rather than staring at a fixed azimuth and elevation or tracking a fixed

point on the sky. Because the amount of atmosphere the telescope looks through

is a function of the observation elevation, maintaining a constant elevation helps

to fix the amount of power each detector sees due to the atmosphere. CESs also

confine signals from stray light on the ground to a small number of Fourier modes

in the map; see section 4.5.1 for a discussion of this. Further, the focal plane is laid

out in such a way that it must be scanned across the sky in order to Nyquist sample

the Fourier modes on the sky [52]. Finally, atmospheric fluctuations cause the noise

associated with measuring a particular point on the sky to be highly correlated

over short time intervals. It is thus more efficient to measure a particular point

on the sky once and return to it after enough time has passed that the noise is

uncorrelated rather than make several continuous measurements of a point which

would be subject to highly correlated noise.

2.2.4 Telescope Control

Scans

When the telescope scans the sky during a CES, it enters something called

“track beam mode.” In this mode telescope motion is coordinated with other
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systems via a signal called the resource pulse synchronization (RPS). This pulse

occurs at a frequency of 95.4 Hz, and the telescope control computer must provide

a target azimuth and elevation offset to the telescope servo control system for each

pulse period. The scan offsets are specified in terms of the offsets of the bearings

along the azimuth and elevation axes relative to the scan center.

Our goal is to perform all CESs at the same azimuth throw and velocity on

the sky. Because the azimuth throw on the sky is reduced relative to the bearing

throw by a factor of cosine of the elevation, we must use different scans based on

the elevation of the CES. We use custom software to generate a set of ten scans

(lists of offsets specified every ∼10 ms) with different center elevations, and select

the closest match for the elevation at which we are observing. A sample scan is

shown in figure 2.3. The scans are generated by controlling the “jerk” at each time,

where the jerk is defined as the time derivative of the acceleration. Because of the

design of the telescope servo control system, the jerk of the scans must be finite.

The jerk must be selected to produce the desired acceleration, velocity, and offset

in the final scan file. Many of these scans are continuously linked together to form

a CES.

Schedules

We use a custom software library that interfaces with the telescope control

program to schedule telescope operations. This software is responsible for selecting

which type of scan strategy to use based on the scan target, selecting scan centers

and the appropriate scan file for CES scans, sequencing the calibration observations

such as thermal source measurements and elevation nods with the observations of

scan targets, and correctly marking all archived data so that it can be easily

processed later. We refer to this software as the “scheduling library” because it is

used to control the schedule of telescope operations.
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Figure 2.3: The characteristics of one Polarbear scan, corresponding to one
back and forth motion of the telescope azimuth position. Many copies of these
scans are continuously joined together to form a CES. The azimuth offset is shown
in blue in units of degrees (◦). The velocity is shown in green in units of ◦/s. The
acceleration is shown in red in units of ◦/s2. The azimuth jerk is shown in cyan in
units of ◦/s3. The scan shown here is designed to produce a 3.0◦ constant velocity
sky throw at 0.8 ◦/s at a center elevation of 42.5◦.

2.3 The Polarbear Cryostat

There is an intrinsic sensitivity limit for detectors measuring the CMB cre-

ated by the temporal fluctuations in the rate of photon arrival [53]. In order to

reach this limit, detectors must be cooled to the point where their own noise is

sub-dominant to this effect. This requires a cryogenic environment to contain the

detectors and other readout electronics. Additionally, all elements in the optical

chain will be emissive at some level, so that it is impossible to ensure that every

photon a detector sees originates from the sky. Because the photon noise contri-

bution is higher for higher temperature emitters, cooling additional components in
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the optical chain reduces the photon noise a detector is subjected to. The Polar-

bear cryostat cools the focal plane to less than 0.25 K, cools the SQUID ammeters

used for detector readout to under 4 K, and cools other optical elements such as

the refractive lenses and rotating half-wave plate (HWP). A cross-section of the

Polarbear cryostat is shown in figure 2.4.

2.3. THE POLARBEAR RECEIVER 53

2.3 The POLARBEAR receiver
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Figure 2.10: A cross-section of the polarbear receiver.

2.3.1 Receiver design goals and challenges

There are several overarching design goals for the polarbear receiver:

• Create a cryogenic environment that allows our focal plane to cool to ∼ 0.25
Kelvin with a > 20 hour hold-time.

• Sufficiently cool the receiver and enclosed optical elements to bring the effective
dewar temperature referred to the sky below the expected atmosphere temper-
ature in Chile

• Cool the SQUIDs used for the multiplexed readout below their transition tem-
perature to ∼6 Kelvin

All of these are effectively requirements to minimize the noise of the instrument.
Bringing the focal plane below 0.25 Kelvin makes the thermal carrier noise a subdom-
inant term when compared with expected thermal background loading noise from the
Chilean atmosphere. Similarly, to keep the instrument truly background limited, the
dewar itself must contribute a subdominant term to the overall thermal background

Figure 2.4: A cross-section drawing of the Polarbear cryogenic receiver. Figure
from [50].

The cryostat, also referred to as the receiver, presented significant cryogenic

engineering challenges related to its physical size, required to contain a 19 cm focal

plane and re-imaging optics, and to its use of a single pulse tube cooler (PTC) as

the only means of removing thermal energy from the cryostat. The re-imaging

optics are needed to couple the reflective Gregorian-Dragone optics to the focal

plane. The lenses for these optics are made of anti-reflection coated ultra-high-

molecular-weight polyethylene.

The cryostat also contains a rotating HWP. The HWP is made of anti-

reflection coated single crystal sapphire, which is birefringent, and at a thickness

of 3.1 mm acts as a HWP for 150 GHz radiation. A bearing modified for cryogenic

operation allows it to rotate in steps of 11.25 degrees, which allows the incoming

polarization from the sky to be rotated to different angles before it reaches the



34

focal plane. This polarization angle rotation helps to average over systematic

errors. The HWP is repositioned no more than once per day during observations.

The PTC is a commercial PT415 model built by Cryomech, Inc. It provides

two-stage cooling and can reach temperatures lower than 4K on its coldest stage.

The sub-Kelvin cooling is provided by a closed cycle three stage Helium sorption

refrigerator build by Chase Research. It is the coldest stage of this refrigerator

that cools the focal plane to below 0.25 K.

2.4 The Polarbear Focal Plane

The Polarbear focal plane is comprised of 1,274 transition edge sen-

sor (TES) bolometers across seven wafers fabricated at the UC Berkeley Marvell

Nanolab. While the use of TES bolometers has become standard in CMB ex-

periments, Polarbear employs a unique focal plane architecture for coupling

incoming radiation to the TESs. This coupling is achieved via a combination of

contacting hemispherical dielectric lenslets and slot-dipole antennas. The contact-

ing lenslets match the antenna response to the telescope optics and magnify the

effective size of the antennas [54]. An image of the full focal plane array is presented

in figure 2.5.

Each lenselt acts as a beam forming element for two slot-dipole antennas

located underneath, oriented to be sensitive to orthogonal polarizations of the

incoming radiation. Each antenna is coupled to a TES via microstrip waveguides.

We refer to the pair of bolometers sharing the same lenslet as forming a focal-

plane “pixel,” and to the individual bolometers sensitive to orthogonal polarizations

within that pixel as being either a “top” or “bottom” bolometer because of details

of the fabrication process.

2.5 TES Bolometers

The purpose of Polarbear’s bolometers is to linearly convert optical

power received from the sky into a current which can be amplified and transmitted
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(a) CAD rendering of the focal plane assembly (b) A photograph of the fully assembled focal
plane, support structure and milliKelvin wiring

(c) CAD rendering of the midsection with mil-
liKelvin ’docked’ straps

(d) CAD rendering of the midsection after the
focal plane structure has been installed

Figure 2.12: The fully constructed focal plane assembly and the installation procedure
for the mK insert.

focal plane of the APEX-SZ receiver. The structural elements are Vespel3 SP1 and
SP22 tubes arranged in a diagonal truss structure. The tube lengths were chosen at
each thermal stage to keep conductive loads below the required level while maintaining
adequate structural stiffness. Finite element analysis simulations of the fundamental

3http://www2.dupont.com/Vespel/en_US/

Figure 2.5: The Polarbear cryogenic focal plane insert. The seven detector
wafer modules with anti-reflection coated dielectric lenslets are visible at the top
of the image. The gray-colored lenslets on six of the wafer modules are made of
silicon; the white dielectric lenslets on one wafer module are made of alumina.
Figure from [54].

to room temperature electronics for storage and processing. A bolometer consists

of a thermistor connected via a weak thermal link to a heat bath. The thermistor

absorbs incoming optical power Popt and electrical bias power Pelec, the sum of

which constitutes its operating power Ptot. A cartoon illustration of this is shown

in figure 2.6. A TES bolometer is designed so that it operates with the thermistor

in the transition between being a normal and superconducting material. With a

constant voltage bias, the large value of dR/dT in this superconducting transition

creates a passive negative feedback mechanism which linearizes the bolometers

response to changes in incoming optical power such that:

Popt + Pelec = Ptot ≈ constant (2.1)

so that a measurement of the current fluctuations through the bolometer ∆Ibolo

driven by the constant voltage bias constitutes a measurement of the fluctuations

in optical power ∆Popt incident on the bolometer.

The desired operating power of the bolometer is fixed by the expected op-
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Thermistor*

Vbias

Popt

Rbolo

Thermal Link

T = Tbath

Figure 2.6: Cartoon diagram of a bolometer. The electrical power from the
constant voltage bias and the optical power combine to give the total operating
power. The thermal bath is provided by the silicon wafer cooled by the helium
sorption fridge. The thermistor is connected to the rest of the wafer via a weak
thermal link.

tical power coming from the sky, and the bath temperature is fixed by the helium

sorption fridge to be about 0.25 K. The strength of the weak thermal link (between

the thermistor and the bath temperature) as well as the transition temperature

of the thermistor must be tuned so that the bolometer can operate given these

parameters. As an additional constraint, the noise of the bolometer must be min-

imized. In general, the important noise sources for the bolometer are the photon

noise discussed above, the phonon noise associated with the thermal carriers in the

bolometer, and the readout noise associated with amplifiers and other electronics

in the readout chain. The thermal carrier noise intrinsic to the bolometer can be

minimized by choosing the correct ratio between the transition temperature and

the bath temperature. With a bath temperature of 0.25 K this ratio must be care-

fully tuned in order for the bolometers to achieve photon noise limited performance

as desired. Lower bath temperatures proposed for future experiments would make

this optimization less important relative to the photon noise term.
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2.6 Spectral Response

Polarbear observes the CMB through an atmospheric transmission win-

dow centered at 150 GHz. This window includes the peak emission of the CMB

blackbody spectrum. It is bounded at the low end by an oxygen emission line

and at the high end by a water emission line. Microstrip filters are fabricated on

the bolometer wafers which allow only radiation in the desired band to deposit

power on the bolometer. The center and width of the passband of these filters

must be optimized to allow the instrument to observe with maximum efficiency.

Too narrow a bandwidth means that the detectors collect fewer photons and must

observe for a longer time to achieve an equivalent signal-to-noise ratio. A pass-

band that is too wide or mis-centered will observe through the oxygen or water

emission lines. Within these emission lines, the CMB photons will be absorbed by

the atmosphere and the power from water or oxygen emission will be seen by the

bolometer, resulting in significantly increased noise.

Achieving the proper passband was one of the most challenging aspects of

fabricating the detector wafers. Each wafer was tested with a Fourier transform

spectrometer (FTS) to ensure proper band placement before being deployed on the

instrument. An example of such a measurement is shown in figure 2.7.

4.2 Boresight cross-polar response

A modulated thermal source was also used to measure the pixel’s boresight cross-polar response. The thermal
source was placed at the location of peak spatial response, and a lithographed wire grid polarizer on a thin
dielectric sheet was placed between the thermal source and the detector. The response of both bolometers in the
pixel was recorded as the polarizer was rotated. A model was fit to the data of the form c0+(c1 − c0) cos2 (θ − c3).
The cross-polar response for each bolometer is defined as c0/c1, and was found to be less that 1%. Figure 7(a)
shows one such measurement.

(a) (b)

Figure 7. (a) Boresight cross-polar response measurement of the individuel detectors in a Polarbear pixel. The figure
shows data and a fit sinusoidal model with parameters for amplitude, phase, and cross-polar response. The fit cross-polar
response is less than 1% for each bolometer. (b) The spectral response of each bolometer for a single Polarbear pixel,
plotted with the design spectral band and a model of the atmospheric transmittance in Chile for 1 mm of precipitable
water vapor. The spectra are well-matched to each other and to the design band.

4.3 Spectral response

The spectral response of the Polarbear detectors was measured in the lab using a FTS. Repeatable spectral
measurements required that the spatial beam of the detector be filled by the output of the spectrometer. This
was achieved using a warm UHMWPE lens to match the spectrometer output to the optics of the observation
cryostat. Figure 7(b) shows the spectral band measurement for one of the pixels in the Polarbear focal plane
array, and Table 2 enumerates the average spectral band parameters for each of the wafers in the array. Six of
the seven average spectral bands are within the goal 5% of band central location and integrated bandwidth.

4.4 Bolometer yield

An important factor in total array sensitivity is the number of bolometers that are functional in the deployed
array. Of the 1274 antenna-coupled bolometers in the Polarbear focal plane, 1015 show nominal optical
response to a planet, an optical yield of 80%. The factors that affect this number are shown in Table 3.

4.5 Bolometer optical time constants

The detector optical time constants were measured under observing conditions using a modulated thermal source
that is instrumented through a 6 mm hole in the secondary mirror. A single pole time constant model is a good
fit to the detectors’ response functions, and the uncertainty in the fit for most detectors is less than 0.2 ms. A
histogram of the measured optical time constants, with a peak value around 1.9 ms, is shown in Figure 8. This
is fast enough to measure the changing CMB signal as the Polarbear telescope scans across it.

Figure 2.7: An FTS measurement of a focal plane pixel spectra, along with
atmospheric absorption spectrum. The spectral bandpasses of the two bolometers
with orthogonal polarizations within the pixel are shown as “Pol 1” and “Pol 2.”
The atmospheric spectrum shown is based on 1 mm of perceptible water vapor
from the James Ax Observatory. Figure from [54].
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2.7 From Power to Temperature

When Polarbear scans a particular part of the sky, it makes a measure-

ment of the fluctuations in power coming from the sky over the integrated passband

of the instrument, including the band-defining filters on the bolometer wafers. We

are interested in measuring temperature fluctuations on the sky. We rely on our

knowledge of the CMB having a blackbody spectrum to convert between units of

power and temperature. For convenience we will define conversion to temperature

units for two different emission spectra, KRJ which will assume an emission spec-

tra in the Rayleigh-Jeans limit, and KCMB which will assume an emission spectra

matching the CMB blackbody spectrum.

To proceed, we develop an expression for the power seen from the sky

by each bolometer. For a thermal blackbody source at a temperature T , the

Boltzmann occupation number is:

nocc = [exp(β)− 1]−1 (2.2)

with:

β = hν/kBT (2.3)

The occupation number nocc is interpreted as the average volume density

of photons per spatial mode as a function of frequency ν. Because the antennas

we use are single-moded and each photon has energy hν, we may write the power

received from the CMB by a bolometer as:

Popt =

∫ ∞
0

η(ν)P (ν)dν =

∫ ∞
0

η(ν)hνnoccdν (2.4)

where η(ν) indicates the fraction of photons from the source that are detected at

the bolometer at a frequency ν. We approximate this integrand as constant over

the narrow bandwidth ∆ν defined as
∫∞

0
η(ν)dν, with central frequency νc formed

by the band defining filters as:

Popt ≈ ηhνcnocc,c∆ν (2.5)
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We now define the Rayleigh-Jeans temperature as:

TRJ ≡ Tnocc,cβc (2.6)

and see that TRJ → T as ν → 0. We will find it convenient to calibrate the

instrument in terms of KRJ, but we will then want to convert between KRJ and

KCMB. The convenience of working in KRJ units is driven by the fact that:

Popt = η∆νkBTRJ, (2.7)

and
∂Popt

∂TRJ

= constant. (2.8)

However, for our final analysis we will want to know the temperature in units of

KCMB. First noting that:

dTRJ

dT
=

d

dT
Tnocc,cβc = n2

occ,cβ
2
c e
βc , (2.9)

we may write:

∂Popt

∂T
=
∂Popt

∂TRJ

dTRJ

dT
=
∂Popt

∂TRJ

n2
occ,cβ

2
c e
βc . (2.10)

Bearing in mind that the measured fluctuations in current through the

bolometer are proportional to the fluctuations in optical power, we may also write:

∂Ibolo

∂T
=
∂Ibolo

∂TRJ

n2
occ,cβ

2
c e
βc . (2.11)

If we want to convert fluctuations in KRJ to KCMB, we can evaluate expres-

sion 2.11 at T = TCMB. For νc = 150 GHz and T=2.725 K, n2
occ,cβ

2
c e
βc = 0.576 so

that:
∂Ibolo

∂TCMB

= 0.576
∂Ibolo

∂TRJ

. (2.12)

In practice when we need this number we perform the integral in equation 2.4

using the measured detector bands, which vary between different wafers, making

no approximation of the narrowness of the band.
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2.8 Multiplexing & Data Acquisition

The 1,274 bolometers on the focal plane must all be simultaneously bi-

ased into the superconducting transition. To optimize the point in the transition

to which each detector is biased, all detectors receive a slightly different level of

voltage bias. The current through each bolometer must also be read out individ-

ually. The generation of voltage biases and digitization of the current signals is

performed by room temperature electronics, which presents a challenge. Having

individual wires running from room temperature to each bolometer for biasing and

readout would lead to significant complexity inside the already constrained cryo-

genic space. It would also create unacceptable thermal loading on the cryogenic

stages with each wire exiting the cryostat serving as a conduction path for heat

to enter the cryostat. For this reason Polarbear uses a multiplexing scheme

whereby eight bolometers can be individually voltage biased by a single pair of

wires and read out by one other pair of wires. This is achieved by placing each

bolometer in series with an LC filter tuned to different resonances. Eight different

AC voltage biases are generated at different carrier frequencies (a “comb” of fre-

quencies) tuned to the resonances of the individual filters, so that each bolometer

sees only one voltage bias. Fluctuations in current from an individual bolometer

are encoded into the sidebands of its carrier frequency via amplitude modulation,

and the summed current from eight bolometers is amplified and exits the cryostat

on one pair of wires. This technique is known as frequency domain multiplexing;

it is analogous to AM radio.

The multiplexed bolometer data leaves the cryostat on 168 pairs of analog

wires and are digitized by a set of 42 room temperature readout boards located on

the telescope. These boards are referred to as Digital Frequency-Domain Multi-

plexing (DfMux) boards, and are designed by Polarbear collaborators at McGill

University in Montreal [55] specifically for multiplexing arrays of TES bolometers.

The data from each comb of frequencies is digitized at 25 MHz, demodulated into

the individual bolometer time ordered data (TOD), and then each TOD is down-

sampled to 190.7 Hz. This data is then multicast over ethernet using the user

datagram protocol (UDP) protocol and received by the data acquisition computer
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located inside the control room. Each of the 42 boards appends its own timestamps

to the bolometer data it transmits. These timestamps are based on the inter-range

instrumentation group time codes “B” (IRIG-B) specification; the IRIG-B time

signal is generated by a Global Positioning System receiver located at the obser-

vatory site and distributed to the DfMux boards. A synchronization pulse is used

to ensure that the sample intervals of the DfMux boards are aligned to within

70 microseconds, though typically the alignment is much better. In practice this

means that the individual time stamps are not needed and all bolometer data can

be regarded as having been sampled in a time-synchronized way.

The DfMux boards generate the RPS signal that is used to synchronize

other aspects of the experiment. This RPS signal is distributed to the telescope

servo control system, which uses it to sample the encoders on the azimuth and

elevation axes of the telescope synchronous with every other bolometer sample at

a rate of 95.4 Hz. These data are returned to the control computer and archived

along with the bolometer data.

All archived data are transmitted down the mountain by a high-bandwidth

microwave link to a low-site control center in the town of San Pedro de Atacama,

Chile. From there the Internet bandwidth is sufficient to send the data to the

United States.

Figure 2.2 is a reprint of material as it appears in A Measurement of the Cos-

mic Microwave Background B-Mode Polarization Power Spectrum at Sub-Degree

Scales with Polarbear. The Polarbear Collaboration: P. A. R. Ade, Y. Ak-

iba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J. Borrill, S.

Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian, C. Feng, D.

Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa, K. Hattori, M.

Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue, G. C. Jaehnig,

A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M. Le Jeune, A. T.

Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, X. Meng,

N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli, H. Nishino, H.

Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt, P. L. Richards,

C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu, C. Shimmin,
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M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B. Steinbach, R.

Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav, and O. Zahn,

ArXiv e-prints, Mar. 2014. The dissertation author made essential contributions

to many aspects of this work.

Figure 2.1 and figure 2.4 are reprints of material as it appears in The Po-

larbear experiment. Z. D. Kermish, P. Ade, A. Anthony, K. Arnold, D. Bar-

ron, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, M. A. Dobbs, J. Errard,

G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W. Grainger, N. Halverson, M.

Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel, J. Howard, P. Hyland, A.

Jaffe, B. Keating, T. Kisner, A. T. Lee, M. Le Jeune, E. Linder, M. Lungu, F.

Matsuda, T. Matsumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J.

Myers, H. Nishino, H. Paar, E. Quealy, C. L. Reichardt, P. L. Richards, C. Ross, A.

Shimizu, M. Shimon, C. Shimmin, M. Sholl, P. Siritanasak, H. Spieler, N. Stebor,

B. Steinbach, R. Stompor, A. Suzuki, T. Tomaru, C. Tucker, and O. Zahn, Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 8452

of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

Sept. 2012. The dissertation author made essential contributions to many aspects

of this work.

Figure 2.5 and figure 2.7 are reprints of material as it appears in The bolo-

metric focal plane array of the Polarbear CMB experiment. K. Arnold, P. A.

R. Ade, A. E. Anthony, D. Barron, D. Boettger, J. Borrill, S. Chapman, Y. Chi-

none, M. A. Dobbs, J. Errard, G. Fabbian, D. Flanigan, G. Fuller, A. Ghribi, W.

Grainger, N. Halverson, M. Hasegawa, K. Hattori, M. Hazumi, W. L. Holzapfel,

J. Howard, P. Hyland, A. Jaffe, B. Keating, Z. Kermish, T. Kisner, M. Le Je-

une, A. T. Lee, E. Linder, M. Lungu, F. Matsuda, T. Matsumura, N. J. Miller,

X. Meng, H. Morii, S. Moyerman, M. J. Myers, H. Nishino, H. Paar, E. Quealy,

C. Reichardt, P. L. Richards, C. Ross, A. Shimizu, C. Shimmin, M. Shimon, M.

Sholl, P. Siritanasak, H. Spieler, N. Stebor, B. Steinbach, R. Stompor, A. Suzuki,

T. Tomaru, C. Tucker, and O. Zahn, Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, vol. 8452 of Society of Photo-Optical In-

strumentation Engineers (SPIE) Conference Series, Sept. 2012. The dissertation
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author made essential contributions to many aspects of this work.



Chapter 3

Instrument Calibration

In order to use the acquired data to reconstruct the signals coming from the

sky, several calibration steps are required. There are four properties of the instru-

ment that we need to know: The responsivity of each bolometer to fluctuations

in temperature on the sky, the polarization orientation angle of each detector as

a function of time, where on the sky each bolometer is pointing as a function of

time, and finally the shape of the effective instrument beam. We will describe the

calibration of each of these below.

3.1 Gain Calibration

The time ordered data (TOD) from each of the bolometers are recorded in

uncalibrated units proportional to the current fluctuations through the TES. We

refer to these units as “analog to digital converter counts” (ADC counts). In order

to create maps of the CMB in temperature units we need to establish a calibration

procedure for converting the ADC counts into Kelvins. In the CMB field this

calibration of detector responsivities is commonly referred to as “gain calibration”

and the multiplicative ratio between ADC counts and temperature is referred to

as “gain.” When working in the Rayleigh-Jeans limit, we will define the gain gADC
TRJ

as:

44
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gADC
TRJ

≡ −∂Ibolo

∂TRJ

(3.1)

with Ibolo expressed in units of ADC counts. We have absorbed the inverse rela-

tionship between current and optical power into the definition so that gains are

positive quantities. This allows us to write:

di(t)[KRJ] =
di(t)[ADC Counts]

giADC
TRJ

(t)
(3.2)

where di(t) indicates a TOD for a particular bolometer indexed by i, [KRJ] or

[ADC Counts] indicate the units the TOD is expressed in, and giADC
TRJ

(t) indicates

the gain for the bolometer i as a function of time. It will also occasionally be

convenient to write g TRJ
ADC

, which is simply the reciprocal of gADC
TRJ

. We will also

use g ADC
TCMB

or gTCMB
ADC

when gain calibrating to CMB temperature units. Conversion

between gADC
TRJ

and g ADC
TCMB

is explained in section 2.7.

The Polarbear experiment uses several different astrophysical and ground-

based calibration sources to establish this gain factor. These can be divided into

relative and absolute calibrators. The best fit WMAP-9 CTT
` power spectrum [29]

is used to perform absolute calibration; all other sources of calibration are relative.

See section 4.7 for a discussion of the absolute gain calibration.

There are two types of relative gain calibration that must be accounted

for: time-relative calibration, which tracks how gain factors change over time, and

focal-plane relative calibration, which tracks how gains need to be scaled in order to

co-add different detectors across the focal plane. A particularly important aspect

of focal-plane relative gains is measuring the relative gains of the two detectors in

a pixel pair. Because the TOD from the two bolometers in a pixel pair are directly

differenced to form a polarization TOD, mis-calibrating the two bolometer gains

relative to each other leads directly to a false polarization signal proportional to

the temperature field. This is an important systematic, the constraints on which

are discussed further in section 5.1.

Planets serve as good celestial sources for focal plane relative gain calibra-

tion measurements. The procedure for measuring gains from planets is described

in 3.1.1. If gains were time-stable, we could perform a single high signal-to-noise
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planet scan and used this for gain calibration. However, the gains vary with atmo-

spheric opacity, the elevation at which the telescope is observing, the temperature

of the bolometer wafers, and the tuning point of the bolometer. Because these

variables can change rapidly, it is desirable to measure the calibration factor fre-

quently for each bolometer. Observations of celestial sources like planets are time

consuming and there are not always appropriate sources available for observation,

so celestial sources do not make good time-relative calibrators.

The thermal calibration source described in section 2.2.2 provides an ex-

cellent time-relative calibrator. Gain calibration using this source is described in

section 3.1.2. It provides a calibration for all detectors across the focal plane in

a three minute observation and is always available because it does not rise and

set as celestial sources do. However, its intensity varies across the focal plane, so

the thermal source alone cannot function as a focal plane relative calibrator. A

“bootstrapping” procedure is thus necessary whereby planets are used to calibrate

the thermal calibration source, and then this local source is used more frequently

to calibrate the bolometer responses. See section 3.1.3 for the details of this pro-

cedure.

Another good source of focal plane relative calibration is the use of elevation

nods. This involves slewing the telescope up and down in elevation by a few degrees.

The changes in atmospheric column density as a function of elevation create a signal

for the bolometers. This is a particularly good calibrator for the two bolometers

in a pixel pair because they are looking through the same column of atmosphere

during the elevation nod. Elevation nods are less useful as time-relative calibrators

because comparing data from two different times requires precise knowledge of the

variation in atmospheric conditions between the measurements. We use elevation

nods only as a consistency check for the thermal calibration source derived values.

3.1.1 Planet Gain Measurements

Polarbear uses gain calibration measurements from Venus, Jupiter and

Saturn. These planets are bright enough to allow relatively brief observations to

achieve sufficient signal-to-noise; typically Polarbear observes a source for 40
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minutes in order to generate a calibration for all detectors. Their small angular

diameter (typically ∼ 30 arcseconds) means they can be approximated as point

sources, which simplifies the calibration procedure. What we seek is a way to use

a planet measurement to determine the quantity gADC
TRJ

. For a point source this

quantity will vary given the source’s position within the detector beam. In fact

what we want is the value of gADC
TRJ

for a source filling the entire detector beam.

Expressing the beam response function as B(θ, φ), we let:

gADC
TRJ

=

∫
dθdφB(θ, φ) (3.3)

where this equality defines the normalization forB(θ, φ) to be in units of ADC
KRJ ·steradian .

When we scan over a planet with an individual bolometer, we create a map from

the TOD that is a convolution of the beam function with the source:

m(θ, φ) =

∫
dθ′dφ′T (θ′, φ′)B(θ − θ′, φ− φ′) (3.4)

where T (θ, φ) represents the spatial distribution of source temperature. Treating

the planet as a point source, we let:

T (θ, φ)→ δ(θ)δ(φ)TPΩP (3.5)

where the δs are Dirac delta functions, TP represents the temperature of the planet

and ΩP represents the actual solid angle of the planet. The factors TP and ΩP en-

sure that the total signal in the map is correct. Planet temperatures are taken from

millimeter-wave measurements published in [56]. There is limited data available

for this purpose, and we do not attempt to model seasonal variations in tempera-

ture or variation in apparent temperature with, i.e., the change in angle of Saturn’s

rings as viewed from Earth. The possible impacts of this are discussed in section

3.1.4. The solid angle of the planet sources come from an ephemeris calculation

using the exact observation time.

With the substitution from equation 3.5 we get:

B(θ, φ) =
m(θ, φ)

TPΩP

(3.6)
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which is equivalent to saying that the map is a map of the detector beam. We can

then write:

gADC
TRJ

=

∫
dθdφ

m(θ, φ)

TPΩP

. (3.7)

Essentially, we have used the technique of scanning over a point source to allow the

source to function as a beam-filling load that can be used to calibrate the detector

gain.

When Polarbear observes a planet, it tracks the planet as it moves across

the sky and relative to that tracking performs azimuth scans that are wide enough

to sweep the entire focal plane across the planet. It also takes elevation steps

between each azimuth scan and in this way allows every detector to scan the planet.

The elevation steps used during this process are 2 arcminutes in size, which is not

a high enough resolution to capture all of the important features of the detector

beam. The map shown in figure 3.1 clearly shows the lack of scan coverage.

It is thus insufficient to simply integrate the map obtained from the planet

scan. The technique we employ instead is to use the planet data to fit an elliptical

Gaussian model to the beam data. The model used is:

m(x, y) = AP exp

(
−
(
x2

2σ2
x

+
y2

2σ2
y

))
(3.8)

where AP , σx, and σy are the parameters being fit for and x and y are the flat-space

projection1 equivalents of θ and φ. AP determines the amplitude of the source and

σx, and σy determine the ellipticity of the beam. We also record the paramater

errors σAP
, σσx , and σσx . There are additional coordinate-transform terms in the

model that fit for the center of the planet and allow its major- and minor- axes to

be rotated with respect to the x- and y- axes of the scan which are not shown here.

This expression is then used as a representation for the beam, and its integral can

be performed analytically:

ganalytic
ADC
TRJ

=
2πAPσxσy
TPΩP

. (3.9)

1The projection employed is the equal-area Sanson-Flamsteed projection.
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Figure 3.1: A beam map produced by scanning Saturn is shown for one bolometer.
The map is produced with a pixel size of 30 arcseconds, making the 2 arcminute
step size of the scan readily apparent. The best-fit elliptical Gaussian is shown in
black at the FWHM contour, along with the orientation of the major- and minor-
axes.

We refer to calibrations calculated in this way as being “analytic” planet

calibrations. If the analytic elliptical Gaussian model were a perfect representa-

tion of the beam, this would be ideal. However, in addition to the main beam

lobe which is approximately 3.5 arcminutes at full-width half-maximum (FWHM),

there is additional sidelobe structure at a lower level further from the main beam

which varies from detector to detector. In an attempt to compensate for this, the

integration procedure is modified further. First, the integral of the main lobe is

performed on the analytic model. The analytic model is then subtracted from a low

resolution map (see figure 3.2a and 3.2b) to produce a map of residual structure.

This residual structure map is then integrated over the region 4 to 8 arcminutes

from the source center and added to the initial analytic integral. Gains calculated

with this technique are referred to as “combined” gains because of the combination

of analytic and numerical integrals. This technique is not ideal and still suffers from
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the problems associated with low resolution mapping of the sidelobe structure.

(a) A lower resolution map of the same
scan shown in figure 3.1. Using a pixel
resolution of 2 arcminutes conceals the
coarseness of the scan and is used for
performing numerical integration of the
map.

(b) The same map as shown in figure
3.2a, but with a mask applied that sets
pixels within a 4 arcminute radius or
beyond an 8 arcminute radius to zero
to demonstrate the limits of integration.
Only this region of the map is included in
the numerical integration procedure de-
scribed in the text. Note also the change
in color scale used in this image.

Figure 3.2: Beam maps used in gain calibration

An additional technique used in an attempt to overcome this problem is

to employ a beam template to fit for gains from planets. This technique involves

constructing a high-resolution template map for a beam that contains information

about its main lobe and extended sidelobe structure. This template map is scaled in

overall amplitude via a fitting procedure to match the low resolution data obtained

during one planet scan, which is equivalent to scanning over part of the template.

A numerical integral is then performed over the scaled template map to obtain

gADC
TRJ

as in equation 3.7. This method accounts for beam structure in a way that is

not dependent on analytic approximations or integration of low-resolution maps.

An example beam template map is shown in figure 3.3. Instead of being

constructed from an individual detector beam, this template is a sum of all active

detectors on one detector wafer. Polarbear’s scan strategy for these calibration

scans does not include enough day-to-day variation to allow for individual detector
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Figure 3.3: A high-resolution beam template constructed from coadding planet
maps from all detectors in wafer 10.1. In addition to the main beam, sidelobe
structure is subtly visible at around 6 arcminutes in radius.

templates to be constructed, and so the alternative is to build a template based on

an entire wafer of detectors. Unfortunately, this template does not give consistent

results and so only the “analytic” and “combined” gain techniques are used for

actual calibrations. Future changes to the scan strategy will include daily offsets

to allow for the creation of individual detector templates, which should improve

the quality of future gain calibrations.

3.1.2 Thermal Calibration Source Measurements

The second component of the gain calibration procedure is the thermal

calibration source described in section 2.2.2. The typical calibration procedure

with this source is to spin the chopper located between the heater and the light

pipe in order to produce a square wave signal in the detectors. This is done at

a series of six different frequencies between four and fourty-four Hertz for thirty

seconds each. The reference signal of the chopper is recorded and used to recover
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an amplitude for the square wave in each active detector at each frequency, Af .

These amplitudes are then used to fit each bolometer for an overall DC response

amplitude Atherm in units of ADC counts as well as a single-pole low pass filter

time constant τ . The model used is:

Af =
Atherm√

1 + (2πfτ)2
(3.10)

and is fit across the six frequencies at which the thermal source is chopped. A

sample TOD from one bolometer during part a thermal source calibration is shown

in figure 3.4, and the associated fit is shown in 3.5.

Figure 3.4: Time ordered data is shown from one bolometer over part of an
observation of the thermal calibration source. The transition between the 4 Hz
and 12 Hz chop frequencies is clearly visible.

3.1.3 Thermal Source Effective Temperature

As described above, neither the planet gain calibration nor the thermal

source gain calibration are able to serve as both time and focal plane relative gain

calibrators. It is thus necessary to combine these two sources of measurement to
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Figure 3.5: A fit to a full thermal source observation is shown for a single bolome-
ter, along with the measured data points and error bars. This fit is to the same
data which is partially displayed in figure 3.4 in the time domain. The parameters
determined from the fit are: Atherm = 9.1452 ADC counts, τ = 4 ms.

create a complete relative calibration source that will allow us to coadd data from

different detectors across the focal plane and from scans taken a different times. To

achieve this, a thermal calibration source measurement is taken immediately before

and after each planet scan. For every bolometer on the focal plane, the planet scan

can be used to form the quantity gcombined
ADC
TRJ

or ganalytic
ADC
TRJ

as described in section 3.1.1.

The thermal source measurements also provide Atherm,pre and Atherm,post which are

the amplitudes of the thermal source calibrations taken before and after the planet

scan, respectively. We do not currently take account of when during a planet scan

a particular bolometer is scanned over the planet, so we simply average these two

terms:

Atherm =
Atherm,pre + Atherm,post

2
(3.11)

and we model the error, including the term due to the gain drift that occurs during

the planet scan, as:
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σAtherm
=

∣∣∣∣(Atherm,pre + σAtherm,pre)− (Atherm,post − σAtherm,post)

2

∣∣∣∣ (3.12)

where σAtherm,pre and σAtherm,post are the errors on the thermal source gain fits before

and after the planet scan. Interpolating the thermal source amplitude to the time

at which a particular bolometer scans the planet will be explored as a potential

improvement in the future.

With Atherm and gADC
TRJ

we can form the effective thermal source temperature.

Allowing individual bolometers to be indexed by i:

T i =
Aitherm
giADC

TRJ

(3.13)

with the error calculated as:

(σiT )2 =

(
σ2
Atherm

A2
therm

+
σ2
AP

A2
P

+
σ2
σx

σ2
x

+
σ2
σy

σ2
y

)
(T i)2. (3.14)

We now have an expression for the effective temperature of the thermal source.

Thermal Source Polarization & Effective Temperature Parameterization

We observe the thermal source to be subtly polarized in a way that varies

across the focal plane. We believe this is related to the variation in angle at which

light leaves the light-pipe to reach different sections of the focal plane, but have not

constructed a detailed physical model. This polarization impacts the relative gain

of two bolometers within a pixel, so it is important that it be well characterized.

Because this polarization is rotated by the HWP, it creates a HWP dependent

term in the gain model. While the polarization is rotated, the intensity of the

source is unaffected, and this motivates studying the intensity and polarization

separately. Re-parameterizing the expression for the thermal source effective tem-

perature is thus desirable, and will in fact allow us to more easily compare different

measurement techniques as well.

We allow for each pixel pair to see a polarized intensity Q̃ during a thermal

source calibration. Letting j index the pixel number, t and b represent the top
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and bottom bolometers within each pixel, and φjP represent the angle between the

pixel’s polarization orientation and the orientation of the polarized intensity, we

have:
T j,t = Ij + Q̃j cos(2φjP )

T j,b = Ij − Q̃j cos(2φjP )
(3.15)

where we have also parameterized the sum of the two effective temperatures in a

pixel with the intensity I:

Ij ≡ T j,t + T j,b

2
. (3.16)

We now define Pfrac for each pixel pair:

P j
frac ≡

T j,t − T j,b
T j,t + T j,b

=
Q̃j

Ij
cos(2φjP ) (3.17)

so that we may write:
T j,t = Ij(1 + P j

frac)

T j,b = Ij(1− P j
frac).

(3.18)

We now have a parameterization for the thermal source effective tempera-

ture with a single intensity and polarization parameter per pixel, and it is possible

to measure Ij and P j
frac separately. Ij will be independent of the HWP angle and

P j
frac will depend on the HWP angle. Note that the index j will be omitted to

simplify the notation in some of what follows, but it is to be understood that I

and Pfrac have different values measured for each focal plane pixel.

In order to integrate the thermal source measurements into a pipeline for

generating gains, we must have reliable measurements of the effective temperature

of the thermal source as seen from each detector. We separate this task into

measuring I and Pfrac for each pixel. Our goal is to create templates for the focal

plane Ij and P j
frac that can be used to calibrate gains with any measurement of the

thermal source. In the first approximation, the values of I affect the co-addition

of different pixels across the focal plane, while values of Pfrac affect the pixel-pair

relative gain. In both cases we form the templates by combining measurements of

many planet scans.
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3.1.4 Thermal Source Intensity Template

The intensity measurements will be used to co-add data from detectors

across the focal plane with varying sidelobe structure. Because these sidelobes

affect the inferred gain, it is important that the variations in sidelobes be captured

by the measurement. We thus use the combined planet gain measurements to create

the intensity template. When we construct the polarization template below, we

will only be comparing two bolometers in a pixel pair, and will use the analytic

which is less noisy but doesn’t capture differences in sidelobe structure. We form

the individual bolometer effective temperature measurements as:

T i =
Aitherm
gcombined

ADC
TRJ

. (3.19)

Again, these individual bolometer measurements are summed to form I for each

pixel as:

I ≡ T t + T b

2
. (3.20)

In order to co-add multiple planet measurements, we want to quantify the error

on each one. We can combine equation 3.20 with equation 3.14 to write the error

on I as:

σ2
I =

(
∂I

∂T t

)2

σ2
T t +

(
∂I

∂T b

)2

σ2
T b + 2cov(T t, T b)

∂I

∂T t
∂I

∂T b

=
σ2
T t + σ2

T b

4
.

(3.21)

We have no reason to think that the errors on the two temperature measurements

should be correlated, so we set the covariance term to zero.

We compute I and σI for many planet measurements taken at different times

over the season. Planet scans with fewer than 300 active channels are excluded to

avoid problematic data. In order to be included in a measurement of I, both the

top and bottom bolometers in a pixel must have successful gain fits from the planet

and the thermal source. We average the measurements together, weighting each by

1/σ2
I , and requiring that each pixel have a minimum of three planet measurements

to be given a value in the template.
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Our standard intensity template is derived from 28 scans of Saturn taken

in 2012. This template was settled on early in the analysis process, and deviations

from it with newer data have been small. Figure 3.6 shows a plot of two times the

value of the intensity template for all pixels across the focal plane.
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Figure 3.6: The intensity template for the chopped thermal source. Here we plot
2I, which shows the actual value for the effective temperature of the source given
our parameterization for I.

Celestial Source Temperature Drifts

Due to concern over un-modeled changes in celestial source temperatures,

one important check of the intensity template is to allow individual planet scans

to be scaled relative to each other. To do this, we take our initial template Ij that

comes from the simple weighted co-addition of each measurement and fit for a scale

factor to apply to each planet measurement. This is done as a χ2 minimization
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in the parameter ST , which is the same for all j (where j again indexes the focal

plane pixel):

χ2 =
∑
j

(ST I
j
template − Ijmeasurement)2

(σjI)
2

. (3.22)

We fit a different value of ST for each planet measurement. With these independent

scale factors, long term drifts in the planet temperature are no longer a concern

for accurately measuring the relative detector gains across the focal plane. We

again perform the weighted co-addition of the planet measurements, except scaling

every pixel’s intensity measurement and error by the factor of 1/ST calculated for

that planet scan to create a second template. If we call the template assembled

from unscaled measurements IT1 and the template using scaled measurements IT2,

we find that 〈|IjT1 − IjT2|〉j is less than 0.3% of the template values, which we

consider to be negligible. We take this as evidence that our focal plane relative

gain measurements are not adversely affected by long term temperature drifts in

our celestial sources.

Thermal Source Temperature Drifts

The scaling procedure described above will correct for both long term drifts

in a celestial source being measured, and for drifts in the thermal source tempera-

ture. However, while drifts in celestial source temperature are unimportant if they

do not affect the template, changes in the thermal source temperature will affect

the time-relative co-addition of data from different scans. Because the thermal

source temperature is regulated, we do not expect to see long term drifts. To

check this, we look for coherent time trends in the scale factors calculated above.

Comparing shifts in scale factor between different celestial sources allows us to

break the degeneracy between temperature drifts in our thermal source and tem-

perature drifts in celestial sources. We see variations in scale factors at the few

percent level, but with no long term trends that are are consistent between dif-

ferent celestial sources. Thus while we cannot rule out short term thermal source

temperature fluctuations, we see no evidence for long term trends which would

bias our gains across the full observation season.
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3.1.5 Thermal Source Polarization Template

The thermal source polarization template P j
frac must account for differences

in the effective temperature of the thermal source between top and bottom bolome-

ters in a pixel pair. We expect this term in the gain model to be more important

in terms of its potential systematic error impact, and we also expect it to depend

on the HWP angle.

Because the goal is to compare thermal source effective temperatures be-

tween two bolometers that are at the same point in the focal plane and looking

through the same contacting lenslet, we expect sidelobe structure to be similar

between the two. We thus choose to use the analytic planet gain. The analytic

gain is in general a less noisy, though potentially more biased, measurement of the

gain. Thus for the Pfrac template we set:

T i =
Aitherm(
ganalytic

ADC
TRJ

)i . (3.23)

Similarly, because we are comparing relative amplitudes between top and

bottom bolometers in the same pixel, there is less concern about knowing the

actual amplitude of the planet signal than with measurements of I. We thus

combine measurements of Venus, Jupiter, and Saturn into the same data set as

measurements of Pfrac.

In order to estimate the errors on individual planet measurements, we take

our definition Pfrac ≡ T t−T b

T t+T b and combine this with equation 3.14 to estimate the

error on Pfrac as:

σ2
Pfrac

=

(
∂Pfrac

∂T t

)2

σ2
T t +

(
∂Pfrac

∂T b

)2

σ2
T b + 2cov(T t, T b)

∂Pfrac

∂T t
∂Pfrac

∂T b

= 4
(T b)2σ2

T t + (T t)2σ2
T b − 2cov(T t, T b)T tT b

(T t + T b)4

= 4
(T b)2σ2

T t + (T t)2σ2
T b

(T t + T b)4
,

(3.24)

where we have again set the covariance between the two temperatures to zero in
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the last step. We use this as a starting point for error estimation, but will allow

for other sources of error that are unaccounted for in equation 3.24.

A further complication in building the polarization template is that the

thermal source was dismounted for maintenance on three different occasions during

the first observation season. While this maintenance does not seem to have affected

the intensity of the source, it did change its polarization properties. We thus fit

for four different Pfrac templates over the four different thermal source “epochs.”

We use planet measurements from within each epoch to build our templates.

We expect our measurement of Pfrac to depend upon both the HWP angle

and the stimulator epoch we are in. We thus sort all of our planet measurements

by date and by HWP angle. As with the intensity template measurements, planet

scans are only included in our list of measurements if they have at least 300 success-

ful bolometer gain fits to the planet and to the thermal source calibration before

and after the planet scan.

To create our Pfrac template within one epoch we begin by assigning the

template Pfrac value at HWP angle θHWP the median2 value of all measurements

at that angle. We then attempt to estimate the errors on the measured values

of Pfrac directly from the data in a way that is tolerant of outliers. For all θHWP

with a number of measurements Nobs,θ greater than three, we calculate the median

absolute deviation (MAD) of the measurements. The MAD is a statistic which is

used infrequently enough to warrant definition here. The MAD for a given set X

is calculated as:

MAD ≡ mediani(|Xi −medianj(Xj)|) (3.25)

For a given pixel, we choose the maximum value of the MAD from all the sets of

measurements at different values of θHWP with greater than three measurements

and use this maximum value as representative of the variance in Pfrac. We then

calculate the error at each θHWP with a measurement as:

σPfrac
=

MAD
1.48

√
Nobs,θ

(3.26)

2We use the standard technique of taking the mean of the two middle values for sets with an
even number of measurements. HWP angles with only a single measurement of Pfrac are dropped.
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where the factor 1.48 corrects for the difference between the MAD and the standard

deviation as estimators of variance. For values of θHWP with fewer than three

measurements, we use the estimate for σPfrac
from equation 3.24 if it is larger than

the value calculated with 3.26.

Figure 3.7: Thermal source polarization data and model fit are shown for a single
bolometer over one epoch. The data is measured from 35 planet scans taken at 11
different HWP angles. Data from the planet measurements along with error bars
are shown in green. The blue curve shows the model fit. Blue error bars indicate
HWP angles where the model fits are used in the gain model due to lack of planet
scan coverage. A red “X” over a green point indicates that the model fit replaced
the planet scan data at that HWP angle.

Because we do not have a large number of planet scans at every HWP angle

we would like to calibrate data for, we also create a model for Pfrac as a function of

HWP angle. We can then reconstruct Pfrac at angles where we do not have enough

planet scans to make the measurement with the desired precision. The model we

use is:
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Pfrac(θHWP ) = ONR + Pa cos(4θHWP − 2α). (3.27)

In our model, ONR represents an intrinsic relative gain offset for a pixel

and has no HWP dependence. We would expect this term to arise from a source

of polarization that is produced on the bolometer side of the HWP; mismatched

bandpass spectra are a good candidate for generating this. Pa parameterizes the

fractional amplitude of the polarization that is rotated by the HWP, and α sets the

phase of that polarization. We thus expect Pa and α to account for the polarization

that occurs in the thermal calibration source. The fit is performed using the median

value weighted by the inverse square of the errors calculated above. An example of

median Pfrac values, errors, and the model fit is shown in figure 3.7. Though we will

show some modeling of induced pixel-pair relative gain errors based on assuming

these errors are correct, this will only serve as a cross check of other techniques

to constrain relative gain error. The most important role the errors play is in

dictating how to weight the measurements at different HWP angles during the

fitting process.

To construct the final template over an epoch, we use the model fit to replace

our planet measurements of Pfrac(θHWP ) at HWP angles where there are fewer than

three direct measurements. This includes values of Pfrac(θHWP ) at angles where

there are no planet measurements, but where we have CMB data we would like

to gain calibrate. The errors on the model fit are estimated from the standard

deviation of the model fit and the measurement at each point included in the fit.

Information about the differences between the gain model epochs is summarized

in table 3.1.

An example of the Pa values is shown in figure 3.8. The general form of

the spatial distribution of polarization seen in this figure is maintained through all

four epochs of the relative gain model. We see that at its maximum the thermal

source is about 5.8% polarized. The origin of this polarization and the reason for

it having this spatial distribution has not been investigated.

An example of values for α is shown in figure 3.9. The alternating rows

of different polarization orientations within a wafer can be seen. Comparing the
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Figure 3.8: The thermal source Pa values for the first gain model “epoch,” com-
posed of the time between June 27th, 2012 and September 23rd, 2012. The vari-
ation in amplitude of the thermal source polarization in clearly seen as a function
of focal plane position.

spacial distribution of Pa and α values, it is clear that the alternation of orien-

tation angles between rows is most prominent where Pa is highest. The higher

polarization in these regions gives more signal-to-noise on the fit, allowing for a

better determination of α.

Finally, an example of ONR values is shown in figure 3.10. There is no

obvious geometric pattern here, other than the fact that the bottom wafer in the

plot has a higher number of pixels with above average ONR. This is wafer 9.4.

Combining values for Pa, α, and ONR with direct values from the mea-

surements of Pfrac in the way described above allows us to construct the four

P j
frac(θHWP ) templates across the different epochs and thus correctly use the ther-

mal calibration source to set the pixel-pair relative gain.
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Figure 3.9: The thermal source α values for the first gain model “epoch,” com-
posed of the time between June 27th, 2012 and September 23rd, 2012. The alter-
nation of polarization orientation along different rows of pixels within a wafer is
clearly visible.

3.1.6 Gain Generation

Once we have our gain model templates P j
frac(θHWP ) and Ij, we are able

to generate gain values for any measurement taken with the thermal calibration

source, assuming we also know the angle of the HWP at which the measurement

was taken. Values of Ij are constant across all HWP angles and all gain epochs,

but the values of P j
frac(θHWP ) must be chosen for the correct HWP angle and gain

model epoch. We use the values of I and Pfrac for each pixel to form the thermal

source effective temperatures T t and T b for the two bolometers in that pixel as

in equation 3.18. We then generate our gain for each bolometer at each thermal

source observation as:
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Table 3.1: A summary of the four gain model epochs is shown. “# of Measure-
ments” indicates the number of planet scans the template for the given epoch was
created from. “HWP Angles” indicates the number of HWP angles sampled be-
tween the set of planet scans. “Cal. Method” indicates the calibration method
used. The “direct” calibration method indicates the template is formed from direct
measurement of Pfrac, “model” indicates values of Pfrac are derived from the model
in equation 3.17, and “both” indicates the template is formed from a combination
of the two.

Epoch Dates # of Measurements HWP Angles Cal. Method

1 2012/06/27 -
2012/09/23

41 11 Both

2 2012/09/23 -
2012/10/03

8 7 Model

3 2012/10/03 -
2013/01/28

48 8 Both

4 2013/01/28 -
2013/06/13

52 2 Direct

giTRJ
ADC

=
T i

Aitherm
. (3.28)

This value of giTRJ
ADC

multiplies our TOD in ADC counts to produce a TOD in KRJ .

More details of gain generation for CMB observations are described in section 4.2.

3.2 Polarization Calibration

Each pixel on the focal plane can measure the polarization field by differenc-

ing the power in orthogonal polarization directions corresponding to the physical

orientation of the antennas for that pixel. This is equivalent to performing a mea-

surement of a linear combination of the Stokes Q and U parameters. In order to

co-add data from different pixels and different scans, we must know which linear

combination a particular pixel is measuring at a particular time. For this we must

calibrate the relative polarization orientation angles of the pixels.

Further, we must also know the absolute orientation of our polarization

sensitivity on the sky. Knowing this absolute orientation angle is the only way to

ensure consistency between our definition of Q and U and the Fourier plane az-
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Figure 3.10: The thermal source ONR values for the first gain model “epoch,”
composed of the time between June 27th, 2012 and September 23rd, 2012. This
represents intrinsic pixel-pair relative gain which is not rotated by the HWP.

imuthal angle φ~̀ from the Fourier decomposition of the polarization fields. Equa-

tion 1.19 makes it clear that offsetting φ~̀ with respect to the frame in which we

have defined Q and U is equivalent to rotating E into B. This is thus a significant

source of potential systematic error for the CBB
` measurement.

If we have detector TOD from the top dj,t and bottom dj,b bolometers in a

pixel j scanning over a source with polarized amplitude P oriented at an angle α,

we detect:

ddiffj = dj,t − dj,b = 2P cos(2(α−Θj)) (3.29)

where Θj is the polarization angle of the pixel j which we are interested in cal-

ibrating. Θj will change based on the HWP angle and based on the parallactic

angle of the source we are measuring. We want to convert our measurements of
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Θj into a measurement of θj defined by:

Θj =
(π

2
− θj

)
+ 2θHWP (t) + θPA(t) (3.30)

where we allow for a time dependent HWP angle θHWP (t) and parallactic angle

θPA(t).

Measuring θj for all pixels across the focal plane relative to the same fixed

angle on the sky α is equivalent to performing a relative calibration of the detector

polarization angles. Measuring all the θj with respect to an α of known value in the

RA/DEC coordinate system is equivalent to performing an absolute calibration of

the detector polarization angles.

As with gain calibration, this calibration task separates into relative and ab-

solute calibrations. Again, much like in the case of the gain calibration, we perform

our relative calibration using local celestial sources and then use our knowledge

of the CMB, in this case the CEB
` and CTB

` power spectra, to perform the ab-

solute calibration. See section 4.8 for a discussion of absolute polarization angle

calibration using the CMB.

3.2.1 Taurus A

Our primary source of relative polarization angle calibration is the celestial

object Taurus A (Tau A), also known as M1 or the Crab Nebula. Tau A is ap-

proximately 7% polarized in our observation band, and is visible from the James

Ax observatory site. We scan Tau A in an identical fashion to the planet scans

described in section 3.1.1, though the analysis differs significantly. This data al-

lows us to track our relative detector angle as a function of HWP angle and time.

It also serves as a first pass for absolute calibration of the polarization orientation

before it is finalized using the CMB.

Polarbear observed Tau A several times per week over the first season

of observations, except for the period from May to July annually when Tau A is

within 30◦ of the Sun on the sky. There are a total of 125 Tau A observations used

to calibrate the first season data set. A full co-added map of all the observations

is shown in figure 3.11.
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Figure 3.11: A full season co-added polarization map of Tau A observed by
Polarbear. The orientation of the bars in the map pixels represent polarization
angles at each map pixel, and the color represents the polarized intensity. Figure
from [43].

To proceed with the determination of our set of θj, the bolometer and

pointing TOD from each detector are collected across the 125 scans to form a

single TOD for each bolometer. The TOD from all times a bolometer is within

five arcminutes of the center of Tau A is included in the single full season TOD for

that bolometer after gain calibrating, normalizing and filtering. The pointing data

is used to find θPA(t) for the included times, and the HWP angle TOD θHWP (t)

is constructed for this full season TOD as well.

Tau A’s polarization has been measured at 90 GHz by the IRAM telescope

as reported in [57]. We measure the polarization orientation angle of individual

pixels by comparing the Polarbear full season TOD from Tau A to the data from

the IRAM telescope. The IRAM beam is approximately 30 arcseconds at FWHM,

so we first convolve the IRAM Tau A I, Q, and U maps with the Polarbear

beam of each bolometer modeled as an elliptical Gaussian with parameters fit from
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planet scans. We then create simulated TOD Isim,j,(t/b)(t), Qsim,j(t), Usim,j(t) using

the Polarbear pointing information for each pixel j from our full season Tau

A TOD to scan the IRAM maps. Our notation on the I TOD indicates there is

an individual TOD formed for the top and bottom bolometers in the pixel j to

accomodate any differential beam shape between them. We model our full season

TOD as:

ddiffj (t) =
1

2
(Isim,j,t(t)− Isim,j,b(t))

+εj[Qsim,j(t) cos(2Θj(t)) + Usim,j(t) sin(2Θj{t})]

+
∆gj

2
[Isim,j,t(t) + Isim,j,b(t)]

(3.31)

where Θj is related to our calibration angle θj by equation 3.30. For each pixel

there are three parameters to fit: the pixel polarization angle θj, the pixel polar-

ization efficiency εj, and the pixel-pair relative gain error ∆gj. ε allows for some

depolarization of the signal due to non-idealities of the detectors, and ∆g allows

for some leakage of temperature to polarization. When performing the fit we use

θHWP (t) and θPA(t) to convert from Θj to θj. The fit is performed as a χ2 mini-

mization differencing between our real TOD and the model, and with errors given

by the standard deviation of the real TOD. Note that ∆gj is an independent mea-

surement of the pixel-pair relative gain which we can compare to our values from

the thermal source template in section 3.1.5. This comparison will be addressed

in section 5.1.1 as part of our CBB
` systematics discussion.

We compare the difference of our measured angles with theory and subtract

a mean offset of each wafer from the distribution for that wafer. Pixels that are

more than 3σ outliers in the full distribution across the focal plane are rejected

and not considered in further analysis. A plot of the remaining pixel orientation

angles θj are shown in in figure 3.12. A comparison between these measured

angles and the angles as designed is shown in figure 3.13. The measured angles

are used in combination with the HWP angle and θPA(t) in subsequent analyses

to determine which linear combination of Q and U a pixel sees during a particular

scan, making them the source of relative calibration of the polarization angles for

the experiment. We also allow for a single global rotation of these angles, the choice
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of which constitutes the absolute calibration. The absolute calibration procedure

is described in section 4.8.

Figure 3.12: Polarization angles θj calibrated with Tau A plotted against the
pixel location on the focal plane. The central angle is plotted in green, with error
bars plotted in red at θj ± σθj . The separation of the error bars are not visible at
this scale. The intentional variation in polarization angle designed into each wafer
is clearly seen.

3.2.2 Dielectric Sheet Calibrator

A hardware calibration source designed to perform both absolute and rel-

ative pixel polarization angle calibration is the dielectric sheet calibrator (DSC).

The device uses a thin dielectric sheet to act as a partial beam splitter, largely

transmitting radiation from the sky but also reflecting some thermal radiation

from a room-temperature millimeter-wave absorber material. Different fractions

of the room temperature black body radiation are reflected parallel and perpen-
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Figure 3.13: A comparison between design polarization angles and Tau A cali-
brated polarization angles. The difference θj,Tau A − θj,design is shown.

dicular to the plane of incidence, which generates the polarization. The calibrator

is arranged in such a way that light from the sky enters the cryostat after being

transmitted through the sheet, as does the small fraction of reflected room temper-

ature black body radiation. The calibrator has a heritage from the POLAR [58]

and BICEP1 [59–61] and BICEP2 [62] experiments. The principle of operation is

illustrated in figure 3.14.

For simplicity we may imagine that our detector polarization axis is aligned

with the unprimed coordinate system in figure 3.14, and that this is also aligned

with the coordinate system in which we are measuring the Stokes Q or U param-

eters. We may then write, following [63]:

Ix = TC + (TH − TC)RTE,

Iy = TC + (TH − TC)RTM ,

Q = (TH − TC)(RTE −RTM),

U = 0,

(3.32)
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Calibration of Millimeter-Wave Polarimeters
Using a Thin Dielectric Sheet
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Abstract—We present the theory and application of a novel cal-
ibration system for millimeter and microwave polarimeters. The
technique is a simple extension of the conventional wire-grid ap-
proach, but employs a thin dielectric sheet rather than a grid. The
primary advantage of this approach is to obtain a calibration signal
that is only slightly polarized, which can be beneficial for certain
applications such as astronomical radiometers that measure very
low levels of polarization, or systems with a small dynamic range.
We compare this approach with other calibration techniques and
discuss its successful use in the calibration of the polarization ob-
servations of large angular regions experiment, designed to mea-
sure polarization in cosmic microwave background radiation.

Index Terms—Calibration, microwave receivers, polarization,
radiometry.

I. INTRODUCTION

CALIBRATION is a critical step in the design and use of
millimeter-wave radiometers and many different tech-

niques have been developed. In order to calibrate polarimeters,
a classic wire-grid approach has traditionally been used [1], [2],
the properties of which have been explored by several authors
(e.g., [3]–[6]). However, this technique has the disadvantage
of generating a large fully polarized calibration signal, as well
as being difficult to build for certain applications. Another
approach is to use reflection of a known (unpolarized) source
from a metal surface [7]; the metal surface induces a small
well-characterized polarization [8]. For astrophysical measure-
ments, it is sometimes feasible to calibrate using a celestial
object that emits a known polarized signal [9].
However, sometimes none of these techniques are suitable

for a given polarimeter, especially in the case of polarimeters
with a small dynamic range. This was the case for the polariza-
tion observations of large angular regions (POLAR) instrument
[10], with which we searched for polarization in the cosmic
microwave background radiation. POLAR is a correlation po-
larimeter [9], which employs double-balanced mixers to corre-
late the two orthogonal polarizations selected by an orthomode
transducer in order to directly measure the polarization of the in-
coming signal. However, these mixers had a very narrow range
of linearity (approximately 6 dB in power) and the calibration
signal from a wire grid was well outside this range. Calibration
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Fig. 1. Calibration setup using the thin dielectric sheet. Unpolarized radiation
from both a hot load (side) and cold load (top) is partially polarized due to the
slight difference in and of the sheet, thus causing the polarimeter
to see a slightly polarized signal. The angle between the polarimeter -axis
and sheet plane of incidence is . The Stokes parameters can be modulated by
variation of the angle .

with a nutating metal flat would have overcome this limitation,
as it is capable of providing the necessary small polarization
signal, but was infeasible given our equipment’s geometric con-
straints. Thus, we explored a slightly different avenue for cali-
bration of the instrument, i.e., reflection of thermal radiation off
a thin dielectric sheet.

II. CALIBRATION TECHNIQUE

In order to calibrate POLAR, we replaced the wire grid in the
conventional setup with a thin dielectric sheet whose composi-
tion and thickness were chosen as described below (see Fig. 1).
If the reflection and emission properties of the sheet can be
ascertained, through either direct measurement or calculation,
then it is straightforward to calculate the expected signal from
the dielectric. Both the hot and cold loads emit blackbody ra-
diation at their physical temperatures and , respectively.
These unpolarized sources emit an equal amount of radiation
polarized both perpendicular (TE) and parallel (TM) to the plane
of incidence of the dielectric sheet. Note that the TE and TM ra-
diation fields are uncorrelated with each other. Upon traversal
of the sheet, a certain amount of each of these four fields arrive
at the aperture of the polarimeter, along with the oblique emis-
sion from the sheet itself (which has a physical temperature ).
In order to perform the calibration, we must determine the in-

tensity of fields at the aperture of the polarimeter from the cal-

0018-9480/02$17.00 © 2002 IEEE

Figure 3.14: Schematic diagram of the DSC operating principle. TC represents
radiation coming from the sky at a lower effective temperature than radiation
coming from a room temperature millimeter-wave black body TH . Reflection and
transmission coefficients are different between directions of polarization parallel
and perpendicular to the plane of incidence. These two polarization orientations
are represented by “TE” (perpendicular to the plane of incidence) and “TM” (par-
allel to the plane of incidence). Figure from [63].

where Ix and Iy are the signals seen by the two bolometers in a single pixel, Q is

the signal seen by differencing the two bolometers, TC represents the effective sky

temperature after being propagated through the primary and secondary reflectors,

TH represents the temperature of our millimeter-wave absorber, and RTE and RTM

represent the coefficients of reflection along the axes perpendicular and parallel to

the plane of incidence, respectively. Note we have neglected any emission coming

from the sheet. It is then possible to rotate these values around the optical axis

by an angle φ:

Ix′ = Ix cos2(φ) + Iy sin2(φ),

Iy′ = Ix sin2(φ) + Iy cos2(φ),

Q′ = Q cos(2φ),

U ′ = −Q sin(2φ).

(3.33)

The physical calibrator is mounted on the telescope directly in front of the

receiver, which places it after the primary and secondary reflectors in the optical
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path of light coming from the sky. It is mounted with a bearing in such a way

that we can rotate the sheet of dielectric material around the optical axis, the

equivalent of changing φ in equation 3.33. This allows us to modulate the angle of

polarization entering each detector, which modulates the signal each detector sees.

By comparing the phase of the modulation across the focal plane we can calibrate

the polarization angles relative to each other. A gravity reference is also installed

which allows us to compare the angle of the sheet to the local gravity vector as

the bearing rotates. In theory this should provide a frame of reference that would

allow the DSC to serve as an absolute angle calibrator, but the gravity reference

has not yet been made to work reliably. A SolidworksTM rendering of the DSC

mounted in the telescope is shown in figure 3.15.

Figure 3.15: The DSC is seen mounted on HTT in this SolidworksTM rendering.
The frame for the DSC is pictured highlighted in green. The dielectric material
is mounted between two elliptical rings (pictured) mounted on this cylinder at
approximately 45◦ from the optical axis. The secondary reflector is pictured to the
left of the DSC, and the primary reflector is up and to the right (not pictured).

The reflection coefficients RTE/TM along either axis are functions of the

index of refraction of the dielectric material n, the wavelength of radiation, the

thickness of the dielectric sheet, and of the angle of incidence θ. The material we

chose to use is 0.003 inch thick polypropylene (n ≈ 1.5). We have designed the

mount for the DSC such that the angle of incidence for rays on the optical axis is

45◦. However, rays off of the optical axis will have different angles of incidence.

The angle of incidence required to reflect rays into a particular off-axis detector will
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also change as a function of φ, so we must allow for θ to depend on φ. This means

that in addition to the desired twice-per-rotation modulation (2f) of polarization

by the calibrator, some detectors will also see a once-per-rotation modulation (1f)

signal.

An optical encoder tape is mounted around the circumference of the DSC

mounting cylinder. This allows us to record the angle φ of the calibrator to a

resolution of half an arcminute while the DSC rotates.

Trial Run

The DSC was operated in March of 2013. It was used in two different

modes, both of which involved stepping the calibrator in φ and integrating for 2

seconds at each position. This two second integration period provides sufficient

signal to noise such that the calibration is limited by systematic effects and not

statistical errors. In one mode the DSC was stepped at one degree increments over

the full 360 degree range of φ. In the second mode the calibrator was stepped in

two degree increments over 360 degrees, offset by one degree, and then stepped

in reverse at two degree increments. The orientation of the calibrator in the φ

direction is maintained between scans so that they may be compared. In total

there were five measurements recorded using these techniques.

Gain calibrated pixel difference TOD are formed from the five measure-

ments. The mean and standard deviation of each constant velocity position is

recorded and associated with its encoder reported φ value, giving a measurement

and error on a vector of φ values. The values from the five measurements are inter-

polated onto the same set of φs so that they may be directly compared. In order

to combine the five measurements into a single set of values and errors, we com-

pute the weighted mean and standard deviation at each value of φ across our five

measurements, weighting values for each individual measurement by the inverse

variance of the TOD over the two seconds they were recorded.

Our ultimate goal is to fit a model to these values that will allow us to

determine the polarization orientation angle of the bolometers. However, during

the data taking process it became apparent that the material we purchased was not
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Figure 3.16: Normalized difference data are plotted for a single pixel as a function
of DSC rotation angle φ. All recorded points are displayed in green. Points included
in the model fit are shown with their error bars in blue. Green points without a
corresponding blue point and error bar were excluded from the fit due to suspected
detector saturation. The model fit is shown in red.

standard polypropylene. It is not clear if the emissivity of the material we received

is significantly higher or if its index of refraction is different, or some combination

of these effects. The result was that the polarization signals generated during

rotation were much stronger than desired in a way that was sufficient to drive many

of the bolometers out of their linear electrothermal feedback regime (“saturate”

the bolometers), generating unreliable measurements. Our partial solution to this

problem is to look at each bolometer TOD individually and set limits on how much

the calibrated signal can change from the point where the detectors were biased.

Values of φ where either bolometer in a pixel exceeded this threshold are excluded.

We attempt no fits to pixels where more than 50% of our φ values have suspected

saturation.

Proceeding with the data that remains, we take our set of values and errors

for the difference signal in each pixel j and fit them to a model:
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ddiffj (φ) = Oj + A1f,j cos(φ− θ1f,j) + A2f,j cos(2(φ+ θ2f,j))

+A3f,j cos(3φ− θ3f,j) + A4f,j cos(4φ+ θ4f,j).
(3.34)

This model allows for a single overall offset and an amplitude and phase of

four harmonic terms that have one, two, three, and four periods over the full range

of φ. We take θ2f,j as the phase of our polarization orientation for pixel j; all other

amplitudes and phases are present to accomodate unwanted systematic effects such

as the variation of θ with φ, misalignment of the bearing with the optical axis of

the receiver, or other more subtle variations such as changes in the thickness of the

dielectric sheet over its surface or bowing of the dielectric material due to gravity,

which could in principle generate a signal at any harmonic. An example of the DSC

measurement and fit for a single pixel is shown in figure 3.16. Values of the θ2f

terms are shown in figure 3.17 for all pixels with successful measurements. These

values contain information about the relative orientation of detectors on the focal

plane but do not contain absolute orientation information. A comparison with the

values determined by the Tau A measurement is shown in figure 3.18.

The results of this trial are far from ideal. The saturation observed in the

bolometers prevented many pixels from being fit, and has left an unquantified

residual contamination in pixels that were fit. We could attempt to quantify this

error by investigating the dependence of our fit parameters on the values of our

cut criteria. However, it is clearly preferable to perform a new measurement with

a better dielectric material. A more rigorous investigation of systematic errors on

the basis of a future measurement uncontaminated by saturation would yield a

better understanding of the DSC’s utility.

It is worth noting that because the DSC is located between the secondary

reflector and the cryostat, it will never measure polarization rotation induced by the

reflector optics. The overall optics of the instrument exhibit a degree of distortion,

which will also rotate polarization angles. This distortion is believed to be induced

by the reflector optics, though it is not currently well modeled. This distortion can

be seen in figure 3.19. The intrinsic accuracy of the DSC will always be limited to

the accuracy of our ability to model this effect, though the modeling of this may in
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Figure 3.17: Relative polarization angles from the phase term θ2f plotted with
the pixel location on the focal plane. The central angle is plotted in green, with
statistical error bars plotted at θj ± σθj . The errors are most pronounced in the
lowest wafer in the plot, and the separation of the error bars is visible there.
Systematic errors are not estimated. Missing pixels were either not active during
data acquisition or greater than 50% of their data was acquired with a saturated
bolometer.

the future become very good. Polarized celestial sources or polarized calibration

sources placed on nearby mountains include the effect of all optical elements and

would not be limited by the need to model distortion induced by the reflectors.

3.3 Pointing and Beam Offsets

The encoders attached to the bearings of the azimuth and elevation axes

of the telescope report the angular positions of these axes at 95.4 Hz while the

telescope is scanning. The offsets of these values are designated such that they
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Figure 3.18: A comparison between Tau A and DSC angle measurements. The
difference between the two measurement techniques is shown per pixel, with the
median difference removed. The multi-peak structure is formed by the different
wafers.

represent the approximate boresight direction of the antenna. Due to flexure of

the antenna structure, non-orthogonality of the telescope axes, and other mechan-

ical effects, the actual offset between the encoder reported positions and the true

boresight pointing is a function of the azimuth and elevation the telescope is scan-

ning at. We use the five-parameter model described in [64] to account for these

effects, and refer to this fit as our “pointing model.”

The pointing model was created by observing millimeter-wave sources of

known locations which span a wide range of azimuth and elevation in the obser-

vation frame. The azimuth and elevation of each source is determined from the

scan and compared to its known location to determine the correct offsets at the

azimuth and elevation of the scan. The values of these offsets at different azimuths

and elevations are used to fit the model parameters. The pointing model can then

be used to correct the encoder reported azimuth and elevation values to the cor-

rect boresight azimuth and elevation. The best-fit pointing model recreates the

locations of the input sources with an RMS accuracy of 25 arcseconds.

The pointing models establishes the boresight pointing of the antenna, but

it is also necessary to know the offsets of individual bolometers relative to the
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boresight. These offsets are established by using raster scans of Saturn and Jupiter

of the type described in section 3.1.1. The detector offsets in combination with the

boresight pointing model are used to build a pointing TOD for each bolometer.

The measured beam offsets are shown in figure 3.19.
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Figure 3.19: A comparison between the as-designed (distortion-free) beam offsets
and the measured beam offsets. The as-designed offsets are shown as green plus
marks, and the measured offsets are shown as blue circles.

3.4 Instrument Beam

The diffraction-limited optics in the telescope limit the spatial resolving

power of the instrument. In terms of the sky maps that the instrument creates,

this is equivalent to “blurring” the image of the sky. In Fourier space, it is equivalent

to suppressing signal at higher `-modes. We must measure and account for the

effect the beam has on the measurements in order to accurately measure the power

spectra we are interested in. We do this by measuring B`, the `-space Fourier
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transform of the noise weighted, co-added, azimuthally averaged beam map of all

the working bolometers on the focal plane. The beam maps come from planet

scans of the kind described in 3.1.1. We use B` to represent the combined effect

of all our detectors mapping the sky.

Errors in the pointing model can create additional blurring in the map, or

equivalently reduced sensitivity to structure at higher values of `. This is because

inaccuracies in the pointing model mean that when data from different azimuths

and elevations are added together, the map is effectively blurred. We modify B`

to create an effective Beff
` that accounts for this blurring. This is modeled as:

Beff
` = B`e

−`(`+1)σ2
p/2 (3.35)

by fitting for σp in each patch by using the blurring of point sources within the

temperature map of that patch. This means that we use a different effective beam

for each patch. These effective beams are shown along with the B` calculated from

Jupiter in figure 3.20 along with their uncertainties.
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Figure 3.20: The B` calculated from Jupiter measurements is shown in red in
the upper plot. The values of Beff

` for each patch are shown as dotted lines. The
errors are shown below. Figure from [43].
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The knowledge of B` is used to correctly reconstruct the measured power

spectra, as described in 4.6.

Figures 3.11 and 3.20 are reprints of material as it appears in A Measure-

ment of the Cosmic Microwave Background B-Mode Polarization Power Spectrum

at Sub-Degree Scales with Polarbear. The Polarbear Collaboration: P. A.

R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger,

J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian,

C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa,

K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue,

G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M.

Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Mat-

sumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli,

H. Nishino, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt,

P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu,

C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B.

Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav,

and O. Zahn, ArXiv e-prints, Mar. 2014. The dissertation author made essential

contributions to many aspects of this work.



Chapter 4

Data Analysis

Over its first season of observations, Polarbear recorded more than 1.6

million bolometer-hours with successful gain calibrations following the procedures

described in section 3.1. In the case of the CBB
` power spectrum analysis, our goal

is to take these 1.6 million bolometer-hours, or more than one trillion individual

bolometer samples, and reduce them to just four numbers which represent an

estimate of the CBB
` power spectrum in four bins across a multipole range from

500 < ` < 2100. We focus on this range in `-space because it contains the peak of

the CBB
` spectrum predicted to be generated by gravitational lensing.

This process begins by preparing and cleaning the data. We then move

to forming filtered sky maps of the three individual patches we scan. Using these

maps, we then form estimates for the six power spectra CTT
` , CEE

` , CTE
` , CTB

` , CEB
` ,

and CBB
` that we want to measure. We will focus on providing a clear explanation

of how this pipeline works, highlighting the specific choices made in the case of

Polarbear data analysis. We will also point out where in this procedure the

CBB
` pipeline branches into a separate pipeline for the Cdd

L analysis. We will then

describe several studies done to constrain the impact of systematic errors on our

results.

82
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4.1 Low Level Data Processing

As described in section 2.8, the bolometer data is recorded at 190.7 Hz and

the telescope encoder data from the elevation and azimuth axes is recorded at 95.4

Hz. For this analysis we are concerned with reconstructing signals at multipoles

up to ` < 2100. These multipoles have an angular period on the sky of roughly
360◦

2100
= 0.17◦. With a telescope scan velocity on the sky of 0.8 ◦/s, these spacial

frequencies are mapped into our TOD at a maximum frequency of about 4.7 Hz.

The 190.7 Hz gives us substantially more bandwidth than we need to reconstruct

our signals of interest. Our first data processing step is thus to down-sample the

data by a factor of six to 31.8 Hz, still conservatively a factor of seven above

the highest frequencies of interest. This reduction in data volume reduces the

computational resources required in the subsequent stages of processing. At the

same time our encoder data is linearly interpolated to the bolometer sample times

and similarly down-sampled to 31.8 Hz. We are left with 31.8 Hz time synchronous

bolometer and encoder TOD which we use in the remaining stages of the analysis.

4.2 Detector Gain Generation

During CMB observations the thermal calibration source is used at the

beginning and end of every hour. The bolometer bias voltages are fixed over these

hour long observation cycles, but the telescope changes its observation elevation

every 15 minutes as described in section 2.2.3. We generate two gain values for

every bolometer of the form:

giTRJ
ADC

=
T i

Aitherm
(4.1)

following the procedures outlined in section 3.1 and using the thermal calibration

data from the beginning and end of every hour-long observation. We generate

gains only for pixels where both the top and bottom bolometers have a successful

fit for Aitherm.

We make the choice to interpolate the bolometer gains as a linear function

of time over this hour long period. An alternative would be to interpolate the
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gain as a function of the elevation steps we take during the hour; that is, assume

that the gain changes over the hour are directly related to the change in telescope

elevation angle during the observation. This second possibility initially seems

well motivated: the changes in atmospheric opacity associated with slewing the

telescope elevation should change the gain of the detectors. However, we find that

other effects such as varying atmospheric conditions dominate our changes in gain,

and so we choose interpolation as a function of time to be the best approximation

we can make. We will show later that the manner in which we interpolate has a

negligible impact on our final estimate of the CBB
` spectrum.

We are left with a set of gains giTRJ
ADC

(t) as a linear function of time between

the two thermal source observations. The gains are first interpolated to the be-

ginning and end of every 15 minute CES and stored as one file per CES with the

beginning and end gain values for each bolometer active in the scan. The gains

are further interpolated to each time sample within the CES TOD when the data

are loaded for processing.

4.3 Time Ordered Data Noise

Once we have the gain calibrations, we can compute the TOD noise of each

pixel for each CES in which it is active. Computing this noise serves two purposes:

it allows us to establish data selection criteria based on the noise in our data, and

it is also used to weight the data so that we may optimally co-add it with data

from different detectors or data taken at different times.

To compute the noise for each pixel, we take the gain calibrated top and

bottom bolometer TOD for a single CES and compute their sum and difference.

The sum TOD is the intensity TOD, corresponding to the total intensity in both

polarizations. The difference TOD represents a linear combination of the Q and

U Stokes parameters, depending on the polarization orientation angle of the pixel,

the HWP angle, and the parallactic angle at the time of each sample in the TOD.

We subtract a first order Legendre polynomial from the sum and difference

TOD over the CES and compute the power spectral density (PSD), which is the
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square of the magnitude of the Fourier transform. This is the variance of the

TOD as a function of frequency. We must then determine which frequencies are

of interest to us in our analysis.

The range 500 < ` < 2100 corresponds to sinusoidal variations on the sky

with an angular period of between 0.17◦ and 0.72◦. These modes can be either

variations of temperature or the Stokes Q or U parameters, depending on whether

we are looking at intensity (pixel sum) or polarization (pixel difference). As the

telescope scans over the sky, the spacial frequencies for a given CMB mode will map

to different frequencies in the TOD depending on how the phase fronts of the mode

on the sky are oriented with respect to the scan direction. Modes at a particular

` with phase fronts oriented perpendicular to the scan direction map to a TOD

frequency of `
360◦

0.8◦/s, where 0.8◦/s is the scan speed of the telescope. Modes

with non-perpendicular phase fronts map to lower frequencies, and modes with

phase fronts parallel to the scan direction produce no modulation of the bolometer

signal. This is represented in figure 4.1.

Figure 4.1: An example of single CMB modes representing either temperature or
Q or U is shown on top and bottom in a black and white color scale. The modes
on top and bottom have the same spatial period but a different orientation relative
to the scan direction. The telescope scan direction is indicated with a red arrow.
A mode at a given spatial scale ` maps to a maximum frequency in the bolometer
TOD when the phase fronts of the mode are oriented perpendicular to the scan
direction (top). Modes with an identical spatial period but non-perpendicular
orientation map to lower frequencies in the TOD (bottom).
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If we focus on phase fronts oriented perpendicular to the scan direction, then

we are interested in frequencies between 1.1 Hz and 4.7 Hz, and non-perpendicular

phase fronts will map to arbitrarily low frequencies. We are then left with a choice

of what band of frequencies to calculate the noise over. The choice that was made

early in the analysis process was to use the band of frequencies from 1-3 Hz, which

we refer to as the “science band.” The mean of the PSD for the sum and difference

TOD over this 1-3 Hz band are stored and used as an estimate for the intensity

and polarization noise variance for each pixel over the CES. Data weights for the

intensity and polarization data during co-addition are chosen as the inverse of the

variance calculated here. An example PSD of sum and difference TOD is plotted

in figure 4.2.
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Figure 4.2: The sum and difference PSD are plotted for one pixel over a CES.
The science band is indicated with vertical blue lines, and the means of the sum
and difference PSDs over the science band are plotted as horizontal lines matching
the color of the respective data. The excess low-frequency noise is clearly visible.

The choice of a single value to represent the noise in the TOD corresponds

to assuming the noise is white when weighting the data. As a choice to represent

this white noise level, the average over the 1-3 Hz science band is clearly not

unique and is actually not optimal, particularly for the sum TOD. Extending the

lower edge of the science band down to 0.25 Hz improves the noise in the final

estimate of the temperature power spectrum by about 30%, though the impact on

the polarization power spectra is at the sub-percent level. The final noise estimate
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improves because this different choice of science band results in a more optimal

weighting of the data. Because we are primarily concerned with polarization noise

and because a great deal of data validation had already been done when this was

discovered, the science band was left with its original bounds.

Figure 4.2 makes it clear that the noise properties of the sum and differ-

ence TOD are very different. This is because differencing the two bolometer TOD

removes any noise that is common to both detectors, whereas summing the TOD

does not. In particular, because the atmosphere is unpolarized the TOD noise due

to the atmosphere, largely created by variations in water column density across the

sky, is greatly suppressed in the difference TOD. Successfully differencing out the

atmospheric noise requires the pixel-pair relative gain to be correct. Thus pixels

for which the relative gain is not correct will see increased atmospheric noise and

be down-weighted relative to pixels where the relative gain is correct, creating a

further suppression of systematic errors associated with incorrect relative gain. It

should also be possible to calibrate the relative gain within a pixel by matching

the atmospheric noise signal in both bolometers in the pixel. We have experi-

mented with atmospheric based relative gain calibration, though do not use it as

our primary calibration technique. We do perform data cuts based on disagree-

ment between atmospheric relative gain calibration and thermal source relative

gain calibration as described below.

Finally, it is interesting to note that it is not necessary to employ the as-

sumption of white noise when weighting the data. It would be possible to weight

each frequency differently as the inverse of the PSD noise at that frequency, es-

sentially whitening the data before co-adding different pixels. This technique cor-

responds to an ideal weighting of the data and could be used to further reduce

the noise in our data. This procedure would introduce significant changes to later

steps of the data processing and so it remains a project for future improvement of

the pipeline.
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4.4 Data Selection

Not all of the data Polarbear records during CMB scans is useable. We

are only able to use data from pixels for which we have successful calibrations, such

as a known polarization orientation angle and gains. Additionally, for our first

science publications we have elected to only include data where the telescope is

moving at a constant velocity. This is a conservative choice motivated by the desire

to avoid the noise associated with extra vibrations or cable connector strain during

acceleration. Data acquired at different velocities also breaks the assumptions

employed above about which time domain frequencies contain information about

a particular ` range on the sky. We thus discard data from the “turnarounds” as

the telescope is changing scan direction. We define an individual constant velocity

portion of our scan to be a “subscan,” which can either be positive-going (azimuth

value is increasing) or negative going (azimuth value is decreasing). Rejection of

the accelerating portions of our scans results in a loss of 35.7% of our CES data.

We also attempt to exclude data from our analysis where the instrument

was not functioning properly. This selection process can exclude focal plane pixels

from ever being included, entire days or individual CESs from being processed,

remove single pixel-pairs from a given CES, or remove individual subscans for one

pixel-pair, depending on the type of problem.

4.4.1 Primary Data Selection Criteria

We describe our primary selection criteria here, and then quantify the im-

pact of each cut below. Primary cuts are those which remove large sections of data

such as pixels from a CES or entire CESs. We will describe criteria that remove

individual subscans in the following section.

Some of the cuts we describe use statistics derived from the gains and PSD

values of the detectors. It is useful to introduce a new gain value gfrac which

quantifies the differential gain in a particular pixel during a particular scan. This

quantity is not used for calibration but is a useful statistic for tracking the behavior

of pixels. We let:
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gjfrac(t) =
gj,tADC

TRJ

(t)− gj,bADC
TRJ

(t)

gj,tADC
TRJ

(t) + gj,bADC
TRJ

(t)
. (4.2)

gfrac is thus the fractional difference in gain values between the top and bottom

bolometers. It is computed as a function of time for a pair of bolometers in a focal

plane pixel j over a particular CES.

RA12 Elevation Range Cut: We exclude data on the sky patch RA12 that was

taken between the ranges of 65◦- 70◦ in elevation. This data was identified as

problematic during systematic error checks. We believe this is related to mechani-

cal resonances in the telescope structure that are known to occur in this elevation

range, but it is unclear why other patches are not affected.

Moon Proximity Cut: We exclude CESs where the center of the scan is within 20◦

of the Moon due to concern over sidelobes.

Sun Proximity Cut: We exclude CESs where the center of the scan is within 30◦

degrees of the Sun due to concern over sidelobes and thermal deformation of the

primary reflector.

Scan Length Cut: Some CESs were affected by hardware or software problems that

caused them to end too soon or continue for too long. These CESs are excluded.

PWV Cut: We exclude data where the precipitable water vapor was measured to

be higher than 4 mm.

Encoder Malfunction Cut: There were intermittent malfunctions with our azimuth

encoder. The root cause of these malfunctions is still being investigated, however

the symptom is that the reported position can fail to update for a variable interval

of time. Fortunately this malfunction is rare. We exclude CESs where on average

more than one encoder sample per subscan recorded no telescope motion.

Array Median Gain Cut:We exclude CESs where the median gain across the entire

focal plane is not between 100 and 305 ADC / KCMB.

Array Median Gain Derivative Cut: We exclude CESs where the median gain of

all detectors on the focal plane is changing faster than 20% per hour.

gfrac Outlier Cut: We compute the interquartile range (IQR) for all values of gjfrac

for a particular pixel j over all the CESs where j was successfully gain calibrated.
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We then exclude j from CESs where gjfrac exceeds five times its IQR.

gfrac Variance Cut: We consider the set of IQRs for gfrac calculated for each pixel as

described above. We then exclude a pixel j from all of our data when IQR(gjfrac) >

0.04. This choice was motivated by desire to cut the extreme tail of the distribution

of all pixel IQRs.

gfrac Median Cut: For each pixel we compute the median value of gfrac for all CESs

where the pixel was gain calibrated. We then exclude the pixel from all of our data

when this median value mgfrac is outside of the range -0.2 < mgfrac < 0.2.

gfrac Derivative Cut: We exclude a pixel j from a CES if gjfrac changes by more than

10% per hour over the CES.

Bolometer Mean Gain Cut: Pixels are removed from a CES if either of the bolome-

ters in them have a gain that is not in the range 20 to 2000 in units of ADC /

KRJ.

Bolometer Gain Derivative Cut: Pixels are removed from a CES if either bolometer

in them is changing gain at an hourly rate that is 20% different than the median

hourly rate over all active bolometers for the CES.

Atmospheric Relative Gain Mismatch Cut: For each pixel we fit a relative gain

value between the bolometers by matching the level of atmospheric fluctuations

in their TOD. These fits are usually in good agreement with the thermal source

derived values. We remove data where the atmospheric gain fit reports the ratios

of the gains to be either infinite or zero.

Difference PSD Upper Bound Cut: If the variance found using the difference PSD

for a pixel over the 1-3 Hz science band is larger than three times the median value

over a CES, the pixel is removed from the CES.

Difference PSD Lower Bound Cut: If the variance found using the difference PSD

for a pixel over the 1-3 Hz science band implies an NET less than 260 µK/
√

Hz

the pixel is excluded from the CES. Values below this are considered un-physically

low.

Ground Template Cut: Before map making, our data is filtered in several different

ways which will be described below. One of these filters is called the “ground

template” filter; see section 4.5.1 for more description. We pre-compute the TOD
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variance before and after applying this filter and identify the upper quartile value

(above 75% of the data) of this difference. We then exclude pixels from a CES

that are four times higher than this upper-quartile value.

Bad Pixel Cut: We remove five pixels from our data set due to large errors on the

gain model fits.

Yield Cut: After all other exclusion criteria have been applied, we exclude CESs

where there are not at least 50 focal plane pixels active. This is designed to ensure

that all of the maps we make have good scan coverage.

In order to quantify the impact each criteria has on our data set we compute

what fraction of our data it removes. This fraction is computed relative to all data

for which we generate a gain. Instead of just computing this value in terms of

bolometer-hours, we choose to do it in terms of polarization data weight. As

discussed above, polarization data from a given pixel is weighted by the inverse

variance of its difference TOD from 1-3 Hz. We compute the total weight for each

pixel-CES as the product of the inverse variance times the duration of the CES.

We use the sum over this product for all pixels and all CESs with gains generated,

and take that to be the total data weight. We then compute the fraction of weight

that each criteria removes. It is possible to characterize both the total fraction of

weight a particular criteria removes from the data set and also the “orthogonal”

fraction of data removed by a particular criteria, which we define as the fraction of

data excluded by a particular criteria that is not also removed by another. These

values are shown in table 4.1.

The total fraction of data removed by weight is 28.46%, or 40.44% in terms

of pixel-hours, and 40.72% in terms of pixel-CESs. In total we retain 8,354 CESs

across the three patches, with a median number of active pixels of 301.

4.4.2 Subscan Removal Criteria

Another set of cut criteria we implement remove individual subscans from

pixel TODs. These are largely designed to find and remove “glitches” such as large

spikes or other non-Gaussian features in the TOD, but also remove data when

there was a problem with the instrument that affected a time period less than a
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Table 4.1: Impact of Polarbear data selection criteria. The fraction and or-
thogonal fraction of data weight removed by each selection criteria is listed, along
with the total weight removed by any cut.

Cut Name Cut % Orthogonal Cut %
RA12 Elevation Range Cut 7.24% 4.99%

Moon Proximity Cut 3.80% 2.37%
Sun Proximity Cut 2.23% 1.24%
Scan Length Cut 0.02% 0.00%

PWV Cut 3.43% 1.60%
Encoder Malfunction Cut 1.56% 0.67%
Array Median Gain Cut 1.71% 0.60%

Array Median Gain Derivative Cut 1.05% 0.21%
gfrac Outlier Cut 2.53% 1.14%
gfrac Variance Cut 1.20% 0.64%
gfrac Median Cut 0.68% 0.46%
gfrac Derivative Cut 0.38% 0.01%

Bolometer Mean Gain Cut 0.00% 0.00%
Bolometer Gain Derivative Cut 1.66% 0.54%

Atmospheric Relative Gain Mismatch Cut 0.69% 0.37%
Difference PSD Upper Bound Cut 1.67% 0.48%
Difference PSD Lower Bound Cut 0.52% 0.34%

Ground Template Cut 8.44% 4.46%
Bad Pixel Cut 0.33% 0.05%
Yield Cut 17.37% 0.14%
Total 28.46% -

full CES.

We have three primary interests in establishing the subscan removal cri-

teria: eliminating obviously bad data where the instrument was malfunctioning,

preventing systematic contamination of our results, and reducing our error bars by

the removal of non-Gaussian noise (the technique we use to calculate our error bars

is discussed in section 4.6.5). We discuss our subscan removal criteria individually

here.

RPS Signal Loss: There are brief periods of time where we fail to receive the RPS

signal (see section 2.2.4), which results in a loss of pointing information. This

pointing data is nominally interpolated and likely useable for brief periods, but we

remove subscans where there was any loss of the RPS signal.
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UDP Packet Loss: As described in section 2.8, all of our bolometer data is received

over Ethernet using the UDP protocol, which does not guarantee packet delivery.

We thus occasionally experience dropouts in bolometer data from parts of the focal

plane. This data loss can be interpolated, and we set the requirement that no more

than 10% of data from a subscan be lost. In practice this data loss is quite rare.

Servo Malfunction: We record both the commanded position of the telescope and

the encoder reported position at each pointing sample. We do not expect perfect

agreement between these, but if the telescope control system is malfunctioning

this difference will increase. Disagreement between the commanded and actual

positions will also increase when the grease in the speed reducer connecting the

servo motor to the friction drive is too cold and becomes unacceptably viscous. In

this condition the telescope is unable to meet its acceleration and velocity speci-

fications, which results in the telescope being unable to execute our desired scan

pattern. We remove subscans where the difference between any measurement of

the commanded and actual azimuth position is larger than 0.5◦.

Anisotropic Scan Noise: The telescope has certain mechanical resonances that lead

to excess glitches in our data. While not always present, these resonances are

largely elevation and scan speed dependent when they do occur. It has also been

observed that they preferentially create noise in a particular scan direction. We

thus compute the standard deviation of the difference TOD of all negative going

(σneg) going and positive going (σpos) subscans independently. We then require

that:

σpos − σneg
σpos + σneg

< 0.23 (4.3)

or we remove that pixel from the CES. This criteria removes about 2.5% of our

data but is found to reduce our errors bars, though only at the sub-percent level.

Glitch Identification: To locate individual glitches in our TOD, we convolve each

difference TOD with a set of kernels which are sensitive to different shapes or

frequencies of glitches. Each kernel has a center based on a Lorentzian of different

widths, with flat “wings” added at negative values to give each kernel zero net area.

The central Lorentzian shape was motivated by matching the shape of glitches
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located by eye in the TOD. The zero area criteria ensures the kernels have no

response at zero frequency. These kernels and their frequency responses are shown

in figure 4.3.

Each kernel is convolved with the difference TOD of a pixel over a full

CES. We calculate the MAD (see equation 3.25) of each convolved TOD. We then

remove subscans where the absolute value of the TOD of any of the convolutions

exceeds 6.8 times its MAD. The choice of this criteria is driven by the competing

requirements of aggressively removing glitches while not removing data that is

consistent with Gaussian noise. These criteria are tuned such that we remove

about 0.25% of subscans in white noise simulations and 1.4% of subscans from our

real data. There was concern that criteria which removed more Gaussian noise

could bias our signal, but this level was deemed acceptable. Implementing these

convolution based subscan removal criteria reduces our CBB
` error bars by more

than one percent relative to no glitch flagging. We interpret this result to mean

that the data we removed was mis-weighted.
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Figure 4.3: The set of six kernels used for TOD glitch finding are shown in the
time (left) and frequency (right) domains. The frequency response is shown as the
magnitude of the Fourier transform of the kernels. The kernels are zero-padded to
the length of a CES before being Fourier transformed.

Cut Fraction: After all these subscan removal criteria described above have been

applied, we ensure that not more than 30% of subscans have been removed for any

of the active pixels during a CES. We consider pixels above this threshold to be

suspicious, and remove all the data from these pixels over the CES.
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Combining all of our criteria, we remove a total of 4.3% of our subscans

while reducing our error bars at about the half-percent level. There is some el-

evation dependence to this removal, which is demonstrated in figure 4.4. The

elevation dependence is likely due to changes in mechanical resonances and bear-

ing scan speed as the observation elevation changes.
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Figure 4.4: The percent of subscans removed by all flagging criteria are shown
as a function of elevation. The overall fraction of subscans removed across all
elevations is 4.3%.

Additionally, we investigated several other subscan removal criteria designed

to search for what we refer to as “time-dependent scan-synchronous signals.” A

scan-synchronous signal is a signal which occurs in-phase with the telescope scan

motion. These signals occur at the same azimuth location every time the tele-

scope completes a subscan. Because the sky is drifting relative to the ground,

this does not correspond to most legitimate signals received from the sky. We will

see in the description of our TOD filtering below in section 4.5.1 that we remove

scan-synchronous signals that occur at identical amplitudes in every subscan, but

signals which occur at different amplitudes at the same point in every subscan are

not completely removed. We refer to these as time-dependent scan-synchronous

signals because their amplitude varies as a function of time but they still create a

signal at the same fixed point in each subscan. However, if these signals do not also
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occur at the same RA/DEC coordinates between different days they should only

contribute noise and not actually bias our measurement of CBB
` . To investigate

the impact of these signals, we developed several criteria based on the co-addition

of the square of each subscan TOD and on the correlations of different subscan

TOD across a CES which were successful in identifying and removing signals which

we judged by eye to be time-dependent and scan-synchronous. They also removed

many possibly false-positive signals which we did not judge to be scan-synchronous

by eye. We then performed white noise simulations which involved scanning 100

different realizations of a simulated CMB sky with our real telescope pointing,

adding white noise to each TOD in the amount calculated via the average PSD

over the science band as described above. We performed these simulations on the

same realizations of signal and noise with and without removing the set of sub-

scans which were flagged by our time-dependent scan-synchronous signal criteria

as applied to the real data. We used these simulations to compare the impact on

CBB
` from removing the time-dependent scan-synchronous signals we identified in

our real data with removing the same amount of data from white noise simulations

without any scan-synchronous signals. We found that the change in CBB
` in the

real data was consistent with removing the same amount of data from white noise

simulations with a minimum PTE of 56%. In the absence of any evidence that our

time-dependent scan-synchronous signals were occurring at the same RA/DEC co-

ordinates between different days and with these simulations failing to indicate the

removal of any systematic bias, we were not strongly motivated to implement these

criteria. Furthermore, the removal of data associated with these criteria increased

our error bars on CBB
` by more than 12%, and so without any evidence that they

were useful for removing a systematic bias we elected to not implement these cuts

in our final data removal criteria.

Overall, we believe our data selection criteria are conservative. We largely

adopted a “when in doubt, cut it” philosophy for our first season of data, partic-

ularly with regard to our primary cutting criteria (those in table 4.1). It is likely

that several of these criteria could be relaxed without contaminating our results,

which would allow some data to be recovered. This will be explored in the future.
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4.5 Filtering and Map Making

Our CMB maps are formed from our TOD using a procedure that is fairly

standard in the field [59,65]. It is frequently expressed as:

m =
(
ATN−1A

)−1
ATN−1Fd (4.4)

which corresponds to minimizing the residual noise in the map under the assump-

tion that the noise is white. This expression simultaneously succeeds at masking

the complexity of some parts of the operation while also obfuscating the obvious.

We will describe the procedure step-by-step here. On the right hand side of equa-

tion 4.4, d is a vector of our bolometer TOD, F represents a series of filters we

apply to the TOD, N−1 represents our inverse variance noise weighting for each

TOD sample, and AT and A are objects called the pointing matrix and its trans-

pose. A and AT represent a way to use our telescope pointing data to inter-convert

between a given time sample in the bolometer TOD and a map pixel in the sky

map we are constructing (this will be described in more detail below). On the left

hand side, m represents our map. The map is pixelated at two square arcminutes,

below the actual resolution of the instrument, and uses the equal area projection

described in [66] centered at the center of each of the three patches we scan. We

approximate each patch as flat.

In words, the part of the equation that readsATN−1Fd can be described as

taking our detector TOD d, filtering it in some way represented by F , multiplying

each time sample by its weight from N−1, and then projecting each sample onto

an object representing our sky map at some particular map pixel using AT . The

portion of the procedure that reads
(
ATN−1A

)−1 can be interpreted as dividing

each pixel in our map by the sum of the weights from N−1, as in a normal weighted

averaging operation. We then finally arrive at the estimate of the sky mapm. This

description hides some difficulty in creating two separate maps of polarization (one

for Q and one for U) from the TOD, but is a good mental picture to have in mind.

It is worth noting that the filtering operation represented by F can also

be interpreted as a different kind of weighting operation that is not associated

with N−1. Our filtering attempts to project out parts of our TOD that have
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a particularly low signal-to-noise ratio. The filtering removes signal and noise

from any part of the TOD it projects out. The filtering corresponds to removing

power from Fourier modes that make up our map, and this removal of power is

anisotropic in the sense that some Fourier modes are affected more than others.

While the bias introduced by weighting each mode in the map by N−1 is removed

via
(
ATN−1A

)−1, there is no similar operation at the map level to remove the bias

introduced by the filtering. We are thus left with a biased estimate of the sky map,

meaning that not all Fourier modes that make up the map are equally represented.

Thus we cannot claim the maps we produce are accurate representations of the

true sky. This bias is corrected later when the power spectrum is estimated so that

we do make an unbiased estimate of the power spectrum.

4.5.1 Filtering

A series of three filters are applied to our TOD before they are mapped.

These filters remove high frequencies, low-order polynomials per each subscan, and

scan-synchronous signals.

Low-Pass Filtering

High frequencies are removed with a low-pass filter with a frequency profile:

F (f) = e
− log(

√
2)

(
f

flpf

)6

, (4.5)

where flpf = 6.3 Hz. Because projecting our TOD onto map pixels of a finite size

represents a form of down-sampling, we first impose this low-pass filter to prevent

aliasing higher frequencies from the TOD into the map domain. The full-season

effect of the low-pass filtering is isotropic with respect to the azimuthal angle ϕ~̀
in Fourier space.

Polynomial Filtering

We subtract a Legendre polynomial from each subscan TOD to remove

excess low frequency noise. A first order polynomial is fit and removed from the
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difference TOD, while a third order is fit and removed from the sum TOD. The

point sources in each sky patch are masked in the TOD and excluded from the

polynomial fits to avoid spreading their power across the domain of the polynomial

being subtracted. Figure 4.5 shows an example of the effects of the polynomial

filtering over a full season of data. The effect is not isotropic with respect to the

Fourier plane azimuthal angle ϕ~̀.

Figure 4.5: The anisotropic effect of polynomial filtering on BB is shown in 2D
Fourier space for the sky patch RA23 for the entire season of data. The factor
by which BB noise and signal are suppressed due to the polynomial filtering is
plotted on a log color scale. Only the region from 500 < ` < 2100 is shown; the
rest of Fourier space is masked out.

Ground Template Filtering

Our most complicated filter is the one designed to remove scan-synchronous

signals. We refer to this filter as a “ground-template” filter because it removes sig-
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nals which are fixed in azimuth and elevation space, as any stray light inadvertently

scattered in from the ground would be. This filter makes use of our scan strategy

which fixes the telescope at one elevation and scans over the same range of azimuth

angles for fixed periods of time as discussed in section 2.2.3. After applying the

low-pass and polynomial filters, we bin the TOD of a pixel from each subscan into

azimuth bins that are 0.08◦ in width. We then create an average value in every

bin over the full CES, and this average is referred to as the ground template for

that CES. We then subtract the ground template from each subscan TOD to form

a TOD free of average ground pickup.

Because of our use of RA/DEC coordinates for map making, the ground

template filter has a very specific impact on certain Fourier modes in our maps.

This effect is exploited by other groups [67] as an alternative method of filtering out

ground signals, though without explanation. In fact, this effect does not appear

to be well documented nor widely understood, so we explain it here. As discussed

in section 2.2.3, our CES scans rely on sky drift to sample different parts of our

sky patches. If we allow R̂A and ˆDEC to be our basis vectors for the RA/DEC

coordinate system, then sky drift corresponds to motion in the R̂A direction.

Most Fourier modes will change their phase relative to our scan pattern as the RA

coordinate advances during the scan. Because the phases of these modes change,

they do not add signal coherently in the same azimuth bin across the CES and

are thus not captured by the ground template. However, modes with their wave

vector oriented perpendicular to R̂A remain at a fixed phase relative to the scan

pattern and are thus removed by the ground template. This is demonstrated in

figure 4.6.

Because the sky always drifts in the R̂A direction, the same Fourier modes

are removed by the ground template filter during every CES we perform. The

ground template filter thus represents our largest source of anisotropic bias in the

co-added maps we make. However, the removed modes correspond to a small

fraction of the modes we sample.

An example application of the ground template filtering is shown in figure

4.7. The vertical band representing modes with phase fronts parallel to R̂A is
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Figure 4.6: Fourier modes of either the Stokes I, Q, or U parameters are shown
on a sky projection at the same spatial scale ` for two different orientations (MODE
1 and MODE 2). The telescope scan pattern over the CES is represented by the
red arrows, and the direction of the sky drift is represented by the blue arrows.
The scan direction is along a line of constant elevation, which is generally not
aligned with RA or DEC. Sky drift corresponds to translating the RA coordinate
relative to the scan pattern. Modes with their wave vector perpendicular to the
RA direction (MODE 1) do not change phase relative to the scan pattern as the
sky drifts and are thus removed by the ground template filtering. Modes with their
wave vectors oriented in another direction (MODE 2) do change phase relative to
the scan pattern as the sky drifts and are not removed.

clearly visible in the BB suppression ratio.

4.5.2 Pointing Matrix and Data Models

The pointing matrix AT is a matrix assembled using the pointing TOD

generated by the procedure in section 3.3. For the sum TOD, the pointing matrix

converts between samples in the time domain indexed by t and the corresponding
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Figure 4.7: The anisotropic effect of ground template filtering on BB is shown in
2D Fourier space for the sky patch RA23 for the entire season of data. The factor
by which BB noise and signal are suppressed due to the ground template removal
is plotted on a log color scale. Only the region from 500 < ` < 2100 is shown; the
rest of Fourier space is masked out.

map pixels on the sky indexed by p. The transpose of the pointing matrix A will

project map pixels into the TOD. We may model this behavior as:

dsum
t = AtpIp + nsum

t , (4.6)

where dsum
t represents our sum TOD, Ip represents the Stokes intensity parameter

I at a given map pixel p, and nsum
t represents the noise in the sum TOD. For the

difference TOD, the same operation is modeled as:

ddiff
t = Atp cos(2Θt)Qp + Atp sin(2Θt)Up + ndiff

t , (4.7)

where Qp and Up are the Stokes Q and U parameters at a given sky pixel p, Θt
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is the polarization orientation angle defined in equation 3.30 of the detector in

question at a given time index t, and ndiff
t is the noise in the difference TOD.

4.5.3 Solving for Maps

Constructing the Stokes intensity map is exactly as simple as our original

naive reading of equation 4.4 lead us to believe. We bin our filtered, weighted TOD

into map pixels and then divide by the sum of the weights.

Equation 4.7 makes it clear that the case of the polarization data is more

complicated. The problem is that we are not simply making one map of polariza-

tion but two maps representing the Stokes Q and U parameters. We must specify

how a TOD from a particular pixel contributes to either Q or U .

We allow AT to become a coupling matrix such that it will project ddiff
t

into two different maps with two different weightings. AT must now couple

cos(2Θt)Nt
−1dt into the appropriate Q pixel Qp and sin(2Θt)Nt

−1dt into the

appropriate U pixel Up.

Considering 4.7 with the weighting cos(2Θt) for Q and sin(2Θt) for U , the

weights W accumulate for a given map pixel Qp or Up as:

WQp =
∑
t

N−1
t [Atp cos2(2Θt) + Atp sin(2Θt) cos(2Θt)]

WUp =
∑
t

N−1
t [Atp sin2(2Θt) + Atp cos(2Θt) sin(2Θt)]

(4.8)

ATN−1A can then be written for each map pixel as:

C̃ = ATN−1A =

(
ncc ncs

ncs nss

)
(4.9)

with:

ncc =
∑
t

N−1
t cos2(2Θt)

nss =
∑
t

N−1
t sin2(2Θt)

ncs =
∑
t

N−1
t cos(2Θt) sin(2Θt)

(4.10)
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where the sums run over all time samples at a given map pixel.

The last step required to construct our map m =

(
Q

U

)
is to invert C̃ to

form
(
ATN−1A

)−1. It is clear from equation 4.7 that measuring each sky pixel at

only one value of polarization angle Θt measures a linear combination of Q and U ,

but is insufficient to reconstruct either Q or U . In general, having insufficient infor-

mation to reconstruct both Q and U corresponds to C̃ being singular. Measuring

each map pixel from many different detector polarization angles ensures that this

does not happen. Having more angular coverage (measurements at many values of

Θt) also helps to evenly distribute noise in Q and U , and is useful for suppressing

other systematic errors [46].

4.5.4 Co-added Maps

We form an individual map from every CES we include in our final data

set. These can then be co-added to form a map of the entire season’s observations.

An example of a full season co-added map for a single patch is shown in figure 4.8.

Figure 4.8: Co-added Q and U maps for the sky patch RA23 shown with the
apodization described in section 4.6.1 applied. Figure from [43].

It is at this point in the pipeline that the CBB
` and other power spectra

analyses diverge from the Cdd
L pipeline. The three full season co-added maps are
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the inputs to the Cdd
L pipeline described briefly in section 4.9. For the CBB

` mea-

surements, we form a daily map for every day we observed each patch during the

season. The patches RA4.5, RA12, and RA23 have 148, 139, and 189 daily maps

respectively.

4.6 Power Spectrum Estimation

We will describe here the major components of the CBB
` analysis pipeline,

which largely follows the Monte Carlo Apodized Spherical Transform Estimator

(MASTER) procedure outlined in [68]. We modify the estimator slightly by only

using cross-spectra between maps obtained from different days, as described in

[69,70].

The MASTER technique is primarily used to account for the fact that we

are attempting to measure power spectra, defined for the full sky, when we do not

have a measurement of the full sky. It also accounts for the anisotropy in the maps

created by filtering and for the finite angular resolution of the beam. For a given

full sky spectra specified by its ensemble average 〈C`〉, where the averaging is taken

to occur over many realizations of the sky, MASTER models the procedure as:

〈D̃`〉 =
∑
`′

K``′〈D`′〉+ 〈Ñ`〉

K``′ = M``′F`′B
2
`′

(4.11)

where we have replaced 〈C`〉 with the flattened spectra 〈D`〉 = `(`+1)
2π
〈C`〉 or

〈D̃`〉 = `(`+1)
2π
〈C̃`〉. D̃` represents the flattened pseudo-spectra, which is what

we will directly measure using our partial sky maps, M``′ represents the mode

coupling matrix, F` represents the filter transfer function, B` represents the in-

strument beam in Fourier space, the measurement of which is described in section

3.4, and Ñ` is the noise bias. The apodization created by our finite patch size

(as well as the edge taper we apply to prepare each map, see below) correlates

different Fourier modes from the full sky, and this is accounted for via the mode

coupling matrix. The filter transfer function F` accounts for the loss of power in

the Fourier modes due to filtering. As described before, the filtering can be de-
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scribed as projecting out signal and noise in modes where the signal-to-noise ratio

is particularly bad. This corresponds to down-weighting the filtered modes, and

the filter transfer function ensures that the overall average is properly normalized.

In the case of Polarbear we use only cross-spectra in our estimate of

〈C̃`〉. The cross-spectrum estimator is unbiased in the sense that the expectation

value of the estimator is equal to our signal 〈C̃`〉 [69], and thus we may set 〈Ñ`〉 = 0.

Including “auto-spectra,” terms by cross-correlating maps from a single day with

themselves, as is common in other analyses including the initial description of

the MASTER procedure, introduces a noise bias which must be simulated and

subtracted. Our use of only cross-spectra avoids this extra complication at the

cost of losing the signal in the same-day cross correlations.

4.6.1 Map Preparation

The daily maps described above are the input to the power spectrum esti-

mator. Before the maps can be Fourier transformed to form power spectra, they

must be apodized. This apodization de-weights the higher noise map pixels at the

edges of the map, and masks point sources. The temperature maps are apodized

with an inverse noise variance cutoff at the edges of the map, and with a flat func-

tion where the CMB fluctuations are measured with a large signal-to-noise ratio.

The Q and U maps are apodized identically to each other using a cutoff on an

estimate of the maximum noise between the Q or U maps. Map pixels with an

apodization window value below 1% of the peak are set to zero. Point sources in

the map are also masked. The apodization edges are modified using the technique

described in [71] to minimize E/B leakage. The inverse variance noise estimates

for each map pixel are multiplied by the apodization mask and summed over the

entire map to produce a single weight value for each map wXi , where i indexes the

day each map belongs to and with X ∈ [T,E,B].
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4.6.2 2D Fourier Transforms

Once our daily maps are apodized, the next step is to form the 2D Fourier

transform of each map. For the temperature spectra, the Fourier transforms of the

maps are all we need to perform the correlations that produce the power spectra.

For the polarization data we must form E and B from the Fourier transforms of

the Q and U maps. E and B can be formed from Q and U in Fourier space using

equation 1.19. However, the apodization that is applied to the maps essentially

alters the basis over which the Fourier transforms are performed, meaning that

the naively applied transform results in ambiguous (non-orthogonal) modes. The

basis functions representing individual Fourier modes must be altered to account

for this. After using equation 1.19 to form E and B in Fourier space, we correct for

the mode-mixing [72] and generate the pure-E and -B 2D Fourier spectra. This

procedure leaves us with our Fourier transforms of the daily maps m̃X
i , where i

again indexes the map number and X ∈ [T,E,B].

4.6.3 Power Pseudo-spectra

For our estimate of the power pseudo-spectrum D̃`, we only want to compare

maps from different days with each other. We estimate the pseudo-spectra as a

weighted average of the products of maps between different days. The operation

is:

XY~̀ =
1∑

i 6=j wiwj

∑
i 6=j

wim̃
X
i wjm̃

Y ∗
j , (4.12)

where X, Y ∈ [T,E,B] and i and j index the map number and run over the total

number of days we have maps for each sky patch. This gives us an estimate of our

2D Fourier pseudo-spectra excluding the terms where i = j. Terms where i = j

represent the auto-spectra of daily maps, which we do not want to include. An

example is shown in figure 4.9 for X = Y = B (i.e. the 2D BB power pseudo-

spectra) for the sky patch RA23.

If figure 4.9 were a true 2D power spectra, each Fourier-space pixel in the

image would be independently drawn from a Gaussian random field with a variance
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Figure 4.9: The flattened 2D BB Fourier pseudo-spectra for RA23 is shown
normalized to the maximum value within 500 < ` < 1100 and shown only in the
range of 500 < ` < 2100. The increasing noise as a function of |~̀| is clearly seen.
The pixelization that is visible represents the true discretization of the Fourier
space data.

equal to CBB
` at ` = |~̀|. Instead we see coherent “blobs” in the image that span

many pixels. These structures are a result of the mode mixing caused by our finite

apodization and represented byM``′ which must be accounted for in the final power

spectrum estimation.

We form 2D estimates of TT , EE, TE, TB, EB, and BB in this way for

each sky patch. We then average over radial bins of width ∆` = 40 to arrive

at high-resolution 1D pseudo-spectra. The narrow bin width and the size of our

sky patch means that the signal in each bin is highly correlated with neighboring

bins so that they are not independent measurements. An example of this high-

resolution 1D pseudo-spectra is shown in figure 4.10 for the same data shown in
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figure 4.9
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Figure 4.10: The 1D BB high-resolution power pseudo-spectra (C̃BB
` ) for RA23

over the full first season is shown normalized to the maximum value within 500 <
` < 1100 and shown only in the range of 500 < ` < 2100. This corresponds to
the same normalization and range displayed in figure 4.9. Each point in this figure
comes from averaging over an annular ring in figure 4.9 with widths and locations
as indicated by the blue bars in this figure.

4.6.4 Power Spectra

We now need to use our estimates of D̃XY
` to estimate the true sky power

spectra DXY
` . To do this we need to construct K``′ = M``′F`′B

2
`′ . The process

for estimating B` is described in section 3.4. The mode coupling matrix M``′ is

calculated analytically from the apodization masks calculated for the full season

co-added maps [73]. M``′ is calculated at the resolution of the psuedo-spectra

(∆` = 40).

The filter transfer function F` is estimated via Monte Carlo simulations. A

set of one arcminute resolution maps using Gaussian realizations of the WMAP-9

best fit ΛCDM power spectra [29] are generated. The instrument beam B` and
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pointing TOD of each detector are used to scan these input maps to create simu-

lated TOD. The noise weightings are also used to correctly weight the contribution

of each detector. These TOD are filtered, mapped, and processed identically to

the real data. The results of these simulations are used to determine F` given the

knowledge of the initial input cosmology. Importantly, the value of the transfer

function is not strongly dependent on the input cosmology. Additionally, the poly-

nomial and ground template filtering can create E-to-B leakage. This leakage is

assessed using map realizations with only TT and EE or TT and BB and the

leakage is subtracted at the pseudo-spectra level.
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Figure 4.11: The filter transfer functions for TT , EE, and BB. This shows the
impact of filtering on both signal and noise over the full first season. The decay
of the transfer function at higher `s is due to the effects of the low-pass filtering.
The sharp fall at lower ` is due to the polynomial filtering. As seen in section
4.5.1, the ground template is fairly homogeneous as a function of |`| (though is
highly anisotropic as a function of the Fourier space azimuthal angle ϕ~̀) and so it
primarily affects the overall amplitude of the transfer function. Figure from [43].

M``′ , F`, and B` are all calculated at the high-resolution (∆` = 40) binning.

If it were possible to use these to directly solve equation 4.11 then this would suffice.

However, because of the small, highly correlated bins we have used to calculate

our pseudo-spectra, the mode coupling matrix M``′ is singular at this resolution.

We thus cannot invert K``′ to solve equation 4.11 for the true D` given D̃`.
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We proceed by binning D̃` and K``′ into wider bins to produce D̃b and Kbb′ .

The advantage of the initial high-resolution binning is that the computationally

intensive steps only need to be performed once, and different binning options can

be implemented at the final step with little penalty. We choose four equally spaced

bins between 500 < ` < 2100 using ∆` = 400. This both reduces the correlations

between the bins as well as reduces the error on each bin. We are left with:

〈D̃b〉 =
∑
b′

Kbb′〈Db′〉, (4.13)

so our unbiased estimate of the band power Db in each bin b is:

Db =
∑
b′

K−1
bb′ D̃b (4.14)

At this level of binning, each bin is sufficiently uncorrelated to allow us to

invert Kbb′ to form K−1
bb′ as required by 4.14.

4.6.5 Error Bar Estimation

The uncertainty in the binned power spectrum is estimated analytically

as described in [67]. The analytically calculated error bars include two terms: a

sample variance term based on the expected value from the binned best-fit WMAP-

9 ΛCDM power spectra, and a noise variance term based on the noise in our maps.

The sample variance term occurs because our measurement of the power spectrum

corresponds to measuring the variance of a Gaussian distribution: each mode we

measure corresponds to one “draw” from this distribution, and so with more modes

our uncertainty on the variance decreases. This is related to the term “cosmic

variance,” which refers to the limited number of modes that exist on the full sky

and corresponds to the ultimate sample variance that can be achieved. However,

because we measure a small fraction of the sky our sample variance is higher than

this cosmic variance limit.

With the appropriate weighting, the noise bias of the daily auto-spectra

formed by cross-correlating maps from the same day of data is a good estimator

for the variance of the power spectrum estimator. The signal is subtracted from
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the auto-spectrum using the cross-spectrum estimator (equation 4.12) to form a

estimate of the noise variance N~̀ as:

N~̀ =

∑
iw

2
i

(
∑

iwi)
2

[ 1∑
iw

2
i

∑
i

w2
i m̃

X
i m̃

Y ∗
i −

1∑
i 6=j wiwj

∑
i 6=j

wiwjm̃
X
i m̃

Y ∗
j

]
,

(4.15)

where again X, Y ∈ [T,E,B] and with i and j indexing the map number. This

estimate of the noise variance is azimuthally averaged, binned, and multiplied by

Kbb′ in the same way as the pseudo-spectra to estimate the noise variance in the

binned power spectra. The noise variance and sample variance terms are both

reduced by a factor of
√

2
νb
, where νb is the number of degrees of freedom, or

independent Fourier modes, in each bin. νb is calculated analytically from the

apodization masks as described in [68]. The loss of degrees of freedom (modes)

due to filtering is not currently accounted for.

The error estimator is tested on simulated TOD formed by scanning sim-

ulated maps generated with WMAP-9 ΛCDM cosmology. Noise is injected into

the TOD using either white noise or a noise model that takes account of measured

temporal correlations of the detector noise. For both noise models, the uncertainty

estimator correctly recovers the spread in power spectra estimated from random

realizations of the sky and the noise to within 10%. For reasons we do not un-

derstand the analytic estimate appears to be biased high, which makes the errors

conservative and so was considered acceptable.

4.7 Absolute Gain Calibration

Due to inaccuracies in planet temperature modeling and map reconstruc-

tion, the gains we measure in section 3.1 are only relative. In order to make an

absolute measurement of CBB
` we need an absolute calibration of the gains. In

order to do this, we co-add the CTT
` spectra from all three patches and fit for a

single absolute gain factor to minimize the difference between our measurement of

CTT
` and the binned best fit WMAP-9 ΛCDM CTT

` spectra. For our final data set,
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this fit indicates that the gains must be increased by 32%, and so all gain factors

are multiplied by 1.32 and the power spectrum estimation procedure is repeated.

Accounting for the noise and sample variance as well as the beam uncertainty

described in section 3.4, we find that the three patch CTT
` spectra as well as the

combined CTT
` spectra is consistent with the WMAP-9 ΛCDM CTT

` spectrum.

4.8 Absolute Polarization Angle Calibration

As described in section 3.2, misaligning the polarization orientation angle

of the instrument with respect to the coordinates in which E and B are calculated

from Q and U results in a rotation of E into B. For a misalignment of angle α,

this can be written as [74]:

E(~̀) = cos(2α)Ẽ(~̀) + sin(2α)B̃(~̀)

≈ Ẽ(~̀) + 2αB̃(~̀)

B(~̀) = − sin(2α)Ẽ(~̀) + cos(2α)B̃(~̀)

≈ −2αẼ(~̀) + B̃(~̀)

(4.16)

where “ ˜ ” indicates a primordial quantity, and the approximations rely on α� π.

The relative amplitudes of E and B mean that leaking a small amount of E into

B is a potentially significant source of systematic error:

∆CBB
` = 〈BB(~̀)− B̃B̃(~̀)〉ϕ~̀

≈ 4α2CẼẼ
` (4.17)

This rotation will also affect CEB
` , which is otherwise zero (Ẽ and B̃ are uncorre-

lated):

∆CEB
` = 〈EB(~̀)〉ϕ~̀

≈ 2αCẼẼ
` + 2αCB̃B̃

` ≈ 2αCẼẼ
` (4.18)

We thus fit for a rotation angle error using the measured value of CEB
` ,

remove the rotation in the Q and U maps, and again repeat the power spectrum

estimation procedure. This leads to a correction of 1.08◦ relative to the Tau A

calibrated value. The statistical uncertainty of this correction is ±0.20◦. The CEB
`

spectra before and after the self-calibration procedure are shown in figure 4.12.
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Figure 4.12: In a) the CEB
` spectrum is shown before the absolute angle calibra-

tion, which rotates all detector polarization angles by 1.08◦. In b) CEB
` is shown

after the absolute angle calibration procedure, and is consistent with zero. Figure
from [43].

In addition to a polarization rotation introduced by an instrumental mis-

calibration, there are also potential mechanisms involving exotic physics for ro-

tation the primordial polarization of the CMB before it reaches us [61]. If we

are interested in measuring CBB
` generated by primordial gravitational waves or

by gravitational lensing, de-rotation based on the CEB
` spectrum is the correct

procedure. Measuring CEB
` , CTB

` , and CBB
` due to intrinsic rotation of CMB po-

larization will be a target of future stages of the experiment, but will require better

control over systematic errors of polarization angle calibration without using the

CMB.

4.9 Cdd
L Estimation

As described by equation 1.25, gravitational lensing will create correlations

between different parts of the 2D Fourier plane. In particular, denoting averages
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over ensembles of different CMB skies as 〈 〉CMB, this leads to:

〈E(~̀)E(~̀′)〉CMB = C̃EE
` (~L · ~̀) cos(2ϕ~̀~̀′)φ(~L)

〈E(~̀)B(~̀′)〉CMB = C̃EE
` (~L · ~̀) sin(2ϕ~̀~̀′)φ(~L),

(4.19)

where ~L = ~̀+ ~̀′, C̃EE
` indicates the primordial (un-lensed) CEE

` spectrum, and

ϕ~̀~̀′ = ϕ~̀′ − ϕ~̀, as before. We may then define the estimators:

dEE(~L) =
AEE(L)

L

∫
d2~̀

(2π)2
E(~̀)E(~̀′)

C̃EE
`
~L · ~̀

CEE
` CEE

`′
cos(2ϕ~̀~̀′)

dEB(~L) =
AEB(L)

L

∫
d2~̀

(2π)2
E(~̀)B(~̀′)

C̃EE
`
~L · ~̀

CEE
` CBB

`′
sin(2ϕ~̀~̀′),

(4.20)

that with the appropriate normalization factors AEE(L) and AEB(L) give an es-

timate of the deflection d(~L) ≡ Lφ(~L) [38]. Note that Lφ(~L) in Fourier space is

equivalent to Oφ(n̂) in real space, making this equivalent to our earlier descrip-

tion of the deflection field. Here C̃EE
` is the theoretical un-lensed power spectra,

and CEE
` and CBB

`′ are the theoretical lensed power spectra. These estimators

weight the variance between different parts of Fourier space according to theo-

retical expectations of the power spectra to form a minimum variance estimate

of the deflection. If the theoretical expectations are wrong then the estimators

become non-optimal [38]. In the future, the theoretical lensed spectra could be

replaced with measurements of CBB
` and CEE

` with sufficient signal-to-noise ratio,

thus making the required theoretical inputs for the estimators disconnected from

Cφφ
` .

The Polarbear full season co-added maps for each of the three sky patches

serve as inputs to a separate pipeline which estimates Cdd
L . The Q and U maps are

transformed into E and B and estimates of d are formed based on the operators

above. Estimates of d are then correlated with each other to produce an estimate

of Cdd
L . Only the combinations 〈dEEd∗EB〉ϕ~L

and 〈dEBd∗EB〉ϕ~L
are used to estimate

Cdd
L so as to focus on the conversion of E-modes to B-modes as a probe of the

lensing. Estimates of the covariances come from simulations with noise matching

the measured map noise. Simulations are performed with and without lensing. The

presence of lensing in the simulations increases the covariances as well as correlates
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the estimates from 〈dEEd∗EB〉ϕ~L
and 〈dEBd∗EB〉ϕ~L

, which in the absence of lensing

are uncorrelated.

Figures 4.8, 4.11, and 4.12 are reprints of material as it appears in A Mea-

surement of the Cosmic Microwave Background B-Mode Polarization Power Spec-

trum at Sub-Degree Scales with Polarbear. The Polarbear Collaboration: P.

A. R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger,

J. Borrill, S. Chapman, Y. Chinone, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian,

C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa,

K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue,

G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M.
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Chapter 5

Instrumental Systematic Error

Constraints

The statistical uncertainty in our measurement of CBB
` comes from our

data, as described in section 4.6.5. We also need to place constraints on the level

of falsely generated B-mode polarization due to problems with mis-calibration or

other instrumental defects. We assess the impact of many potential instrumental

systematic errors on CBB
` and below and constrain them to be orders of magni-

tude smaller than the expected ΛCDM CBB
` power spectrum and our statistical

error bars. We pay special attention to the effects of systematic errors in gain as

calibration of detector gain has been a major theme of this dissertation.

5.1 Differential Gain Systematic Error

Constraints

If the gain of the two bolometers in a pair are incorrect by different amounts,

a false polarization signal will be generated when the TOD from the two detectors

is differenced. This is frequently referred to as “leaking” temperature to polariza-

tion because the pixel can observe an unpolarized temperature field and record a

polarization signal that is proportional to temperature.

The CMB temperature signal is orders of magnitude larger than the B-mode
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signal we are searching for, and thus this leakage from temperature to polarization

is a potentially significant source of systematic error. We will describe here several

different techniques employed to constrain this error.

5.1.1 High Resolution Simulations

One way to study the potential impact of gain systematics is to compare

the impact of using different gain models on CBB
` . We do this using noise-free

simulations. Unlensed WMAP-9 ΛCDM spectra are used to generate maps with

no CBB
` . These maps are scanned with real Polarbear pointing data to create

noiseless TOD. A modified gain model is used to reverse-calibrate these TOD

into ADC counts. The true Polarbear gain model is then used to reconstruct

the maps in KCMB units from the TOD generated by the alternate gain model.

Any CBB
` power present in the final maps is a systematic effect generated by

the differences in the gain models. We can then compare the amplitude of CBB
`

generated by the difference in gain models to the theoretical value of CBB
` we are

interested in measuring to see if the systematic error is relevant.

We use simulations of this kind to compare four variations of the gain

model to the actual model employed in the analysis. The first is designed to study

differences in the Pa and α terms in the gain model; that is, the terms that depend

on the HWP angle. We use values of Pa and α determined from fits to elevation

nod data taken during each different gain epoch. To generate this gain model the

Pa and α values are replaced but the ONR value is left unchanged from its planet

derived value. All direct planet measurements are replaced with model fits where

possible. Where this is not possible, the data is not included in the comparison.

The second model we compare to alters the ONR term in the gain model.

We solve for the value of ONR for each pixel such that the fits for ∆gj from equation

3.31 are zero. This is equivalent to allowing the Tau A measurements to determine

our ONR values. Because ONR is independent of the HWP angle, we simply apply

the appropriate shift to all values of Pfrac in or gain model regardless of whether

the measured value of Pfrac was derived from a direct measurement or a model fit.

After generating these new gains, we also recompute the Tau A analysis to confirm
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that no differential gain is measured after the correction is applied.

The third gain model removes the time interpolation from the gain model.

The gains are derived entirely from the thermal source calibration measurement at

the beginning of every hour and are assumed to be constant over that entire hour.

Finally, in the fourth gain model we shift all Pfrac values by 1σ given the

error bars described in 3.1. The results of comparing all four of these altered gain

models to the gain model employed in analysis is shown in figure 5.1.
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Figure 5.1: Changes to CBB
` resulting from altering the gain model are shown.

The ΛCDM theory CBB
` curve is shown in black. The sky patch RA23 is shown in

blue, RA12 in green, and RA4.5 in red. The “Pa, α” plot shows changes from the
gain model using elevation nod data. The “ONR” plot shows the changes introduced
by using the Tau A derived ONR values. The “Time Interpolation” plot shows the
changes introduced by doing no gain interpolation. The “Gain Model Error Bars”
show the changes introduced by shifting all Pfrac values by one error bar width.

We have compared the impact of using completely independent measure-

ments of all elements of our differential gain model. The results of these compar-

isons indicate changes in CBB
` that are much smaller than the signal we are trying

to measure and much smaller than our statistical error bars. We therefore find the

level of uncertainty implied by these comparisons to be acceptable.
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5.1.2 Differential Gain Mapmaking

There is a specific source of potential relative gain error that we model and

constrain further. Differences in the spectral band pass filters on bolometers within

a pixel will alter the ONR term in the gain model. We modify our instrument model

slightly to produce a new set of maps which we use to constrain mis-estimation of

this effect. Because pixels on the same detector wafer with the same polarization

orientation are expected to share common spectral features, we combine data from

these sets of pixels to increase our sensitivity to differential-band induced errors.

We model difference TOD as:

ddiff
t = Gt + cos(2Θt)Qt + sin(2Θt)Ut. (5.1)

This model takes advantage of the fact that the relative gain error intro-

duced by differential spectra does not change as a function of waveplate angle. We

proceed with map making, creating G, Q, and U maps for each of the two polar-

ization orientations of pixels on each wafer. The G maps can then be correlated

with temperature maps to estimate the gain leakage. No power is detected in any

of the TG cross-spectra; the measured leakage value for each pixel type on each

wafer is consistent with zero. Simulations that include wafer common mode differ-

ential gain leakage at the level constrained by the TG cross-spectra show negligible

systematic bias. We take this as further evidence that the ONR term in our gain

model does not have error at a level relevant to our current measurement of CBB
` .

5.1.3 Temperature-Polarization Correlations

We introduce one further test of relative gain error useful for constraining

error in any of the gain model terms. A technique for modeling differential gain

leakage is to assume that the Q and U maps we measure can be written as follows:

Q(~x) = Q̌(~x) + γ1T (~x)

U(~x) = Ǔ(~x) + γ2T (~x),
(5.2)

where quantities marked with a “ ˇ ” represent fields as they exist on the sky and
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quantities without a “ ˇ ” represent the measured (perturbed) fields1. In this model,

γ1 and γ2 represent uniform or averaged fractional leakage from temperature into

Q and U , respectively. We can then write, using equation 1.19:

B(~̀) = −(Q̌(~̀) + γ1T (~̀)) sin(2ϕ~̀) + (Ǔ(~̀) + γ2T (~̀)) cos(2ϕ~̀)

= B̌(~̀)− γ1T (~̀) sin(2ϕ~̀) + γ2T (~̀) cos(2ϕ~̀).
(5.3)

The 2D BB spectrum then takes the form:

BB = B̌B̌ − 2γ1TB̌ sin(2ϕ~̀) + 2γ2TB̌ cos(2ϕ~̀)

+γ2
1TT sin2(2ϕ~̀) + γ2

2TT cos2(2ϕ~̀)− 2γ1γ2TT sin(2ϕ~̀) cos(2ϕ~̀),
(5.4)

where we have allowed the dependence on ~̀ to become implicit. We can then

azimuthally average the spectra to get:

CBB
` = CB̌B̌

` + γ2
1〈TT sin2(2ϕ~̀)〉ϕ~̀

+ γ2
2〈TT cos2(2ϕ~̀)〉ϕ~̀

−2γ1γ2〈TT cos(2ϕ~̀) sin(2ϕ~̀)〉ϕ~̀

≈ CB̌B̌
` + γ2

1C
TT
` 〈sin2(2ϕ~̀)〉ϕ~̀

+ γ2
2C

TT
` 〈cos2(2ϕ~̀)〉ϕ~̀

−2γ1γ2C
TT
` 〈cos(2ϕ~̀) sin(2ϕ~̀)〉ϕ~̀

= CB̌B̌
` + CTT

`

(γ2
1 + γ2

2)

2
.

(5.5)

The terms proportional to TB̌ are set to zero because there should be no correlation

between T and B on the sky. Further, all terms with TB̌ are proportional to

cos(2ϕ~̀) or sin(2ϕ~̀), which also average to zero. We conclude that:

CBB,leakage
` =

(γ2
1 + γ2

2)

2
CTT
` = γ2

effC
TT
` , (5.6)

defining:

γeff =

√
γ2

1 + γ2
2

2
. (5.7)

1The symbol “ ˜ ” is typically used to indicate primordial quantities as a way of differentiating
them from quantities that have been altered since the last scattering surface by, e.g., gravitational
lensing. Here we use a similar notation but emphasize that our meaning is slightly different: “ ˇ ”
indicates a quantity as it appears on the current sky including all effects that occur between the
telescope and the last scattering surface.
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Using equation 5.6 we can directly account for the impact of gain leakage on the BB

spectrum via the γ1 and γ2 parameters. We thus seek a technique for measuring

the values of γ1 and γ2, and ultimately γeff .

Differential Gain Leakage Estimators

We could construct a set of estimators for γ1 and γ2 defined in equation 5.2

by correlating with Q and U with T :

TQ = TQ̌+ γ1TT

TU = T Ǔ + γ2TT.
(5.8)

CTQ̌
` and CT Ǔ

` vanish, and so azimuthally averaging these spectra gives:

CTQ
` = γ1C

TT
`

CTU
` = γ2C

TT
` ,

(5.9)

so that:

γ1
TQ =

CTQ
`

CTT
`

γ2
TU =

CTU
`

CTT
`

.

(5.10)

However, Q and U include the variance from the E-mode signal, and it is instead

desirable to derive estimators for the γs that come from E and B separately. We

will explore this concept in a bit more detail below.

To proceed, we write down a model for E and B including differential gain

parameterized by γ1 and γ2. We also allow for a polarization rotation angle error

α:
B = −

(
Q̌+ γ1T

)
sin(2ϕ~̀) +

(
Ǔ + γ2T

)
cos(2ϕ~̀)− 2αE

= B̌ − γ1T sin(2ϕ~̀) + γ2T cos(2ϕ~̀)− 2αE

E =
(
Q̌+ γ1T

)
cos(2ϕ~̀) +

(
Ǔ + γ2T

)
sin(2ϕ~̀)

= Ě + γ1T cos(2ϕ~̀) + γ2T sin(2ϕ~̀).

(5.11)

Now correlate both E and B with T :
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TB = TB̌ − γ1TT sin(2ϕ~̀) + γ2TT cos(2ϕ~̀)− 2αTE

TE = TĚ + γ1TT cos(2ϕ~̀) + γ2TT sin(2ϕ~̀).
(5.12)

At this point, a simple azimuthal average over ϕ~̀ eliminates dependence on γ1

and γ2. That is, the set of γs integrate out of 〈TB〉ϕ~̀
= CTB

` and 〈TE〉ϕ~̀
= CTE

`

and leave no γ dependence because TT is isotropic while the sin(2ϕ~̀) or cos(2ϕ~̀)

average to zero. Notice that the dependence on α is preserved, which of course is

what makes CTB
` a useful estimator for correcting the polarization rotation angle.

If we instead weight the 2D spectra by cos(2ϕ~̀) or sin(2ϕ~̀) before averaging,

we preserve the dependence on the γs:

〈TB sin(2ϕ~̀)〉ϕ~̀
= 〈TB̌ sin(2ϕ~̀)〉ϕ~̀

− γ1〈TT sin2(2ϕ~̀)〉ϕ~̀

+γ2〈TT sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀
− 2α〈TE sin(2ϕ~̀)〉ϕ~̀

≈ CTB̌
` 〈sin(2ϕ~̀)〉ϕ~̀

− γ1C
TT
` 〈sin2(2ϕ~̀)〉ϕ~̀

+ γ2C
TT
` 〈sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

−2αCTE
` 〈sin(2ϕ~̀)〉ϕ~̀

= −γ1C
TT
`

2
,

(5.13)

〈TB cos(2ϕ~̀)〉ϕ~̀
= 〈TB̌ cos(2ϕ~̀)〉ϕ~̀

− γ1〈TT sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

+γ2〈TT cos2(2ϕ~̀)〉ϕ~̀
− 2α〈TE cos(2ϕ~̀)〉ϕ~̀

≈ CTB̌
` 〈cos(2ϕ~̀)〉ϕ~̀

− γ1C
TT
` 〈sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

+ γ2C
TT
` 〈cos2(2ϕ~̀)〉ϕ~̀

−2αCTE
` 〈cos(2ϕ~̀)〉ϕ~̀

=
γ2C

TT
`

2
,

(5.14)

〈TE sin(2ϕ~̀)〉ϕ~̀
= 〈TĚ sin(2ϕ~̀)〉ϕ~̀

+ γ1〈TT sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

+γ2〈TT sin2(2ϕ~̀)〉ϕ~̀

≈ CTĚ
` 〈sin(2ϕ~̀)〉ϕ~̀

+ γ1C
TT
` 〈sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

+ γ2C
TT
` 〈sin2(2ϕ~̀)〉ϕ~̀

=
γ2C

TT
`

2
, and

(5.15)
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〈TE cos(2ϕ~̀)〉ϕ~̀
= 〈TĚ cos(2ϕ~̀)〉ϕ~̀

+ γ1〈TT cos2(2ϕ~̀)〉ϕ~̀

+γ2〈TT sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

≈ CTĚ
` 〈cos(2ϕ~̀)〉ϕ~̀

+ γ1C
TT
` 〈cos2(2ϕ~̀)〉ϕ~̀

+ γ2C
TT
` 〈sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

=
γ1C

TT
`

2
.

(5.16)

We see that the dependence on α is conveniently integrated out by this weighting

scheme, which further increases its robustness. We now have four estimators, which

we can write in their simplest form as:

γTB
∗

1 ≡ −
2〈TB sin(2ϕ~̀)〉ϕ~̀

CTT
`

γTE
∗

1 ≡
2〈TE cos(2ϕ~̀)〉ϕ~̀

CTT
`

γTB
∗

2 ≡
2〈TB cos(2ϕ~̀)〉ϕ~̀

CTT
`

γTE
∗

2 ≡
2〈TE sin(2ϕ~̀)〉ϕ~̀

CTT
`

.

(5.17)

However, we find that we can reduce the variance of these estimators by not approx-

imating the 2D TT spectrum as constant in the averaging terms 〈TT sin2(2ϕ~̀)〉ϕ~̀

and 〈TT cos2(2ϕ~̀)〉ϕ~̀
, and instead choose to leave these terms in the estimator

without this approximation. We define this additional, similar set of estimators

as:

γTB1 ≡ −
〈TB sin(2ϕ~̀)〉ϕ~̀

〈TT sin2(2ϕ~̀)〉ϕ~̀

γTE1 ≡
〈TE cos(2ϕ~̀)〉ϕ~̀

〈TT cos2(2ϕ~̀)〉ϕ~̀

γTB2 ≡
〈TB cos(2ϕ~̀)〉ϕ~̀

〈TT cos2(2ϕ~̀)〉ϕ~̀

γTE2 ≡
〈TE sin(2ϕ~̀)〉ϕ~̀

〈TT sin2(2ϕ~̀)〉ϕ~̀

.

(5.18)

It is interesting to note the relationship that exists between the set of es-

timators defined in equation 5.10 and those defined using TE or TB. If we start



125

with the expression γTB∗
1 +γTE∗

1

2
, we find the following:

γTB
∗

1 + γTE
∗

1

2
=

2
〈TE cos(2ϕ~̀)〉ϕ~̀

CTT
`

− 2
〈TB sin(2ϕ~̀)〉ϕ~̀

CTT
`

2

=
CTĚ
`

CTT
`

〈cos(2ϕ~̀)〉ϕ~̀
+ γ1〈cos2(2ϕ~̀)〉ϕ~̀

+ γ2〈sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

−C
TB̌
`

CTT
`

〈sin(2ϕ~̀)〉ϕ~̀
+ γ1〈sin2(2ϕ~̀)〉ϕ~̀

− γ2〈sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀

=
CTĚ
`

CTT
`

〈cos(2ϕ~̀)〉ϕ~̀
− CTB̌

`

CTT
`

〈sin(2ϕ~̀)〉ϕ~̀
+ γ1〈cos2(2ϕ~̀) + sin2(2ϕ~̀)〉ϕ~̀

=
CTQ̌
`

CTT
`

+ γ1 =
CTQ
`

CTT
`

= γTQ1 .

(5.19)

We can use a similar construction for γTU2 and conclude that:

γTQ1 =
γTB

∗
1 + γTE

∗
1

2

γTU2 =
γTB

∗
2 + γTE

∗
2

2
.

(5.20)

We know that the cosmological variance in the E-modes is much greater

than in the B-modes, and so we expect for instance that γTB∗1 will be a lower

variance estimator than γTE
∗

1 . Thus using estimators based on TQ and TU are

equivalent to mis-weighting the contributions of the estimators derived from TE

and TB. By separating into the TB and TE contributions we are free to choose

a more optimal weighting.

For use on real data, we form the estimators γTB1 , γTE1 , γTB2 , and γTE2

using our standard cross-spectrum pipeline described above. We form the 2D TT ,

TB and EB spectra as normal, but then add in the factors of sin(2ϕ~̀), cos(2ϕ~̀),

cos2(2ϕ~̀), and sin2(2ϕ~̀) as appropriate before the azimuthal averaging operation to

form the pseudo-spectra as in equation 5.18. Because the gain leakage estimators

are formed using ratios of two spectra, we do not run simulations to compute the

filter transfer functions F`, and we also set the mode coupling M``′ to the identity

matrix and the beam B` to unity everywhere when estimating the true spectra

from the pseudo-spectra. Our results will come from comparison with white noise

simulations which are treated identically, and so we do not believe these choices
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impact our results.

Another important point to consider as we switch from the analytic deriva-

tion above to the practical application of these estimators is that the 2D Fourier

space quantities we are using are formed from our biased maps. This bias in the

maps can lead to a bias in our estimates of the gain leakage. For instance, in

equation 5.13 we assume that 〈TT sin(2ϕ~̀) cos(2ϕ~̀)〉ϕ~̀
= 0. However, if our filter

has created a bias by anisotropically suppressing Fourier modes, it is equivalent to

removing or de-weighting them in the integral required for performing this average,

meaning this term can be non-zero even if TT is isotropic. This bias is unrelated

to not correcting the filter transfer function because it is a problem that occurs in

the azimuthal averaging that takes place before the transfer function would ever

be applied.

Estimators on Real Data

The estimators γTB1 , γTB2 , γTE1 , and γTE2 yield one value of γ1 and γ2 for

each power spectrum bin. We would like to combine these values to estimate γeff .

We use leakage-free simulations to find the minimum variance combinations of the

estimators to produce γeff . We use simulations with artificial gain leakage to test

for bias of the estimators by comparing the average estimated value of leakage to

the known simulated value. We find that estimators constructed with TE suffer

from greater γ-dependent bias than those constructed with TB, and so elect to use

only the TB set of estimators. We find that the appropriate weighting to produce

a minimum variance estimate of γeff is not altered by simulated leakage.

We use the minimum variance combinations to form estimates of γeff for

our real data and simulations with no gain leakage. We then compare the spread

in estimated values of γeff with no leakage to our measured value from the real

data. We use the distribution of simulated values to compute the probability to

exceed (PTE) for our measured value under the assumption of zero leakage, and

find that all patches are consistent with no leakage, with a minimum PTE across

the three patches of 27%. The results of this test are shown in figure 5.2.

In order to understand the utility of this test, we also created simulations
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Figure 5.2: TB correlation measurements of γeff and PTEs for zero leakage are
shown for the three sky patches. The distribution of γeff values from zero-leakage
simulations for each patch are shown in blue. The measured value from real data on
each patch is shown in red. All measured values are consistent with the hypothesis
of zero leakage, with a minimum PTE across the three patches of 27%.

with uniform leakage of γ1 = γ2 = 0.005 and γ1 = γ2 = 0.003, equivalent to 0.5%

and 0.3% uniform leakage, respectively. We find that all measured vales of γeff from

our 0.5% leakages simulations exceed the real value measured in RA23. 86% of our

simulations with 0.3% leakage exceed the measured value of leakage in RA23. We

interpret this to mean that this test has the ability to constrain uniform leakage

to be less than 0.5% while showing no evidence for leakage. The distributions for

simulated leakage are shown in figure 5.3.

While this constraint is weaker than the others studied above, it is sensitive

to all terms of the gain model, and constructed directly from the final data set we

include in our analysis. Future efforts to remove bias and combine the TB and

TE estimators will improve this technique.

5.2 Further Systematic Error Checks

In addition relative gain leakage, our measurement of CBB
` is sensitive to to

a large number of other systematics. We use several techniques to study these sys-

tematic errors. The first is the high-resolution signal only simulations introduced
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Figure 5.3: TB correlation measurements of γeff and PTEs for simulated leakage
on the sky patch RA23. Measured values of γeff are shown in red and the results
of simulations with 0.5% (left) and 0.3% (right) leakage are shown in blue. All
simulations with 0.1% leakage exceed the actual measured value of γeff , while 85%
of simulations with 0.5% leakage exceeded the measured value. This is a measure
of the statistical constraining power of this test and not a detection of leakage.

in section 5.1.1 in the context of studying relative gain leakage. This simulation

framework is used to study other errors as well. We also employ an extensive suite

of null tests which we will describe below.

5.2.1 Simulations

The simulation pipeline introduced in section 5.1.1 is also used to study

the possible spurious CBB
` power generated by polarization orientation angle er-

rors, errors in the pointing model, differential beam effects, as well as the relative

gain calibration errors that were already discussed. We describe the simulations

performed here; the results are summarized in figure 5.4.

Instrument Polarization Angle Errors

From the procedure described in section 3.2.1, the error on each pixel’s po-

larization orientation angle is estimated to be ±1◦ and the error on the relative

orientation angle of each wafer to the others is estimated to be ±0.83◦. Random

realizations of polarization angle orientations are created for the focal plane using
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these values and used to scan simulated maps free of BB signal to produce sim-

ulated TOD. These TOD are then re-processed using the measured polarization

orientation angles. The overall orientation angle, not constrained to be zero in the

simulation, is corrected using measurements of the CEB
` spectrum as done with the

real data. The remaining level of CBB
` in the maps indicates contamination from

the rotation angle error.

Pointing Model Errors

The now familiar technique of scanning a simulated map without BB power

with one pointing model to create TOD, and then reconstructing the map using

a different pointing model is used to study pointing model errors. The errors in

the pointing model are derived from fitting pointing models to different sets of

sources. The discrepancies found in this way exceed the statistical uncertainties

on individual pointing model fits, so we chose them to represent the errors.

Bolometer Differential Pointing

If two bolometers within a pixel pair have their beam centers at slightly

different points on the sky, this will couple the gradient of CMB temperature into

the polarization measurement. The differential pointing offsets for all pixels on the

focal plane are measured by comparing planet maps between the two bolometers

within a given pixel pair. The normal map making procedure assumes that there

is no differential pointing; the error generated by this assumption is quantified

via simulations scanning simulated BB free maps with the measured differential

pointing and reconstructing them using the assumption of no differential pointing.

Differential Beam Shapes

Differential ellipticity and differential beam size are also measured via planet

scans. Their impact on CBB
` is simulated using analytic models of how the beam

parameters couple do derivatives of the CMB temperature map.
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Readout Crosstalk

Because of the frequency domain multiplexing used in Polarbear, elec-

trical crosstalk between different detector channels is expected. This is measured

to be nominally 1% with the frequency spacing employed between channels in the

readout. Simulations were performed using 2% crosstalk between nearest-neighbors

in multiplexing frequency space. These simulations, which already show the effect

to be negligible, did not include the effect of HWP rotation which would have

further reduced the impact.

A summary of all the systematic error constraints is presented in figure 5.4

and table 5.1.

We also estimate limits on sources of multiplicative bias to the CBB
` esti-

mate. The uncertainties in the beam model create uncertainties in the absolute

gain calibration to the WMAP-9 ΛCDM CTT
` spectra, which we estimate to be

4.1%. The estimate of the polarization efficiency generated from Tau A (see sec-

tion 3.2.1) leave a multiplicative uncertainty of 3.6%. Finally, the results of the

transfer function estimation described in section 4.6.4 have some dependence on

the input cosmology, leading to an additional 3.9% multiplicative uncertainty in

the final estimate of CBB
` .

5.2.2 Null Tests

An extensive suite of null tests in used to check for internal consistency of

the data and to search for possible systematic biases. The idea behind a null test

is to split the data into two parts and check them for consistency. The consistency

is checked by differencing the measurements resulting from the two sets of data,

expected to be zero, resulting in the “null” designation. Because our mapmaking

procedure anisotropically removes Fourier modes based on how each scan is exe-

cuted, it is not generally possible to difference maps from two sets of data in a

way that we expect to yield a null result. We thus work in power spectrum space,

ensuring that the difference between power spectra of the two sets in question is

consistent with zero. We compute these null tests for both CBB
` and CEB

` .

The choice of which data splits to use depends on which systematic effect
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Figure 5.4: Possible bias from instrumental systematics errors in the CBB
` power

spectra (ΛCDM theory spectra shown in black), as described in sections 5.1 and
5.2. Both the individual sources of uncertainty (solid color) and the cumulative bias
coming from their combination (black dashed) are displayed after the combination
of all CMB patches. The grey-shaded region show the 1σ bounds on the cumulative
bias limit. This is found through Monte Carlo simulations of our observations with
the systematics included. The effects included in this analysis were the pointing
model and differential pointing uncertainty (light blue, cross mark), the residual
uncertainty in instrument polarization angle after self-calibration (purple, plus
mark), the differential beam size and ellipticity (yellow arrow and black square
mark respectively), the electrical crosstalk (blue, arrow mark), the drift of the
gains between two consecutive thermal source calibrator measurements (red star
mark), and the ONR gain model changes and Pa and α gain model changes (green
diamond and blue circle mark respectively). Figure from [43].

is being investigated. In general, including many tests dilutes the statistical power

of any one test. This is because when considering what constitutes a statistical

“failure” of a null test, the total number of tests being run must be accounted for.

Finding a single test with a PTE of 5% is far more likely in a suite with hundreds of

tests than it is when considering one test alone. The criteria by which we evaluate

the success of our tests must account for this.

We build null tests from a total of nine data splits: first vs. second half of the
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Table 5.1: Estimates of the maximum contribution to CBB
` due to instrumental

uncertainties that could bias (additively) the B-mode signal as estimated using
the simulations described in sections 5.1 and 5.2.1. The linear sum of these effects
in each band power is taken as an upper limit on the possible instrumental bias
on the measurement.

Source of
uncertainty

Measurement
technique

Maximum spurious
DBB
` [10−4 µK2]

Boresight pointing Comparison of
pointing models 5.5

Differential pointing Planet beammaps 7.1
Instrument &

relative polarization
angle

CEB
` statistical

uncertainty and Tau
A

12

Pixel-pair relative
gain: ONR

Comparison with
Tau A;

differential-gain
map-making

2.2

Pixel-pair relative
gain: Pa, α

Comparison with
elevation nods 9.4

Pixel-pair relative
gain: temporal drift

Comparison of
compensation versus
no compensation

0.41

Differential beam
ellipticity Planet beammaps 9.4

Differential beam
size Planet beammaps 3.3

Electrical crosstalk Simulation of
measured level 1.7

Total possible bias bin central `: 700,
1100, 1500, 1900 40, 41, 39, 29

season, patch rising vs. patch setting, high patch elevation vs. low patch elevation,

high detector gain vs. low detector gain, good vs. bad weather, polarization

orientation angle relative to the detector wafer, left vs. right side of the focal

plane, positive vs. negative going subscans, and angle between the sky patch and

the moon when the scan was taken. For each split we calculate a null spectrum Cnull
b

and χnull,b ≡ Cnull
b /σb and its square χ2

null,b, where σb is estimated from simulations.

For each data split, we also run 500 Monte Carlo simulations that include
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signal and white noise. The spread of the Monte Carlo simulations are compared

to the real data to establish PTEs for the null hypothesis of no systematic error

induced differences between the data sets. We require that the PTEs conform to

a uniform distribution as reported by the Kolmogorov-Smirnov test, a standard

technique for comparing sample distributions with theoretical reference distribu-

tions. Because this test is not sensitive to extreme outliers, we also have several

different techniques for examining the outliers. We sum values of χnull,b and χ2
null,b

in different ways and compute PTEs that are sensitive to problems focused on a

particular spectral bin b across all tests, a particular spectrum (either CBB
` or CEB

` )

across all bins and splits, or a particular data split across all bins and spectra. We

then compute the PTE of a single test having the minimum PTE we find given the

total number of tests we perform and require that it be above 5%. We find PTEs

for this statistic are 32.8%, 55.6%, and 18.0% for RA4.5, RA12, and RA23 respec-

tively. We thus find no evidence for systematic contamination or mis-calibration

in the Polarbear data set or analysis procedures.

Figure 5.4, and table 5.1 are a reprint of material as it appears in A Measure-

ment of the Cosmic Microwave Background B-Mode Polarization Power Spectrum

at Sub-Degree Scales with Polarbear. The Polarbear Collaboration: P. A.

R. Ade, Y. Akiba, A. E. Anthony, K. Arnold, M. Atlas, D. Barron, D. Boettger, J.

Borrill, S. Chapman, Y. Chi- none, M. Dobbs, T. Elleflot, J. Errard, G. Fabbian,

C. Feng, D. Flanigan, A. Gilbert, W. Grainger, N. W. Halverson, M. Hasegawa,

K. Hattori, M. Hazumi, W. L. Holzapfel, Y. Hori, J. Howard, P. Hyland, Y. Inoue,

G. C. Jaehnig, A. H. Jaffe, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, M.

Le Jeune, A. T. Lee, E. M. Leitch, E. Linder, M. Lungu, F. Matsuda, T. Mat-

sumura, X. Meng, N. J. Miller, H. Morii, S. Moyerman, M. J. Myers, M. Navaroli,

H. Nishino, H. Paar, J. Peloton, D. Poletti, E. Quealy, G. Rebeiz, C. L. Reichardt,

P. L. Richards, C. Ross, I. Schanning, D. E. Schenck, B. D. Sherwin, A. Shimizu,

C. Shimmin, M. Shimon, P. Siritanasak, G. Smecher, H. Spieler, N. Stebor, B.

Steinbach, R. Stompor, A. Suzuki, S. Takakura, T. Tomaru, B. Wilson, A. Yadav,

and O. Zahn, ArXiv e-prints, Mar. 2014. The dissertation author made essential

contributions to many aspects of this work.



Chapter 6

Results and Outlook

Power spectra results from the analysis of the first season of Polarbear

data are presented here. These results represent the first measurement of Cdd
L

using data from CMB polarization alone [42], and the first measurement of non-

zero CBB
` [43].

Subsequent to the release of the Polarbear CBB
` spectra, the BICEP2

experiment, covering a different multipole (`) range, presented CBB
` measurements

with greater than 5σ evidence for primordial B-modes. We will compare the results

from Polarbear and BICEP2 to the state of the field prior to March 2014, and

briefly discuss the outlook for the future, paying particular attention to the role

that Polarbear and its successors Polarbear-2 and the Simons Array will

play.

The measurement of Cdd
L is presented in figure 6.1. The values from the

three different patches are combined using their covariance matrices to form esti-

mates of Cdd
L from 〈dEBd∗EB〉ϕ~L

and 〈dEEd∗EB〉ϕ~L
individually, which are also com-

bined to form one single estimate. As described in section 4.9, the covariances

are formed with and without the assumption of lensing, which affects the uncer-

tainty of the final results as well as the final value via the different weighting

of the estimators. Fitting a single value for the amplitude of observed lensing

Add, with a value of Add = 1 being the WMAP-9 ΛCDM value, the measurement

implies Add = 1.37 ± .30 ± 0.13, where the ±0.13 represents an estimate of the

bounds on systematic errors, which are dominated by uncertainties in the abso-

134
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lute gain calibration. Including the effects of lensing, the measurement implies

Add = 1.06 ± 0.47+0.32
−0.27 again with +0.32

−0.27 representing bounds on the systematic

uncertainties.

The significance for the rejection of Add = 0 in the case of the un-lensed

simulations indicates the significance with which the hypothesis of no gravitational

lensing is rejected. We find that this data gives evidence for the presence of gravi-

tational lensing (and gravitational lensing induced B-modes) at 4.2σ significance,

including both statistical and systematic errors.
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Figure 6.1: The Cdd
L power spectrum as measured by the first season of Po-

larbear observations. The left figure shows the results from simulations with-
out lensing, and the right figure shows the results from simulations with lensing.
〈dEEd∗EB〉ϕ~L

is shown in blue, 〈dEBd∗EB〉ϕ~L
is shown in green, and the combination

is shown in red. In each panel the prediction from ΛCDM is shown as a solid black
line. Each inset shows the measured value of Add along with a histogram of values
from 500 un-lensed (left) or lensed (right) simulations. Figure credit: Chang Feng

The Polarbear measurement of CBB
` is presented in figure 6.2 with data

from all three patches combined. The data agree with the WMAP-9 ΛCDM value

of CBB
` with a PTE of 42%. Fitting a single amplitude parameter ABB between

the ΛCDM model and the data, we find ABB=1.12±0.61+0.04
−0.10±0.07, where ±0.61

is statistical, +0.04
−0.10 is the additive portion of systematic errors, and ±0.07 is the

multiplicative portion of the systematic error.

The additive systematic error is computed as the per-bin linear sum of the
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systematic errors presented in section 5.2, and the multiplicative uncertainties are

computed as a quadrature sum. This constitutes a rejection of the no lensing-

induced B-modes hypothesis at 97.5% significance, and was the first measurement

of CBB
` with greater than 2σ significance. It remains the only > 2σ significance

measurement of CBB
` in the multipole range it covers.
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Figure 6.2: The CBB
` power spectrum as measured by the first season of Polar-

bear observations.

The negative band-power value in the 1300 < ` < 1700 bin is clearly non-

physical. With the cross-spectrum estimator used for CBB
` the negative measure-

ment indicates that power is anti-correlated in that ` bin between different days.

With an overall PTE of 42% to the ΛCDM theory curve, we conclude that this

fluctuation is entirely consistent with noise.

Further, under the hypothesis of no lensing, the estimates of Cdd
L and CBB

`

would be uncorrelated, and combining the statistical significance of the two mea-

surements can be combined as a quadrature sum. The combined significance for
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the existence of gravitational-lensing induced B-modes is 4.7σ.

The BICEP2 measurement, Polarbear measurement, and constraints

from previous experiments are shown in figure 6.3.
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Figure 6.3: A comparison of CBB
` measurements. The value of the BICEP2

measurements are shown with their 1σ errors. The Polarbear points are shown
with 1σ errors except for the third band power, which is shown with a 95% upper
confidence limit given a positive prior. All other points are 95% upper limits.

The BICEP2 result marks the beginning of a new phase for CMB measure-

ments. The result must be confirmed by other experiments using different regions

of the sky and at different frequency bands to eliminate concerns about foreground

contamination. A second peak in CBB
` should also be detectable at lower ` from

the gravitational-wave background induced quadrupoles generating polarization

during reionization.

With confirmation of the signal, the clear path forward is to both produce

better constraints on the value of r and to attempt a measurement of the scale
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dependence of the gravitational wave background, quantified by the tensor spectral

index nt. Simple models of inflation predict a specific relationship between r and

nt [75], making measurements of these quantities vital for testing the models.

In future observation seasons, scanning larger regions of the sky will give

Polarbear the lower-` sensitivity required to confirm the BICEP2 measurement.

Because of its higher spacial resolution, it will also be able to extend measure-

ments of the inflationary B-mode spectrum to higher multipoles as required for

a measurement of nt. To do this, the gravitational lensing B-mode signal must

be separated from the primordial B-mode signal using a process called delensing.

This technique relies on having high-resolution B-mode measurements, such as

those Polarbear will make, and separates the two signals by reconstructing the

lensing B-modes based on the induced non-Gaussian correlations [76,77].

B-mode measurements on larger sky patches are also critical for improved

measurements of Cdd
L . These measurements will be able to constrain the sum of

neutrino masses [45] and the dark energy equation of state [78]. The combination of

all of these possibilities make the CMB an incredible tool for future measurements

of cosmology and fundamental physics.

The results from the first season of Polarbear observations demonstrate

powerful control over systematic errors. Future expansions to the experiment,

Polarbear-2 and the Simons Array, will increase the number of detectors by

more than an order of magnitude and observe over three different spectral bands to

better control errors introduced by foreground contamination. The lessons learned

from Polarbear-1 will help to ensure the success of these instruments as we

begin the era of B-mode cosmology.

Figure 6.1 was provided by Chang Feng and figure 6.3 by Yuji Chinone. The

dissertation author made essential contributions to many aspects of both works.
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