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A B S T R A C T

Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field
inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted
(T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI
distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map
data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often
difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a
software package for distortion correction and cross-modal image registration that does not require field map
data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted
synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference
for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development)
and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth
performs comparably to field map distortion correction approaches, and often outperforms them. Field map-
less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or
corrupted field map information.
1. Introduction

BOLD-weighted (blood-oxygenation level dependent) functional
MRI (fMRI) data obtained using echo planar imaging (EPI) is severely

∗ Corresponding author at: Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America.
E-mail address: montez.david.f@wustl.edu (D.F. Montez).

1 These authors contributed equally to this work.

distorted by inhomogeneities affecting the primary magnetic field (An-
dersson and Skare, 2002; Andersson et al., 2003; Callaghan, 1990;
Jezzard and Balaban, 1995; Jezzard et al., 1998). EPI distortion —
which consists of localized spatial deformation, loss of BOLD signal
vailable online 24 March 2023
878-9293/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.dcn.2023.101234
Received 27 October 2022; Received in revised form 7 March 2023; Accepted 16 M
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

arch 2023

https://www.elsevier.com/locate/dcn
http://www.elsevier.com/locate/dcn
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.15154/1503209
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
http://dx.doi.org/10.18112/openneuro.ds000224.v1.0.3
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
https://humanconnectome.org/study/hcp-young-adult
mailto:montez.david.f@wustl.edu
https://doi.org/10.1016/j.dcn.2023.101234
https://doi.org/10.1016/j.dcn.2023.101234
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Developmental Cognitive Neuroscience 60 (2023) 101234D.F. Montez et al.
intensity, and signal ’pile-up’— prominently affects areas containing
large local differences in magnetic susceptibility. Due to the apposition
of diamagnetic tissue and paramagnetic air in the sinuses and ear
canals, regions of the image containing the orbitofrontal cortex and
the inferior temporal lobes often suffer the most severe distortions. The
susceptibility-induced artifacts are spatially non-uniform and therefore
interfere with the performance of registration algorithms used during
fMRI preprocessing to bring BOLD EPI images into alignment with their
associated anatomical images (T1w, T2w).

Establishing the correspondence between brain anatomy and func-
tion is an important component of interpreting neuroimaging findings.
Regardless of study design or choice of analysis space, registration
and removal of EPI distortion and registration to T1w/T2w anatomical
images are crucial steps in the analysis of fMRI data. For example,
poor alignment counteracts the benefits of analyses performed with
reference to participant-specific anatomy. Improper alignment of EPI
and anatomical images also degrades the performance of procedures
that project volumetric fMRI data onto mesh surfaces derived from tis-
sue segmentation (Dickie et al., 2019). The effects of poor registration
and distortion correction also carry forward into group analyses. In
group studies, anatomical images from many participants are separately
aligned to a reference atlas. However, suboptimal alignment between
a participant’s EPI and anatomical images will propagate as nuisance
variability that negatively affects group-level statistics for both task and
resting state analyses (Cusack et al., 2003; Togo et al., 2017).

Significant effort has been devoted to developing methods to correct
distortions affecting fMRI data. Currently, two primary methods are
commonly used, both of which involve acquiring field map data at scan
time. The first method involves acquiring a pair of EPI images with
opposing phase encoding directions. Because the largest EPI distortions
occur in the phase encoding direction, reversing the phase encoding
direction also reverses the direction of the EPI distortions. By combin-
ing information from both directions, a displacement field that corrects
for the underlying EPI distortion can be constructed (Andersson et al.,
2003). The second field map method relies on the linear relationship
between the phase of gradient echo data, local magnetic field inho-
mogeneities, and echo time. By recording MR data with two different
echo times, a displacement field can be constructed that corrects for
distortion caused by inhomogeneity (Jezzard and Balaban, 1995). The
end product of each of these approaches is a nonlinear warp that
indicates how each voxel must be displaced in order to correct for the
image distortion.

Without mitigation, the validity and quality of corrections produced
by either of the standard field map methods hinges on several practical
points: First, subject movement during the acquisition of the field map
data or during the time between the acquisition of the field map data
and the corresponding EPI data can negatively affect corrections in
two ways: (1) motion can reduce the quality of the field map data
itself by introducing artifacts which reduce the accuracy of correc-
tions; and (2) movement may also change the spatial structure of
the distortion so that the geometry of the brain images differs in the
field map data and the EPI data (Andersson and Sotiropoulos, 2016).
This may reduce the accuracy of the corrections simply by reducing
the accuracy of the alignments between EPI data and field map data
meant to provide the correction. Second, research has shown that dual-
echo and phase-reversal methods for estimating EPI distortion perform
differently across brain regions and that the method used to generate
the echoes (spin-echo vs. gradient-echo) used in field map acquisitions
can affect the accuracy of distortion correction (Schallmo et al., 2021).
Third, extreme levels of distortion can compress features so excessively
– so-called signal ‘‘pile-up’’– that they cannot be correctly unwarped.
Finally, the process of estimating the distortion correction from field
map data, in most cases, relies on internal regularization parameters of
the algorithm used to estimate the distortion. These parameters affect
2

the overall smoothness of the final correcting warp, and may not be
optimal for a particular set of image acquisition parameters or level of
image detail.

The need to acquire field maps introduces a crucial failure point
during data acquisition. Failure to acquire valid field map data can dis-
qualify an entire dataset from inclusion in an analysis. This problem is
further amplified in study designs requiring multiple field maps be col-
lected across multiple sessions or even within sessions. In these cases,
each field map represents a potential failure point where poor data col-
lection can affect the quality of post-acquisition analysis. For instance,
within the ABCD Annual Release 2.0 dataset (DOI 10.15154/1503209)
341 participants were missing valid field map data. At the time of
writing, of the top five most downloaded fMRI datasets available
on OpenNeuro.org (Flanker task (event-related), UCLA Consortium
for Neuropsychiatric Phenomics LA5c Study, Classification learning,
Forrest Gump, Multisubject, multimodal face processing), only one
includes field map data. An effective implementation of a field map-less
approach is highly desirable because it would allow for the correc-
tion of images for which field map information was either missing,
corrupted, or never collected.

Motivated by the limitations of field maps and the potential to
reinvestigate datasets lacking field maps, fMRI researchers have ex-
plored direct mapping approaches in which distortion is corrected by
non-linearly registering a participant’s distorted EPI images directly to
their undistorted anatomical image. Early implementations of direct
mapping demonstrated that the approach could reduce distortion and
improve global measures of image similarity (e.g., mutual information
or squared-error) between EPI and anatomical images (Gholipour et al.,
2008a,b; Kybic et al., 2000; Studholme et al., 2000).

More recent implementations of the direct mapping approach in-
clude external group average field map data as a constraint on possible
solutions (e.g., fieldmap-less SyN-Susceptibility Distortion Correction
(SDC)). Quality assessment of distortion corrections produced by di-
rect mapping demonstrate that final image alignment quality can be
unreliable and tends to perform more poorly than high quality cor-
rections using a field map (Chambers et al., 2015; Hong et al., 2015;
Huntenburg, 2014; Wang et al., 2017). One likely cause for the variable
performance of this approach is the fact that T1w, T2w, and EPI
images look quite different from one another. Because the average
signal intensities associated with the tissues and fluids comprising the
brain vary considerably across acquisition parameters, it is difficult
to construct registration cost functions that accurately reflect the true
error introduced by EPI distortion (West et al., 1996). This prob-
lem is compounded by the low resolution of EPI images and signal
pileup or dropout in highly distorted areas and challenges in selecting
appropriate spatial regularization terms for nonlinear optimization.

Image correction using undistorted synthetic image references is
another more recent approach to field map-less distortion correction.
This strategy entails the estimation of an undistorted auxiliary EPI
image that serves as a reference for unwarping. The SynB0-DisCo algo-
rithm is a notable example of this approach that employs trained deep
learning neural networks to transform undistorted T1w images into a
synthetic EPI image which is used as an input image for FSL’s topup
algorithm (Schilling et al., 2020). Initial assessments of this approach
suggest that it can potentially produce distortion corrections that are
comparable to those produced by high quality field map data. However,
because T1w and EPI image contrast can vary significantly across ac-
quisitions and depends on the accuracy of the intensity bias correction
applied to the images, it is unclear how well these trained deep learning
approaches will perform on arbitrary datasets. In addition, there is
potential for synthetic images produced by the deep learning networks
to include spurious image artifacts which may affect the reliability of
distortion corrections in practice (Antun et al., 2020; Bhadra et al.,
2021).

We sought to combine direct mapping and synthetic reference image
approaches to produce a more reliable field map-less distortion cor-

rection algorithm — one that does not rely on priors established by
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training data. To accomplish this, we developed a modeling framework
that allows us to combine information from a participant’s T1w, T2w,
and EPI images in order to construct a synthetic image that has the con-
trast properties of a EPI image and the undistorted geometry and high
resolution (∼1 mm3) of typical T1w/T2w images. We hypothesized that
hese synthetic EPI images would serve as ideal targets for estimating
ield map corrections with currently available nonlinear warping soft-
are, and thereby improve direct mapping quality. Synthetic reference

mages created in this way do not rely on trained models. Consequently,
his approach flexibly adapts to the particular contrast properties of a
iven dataset and may be less prone to the influence of deep learning
etwork artifacts.

Here, we detail Synth, an implementation of our synthetic reference
mage approach to correcting EPI distortion. We begin by describing
he mathematical framework we use to generate synthetic EPI images
s well as an approach for using them to correct distortion. Then, we
emonstrate that undistorted synthetic images constructed using this
ramework are quantitatively more similar to real EPI images than T1w
r T2w images. Building on these results, we compare this approach
o distortion correction against other commonly used MRI field map-
ased and field map-less correction procedures. We performed these
omparisons in a subset of the Adolescent Brain Cognitive Development
ABCD) study dataset (Jernigan et al., 2018) in order to assess perfor-
ance across a variety of scanners, sites and brain geometries (Marek

t al., 2019). Additionally, we compared performance in the Midnight
can Club (MSC) dataset, which consists of ten highly sampled individ-
als (Gordon et al., 2017). The repeated sampling of MSC participants
llowed us to assess the reliability of various methods of EPI distortion
orrection when applied to the same participants across multiple acqui-
itions. Lastly, we compare the Synth distortion correction to standard

field map corrections in a ten subject sample taken from the Human
Connectome data set. We demonstrate in each case that Synth software
an be used to correct fMRI distortions using a synthetic image as an
lignment target. The Synth software may be used to augment existing
MRI preprocessing pipelines, or explored by researchers interested in
ncorporating variations on these themes into their MRI registration
rocedures.

. Methods

.1. Creating an undistorted synthetic EPI image using Synth

Our approach to correcting EPI distortion is to create a synthetic EPI
mage based on information combined from a participant’s undistorted
1w and T2w images and then use this synthetic image as a reference
or nonlinearly aligning a participants’ real EPI image. Here, we refer to
ny real image that Synth attempts to synthesize as a target image. The
deal synthetic EPI image will have three properties: (1) it will match
he real EPI target image in terms of overall signal intensity; (2) it
ill exhibit similar contrast between fluids and tissue types that closely

orrespond to what is observed in the EPI target image and; (3) It will
ccount for the difference in spatial resolution between typically high-
esolution anatomical images and typically low-resolution EPI images.
hus, the synthetic image can be represented by the following model:

= 𝐁 (𝐄𝐅𝜽; 𝛼, 𝛽) (1)

he left hand side of Eq. (1), 𝐬, represents a final synthetic image.
orking from inside to outside, the right hand side of Eq. (1) represents

he following: the matrix, 𝐅, is the decomposition of pre-aligned T1w
nd T2w anatomical images into a set of basis vectors (e.g., radial basis
unctions — as in Fig. 1a, or b-splines, etc.) in order to model the
ontinuous relationship between the voxel intensities of the anatomical
mages and EPI target image; 𝜽 comprises the weights for each column
f 𝐅. 𝐄 is a blurring operator modeling the effective difference in spatial
esolution between the anatomical images and EPI target image. In our
3

mplementation of Synth, the blurring operator, 𝐄, is effected with an a
panachnikov smoothing kernel, chosen for its optimal noise-resolution
roperties (Gureyev et al., 2020). Finally, 𝐁 is a global image contrast
perator modeled as a cumulative beta distribution, parameterized by
calars 𝛼 and 𝛽. When 𝜽, 𝛼, and 𝛽 are at the optimum solution, 𝐬
epresents a synthetic image with the geometry of the undistorted
ource images and the contrast properties of the EPI target image.
olving for the optimal 𝜽, 𝛼, and 𝛽 requires solving a joint optimization
roblem, which is discussed in the next section.

The columns of the matrix, 𝐅, are composed of a radial basis
unction (RBF) decomposition of the source T1w and T2w anatomical
mages. This decomposition is visualized in Fig. 1a, where the T1w
nd T2w input images have been divided into smooth voxel intensity
bins’, each of which corresponds to an RBF component. Each of these
omponents are weighted by the parameter, 𝜽, such that the weighted
um of these components replicates the contrast properties of the EPI
arget image as visualized in Fig. 1b. Synth allows for a user-defined
umber of intensity ‘bins’ into which the T1w/T2w images are decom-
osed. The choice of number of intensity bins is dictated by a tradeoff
etween computational complexity and the accuracy of the synthetic
mage. As the number of RBF components in 𝐅 increases, so too do
he memory requirements. For the synthetic images in the presented
esults, a 24 component RBF decomposition of both T1w/T2w images
12 components of T1w; 12 components of T2w) at 1 mm isotropic
esolution consumed ∼20 GB of RAM.

.2. Estimation of synthetic image and distortion-correction warp

To relate the synthetic EPI image to the real EPI target image, we
odel the distortion of the synthetic image as a non-linear warp, 𝑓 ,

onstrained to operate in the phase-encoding direction. This model is
escribed by:

= 𝑓 (𝐬;𝝓) + 𝜼 (2)

ere, 𝐲 represents the target image (e.g., a distorted EPI image), 𝝓
epresents the underlying parameterization of the nonlinear transfor-
ation, 𝑓 , and 𝜼 represents additive gaussian noise. By combining
qs. (1) and (2), and solving for the parameters that maximize the
orrelation coefficient between the real and distorted synthetic image,
e obtain the following joint optimization problem:

𝝓∗, 𝛼∗, 𝛽∗,𝜽∗
}

= arg max
𝝓,𝛼,𝛽,𝜽

corr (𝐲, 𝑓 (𝐁 (𝐄𝐅𝜽; 𝛼, 𝛽) ;𝝓)) (3)

o solve Eq. (3), we employ an alternating minimization approach,
here one parameter is optimized while the others are held fixed over
ach iteration. 𝝓 is initialized with a rigid-body transform so that both
ynthetic and real EPI images are closely registered. Once an updated
alue for 𝝓 is found through non-linear registration, the inverse of the
stimated nonlinear warp, 𝑓−1, is then computed. 𝑓−1 is analogous to
traditional field map correction and maps voxels in a distorted EPI

mage, 𝐲, back to their correct locations. Using the corrected target
mage, 𝑓−1 (𝐲), an updated value for 𝜽 can be found by solving the
inear system 𝑓−1 (𝐲) = 𝐄𝐅𝜽. This updated 𝜽 is used to generate
n updated intermediary synthetic image. Finally, the parameters, 𝛼
nd 𝛽, that control the global contrast for the intermediary synthetic
mage, are computed by minimizing the least squares difference be-
ween the synthetic image and distortion corrected EPI image. The
esulting synthetic image is then used for another iteration of non-linear
egistration.

In regions of the brain with significant distortion and signal dropout
r pile-up affecting the EPI image, there exists no valid mapping be-
ween a participant’s anatomical and EPI images. Therefore Synth also
llows for the inclusion of a weight volume to reduce the contributions
f these areas when estimating the parameters, 𝜽, 𝛼 and 𝛽. For the
resented results, we down-weighted the contributions of voxels in
igh-distortion areas (Supplemental Figure 3).

With the application of 𝑓−1 to the real EPI data during each iter-

tion, geometric correspondences between anatomical and functional
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Fig. 1. Synth synthetic image parameters (a) Illustrative radial basis function (RBF) decomposition of T1w and T2w source images that comprise the columns of 𝐅 (Eq. (1)).
RBF decomposition divides source images into smooth ‘bins’ of signal intensity so that the mapping between source and target image intensities can be estimated. Voxel intensities
of a target image, e.g., an EPI image can be modeled as linear combinations of T1w and T2w RBF images. For visualization purposes, we depict a six component decomposition of
the T1w image only; Synth allows for an arbitrary degree of image decomposition to maximize flexibility in modeling target images with different contrast properties. (b) A portion
of a hypothetical nonlinear relationship between voxel intensity values observed between source image RBF components (e.g., T2w; x-axis) and voxel intensity values observed
in a target image (e.g. EPI). This image depicts the 𝐅𝜽 portion of Eq. (1). (c) Overview visual of the Synth algorithm. The displacement field, 𝑓 , that aligns the initial synthetic
image to the target image is estimated using the SyN algorithm. The resulting displacement field, 𝑓 , is inverted to produce the distortion correcting warp, 𝑓−1, which reduces
the target EPI image distortion. This improves the correspondence between the target and synthetic images, and by proxy, the source images, allowing for improved estimates of
a new synthetic image. The distortion correcting warp, 𝑓−1, is updated in an alternating minimization scheme, during which the synthetic image is refined after each improved
estimate of 𝑓−1.
images are improved. Because the quality and accuracy of the in-
termediary synthetic EPI images, depends on how closely registered
the anatomical and true EPI images are, modest improvements to
the synthetic image can be achieved after each iteration of the Synth
algorithm. By default, Synth repeats this process for 3 iterations. The
full procedure for solving Eq. (3) is outlined in Algorithm 1 (see Section
6.8 in Supplemental Methods) and Fig. 1c.

In principle, many of the pre-existing nonlinear registration utilities
are suitable for estimating 𝑓 and 𝑓−1, owing either to their methods
of diffeomorphic warp construction which guarantee the existence of
an invertible warp —as is the case with AFNI’s 3dQwarp (Zhark the
Grotesquely Warped (but still strangely handsome), 2021) and ANTs
SyN (Avants et al., 2008)— or their ability to project a potentially
non-invertible warp onto a ‘‘nearest invertible’’ space— as is the case
with FSL’s FNIRT (Paul, 2021). For the results presented here and in
the reference preprocessing scripts associated with this manuscript, we
used the ANTs SyN algorithm with a local cross correlation metric
for estimating all non-linear warps (see Appendix A.7 in Supplemental
Methods). ANTs SyN was chosen for its reliable high performance in
4

non-linear warp estimation (Avants et al., 2011; Klein et al., 2009;
Wang et al., 2017).

2.3. Description of MRI datasets and processing

We assessed the quality of distortion corrections produced by direct
mapping to Synth-generated synthetic images in two primary contexts
representing important use cases for fMRI data. First, we examined a
subset of 100 participants selected randomly from the Adolescent Brain
Cognitive Development (ABCD) study dataset (median age: 9.85 years;
min: 9 years; max: 11 years). Our random sample used multi-band
data acquired using GE, Philips, and Siemens scanners (see Table 1
in Supplemental Material). Second, we evaluated Synth’s performance
on the Midnight Scan Club (MSC) dataset, which consists of resting
state fMRI scans acquired from 10 participants on 10 separate occasions
(300 min of resting state fMRI data/participant). The MSC precision
functional mapping (PFM) (Braga and Buckner, 2017; Gordon et al.,
2017, 2018, 2020; Gratton et al., 2018; Greene et al., 2020; Laumann
et al., 2015; Lynch et al., 2020; Marek et al., 2018; Newbold et al.,
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2020b,a; Sylvester et al., 2020; Zheng et al., 2020) dataset allowed us to
assess session-to-session reliability of EPI distortion correction schemes
across multiple sessions for the same participant. Importantly, image
acquisition parameters for ABCD and MSC datasets differ significantly
allowing us to assess the performance of Synth distortion correction on
images with a range of contrast and levels of detail. Image acquisition
parameters have been reported in detail elsewhere (Casey et al., 2018;
Gordon et al., 2017).

In the ABCD and MSC datasets, we compared the effectiveness of
this approach against five widely used distortion correction algorithms.
Three of these approaches rely on separately acquired field map data
(FSL fugue; FSL topup; and AFNI’s 3dQwarp) while the fourth and fifth
approaches implement alternative field map-less distortion correction
methods, SyN-SDC (Esteban et al., 2019, 2021) and SynB0-DisCo. FSL
field map corrections were constructed using either fugue (used for
double echo field maps acquired in the MSC dataset) or topup (used for
pposite direction phase encoded field maps in the ABCD dataset). In
FNI (Cox, 1996), the distortion correction is estimated from opposite
hase encoded field maps using a ‘‘meet in the middle’’ nonlinear warp
stimation implemented in 3dQwarp (Zhark the Grotesquely Warped
but still strangely handsome), 2021). This estimated warp is used to
orrect the image and combined with a separately estimated rigid body
ransform to align the functional to the anatomical image. Because
dQwarp does not operate on double echo field map data, we could
ot assess its performance on the MSC data set. We therefore only
ompared Synth’s performance to FSL𝑓𝑢𝑔𝑢𝑒 and SyN SDC, SynB0-DisCo.

For field map-less approaches, we assessed the SyN-SDC field map-
less method that corrects distortion by non-linearly aligning the partic-
ipant’s EPI and anatomical images while constraining allowable warps
to regions known to be strongly affected by distortion (Huntenburg,
2014; Treiber et al., 2016; Wang et al., 2017). Additionally, we eval-
uated the SynB0-DisCo method, which uses deep learning methods to
synthesize a pseudo infinite bandwidth EPI image as an input to FSL’s
topup to estimate the distortion correcting warp (Schilling et al., 2020).

Performance of the different distortion correction approaches was
assessed in matched datasets, thus all statistical comparisons were
performed within a multi-level modeling framework (fitlme, MATLAB).
For these analyses, the metrics produced by the Synth-based registration
ipeline were modeled as the baseline and differences in performance
etrics associated with other approaches were modeled with main ef-

ect factors. To account for participant-specific variability, independent
f the registration approach, participant identity was modeled as a
andom effect.

Studies in which the phase encoding direction is chosen to align
ith the anterior–posterior axis represent the most common use case.
owever, researchers have elected in some instances to choose other
hase encoding directions for a variety of theoretical and practical
easons, for instance in an attempt to minimize total distortion or
o preserve signal in orbitofrontal regions. The Human Connectome
roject (HCP), in which the phase encoding direction was chosen to
lign with the left–right axis, represents a notable example of such a
tudy (Van Essen et al., 2013; Glasser et al., 2016). While this approach
s decidedly less common, it does represent an important use case. We
herefore applied Synth to a 10 subject data set chosen at random from
he publicly available HCP data set. We compared corrections produced
y Synth against those produced by FSL’s topup. Instances in which
CP results differ in character from those observed in the ABCD and
SC data set are noted in the relevant portion of this manuscript and

re otherwise included in the supplement.

.4. Evaluation metrics

No consensus exists as to what global metric best quantifies align-
ent quality. Many metrics used to measure alignment quality tend to

ear some relation to the cost functions that are used during registra-
ion and therefore directly introduce a risk of confounding circularity.
hus, we computed several metrics comparing the similarity of differ-
nt features of the field map corrected EPI images to their associated
5

natomical images.
2.4.1. Contrast similarity
To quantify the overall similarity between two aligned images from

different modalities, we computed a contrast similarity metric which
was defined as the linear correlation coefficient between vectorized
versions of corresponding regions of the two images. Correlations were
constrained to values that reside within a full brain binary mask.

2.4.2. Normalized mutual information (NMI)
A quantification of global image similarity determined by the

amount of information shared between the time-averaged EPI image
from each session and its associated T1w/T2w anatomical images
(e.g., T1w-EPI NMI, T2w-EPI NMI).

2.4.3. Edge alignment
A quantification of alignment between any high-contrast edges ex-

isting in two images. It is defined as the correlation coefficient between
the gradient magnitude images of the time-averaged EPI image and
T1w/T2w images within a whole brain mask.

2.4.4. Segmentation alignment
In EPI images, gray matter, white matter, and CSF tend to exhibit

distinct intensity values. When anatomical and EPI images are well
aligned, segmentation maps derived from anatomical images and over-
laid on the EPI image should correspond well to the tissue types of the
EPI image. In well aligned images, the distributions of intensity values
of EPI image voxels for a particular tissue type should tend to be more
distinct and separable than for poorly aligned images. Here, separa-
bility is defined as the ability of a linear classifier (i.e. thresholding)
to correctly distinguish between two tissue types. Each segmentation
metric represents the area under the curve (AUC) of a receiver oper-
ating characteristic curve (ROC) generated from distributions of voxels
delineated by two segmented tissue types. Each metric differs on the
two tissue types selected. The segmentation of each tissue is limited to
voxels ‘adjacent’ to the other tissue — where ‘adjacent’ refers to the
set of all voxels in the 1st tissue that shares a face with a voxel in the
2nd tissue and vice-versa. AUC𝑔𝑤 represents the separability of adjacent
gray and white matter voxels, AUC𝑖𝑒 represents the separability of
adjacent voxels between the interior and exterior of the brain, and
AUC𝑣𝑤 represents the separability of adjacent voxels within ventricular
cerebrospinal fluid and adjacent white matter.

2.4.5. Local alignment
Often, approaches to image registration rely on minimizing or max-

imizing a global distance or similarity metric (e.g., least-squares or
mutual information) computed across an entire image volume. These
metrics can be strongly influenced by the presence of intensity bias
fields, which are low spatial frequency modulation of image intensity
often caused by suboptimal participant placement or poor shimming.
Additionally, experimental evidence has suggested that inaccurate reg-
istration can, in some situations, produce high values for many global
measures of image alignment (Rohlfing, 2012). We therefore sought to
compare the performance of each approach to EPI distortion correction
with respect to a measure of local image similarity that would be less
sensitive to these influences.

To do this, we implemented a ‘spotlight’ analysis examining 7x7x7
voxel regions (3 mm isotropic voxels) of the EPI images produced
by each method and quantified its similarity to the corresponding
region of the participant’s T1w and T2w images with an 𝑅2 metric.
Image registration quality near gray matter is typically of greatest
interest, hence we summarized local T1w-EPI and T2w-EPI similarity
by computing the average spotlight 𝑅2 across all gray matter voxels, as

labeled by the participant’s Freesurfer segmentation (Fischl, 2012).
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2.4.6. Intra-participant stability
We used the MSC dataset to investigate how different distortion

correction procedures affect metrics of inter-session stability for fMRI
data. We reasoned that improving EPI image consistency would also
reduce the variability of the intensities of individual voxels across
sessions. To test this, we constructed time-average EPI images for
each session contributed by a participant. We temporally concatenated
each of these images, forming a pseudo-time series reflecting session-
to-session changes in the EPI images. Then, we computed a metric,
session-signal-to-noise (s-SNR, analogous to traditional t-SNR), for each
voxel defined as the mean intensity of a voxel, 𝜇, divided by the
standard deviation of its intensity across sessions, 𝜎. Lastly, we sum-
marized alignment stability for each participant by averaging s-SNR
across all voxels residing within a whole brain mask defined by their
participant-specific FreeSurfer parcellation.

Operating on the assumption that less reliable field map correction
procedures would introduce additional session-to-session variability in
resting state functional connectivity (RSFC) matrices (pairwise corre-
lations between voxel time series), we measured the similarity of each
pair of RSFC matrices contributed by a given participant. We identically
preprocessed (see Appendix A.2.4 in Supplemental Methods) the MSC
datasets produced by each registration pipeline and computed the RSFC
BOLD-signal correlation matrices for all gray matter voxels. For each
session, we extracted the upper triangle of the associated correlation
matrix. Finally, we quantified resting state correlation matrix stability
by computing the pairwise correlation between the upper triangles of
each unique pair of a participant’s resting state matrices.

3. Results

3.1. Synth images consistently match the contrast of EPI images

We reasoned that anatomically-based reference images with greater
contrast similarity to EPI images would serve as a more reliable ref-
erence for distortion correction than images with lower contrast sim-
ilarity. To assess differences in contrast similarity between EPI and
T1w, T2w and synthetic images, we calculated the linear correlation
coefficient between participants’ EPI images and each of their T1w,
T2w and synthetic images within a whole brain mask. By default, Synth
uses a model that includes a 12-component radial basis function (RBF)
decomposition of the T1w/T2w source images along with pair-wise
T1w/T2w interaction terms to create synthetic EPI images (Fig. 1).
This model was sufficient to produce synthetic images with comparable
EPI contrast similarity in both ABCD and MSC datasets (Fig. 2a,b).
In both datasets, synthetic images exhibited significantly increased
contrast similarity to EPI images compared to T1w and T2w images
(Fig. 2c). Contrast similarity between the EPI and Synth images was
consistently highest. Mixed-effects model comparisons in the ABCD
data set revealed that the differences between Synth contrast similarity
and T1w/T2w contrast similarity were both significant: (T1w-Synth=
−0.417; 𝑝 < 0.001; 𝑡 = −46.18; 𝑑𝑓 = 297) and (T2w-Synth= −0.18;
𝑝 < 0.001; 𝑡 = −19.62; 𝑑𝑓 = 297). The same pattern held in the
MSC dataset: (T1w-Synth= −0.374; 𝑝 < 0.001; 𝑡 = −49.64; 𝑑𝑓 = 297)
and (T2w-Synth= −0.274; 𝑝 < 0.001; 𝑡 = −36.4; 𝑑𝑓 = 297). Synthetic
EPI images derived from the HCP data set exhibited greater contrast
similarity to their respective EPI reference images than their associated
T1w/T2w images (Supplemental Figure 4)

3.2. Synth outperforms existing field map-less methods on global measures
of image alignment

We assessed Synth’s distortion correction performance (Fig. 3)
against existing field map-based (AFNI 3dQWarp; FSL topup; FSL fugue)
and field map-less (SyN-SDC; SynB0-DisCo) distortion correction meth-
ods using both established and novel metrics that quantify global
image similarity between the EPI image and the associated T1w/T2w
6
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anatomical images (Fig. 4). These metrics included normalized mutual
information; the correlation coefficient between the image gradients;
and segmentation alignment. Here, we outline Synth registration per-
formance for each metric described above as compared to the highest
performing competitor. Synth registration tended to produce EPI images
with the highest registration quality metrics for both ABCD and MSC
data. Comparisons are reported in the form of statistical contrasts
corresponding to the mean difference between registration metrics
(e.g., Method A-Method B). Full statistical tables comparing all methods
are included in section 5.4 and 5.5 of the Supplemental Materials. Illus-
trative comparisons between FSL fugue/topup and Synth are included
in Supplemental Figures 1 and 2.

First, we examined a well-established image similarity metric, nor-
malized mutual information (NMI). In the ABCD dataset, NMI between
EPI and T1w images was not significantly different (FSL𝑡𝑜𝑝𝑢𝑝-Synth=
9.25e-6; 𝑝 = 0.98; 𝑡 = 0.025; 𝑑𝑓 = 495). In contrast, NMI for T2w
images was significantly higher for Synth images than those aligned by
FSL𝑡𝑜𝑝𝑢𝑝 (FSL𝑡𝑜𝑝𝑢𝑝-Synth= −1.49e-3; 𝑝 < 0.001; 𝑡 = −2.85; 𝑑𝑓 = 495).
Synth alignment produced EPI images with the highest NMI shared
between T1w/T2w images in the MSC dataset as well (FSL𝑓𝑢𝑔𝑢𝑒-Synth=
−4.02e-3; 𝑝 < 0.001; 𝑡 = −10.74; 𝑑𝑓 = 396) and (FSL𝑓𝑢𝑔𝑢𝑒-Synth=
−3.22e-3; 𝑝 < 0.001; 𝑡 = −8.53; 𝑑𝑓 = 396) (Fig. 4a). We observed no
significant differences in these alignment metrics in the HCP data set
(Supplemental Figure 5, Supplemental Section 5.6).

Next, we examined the quality of alignments emphasizing registra-
tion of high contrast boundaries. EPI-T1w edge alignments produced
by Synth were outperformed by those produced by SyN SDC (SyN SDC-
Synth= 3.19e-2; 𝑝 < 0.001; 𝑡 = 4.93; 𝑑𝑓 = 495) in the ABCD dataset;
for T2w gradient magnitude images, there was no significant differ-
ence between Synth and the highest performing competitor, FSL𝑡𝑜𝑝𝑢𝑝
(FSL𝑡𝑜𝑝𝑢𝑝-Synth= −3.12e-3; 𝑝 < 0.001; 𝑡 = −0.54; 𝑑𝑓 = 495). In the
MSC dataset, its closest competitor varied by modality. For EPI-T1w
edge alignment, FSL𝑓𝑢𝑔𝑢𝑒 was the highest performing competitor, but
still produced edge alignments that were significantly lower than those
produced by Synth distortion correction (FSL𝑓𝑢𝑔𝑢𝑒-Synth= −1.70e-2; 𝑝 <
0.001; 𝑡 = −3.22; 𝑑𝑓 = 396). For T2w images in the MSC dataset,
FSL𝑓𝑢𝑔𝑢𝑒 was once again the closest competitor but did not perform
significantly better than Synth, (FSL𝑓𝑢𝑔𝑢𝑒-Synth= 4.88e-3; 𝑝 = 0.39;
𝑡 = 0.87; 𝑑𝑓 = 396) (Fig. 4b). In the HCP data set, these metrics revealed
no significant differences between Synth and FSL𝑡𝑜𝑝𝑢𝑝.

In addition, we examined the quality of the alignment of EPI images
to anatomical images segmented by tissue type (𝑔𝑤: gray/white mat-
ter; 𝑣𝑤: ventricles/white matter; 𝑖𝑒: interior/exterior of brain) based
on the participants’ freesurfer segmentation. These metrics quantify
the separability of EPI image voxel intensities based on anatomically
defined segmentation (higher AUC [area under the receiver operating
characteristic curve] is better). AUC𝑔𝑤 image segmentation alignment
metrics for Synth were significantly lower than those produced by
FSL𝑡𝑜𝑝𝑢𝑝 in the ABCD dataset (FSL𝑡𝑜𝑝𝑢𝑝-Synth= 1.62e-2; 𝑝 < 0.001;
𝑡 = 5.86; 𝑑𝑓 = 495) and MSC (FSL𝑡𝑜𝑝𝑢𝑝-Synth= 1.31e-2; 𝑝 < 0.001;
𝑡 = 6.03; 𝑑𝑓 = 396) datasets. Synth-aligned images exhibited greater
AUC𝑖𝑒 in both ABCD (FSL𝑡𝑜𝑝𝑢𝑝-Synth= −1.60e-2; 𝑝 < 0.001; 𝑡 = −5.60;
𝑑𝑓 = 495) and MSC (FSL𝑓𝑢𝑔𝑢𝑒-Synth= −2.16e-2; 𝑝 < 0.001; 𝑡 = −8.82;
𝑓 = 396) datasets. We also found that the SyN SDC pipeline produced
he greatest AUC𝑣𝑤 values (SyN SDC-Synth= 2.14e-2; 𝑝 < 0.001; 𝑡 = 3.77;
𝑓 = 495) for the ABCD dataset. However, Synth performed better than
he highest performing competitor, FSL𝑓𝑢𝑔𝑢𝑒 (FSL𝑓𝑢𝑔𝑢𝑒-Synth= −1.02e-2;
= 0.03; 𝑡 = −2.21; 𝑑𝑓 = 396) in the MSC dataset (Fig. 4c).

n the HCP data set, FSL𝑡𝑜𝑝𝑢𝑝 produced significantly greater AUC𝑔𝑤
alues (FSL𝑡𝑜𝑝𝑢𝑝-Synth=1.63e-2; 𝑝 < 0.001; 𝑡 = −4.52; 𝑑𝑓 = 18)
hereas corrections produced by Synth exhibited greater AUC𝑣𝑤 values

FSL -Synth=−1.29e-2; 𝑝 = 0.001; 𝑡 = −2.82; 𝑑𝑓 = 18)
𝑡𝑜𝑝𝑢𝑝
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Fig. 2. Image contrast similarity between T1w, T2w, Synth and EPI images. (a) T1w, T2w, synthetic, and corresponding affine aligned EPI images (sample participants; ABCD
top, MSC bottom). (b) Enlarged view of an axial slice of the Synthetic (left) and real EPI (right) images (MSC example). (c) Average contrast similarity between EPI images and
associated anatomical and Synth images across 100 participants from the ABCD dataset (upper). Average contrast similarity between a true EPI image and associated anatomical
and synthetic functional images for each participant in the MSC dataset (lower; 10 scans per participant).

Fig. 3. Example of distortion correction with Synth compared to rigid-body alignment (a) Parasagittal slice of T2w image from an example MSC participant. Fuschia and
blue lines indicate gray/white matter boundary estimated by freesurfer segmentation of the associated T1w image. (b) Corresponding slice of functional EPI image aligned to the
anatomical image using rigid body alignment procedure implemented in FSL’s FLIRT. Red arrows indicate regions of local misalignment due to image distortion. Red dots indicate
anatomical fiducial markers to aid in assessing distortion correction applied to cerebellum and pons. (c) Identical slice through EPI image corrected using Synth. Note improved
local alignment of corpus callosum, occipital pole, pons, and orbitofrontal cortex. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. Alignment metric comparisons for distortion correction pipelines. Violin plots depict the distributions of each alignment metric for ABCD (left column) and MSC (right
column) datasets. Horizontal bars group assessment metrics for field map-less distortion correction methods (FM-) and field map based (FM+) distortion correction methods. (a)
Global similarity: Normalized mutual information (NMI) shared between the registered EPI images and their associated T1w/T2w anatomical images to assess global similarity. (b)
Edge alignment: Correlation coefficient between the gradient magnitude images for EPI and T1w/T2w images for a metric of edge alignment. (c) Segmentation alignment: Metrics
that quantify the separability of anatomical features in EPI data base on the Freesurfer segmentation of their anatomical T1w images.
3.3. Synth improves local measures of anatomical and functional image
alignment

Existing experimental evidence indicates that field map correction
quality varies regionally and depends on the method used to estimate
the B0 inhomogeneity (Schallmo et al., 2021). Consequently, to identify
whether Synth was better at correcting certain brain regions, we carried
out a winner-take-all (WTA) analysis across all voxels by determining
which method produced the greatest average local similarity between
T1w and T2w anatomical images (𝑅2 computed within a 7x7x7 voxel
spotlight). Representative spotlight 𝑅2 images underlying the WTA
analysis are provided in Supplemental Figures 6 and 7. Each distor-
tion correction method exhibited regions of the brain for which they
performed consistently better than other distortion correction methods.
Although the structure of the WTA maps varied between datasets, they
shared some consistent features (Fig. 5).

In ABCD and MSC datasets, Synth produced either the largest, or
second largest regions of high quality local alignment, regardless of
anatomical image modality (i.e., T1w, T2w). In the MSC data set, Synth
generally had the best regional correction performance across the entire
brain. For the ABCD dataset, the best regional distortion correction
performance was split between FSL𝑡𝑜𝑝𝑢𝑝 and Synth, where FSL𝑡𝑜𝑝𝑢𝑝 pro-
vided better local alignment to T1w images over a large swathe of
the superior frontal cortex while Synth’s particular strengths were in
improving local registration of cerebellar, brainstem, orbitofrontal and
occipital regions with respect to a participant’s T2w image. Overall,
FSL𝑡𝑜𝑝𝑢𝑝 won the greatest percentage of voxels in the T1w and T2w
comparisons for the ABCD dataset, (T1w: FSL𝑡𝑜𝑝𝑢𝑝= 43%; Synth= 33%;
T2w: FSL𝑡𝑜𝑝𝑢𝑝= 51%; Synth= 46%). While Synth won the greatest per-
centage of voxels in the T1w and T2w comparisons over FSL𝑓𝑢𝑔𝑢𝑒 (T1w:
FSL𝑓𝑢𝑔𝑢𝑒= 21%; Synth= 65%; T2w: FSL𝑓𝑢𝑔𝑢𝑒= 31%; Synth= 54%) for the
MSC dataset. In the HCP data set, FSL𝑡𝑜𝑝𝑢𝑝 produced better measures
of local alignment over a modestly larger fraction of the image (T1w:
FSL𝑡𝑜𝑝𝑢𝑝 = 55%; Synth=45%; T2w: FSL𝑡𝑜𝑝𝑢𝑝 = 57%; Synth=43%) (See
Supplemental Figures 8, 9, and 10). These results indicate that Synth
can perform at parity with state-of-the-art field map-based approaches.
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The analysis of functional images depends to a greater extent on
the quality of gray matter alignment and less so on the alignment
quality of other voxels representing other tissue types. Accordingly, we
summarized local gray matter alignment performance of each distortion
correction method by computing the average spotlight 𝑅2 across only
the gray matter voxels. We observed that Synth and FSL𝑡𝑜𝑝𝑢𝑝 registration
pipelines produced similar quality of local registration to the partic-
ipants’ T1w image (FSL𝑡𝑜𝑝𝑢𝑝-Synth= −2.51e-3; 𝑝 = 0.17; 𝑡 = −1.38; 𝑑𝑓 =
495), in the ABCD dataset. Synth performance did not differ significantly
from the highest performing competitor, FSL𝑡𝑜𝑝𝑢𝑝, for average local
similarity between EPI and T2w images (FSL𝑡𝑜𝑝𝑢𝑝-Synth= −4.14e-3; 𝑝 =
0.21; 𝑡 = −1.27; 𝑑𝑓 = 495). Synth registration produced EPI images
with the greatest average local similarity for associated T1w images
(FSL𝑓𝑢𝑔𝑢𝑒-Synth= −1.93e-2;p< 0.001; 𝑡 = −8.64; 𝑑𝑓 = 396) and did not
differ significantly from the highest performing competitor, FSL𝑓𝑢𝑔𝑢𝑒 for
T2w images (FSL𝑓𝑢𝑔𝑢𝑒-Synth= −3.27e-3; 𝑝 = 0.17; 𝑡 = −1.37; 𝑑𝑓 = 396) in
the MSC dataset (Fig. 6).

3.4. Synth improves intra-participant consistency across sessions

The primary goal of applying distortion correction to EPI images is
to improve data quality by reducing variability caused by poor align-
ment. It is therefore important to know the extent to which a particular
approach to distortion correction introduces additional measurement
variability. By applying different distortion correction strategies to the
repeated-measures in the MSC dataset, we assessed how each method
contributed to within-participant structural and functional variability.

First, we examined each voxel’s average intensity across all sessions
normalized by its standard deviation across sessions. We term this
stability metric, session-to-session SNR (s-SNR). We observed that for
Synth-aligned images, s-SNR was not significantly different than that
produced by the highest performing competitor, FSL𝑓𝑢𝑔𝑢𝑒 (FSL𝑓𝑢𝑔𝑢𝑒-
Synth= 0.80; 𝑝 = 0.55; 𝑡 = 0.60; 𝑑𝑓 = 36) (Fig. 7a).

Next, we quantified global similarity of time averaged EPI images
for each pair of sessions contributed by a participant. We extracted the
region of the aligned time-averaged EPI volumes containing just brain
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Fig. 5. Regional variation in distortion correction performance. Summary of local similarity between the EPI images produced by each registration pipeline and their associated
T1w and T2w anatomical images. Winner-take-all maps depicting, for each voxel, the pipeline that produced the greatest average local correlation between corresponding regions
of EPI and T1w/T2w images. The color of each voxel depicts which registration pipeline produced, on average, the greatest spatial R2 values computed over a centered 7x7x7
cube. Bars to the left of each set of images depict the percentage of voxels ‘‘won’’ by each registration pipeline. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
matter (as classified by the FreeSurfer segmentation of the participant’s
anatomical images) from each session. Then, for each participant, we
computed the average linear correlation coefficient across all pairs
of sessions. Owing to the general stability of a given participant’s
brain geometry on the time scales over which the MSC dataset was
collected, inter-session linear correlation coefficients between scan ses-
sions tended to be quite high across all methods (0.94 − 0.99). While
Synth produced EPI images with the greatest session-to-session simi-
larity, it did not produce images that were significantly more stable
than those produced by FSL𝑓𝑢𝑔𝑢𝑒 (FSL𝑓𝑢𝑔𝑢𝑒-Synth= −5.56e-3; 𝑝 = 0.23; 𝑡 =
−1.20; 𝑑𝑓 = 1796) (Fig. 7b).

Finally, we examined how the choice of distortion correction ap-
proach affects the stability of resting state functional connectivity
(RSFC) data. To do this, we created voxel-level RSFC matrices for
each session of data and computed RSFC similarity between pairs of
sessions as the correlation between upper triangular portions of the
RSFC matrices. Mixed effects analysis of similarity between unique
session pairs revealed RSFC correlation matrices from Synth aligned
datasets were not significantly less stable than those produced by the
highest performing competitor, FSL𝑓𝑢𝑔𝑢𝑒 (FSL𝑓𝑢𝑔𝑢𝑒-Synth= 5.47e-3; 𝑝 =
0.12; 𝑡 = 1.55; 𝑑𝑓 = 1796) (Fig. 7c).

4. Discussion

Distorted fMRI images are an inevitable consequence of the trade-
offs made to achieve a sampling rate sufficient to measure neurally
meaningful fMRI signal variability in Cartesian sampled EPI (Glover,
2012). Complications in registering distorted functional EPI images
to their undistorted anatomical image counterparts are a perennial
challenge faced by neuroimaging researchers. Performed well, proper
image registration reduces variability in measurements, improves the
statistical power of analyses, and produces significant improvements in
localization of responses to experimental manipulations (Devlin et al.,
2000; Togo et al., 2017; Visser et al., 2010a,b). For these reasons,
the quality of EPI distortion correction and anatomical registration
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is of great concern in every branch of neuroimaging and the pri-
mary motivation for developing methods to improve fMRI registration
performance.

We hypothesized that the reliability of field map-less approaches
could be improved if the underlying contrast properties of the EPI
and anatomical images match more closely. The distortion correction
approach that Synth employs is to generate a high resolution syn-
thetic functional image that exhibits greater similarity to tissue contrast
properties of a EPI image but is based on the information from the
undistorted geometry of a participants’ T1w and T2w anatomical im-
ages. The approach implemented in Synth for constructing a synthetic
EPI image target can be considered an example of a class of registration
procedures termed ‘‘mono-modal reduction’’ (Sotiras et al., 2013). After
constructing a synthetic target image, a distortion-correcting warp is
constructed in the same way as other direct mapping approaches:
by directly mapping to an undistorted target image. Here, we have
demonstrated that when a synthetic image is used as a target, the
resulting fMRI alignment quality rivals and in some cases exceeds that
produced by standard field map methods.

4.1. Synth achieves parity with or exceeds the distortion correction perfor-
mance of alternative methods on most measures of global alignment

We began our exploration of distortion correction performance by
examining the commonly used global image similarity metric, normal-
ized mutual information. We found that Synth performed comparably
to or better than state of the art field map corrections provided by
FSL’s topup and fugue in both ABCD and MSC data sets. One of the
challenges to assessing the quality of multi-modal image registration
and distortion correction is determining which global metric serves
as the optimal summary of final alignment quality. To address this
concern, we assessed the performance of each distortion correction
approach with several additional global image similarity metrics, each
intended to assess alignment with respect to different image features.
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Fig. 6. Average local image similarity across all gray matter voxels Summary of
local similarity between the EPI images produced by each registration pipeline and
their associated T1w/T2w anatomical images. Each plot depicts the distributions of
average spotlight R2 value between each participant’s EPI image and T1w/T2w images
computed across all gray matter voxels.

The first alternative global similarity metric we examined was the
quality of high-contrast edge alignment. We reasoned that these fea-
tures would be less influenced by residual low spatial frequency bias
fields and the differences in tissue contrast properties between images
acquired with different modalities (T1w, T2w, EPI). Here, Synth’s per-
formance on cross-modal edge alignment metrics was generally high,
either achieving the highest performance or placing in the top two.
The single exception to this outcome was observed in the T1w-EPI
edge alignment metrics in the ABCD data set. There, FSL’s topup and
SyN SDC produced the highest alignment metrics. This result may
arise from the fact that the Synth pipeline initially registers the EPI
image into the anatomical image space using a T2w reference image,
while the FSL and SyN SDC pipelines both register to the anatomical
image space using the T1w image as a reference. It may be the case
that the choice of image modality (i.e. T1w/T2w) used for the initial
EPI-anatomical alignment biases the edge alignment metric for those
two image modalities. Significantly, we observed that Synth’s high
performance generalized well to the HCP data set in which, due to
the left–right orientation of the phase encoding direction, EPI distortion
exhibits very different structure.

A second notable exception to Synth’s typically high performance
was the outcome of the segmentation alignment metric focusing on the
alignment accuracy of the ventricles and white matter (AUC𝑣𝑤) in the
ABCD dataset. In that instance, the field map-less SyN SDC method pro-
vided the best ventricles and white matter alignment metrics (AUC𝑣𝑤)
in the ABCD dataset followed by FSL’s topup. One potential reason
for this outcome is that both FSL’s topup and SyN SDC pipelines used
brain-based registration for their EPI to anatomical alignments (Greve
and Fischl, 2009). This registration technique incorporates anatomical
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segmentation information when guiding anatomical alignments and
may improve ventricle/white matter correspondence between the EPI
and anatomical images. This interpretation is complicated somewhat
by the fact that ventricular alignment metrics were greatest for Synth-
based alignments in the HCP data set, while FSL’s topup tended to
produce better gray/white matter alignment.

4.2. Synth exhibits high performance in regional measures of image align-
ment

In addition to the challenge of selecting and justifying a particular
global metric for measuring multi-modal image alignment quality, prior
work has shown it does not always provide a sufficient condition
for demonstrating optimal alignment (Greve and Fischl, 2009). This
is because global metrics, while flexible, often cannot fully capture
the complicated mapping of voxel intensity values between images
acquired with different modalities. While achieving high measures of
global image similarity is a necessary condition for quality image align-
ment, it is important to consider them alongside non-global measures to
fully assess alignment (Saad et al., 2009). For this reason, we examined
small regions of the image (i.e. spotlight), which contain a limited range
of tissue types and minimal residual bias field. In this way, we created
an alignment metric that assesses image similarity while reducing the
influence of non-linearities in the relationship between voxel intensity
values of images acquired with different modalities.

Our winner-take-all analyses of local image alignment revealed
Synth to be among the top performing distortion correction approaches,
producing the highest local image quality metrics in large swathes of
the cortex, but also performing particularly well in correcting distor-
tions affecting the cerebellum and brain stem. That different distortion
correction approaches excelled in correcting different areas of the
brain is in line with existing evidence suggesting that the accuracy
of standard field map distortion correction methods varies across the
brain (Schallmo et al., 2021; Graham et al., 2017).

One possible reason for Synth’s superior performance in the MSC
dataset overall, compared to the ABCD dataset, may be due to the dual
echo field maps used in the MSC dataset. Prior work has shown that
distortion correction with reverse-phase encoding field maps outper-
form corrections produced by dual echo field maps (Graham et al.,
2017). Our findings are consistent with these observations, and suggest
that Synth may provide superior correction to dual-echo field map
corrections in datasets in which image acquisition parameters share
sufficient similarity to those used for the MSC study (Gordon et al.,
2017).

4.3. Synth does not introduce session-to-session variability like existing field
map-less approaches

We observed that as a general rule, field map-less approaches
tended to introduce more session-to-session structural variability than
traditional field map-based approaches. Synth stood out as a clear
exception to this trend by introducing no more session-to-session vari-
ability than a simple rigid-body alignment procedure or field map
correction. Importantly, because Synth distortion correction did not
measurably increase the session-to-session variability of RSFC matrices
we can conclude that the improvement in EPI-to-anatomical alignment
provided by Synth does not come at a hidden cost of increasing the
variability of the underlying functional data.

4.4. Accounting for differing performance of existing field map-less ap-
proaches

Synth tended to produce higher quality and more reliable correc-
tions than existing field map-less approaches (SyN SDC and SynB0-

DisCo) with which it shares many conceptual similarities. This prompts
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Fig. 7. Cross-session structural and functional reliability metrics. Repeated measurements of the same 10 individuals in the MSC dataset allows us to assess the reliability of
different approaches to EPI distortion correction. (a) Average voxelwise session-SNR (s-SNR) computed within a whole brain mask. s-SNR was computed as 𝜇

𝜎
, where 𝜇 is the voxel

intensity of the time average EPI image averaged across all sessions, and 𝜎 is the standard deviation. (b) Distributions of the mean pairwise correlation between time-averaged
resting state EPI volumes. (c) Similarity between the EPI signal correlation matrices from each unique pair of sessions. Each of the 10 participants contributed 10 resting state
datasets, corresponding to 45 unique session pairs per participant. Similarity is quantified as the correlation between the vectorized upper triangles of the pairs of EPI signal
correlation matrices.
us to consider the potential reasons why Synth performs with greater
reliability and accuracy.

In the case of SyN SDC, one reason for decreased reliability may be
the use of a group average field map template in order to constrain
its solutions. Such a template may not allow sufficient flexibility to
align high spatial resolution participant-specific features. SyN SDC also
relies on an intermediate atlas alignment stage, which may be a source
of additional variability. Because participant motion can influence the
structure of the EPI distortion, the use of a field map template that does
not account for this effect may reduce overall efficacy.

Both Synth and SyN SDC employ a direct mapping approach to
correct EPI distortion. The fundamental difference in their approaches
is that SyN SDC attempts to directly align to a participants’ T1w image
–whose contrast properties are very different from the EPI image– while
Synth uses an intermediate synthetic image whose contrast properties
are more similar to the EPI. That Synth proved more effective and
reliable than the similar approach implemented in SyN SDC would
seem to indicate the importance of matching the contrast properties
of target and reference images when attempting to use direct mapping
approaches for distortion correction.

With SynB0-DisCo, a synthetic pseudo-infinite bandwidth interme-
diate EPI image facilitates distortion correction using FSL’s topup. The
corrections, though, were less accurate and less reliable than those
produced by Synth and SyN SDC. On the surface, it would seem that the
use of a contrast matched intermediate image along with FSL’s state of
the art field map estimation software should produce the same reliable
distortion correction observed with Synth. Two factors may potentially
contribute to the variable performance of this approach. The tissue
contrast properties of EPI data can vary significantly depending on
image acquisition parameters. Therefore, one possibility is that SynB0-
DisCo’s deep learning model may generalize poorly to unseen datasets
whose resolution and contrast are quite different from its training
data. A second possibility is that synthetic images produced by deep
learning models are prone to introducing spurious artifacts into their
outputs (Antun et al., 2020; Bhadra et al., 2021). The presence of
such artifacts may be a significant source of registration variability.
Both of these effects may have contributed to reducing SynB0-DisCo’s
performance in the ABCD and MSC datasets. Synth’s ability to generate
effective synthetic images based solely on the participant’s anatomical
data without relying on a large training dataset avoids both of these
potential issues by flexibly adapting to the contrast properties of a
specific acquisition and minimizing the possibility of spurious artifacts.

While our results indicate that Synth is able to correct distortion
comparably well to current field map based techniques, it is possible
that advances in theory or software may improve field map-based cor-
rections even further so that they reliably exceed Synth’s performance.
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We therefore do not advocate abandoning the collection of field map
data entirely. Rather we propose that Synth distortion correction is a
reliable substitute for field maps at the present time and given the
current state of the art. We can unreservedly recommend using Synth as
an effective tool for correcting distorted fMRI data when no field map
data is available.

4.5. General guidelines for deploying Synth

Our results indicate that synthetic images with contrast similarity
(linear correlation coefficient) of 0.4 with the target EPI image are suf-
ficient for producing high quality corrections. In order to accommodate
datasets with different contrast, resolution, and fields-of-view, Synth
provides a variety of command line options: 𝑠𝑜𝑢𝑟𝑐𝑒_𝑖𝑚𝑎𝑔𝑒𝑠, is a list of
pre-aligned undistorted anatomical images from which the target image
is modeled. Typically this is the participant’s T1w and T2w images,
but any undistorted images can be used in principle; 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙
is a string that specifies both main-effect terms and interaction terms
between a user-specified number of source images, each decompos-
able into a user-specified number of RBF components. The number of
RBF components applied to each source image enables more complex
models that will allow Synth to capture more complicated relationships
between the voxel intensities of the source images and the EPI images.
This flexibility comes at the cost of increased memory requirements and
computational time, but can produce more accurate synthetic images
that may ultimately improve registration quality. In our results, the
RBF model parameters were chosen to produce a synthetic image of
qualitatively sufficient visual similarity to their associated EPI images.
By default, Synth uses the RBF model parameters optimized for the
ABCD and MSC datasets (i.e., a 12 component decomposition on each
of the participants’ T1w/T2w images, along with pairwise interaction
terms between T1w/T2w components). In general, Synth attempts to
map the contrast of high resolution source images to a low resolution
EPI image, which requires modeling the difference in point spread
function between the two. Modifying the bandwidth parameter enables
Synth to be applied to datasets acquired at different resolutions. Users
acquiring high resolution EPI images will decrease this parameter and
users acquiring low resolution EPI images will increase it. Lastly, the
𝑤𝑒𝑖𝑔ℎ𝑡_𝑚𝑎𝑠𝑘 parameter is a binary mask that indicates the region of the
EPI image in which a valid mapping between source image (T1w/T2w)
intensities and target image (EPI) intensity values exists. This mask will
exclude areas of extreme signal dropout. Only voxels within this mask
are included when estimating the model that produces the synthetic
image.
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We provide a reference pipeline implementing Synth which only
requires the user to organize their data into the BIDS format stan-
dard (Gorgolewski et al., 2016). Using this pipeline, all of Synth’s
parameters will be automatically determined. Users seeking to integrate
Synth into their own pipelines, will need to construct their own weight
masks and determine the appropriate Epanachnikov smoothing kernel
bandwidth independently. In general, we recommend that inputs to
Synth should be deobliqued and bias field corrected, but otherwise
minimally preprocessed. For walkthroughs detailing the Synth’s instal-
lation and use as a standalone utility or as part of our BIDS compliant
reference pipeline, users are invited to explore https://gitlab.com/
vanandrew/omni.

4.6. Future directions for field map-less distortion correction

Although the distortion corrections produced by Synth are high
quality, several open questions remain relating to how this general
approach can be implemented most effectively. Chief among these is
whether Synth’s performance can be augmented further by including
existing field map information derived using traditional approaches.
The focus of the present report is assessing the quality of the field
map corrections produced by Synth in a situation in which there is no
initial estimate of the EPI image distortion provided to the underlying
nonlinear warping software. Including an existing field map as an initial
estimate may further increase Synth’s performance. Future iterations of
Synth will include this ability and may produce even greater correction
fidelity between functional and anatomical images than presented here.

Even though Synth’s underlying RBF model provides a great degree
of flexibility in fitting the functions that map T1w/T2w voxel intensities
to EPI image voxel intensities, other data collection parameters and
preprocessing steps may improve the quality of the synthetic images or
reduce the needed complexity of the RBF model. For example, adjusting
echo times during data acquisition may produce images that can be
more accurately modeled with fewer RBF components while still retain-
ing sufficient sensitivity to BOLD contrast. Alternatively or in addition,
performing contrast enhancing preprocessing of the anatomical and EPI
images so that the resulting function relating their voxel intensities can
be modeled more efficiently by the chosen RBF model may allow for
simpler RBF models to perform equivalently. In our own preliminary
tests and for the results reported here, we observed that synthetic
images were more accurate when a bias field was estimated and re-
moved from the anatomical images and image contrast was increased
through histogram normalization (see Appendix A.2.2 in Supplemental
Methods).

4.7. Conclusion

The results reported here have demonstrated that it is possible
to achieve high-quality EPI distortion correction without the need to
collect separate field map data. We have shown that field map-less
approaches, such as Synth, can perform comparably to existing gold-
standard distortion correction approaches, and in some cases, may
surpass them on measures of global and local image alignment quality.
Importantly, Synth produced high quality alignments even within the
HCP dataset, indicating that its high performance generalizes not only
across differences in EPI resolution and contrast properties, but is ro-
bust to differences in phase encoding direction. Removing the reliance
on field maps to correct EPI distortion will allow researchers to recover
samples with missing or corrupted field maps while maintaining high
quality alignment between their anatomical and EPI images. Field
map-less distortion correction may prove to be a particular asset to
researchers studying high motion cohorts, such as pediatric or neu-
ropsychiatric populations (Greene et al., 2016), where acquiring high
quality field map data is a significant challenge. Reliable field map-less
distortion correction shows great promise for overcoming the limita-
tions arising from the acquisition, processing, and quality checking of
field map data and has the potential to greatly simplify data processing
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in the neuroimaging field.
Code sharing

The Synth software package and other utilities and scripts used
for this project can be downloaded at https://gitlab.com/vanandrew/
omni.
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Appendix A. Supplemental methods

A.1. Description of common pipeline

Distortion correction methods were compared using a common
registration pipeline, which differed only in the distortion correction
method and functional-to-T1w alignment. This includes alignment of
anatomical images to atlas, functional framewise alignment and re-
sampling of the final aligned functional data to 3 mm. Details of each
common step are explained in the following sections.

A.2. HCP dataset

Ten randomly selected participants from the Human Connectome
Project data set were used for the supplemental analyses detailed in
this manuscript. EPI data was drawn from the ‘‘Emotional Processing’’
portion of the dataset, along with each participants’ T1w/T2w images.
A thorough account of the acquisition details for task and anatomical
imaging data are located in Barch et al. (2013) and Van Essen et al.
(2013). Briefly, data was acquired using a modified SIEMENS Skyra
using a TR of 720 ms, TE 3.31 ms, flip angle of 52 degrees and
multiband acceleration factor of 8. EPI images were acquired with
2.0 mm isotropic voxels.

A.2.1. Deobliquing
Prior to any preprocessing, all data is deobliqued by modifying the

orientation information of the NIFTI headers. This is accomplished by
decomposing each orientation affine into its component translation,
scale, rotation, and shear parameters and recomposing the orientation
affine without the rotation component (Brett, 2023). The data is re-
saved using the NiBabel library, which correctly sets the s-form/q-form
of the NIFTI header for reading by other neuroimaging tools (Brett
et al., 2023).

A.2.2. Anatomical registration/segmentation
Prior to registration, both the T1w and T2w images were bias field

corrected using N4BiasFieldCorrection (Tustison et al., 2010) (spline
distance = 100, initial mesh resolution = 1x1x1). Anatomical alignment
was accomplished by extracting edge images from each participants’
T1w and T2w images using AFNI’s 3dedge utility and aligned with a
rigid body transform using FLIRT and a correlation ratio cost function.
The resulting transformation parameters were saved for later use.

To improve the reliability of the skullstripping procedure, an inter-
mediate anatomical image was utilized. This image was created using
the following procedure: (1) T1w and T2w images were rescaled so
that values were between 0 and 1; (2) the intermediate volume was
calculated where the value at each voxel is determined by the square
root of the sum of squares of the corresponding voxels in the scaled
T1w and T2w images. The resulting image was passed into BET (Smith,
2002) (fractional intensity threshold = 0.1) for skullstripping. The
skullstripping mask was then applied to the participant’s aligned T1w
and T2w images.

For each participant, we aligned their debiased, skullstripped T1w
volume to a common template, the TRIO_Y_NDC atlas, using a 9-
parameter affine transformation estimated with FLIRT and a mutual
information cost function. We then combined the resulting transforma-
tions to align both T1w and T2w volumes to the TRIO atlas using win-
dowed sinc-function interpolation. Anatomical segmentation was done
using recon-all from FreeSurfer 6.0 with the -T2 flag enabled (Fischl,
2012).

TRIO_Y_NDC is an atlas based on the 711-2B atlas space. Similar to
MNI152 atlas space, a minor 12-parameter affine transform is required
to connect the two spaces. This affine transformation mainly reflects
two key differences: 1) the 711-2B space is about 5% smaller in linear
measure; and 2) it is rotated 3◦ nose-down about the ear-ear axis. The
13
original atlas-representative image was constructed in 1995 from 12 co-
registered T1-weighted images acquired in normal young adults. This
image was ‘‘spatially normalized’’ according to the method described by
Lancaster et al (Lancaster et al., 1995; Ojemann et al., 1997). Multiple
atlas representative images in 711-2B space, e.g., TRIO_Y_NDC, have
since been constructed from T1- and T2-weighted images acquired on
a variety of scanners.

A.2.3. Alignment of EPI images
Framewise alignment of EPI images was accomplished using AFNI’s

3dAllineate. First, a reference image was constructed by averaging 100
aligned frames from the resting state times series taken from time inter-
vals with the lowest DVARs values (Power et al., 2012). To determine
these intervals, a DVARs time series was calculated by computing the
temporal derivative of each voxel’s time series and normalizing its
standard deviation to be equal to 1. For each frame, a DVARs value was
calculated as the spatial mean of the absolute value of the derivative
time series. Because we were interested in extracting the frames to
construct the reference EPI image from prolonged intervals of relatively
low DVARs values, we then low-pass filtered the DVARs time series by
bi-directionally filtering it with a 1st order digital Butterworth filter
with normalized cut-off frequency of 0.16. To create the reference
image, we selected 100 frames associated with the lowest smoothed
DVARs values and aligned them to the individual frame that had the
lowest DVARs value in the session using rigid body transformations.
Alignment parameters were estimated with 3dAllineate and employed a
least-squares cost function along with the -autoweight option. Finally
we constructed a reference image for the session by averaging the 100
aligned frames together. The reference image was then saved for later
use as a target EPI image for Synth.

Lastly, framewise alignment parameters were estimated by regis-
tering each frame individually to the reference image. To reduce the
influence of signal drift on framewise registration and to increase
the contribution of properly aligned edges to the cost function, we
spatially high-pass filtered the reference functional image and each
functional frame independently by smoothing them with large 12 mm
FWHM gaussian kernel and subtracting result from the original image.
These high-pass filtered volumes were then rigid body aligned using
3dAllineate which optimized the cost function calculated over 75% of
the voxels.

A.2.4. Resting state denoising
Resting state data was denoised by regressing a set of nuisance

covariates from each voxel’s time series. The design matrix included
a constant term; a linear trend component; the first 8 low order Legen-
dre polynomials — to remove low frequency fluctuations; time series
corresponding to the 6 framewise rigid-body alignment parameters;
and the first derivative of each of the motion parameters along with
two additional lagged copies. In addition, the design matrix included
nuisance white matter time series as well as time series from nearby
voxels outside of the brain used to model global and regional nuisance
variability (Petersen et al., 1998; Behzadi et al., 2007; King et al.,
2021). The white matter regressors were constructed by extracting and
normalizing time series from all voxels labeled as white matter by
the participant’s FreeSurfer parcellation. Singular value decomposition
was then applied to extract 12 time series accounting for the most
white matter variance. A similar procedure was used to construct
the external signal nuisance regressors. Here, time series from voxels
residing within a 5 voxel shell surrounding the brain were extracted.
Again, the first 12 singular vectors were computed and included in
the denoising design matrix. The complete set of nuisance variables
was then projected from the voxel time series using linear regression.
Lastly, the regression model residuals were bandpass filtered to retain
only frequencies between 0.001 and 0.1 Hz. Frame censoring to re-
move high motion frames was employed using a weighted correlation

approach (Smyser et al., 2010; Power et al., 2012, 2014). First, we
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computed a DVARs time series across all brain matter voxels. Frames
in which DVARs exceeded two standard deviations were flagged and
given a zero weighting. To reduce the influence of any contamination
remaining in adjacent frames, the weighting of the three frames pre-
ceding and following were also reduced in proportion to their absolute
distance from the censored frame.

A.3. Description of radial basis function model used to estimate the synthetic
EPI image

Synth allows the user to specify a regression model that maps source
image intensities to target image intensities. The radial basis compo-
nents were constructed using the following procedure: Let 𝐈𝑚 refer to
an individual source image, e.g.,T1w or T2w; and

{

𝑐1, 𝑐2,… , 𝑐𝐽 ∈ 𝐶
}

refers to a set of 𝐽 evenly spaced values that lie between the maximum
and minimum values of 𝐈𝑚. Then each radial basis component, 𝐫𝑗 , of an
image, 𝐈𝑚, is constructed according to the following equation:

𝐫𝑗 (𝐈𝑚) = exp
(

4 ln(0.5)
( 𝐈𝑚 − 𝑐𝑗
𝑐1 − 𝑐0

))

(4)

A visual representation of the images produced by applying Eq. (4) to
T1w and T2w images is depicted in Fig. 1a. The final design matrix fit
by Synth consists of each radial basis component concatenated into a
single matrix 𝐅, along with intercept terms, 𝐞𝑚, (a vector of all ones)
for each source image, such that:

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

… ...

𝐞0 𝐞1 𝐫0(𝐈0) 𝐫1(𝐈0) ... 𝐫0(𝐈1) ... 𝐫𝑗 (𝐈𝑖)

... ...

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(5)

For both datasets, 𝐅 was constructed from a 12 component decompo-
sition on each of the participants’ T1w/T2w images, along with all
T1w/T2w pairwise interaction terms. As in traditional linear models,
these interaction terms are simply the pairwise product of the columns
of 𝐅.

A.4. The blur operator

While Synth estimates the field map corrections at the 1 mm isotropic
voxel resolution of the T1w/T2w and synthetic EPI images, the true EPI
images are acquired at much lower resolutions. In the case of the MSC
dataset, this corresponds to a 4 mm native voxel resolution resampled
o 1 mm isotropic resolution; and for the ABCD dataset this corresponds
o 2.6 mm native resolution resampled to 1 mm. When lower resolution
PI images are upsampled to the higher resolution grid, their lower
esolution manifests as apparent blur. Synth models this blur (𝐄 in
q. (1)) as the convolution of a source image with an Epanachnikov
ernel, whose bandwidth is related to the resolution difference between
he EPI and anatomical images. This kernel is given by the following
xpression:

(𝐱, ℎ) = max
(

0, 1 − 1
ℎ
‖𝐱‖22

)

(6)

here 𝐱 ∈ R3 is a location on the kernel, and ℎ is the bandwidth param-
ter. For the results in this paper, the bandwidths of the Epanechnikov
ernels were set to ℎ = 6 and ℎ = 10 for the ABCD and MSC dataset
espectively.
Synth models the difference in effective spatial resolution between

1w/T2w and EPI images by blurring the radial basis function (RBF)
omponents of the anatomical images with an Epanachnikov smoothing
ernel prior to fitting the model to the target EPI image. In principle,
he optical blurring should occur only after the field map deformation
s applied, rather than prior to it. However, implementing the model
n this way would require repeatedly blurring the high spatial reso-
ution radial basis components of the T1w/T2w source images after
14

very iterative update of the estimated field map parameters. A naive
implementation of this approach would be computationally prohibitive.
Prior research has shown that in practice the sort of approximation
implemented in Synth in many cases does not introduce a significant
amount of error (Zhang et al., 2012). However, while the quality
of the field map corrections produced by Synth appears to be quite
igh, some improvement may yet be gleaned by using the ‘‘correct
odel’’, assuming the technical challenges to its implementation can

e surmounted.

.5. Contrast correction for error induced image bias

When source and target images are acquired at substantially dif-
erent spatial resolutions, or in the early phases of alignment when
ource and target images are far out of register, the synthetic images
roduced by Synth exhibit significantly ‘‘flattened’’ contrast, even if
he rank order voxel intensities comprising the synthetic image largely
orrespond to those observed in the target image. This is due to the fact
hat errors in registration or large differences between source and target
mage resolution bias estimates of the radial basis function parameters,
, toward the target image mean. In an extreme, but illustrative, case
here image registration is so far off that there is no meaningful

elationship between corresponding source and target image voxels, the
ynthetic image will simply be a volume in which all voxels have the
ame intensity as the target image mean. That is, it will have perfectly
flat’ contrast. As registration improves some, the synthetic image will
egin to exhibit more accurately the contrast properties of the target
mage. In general, however, the contrast of naively estimated synthetic
mages will tend to be somewhat flattened due to error. To address this,
ynth includes a tone curve adjustment option that increases contrast of
he final synthetic image. This is accomplished by passing the synthetic
mage voxel intensities through a monotonic non-linear curve, a process
imilar to tone curve adjustment in traditional image processing. The
urve is constrained to reside within the set of beta function cumulative
istributions –distributions well suited for modeling tone curves that
end to be sigmoidal– and its parameters, 𝛼 and 𝛽, are optimized
y minimizing the negative linear correlation coefficient between the
arget and synthetic images.

.6. Estimating field maps with an undistorted synthetic EPI image

The warp parameters that map the undistorted synthetic EPI image
o the reference EPI image were estimated using a three step iter-
tive procedure. The final iteration of this procedure produced the
stimated field map corrections used for our analyses. This procedure
as conducted as follows:

1. Using Synth, construct an initial synthetic EPI image based on the
current best affine alignment between T1w, T2w and a reference
EPI volume. An EPI signal-to-noise mask was used to reduce the
contribution of low signal-to-noise areas when constructing the
synthetic EPI (see Appendix A.7).

2. Estimate a warp that maps the current synthetic EPI to the
reference EPI image. With the exception of the first iteration,
each warp estimate is initialized from the warp estimate of the
previous iteration.

3. Apply the inverse of this warp, which approximates a field map
correction, to the reference EPI image.

4. Repeat steps 1–3, at each iteration, using Synth to re-estimate the
synthetic EPI image using the most recently corrected EPI image
(see Eq. (1)).

For the results presented here, we estimated the field maps using the
ANTs SyN algorithm. Each subsequent iteration used a smaller gradient
step size, 3, 1, 0.1 for each iteration respectively. SyN parameters were
set to use a neighborhood cross-correlation cost function (radius =

2), update and total field variance parameters of 0, winsorize limits
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of [0.005, 0.995], histogram matching, BSpline interpolation of order
5 (Lehmann et al., 1999), convergence parameters of 500x0, 1e-6 and
15, smoothing parameters of 0x0, and shrink factor parameters 2x1. In
order to leverage the detailed spatial information available in the high
resolution synthetic EPI images during the estimation of the field map,
the warps at each iteration were constructed in the 1 mm 𝑥 1 mm 𝑥
1 mm native resolution of the T1w/T2w source images.

A.7. Creating the EPI signal-to-noise mask

To construct a binary mask that would serve to label EPI voxels
suffering from a high degree of noise or signal dropout we implemented
a linear discriminant analysis procedure. We began by using the brain
mask derived from the skullstripping stage of the anatomical volume
and aligned it to the functional dataset using the affine transformation
generated from Synth. This mask served as an initial guess, or prior
estimate, for which voxels were likely to represent meaningful fMRI
signals in the resting state EPI dataset, and those which represent noise
and areas of signal dropout Supplemental Figure 3. Using this initial
labeling, we implemented a between-class linear discriminant analysis
(LDA) based, first, on the raw un-centered and un-scaled voxel time
series and then computed the projection of each voxel’s time series onto
the resulting principal discriminant vector. We repeated this LDA proce-
dure on the centered and normalized time series from each voxel, again
projecting the times series back onto the principal discriminant vector.
Thus, each voxel was associated with two projection values. We then
created a third value associated with each voxel by computing the prod-
uct of the two principal discriminant vector projections. A second level
of LDA was done on these three values. Lastly, Otsu’s method (Otsu,
1979) was used to label each voxel as ‘signal’ or ‘noise’, depending upon
its projection onto this final 3-element principal discriminant vector.
We refined this labeling by repeating the entire LDA procedure over
20 iterations. During each subsequent iteration the labels produced by
the previous iteration were used during the LDA procedure. Sufficiently
iterated, this approach converges to a stable binary signal-or-noise label
for each voxel. Lastly, to construct a mask containing only within-brain
noise voxels –voxels most likely to be affected by signal dropout– we
masked the final result of this iterative process to remove non-brain
voxels (defined by the skullstrip mask) and morphologically open and
dilate the image by 1 voxel. This mask was used as a weighting volume
to further refine the estimate of the synthetic functional EPI by reducing
the contributions of brain regions where no correspondence could exist
between EPI images and T1w/T2w images due to signal drop out.

A.8. Distortion correction using alternating descent optimization with synth

Distortion correction with Synth is accomplished through an alter-
nating descent optimization approach, which solves for each parameter
individually while keeping the others fixed. At the end of each iteration
of alternating descent, updates to the distortion correction estimation
improves the accuracy of the synthetic image constructed during the
subsequent iteration. These sequential improvements allow for itera-
tively more accurate distortion correction. The complete procedure is
described in Algorithm 1.

Prior to the alternating descent procedure, initial warp parame-
ters, 𝝓0, are initialized by a rigid-body transform that aligns the T2w
anatomical image and EPI image using a mutual information cost
function. The rigid-body parameters from this step are then converted
into a displacement field and applied to the EPI image, aligning it
to the anatomical images that underlie the matrix, 𝐅. Algorithm 1
begins by constructing the radial basis function matrix, 𝐅, from the
T1w/T2w anatomical images. Then the main alternating minimization
loop is run for each iteration 𝑛. First, 𝜽𝑛 is computed by solving the
inear system, 𝑓−1 (𝐲;𝝓𝑛−1

)

= 𝐄𝐅𝜽𝑛. Here, 𝑓−1 denotes the inverse
isplacement field that non-linearly transforms the real EPI image to
he space of the synthetic EPI image. 𝜽 is then used to construct an
15

𝑛

intermediate synthetic image. Next, global contrast parameters, 𝛼𝑛 and
𝛽𝑛 are estimated to improve overall similarity between the EPI image
nd the intermediate synthetic image. Finally, a new estimate for the
isplacement field parameters, 𝝓𝑛, are estimated using the ANTs SyN
on-linear warping algorithm. Each iteration updates 𝝓𝑛, 𝜽𝑛, 𝛼𝑛, and 𝛽𝑛

until a specified number of iterations, 𝑁 , is reached.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.dcn.2023.101234.
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