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Targeted sequencing identifies 91 neurodevelopmental disorder 
risk genes with autism and developmental disability biases

A full list of authors and affiliations appears at the end of the article.

Abstract

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but 

most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients 

and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive 

mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a 

subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus 

intellectual disability and highlight a network associated with high-functioning autism 

(FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and 

non-syndromic forms of disease.

Neurodevelopmental disorders (NDDs) are a heterogeneous collection of psychiatric and 

clinical diagnoses that encompass autism spectrum disorders (ASD), intellectual disability/

developmental delay (ID/DD), attention-deficit/hyperactivity, motor and tic disorders, and 

language communication disorders1. Although each diagnosis is distinctive based on the 

Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5)1, NDDs often 

co-occur. Twin studies have shown that NDDs have a heritable component2. In addition to 

phenotypic overlaps, copy number variant (CNV) studies have shown that risk genotypes 
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overlap between NDDs3. While these data strongly suggest that common genetic etiologies 

underlie a subset of broadly defined NDDs, there has been criticism that gene discovery 

efforts have failed to distinguish ID/DD genes from those contributing to ASD without ID4.

Large numbers of potentially pathogenic mutations have been identified based on exome 

sequencing of NDD cohorts, but in most cases only a single occurrence of a DN mutation in 

a particular gene has been discovered. Significantly larger numbers of cases and controls are 

required to prove the statistical significance of individual genes. Leveraging samples and 

data from multiple comorbid conditions, in principle, can increase our sensitivity to identify 

risk genes. Phenotypic follow-up of cases broadly drawn from NDDs has previously allowed 

us to explore specific clinical phenotypes in a genotype-first manner5, such as in the case of 

genes like CHD86, DYRK1A7, and ADNP8.

Using single-molecule molecular inversion probes (smMIPs)9,10, we sequenced the coding 

and splicing portions of 208 potential NDD risk genes in over 11,730 ASD, ID, and DD 

cases. smMIPs provide a highly sensitive, specific, and inexpensive approach to target 

sequence the protein-coding portions of a moderate number of candidate genes in a large 

number of patients. Samples were collected as part of an international consortium termed the 

ASID (Autism Spectrum/Intellectual Disability) network that involved 15 centers across 

seven countries and four continents. The collection has the advantage over many others in 

that subsequent phenotypic follow-up is possible for a large fraction of the patients.

RESULTS

Mutation discovery

We selected 208 candidate NDD (ASD, ID and DD) disease-risk genes based on published 

sequencing studies11–17 (Supplementary Tables 1–3) using denovo-db (http://denovo-

db.gs.washington.edu)18. Genes were selected and ranked based on the number of published 

DN recurrences, overlap with a CNV morbidity map19, pathway connectivity20, and absence 

of DN variants in 1,909 published unaffected sibling control exomes12,13. We designed 

12,016 smMIPs distributed across four smMIP pools to cover all annotated RefSeq coding 

exons as well as five base pairs of flanking intronic sequence (Supplementary Tables 4–7; 

Methods). We targeted these genes for sequencing in 15 large cohorts of patients (some 

including unaffected siblings) with a primary ascertainment diagnosis of ASD, ID, or DD 

where exome sequencing had not previously been performed (Supplementary Tables 8 and 

9). The set includes 6,342 patients with a primary diagnosis of ASD and 7,065 patients 

diagnosed with ID/DD, representing a large international collaboration between research and 

clinical investigators from the United States, Belgium, The Netherlands, Sweden, Italy, 

China, and Australia (Fig. 1).

After quality control (QC; Methods; Supplementary Table 10; Supplementary Fig. 1–4), we 

identified 61,315 QC-passing variants, excluding common dbSNP variants (http://

www.ncbi.nlm.nih.gov/SNP/; Methods; Supplementary Table 10). 2,185 were private (i.e., 

found in only one family in the study; Supplementary Tables 10 and 11) and potentially 

deleterious (e.g., nonsense, stop-gain, start-loss, frameshift, or disruptive splicing mutations) 

or missense events with a combined annotation dependent depletion (CADD) score > 30 
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(MIS30). The number of private, high-impact events identified in probands was significantly 

greater than in unaffected siblings in the study (false discovery rate (FDR) corrected p = 

1.44x10−9; Fisher’s exact test; Supplementary Fig. 5a,b), as expected9,11. This signal was 

driven primarily by LGD (corrected p = 9.20x10−15) and not MIS30 (corrected p = 0.83) 

events. We validated 1,125 variants, including all private LGD events as well as 25% of the 

private MIS30 events by Sanger sequencing (validation rate > 97%; Supplementary Table 

11).

Genes with an excess of severe de novo mutation

We assessed inheritance for 286 of the private variants, 35% of which were determined to be 

sporadic mutations (Supplementary Tables 12 and 13; Supplementary Fig. 5c). The set 

represents 91 private DN mutations—82 LGD and 9 MIS30—among cases and 9 DN 

mutations—3 LGD and 6 MIS30—among unaffected siblings and includes 35 recently 

reported events11,12,21 (Supplementary Table 12; Supplementary Fig. 5d). Allowing for an 

allele count (AC) ≤3, we identify an additional 32 DN LGD and 15 DN MIS30 events in 

probands, for a total of 138 DN proband events (114 LGD and 24 MIS30; Supplementary 

Table 12). Using a probabilistic model derived from human–chimpanzee divergence and an 

expected rate of 1.5 DN mutations per exome9,22, we calculate the overall probability of 

detecting 114 or more DN LGD and 24 DN MIS30 variants in our panel of 208 genes, as p = 

1.6x10−22 (binomial test) with an odds ratio (OR) of 2.62 (95% CI 2.2–3.09). Combining 

these results (Supplementary Table 12) with published exome datasets (Supplementary 

Tables 1 and 2), we identify a total of 393 DN LGD and 98 DN MIS30 events in 208 

screened genes, increasing the significance (p = 1.28x10−218; OR = 6.46; [95% CI 5.89–

7.06]). Excluding known high-risk NDD genes (Supplementary Table 3), we recalculated the 

probability of identifying 136 or more DN LGD and 13 DN MIS30 variants among the 84 

unknown genes (Supplementary Table 3) where at least one DN LGD mutation has been 

identified. The frequency of DN mutations is significantly enriched in probands (p = 

1.32x10−55, OR = 5.12 [95% CI 4.33–6.01]) suggesting that many of these remaining genes 

contribute to NDD pathology.

Combining both smMIPs and exome sequence data, we identify 68 genes that reach DN 

significance for LGD mutations and 23 genes for MIS30 mutations at the level of the 

individual gene (q < 0.1 by binomial test and more than one LGD or MIS30 event in 

probands; Table 1; Fig. 2a–c; Supplementary Fig. 6; Supplementary Table 14). Thirteen 

genes were significant for both DN LGD and MIS30 genes; thus, 78 unique genes show an 

excess of DN mutations in patients (Table 1). Ten (13%) of these genes are unique to the 

MIS30 category for probands: TANC2, TRIO, COL4A3BP, TBL1XR1, PPP2R5D, 

DLGAP1, SRGAP3, PTPN11, ADCY5, and ITPR1 (Table 1; Supplementary Table 15). 

Thirty-nine of the DN LGD and seven of the DN MIS30 significant genes had been 

previously linked to NDDs in the literature (Supplementary Table 15; Table 1). Of the 78 

DN significant genes, 32 have not been previously described as associated with NDD 

phenotypes in the literature. The most significant of these genes are TRIP12, KMT5B, and 

ASH1L (Fig. 3), which were significant for both DN LGD and MIS30 mutations, and 

NAA15 and DSCAM11 for DN LGD mutations only (corrected p < 1x10−6). The most 

frequently DN mutated genes in this study were SCN2A, ADNP, CHD8, DYRK1A, and 
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POGZ (Supplementary Table 13). DN mutations in NAA15 were also seen as frequently as 

DYRK1A and POGZ (Supplementary Table 13). No genes reach DN LGD significance in 

unaffected sibling controls; although one gene, TRRAP, reaches DN MIS30 significance 

among the controls. While it is possible that DN mutation of this gene is protective, it is 

more likely that TRRAP represents a false positive possibly due to an elevated mutation rate 

compared to expectations based on our statistical model.

Inherited mutations and burden

The majority of validated LGD and MIS30 private variants were inherited (65%) either from 

mother (33.2%) or father (31.8%) (Supplementary Table 13; Supplementary Fig. 5e). 

Combined with additional ultra-rare (AC ≤ 3) inherited events (Supplementary Table 16) and 

published private inherited counts from exome sequencing of the Simons Simplex Collection 

(SSC)13 (Supplementary Table 17), we observe a nominally significant maternal 

transmission bias for LGD (but not MIS30) events (p = 0.037, binomial test where sex 

chromosome events were excluded). Although currently underpowered at the single-gene 

level to detect specific genes, several showed an elevated number of maternal transmissions 

(≥3:1 ratio; i.e., AHNAK, DSCAM, NRXN1, NISCH, UIMC1, PLXNB1, PROX2, CHD1, 

TNRC18, PTK7, and MOV10; Supplementary Fig. 7).

We also estimated the burden of private LGD and MIS30 variants at the single-gene level 

regardless of inheritance status by comparison with controls from the ExAC database where 

neuropsychiatric cases had been excluded (n = 45,376; http://exac.broadinstitute.org/; 

Supplementary Table 18). Separate simulations of LGD and MIS30 events identify 30 and 

13 genes with a significant LGD burden and MIS30 burden, respectively (1x106 simulations 

with Benjamini-Hochberg correction; Table 2; Fig. 2d,e). Four genes—FOXP1, GRIN2B, 

SCN2A, and SETD5—were significant for both LGD and MIS30 burden and are well-

established NDD genes. Interestingly, 18 genes—8 LGD and 10 MIS30—had a significant 

burden of private disruptive mutations in this study but did not reach DN significance likely 

due to our inability to test inheritance for all events. Although DN mutations in some of 

these genes have already been implicated in other NDD studies (e.g., FOXP123, TRIO24, 

SCN1A25, SIN3A26, and IQSEC227), for others—CTNND2, NAV2, and UNC80—many of 

the severe mutations in pedigrees are inherited (Supplementary Tables 11 and 16). Given 

their involvement in neuronal function, axonal projection, dendrite spine formation and 

oligodendrocyte differentiation28–31, these genes likely begin to define a class of inherited 

high-impact risk factors.

Autism versus intellectual disability and developmental delay

To determine whether individual genes show a bias for clinical phenotype, we performed a 

separate burden analysis by primary ascertainment diagnosis (i.e., ASD or ID (including DD 

diagnoses per DSM-5 criteria)) combined with data from previous NDD studies 

(Supplementary Tables 2, 11, and 17)13. We identify 25 genes that show a bias for primary 

diagnosis (two one-tailed binomial tests, p < 0.025 for either ASD or ID/DD cases) 

considering both LGD and MIS30 (Fig. 4a). Eight genes have an ASD bias—CHD2, 

CTTNBP2, CHD8, LAMC3, DIP2A, RELN, UNC80, and IQGAP3. Of these, only CHD8, 

CHD2, and DIP2A have been previously implicated as high-risk ASD loci32. Of the 17 
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ID/DD biased genes, NAA15, ZMYM2, PHIP, and STAG1 have not been previously linked 

to these phenotypes. We further separated the LGD and MIS30 events and identified 

additional significant genes for each mutation type, notably a bias for CDH10 LGD and 

NEMF MIS30 mutations in ASD (Supplementary Fig. 8a) and SCN1A LGD and NRXN1 
MIS30 mutations in ID/DD (Supplementary Fig. 8b). Most genes, however, are mutated in 

both conditions further highlighting the substantial genetic overlap between these comorbid 

conditions.

Phenotypic assessment of new risk genes

We recontacted individuals with mutations in NAA15, KMT5B, and ASH1L for further 

follow-up. We identified 12 LGD and one MIS30 private (Supplementary Table 11) variants 

in NAA15 through our smMIP screening (Fig. 3a) and determined that four LGD mutations 

were sporadic while two LGD variants, including a C-terminal mutation, were inherited 

(Supplementary Table 11). NAA15 shows a burden of LGD events in cases (Table 2) as well 

as an excess of DN LGD variants (Table 1). The gene NAA15 encodes a protein that is a 

component of the NatA N-acetyltransferase complex, which includes NAA10—a protein 

associated with Ogden syndrome as well as non-syndromic DD33 and is thought to tether the 

complex to the ribosome for posttranslational modification of proteins as they exit the 

ribosome34. In order to identify additional patients for clinical recontact, we relaxed our 

variant filter to allow for ultra-rare (AC ≤ 3) alleles. In total, we were able to collect clinical 

information for ten probands with private and three probands with ultra-rare variants in 

NAA15 (Supplementary Table 19). Patients in our study with NAA15 LGD and MIS30 

mutations share phenotypic features, including ID (10/11 patients [91%]), speech delay (5/6 

patients [83%]), ASD diagnosis (formal diagnosis in 5/8 patients [63%] with ASD-like traits 

observed in two additional patients), and nonspecific growth abnormalities (e.g., 

microcephaly, macrocephaly, and hypertelorism) (Supplementary Table 19). Given the 

incidence of DD (5.12%) in the general population35,36, we estimate the penetrance of LGD 

NAA15 mutations to be significant at 35.3% (95% CI 15.7%–63.6%).

Both genes—KMT5B and ASH1L—encode histone-lysine N-methyltransferase proteins 

thought to be important in chromatin modification, occupancy and gene regulation. 

Although the role of these genes in NDDs has not been established, a paralog of ASH1L—

SETBP1—has been shown to be mutated in NDD cases and associated with ID and loss of 

expressive language19. We identified two DN LGD and two DN MIS30 mutations in 

KMT5B in this study (Supplementary Table 12) in addition to three DN LGD and one DN 

MIS30 published variants12,14 (Supplementary Table 2; Fig. 3b). We were able to collect 

clinical information from three probands with private variants and four probands with ultra-

rare variants in KMT5B (Supplementary Table 20). Patients with disruptive variation in 

KMT5B shared features such as ID/DD (7/7 patients [100%]), ASD diagnosis (5/6 patients 

[83%]), language delay (3/4 patients [75%]), motor delay (3/5 patients [60%]), and febrile 

seizures (3/5 patients [60%]). Attention deficits were also observed in three of these patients 

(Supplementary Table 20). For ASH1L, we identified two DN LGD and two DN MIS30 

mutations in addition to the three DN LGD previously published mutations13,14. We 

identified many additional LGD and MIS30 variants in ASH1L where parental DNA was not 

available (Fig. 3c) and found that mutations cluster around the known annotated protein 
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domains. We were able to obtain clinical information for two probands carrying private and 

three probands carrying ultra-rare ASH1L variants. Individuals with ASH1L disruptive 

variation in this study had ID (5/5 patients [100%]), ASD (2/3 patients [67%]), and evidence 

of seizures (2/3 patients [67%]) (Supplementary Table 21).

Phenotypic comparisons and a high-functioning ASD network

We selected patients with DN LGD mutations in 25 of our top-ranked genes in an effort to 

more broadly compare phenotypic features. Of the recontacted individuals, 70% (88/125) 

agreed to participate in a more comprehensive phenotypic evaluation (Supplementary 

Methods). To increase our power to detect differences between patients grouped by gene, 

215 case reports from the published literature were combined with the findings collected as 

part of our recontact study. We assessed the general severity of each NDD using a modified 

de Vries scale (Supplementary Table 22) and summarized phenotypic features collected 

during follow-up (Table 3: including rates of ASD, ID, seizures, macro/microcephaly, and 

congenital abnormalities as well as mean IQ measures and ASD severity).

Several specific and global patterns emerged from this combined dataset, in particular, an 

inverse relationship between ASD and ID diagnoses by gene (Pearson’s R = −0.81, p = 

9.84x10−7; Fig. 4b). We partitioned patients into two categories: those most strongly 

associated with ASD (diagnostic rate > 95%) versus those more strongly associated with 

DD. Patients with mutations in ASD genes show significantly lower rates of seizures (p = 

1.20x10−4), congenital abnormalities (p = 1.88x10−2), and microcephaly (p = 1.79x10−7), 

but higher rates of macrocephaly (p = 5.25x10−3) compared to comorbid ASD and ID genes 

and strong ID genes (two-tailed Fisher’s exact test; Fig. 4c). In addition, the ASD-dominated 

genes show a significant difference with respect to gender. ASD genes are more likely (p = 

1.65x10−4) to affect males with an overall ratio of 4:1 when compared to other genes (1.2:1 

male to female ratio). Although the number of individual patients per gene is still low, it is 

interesting that several genes show an exclusive male bias (KDM6B, DSCAM, WDFY3, 

CHD1, and WDR33; Fig. 4c; Table 3). Pathway analysis of these 11 ASD genes indicates a 

functional enrichment for chromatin remodeling (corrected p = 4.72x10−3; Enrichr tool 

(http://amp.pharm.mssm.edu/Enrichr/))37 implicating a functional network associated 

specifically with ASD individuals without ID.

To identify additional genes that may be associated specifically with high-functioning ASD, 

we revisited the deep phenotyping data collected as part of the SSC and applied the MAGI 

network-building tool, which compares the spectrum of DN mutations in probands and 

unaffected siblings to identify co-expression and protein-interaction networks enriched in 

patients12,13,20. We specifically selected patients with a full-scale IQ (FSIQ) > 100 (n = 668 

SSC probands; male bias 9:1) to construct a protein-interaction network based on genes with 

DN variants in this subset (Supplementary Methods). One statistically significant model 

emerged (p < 0.01, simulation test; Fig. 4d), including 40 genes and DN mutations in 31 

individuals with FSIQ > 100. Although mostly comprised of DN missense mutations, the 

network shows that DN LGD mutations in FBXW11, CHD1, CHD8, DOT1L, HDAC3, 

YTHDC1, and KLHDC10 may be important in this patient subset. Both CHD1 and CHD8 
individuals were included in our large-scale patient recontact and showed high specificity for 
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ASD diagnosis (Table 3). A pathway analysis for this specific set of genes implicates, once 

again, chromatin remodeling (p = 0.0003 adjusted p-value) as well as mRNA splicing (p = 

0.00026) and Wnt signaling (p = 0.03) as potentially important for ASD without ID.

Functional characterization of candidate genes in Drosophila

In order to provide additional functional evidence especially with respect to nervous system 

function and behavior, we performed a pilot study investigating 21 genes in Drosophila 
melanogaster (Supplementary Table 23). For 11 of these genes, DN LGD mutations are 

significantly enriched in NDD patients. For the other ten genes, there are indications that 

they may be associated with ASD, such as a higher mutation rate in ASD cohorts or a 

central position in ASD gene interaction networks20. Others, such as NCKAP1 and 

WDFY3, are at the cusp of statistical significance. We used the UAS-Gal4 system and 

inducible RNA interference (RNAi) lines to specifically knockdown these genes in 

Drosophila neurons. Whenever their locomotor function and overall vigor allowed 

(Supplementary Table 23), we subjected these knockdown flies to an ASD- and ID-relevant 

behavioral assay measuring light-off jump habituation, which has been shown to be affected 

in a number of ASD- or ID-related Drosophila models38–43. In this assay, flies suppress their 

startle (jump) response to a repeated nonthreatening stimulus (light-off) as a result of 

experience. Their response thus gradually wanes (Fig. 5a,b). As the most fundamental 

evolutionarily conserved form of learning, habituation is thought to represent a prerequisite 

for higher cognitive functions44. Beyond that, a number of studies showed defective 

habituation of neural activity or behavior in ASD45–48, and it has been proposed that 

disturbed habituation mechanisms could substantially contribute to defective filtering and 

other ASD features49,50.

We first examined genes that showed a significant excess of DN LGD mutations—NAA15, 

KMT5B, ASH1L, and TCF4—and where human phenotypic data strongly support a role in 

NDDs. For the Nat1 (ortholog of NAA15, VDRC #110689) knockdown, we observe erect 

wing, impaired locomotor activity, and adult early lethality (within 1–2 days after eclosion). 

Upon knockdown of Nat1 using a second presumably weaker RNAi line (VDRC #17571), 

flies exhibit normal morphology and locomotion; however, when challenged in the light-off 

jump paradigm, their initial response is impaired (19% frequency of initial jumping), 

precluding proper assessment of habituation (Supplementary Table 23). These results 

support Nat1’s crucial role in nervous system development. Ash1 (ortholog of ASH1L) 

neuronal knockdown flies also showed reduced fitness, and, like Nat1 flies, could not be 

scored in the habituation paradigm. Hmt4-20 (ortholog of KMT5B) and da (ortholog of 

TCF4) flies, in contrast, were overall healthy but showed specific and significant habituation 

deficits (Fig. 5a,c), suggesting that both genes play important roles in the molecular 

machinery that regulates habituation learning.

We observed habituation defects following knockdown of fly homologs for several other 

significant DN genes, including SYNGAP1, GRIN2B, and SRCAP (Fig. 5c, Supplementary 

Table 23). In addition, dom (SRCAP) and da (TCF4) flies showed significant morphological 

abnormalities at the neuromuscular junction (NMJ), a well-studied synaptic model system 

(Supplementary Fig. 9). NCKAP1, WDFY3, and GIGYF2 are among the tested genes with 
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borderline significance based on our human genetic data. Significant habituation defects 

were observed for hem (ortholog of NCKAP1), bchs (ortholog of WDFY3), and CG11148 
(ortholog of GIGYF2) knockdown flies (Fig. 5c; Supplementary Table 23). Due to the 

paucity of patients, little is known regarding the clinical phenotypes associated with loss-of-

function mutations of these genes; however, these functional studies suggest an important 

role in neuronal and cognitive function.

DISCUSSION

Targeted sequencing of candidate genes in a large NDD cohort has identified three 

overlapping categories of high-risk genes. First, we identify 68 genes that now reach DN 

LGD mutation significance, 39 of which have previously been described. Due to limited 

availability of parental samples, this estimate is likely conservative. Second, we highlight 24 

genes with a significant excess of DN missense mutations in NDD patients; 63% (15/24) 

overlap genes with DN LGD significance (e.g., SCN2A, STXBP1, CHD2, and CASK) while 

others are significant based only on an excess of DN MIS30 mutations (e.g., COL4A3BP, 

TRIO, TBL1XR1, and PPP2R5D; Table 1), similar to the Noonan-syndrome gene 

(PTPN11)51. Finally, 39 genes reach statistical significance based on a case-control burden 

testing (Table 2). Of interest are the 13 genes without DN mutation significance 

(SMARCC2, CTNND2, SIN3A, SCN1A, NFIA, CDKL5, DNAJC6, IQSEC2, IQGAP3, 

ADGRL2, ERBIN, NAV2, and AGPA2; Table 2) suggesting potential inherited risk 

factors13,31,52. In total, 44% (91/208) of our candidate genes reach locus-specific 

significance for disruptive mutations in 5.7% of patients, closely matching empirical 

expectations12. However, mutation of these genes may not be necessary and sufficient to 

result in disease. We note, for example, nine families (Supplementary Fig. 10) with 

disruptive mutations in two or more of the candidate genes.

Three genes without previous phenotype information reach a high level of DN significance 

(NAA15, KMT5B, and ASH1L). NAA15 was originally identified as an N-methyl-D-

aspartate (NMDA) glutamate receptor-regulated gene through screens of NMDAR1 
knockout mice53. Knockdown of Naa15 in Drosophila neurons caused severe locomotor 

defects and lethality. Missense mutations in the NAA15 interacting gene NAA10 are known 

to cause Ogden syndrome, an X-linked disorder of infancy that can result in severe DD, 

craniofacial anomalies, hypotonia, cardiac arrhythmias, and in some cases death54. This is 

consistent with the DD observed in our patients and the fact that DN LGD mutations have 

been identified in congenital heart disease patients with NDDs55. KMT5B and ASH1L 
highlight the importance of histone methyltransferases, like DNMT3 and EHMT56, in ID 

and NDD. Mouse studies have shown that Ash1l protein represses nrxn1α protein in 

neurons—a known presynaptic adhesion molecule required for synaptic formation57; 

mutations in NRXN1 have been associated with ASD58. Even less is known about the role 

the protein encoded by KMT5B plays in the developing brain. However, studies suggest that 

the H4K20me3 mark established by the KMT5B protein may be involved in cell cycle 

regulation in baboon neural stem progenitor cells59. Our own analyses in Drosophila support 

a role for NAA15 and ASH1L in neuronal development and for KMT5B and TCF4 in 

habituation learning (Supplementary Table 23) consistent with patient phenotypes 

(Supplementary Tables 18–20).
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We designed the study such that approximately half of the patients were ascertained based 

on a primary diagnosis of ASD while the other half were diagnosed initially as ID/DD in an 

effort to test the diagnostic specificity of particular genes. While most genes are clearly risk 

factors for NDD broadly4, secondary analyses of both the genetic burden and subsequent 

patient follow-up for 25 genes in 303 patients did highlight genes with a statistical bias 

toward ASD versus ID/DD diagnosis (Table 3; Fig. 4c). We find that patients with mutations 

in genes enriched for ASD show significantly lower rates of seizures, congenital 

abnormalities, and microcephaly, but higher rates of macrocephaly compared to comorbid 

ASD and ID genes and strong ID genes (Fig. 4c). The latter is interesting in light of the 

observation of increased brain size and/or weight at early ages in subtypes of ASD when 

compared to ID or typical toddlers60–63. While the number of exome-sequenced patients 

with a DN mutation are few (4.6% or 31/668 patients), the data highlight a co-expression 

and protein-interaction network statistically enriched in high-functioning autism patients 

(FSIQ > 100) when compared to unaffected siblings. This network is biased for DN 

missense compared to LGD mutations (2:1) indicating that less severe mutations may be 

playing a role in ASD without ID. The network highlights both mRNA splicing as well as 

genes important in chromatin remodeling. The latter implicate early developmental 

programs that regulate cell proliferation, neural patterning and differentiation, axonal 

guidance consistent with cellular ASD models64–66, and ASD postmortem63,67,68, 

genomic69,70 and developmental imaging60–62 studies.

ONLINE METHODS

Patient samples

Whole-blood or cell line DNA from patients with ASD, ID, or DD diagnosis were collected 

from 15 international clinical and research cohorts (Fig. 1). Only DNA samples from The 

Autism Simplex Collection (TASC) and Autism Genetic Resource Exchange (AGRE) 

cohorts were derived from cell lines. Clinical workup, including diagnostic evaluation, 

medical examination, and neuropsychological assessment, was made available for many 

patients upon request, specifically for patients with mutations in NAA15, KMT5B, and 

ASH1L (case reports in Supplementary Data). Best estimate clinical DSM-51 diagnoses 

were made by experienced, licensed clinicians using all available information collected 

during the evaluation. For a description, the number of individuals represented, and the 

primary ascertainment criteria for each cohort in this study, refer to Supplementary Table 8. 

In addition, 2,867 unaffected sibling control individuals were collected for genetic and 

phenotypic comparison (Supplementary Table 9). All experiments carried out on these 

individuals were in accordance with the ethical standards of the responsible committee on 

human experimentation (institutional and national), and proper informed consent was 

obtained for sequencing, recontact for inheritance testing, and phenotypic workup. All 

sequencing of patient samples was performed at the University of Washington, Seattle, WA, 

USA.

Detailed descriptions of clinical cohorts

Autism Clinical and Genetic Resources in China (ACGC)—This cohort has been 

described previously21.
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Autism Genetic Resource Exchange (AGRE)—This cohort has been described 

previously87.

Leuven—The Leuven cohort consists of patients with ASD as diagnosed by the 

multidisciplinary team in the Expert Centre for Autism Leuven according to DSM-IV-TR 

(American Psychiatric Association, 2000) criteria. All patients have been examined by a 

clinical geneticist. Patients with known monogenic conditions have been excluded after a 

routine genetics workup.

Melbourne & Murdoch—All participants had a DSM-IV or DSM-5 diagnosis of ASD. 

Diagnoses were community-based performed by a multidisciplinary team (pediatrician, 

psychologist, and speech pathologist). Diagnoses were confirmed for research purposes 

through ascertainment of previous ASD and cognitive assessments and a telephone interview 

with the parents. Information about the pregnancy and birth, developmental milestones, 

comorbidities, medications, and general health was collected during the interview and from 

medical records. Current ASD symptomatology was measured via the Social 

Responsiveness Scale (SRS) or Social Responsiveness Scale – 2nd edition (SRS-2). 

Pedigrees were obtained for each family detailing the family’s history of medical conditions, 

mental health disorders, intellectual impairment, ASD diagnoses and ASD traits. DNA was 

collected from blood or saliva from probands and their parents. Most probands underwent 

molecular karyotyping for CNVs and single-nucleotide polymorphisms and fragile X DNA 

testing; older participants had routine karyotyping.

The Autism Simplex Collection (TASC)—This cohort has been described previously88.

Adelaide—Individuals with intellectual disability or developmental delay were recruited 

who were referred but negative for molecular testing for fragile X and large CNVs by array 

comparative genomic hybridization (CGH). The vast majority were also singletons and 

recently clinically diagnosed/ascertained patients for recontact purposes.

Leiden—The cohort consists of patients with developmental delay with or without autistic 

features. Clinical microarrays to detect CNVs were run on all index patients, and 

identification of a likely causal CNV was an exclusion criterion. No formal DSM criteria 

were used in the diagnosis. All patients were seen by experienced clinical geneticists and if 

indicated specific gene tests were requested. Parents of the patients gave verbal consent for 

inclusion in this study.

Stockholm—Array CGH was performed for all cases using the Agilent platform with a 

180k genome-wide design. The cases were referred for genetic investigation due to a 

diagnosis of ID/ASD but did not use the DSM-5 guidelines systematically.

Candidate gene selection

Candidate genes with DN mutations were identified from whole-exome and targeted 

sequencing studies of ASD, ID, and DD based on previously published studies and included 

4,874 probands with ASD9,11–14, 151 probands with ID15,16, and 1,133 probands with DD17 

(Supplementary Table 1). Genes were ranked based on the following criteria: (1) presence of 
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two or more LGD mutations, (2) presence of multiple missense mutations and at least one 

LGD mutation, (3) presence of at least one LGD mutation overlapping a region of interest in 

our published DD CNV morbidity map19, and (4) presence of at least one LGD mutation 

with network connectivity to either chromatin remodeling/transcription or long-term 

potentiation as described previously20. Genes with expression in the brain (based on the 

BrainSpan Atlas of the Developing Human Brain [http://www.brainspan.org/] and GTEx 

[http://www.gtexportal.org/] databases89) were prioritized. We eliminated genes associated 

with likely unrelated disorders in OMIM (http://www.omim.org/) and genes that were 

deemed highly mutable (determined based on data from 6,503 control individuals in the 

NHLBI Exome Sequencing Project [ESP; http://evs.gs.washington.edu/EVS/]). Finally, we 

filtered genes based on the number of DN mutations by whole-exome sequencing among 

unaffected siblings from the SSC11–13. See Supplementary Table 3 for more details on 

selection criteria.

smMIP sequencing and variant validation

smMIP sequencing was performed as previously described9,10. We targeted the coding 

portions of all RefSeq annotated transcripts for these 208 genes as well as five base pairs 

into each exon-adjacent intron in order to capture variation at splice-donor/acceptor sites 

resulting in the design of 12,016 smMIPs. smMIPs were split into four pools (Gold, ASD4, 

ASD5, and ASD6; see Supplementary Tables 4–7 for gene breakdown), and each pool was 

rebalanced so that poorer performing smMIPs were spiked in at a concentration of 10X or 

50X. Approximately 192 samples were barcoded and sequenced per lane of Illumina HiSeq 

2000 as previously described11, and data analysis was performed using the MIPgen suite of 

tools (http://shendurelab.github.io/MIPGEN/). Variant calling of smMIP data was performed 

on each sequencing lane using FreeBayes v0.9.14 with default settings and the hg19 

reference. For each of the four pools, all FreeBayes output was combined using GATK. 

Allele counts per genotype (AC) and the total number of alleles per genotype (AN) counts 

were recalibrated on the combined variant set using VCFtools. Multi-allelic sites were split 

into separate entries using vcflib (vcfbreakmulti) and sequencing error repeats and common 

single-nucleotide polymorphisms (all of dbSNP v129 and variants found in dbSNP v141 at a 

minor allele frequency ≥0.01 in at least one major population with at least two unrelated 

individuals having the minor allele) were removed. From the individual genotypes with 

sequencing depth (DP) of greater than 8X and a quality score (QUAL) of greater than 20, a 

private filter (found in only one family in the study) was applied to each pooled dataset (i.e., 

ASD4, ASD5, ASD6, or Gold). These variants were annotated using the Ensembl Variant 

Effect Predictor tool for GRCh37 (http://grch37.ensembl.org/Homo_sapiens/Tools/VEP/) 

and with CADD scores90 (http://cadd.gs.washington.edu/; v1.3). All private LGD variants 

and a portion of MIS30 variants were validated by Sanger sequencing. Specifically, a CADD 

> 30 was chosen for validation as these events are very rare (<0.1% of all missense events in 

control genomes90) and more likely to be pathogenic21. Where available, parents were also 

Sanger sequenced to determine the inheritance status of these variants. In total, we targeted 

>16,000 unique samples including 13,475 probands and 2,867 unaffected siblings using 

each of the four smMIP pools. 1,744 of the DNA samples did not have sufficient DNA for 

all four pools; gene sets were prioritized based on potential disease significance 

(Gold>ASD4>ASD5>ASD6; Supplementary Table 10) with 13,475 probands (Gold), 
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12,260 probands (ASD4&5), and 11,731 probands (ASD6). In addition, we sequenced 2,867 

unaffected sibling samples with each of the four pools. To determine the performance of 

each smMIP pool, 10 plates of unaffected siblings (960 samples) were compared in each 

pool plotting the frequency of these 960 samples that reached at least 8X sequencing 

coverage for each individual smMIP in the study (Supplementary Table 3). Each of these 

data points were plotted by gene within each pool (i.e., Gold, ASD4, ASD5, and ASD6 

shown in Supplementary Fig. 1–4, respectively). 165 genes passed all QC metrics (75% of 

smMIPs by gene reached at least 8X coverage in ≥80% of controls), but some exons, due to 

their size or GC composition, failed to pass these thresholds. For those regions that did not 

pass QC, we chose to consider variant genotypes identified in samples if they were of high 

quality (read depth (DP) > 8, phred scaled quality score (QUAL) > 20); however, these 

variants were not considered for assessments of mutation burden.

Clinical recontact and phenotyping

To systematically compare the effect of particular LGD mutations of targeted genes on 

phenotype, we recontacted individuals with identified LGD mutations and conducted a 

comprehensive phenotypic workup assessing function across multiple domains. Per our 

human subjects approval, we only recontacted individuals that had consented to be 

approached about future studies during their original assessment. Families were invited to 

participate in a comprehensive clinical workup that included diagnostic evaluation, medical 

examination, and neuropsychological assessment (see Supplementary Methods for test 

battery and procedures). Importantly, all assessments were conducted by examiners naïve to 

the individual’s genetic event, thereby reducing clinician bias in rendering diagnostic 

dispositions. In order to make comparisons across groups with similar LGD mutations, each 

participant was scored according to a modified version of the de Vries scale as a proxy for 

the overall severity of the phenotype92–94. The modified de Vries scale included presence of 

facial dysmorphisms, congenital abnormalities, postnatal head growth abnormalities, ID/DD, 

and the number of DSM-5 diagnoses and medical diagnoses conferred, allowing a score 

ranging from zero to twelve (Supplementary Table 22). Data collected from these patients 

were combined with published case reports to increase our power to detect enrichments 

among patients sharing DN LGD mutations in the same gene or pathway. A total of 323 case 

reports of individuals with DN LGD mutations of interest and relevant data were included. 

The relevant phenotype data extracted from cases in the published literature were combined 

with information collected from individuals that were able to complete the in-person 

comprehensive evaluation. The modified de Vries scale score for individuals with the same 

disrupted gene were averaged and then rank-ordered to estimate the impact of the gene 

mutation on phenotype. Only genes with six or more study participants and published case 

reports were included in the analysis. Patients that were considered had LGD mutations in 

one of the following genes: ADNP, ARID1B, CHD2, CHD8, CTNNB1, DYRK1A, FOXP1, 

GRIN2B, MED13L, POGZ, PTEN, SCN2A, SETBP1, STXBP1, or TBL1XR1.

Patient workups

Comprehensive clinical workup included diagnostic evaluation, medical examination, and 

neuropsychological assessment. Best estimate clinical DSM-51 diagnoses were made by 

experienced, licensed clinicians using all available information collected during the research 
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evaluation. The battery included autism-specific diagnostic measures, the Autism Diagnostic 

Observation Schedule95 and the Autism Diagnostic Interview – Revised96, both 

administered by research-reliable clinicians. The battery also included assessment of 

cognitive ability (Differential Ability Scales, DAS97), language ability (Peabody Picture 

Vocabulary Test – 4th Edition, PPVT; Expressive Vocabulary Test-2nd Edition, EVT), 

adaptive functioning (Vineland Adaptive Behavior Scales-2nd Edition) and motor ability 

(Movement ABC; Purdue Pegboard), as well as behavioral and psychiatric disorders (Child 

and Adolescent Symptom Inventory, 5th Edition (CASI-5); Child Behavior Checklist 

(CBCL), Aberrant Behavior Checklist (ABC)). Medical diagnoses were assessed using the 

SSC medical history interview98 and by physical examination conducted by a developmental 

pediatrician conducting a standardized medical examination.

Participants undergoing comprehensive phenotypic assessment and published case reports in 

the literature were scored using an adapted de Vries scale as a proxy for the overall severity 

of the phenotype75,76. Modifications included the removal of stature and prenatal onset 

growth retardation, the inclusion of medical and psychiatric diagnoses, revision of weighting 

of intellectual disability into 3 points, and an increase to a total score of 12. Borderline 

intellectual disability or general delays were rated with 1 point, mild to moderate intellectual 

disability scored with 2 points, and severe-profound intellectual disability scored with 3 

points. Psychiatric and medical diagnoses were tallied and scored 1 if an individual had one 

diagnosis in these domains and scored 2 if the child had two or more diagnoses in these 

domains.

DSM-5 diagnoses included: ASD (299.00), attention-deficit hyperactivity disorders (314.01, 

314.00), language disorder (315.39), speech sound disorder (315.39), developmental 

coordination disorder (315.4), anxiety disorders (309.21, 300.29, 300.01, 300.02, 300.09), 

behavior disorders (313.81, 312.34, 312.81, 312.9), mood disorders (311.0, 296.99, 300.4), 

elimination disorders (307.6, 307.7). Intellectual disability (319, 315.8) was not tallied in the 

DSM-5 diagnosis domain. Medical diagnoses were tallied by system: cardiac, 

gastrointestinal, genital, neurological, pulmonary, renal, and visual and auditory. In order to 

not double code diagnoses, microcephaly, macrocephaly and congenital abnormalities were 

not tallied under the medical diagnoses domain.

Relevant phenotypic data were extracted from published case reports of individuals with DN 

LGD mutations to increase our power to detect enrichments among patients sharing DN 

LGD mutations in the same gene. A total of 323 case reports of individuals with DN LGD 

mutations of interest and relevant data were identified and 215 case reports had sufficient 

data to incorporate in the de Vries scale. LGD mutations included: ADNP8,17,99, 

ARID1B17,23,100, CHD217,23,101, CHD86,102, CTNNB115,17,103–105, DYRK1A7,17, 

FOXP117,106,107, GRIN2B15,17,23,101,108–111, MED13L17,23,112,113, POGZ17,38,114,115, 

PTEN101,116,117, SCN2A15,17,101,118–122, SETBP117,19,23,123–125, STXBP117,101,126, and 

TBL1XR117,127.

Network analysis

We investigated modules significantly disrupted in high-functioning autism samples (full-

scale IQ > 100). We applied MAGI20 on all of the samples from the ASD probands in SSC 
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with FSIQ above 100. This subset of samples covers over 500 total missense DN mutations 

and 100 LGD mutations. We applied the MAGI tool for module discovery on these variants 

utilizing protein-interaction networks, gene co-expression networks and severe mutations 

reported in control population from ESP (http://evs.gs.washington.edu/EVS/; n = 6,500 

individuals). The protein-interaction network used was a combination of networks from 

HPRD128 and String129 databases and the co-expression network was built using BrainSpan 

Atlas resource. Note that the exact same training networks were used in our previous 

analysis for autism module discovery20. The parameters were that the pairwise gene co-

expression inside modules be, on average, at least 0.415 and the average protein interaction 

density be 0.085. MAGI found one module of 40 genes significantly enriched in DN 

mutations (p < 0.01 using 100 random mutation permutation tests).

Drosophila knockdown models

Drosophila orthologs of the genes of interest were determined using Ensembl, Unigene, and 

flybase databases130,131. Their expression was knocked down using the UAS-Gal4 

system132 to induce conditional RNAi. The panneuronal promoter line w1118; 2xGMR-
wIR; elav-Gal4, UAS-Dicer-242 and two independent RNAi constructs per gene were used 

whenever available (www.vdrc.at)133 that fulfilled stringent specificity criteria (s19 value ≥ 

0.98)134. Strains containing identical genetic background to the RNAi constructs (#60000, 

#60100) were crossed to the driver line and used as controls. No effects in our assays were 

seen when crossing the ‘40DUAS’ line135 (containing UAS repeats but no functional short 

hairpin RNA, a potential source for dominant phenotypes due to an integration locus of the 

VDRC KK library135,136) to our panneuronal Gal4 driver. Flies were cultured according to 

standard procedures. Experimental randomization was not applicable to the Drosophila 
experiments in this study.

Drosophila light-off jump reflex habituation assay

The Drosophila light-off jump habituation assay was performed as previously described137. 

Briefly, flies were reared at 25°C and 70% humidity, in a 12:12h light/dark cycle. For all 

healthy lines, at least 64 3-to-7-day-old male flies were tested per genotype, in at least two 

independent experiments. Flies were transferred into individual vials of two 16-unit 

habituation systems (Aktogen ltd., Hungary) and, after 5 min adaptation, exposed to 100 

light-off pulses (15 ms each) with 1-second inter-pulse interval. Their jump responses were 

recorded by two sensitive microphones placed in each vial. A carefully chosen threshold was 

applied to distinguish the jump responses from the background noise. Data from 64 

individual flies per genotype were collected (two independent experiments) and analyzed by 

a custom Labview Software (National Instruments). Genotypes were blinded during the 

experiments and automatically analyzed. Flies that jumped at least once in the first five trials 

were evaluated for habituation (pre-established criterion). Initial jumping responses to light-

off pulse decreased with number of pulses and flies were considered habituated when they 

stopped jumping for five consecutive trials (no-jump criterion). Habituation was scored as 

the number of trials to the no-jump criterion (TTC). The main effect of genotype, corrected 

for testing day and 16-unit system on TTC values, was determined using linear model 

regression analysis with R statistical software (v.3.0.0).
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Drosophila NMJ experiments

Flies were reared at 28°C, 60% humidity and a 12:12h light/dark cycle. Type 1b NMJs of 

muscle 4 were analyzed. Wandering 3rd instar larvae were collected, dissected and fixed in 

3.7% PFA for 30 min. Preparations were rinsed with PBS and permeabilized with 0.3% 

Triton X-100 in PBS for 2h at room temperature. Discs large protein (Dlg1) was visualized 

using primary antibody anti-Dlg1 (1:25) (Dlg1-4D6, Developmental Studies Hybridoma 

Bank) conjugated with the Zenon Alexa Fluor 568 Mouse IgG1 labelling kit (Invitrogen), 

according to the manufacturer’s protocol. The preparations were incubated for 1.5h at room 

temperature, extensively washed and mounted in ProLong Gold Antifade Mountant (Thermo 

Fisher Scientific). Genotypes were blinded during the experiments and automatically 

analyzed. Based on previous experience38–40 fluorescence images were acquired per 

genotype using an automated Leica DMI6000B high-content microscope. Morphometric 

analysis was performed in FIJI138 using the Drosophila NMJ Morphometrics macro139. 

Resulting images were visually inspected for accurate image segmentation. Inaccurately 

segmented parameters were excluded as previously described139. NMJ boutons number in 

hmt4-20 knockdown flies was manually assessed, blinded to genotype, by two independent 

researchers and averaged to obtain the final counts. Statistical analysis was performed using 

GraphPad PRISM. Area, perimeter, length, longest branch length, and boutons were 

analyzed by Student’s t-test. Branches, branching points, and islands were analysed by 

Mann-Whitney U test.

Statistical analyses

To calculate the significance and penetrance of LGD and MIS30 mutations in ASD/ID, we 

compared our smMIP data to two control datasets: the first included the 2,867 unaffected 

sibling controls that were sequenced through the same smMIP pipeline (see above), and the 

second included mutation data from the ExAC database91 where neuropsychiatric cases 

were removed (ExAC v0.3), representing 45,376 samples. The .vcf file for these 45,376 

ExAC samples was annotated using VEP and CADD (as described above). The ExAC 

dataset was filtered by the same pipeline as the smMIP data (see above) including only 

“PASS” variants. Private variants were filtered as an AC = 1 for burden statistics. In order to 

compare the ExAC control counts to the smMIP data, only LGD and MIS30 events were 

considered. LGD and MIS30 counts by gene for ExAC can be found in Supplementary Table 

18. To calculate the significance of private LGD or MIS30 mutation burden in our smMIP 

dataset compared to unaffected (ExAC) controls, we performed a simulation by shuffling the 

labels of private case and control observations 1x106 times and calculated the probability of 

observing at least the number of LGD or MIS30 events seen among our cases. These p-

values were corrected (Benjamini-Hochberg) for the number of genes in the study (n = 208). 

Penetrance and its confidence bounds were calculated using the model described 

previously36:
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where D = disease, G = genotype (the presence of the specific type of event in the gene), and 

D̄ = absence of disease. The general population incidence of ID/DD in our cohort was 

assumed to match that described in Rosenfeld et al.35,36 (P(D) = 5.12%), as our cohort 

composition has a similar representation of youth onset diseases with an important genetic 

component with broad exclusion of chromosomal disorders. DN significance was calculated 

as previously described9 using a statistical framework that considers the length of the gene 

and divergence between chimpanzee and human. In order to calculate DN significance for 

MIS30 variants, we modified the model to separately enumerate prior probabilities for 

CADD < 30 and CADD >= 30 missense sites using CADD v1.3.

To compare clinical phenotypes, a Pearson’s correlation coefficient and p value were used to 

compare overall ASD versus ID diagnosis by genic event. Phenotypic rates were compared 

between individuals carrying variants in ASD versus DD genes using a two-tailed Fisher’s 

exact test.

A linear model regression analysis was performed using 64 flies per genotype collected 

through two independent experiments for the habituation data calculations. For the NMJ 

experiments, area, perimeter, length, longest branch length, and boutons were analysed by 

two-tailed Student’s t-test (degrees of freedom for SRCAP (dom) experiments: Area = 60, 

Length = 65, Boutons = 73, Perimeter = 60; degrees of freedom for TCF4 (da) experiments: 

Area = 63, Length = 68, Branches = 68, Branching = 68). Branches, branching points, and 

islands were analysed by Mann-Whitney U test.
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ASD autism spectrum disorders

CNV copy number variant

ID intellectual disability

DD developmental delay

NDD neurodevelopmental disorder

DN de novo

LGD likely gene-disruptive

smMIP single-molecule molecular inversion probe

CADD combined annotation dependent depletion

MIS30 missense mutations with a CADD score > 30

SSC Simons Simplex Collection

FDR false discovery rate

NMJ neuromuscular junction

TTC trials to no-jump criterion
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Figure 1. ASID patient network
13,475 probands with a primary diagnosis of ASD, ID, or DD collected from 15 

international groups were screened using smMIPs. Circle size corresponds to the number of 

samples screened for each cohort. Cohort numbers (1–15) correspond to Supplementary 

Table 8.
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Figure 2. Targeted sequencing highlights genes that reach significance for DN mutations and 
private disruptive variant burden
(a–c) Quantile-quantile plots comparing the probability (FDR-corrected, inverse log 

transformed) of recurrent DN mutation for individual genes among proband samples 

compared to a uniform distribution given the number of genes tested (dashed gray line = 

significance threshold). Black dashed box (panels (a) and (b)) are zoomed in (panels (b) and 

(c), respectively). *Genes that reached significance for mutation burden. (d–e) Scatterplots 

depict the odds ratio (OR) for private variants compared to unaffected controls from ExAC 

(y-axis) versus the FDR-corrected DN p-value (x-axis; values have been inverse log 

transformed for plotting) by gene. Gray lines indicate the significance threshold for the DN 

p-value (horizontal) and an OR of two (vertical). Genes are classified as DN significant and 

OR > 2 (red dots), OR > 2 only (orange), and those that show a significant DN p-value only 

(blue). Gene name labels indicate a significant burden (FDR q < 0.1, simulation test) of 

either private LGD (d) or MIS30 (e) mutations in probands (Table 2; Methods). *Genes in 

which no control counts were observed where the 95% lower confidence bound was used as 

the most conservative OR estimate. See Supplementary Table 14 for underlying data.
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Figure 3. Protein location of private disruptive variants in new NDD candidate risk genes
(a–c) Protein diagrams of (a) NAA15, (b) KMT5B, and (c) ASH1L with novel private LGD 

and MIS30 mutations identified in this study and published DN variants indicated in HGVS 

format. Annotated protein domains are shown (colored blocks) for the largest protein 

isoforms. Previously published DN variants (below protein structure, Supplementary Table 

2) are compared to new variants in this study (above). Variants above the dashed line are of 

unknown inheritance; variants below the line have been validated for inheritance. Domain 

abbreviations: NARP1, NMDA receptor-regulated protein 1; CC, coiled coil; TRP, tetratrico 

peptide repeat region; PHD, plant homeodomain.
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Figure 4. ASD versus ID genes
(a) Probands were categorized based on primary ascertainment either ASD or ID (including 

DD) and the combined number of LGD and MIS30 events per gene (published and this 

study) shown. Genes were tested for a bias to one phenotype (ASD or ID) by two one-tailed 

binomial tests (p < 0.025 for either bias). The solid line indicates equal proportions of 

mutations corrected for the screened population size. Significantly biased genes (red) are 

indicated with respect to the threshold (dashed line) and insignificant genes (blue). Darker 

shades of red or blue indicate multiple genes. (b) Scatterplot shows a negative correlation 

(Pearson’s correlation) between ASD and ID diagnosis by gene (Table 3). (c) Bar graph 

compares phenotypic features of patients where genes are associated primarily with ASD 

diagnosis (>95%, black bars) compared to all other genes (gray bars) in Table 3. 

Significance was calculated by Fisher’s two-tailed exact test, and p-values were FDR 

corrected. Exact p values: seizures (p = 1.20x10−4), congenital abnormalities (p = 

1.88x10−2), microcephaly (p = 1.79x10−7), macrocephaly (p = 5.25x10−3), males (p = 

1.65x10−4). *p < 0.05, **p < 0.001, ***p < 0.0001. (d) SSC probands with ASD and an 

FSIQ > 100 were selected for pathway enrichment. Node size indicates the mutation score 

(calculated by MAGI based upon the number of DN mutations), and the color of the node 

indicates the number of DN LGD (red) and DN missense (no CADD cut-off; blue) 

mutations have been observed in affected probands, respectively. For SPEN, 2 LGD and 1 

missense mutation have been observed and for RANBP2, 1 LGD and 1 missense mutation. 

White nodes indicate no DN mutations have been observed. Gray lines connect genes with 
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both protein-protein interactions and brain co-expression (Pearson’s correlation coefficient 

r2 > 0.37, Methods). Thicker lines correspond to more highly co-expressed gene pairs.
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Figure 5. Habituation deficits in Drosophila knockdown models
(a–b) Representative jump response curves for (a) hmt4-20 (ortholog of KMT5B) and (b) 

bchs (ortholog of WDFY3) panneuronal knockdown flies. The ratios of flies that responded 

to light-off stimuli are plotted over 100 trials (64 individual flies were tested for each 

genotype). Controls are plotted in blue and knockdowns are plotted in red. (c) Distribution 

of trials to no-jump criterion (TTC, Methods) of knockdowns versus corresponding control 

flies are plotted (cross, mean; middle line, median; box boundaries, upper and lower 

quartile; end of whiskers, maximum and minimum; dots, outliers). * p < 0.05, ** p < 0.01, 

*** p < 0.001 (linear regression model; 64 flies tested for each genotype; exact p values in 

Supplementary Table 23).
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