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ABSTRACT OF THE DISSERTATION

Probability estimation and compression involving large alphabets

by

Narayana Santhanam

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California San Diego, 2006

Professor Alon Orlitsky, Chair

Many results in statistics and information theory are asymptotic in nature, with the

implicit assumption that we operate in a regime where the data size is much larger than

the alphabet size. In this dissertation, we will be concerned with large alphabets, namely

alphabets for which the above assumption does not hold.

We consider universal compression, i.e., compression when data statistics are

unknown, and probability estimation involving data drawn from large alphabets. Both

these problems are tackled using a notion of the structure of the string, the string’s

pattern. For example the pattern of ”abracadabra” is 12314151231.

It has long been known that universal compression of even independent identi-

cally distributed (i.i.d.) strings incurs unbounded extra number of bits over the entropy

of the source as the alphabet size grows. For such applications, we describe new ap-

proaches that isolate the pattern of the string from the dictionary. These approaches are

analyzed using results in analysis as well as those on integer partitions studied by Hardy

and Ramanujan.

We then consider a related problem of estimating a distribution over a large

alphabet using samples drawn from it. The problem considered was posed by a prolific

statistician, I.J. Good and Alan Turing. The large alphabet size renders practical sample

sizes too small for conventional approaches, hence Good and Turing developed new

estimators (without proof) for this problem. The Good-Turing estimator is empirically

xii



known to work well.

We use the framework developed for the universal compression problem above

and provide an explanation of why the estimator developed by Good and Turing works

well and propose other provably optimal variants.

We show that for a large class of processes, the entropy rate of patterns equals

the process entropy rate. We also state an asymptotic equipartition property for patterns.
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Chapter 1

Introduction

The availability of unprecedented communication, computation, and storage

resources has made possible complex systems such as the Internet as well as helped

scientific advances like the Human Genome Project. Parallely, to better utilize these

advances and to facilitate them, several new problems have come to occupy researchers’

efforts. Routing, speech recognition, and data mining are just few of many such appli-

cations that spring to mind.

Two aspects of these new problems stand out.

First, a fair number of these problems require solutions for very large alphabets.

For instance, language models for speech recognition estimate distributions over English

words, and thousands of genes are clustered by their expression levels for applications in

diagnosis and drug response prediction.

On the other hand, a lot of work in both statistics and information theory is

asymptotic in nature. It assumes that we operate in a regime where the data size is much

larger than the alphabet size. For the large alphabet problems mentioned above, this is

often not the case. We are therefore forced to rework some topics where conventional

approaches no longer apply.

Second, problems posed in different contexts may be interconnected. For ex-

ample, text compression and language modeling for speech recognition, which requires

estimation of word probabilities given a text sample. However, while it is folklore that

compression and estimation are closely linked, some very commonly used estimators had

not even been considered from a compression perspective till recently [7].

1



2

We consider two such interconnected large-alphabet problems in this disserta-

tion: universal data compression and probability estimation.

1.1 Universal data compression

While Huffman or Shannon codes achieve compression of data by using the

underlying distribution to assign variable length codewords, in most applications, we do

not know the underlying distribution. In such situations, the source is usually modeled

as an unknown distribution in a collection P of distributions, e.g. the collection of i.i.d.,

markov, context tree sources, depending on the application [8, 9].

The objective then is to compress the data almost as well as when the distribu-

tion is known in advance, namely to find a universal compression scheme that performs

almost optimally by approaching the entropy no matter which distribution in P gener-

ates the data. The following is a brief introduction to universal compression. Extensive

overviews can be found in [10, 11, 12, 13].

Let a source X be distributed over a support set X according to a probability

distribution p. An encoding of X is a prefix free 1-1 mapping φ : X → {0,1}∗. It can be

shown that every encoding of X corresponds to a probability assignment q over X where

the number of bits allocated to x ∈ X is approximately log(1/q(x)). Roughly speaking,

the optimal encoding that is selected based on the distribution p ∈ P and achieves its

entropy, allocates log(1/p(x)) bits to every x ∈ X .

The extra number of bits required to encode x when q is used instead of p is

therefore

log
1

q(x)
− log

1

p(x)
= log

p(x)

q(x)
.

The worst-case redundancy of q with respect to the distribution p ∈ P is

R̂(p, q)
def
= max

x∈X
log

p(x)

q(x)
,

the largest number of extra bits allocated for any possible x. The worst-case redundancy

of q with respect to the collection P is

R̂(P, q) def
= max

p∈P
R̂(p, q),
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the number of extra bits used for the worst distribution in P and worst x ∈ X . The

worst-case redundancy of P is

R̂(P)
def
= min

q
R̂(P, q) = min

q
max
p∈P

max
x∈X

log
p(x)

q(x)
, (1.1)

the lowest number of extra bits required in the worst case by any possible encoder q.

For any pair of distributions p and q, R̂(p, q) is non-negative, and therefore

R̂(P) is always non-negative. Note that when the redundancy R̂(P) is small, there is an

encoding that assigns to every x a probability not much smaller than that assigned to x

by the most favorable distribution in P.

Remark For average-case definitions, see [9]. The worst case redundancy is an upper

bound on the average case redundancy. 2

In most of the problems we consider in the dissertation, the support is a col-

lection of strings of a particular length, say n, which we refer to as the blocklength. The

encoder is hence a probability distribution on strings of length n. The redundancy will

therefore depend on n, and we will be interested in how the redundancy increases with

n.

If the redundancy grows o(n), the excess number of bits we use per symbol is

asymptotically zero. In such cases, the encoder can effectively compress as well as every

source in the collection P.

An important variation of the above problem that we consider in some detail is

sequential universal compression. Now, the universal encoders for different blocklength

cannot be arbitrary. For all n ≥ 1, the encoders qn and qn+1 on length-n and length-

(n+ 1) strings respectively must satisfy for all strings x1 . . . xn,

qn(x1, . . . ,xn) =
∑

xn+1

qn+1(x1, . . . ,xnxn+1),

namely the marginals must be “consistent”. The question again is how the redundancy

of sequential encodings grows with the blocklength.

1.1.1 Large Alphabet compression

The approach of universal compression tackles the problem of not knowing the

distribution. But in several applications such as text, speech, and image compression,
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involve alphabets that are very large, comparable to or even larger than the size of the

data sample. Yet the most common universal compression algorithms, such as Lempel-

Ziv (LZ) or context-tree weighting (CTW), typically operate on small—usually even

binary—alphabets.

To compress a source, these algorithms convert the original signal to a binary

string, which they then compress. For example, in text compression, common imple-

mentations of both the LZ and CTW algorithms convert words into letters and letters

into bits, and then compress the resulting sequence of bits.

Such algorithms risk losing the natural correlation between the source symbols.

For example, in the above application, the probability of a word may depend on sev-

eral previous words, hence on tens of letters, namely hundreds of bits. Most programs

truncate their memory at significantly fewer bits.

One reason for this alphabet-size reduction is that the performance guarantees

for the algorithms mentioned above implicitly require that the data sample to be com-

pressed is much larger than the alphabet size. Specifically, the redundancy of universal

encodings typically increases with the alphabet size.

This phenomenon, first observed by Davisson [9], was studied by Kieffer [11]

who showed that even i.i.d. distributions over infinite alphabets entail an infinite per-

symbol redundancy. Kieffer also provided a necessary and sufficient condition for a

collection of sources to have a diminishing per-symbol redundancy.

Recently, there has been renewed interest in universal compression of sources

over large alphabets. One line of work [14, 15, 16] follows Elias [17] and considers

compression of collections that satisfy Kieffer’s condition. Results in this genre typically

describe universal algorithms for such collections or find bounds on their redundancy.

The most recent results [18] show that all collections satisfying Kieffer’s condition can

be universally compressed using grammar-based codes.

In this dissertation, we pursue a second direction [19, 20] that separates the

description of strings over large alphabets into two parts: description of the symbols

appearing in the string, and of the order in which the symbols appear. For example,

in text compression, this approach separates the description of the order of the words

from the specification of each word’s binary representation. The rationale is that the

two problems are inherently different, hence best addressed separately.
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Results along this line of work typically show [21, 2] that the order of symbols

generated by i.i.d. distributions over any alphabet, even infinite or unknown, can be

compressed with diminishing per-symbol redundancy. We will see how these results can

be used [4] to derive asymptotically-optimal probability solutions for the Good-Turing

probability estimation problem. Related average case results were subsequently been

proven in [22, 23].

We start with some results on the standard compression of strings over large

alphabets, and then present some results in the latter approach to compression of strings

over large alphabets. Specifically, we consider three approaches: the standard compres-

sion of the string itself, and two other description methods: shapes, where the relative

magnitude of the symbols, is conveyed, and patterns, where the relative precedence of

the symbols in the string is conveyed.

For example, consider the string “abracadabra” over the Roman alphabet.

Shapes use an ordering of the alphabet, and in this case, we use a < b < c . . . < z.

This approach conveys “abracadabra” using the relative magnitude of the symbols in

the string, its shape

12513141251,

followed by the set of letters appearing in the string,

{a, b, c, d, r}.

On the other hand, patterns do not require the alphabet to be ordered. This approach

would convey the relative precedence of the symbols in the string, its pattern

12314151231,

followed by the dictionary,

{a→ 1, b→ 2, r → 3, c→ 4, d→ 5}.

Comparing the redundancy of the original strings, their patterns, and their shapes, the

three methods display a gradation of redundancy rates.

For standard compression we determine the rate at which the per-symbol re-

dundancy increases to infinity when the alphabet size k grows with the blocklength n.
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It is known [10, 24, 25, 26, 27, 28, 29, 30, 31] that when k is fixed and n grows, the

per-symbol redundancy diminishes to zero at the rate of k−1
2n log n (1 + o(1)). We first

use techniques in [26] to extend this result and show that when the alphabet size grows

with, but slower than, the blocklength, namely k = o(n), the per-symbol redundancy

still diminishes to zero, albeit at the lower rate of k−1
2n log n

k (1 + o(1)). This coincides

with a lower bound on average-case redundancy independently proven in [23]. We then

show that when k is a constant fraction of the blocklength, namely, k = Θ(n), the per-

symbol redundancy is strictly positive and bounded, and that when k is much larger

than the blocklength, namely, n = o(k), the per-symbol redundancy increases to infinity

as log k
n (1 + o(1)).

An observation we make in this dissertation is that most of the redundancy

for large alphabets arises from describing just the set of symbols occuring in the string,

not their locations within it. At the same time, if the distribution is known, describing

the symbols occuring in the string requires negligible number of bits compared to the

description of the location of the symbols in the string.

Shapes and patterns abstract the actual symbols occuring, describing their rel-

ative locations alone. Therefore, their descriptions may entail potentially lower redun-

dancy when the alphabet size grows, while capturing a substantial amount of information

in the string. We show that this is indeed the case.

Unlike standard per-symbol redundancy that increases to infinity with the al-

phabet size, we show that the maximum per-symbol redundancy of shapes is always

between .027 and 1. We also parametrize the upper bound by the number of distinct

symbols occuring in the string, tightening it for sources with small alphabets.

While per-symbol standard- and shape-redundancies are strictly positive, the

per-symbol redundancy of patterns is at most
(

π
√

2/3 log e
)

/
√
n regardless of the al-

phabet size, hence diminishes to zero as the blocklength increases. As with shapes, we

also tighten the redundancy bound for sources with small alphabets.

1.2 Distribution Estimation

A related problem is one of distribution estimation. In fact, the framework

we will use is one of sequential universal compression. The set of possible distributions
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that could be in effect is P, and our estimator will be a sequential (online) probability

distribution over the same support. This approach is applied in a variety of fields other

than universal compression: finance [25], online algorithms, and learning, e.g. [32, 33,

34].

To evaluate the performance of an estimator, we apply it not just once but

repeatedly to a sequence of elements, all drawn according to the same underlying dis-

tribution. Before each element is revealed, we use the estimator to evaluate its condi-

tional probability given the previous elements. Multiplying the conditional probability

estimates together, we obtain the probability that the estimator assigns to the whole

sequence.

We derive sequential estimators that assign to every sequence a probability that

is not much lower than the highest probability assigned to it by any distribution. We

therefore define the sequence attenuation of an estimator q for a sequence xn1 to be

Â(q, xn1 )
def
=

p̂(xn1 )

q(xn1 )
,

the ratio between the highest probability assigned to xn1 by any distribution and the

probability assigned to it by q. The worst-case sequence attenuation of q for patterns of

length n is

Ân(q)
def
= max

ψn1 ∈Ψn
Â(q, ψn1 ),

the largest sequence attenuation of q for any length-n pattern. Note that (Ân(q))
1/n

is the worst-case symbol attenuation of q for patterns of length n, namely, the largest

possible ratio between the per-symbol probability assigned by any distribution to sym-

bols of length-n patterns and the corresponding probability assigned by q. Finally, the

(asymptotic, worst-case, symbol) attenuation of q is

Â∗(q)
def
= lim sup

n→∞

(

Ân(q)
)1/n

,

the largest possible ratio between the per-symbol probability assigned to any asymptot-

ically long pattern by any distribution and the corresponding distribution assigned by

q.

Recall that the above definitions are exactly analogous to redundancy defini-

tions in Section 1.1. Correspondingly, the attenuation of any estimator is always at least
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one. Attenuation of a constant c > 1 implies that the estimator assigns to each n-symbol

sequence a probability which is at most a factor of cn lower than its best probability.

Attenuation of one, which we call diminishing attenuation in analogy with diminishing

per symbol redundancy, implies that the estimator assigns to each sequence a probability

that is at most sub-exponentially smaller than the best possible. Hence the per-symbol

probability assigned by the estimator would be asymptotically the best possible.

In using the above framework, a natural objection that may arise is that while

estimating distributions overestimation is also undesirable, not just underestimation. It

is however, easy to see and explained in Chapter 2, that overestimation by a large factor

will not happen with high probability, no matter what the underlying distribution or the

estimator is.

1.2.1 Large alphabet distribution estimation

In your next safari, say you observe a random sample of African animals. You

find 3 giraffes, 1 zebra, and 2 elephants. How would you estimate the probability of the

various species you may encounter on your trip?

A naive, empirical-frequency, estimator may assign probability 1/2 to giraffes,

1/6 to zebras, and 1/3 to elephants. But the poor estimator will be completely unpre-

pared for an encounter with an offended lion.

To address this unseen-elements problem, Laplace [35] proposed adding one to

the count of each species, including to the collection of unseen ones, thereby assigning

probability (3 + 1)/10 = 0.4 to giraffes, (1 + 1)/10 = 0.2 to zebras, (2 + 1)/10 = 0.3 to

elephants, and (0 + 1)/10 = 0.1 to unseen species.

The Laplace and other add-constant estimators have since been applied and

studied extensively. In particular, the add half, or Krichevski-Trofimov [24], estimator

was shown to possess certain optimality properties when the number of possible elements

is fixed and the sample size increases to infinity [36, 37].

However, when the number of possible elements is large compared to the sample

size, add-constant estimators are lacking too [38]. Suppose that during your safari trip

you evaluate the distribution of animals’ DNA sequences. You observe a large number

n of animals and, predictably, find that each has a unique DNA sequence. You therefore
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have a sample of n sequences, each observed once, from which you would like to estimate

the distribution of all sequences. An add-c estimator would assign probability (1+c)/(n+

nc+ c) to each observed sequence and probability c/(n+ nc+ c) to all unseen ones. It

follows that the probability assigned to all observed sequences, (n+nc)/(n+nc+c) ≈ 1,

while that assigned to all unseen sequences is close to zero. Clearly, the opposite would

be a better model.

Good and Turing encountered this problem while trying to break the Enigma

cipher during World War II [39]. The British intelligence was in possession of the Ken-

ngruppenbuch, the German cipher book that contained all possible secret keys, and used

previously decrypted messages to document the page numbers of keys used by various

U-boat commanders. They wanted to use this information to estimate the distributions

of pages that each U-boat commander picked secret keys from.

Good and Turing came up with a surprising estimator that bears little resem-

blance to either the empirical-frequency or the add-constant estimators above. After

the war, Good published the estimator [40] mentioning that Turing had an “intuitive

demonstration” for it, but not describing what this intuition was.

The Good-Turing estimator has since been incorporated into a variety of ap-

plications such as information retrieval [41], spelling correction [42], word-sense disam-

biguation [43], and speech recognition, e.g. [44] where it is applied to estimate the

probability distribution of words.

While the Good-Turing estimator performs well in general, it is suboptimal for

elements that appear frequently, hence was modified in subsequent estimators, e.g. the

Jelinek-Mercer, Katz, Witten-Bell, and Kneser-Ney estimators [44].

On the theoretical side, interpretations of the Good-Turing estimator have been

proposed [45, 46, 47], and its convergence rate was analyzed [48, 49]. Yet, lacking

a measure for assessing the performance of an estimator, no objective evaluation or

optimality results for the Good-Turing estimator have been established.

Note that all the estimators above assign probabilities that the next element

is one of the elements that has appeared before, and assign a probability that the next

element is hitherto unseen. This represents a simplification from estimating the distribu-

tion over the whole support at each step, and we will see in Chapter 8 that this approach

is analogous to doing sequential pattern compression.
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Our objective is then to evaluate the performance of existing estimators and

to construct diminishing-attenuation variants of Good-Turing like estimators when the

alphabets could be infinite. We show that add-constant estimators have infinite at-

tenuation. On the other hand, the Good-Turing estimator performs well in the sense

that its attenuation is low, however for some sequences it assigns a probability that is

exponentially smaller than the best possible, namely its attenuation is strictly above one.

We construct estimators over unknown, potentially large, even infinite, alpha-

bets, by abstracting the actual symbols that appear in the sequence and considering only

their pattern. We derive two diminishing-attenuation estimators. The first is computa-

tionally more efficient and requires only a constant number of operations per symbol.

The second is more complex but its attenuation approaches one faster. To determine the

estimators’ attenuations we use potential functions and results of Hardy and Ramanu-

jan [50] on the number of partitions of an integer.

1.3 Entropy rate and AEP for patterns

The universal compression results mentioned above [21, 2] show that patterns of

strings generated by i.i.d. distributions over any alphabet, even infinite or unknown, can

be compressed with diminishing per-symbol redundancy. These results have were used [4]

to derive asymptotically-optimal solutions for the Good-Turing probability estimation

problem. Related average case results have subsequently been proven [23].

It is therefore natural to consider the entropy of patterns themselves. Observe

that the mutual information between sequences and patterns is

I(X,Ψ) = H(Ψ) −H(Ψ|X) = H(Ψ),

the entropy of patterns. Therefore the pattern entropy is the information about the

sequence contained in the patterns. Shamir and Song [22, 51], bounded the entropy of

patterns of i.i.d. distributions in terms of the source entropy and alphabet size. See also

discussion after (9.10).

In the dissertation we determine the entropy rate of patterns of a large class of

processes, and for i.i.d. processes, we bound the speed at which the per-symbol pattern

entropy converges to this rate, and show that patterns satisfy an asymptotic equipartition
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property. To derive some of these results, we upper bound the probability that the n′th

variable in a random process differs from all preceding ones. We note that related

entropy-rate results were independently derived by Gemelos and Weissman [52, 53], and

that subsequent results appeared in [54, 55, 56].

For finite alphabets, namely |A| = k < ∞, it is easy to see that the pattern

entropy rate should equal that of the distribution, since the pattern ψ is determined by

the sequence X and can derive from at most k! sequences.

Clearly, the above argument is too simplistic to generalize to large, or infi-

nite distributions, however the above result does extend to a all finite entropy discrete

stationary processes.

Equivalently, this result also asymptotically bounds the average number of bits

needed to describe a sequence given the pattern because

H(X1, . . . ,Xn) = H(Ψ1, . . . ,Ψn) +H(X1, . . . ,Xn|Ψ1, . . . ,Ψn).

Thus, for discrete processes, the above result implies that the entropy rate of sequences

given the pattern is zero.

In effect, an interpretation of the above result is that patterns contain effectively

all the information in the sequences.

It is not possible to obtain a uniform rate at which 1
nH(Ψ1, . . . ,Ψn) converges to

H for all finite entropy distributions. Nor is it possible to obtain a rate that just depends

on the entropy and blocklength. Instead we obtain the convergence rate in terms of the

variance of the codelengths of the symbols in the alphabet [57].

Furthermore, we also derive an asymptotic equipartition property for i.i.d. in-

duced distributions on patterns in [58].



Chapter 2

Universal compression:

preliminaries

We outline several universal compression results that form the intuitive back-

ground of the chapters to follow. We derive an expression ( Shtarkov’s sum for worst case

redundancy, outline a simple but general technique to upper bound worst case redun-

dancy and show that sequential universal compression incurs at most a small additional

redundancy over block compression. We then show that universal compression schemes

with diminishing redundancy correspond to good probability estimators.

2.1 Shtarkov’s sum

To evaluate the redundancies, we will frequently use a result by Shtarkov, show-

ing that [59] the distribution achieving R̂(P) in Equation (1.1) is

q∗(x) =
supp∈P p(x)

∑

x∈X supp∈P p(x)
.

It follows that the redundancy of a collection P of distributions over X is determined by

Shtarkov’s sum,

R̂(P) = log

(
∑

x∈X
sup
p∈P

p(x)

)

. (2.1)

12
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2.1.1 A general upper bound

Let P be a collection of distributions. The following bound on the redundancy

of P is easily obtained.

Lemma 1. For all P,

R̂(P) ≤ log |P| .

Proof The claim is obvious when P is infinite, and for finite P, Shtarkov’s sum implies

that

R̂(P) = log
∑

x∈X
sup
p∈P

p(x)

≤ log
∑

p∈P

∑

x∈X :
supp′∈P

p′(x)=p(x)

p(x)

≤ log
∑

p∈P
1

= log |P| . 2

Intuitively, for finite P, the lemma corresponds to first identifying the maximum-

likelihood distribution of x from all distributions in P and then describing x using this

distribution. If not all distributions are candidates for maximum-likelihood distributions,

the above bound can be improved as follows.

A collection P̂ of distributions dominates P if for all x ∈ X ,

sup
p∈P̂

p(x) ≥ sup
p∈P

p(x),

namely, the highest probability of any x ∈ X in P̂ is at least as high as that in P. The

next lemma then follows immediately from Shtarkov’s sum.

Lemma 2. If P̂ dominates P, then

R̂(P) ≤ R̂(P̂). 2

The above lemmas imply that the redundancy is upper bounded by the loga-

rithm of the size of P̂.
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Corollary 3. If P̂ dominates P, then

R̂(P) ≤ log
∣
∣
∣P̂
∣
∣
∣ . 2

To illustrate this bound, we bound the standard redundancy of i.i.d. strings

over finite alphabets.

Example 1. Consider the collection In2 of all i.i.d. distributions over length-n strings

drawn from an alphabet of size 2, which, without loss of generality, we assume to be

{0, 1}. Clearly,

În2 =

{

p ∈ In2 : p(0) =
k

n
where 0 ≤ k ≤ n and k ∈ Z

}

,

dominates In2 , hence from Corollary 3,

R̂(In2 ) ≤ log
∣
∣
∣În2
∣
∣
∣ = log (n+ 1).

Similarly, since
∣
∣
∣Înm

∣
∣
∣ =

(
n+ k − 1

k − 1

)

,

it follows that for every k and n,

R̂(Ink ) ≤ (k − 1) log

(

e · n+ k − 1

k − 1

)

. 2

2.2 Overestimation

We adopted the universal compression framework for probability estimation in

Chapter 1. Universal compression forces the codelengths to be small, namely it attempts

to prevent underestimation of probabilities, but probability estimation should not allow

for overestimation either.

The following result justifies that overestimation is not a serious issue.

Lemma 4. For all distributions p and q over X .

p{x : q(x) ≥ Ap(x)} ≤ 1

A
.

Proof The result follows since

1 ≥ q{x : q(x) ≥ Ap(x)} ≥ Ap{x : q(x) ≥ Ap(x)}. 2
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Suppose a universal scheme compresses a collection of distributions P over X
with redundancy R, and therefore attenuation A = 2R. It follows that with probability

≥ 1 − 1
2R

,
∣
∣
∣
∣
log

p(X)

q(X)

∣
∣
∣
∣
≤ R.

where X is a random variable distributed according to p.

Typically we consider the support to be strings of length n. Therefore, for all

sources in the collection, with probability ≥ 1 − 1
2Rn

,

1

n

∣
∣
∣
∣
log

p(Xn)

q(Xn)

∣
∣
∣
∣
≤ Rn

n
. (2.2)

Therefore, if the per symbol redundancy, Rn/n→ 0, then

1

n

∣
∣
∣
∣
log

p(Xn)

q(Xn)

∣
∣
∣
∣
→ 0

in probability. The above statement follows directly if Rn → ∞, and it is easy to see

that the above statement is true even if Rn is bounded.

Therefore, if a collection of sources incurs diminishing per-symbol redundancy,

any source in the collection can be estimated well using a scheme with diminishing per-

symbol redundancy.

2.3 Sequential universal compression

As mentioned in Chapter 1, in this setting, we force the encodings over different

blocklengths to be consistent with each other, namely for all n ≥ 1, if qn and qn+1 are

encodings on length-n and length-(n + 1) strings respectively, they must satisfy for all

strings x1 . . . xn,

qn(x1, . . . ,xn) =
∑

xn+1

qn+1(x1, . . . ,xnxn+1).

The question now is how the redundancy of sequential encodings grows with the block-

length. More precisely, let q = q1, q2, . . . be a sequence of distributions over X ,X 2, . . .

respectively. Let

R̂(q, n)
def
== sup

p∈Pn
max
x∈Xn

log
p(x)

qn(x)
,

be the redundancy of qn, where Pn is the collection of distributions on length n strings.
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Note that

R̂(q, n) ≥ R̂(Pn).

This lower bound can be achieved for every n.

Theorem 5. For all n, ∃q such that

R̂(q, n) = R̂(Pn).

Proof For all x1, . . . ,xn = xn ∈ X n, let

q∗(xn) =
supp∈P p(x

n)
∑

xn∈Xn supp∈P p(xn)

be the worst case optimal encoder for length-n strings. For j ≤ n, let

qj(x
j) =

∑

xj+1,...,xn

q∗(xn).

Assume without loss of generality that 1 ∈ X . For j > n, let

qj(x
j) =







q∗(xn) xn+1 = . . . = xj = 1,

0 else.

Clearly q = q1, q2, . . . , qn, . . . corresponds to a sequential encoding, and by construction

R̂(q, n) = R̂(Pn). 2

We construct q that almost matches the lower bound in Theorem 5

Theorem 6. ∃q such that for all n,

R̂(q, n) ≤ R̂(Pn) + 2 log n+ log
π2

6
.

Proof Let qn correspond to the sequential encoding described in Theorem 5 satisfying

R̂(qn, n) = R̂(Pn).

Consider the linear weighting

q
def
=

6

π2

∑

i≥1

qi
i2
.

Clearly, q also corresponds to a sequential encoding since each of qi does so. Further,

for all n ≥ 1 and all xn ∈ X n,

q(xn) ≥ 6

π2

qn
n2
,

which implies the theorem. 2
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2.4 Mathematical preliminaries

We approximate binomial and multinomial coefficients that will be encountered

several times in the dissertation,

2.4.1 Approximation of binomial coefficients

While finite-alphabet results typically involve binomial coefficients of form
(
n
αn

)

for some constant α, large alphabets often require the calculation of
(
n
o(n)

)
. The following

lemma provides a convenient approximation.

Lemma 7. When m→ ∞, and m = O(
√
n),

(
n

m

)

= Θ
(e n

m

)m
,

and when, in addition, m = o(
√
n),

(
n

m

)

=
1√
2πm

(e n

m

)m
(1 + o(1)).

Proof Feller’s bounds on Stirling’s approximation [60] state that for every n ≥ 1,

√
2πn

(n

e

)n
≤ n! ≤

√
2πn

(n

e

)n
e

1
12n . (2.3)

Hence for all m ≤ n,

e
− 1

12

“

1
m

+ 1
(n−m)

”

√
2π

√
n

m(n−m)

( n

m

)m
(

n

n−m

)n−m

≤
(
n

m

)

≤ e
1

12n√
2π

√
n

m(n−m)

( n

m

)m
(

n

n−m

)n−m
.

Taking derivatives, it is easy to see that for all x ≥ 0,

ex−x
2/2 ≤ 1 + x ≤ ex,

hence for all m ≤ n,

(
n

n−m

)n−m
=

(

1 +
m

n−m

)n−m
≤
(

e
m

n−m

)n−m
= em,
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and

(
n

n−m

)n−m
=

(

1 +
m

n−m

)n−m

≥ exp

[(

m

n−m
− 1

2

(
m

n−m

)2
)

(n−m)

]

=
em

e
1
2
m2

n−m

.

Therefore for all m ≤ n,

1

C
√

2π

√
n

m(n−m)

(e n

m

)m

≤
(
n

m

)

≤ e
1

12n√
2π

√
n

m(n−m)

(e n

m

)m
,

where

C = exp

(
1

12m
+

1

12(n−m)
+

1

2

m2

n−m

)

,

proving the first part of the lemma. When m → ∞ and m = o(
√
n), C = 1 + o(1), and

the second part follows. 2

2.4.2 Approximation of multinomial coefficients

Recall Feller’s bounds [60] for all n ≥ 1

√
2πn

(n

e

)n
≤ n! ≤

√
2πn

(n

e

)n
e

1
12n .

They imply that for all 0 < m < n, the binomial coefficients are bounded by

e−
1
12(

1
m

+ 1
n−m) ·

√
n

2πm(n−m)
·2nh(mn )

≤
(
n

m

)

≤

e
1

12n ·
√

n

2πm(n−m)
·2nh(mn ) (2.4)

where h is the binary entropy function

h(x) = x log
1

x
+ (1 − x) log

1

1 − x
.
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Furthermore, for all l and 1 ≤ u1, . . . ,ul ≤ n with
∑

i ui = n

e−
l
12

√
(
l

n

)l

· n

(2π)l−1

≤
(

n

u1, . . . ,ul

) l∏

i=1

(ui
n

)ui ≤

e
1

12n

√

1

n− l + 1
· n

(2π)l−1
(2.5)

where, in addition to Feller’s bounds, the lower bound uses the arithmetic/geometric

mean inequality and the upper bound uses the fact that

l∏

i=1

ui ≥ n− l + 1.

2.4.3 The Gamma function

Shtarkov’s sum for the collection Inm of i.i.d. sources involves terms of the form

∑

u∈Unl

(
n

u1, . . . ,ul

) l∏

j=1

(uj
n

)uj
,

which Feller’s bounds (2.3) upper bound by

e
1

12n

(
1

2π

) l−1
2 ∑

u∈Unl

√
n

u1 . . . ul
.

For fixed l, this upper bound is tight as n→ ∞
∑

u∈Unl

√
n

u1 . . . ul
∼ n

l
2

∫

xi≥0;
P

xi
=1

dx1 . . . dxl√
x1 . . . xl

= n
l
2
Γl(1

2)

Γ
(
l
2

) ,

where the Gamma function is defined for all z ∈ C by

Γ(z)
def
=

∫ ∞

0
xz−1e−xdx.

Some values of the Gamma function are well known. For example, Γ(1/2) =
√
π and

Γ(1) = 1, and simple calculation shows that for all z

Γ(z + 1) = zΓ(z) (2.6)
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hence, Γ(z + 1) generalizes the factorial function to complex numbers. In particular, for

all positive real arguments, it satisfies Feller’s bounds (2.3)

√
2πz

(z

e

)z
≤ Γ(z + 1) ≤

√
2πz

(z

e

)z
e

1
12z . (2.7)



Chapter 3

Large alphabets

The aysmptotic redundancy of i.i.d. sequences when the alphabet size k is

finite and the blocklength n tends to infinity has been studied by several researchers. It

was shown, e.g. in [] that

R̂(Ink ) =
k − 1

2
log

n

2π
+ log

Γ(1
2)k

Γ(k2 )
+ ok(1),

and therefore determined the term that grows with n, and the constant term that depends

on the alphabet size.

However, many applications do not reside in asymptopia. Often, n is not ar-

bitrarily larger than k, and the asymptotic results do not apply. We now consider the

redundancy for more general relations between n and k and show that in many cases,

the constant term actually dominates the redundancy.

We show that when k = o(n), namely the blocklength is much larger than the

alphabet, the per symbol redundancy diminishes to zero as k
n log n

k , that when n = Θ(k),

namely the blocklength is proportional to the alphabet size, the per-symbol redundancy

is a positive constant that we determine to within a factor of eight, and that when

n = o(k), namely the blocklength is much smaller than the alphabet, the per-symbol

redundancy increases to infinity as log k
n .

To prove these results we relate types of strings to various partitions of integers.

21
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3.1 Ordered partitions of integers

A positive ordered partition of n ∈ Z
+ is a tupple of parts, positive integers

summing to n. The set of positive ordered partitions of n into m parts is denoted by

Unm. For example

U5
3 = {(1, 1, 3), (1, 3, 1), (3, 1, 1), (1, 2, 2), (2, 1, 2), (2, 2, 1)}.

Any ordered partition (u1, u2, . . . ,um) ∈ Unm can be represented as a linear

diagram of n dots and m − 1 vertical bars where the first bar follows the left u1 dots,

the second bar follows the next u2 dots, and so on till the (m − 1)-st bar follows um−1

dots and precedes the final um dots. For example, the diagrams corresponding to the

partitions of U5
3 are

·| · | · · · ·| · · · | · · · ·| · | · ·| · ·| · · · ·| · | · · · ·| · ·|·

Any positive ordered partition corresponds to a linear diagram of n dots with m − 1

of the spaces between them marked with single bars. Conversely, every such diagram

corresponds to to a positive ordered partition. Hence, for all m,n ≥ 1,

|Unm| =

(
n− 1

m− 1

)

. (3.1)

For example, as we saw above,

|U5
3 | =

(
5 − 1

3 − 1

)

=

(
4

2

)

= 6.

While not needed now, Un denotes the set of all ordered partitions of n, into

any number of parts. It follows from (3.1) (or can be shown directly) that for every n,

|Un| = 2n−1. (3.2)

Similar to positive ordered partitions, a nonnegative ordered partition of n ∈
Z

+ is a tupple of nonnegative integers, again called parts, summing to n. The set of

nonnegative ordered compositions of n into k parts is denoted by T n
k . For example

T 2
3 = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

As with their positive counterparts, any nonnegative ordered partition (n1, n2,

. . . , nk) ∈ T n
k can be represented as a linear diagram of n dots and k − 1 vertical bars
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where the first bar follows the left n1 dots, the second bar follows the next n2 dots, and

so on till the (k−1)-st bar follows nk−1 dots and precedes the final nk dots. For example,

the diagrams corresponding to the partitions of T 2
3 are

· · || | · ·| || · · · | · | · || · | · |·

As with their positive counterparts, the diagram of a nonnegative ordered par-

tition of n into k parts consists of n dots and k − 1 bars, but here the diagrams may

have multiple bars between adjacent dots and at the diagram’s left or right ends, hence

any ordering of the n dots and k − 1 bars is now possible. The diagram corresponding

to a nonnegative ordered partition is just a sequence of n+ (k− 1) dots and bars where

the k − 1 bars can appear in any location, and therefore for all n ≥ 0 and k ≥ 1,

|T n
k | =

(
n+ k − 1

k − 1

)

. (3.3)

For example, as we found above,

|T 2
3 | =

(
2 + 3 − 1

3 − 1

)

=

(
4

2

)

= 6.

Positive and nonnegative ordered partitions are clearly closely related. Let

T n
k,m denote the set of nonnegative ordered partitions of n into k parts, m of which are

non-zero. For example,

T 2
3,1 = {(2, 0, 0), (0, 2, 0), (0, 0, 2)} and T 2

3,2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Since the number of non-zero parts is positive and cannot exceed n or k,

T n
k =

min(n,k)
⋃

m=1

T n
k,m,

and as the sets T n
k,m are disjoint,

|T n
k | =

min(n,k)
∑

m=1

|T n
k,m|.

On the other hand, every partition in T n
k,m can be specified by first describing

which m of the k parts are nonnegative, followed by a description of these m positive

values, namely of a partition of n into m parts. Hence,

|T n
k,m| =

(
k

m

)

|Unm|.
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Therefore,

|T n
k | =

min{n,k}
∑

m=1

(
k

m

)

|Unm|, (3.4)

incidentally, explaining the combinatorial identity

(
n+ k − 1

k − 1

)

=

min{n,k}
∑

m=1

(
k

m

)(
n− 1

m− 1

)

. (3.5)

3.2 Upper bound

Considering the types of sequences and applying Shtarkov’s sum, we derive

a simple upper bound on R̂(Ink ) that is always tight up to a factor of roughly eight,

asymptotically tight when n = o(k), and tight up to a factor of two when k = o(n). We

then derive another upper bound that is asymptotically tight in the latter regime.

Recall that the multiplicity µj of a symbol j is its number of occurances in a

sequence. The type of a sequence x over [k] is the k-tuple of multiplicities

τ(x)
def
= (µ1, . . . ,µk).

For example, over [6],

τ(51535) = (1, 0, 1, 0, 3, 0)

as 1 and 3 appear once, 5 appears thrice, and 2, 4, and 6 do not appear. Any sequence

in [k]n has k nonnegative multiplicities summing to n, hence we identify its type with a

nonnegative ordered partition of n into k parts, and let T n
k denote also the set of types

of [k]n sequences. From (3.3),

|T n
k | =

(
n+ k − 1

k − 1

)

.

A basic property of types is that every i.i.d. distribution assigns the same prob-

ability to all sequences of the same type. Therefore the same distribution maximizes the

probability of all sequences of the same type, and hence the probability of the type itself.

It follows that the highest probability of a type is the sum of the highest probabilities of

its sequences, namely, for every type τ ,

p̂(τ) =
∑

x∈τ
p̂(x) (3.6)
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where x ∈ τ denotes τ(x) = τ .

For example the type (1, 2) over [2] is the set {122, 212, 221}. For any i.i.d. dis-

tribution, p(122) = p(212) = p(221), hence the same distribution, in this case (1/3, 2/3),

maximizes the probability of all three sequences in the type, and of the type {011, 101, 110}
itself, hence

p̂({011, 101, 110}) = p̂(011) + p̂(011) + p̂(011) = 3 · (4/27) = 4/9.

Read backwards, (3.6) says that the sum of the maximum-likelihood probabil-

ities of all sequences of a given type is the type’s maximum-likelihood probability, and

hence at most one. This implies that the attenuation is at most the number of types,

Â(Ink ) =
∑

x∈[k]n

p̂(x) =
∑

τ∈T nk

∑

x∈τ
p̂(x) =

∑

τ∈T nk

p̂(τ) ≤
∑

τ∈T nk

1 = |T n
k | =

(
n+ k − 1

k − 1

)

, (3.7)

and therefore we obtain,

Lemma 8. For all n and k,

R̂(Ink ) ≤ log

(
n+ k − 1

k − 1

)

≤ (k + n)h

(
k

k + n

)

. 2

As for binary alphabets, this bound has a simple information-theoretic interpre-

tation. Every sequence can be specified by first describing its type and then the precise

sequence within the type. Since i.i.d. distributions assign all sequences of a given type

the same probability, using the same number of bits to identify all sequences within the

type is optimal, and the redundancy R̂(Ink ) is upper bounded by the number of bits

needed to describe the type.

Surprisingly, in spite of its simplicity, as we will see that in Theorem 12, the

upper bound is always tight up to a factor of 8. We now consider two extreme relations

between the blocklength and the laphbet size. In one the bound is tight, and in the other

it is twice the redundancy and we prove an asymptotically tight upper bound.

When n = o(k), namely the alphabet is much larger than the blocklength, the

upper bound simplifies to

R̂(Ink ) ≤ log

(
n+ k − 1

k − 1

)

= log

(
n+ k − 1

n

)

∼ n log
k

n
. (3.8)
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This is logical since when n = o(k) most symbols appear once, hence most of the bits are

used to describe which n of the k symbols appear. It is easy to do that using ∼ n log k

bits. We will see in this range the bound is tight.

When k = o(n), for example, when the alphabet is fixed and the sequence

length grows, the upper bound simplifies to

R̂(Ink ) ≤ log

(
n+ k − 1

k − 1

)

∼ (k − 1) log
n

k
. (3.9)

This corresponds to describing the first k − 1 multiplicities, which can be done using
<∼ (k− 1) log n

k bits. In this range this bound is off by a factor of two. We now refine the

bound, and in the next section we will show that it is tight.

The attenuation can be written as

Â(Ink ) =

min {k,n}
∑

m=1

(
k

m

)
∑

u∈Unm

(
n

u1, . . . ,um

) m∏

j=1

(uj
n

)uj def
=

min {k,n}
∑

m=1

Tnm.

Lemma 9. For k = o(n)

R̂(Ink )
<∼ k − 1

2
log

n

k
,

Proof We first show by induction on m that for all m ≤ n,

Tnm ≤ e
m

12n

√
π
(
n
2

)m−1
2

Γ(m2 )
. (3.10)

From (2.6),

Γ

(
m+ 1

2

)

≤ Γ
(m

2
+ 1
)

=

√
m

2
Γ
(m

2

)

,

implying that the upper bound (3.10) on Tm increases with m for all m ≤ n.

For m = 2, (3.10) holds since

Tn2 ≤ Â(In2 ) ≤
√
πn

2
.
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For all m > 2,

Tnm =
n−1∑

l=1

(
n

l

)(
l

n

)l(

1 − l

n

)n−l
Tn−lm−1

≤
n−1∑

l=1

(
n

l

)(
l

n

)l(

1 − l

n

)n−l
· em−1

12n

√
π
(
n−l
2

)m−2
2

Γ(m−1
2 )

≤ e
m

12n

(
n
2

)m
2
−1

√
2 Γ(m−1

2 )
· 1√

n

n−1∑

l=1

(
l

n

)− 1
2
(

1 − l

n

)m−2
2

− 1
2

≤ e
m

12n

(
n
2

)m−1
2

Γ(m−1
2 )

· 1

n

n−1∑

l=1

(
l

n

)− 1
2
(

1 − l

n

)m−3
2

≤ e
m

12n

(
n
2

)m−1
2

Γ(m−1
2 )

·
∫ 1

x=0
x−

1
2 (1 − x)

m−3
2 dx

≤ e
m

12n

(
n
2

)m−1
2

Γ(m−1
2 )

· Γ(1
2)Γ(m−1

2 )

Γ(m2 )

= e
m

12n

√
π
(
n
2

)m−1
2

Γ(m2 )
.

The lemma follows by applying Stirling’s approximation for Γ(m/2). 2

3.3 Lower bound

Lemma 8 shows that

R̂(Ink ) ≤ log

(
n+ k − 1

k − 1

)

≤ (k + n)h

(
k

k + n

)

.

We now show that this bound is essentially tight up to a factor of 8,

R̂(Ink )
>∼ 1

8
(k + n)h

(
k

k + n

)

.

To prove the lower bound, we group the terms in Shtarkov’s Sum by the number

of symbols they contain, find the number m̂ of symbols that contributes the most to the

upper bound, and lower bound its contribution to the sum. Rewrite the upper-bound

sum as

∑

x∈[k]n

p̂(x) =

min {k,n}
∑

m=1

∑

τ∈T nk,m

∑

x∈τ
p̂(x) =

min {k,n}
∑

m=1

∑

τ∈T nk,m

p̂(τ) ≤
min {k,n}
∑

m=1

∑

τ∈T nk,m

1 =

min {k,n}
∑

m=1

|T n
k,m|.
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As in Lemma 3.4, the number of types of m-symbol sequences is

|T n
k,m| =

(
k

m

)(
n− 1

m− 1

)

,

where first binomial coeficient corresponds to the number of ways to select the m symbols

appearing in the sequence, and the second, to the number of times each of these symbols

appears.

It is easy to see that the largest value of T n
k,m corresponds to

m̂
def
= arg max

m
T n
k,m =

⌈
nk

n+ k + 1

⌉

∼ nk

n+ k
. (3.11)

Observe that when the n = o(k), namely the number of elements is much larger than

the blocklength, m̂ ∼ n as almost all elements will be distinct, and that that when the

k = o(n), namely the number of elements is much smaller than the blocklength, m̂ ∼ k

as almost all elements will appear.

Again, we begin with the extreme cases.

Theorem 10. For n = o(k),

R̂(Ink ) ∼ n log
k

n
.

Proof The upper bound was derived in (3.8), and we prove the lower bound. As above,

when n = o(k), m̂ ∼ n, and the contribution of just the nth term in Shtarkov’s sum

implies that

R̂(Ink ) ≥ log Tn = log

((
k

n

)
n!

nn

)

≥ log

(
k − n

n

)n
>∼ n log

k

n
. 2

Next consider alphabets much smaller than the blocklength. We show that the

upper bound in Lemma 9 is tight. It will follow that in this regime, as the blocklength

increases, the per-symbol redundancy diminishes to zero.

Theorem 11. For k = o(n),

R̂(Ink ) ∼ k − 1

2
log

n

k
.

Proof The upper bound was derived in Lemma 9, and we prove the lower bound.

As we saw, m̂ ∼ k, and we consider the contribution of types with k symbols alone to

Shtarkov’s sum. There are (
n− 1

k − 1

)
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such types and as with the binary case, of them, the type with the lowest p̂ is where

each of the k symbols appears n/k times. The attenuation is

Â(Ink ) ≥ Tk

≥
(
n− 1

k − 1

)

·
(

1

k

)n

·
(

n
n
k ,

n
k , . . . ,

n
k

)

≥
(
n− 1

k − 1

)

·
(

1

k

)n

·
√

2πn
(
n
e

)n

(

e
k

12n
√

2π nk
(
n
ke

)n/k
)k

>

√
n

e
k2

12n

(
n− 1

k − 1

)(
k

2πn

) k
2

.

Therefore the redundancy,

R̂(Ink ) = log Â(Ink )

≥ (k − 1) log
n− 1

k − 1
− k

2
log
(n

k

)

− k

2
log 2π +

1

2
log

n

k
+

1

2
log k +

k2 log e

12n

>
k − 1

2
log

n

k
−
(
k

2
log 2π − 1

2
log k

)

+
k2 log e

12n

≥ k − 1

2
log

n

k
+
k2 log e

12n
,

and the theorem follows since k2

n = o(k) if k = o(n). 2

For general k, we prove that the simple upper bound in Lemma 8 is always

within a factor of essentially 8 from R̂(Ink ).

Recall that if x is not an integer, if n is an integer > x

(
n

x

)

=
n!

Γ(x+ 1)Γ(n− x+ 1)
.

Lemma 12. For all k and n such that k + n ≥ 8,

R̂(Ink ) ≥ k + n

8
h

(
k

k + n

)(

1 − 8
log log(k + n)

log(k + n)

)

>∼ k + n

8
h

(
k

k + n

)

.

Proof From (3.11), m̂ = d nk
n+k+1e. Considering the contribution of Tk alone to Shtarkov’s
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Sum, and replacing the integer by a fraction we obtain,

R̂(Ink ) ≥ log Tm̂ ≥ log

(

1

kn

(
k
nk
n+k

)

· √ne−
nk

12(n+k) ·
(
n− 1
nk
n+k − 1

)(
k

2π(n+ k)

) nk
2(n+k)

)

≥ (k + n)h

(
k

k + n

)

− kn

2(k + n)
log

2πe
1
6 (k + n)

k
+ log

n+ k

n2k2
+

1

2
log

1

2πe
1
3

≥ (k + n)

(

h(x) − x(1 − x)

2
log

2πe
1
3

x

)

+ log
1

(k + n)x(1 − x)
+

1

2
log

1

2πe
1
3

,

where x
def
= k

k+n .

Observe that 1
k+n ≤ x ≤ 1 − 1

k+n , hence

(k + n)h(x) ≥ log(k + n). (3.12)

We bound the log 1
(k+n)x(1−x) term as a fraction of the leading term,

log 1
(k+n)x(1−x)

(k + n)h(x)
≥

log 4
(k+n)h(x)

(k + n)h(x)

=
log 4

(k + n)h(x)
− log ((k + n)h(x))

(k + n)h(x)

≥ 2

(k + n)h(x)
− log log(k + n)

log(k + n)
,

where the first inequality follows since

h(x) ≥ 4x(1 − x).

To see the last inequality, observe that log y
y decreases for y ≥ e, therefore last inequality

follows from (3.12) because log(k + n) ≥ 3.

The constant term in the lower bound of R̂(Ink ) is less than 2, therefore

log
1

(k + n)x(1 − x)
+

1

2
log

1

2πe
1
3

≥ −(k + n)h(x) · log log(k + n)

log(k + n)

The lemma follows because for all 0 ≤ x ≤ 1, the following inequalities

h(x) ≥ x(1 − x) log
1

x
,

3

4
h(x) > x(1 − x) log 2πe

1
3 ,

imply that

x(1 − x)

2
log

2πe
1
3

x
<

7

8
h(x). 2
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Combining the lemma with the upper bound in Lemma 8 we obtain the follow-

ing theorem.

Theorem 13. For all k and n such that k + n ≥ 8,

1

8
(k + n)h

(
k

k + n

)

<∼ R̂(Ink ) ≤ log

(
n+ k − 1

k − 1

)

≤ (k + n)h

(
k

k + n

)

. 2

It follows that when k grows proportionally to n, say k = αn,

1

8
(1 + α)nh

(
α

1 + α

)

<∼ R̂(Ink ) ≤ (1 + α)nh

(
α

1 + α

)

,

hence the per-symbol redundancy is a constant.

3.4 Remarks

For fixed alphabets as the blocklength grows, there are many results, for exam-

ple [10, 24, 59, 25, 26, 27, 28, 29, 30, 31].
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Chapter 4

Shapes

We study the redundancy incurred with the compression of the shape of i.i.d.

strings, which describes its symbols’ relative magnitude. We determine the rate at

which per-symbol standard redundancy increases to infinity as the alphabet size in-

creases, showing that unlike the redundancy of the original strings themselves, the shape

redundancy, normalized by the number of symbols is bounded, and lies between 0.027

and 1.

4.1 Definitions

Let A be a possibly infinite, even uncountable alphabet with an order ‘<’. For

x = x1 . . . xn ∈ An, let

X (x)
def
= {x1, . . . ,xn}

be the set of symbols appearing in x. The rank of x ∈ X (x) is the number

ρx(x)
def
= |{y ∈ X (x) : y ≤ x}|

of distinct symbols in X (x) not larger than x. The shape of x is the concatenation

S(x)
def
= ρx(x1)ρx(x2) . . . ρx(xn)

of all ranks. Consider for example the Roman alphabet with the standard order a < b <

c < . . . < z and the string x = “abracadabra”. Then ρx(a) = 1, ρx(b) = 2, ρx(c) = 3,

32



33

ρx(d) = 4, and ρx(r) = 5, hence

S(abracadabra) = 12513141251.

Let

S(An) = {S(x) : x ∈ An}

denote the set of shapes of all strings in An. For example, if A consists of two elements,

then S(A) = {1}, S(A2) = {11, 12, 21}, S(A3) = {111, 112, 221, 121, 212, 211, 122}, etc.

Let

S
n def

= ∪AS(An)

be the set of all length-n shapes. For example

S
0 = {λ}

S
1 = {1}

S
2 = {11, 12, 21}

S
3 = {111, 112, 221, 121, 212, 211, 122,

123, 321, 231, 132, 312, 213}

and so on, where λ is the empty string. Finally, let

S
∗ def

= ∪∞
n=0S

n

be the set of all shapes.

Observe that a string x1 . . . xn is a shape if and only if it consists of positive

integers such that if any number i ≥ 2 appears, so does i− 1, namely,

X (x) =
[∣
∣{x1, . . . ,xn}

∣
∣

]

where as before

[n] = {1, . . . ,n}

and [0]
def
= ∅. For example, 1, 11, 21, 212, and 321 are shapes, while 2, 13, and 131 are

not.

Every probability distribution p over A∗ induces the distribution pS over S∗

where

pS(s)
def
= p({x ∈ A∗ : S(x) = s})



34

is the probability that a string in A∗ generated according to p has shape s. When pS

is used to evaluate a specific shape probability pS(s), the subscript can be inferred, and

hence omitted. For example, let p be the uniform distribution over {a, b}2 with the usual

ordering a < b. Then p induces over S2 the distribution

p(11) = p({aa, bb}) =
1

2

p(12) = p({ab}) =
1

4

p(21) = p({ba}) =
1

4
.

For a collection P of distributions over A∗ or any of its subsets let

PS

def
= {pS : p ∈ P}

be the collection of all distributions over S∗ induced by distributions in P. By (1.1),

the shape redundancy of P, namely the worst case redundancy of compressing shapes

generated by an unknown distribution in PS, is

R̂(PS) = inf
q

sup
p∈PS

sup
s∈S∗

log
p(s)

q(s)
.

Note that the shape redundancy of any P is non-negative.

We will be mainly concerned with R̂(In
S
), the shape redundancy of the collection

In of all i.i.d. distributions over length-n strings drawn from any alphabet, finite or

infinite. Without loss of generality, the distribution can be assumed to be over the real

numbers.

4.2 Combinatorics of shapes

4.2.1 Shapes and ordered set partitions

We now relate shapes to the well-known combinatorial structure of ordered set

partitions.

An ordered partition of a set S into m parts is an m-tuple of disjoint nonempty

subsets of S whose union is S. The type of an ordered set partition R = (R1, . . . ,Rm) is

u(R)
def
=
(∣
∣R1

∣
∣, . . . ,

∣
∣Rm

∣
∣

)

,
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the vector of cardinalities of the sets in R.

We are mainly interested in ordered partitions of [n] = {1, . . . ,n}. For example,

({2}, {1, 4}, {3}) is an ordered set partition of [4] into 3 parts, and its type is

u(({2}, {1, 4}, {3})) = (|{2}|, |{1, 4}|, |{3}|) = (1, 2, 1).

Let Rn be the set of all ordered partitions of [n], let Rn
m be the set of all

ordered partitions of [n] into m parts, and let Ru be the set of ordered partitions of type

u.

To formalize the connection between shapes and ordered set partitions, define

the mapping fS from the set of all shapes to the set of all ordered set partitions by

fS(s1 . . . sn)
def
=
(
{i : si = 1}, {i : si = 2}, . . . ,

{i : si = max {s1, . . . ,sn}}
)
.

For example

fS(12131) =
(
{i : si = 1}, {i : si = 2}, {i : si = 3}

)

=
(
{1, 3, 5}, {2}, {4}

)
.

The following result follows easily.

Lemma 14. The function fS is a bijection. Furthermore, for all n ≥ 0

fS(S
n) = Rn,

for all 0 ≤ m ≤ n

fS(S
n
m) = Rn

m,

and for all types u

fS(Su) = Ru. 2

For 0 ≤ m ≤ n, let

F (n,m)
def
=
∣
∣Rn

m

∣
∣ =

∣
∣S
n
m

∣
∣

and let

F (n)
def
=
∣
∣Rn

∣
∣ =

∣
∣S
n
∣
∣ =

n∑

m=0

F (n,m).
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For example, F (0, 0) = 1, F (1, 0) = 0, F (1, 1) = 1, F (2, 0) = 0, F (2, 1) = 1, and

F (2, 2) = 2, hence, F (0) = 1, F (1) = 1, and F (2) = 3. Similarly, F (3) = 13 and

F (4) = 75. Note that F (n, 0) is 1 for n = 0 and 0 otherwise. The numbers F (n,m)

and F (n) are known as the ordered Stirling numbers of the second kind, and the Fubini

numbers, respectively.

Several interpretations and results are known for both numbers, e.g. [61, 62].

For example, one interpretation of F (n,m) is as the number of ways to distribute n

distinguishable balls into m distinguishable urns so that no urn is left empty, and a

common recursion for F (n,m) for 1 ≤ m ≤ n is

F (n,m) = mF (n− 1,m) +mF (n− 1,m− 1). (4.1)

4.2.2 Types of shapes

We classify Sn into sets of equiprobable shapes, and in Section 4.3.2 we use this

classification to upper bound shape redundancy using Corollary 3.

Recall that Sn is the collection of length-n shapes. Let

S
n
m

def
= {s1 . . . sn ∈ S

n :
∣
∣{s1, . . . ,sn}

∣
∣ = m}

be the set of length-n shapes with m symbols. For example,

S
3
1 = {111}

S
3
2 = {112, 211, 121, 212, 122, 211}

S
3
3 = {123, 231, 312, 321, 132, 213}

For all 1 ≤ i ≤ m ≤ n, the multiplicity of i in s ∈ Snm is

µi
def
= µi(s)

def
= |{1 ≤ j ≤ n : sj = i}|,

the number of times i occurs in s. The type of s ∈ Snm is

u(s)
def
= (µ1, . . . ,µm),

the m-tuple of multiplicities of the symbols in s. For example, the multiplicities of the

symbols in 12131 are µ1 = 3, µ2 = 1, and µ3 = 1, hence u(12131) = (3, 1, 1).
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Clearly, the type of any length-n shape corresponds to an ordered partition of n

and vice versa, where the number of partition parts equals the number of shape symbols.

Hence, for all m ≤ n

u(Snm) = Unk

and

u(Sn) = Un.

Equations (3.1) and (3.2) therefore imply that the number of types of length-n shapes

with m symbols is
(
n−1
m−1

)
and that the number of types of length-n shapes is 2n−1.

For u = (u1, . . . ,um) ∈ Unk , let

Su
def
= {s ∈ S

∗ : u(s) = u}

be the collection of shapes of type u. A standard counting argument shows that

∣
∣Su

∣
∣ =

(
n

u1, . . . ,um

)

=
n!

u1! · · ·um!
. (4.2)

4.3 Redundancy of shapes

In the last chapter we saw that the standard per-symbol redundancy of i.i.d.

distributions increases to infinity as the alphabet size grows. We now show that the

per-symbol shape redundancy of i.i.d. distributions is bounded. Specifically, for all

n ∈ Z
+

0.027 ≤ 1

4
log

(
4

πe1/6

)

≤ R̂(InS )/n ≤ 1.

We also consider the shape redundancy of short strings, discuss, though do not analyze,

sequential shape compression, and related these results to oredered set partitions.

4.3.1 The redundancy of shapes of length 1 and 2

There is only one distribution on S1 = {1}, hence

R̂(I1
S) = 0.
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To determine R̂(I2
S
), the shape redundancy of the collection I2

S
of i.i.d.-induced distri-

butions over S2 = {11, 12, 21}, consider Shtarkov’s sum (2.1)

R̂(I2
S) = log




∑

s∈S2

sup
p∈I2

S

p(s)





= log

(

sup
p∈I2

S

p(11) + sup
p∈I2

S

p(12) + sup
p∈I2

S

p(21)

)

.

We show that

sup
p∈I2

S

p(11) = 1

and

sup
p∈I2

S

p(12) = sup
p∈I2

S

p(21) =
1

2

hence

R(I2
S) = log

(

1 +
1

2
+

1

2

)

= 1.

Since any constant i.i.d. distribution induces

p(11) = 1,

the maximum probability of the shape 11 is 1. To show that the maximum shape

probability of the shapes 12 and 21 is 1/2, note that any i.i.d. distribution p ∈ I2

induces the same probability on 12 and 21, namely

p(12) = p(21)

hence

sup
p∈I2

S

p(12) = sup
p∈I2

S

p(21) ≤ 1

2
.

On the other hand, a continuous distribution over an interval, e.g. the uniform distribu-

tion over [0, 1], induces

p(12) = p(21) =
1

2

hence

sup
p∈I2

S

p(12) = sup
p∈I2

S

p(21) =
1

2
.
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4.3.2 Upper bound

In the previous section, we determined R̂(I1
S
) and R̂(I2

S
) by evaluating the

maximum shape probabilities exactly. For large n, exact calculation of these probabilities

seems difficult. Instead, we establish a relation between R̂(In
S
) and |Un|, and use it to

prove that the per-symbol shape redundancy R̂(In
S
)/n is at most one.

Theorem 15. For all n

R̂(InS ) ≤ n− 1.

Proof Let u ∈ Un be a type. Every i.i.d. distribution induces the same probability on

all shapes in Su. Hence the probability assigned to every shape in Su is at most 1/|Su|.
Let pu be the uniform distribution assigning probability 1/|Su|, to every shape in Su,

and let

În
S

= {pu : u ∈ Un}

be the collection of all such uniform distributions. În
S

clearly dominates In
S

and the

theorem follows from Corollary 3 and (3.2). 2

Many applications give rise to sequences containing relatively few symbols. In

the remainder of this section, we refine Theorem 15 and derive compression algorithms

whose redundancy for these sequences is low.

Let Pn
S

be a collection of distributions over length-n shapes, and let q be a

distribution over length-n shapes, not necessarily in Pn
S
. The redundancy of q, i.e., of

the compression algorithm associated with it, for the collection Snm of length-n shapes

with m symbols is

R̂m(Pn
S , q)

def
= sup

p∈Pn
S

max
s∈Snm

log
p(s)

q(s)
,

the highest excess number of bits used to encode any m−symbol shape.

For m = 1, . . . ,n, Theorem 15 can be used to construct a distribution qm over

length-n shapes, whose redundancy for m−symbol shapes is at most logUnk . Weighting

each of qm by 1
n , we obtain the following.

Theorem 16. There is a distribution q over length-n shapes such that for all m ≤ n

R̂m(InS , q) ≤ log

(
n− 1

m− 1

)

+ logn. 2
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4.3.3 Lower bound

We show that the per-symbol redundancy of shapes of i.i.d. distributions is at

least 0.027.

Theorem 17. For all n > 1

R̂(InS ) ≥ n

4
· log 4

πe
1
6

> 0.027n.

Proof We lower bound the maximum shape probabilities, and incorporate this bound

into Shtarkov’s sum.

For all s ∈ S∗ let

S
−1
p (s) = {x ∈ A∗ : S(x) = s and p(x) > 0}

be the support of a shape s with respect to the distribution p. For every s ∈ Sn

sup
p∈In

S

p(s) = sup
p∈In

p
(
S
−1
p (s)

)
≥ sup

p∈In
max

x∈S
−1
p (s)

p(x).

For all s with type u = (u1, . . . ,um), standard maximum likelihood arguments imply that

max
p∈In

max
x∈S

−1
p (s)

p(x) =
m∏

j=1

(uj
n

)uj

hence

sup
p∈In

S

p(s) ≥
m∏

j=1

(uj
n

)uj
.



41

Incorporating this lower bound into Shtarkov’s sum (2.1), we obtain

R̂(InS ) = log





n∑

m=1

∑

u∈Unk

∑

s∈Su

sup
p∈In

S

p(s)





≥ log





n∑

m=1

∑

u∈Unk

∑

s∈Su

m∏

j=1

(uj
n

)uj





(a)
= log





n∑

m=1

∑

u∈Unk

(
n

u1, . . . ,um

) m∏

j=1

(uj
n

)uj





(b)

≥ log





n∑

m=1

1

e
m
12

∑

u∈Unk

√

2πn
(
n
m

)m

(
1√
2π

)m




(c)

≥ log

(
n∑

m=1

1

e
m
12

(
n− 1

m− 1

)√
2πn

(
n
m

)m
2

(
1√
2π

)m
)

(d)

≥ log

(

1

e
n
24

(
n− 1
n
2 − 1

)√
2πn

2n/4

(
1√
2π

)n/2
)

≥ n

4
log

(
4

π

)

− n

24
log e

where (a) follows from (4.2), (b) from (2.5), (c) from (3.1), and (d) by considering only

the m = n
2 term. 2

4.4 Sequential description

So far, we described the shape of a whole block of symbols. However in many

applications, the symbols must be encoded as they arrive. Representations of shapes for

such applications must be sequential, namely the shape of a string’s prefix must be the

prefix of the string’s shape. In this brief section we describe a sequential representation

of shapes.

Recall that

A(xn1 )
def
= {x1, . . . ,xn}

is the set of symbols appearing in xn1 = x1 . . . xn ∈ An, and if the alphabet A is ordered,

the rank of x with respect to A(xn1 ) is

ρxn1 (x) = |{y ∈ A(xn1 ) : y ≤ x}|,
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the number of distinct symbols in A(xn1 ) not larger than x.

Let the sequential rank of xi be

rxi−1
1

(xi)
def
=







2ρxi−1
1

(xi) xi ∈ A(xi−1
1 ),

2ρxi−1
1

(xi) + 1 xi /∈ A(xi−1
1 ).

For example, in the string abracadabra, the sequential rank of the first a is 2 · 0 + 1 = 1,

the sequential rank of all the other a′s is 2 · 1 = 2, the sequential rank of the first b is

2 · 1 + 1 = 3, while that of the second is 2 · 2 = 4 the sequential rank of the first r is

2 · 2 + 1 = 5, while that of the second is 2 · 5 = 10, and so on.

The sequential shape of xn1 is

rλ(x1) rx1
1
(x2) . . . rxn−1

1
(xn),

the concatenation of the sequential ranks. For example, the sequential shape of “abra-

cadabra” is 135252724(10)2. It can be easily verified that the sequential shape of every

prefix of a string is the corresponding prefix of its sequential shape.
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Chapter 5

Patterns

We saw that strings can be described by separately conveying its symbols, and

its pattern—the order in which the symbols appear. Concentrating on the latter, we show

that the patterns of iid strings over all, including infinite and even unknown, alphabets,

can be compressed with diminishing redundancy, both in block, and sequentially.

To establish these results, we show that the number of patterns is the Bell

number, that the number of patterns with a given number of symbols is the Stirling

number of the second kind, and that the redundancy of patterns can be bounded using

a celebrated result of Hardy and Ramanujan on the number of integer partitions.

5.1 Results

In Section 5.2 we formally define patterns and the redundancy of compressing

them. In Section 5.3 we derive some useful properties of patterns, including a correspon-

dence between patterns and set partitions. We use this analogy to show that the number

of patterns is the Bell number and that the number of patterns with a given number of

symbols is the Stirling number of the second kind.

We are primarily interested in universal codes for the class In of all i.i.d. distri-

butions, over all possible alphabets, even continuous. As mentioned earlier, for standard

compression the per-symbol redundancy increases to infinity as the alphabet size grows.

Yet in Section 5.4, we show that R̂(InΨ), the block redundancy of compressing patterns

43
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of i.i.d. distributions over potentially infinite alphabets is bounded by

(
3

2
log e

)

n
1
3 (1 + o(1)) ≤ R̂(InΨ) ≤

(

π

√

2

3
log e

)

√
n.

Therefore the per-symbol redundancy of coding patterns diminishes to zero as the block-

length increases, irrespective of the alphabet size. The proofs use an analogy between

patterns and set partitions which allows us to incorporate a celebrated result of Hardy

and Ramanujan on the number of partitions of an integer.

In Section 5.5, we consider sequential pattern encoders. We first construct an

encoder with redundancy of at most

2√
2 − 1

(

π

√

2

3
log e

)

√
n =

4π log e

(2 −
√

2)
√

3

√
n.

However, this encoder has high computational complexity. We therefore describe a linear-

complexity encoder, which also has diminishing, albeit slightly higher, redundancy of at

most

O(n2/3),

where the implied constant is less than 10. For both block and sequential compression,

the redundancy grows sublinearly with the blocklength, hence the per symbol redundancy

R̂(InΨ)/n diminishes to zero.

5.2 Definitions

We formally describe patterns and their redundancy.

Let A be any alphabet. For x = xn1 = x1, . . . ,xn ∈ An,

X (x)
def
= {x1, . . . ,xn}

denotes the set of symbols appearing in x. The index of x ∈ X (x) is

ıx(x)
def
= min {|X (xi1)| : 1 ≤ i ≤ n and xi = x},

one more than the number of distinct symbols preceding x’s first appearance in x. The

pattern of x is the concatenation

Ψ(x)
def
= ıx(x1)ıx(x2) . . . ıx(xn),
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of all indices. For example, if x = “abracadabra”, ıx(a) = 1, ıx(b) = 2, ıx(r) = 3,

ıx(c) = 4, and ıx(d) = 5, hence

Ψ(abracadabra) = 12314151231.

Let

Ψ(An) = {Ψ(x) : x ∈ An}

denote the set of patterns of all strings in An. For example, if A contains two elements,

then Ψ(A) = {1}, Ψ(A2) = {11, 12}, Ψ(A3) = {111, 112, 121, 122}, etc. Let

Ψn = ∪AΨ(An)

denote the set of all length-n patterns, and let

Ψ∗ = ∪∞
n=0Ψ

n

be the set of all patterns. For example,

Ψ0 = {λ},

Ψ1 = {1},

Ψ2 = {11, 12},

Ψ3 = {111, 112, 121, 122, 123},

Ψ∗ = {λ, 1, 11, 12, 111, 112, . . .},

where λ is the empty string. Figure 5.2 depicts a tree representation of all patterns of

length at most 4.

It is easy to see that a string ψ is a pattern iff it consists of positive integers

such that no integer i > 1 appears before the first occurrence of i − 1. For example, 1,

12, and 1213 are patterns, while 2, 21, and 131 are not.

Every probability distribution p over A∗ induces a distribution pΨ over patterns

on Ψ∗, where

pΨ(ψ)
def
= p({x ∈ A∗ : Ψ(x) = ψ}),

is the probability that a string generated according to p has pattern ψ. When pattern

probabilities pΨ(ψ) are evaluated, the subscript Ψ can be inferred, and is hence omitted.
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Figure 5.1: A tree representation of patterns of length ≤ 4.

For example, let p be a uniform distribution over {a, b}2. Then p induces on Ψ2 the

distribution

p(11) = p({aa, bb}) =
1

2
,

p(12) = p({ab, ba}) =
1

2
.

For a collection P of distributions over A∗ let

PΨ
def
= {pΨ : p ∈ P}

denote the collection of distributions over Ψ∗ induced by probability distributions in

P. From the derivations leading to Equation (1.1), the worst case pattern redundancy

of P, i.e., the worst case redundancy of patterns generated according to an unknown

distribution in PΨ is

R̂(PΨ) = min
q

max
p∈PΨ

max
ψ∈Ψ∗

log
p(ψ)

q(ψ)
, (5.1)

where q is any distribution over Ψ∗. In particular, for all P,

R̂(PΨ) ≥ 0.
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As mentioned earlier, we are mostly interested in R̂(InΨ), the pattern redundancy of In,
the collection of arbitrary i.i.d. distributions over length-n strings. We show that the

per-symbol redundancy R̂(InΨ)/n diminishes to zero, and that diminishing per-symbol

redundancy can be achieved both by block and sequential coding with a constant number

of operations per symbol.

5.3 Combinatorics of patterns

5.3.1 Set partitions and patterns

A partition of a set S is a collection of disjoint nonempty subsets of S whose

union is S. For n ≥ 0, let [n]
def
= {1, . . . ,n} with [0]

def
= ∅. Let Sn be the set of all

partitions of [n], and let

S∗ = ∪∞
n=0Sn

be the collection of all partitions of [n] for all n ∈ Z
+. For example,

S0 = {∅}

S1 =
{{

{1}
}}

S2 =
{{

{1, 2}
}
,
{
{1}, {2}

}}

.

For 0 ≤ m ≤ n, let B(n,m) be the number of partitions of [n] into m sets, and

let

B(n) =
n∑

k=0

B(n,m)

be the number of partitions of [n]. For example, B(0, 0) = 1, B(1, 0) = 0, B(1, 1) = 1,

B(2, 0) = 0, B(2, 1) = 1, B(2, 2) = 1, and so on, hence,

B(0) = 1, B(1) = 1, B(2) = 2, B(3) = 5, B(4) = 15, . . .

Note that B(n, 0) is 1 for n = 0 and 0 otherwise.

The numbers B(n,m), are called Stirling numbers of the second kind while

the numbers B(n), are called Bell numbers. Many results are known for both [61]. In

particular, it is easy to see that for all n > 0, Bell numbers satisfy the recursion

B(n+ 1) =
n∑

i=0

(
n

i

)

·B(i).
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Set partitions are equivalent to patterns. To see that, let the mapping fΨ :

Ψ∗ → S∗ assign to ψ ∈ Ψ∗ the set partition

fΨ(ψ)
def
=

{

{i : ψi = j} : 1 ≤ j ≤ max
1≤i≤|ψ|

ψi

}

,

where |ψ| denotes the length of ψ. For example, for the pattern ψ = ψ1 . . . ψ5 = 12131,

fΨ(ψ) =
{
{i : ψi = 1}, {i : ψi = 2}, {i : ψi = 3}

}

=
{
{1, 3, 5}, {2}, {4}

}
.

The following follows easily.

Lemma 18. The function fΨ : Ψ∗ → S∗ is a bijection. Furthermore, for every n,

fΨ(Ψn) = Sn. 2

5.3.2 Profiles

We classify patterns and set partitions by their profile, which will be useful in

evaluating the redundancy of i.i.d.-induced distributions.

The multiplicity of ψ ∈ Z
+ in ψ is

µψ
def
= µψ(ψ)

def
= |{1 ≤ i ≤ |ψ| : ψi = ψ}|,

the number of times ψ appears in ψ. The prevalence of a multiplicity µ ∈ N in ψ is

ϕµ
def
= ϕµ(ψ)

def
= |{ψ : µψ = µ}|,

the number of symbols appearing µ times in ψ. The profile of ψ is

ϕ
def
= ϕ(ψ)

def
=
(

ϕ|ψ|, . . . ,ϕ1

)

the vector of prevalences of µ in ψ for 1 ≤ µ ≤ |ψ|.
Similarly, the profile of S is the vector

ϕ(S) = (ϕ|ψ|, . . . ,ϕ1),

where

ϕµ =
∣
∣{s ∈ S : |s| = µ}

∣
∣

is the number of sets of cardinality µ in S. The following is easily observed.
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Lemma 19. For all ψ ∈ Ψ∗,

ϕ(ψ) = ϕ
(
fΨ(ψ)

)
. 2

For example, the pattern ψ = 12131 has multiplicities µ1 = 3, µ2 = µ3 = 1,

and µψ = 0 for all other ψ ∈ Z
+. Hence its prevalences are ϕ1 = 2, ϕ2 = 0, ϕ3 = 1,

ϕ4 = ϕ5 = 0, and its profile is ϕ(ψ) = (0, 0, 1, 0, 2). On the other hand, we see that

fΨ(ψ) =
{
{1, 3, 5}, {2}, {4}

}
with its profile ϕ(S) = (0, 0, 1, 0, 2).

Let

Φn = {ϕ : ∃ψ ∈ Ψn : ϕ(ψ) = ϕ}

be the set of profiles of all length-n patterns, and let

Φ∗ = ∪∞
n=0Φ

n

be the set of profiles of all patterns. Clearly, Φn and Φ∗ are also the set of profiles of all

set partitions in Sn and S∗ respectively, and for all ϕ ∈ Φn

n∑

µ=1

µϕµ = n.

For ϕ ∈ Φ∗, let

Ψϕ
def
= {ψ ∈ Ψ∗ : ϕ(ψ) = ϕ}

be the collection of patterns of profile ϕ, and equivalently let

Sϕ def
= {S ∈ S∗ : ϕ(S) = ϕ}

denote the collection of partitions whose profile is ϕ. It follows that for all ϕ ∈ Φ∗,

fΨ(Ψϕ) = Sϕ.

5.3.3 Useful results

In this Section, we evaluate the size of Ψϕ and recall Shtarkov’s result for

computing the worst case redundancy.
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Number of patterns of a given profile

Let

N(ϕ)
def
=
∣
∣Ψϕ

∣
∣ =

∣
∣Sϕ
∣
∣

be the number of patterns of profile ϕ. It follows that

Lemma 20. For all n ≥ 0 and ϕ = (ϕ1, . . . ,ϕn) ∈ Φn,

N(ϕ) =
n!

∏n
µ=0 (µ!)ϕµ · ϕµ!

.

Proof There is only one pattern of length 0, the empty string λ, hence the lemma

holds.

There are many ways to derive this result. To see one, let S ∈ Sϕ be a profile-ϕ

partition of [n] = {1, . . . ,n}. For i = 1, . . . ,n, let Sµ be the collection of elements in sets

of size µ. Clearly,

|Sµ| = µϕµ,

hence [n] can be decomposed into the sets S1, . . . ,Sn in
(

n

1ϕ1, 2ϕ2, . . . ,nϕn

)

=
n!

∏n
µ=1(µϕµ)!

ways. Each set Sµ can be further decomposed into ϕµ interchangeable sets of size µ in

(
µϕµ

µ, . . . ,µ
︸ ︷︷ ︸

ϕµ

)
1

ϕµ!
=

(µϕµ)!

(µ!)ϕµ · ϕµ!

ways. These two decompositions uniquely define the partition, hence the number of

profile-ϕ partitions of [n] is

n!
∏n
µ=1(µϕµ)!

·
n∏

µ=1

(µϕµ)!

µ!ϕµ · ϕµ!
=

n!
∏n
µ=1(µ!)ϕµ · ϕµ!

. 2

5.4 Redundancy of patterns

We show that for all n ∈ Z
+,

(
3

2
log e

)

· n 1
3 (1 + o(1)) ≤ R̂(InΨ) ≤

(

π

√

3

2
log e

)

√
n,
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namely, the redundancy of patterns of i.i.d. distributions is sublinear in the blocklength,

implying that the per-symbol redundancy diminishes to zero. To obtain these bounds

we rewrite Shtarkov’s sum (2.1) as

R̂(InΨ) = log




∑

ϕ∈Φn

∑

ψ∈Ψϕ

max
p∈InΨ

p(ψ)



. (5.2)

In the next subsection we use this sum to compute R̂(I1
Ψ) and R̂(I2

Ψ). However, for

larger n, exact calculation of the maximum-likelihood probabilities of patterns, namely

maxp∈InΨ p(ψ), seems difficult [5]. Hence we use the approach in Chapter 2 and saddle

point analysis techniques in Chapter 6 for upper and lower bounds on the redundancy.

5.4.1 The redundancy of patterns of length 1 and 2

We determine the redundancies R̂(I1
Ψ) and R̂(I2

Ψ) of i.i.d.-induced distributions

over patterns of length 1 and 2 respectively.

There is only one distribution on Ψ1 = {1}, hence

R̂(I1
Ψ) = 0.

For length 2, consider the collection of distributions over

Ψ2 = {11, 12}

induced by the set I2 of i.i.d. distributions over strings of length 2. By Shtarkov’s sum,

R̂(I2
Ψ) = log




∑

ψ∈Ψ2

max
p∈I2

Ψ

p(ψ)





= log

(

max
p∈I2

Ψ

p(11) + max
p∈I2

Ψ

p(12)

)

. (5.3)

Since any constant i.i.d. distribution assigns p(11) = 1, the maximum-likelihood

probability of 11 is 1, hence

max
p∈I2

Ψ

p(11) = 1.

Similarly, any continuous distribution over [0, 1]2 assigns p(12) = 1, hence

max
p∈I2

Ψ

p(12) = 1.
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Incorporating into Equation (5.3), we obtain

R(I2
Ψ) = log (1 + 1) = 1.

Unfortunately, calculation of maximum-likelihood probabilities for longer pat-

terns, seems difficult. Therefore, instead of evaluating the sum in (5.2) exactly, we bound

the maximum-likelihood probabilities of ψ ∈ Ψn to obtain bounds on R̂(InΨ).

5.4.2 Upper bound

We show that R̂(InΨ) is at most the logarithm of the number of profiles. Similar

to the correspondence between patterns and set partitions, we obtain a correspondence

between profiles of patterns and unordered partitions of positive integers, and use Hardy

and Ramanujan’s results on the number of unordered partitions of positive integers to

bound the number of profiles, and hence the redundancy.

Lemma 21. For all n,

R̂(InΨ) ≤ log |Φn| .

Proof Every induced i.i.d. distribution assigns the same probability to all patterns

of the same profile. Hence the probability assigned to every pattern of a given profile

is at most the inverse of the number of patterns of that profile. Let ÎnΨ consist of |Φn|
distributions, one for each profile. The distribution associated with any profile assigns to

each pattern of that profile a probability equal to the inverse of the number of patterns

of the profile. ÎnΨ clearly dominates InΨ and the lemma follows from Corollary 3. 2

To count the number of profiles in Φn, we observe the following correspondence

with unordered partitions of positive integers.

An unordered partition of a positive integer n is a multiset of positive integers

whose sum is n. An unordered partition can be represented by the vector ϕ = (ϕn, . . . ,ϕ1)

where ϕµ denotes the number of times µ occurs in the partition. For example, the

partition {1, 1, 3} of 5 corresponds to the vector (0, 0, 1, 0, 2). Unordered partitions of a

positive integer n and profiles of patterns in Ψn are equivalent as follows.

Lemma 22. A vector ϕ is an unordered partition of n iff ϕ ∈ Φn. 2
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Henceforth we use the notation developed for profiles of patterns in Section 5.3.2

for unordered partitions also.

Lemma 23. [Hardy and Ramanujan [50], see also [63]] The number of unordered

partitions of n is

exp

(

π

√

2

3

√
n(1 − o(1))

)

≤ |Φn| ≤ exp

(

π

√

2

3

√
n

)

. 2

Lemmas 21 and 23 imply the following upper bound on the pattern redundancy

of In.

Theorem 24. For all n,

R̂(InΨ) ≤
(

π

√

2

3
log e

)

√
n. 2

In particular, the pattern redundancy of i.i.d. strings is sublinear in the block-

length, and hence the per-symbol redundancy diminishes as the number of compressed

symbols increases. We note that the number of integer partitions has also been used by

Csiszár and Shields [64] to bound the redundancy of renewal processes.

5.4.3 Lower bound

In the last section we showed that the redundancy of patterns of i.i.d. strings

is O(n1/2). We now show that it is Ω(n1/3). We provide a simple proof of this lower

bound and mention a more complex approach that yields the same growth rate, but with

a higher multiplicative constant.

Theorem 25. As n increases,

R̂(InΨ) ≥ log

(

e23/12√
2π

)

· n 1
3 (1 + o(1)).

Proof Let

Ψ−1
p (ψ) = {x ∈ A∗ : Ψ(x) = ψ and p(x) > 0}

be the support of a pattern ψ with respect to a distribution p over an alphabet A.

As noted in [19], Ψ−1
p (ψ) can be partitioned into sets, each with

∏

µ ϕµ! equi-probable
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sequences, where ϕ = (ϕn, . . . ,ϕ1) is the profile of ψ. By standard maximum-likelihood

arguments, the probability of any sequence with profile ϕ is at most
∏n
µ=1

(µ
n

)µϕµ , hence

sup
p∈InΨ

p(ψ) = sup
p∈In

p
(
Ψ−1
p (ψ)

)

≥
∏

µ

ϕµ! · max
p∈In

max
x∈Ψ−1

p (ψ)
p(x)

≥
∏

µ

ϕµ!
(µ

n

)µϕµ
. (5.4)

From Shtarkov’s sum (2.1),

R̂(InΨ) = log




∑

ϕ∈Φn

∑

ψ∈Ψϕ

sup
p∈InΨ

p(ψ)





(a)

≥ log




∑

ϕ∈Φn

n!
∏n
µ=1(µ!)ϕµϕµ!

·
n∏

µ=1

ϕµ!
(µ

n

)µϕµ





(b)

≥ log




enn!

nn

n∑

m=1

∑

ϕ∈Φnm

1
√∏n

µ=1 µ
ϕµ

(
1√
2π

)m 1

em/12





(c)

≥ log





n∑

m=1

∑

ϕ∈Φnm

(m

n

)m/2
(

1√
2π

)m 1

em/12





(d)

≥ log

(
n∑

m=1

(
n− 1

m− 1

)
1

m!
·
(m

n

)m/2
(

1√
2π

)m 1

em/12

)

≥ log

((
n− 1

m− 1

)

· 1

m!
·
(m

n

)m/2
(

1√
2π

)m 1

em/12

)∣
∣
∣
∣
m=n

1
3

(e)

≥ log

(
m

n

1 + o(1)√
2πm

(n e

m

)m
· 1
√

2πme
1

12m

em

mm
·

(m

n

)m/2
(

1√
2π

)m 1

em/12

)∣
∣
∣
∣
m=n

1
3

≥ log




e2n

1/3

(√
2π
)n1/3

en
1/3/12



(1 + o(1))

= log

(

e23/12√
2π

)

· n1/3(1 + o(1)),

where (a) follows from Lemma 20 and Equation (5.4), (b) from Feller’s bounds (2.3),

(c) from the arithmetic-geometric mean inequality, (d) because each unordered partition
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into m parts can be ordered in at most m! ways, and (e) from Lemma 7. The theorem

follows. 2

Note that the constant in the bound can be increased by taking

m =
(

2πe−5/6
)−1/3

· n1/3

in the proof, yielding

R̂(InΨ) ≥
(

2πe−5/6
)−1/3

· 3

2
log e · n1/3(1 + o(1)).

Generating functions and Hayman’s Theorem can be used to evaluate the exact asymp-

totic growth of

log




∑

ϕ∈Φn

n!
∏n
µ=1(µ!)ϕµϕµ!

n∏

µ=1

(µ

n

)µϕµ



, (5.5)

thereby improving the lower bound to the following.

Theorem 26. As n increases,

R̂(InΨ) ≥
(

3

2
log e

)

n
1
3 (1 + o(1)). 2

Proof The proof is fairly involved, and is defered to the next chapter.

These lower bounds should be compared with those in Åberg, Shtarkov, and

Smeets [19] who lower bounded pattern redundancy when the number m of symbols is

fixed and finite and the block length n increases to infinity. While it is not clear whether

their proof extends to arbitrary m, which may grow with n, the bound they derive may

still hold in general. If so, it would yield a lower bound similar to those described here.

For a more complete discussion, see [65]. Note also that subsequent to the derivation of

Theorem 13, Shamir et. al. [22, 23] showed that the average-case pattern redundancy is

lower bounded by (π/2)1/3 1.5 log e n(1−ε)/3 for arbitrarily small ε.

5.4.4 Distributions for block coding of patterns

We summarize some results on probability distributions relevant to the results

we have obtained so far. For any n, ϕ ∈ Φn and pattern ψn1 ∈ Ψϕ, let

pϕ(ψn1 )
def
=

1

N(ϕ)
=

∏n
µ=1 µ!ϕµϕµ!

n!



56

be the uniform distribution on patterns of profile ϕ. As mentioned earlier, this uniform

distribution upper bounds the maximum likelihood probability from InΨ, namely for all

ψn1 ,

pϕ(ψn1 )(ψ
n
1 ) ≥ p̂ψn1 (ψn1 ),

where we let

p̂ψ
n
1

def
= arg max

p∈InΨ
p(ψn1 )

denote the distribution that maximizes the induced i.i.d. probability of ψn1 . For all

ψn1 ∈ Ψn, the distribution

p̃(ψn1 ) =
pϕ(ψn1 )(ψ

n
1 )

∑

ψ∈Ψn pϕ(ψ)(ψ)

over Ψn assigns a probability that is smaller than pϕ(ψn1 )(ψ
n
1 ) by a factor, which by

Theorem 24, is at most Θ(
√
n), namely

∑

ψ∈Ψn

pϕ(ψ)(ψ) ≤ exp

(

π

√

2

3

√
n

)

.

Therefore,

p̃(ψn1 ) ≥
p̂ψn1 (ψn1 )

exp
(

π
√

2
3

√
n
) ,

which, of course, is the upper bound on R̂(InΨ).

5.5 Sequential compression

The compression schemes considered so far operated on the whole block of

symbols. In many applications the symbols arrive and must be encoded sequentially.

Compression schemes for such applications are called sequential and associate with every

pattern ψn1 ∈ Ψn, a probability distribution q(x|ψn1 ) over

[max(ψn1 ) + 1] = {1, . . . ,max(ψn1 ) + 1},

representing the probability that the encoder assigns to the possible values of ψn+1 after

seeing ψn1 . For example, q(x|Λ)
def
= q(x) is a distribution over {1}, namely, q(1) =

1, q(x|1) and q(x|11) are distributions over {1, 2}, while q(x|12) is a distribution over

{1, 2, 3}.
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Let q be a sequential encoder. For each n ∈ Z
+, q induces a probability

distribution over Ψn given by

q(ψn1 )
def
=

n∏

i=1

q(ψi|ψi−1
1 ).

Some simple algorithms along the lines of the add-constant rules were analyzed

in [21] and shown to have diminishing per-symbol redundancy when the number of

distinct symbols is small, but a constant per-symbol redundancy in general.

In this section, we describe two sequential encoders with diminishing per-symbol

redundancy. The analysis of their redundancy is deferred to Chapter 8 The first encoder,

q1/2, has worst-case redundancy of at most

4π log e√
3(2 −

√
2)

√
n,

only slightly higher than the upper bound on R̂(InΨ). However this encoder has high

computational complexity, and in Section 5.5.2 we consider a sequential encoder, q
2/3

,

with linear computational complexity and redundancy less than

10n2/3,

which still grows sublinearly with n though not as slowly as the block redundancy.

5.5.1 A low redundancy encoder

We construct an encoder q1/2 that for all n, and all patterns ψn1 achieves a

redundancy

R̂(InΨ, q1/2) ≤
4π log e√
3(2 −

√
2)

√
n.

The encoder uses distributions that are implicit in the block coding results.

Let

p̂ψn1 (ψn1 )
def
= max

p∈InΨ
p(ψn1 )

denote the maximum-likelihood probability assigned to a pattern ψn1 ∈ Ψn by any i.i.d.

distribution in InΨ. Recall that N(ϕ) is the number of patterns with profile ϕ, and that,

as in Lemma 21, every i.i.d. distribution assigns the same probability to all patterns

of the same profile. We therefore obtain the following upper bound on the maximum

pattern probabilities.
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Lemma 27. For any pattern ψn1 ∈ Ψn of profile ϕ ∈ Φn,

p̂ψn1 (ψn1 ) ≤ 1

N(ϕ(ψn1 ))
. 2

Based on this upper bound, we can construct the following distribution over

Ψn,

p̃(ψn1 )
def
=

1
N(ϕ(ψn1 ))

∑

ψ∈Ψn
1

N(ϕ(ψ))

=
1

N(ϕ(ψn1 )) |Φn| . (5.6)

For n ≥ 1, let

tn = 2dlogne

be the smallest power of 2 that is at least n, e.g. t1 = 1, t2 = 2, and t3 = t4 = 4. Note

that tn
2 < n ≤ tn.

For every k ≥ n, and patterns ψn1 , let

Ψk(ψn1 ) = {y ∈ Ψk : y1y2 . . . yn = ψn1 }

be the set of all patterns that extend ψn1 in Ψk, and let

p̃k(ψn1 )
def
= p̃(Ψk(ψn1 )) =

∑

y∈Ψk(ψn1 )

p̃(y)

be the probability of the set Ψk(ψn1 ) under the distribution p̃.

The encoder assigns

q1/2(1) = 1,

and for all n > 1 and ψn1 ∈ Ψn it assigns the conditional probability

q1/2(ψn|ψn−1
1 ) =

p̃tn(ψn1 )

p̃tn(ψn−1
1 )

(5.7)

5.5.2 A low complexity encoder

The evaluation of q
1/2

(ψn1 |ψn−1
1 ) in Equation (5.7) may take super polynomial

time, hence implementing the encoder described in Section 5.5.1 may be impractical.

Therefore we present a linear-complexity encoder q whose per-symbol redundancy di-

minishes to zero as the blocklength increases.
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For notational convenience, let the prevelence of µ in ψn1 , ϕµ(ψ
n
1 ), be written

as ϕnµ, and let

r
def
= µψn(ψ

n−1
1 ).

For c ∈ Z
+, let

fc(ϕ)
def
= max(ϕ, c) =







c, 0 ≤ ϕ ≤ c− 1

ϕ, ϕ ≥ c,

let

gc(ϕ)
def
=

ϕ
∏

i=1

fc(i) =







cϕ, 0 ≤ ϕ ≤ c− 1

cc

c!ϕ!, ϕ ≥ c.

and let c be the sequence

c[n]
def
= dn 1

3 e.

The encoder assigns

q
2/3

(1) = 1,

and for all n > 1, and ψn1 ∈ Ψn, it assigns the conditional probability

q
2/3

(ψn1 |ψn−1
1 ) =

1

Sc[n−1](ψ
n−1
1 )

·







fc[n−1]

(
ϕn−1

1 + 1
)
, r = 0

(r + 1)
fc[n−1](ϕn−1

r+1 +1)
fc[n−1](ϕn−1

r )
, r > 0,

where

Sc[n−1](ψ
n−1
1 )

def
= fc[n−1]

(
ϕn−1

1 + 1
)

+
n∑

µ=1

ϕn−1
µ · (µ+ 1)

fc[n−1]

(

ϕn−1
µ+1 + 1

)

fc[n−1]

(
ϕn−1
µ

)

is the normalization factor.

It follows by induction that for all n > 1 and all patterns ψn1 ∈ Ψn,

q
2/3

(ψn1 ) =

∏n
µ=1

(
(µ!)ϕ

n
µgc[n](ϕ

n
µ)
)

∏n−1
i=1 Sc[i](ψ

i
1)

·
n−1∏

i=1





i∏

µ=1

gc[i](ϕ
i
µ)

gc[i+1](ϕiµ)



.

Theorem 28. For all n,

R̂(InΨ, q) ≤ O(n
2
3 ).

where the implied constant C is less than 10.

Proof See [2]. 2
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Chapter 6

Saddle point analysis bound on

pattern redundancy

We saw that, irrespective of the alphabet size, patterns of i.i.d. distributed

strings can be compressed with redundancy of at most

R̂(InΨ) ≤
(

π

√

2

3
log e

)

√
n

bits. Hence as the blocklength n grows, the redundancy of patterns increases sublinearly

with n, and the per-symbol redundancy diminishes to zero, even for infinite alphabets.

In this chapter we prove the improved lower bound on R̂(InΨ) presented in the

Theorem 26. To do so, we lower bound the highest probability of a pattern ψ by the

highest probability of any single i.i.d. string whose pattern is ψ. We obtain,

R̂(InΨ) ≥ R̂−(InΨ)
def
= log




∑

ψ∈Ψn

n∏

µ=1

(µ

n

)µϕµ(ψ)



,

where ϕµ(ψ) is the number of symbols appearing µ times in ψ. R̂−(InΨ) is of mathematical

interest of its own and its simple formulation allows for a precise evaluation of its growth

order.

To prove Theorem 26, we use Hayman’s saddle point analysis on its generating

function to show that

R̂−(InΨ) =

(
3

2
log e

)

n
1
3 − 1

3
logn− 2

3
log e− 1

2
log 3 + o(1). (6.1)

61
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6.1 The generating function

As mentioned earlier, it is difficult to obtain the maximum probability of pat-

terns. Instead, we lower bound these probabilities of patterns, and use Shtarkov’s sum

to derive a lower bound on redundancy.

Let

Ψ−1
p (ψ) = {x ∈ A∗ : Ψ(x) = ψ and p(x) > 0}

be the support of a pattern ψ with respect to a distribution p. For every ψ ∈ Ψn,

max
p∈InΨ

p(ψ) = max
p∈In

p
(
Ψ−1
p (ψ)

)
≥ max

p∈In
max

x∈Ψ−1
p (ψ)

p(x).

Let the number of symbols occuring µ times in ψ be ϕµ. Standard maximum-likelihood

arguments imply that

max
p∈In

max
x∈Ψ−1

p (ψ)
p(x) =

n∏

µ=1

(µ

n

)µϕµ
,

hence

max
p∈InΨ

p(ψ) ≥
n∏

µ=1

(µ

n

)µϕµ
. (6.2)

Let

Φn = {(ϕ1, . . . ,ϕn) : ϕi ≥ 0,

n∑

µ=1

µϕµ = n},

and

Ψϕ = {ψ : ϕµ symbols appear µ times in pattern ψ}.

Incorporating (6.2) into Shtarkov’s sum (2.1), we obtain

R̂(InΨ) = log




∑

ϕ∈Φn

∑

ψ∈Ψϕ

max
p∈InΨ

p(ψ)





≥ log




∑

ϕ∈Φn

∑

ψ∈Ψϕ

n∏

µ=1

(µ

n

)µϕµ





= log




∑

ϕ∈Φn

n!
∏n
µ=1(µ!)ϕµϕµ!

n∏

µ=1

(µ

n

)µϕµ





def
= log g(n). (6.3)
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Direct computation of g(n) appears to be difficult. Instead, we evaluate a

generating function of g(n),

G(z)
def
=

∞∑

n=0

g(n)
nn

n!
zn, (6.4)

from which the asymptotics of g(n) can be obtained using Hayman’s analysis [66].

To express the generating function G(z) in a more explicit form, observe that

G(z) =

∞∑

n=0

∑

(ϕ1,...,ϕn)∈Φn

∏

µ≥1

(
µµzµ

µ!

)ϕµ 1

ϕµ!

=
∑

(ϕ1,...,ϕn)∈Φn

∏

µ≥1

(
µµzµ

µ!

)ϕµ 1

ϕµ!

=
∏

µ≥1

∑

(ϕ1,...,ϕn)∈Φn

(
µµzµ

µ!

)ϕµ 1

ϕµ!
,

thus yielding

G(z) = exp

( ∞∑

k=1

kkzk

k!

)

. (6.5)

6.2 Hayman’s analysis

In the last section, we lower bounded R̂(InΨ) in terms of the coefficients of a

generating function G(z). Hayman [66] developed a technique to compute the asymp-

totics of the coefficients of power series that satisfy certain properties, which, as shown

later, G(z) also satisfies. In this section we describe Hayman’s analysis. We follow the

terminology used in [67].

Theorem 29. [Hayman] For

f(z) =
∞∑

n=0

anz
n,

let

a(z)
def
=

d log f(z)

d log z
and b(z)

def
=

d2 log f(z)

d(log z)2
= za′(z), (6.6)

and let the saddle point rn be the solution of

a(rn) = n.

If for some real R1, the following three conditions hold:
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Nonnegativity: ∃R0 < R1 such that for R0 < x < R1,

f(x) ≥ 0;

Fast growth: As x→ R1 − 0, namely, x approaches R1 from below, b(x) → ∞;

Basic split: ∃φ(x) > 0, called the basic split such that

Local approximation: for |θ| ≤ φ(x), uniformly in θ as x→ R1

f(xeiθ) ∼ f(x) exp(ia(x)θ − θ2

2
b(x));

Fast taper: for φ(x) < |θ| < π, uniformly in θ as x→ R1

f(xeiθ) ∼ o(f(x))
√

b(x)
;

then,

an ∼ f(rn)

rnn
√

2πb(rn)
. 2

To understand Hayman’s Theorem, note that by Cauchy’s integral formula,

∫

|z|=r

1

zn
dz =







2πi if n = 1,

0 if n 6= 1,

hence, for any r within the radius of convergence of f(z), the coefficients of f can be

expressed as

an =
1

2πi

∫

|z|=r

f(z)

zn+1
dz

=
1

2πi

∫

|z|=r
|θ|≤φ(r)

f(z)

zn+1
dz +

1

2πi

∫

|z|=r
|θ|≥φ(r)

f(z)

zn+1
dz

def
= I1 + I2.

Hayman chose the radius such that the fast taper condition implies that I2 is a negligible

fraction of I1.
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To evaluate I1, let z = reiθ. Using the McLaurin expansion of log f(reiθ) with

respect to θ,

log f(reiθ) = log f(r) +
∞∑

k=1

θk

k!

(
d

dθ

)k

log f(reiθ)
∣
∣
θ=0

= log f(r) +
∞∑

k=1

ikθk

k!

(
d

d(log z)

)k

log f(z)
∣
∣
z=r

= log f(r) + ia(r)θ − b(r)
θ2

2
+

∞∑

k=3

ikθk

k!

(
d

d(log z)

)k

log f(z)
∣
∣
z=r

(6.7)

where the second inequality follows because dθ = d(log z)/i. Hence,

f(reiθ) = f(r) exp

(

ia(r)θ − b(r)

2
θ2 +

∞∑

k=3

ikθk

k!

(
d

d(log z)

)k

log f(z)
∣
∣
z=r

)

,

As r → R1, the local approximation condition for |θ| ≤ φ implies that the trailing sum

is negligible. Therefore,

I1 =
1

2πi

∫

|z|=r
|θ|≤φ(r)

f(z)

zn+1
dz =

f(r)

2πrn

∫ θ=φ(r)

θ=−φ(r)
exp

(

i(a(r) − n)θ − b(r)
θ2

2

)

dθ.

Taking the radius to be rn such that a(rn) = n, we obtain

I1 =
f(rn)

2πrnn

∫ θ=φ(rn)

θ=−φ(rn)
exp

(

−b(rn)
θ2

2

)

dθ

=
f(rn)

2πrnn
√

b(rn)

∫ y=
√
b(rn)φ(rn)

y=−
√
b(rn)φ(rn)

e−y
2/2dy

(a)∼ f(rn)

2πrnn
√

b(rn)

∫ y=∞

y=−∞
e−y

2/2dy

=
f(rn)

rnn
√

2πb(rn)
,

where (a) follows because it can be shown [66] that b(rn)φ(rn)
2 → ∞ as n→ ∞. It can

be shown [66] that evaluating I1 at any radius r yields

|I1| =
f(r)

rn
√

2πb(r)

(

exp

(

−(a(r) − n)2

b(r)

)

+ or(1)

)

,

where the or(1) is uniform over n, and diminishes to zero as r → R1.
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As mentioned before, an is to be approximated by I1, hence we bound the

contribution of I2 as follows,

|I2| ≤
1

2π

∫

|z|=r
|θ|≥φ(rn)

∣
∣
∣
∣

f(z)

zn+1

∣
∣
∣
∣
dz

(a)
= or

(

f(r)
√

b(r)rn

)

where (a) follows from the fast taper condition. Observe that at r = rn, I2 = o(I1), and

that as n→ ∞, rn → R1, implying

an ∼ |I1|rn ∼ f(rn)

rnn
√

2πb(rn)
.

Hayman’s analysis essentially identifies a circle along which Cauchy’s integral

is captured by the contribution of an arc around the real line, small enough that the

value of the integrand along the arc is well approximated by at most the quadratic terms

of (6.7).

Hayman’s analysis can also be viewed as a special case of the class of saddle point

approximations. A saddle point of an analytic function is any point where the function

does not vanish, but its derivative vanishes. The surface representing the modulus of any

analytic function has no maxima and no minima but for isolated zeros of the function.

Therefore, it can be shown e.g. [68], that any (simple) saddle point is the intersection of

two level curves at right angles to each other. One of the lines bisecting the level curves

is the direction of steepest descent from the saddle point, while the other line bisecting

the level curve is the direction of steepest ascent. This leads to a saddle shape for the

surface, hence the name.

The saddle point approximation uses a contour, in this case a circle centered at

the origin, through a saddle point of the integrand in order to exploit the fact [68, 67]

that a short arc that captures the contribution of the integral around the contour is

likely to be around the saddle point of the integrand.

In the context of Hayman’s analysis, for any admissible function f , the saddle

point method’s choice for the contour lets I2 be a negligible fraction of I1 near the point

where the derivative of f(z)/zn+1 vanishes, equivalently the solution of

(ln f(z) − (n+ 1) ln z)′ =
1

z
(a(z) − (n+ 1)) = 0,
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the saddle point on the surface |f(z)/zn+1|. Note that for Hayman admissible functions,

the saddle point is real and positive, and the saddle point is a maxima perpendicular to

the real line, and a minima along the positive real line. For more details on the saddle

point approximation and related results, see [66, 68, 67].

For the generating function G defined in Equation (6.5), the functions a(z) and

b(z) of Equation (6.6) are

a(z) =
∞∑

k=1

kk+1zk

k!
and b(z) =

∞∑

k=1

kk+2zk

k!
. (6.8)

We pick R1 = 1
e . The first two conditions are clearly satisfied for G(z). For φ(x) =

(1 − ex)
6
5 , we show in Theorem 34, that the local approximation for G holds, and in

Theorem 35 that |G(z)| does drop rapidly for |θ| ≥ φ(x).

6.3 Preliminaries

We outline some results that will be extensively used in this chapter.

Observe that we can expand G(xeiθ) in θ as

G(xeiθ) = G(x) exp

( ∞∑

l=1

(iθ)l

l!

dl logG(z)

d(log z)l

∣
∣
∣
∣
∣
z=x

)

= G(x) exp

( ∞∑

l=1

(iθ)l

l!

∞∑

k=1

kk+lxk

k!

∣
∣
∣
∣
∣
z=x

)

.

We first check for convergence of each of the summations over k. Indeed,

Lemma 30. For any l,
∑∞

k=1
kk+lxk

k! converges for x < 1
e .

Proof By the Cauchy ratio test, e.g. [69]. 2

Therefore, in order to evaluate the n′th coefficient in the Taylor series, Hayman’s

theorem approximates the value of G(z) in the complex integration over the circle |z| = x

by a correction over the value G(x) for points on the circle near the positive real line,

and by a term much smaller than G(x) for points on the circle away from the positive

real line.

Intuitively speaking it follows that at the basic split φ, the contribution of

higher order terms is negligible and that the contribution of the second coefficient is

large enough to satisfy fast taper. We choose a φ based on these criteria, and then prove

that our choice indeed works.
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Further, we shall denote by C positive constants that are, in particular, inde-

pendent of x, θ and l.

6.4 Locating the basic split

We locate the basic split φ for

G(xeiθ) = G(x) exp

( ∞∑

l=1

(iθ)l

l!

∞∑

k=1

kk+lxk

k!

)

.

To do so, we estimate the magnitude of the coefficients of θ, and ensure that at our

choice of the φ, the second term is unbounded, and the contribution of any term beyond

the second is negligible. In Theorems 34 and 35, we show that this choice works.

We upper bound the magnitude of the coefficients of θ as follows.

Lemma 31. For integers l ≥ 2 and x < 1
e ,

∞∑

k=1

kk+lxk

k!
≤

√

(2l)!

2l(1 − ex)l+
1
2

.

Proof From Feller’s bounds (2.3),

∞∑

k=1

kk+lxk

k!
≤ 1√

2π

∞∑

k=1

klxkek√
k

.

Squaring the right side,

( ∞∑

k=1

klxkek√
k

)2

=

∞∑

k=2

xkek
k−1∑

m=1

((k −m) ·m)l−
1
2

≤
∞∑

k=2

xkek(k − 1)

(
k

2
· k
2

)l− 1
2

≤ 1

22l−1

∞∑

k=0

k2lxkek

≤ (2l)!

22l−1

∞∑

k=0

(
k + 2l

2l

)

xkek

=
(2l)!

22l−1 · (1 − ex)2l+1
.

Taking the positive square root proves the lemma. 2
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We lower bound the magnitude of the coefficient of θ2 as follows.

Lemma 32. For 5
6e < x < 1

e ,

∞∑

k=1

kk+2xk

k!
≥ C

(1 − ex)
5
2

.

Proof From Feller’s bounds (2.3),

∞∑

k=1

kk+2xk

k!
≥ C1

∞∑

k=1

k2xkek√
k

.

Squaring the right side,

( ∞∑

k=1

k2xkek√
k

)2

=
∞∑

k=2

xkek
k−1∑

m=1

((k −m) ·m)
3
2

≥
∞∑

k=2

xkek
d 3k

4
e

∑

m=b k
4
c

((k −m) ·m)
3
2

≥
∞∑

k=2

xkek · k
2

(
3k

4
· k
4

) 3
2

= C2

∞∑

k=2

k4xkek

≥ C2 · 4! ·
∞∑

k=2

(
k

4

)

xkek

= C2 · 4! · (xe)4 ·
∞∑

k=4

(
k

4

)

xk−4ek−4

≥ C3

(1 − ex)5
.

In the last step we observed that 5
6 < xe < 1, and thus included it in the constant.

Taking the positive square root proves the lemma. 2

The following Lemma locates the basic split.

Lemma 33. ∃φ(x) so that

lim
x→ 1

e

φ(x)2
∞∑

k=1

kk+2xk

k!
→ ∞
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and simultaneously for l ≥ 3,

lim
x→ 1

e

φ(x)l
∞∑

k=1

kk+lxk

k!
= 0.

Proof Take φ(x) = (1 − ex)α with 7
6 < α < 5

4 . From Lemma 32,

lim
x→ 1

e

φ(x)2
∞∑

k=1

kk+2xk

k!
≥ lim

x→ 1
e

C · φ(x)2

(1 − ex)
5
2

→ ∞

because α < 5
4 , and from Lemma 31,

lim
x→ 1

e

φ(x)l
∞∑

k=1

kk+lxk

k!
≤ lim

x→ 1
e

φ(x)l
√

(2l)!

2l(1 − ex)l+
1
2

= 0

because α > maxl≥3(1 + 1
2l ) = 7

6 . Therefore all φ(x) = (1 − ex)α with 7
6 < α < 5

4 satisfy

the lemma. In particular we will be using φ(x) = (1 − ex)
6
5 . 2

6.5 Local approximation

We show that all points on the circle |z| = x with argument |θ| ≤ φ(x) =

(1 − ex)
6
5 can be approximated by a small correction over the value on the positive real

line.

Theorem 34. Let φ(x) = (1 − ex)
6
5 . Uniformly in θ, for 0 ≤ |θ| ≤ φ(x),

G(xeiθ) ∼ G(x) exp

(

iθa(x) − θ2

2
b(x)

)

,

i.e., for 0 ≤ |θ| ≤ φ(x), ∀ ε > 0, ∃ δ(ε) such that if 0 < |x− 1
e | < δ,

∣
∣
∣
∣
∣
∣

G(xeiθ)

G(x) exp
(

iθa(x) − θ2

2 b(x)
) − 1

∣
∣
∣
∣
∣
∣

< ε.

Proof Observe that

G(xeiθ) = exp

( ∞∑

k=1

kkxkeikθ

k!

)

= exp

( ∞∑

k=1

kkxk

k!

∞∑

l=0

(ikθ)l

l!

)

= exp

( ∞∑

l=0

(iθ)l

l!

∞∑

k=1

kk+lxk

k!

)

.
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The rearrangement can be done for all x < 1
e , as the original series is absolutely conver-

gent for x < 1
e . Split the term in the exponent as,

∞∑

l=0

(iθ)l

l!

∞∑

k=1

kk+lxk

k!
=

∞∑

k=1

kkxk

k!
+ iθ

∞∑

k=1

kk+1xk

k!
− θ2

2

∞∑

k=1

kk+2xk

k!
+

∞∑

l=3

(iθ)l

l!

∞∑

k=1

kk+lxk

k!

= log(G(x)) + iθa(x) − θ2

2
b(x) +

∞∑

l=3

(iθ)l

l!

∞∑

k=1

kk+lxk

k!
.

Observing that if |t| < ε ≤ 1, |et − 1| ≤
∣
∣e|t| − 1

∣
∣ < (e − 1)|t| < (e − 1)ε, an equivalent

statement for the local approximation would be that for |θ| < φ(x), given ε > 0, ∃ δ(ε)
such that for |x− 1

e | < δ,
∣
∣
∣
∣
∣

∞∑

l=3

(iθ)l

l!

∞∑

k=1

kk+lxk

k!

∣
∣
∣
∣
∣
< ε.

To reduce the above expression note that each term, (iθ)l

l!

∑∞
k=1

kk+lxk

k! , approaches 0 as

x→ 1
e , and that the summation converges by Cauchy’s root test e.g. [70]. Therefore,

∣
∣
∣
∣
∣

∞∑

l=3

(iθ)l

l!

∞∑

k=1

kk+lxk

k!

∣
∣
∣
∣
∣

(a)

≤
∞∑

l=3

|θ|l
l!

∞∑

k=1

kk+lxk

k!

(b)

≤
∞∑

l=3

φ(x)l

l!

√

(2l)!

2l(1 − ex)l+
1
2

=
∞∑

l=3

(1 − ex)
l
5
− 1

2

√

(2l)!

2ll!

=

( ∞∑

m=0

(1 − ex)
m
5

√

(2m+ 6)!

2m+3(m+ 3)!

)

(1 − ex)
1
10 . (6.9)

(a) is the mod-sum inequality and (b) from Lemma 31. Observe that the coefficient of

(1 − ex)
1
10 converges when ex < 1. To see this, observe that each term is finite when

x → 1
e , and use Cauchy’s root test for the convergence of the series. Since expression

(6.9) can be made smaller than ε by taking x close enough to 1
e , the theorem follows. 2

6.6 Fast taper

We prove that our choice, φ(x) = (1 − ex)
6
5 from Lemma 33 is indeed a basic

split.
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Theorem 35. Let φ(x) = (1 − ex)
6
5 . Uniformly in θ as x→ 1

e

∣
∣
∣G(xeiθ)

∣
∣
∣ ∼ o(G(x))

√

b(x)
∀ θ : 0 < φ(x) ≤ |θ| < π

i.e., for φ(x) ≤ |θ| < π, ∀ ε > 0, ∃ δ(ε) such that if |x− 1
e | < δ,

∣
∣
∣
∣
∣

G2
(
xeiθ

)
b(x)

G2(x)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

∑∞
k=1

kk+2

k! x
k

exp
(

4
∑∞

k=1
kk

k! x
k sin2

(
kθ
2

))

∣
∣
∣
∣
∣
∣

< ε

Proof We first upper bound b(x) using Lemma 31.

We bound the denominator separately in the regions (1 − ex)
6
5 ≤ |θ| ≤ (1 − ex)

1
8 and

(1− ex)
1
8 ≤ |θ| ≤ π. The bound for the second region will apply uniformly in any range

lower bounded by (1 − ex)α with α < 1
4 , in particular, we choose 1

8 .

We first consider the second region. Let φ′(x) = (1 − ex)
1
8 . In the sum

∞∑

k=1

kk

k!
xk sin2

(
kθ

2

)

,

reject all terms for which
∣
∣kθ

2

∣
∣ is less than 1

4φ
′(x) or between π ± 1

4φ
′(x). The sequence

∣
∣1
2θ
∣
∣, |θ| . . .

∣
∣k
2θ
∣
∣ . . . will never have 2 consecutive terms < 1

4φ
′(x) or between π ± 1

4φ
′(x)

because φ′(x) ≤ |θ| ≤ π. Consequently, for any M consecutive terms, after this rejection

process, we will have at least bM2 c terms remaining. Lower bounding all remaining

sin2
(
kθ
2

)
by sin2

(
φ′(x)

4

)

allows us to factor the sin2(φ
′(x)
4 ) term out of the summation.

Call the sum of the remaining terms residual summation. The terms kk

k! x
k decrease

monotonically with k for x ≤ 1
e . So the lower bound for any residual summation is,

using Lemma 36,

sin2

(
φ′

4

) ∞∑

k=2
k even

kk

k!
xk ≥ C

sin2
(
φ′(x)

4

)

√
1 − ex

Define v = 1
4√1−ex . Combining all that has been proved so far

∣
∣
∣
∣
∣
∣

∑∞
k=1

kk+2

k! x
k

exp
(

4
∑∞

k=1
kk

k! x
k sin2

(
kθ
2

))

∣
∣
∣
∣
∣
∣

≤ Cv10

ecv

which can be made smaller than any ε > 0, for all |θ| ≥ (1− ex)
1
8 by choosing |x− 1

e | <
δ1(ε). Note that the sin2(φ′(x))

4√1−ex → ∞ for β < 1
8 , and equals 1 for β = 1

8 .



73

To tackle the remaining region, i.e., (1 − ex)
6
5 ≤ |θ| ≤ (1 − ex)

1
8 , we use the

following inequality for kθ
2 ≤ π

2 ,

∣
∣
∣
∣
sin

(
kθ

2

)∣
∣
∣
∣
≥ 2

π

kθ

2
.

In this region, we will have π
θ terms for which the inequality holds with both sides being

positive.

We write θ = (1 − ex)α. Therefore 1
8 ≤ α ≤ 6

5 . Squaring and substituting the

above inequality into the left side of the Theorem,
∣
∣
∣
∣
∣
∣

∑∞
k=1

kk+2

k! x
k

exp
(

4
∑∞

k=1
kk

k! x
k sin2

(
kθ
2

))

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∑∞
k=1

kk+2

k! x
k

exp
(

16
π2

∑π
θ
k=1

kk

k! x
k k2θ2

4

)

∣
∣
∣
∣
∣
∣

.

We lower bound (1 − ex)2α
∑ π

(1−ex)α

k=1
kk+2xk

k! using Lemma 37,

(1 − ex)2α

π
(1−ex)α
∑

k=1

kk+2xk

k!
≥







C

(1−ex)
α
2

1
8 ≤ α ≤ 1

C

(1−ex)
5
2−2α

1 ≤ α ≤ 6
5 .

Define v = 1
16√1−ex . We conclude

∣
∣
∣
∣
∣
∣

∑∞
k=1

kk+2

k! x
k

exp
(

4
∑∞

k=1
kk

k! x
k sin2

(
kθ
2

))

∣
∣
∣
∣
∣
∣

≤ Cv40

ecv

which, for φ(x) ≤ |θ| ≤ 8
√

1 − ex, can be made smaller than ε > 0, by taking |x − 1
e | ≤

δ2(ε). Picking δ = min(δ1, δ2) = δ2 concludes the proof for all (1− ex)
6
5 ≤ φ(x) ≤ π. 2

We prove Lemma 36 and Lemma 37 used in Theorem 35.

Lemma 36. For 5
6e < x < 1

e ,

∞∑

k=2
k even

kk

k!
xk ≥ C√

1 − ex
.

Proof From Feller’s bounds (2.3),

∞∑

k=2
k even

kk

k!
xk ≥ e−

1
12√
2π

∞∑

k=2
k even

1√
k
(ex)k.
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To lower bound the sum on the right observe that,






∞∑

k=2
k even

(ex)k√
k






2

=
∞∑

k=4
k even

(ex)k
k−2∑

l=2
l even

1
√

l(k − l)

≥
∞∑

k=4
k even

(ex)k
k

4
· 2

k

=
(ex)4

2(1 − ex)(1 + ex)

≥ C

1 − ex
.

By observing that 5
6 < ex < 1 we incorporate ex and 1 + ex into a constant. Taking the

positive square root proves the lemma. 2

Lemma 37. For x > 5
6e ,

(1 − ex)2α

2
(1−ex)α
∑

k=1

kk+2xk

k!
≥







C

(1−ex)
α
2

α ≤ 1

C

(1−ex)
5
2−2α

α ≥ 1.

Proof For any m, from Feller Bounds (2.3),

m∑

k=1

kk+2xk

k!
≥ C1

m∑

k=1

k2xkek√
k

.

We first show that if k < 3ex
2(1−ex) , the k′th term is less than the k + 1′th term in the

above summation.

To see that observe that the ratio of the k + 1′th to the kth term is

(

1 +
1

k

)3/2

xe

and that

(

1 +
1

k

)3/2

xe ≥
(

1 +
3

2k

)

xe ≥ 1.

where the second inequality holds if k < 3ex
2(1−ex) . Since ex > 5

6 , the terms before

k = 5
4(1−ex) in the summation are nondecreasing.
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For α ≤ 1, observe that

1

(1 − ex)α
≤ 1

(1 − ex)
,

so that

2
(1−ex)α
∑

k=1

k3/2xkek ≥
5

4(1−ex)α
∑

1
(1−ex)α

k3/2xkek

(a)

≥ 1

(1 − ex)
3
2
α
· (xe)

1
(1−ex)α · 1

4(1 − ex)α

(b)

≥ 1

4(1 − ex)
5
2
α
· 1

4
,

where (a) follows by replacing all terms of the summation with the first term in the

summation and (b) because for all 1
2 ≤ y < 1,

y
1

(1−y)α ≥ y
1

1−y ≥
(

1

2

)2

.

We complete the proof for α > 1 by using the lemma for α = 1, which we just

proved. For α > 1, observe that

1

(1 − ex)α
>

1

(1 − ex)
.

Using the inequality,

(1 − ex)2

1
(1−ex)
∑

k=1

kk+2xk

k!
≥ C

(1 − ex)
1
2

,

observe that

(1 − ex)2α

2
(1−ex)α
∑

k=1

kk+2xk

k!
≥ (1 − ex)2α

2
(1−ex)
∑

k=1

kk+2xk

k!

≥ C

(1 − ex)
5
2
−2α

. 2

6.7 Evaluation of coefficients

Using Hayman’s analysis, we evaluate the lower bound on R̂(InΨ), namely n!
nn

times the n′th coefficient of the expansion of G(z).
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Theorem 38.

R̂−(InΨ) =

(
3

2
log e

)

n
1
3 − 1

3
logn− 2

3
log e− 1

2
log 3 + o(1).

Proof From (6.3), (6.4) and (6.5), we have that

∞∑

n=0

2R̂
−(InΨ)n

n

n!
zn = G(z) = exp

( ∞∑

k=1

kkzk

k!

)

.

From the observations following (6.8) and Theorems 34 and 35, we conclude that G(z)

satisfies the conditions of Theorem 29.

To use (6.6), we need to evaluate the function a(z) shown in (6.8) to be

∞∑

k=1

kk+1zk

k!
.

We do so using the related “tree function” [67]

T (z) =
∞∑

k=1

kk−1zk

k!
,

which satisfies [67] the equation

T (z) = zeT (z). (6.10)

Therefore,
∞∑

k=1

kkzk

k!
=

T (z)

1 − T (z)
. (6.11)

By differentiating Equations (6.10) and (6.11) and using the absolute convergence of the

series, we obtain

a(z) =
T (z)

(1 − T (z))3
, and b(z) =

2T (z)2 + T (z)

(1 − T (z))5
.

At z = 1
e , we have the following singular expansion [67],

1

1 − T (z)
=

1
√

2(1 − ez)
+

1

3
−

√
2

24

√
1 − ez + O(1 − ez).

Consequently, it can be verified that

a(z) =
1

(2(1 − ez))
3
2

+ O
(

1√
1 − ez

)

,
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and the solution to a(rn) = n is

rn =
1

e

(

1 − 1

2n
2
3

)

+ O
(

1

n
4
3

)

.

The n′th coefficient of the G(z) therefore equals

G(rn)

rnn
√

2πb(rn)
(1 + o(1)). (6.12)

We evaluate the terms to be

G(rn) = exp(n
1
3 − 2

3
+ O(n−

1
3 )),

rnn = exp(−n− 1

2
n

1
3 + O(n−

1
3 ))(1 + O(n−

2
3 )), and

b(rn) = 3n
5
3 + O(n),

and use them to evaluate R̂−(InΨ),

R̂−(InΨ) =

(
3

2
log e

)

n
1
3 − 1

3
logn− 2

3
log e− 1

2
log 3 + o(1). 2

We note that this is the highest accuracy of the asymptotic expansion allowed

by the Hayman’s theorem, limited by the form of the Equation (6.12).

Corollary 39.

R̂(InΨ) ≥
(

3

2
log e

)

n
1
3 − 1

3
log n− 2

3
log e− 1

2
log 3 + o(1). 2
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Chapter 7

Shapes, patterns and strings:

summary of properties

Throughout the chapters so far, we related sequences, shapes, patterns, types

and profiles to partitions of sets and integers. In this section we summarize these rela-

tions, and use this unified framework to explain several known combinatorial identities

relating the Bell numbers, the Fubini numbers, the Stirling numbers of the second kind,

and two additional quantities, the number of length-n, k-ary sequences where exactly m

of the k symbols appear, and the number of length-n shapes with m symbols.

Table 7.1 describes the various quantities defined in the report and some of the

upper bounds obtained. It consists of three columns, corresponding to sequences, shapes,

and patterns, which we collectively call strings. It also comprises four main horizontal

sections describing the strings, their classification into types, the classification of types

into profiles, and the resulting bounds on the redundancy.

We now describe the various table entries in row order. In both the table and

the description below, all strings are of length n. In addition, sequences are over the

initial segment [k] = {1, . . . ,k}.
Every sequence can be written as x1 . . . xn where xi ∈ [k]. A shape is a string

s1 . . . sn where {s1, . . . ,sn} is an initial segment, namely, {s1, . . . ,sn} = [max {s1, . . . ,sn}].
A pattern is a string ψ1 . . . ψn where {ψ1, . . . ,ψi} is an initial segment for every 1 ≤ i ≤ n.

Consider for example the sequence 51535 over, say, [6]. Its shape is 31323 and its pattern
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is 12131. Note that {3, 1, 3, 2, 3} = [3], and that {1} = [1], {1, 2} = [2], {1, 2, 1} = [2],

etc.

The total number of sequences is kn. Since every shape corresponds to an

ordered partition of [n], the number of shapes is the nth Fubini number F (n). Since

every pattern corresponds to an unordered partition of [n], the number of patterns is the

nth Bell number B(n).

We denote the number of sequences with exactly m symbols by N(n,m, k).

For example, N(n, 1, k) = |{1 . . . 1, . . . ,k . . . k}| = k, N(n, 2, k) =
(
k
2

)
· (2n − 2), and

N(n, n, k) = kn, where kn = k · (k − 1) · (k − n + 1) is the nth falling power of k.

Note that when m > min {n, k}, N(n,m, k) = 0. We denote the number of shapes with

exactly m symbols by F (n,m). For example, F (n, 1) = |{1 . . . 1}| = 1, F (n, 2) = 2n − 2,

and F (n, n) = n!. The number of patterns with exactly m symbols is the second-type

Stirling number B(n,m), the number of unordered partitions of [n] into m parts. For

example, B(n, 1) = |{1 . . . 1}| = 1 and similarly B(n, 2) = 2n−1 − 1, and B(n, n) = 1.

The multiplicity µ of a symbol is the number of times it appears in a string. We

classify strings by their type—the multiplicity of all symbols in the string. The type of a

sequence is therefore a k-tuple (µ1, . . . ,µk) where the multiplicities µi are non-negative

integers summing to n. The type of a shape and a pattern is an m-tuple (µ1, . . . ,µm)

where m is the number symbols appearing and the multiplicities µi are positive integers

summing to n. For example, the type of 51535 is (1, 0, 1, 0, 3) as 1 and 3 appear once

and 5 appears thrice. Similarly, the type of the shape 31323 is (1, 1, 3) and that of the

pattern 12131 is (3, 1, 1).

The type of a sequence corresponds to an ordered partition of n into k non-

negative parts, hence sequences fall into
(
n+k−1
k−1

)
types. The type of a shape or a pattern

corresponds to an ordered partition of n hence shapes and patterns fall into 2n−1 types.

The type of a sequence with m symbols can be described by specifying these

symbols and an ordered partition of n into m parts. Hence there are
(
k
m

)(
n−1
m−1

)
such

types. The type of a shape or a pattern with m symbols is an ordered partition of n into

m parts, hence there are
(
n−1
m−1

)
such types.

A sequence has type (µ1, . . . ,µk) if for all 1 ≤ i ≤ k, symbol i appears µi times.

The number of such sequences is
(

n
µ1,...,µk

)
. Similarly, the number of shapes of type
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(µ1, . . . ,µm) is
(

n
µ1,...,µm

)
. Every m-symbol profile corresponds to m! shapes, hence the

number of profiles of type (µ1, . . . ,µm) is
(

n
µ1,...,µm

)
/m!.

Next we describe patterns. The prevalence ϕµ is the number of symbols with

multiplicity µ appearing in a string. We classify strings by their profile—the prevalence

of all possible multiplicities. The profile of any string is therefore an n-tuple (ϕn, . . . ,ϕ1)

where all the prevalences ϕµ are non-negative and
∑

µ µϕµ = n. For example, the profile

of the sequence 51535 is (0, 0, 1, 0, 2) as two symbols (1 and 3) appear once and one

symbol (5) appears thrice. It is easy to see that (0, 0, 1, 0, 2) is also the profile of the

sequence’s shape, 31323, and of its pattern 12131.

The profile of a string can be identified with an unordered partition of n, hence

the number of profiles of strings is p(n), the number of unordered partitions of n.

Similarly, the profile of a string with m symbols is an unordered partition of

n into m parts, hence the number of such profiles is pm(n), the number of unordered

partitions of n into m parts.

As shown in, e.g. [2], the number of patterns with profile (ϕn, . . . ,ϕ1) is

n!
∏n
µ=1(µ!)ϕµϕµ!

.

The number of symbols in the string is
∑

µ ϕµ
def
= m. Since every pattern corresponds

to m! shapes and to km sequences, there are

m! · n!
∏n
µ=1(µ!)ϕµϕµ!

shapes, and

km · n!
∏n
µ=1(µ!)ϕµϕµ!

sequences with profile (ϕn, . . . ,ϕ1).

This framework of viewing the Bell, Fubini, and Stirling numbers as the num-

ber of sequences, shapes, and patterns, can be used to describe several combinatorial

identities relating them [62, 71]. Every sequence can be specified by its shape and the

set of symbols appearing in it. The shape, in turn, can be specified by its pattern and a

permutation reflecting the order in which the symbols appear. Hence

N(n,m, k) =

(
k

m

)

F (n,m) = kmB(n,m). (7.1)
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For all n,m ≥ 1 the number of shapes with a given number of symbols satisfies

the recursion

F (n,m) = mF (n− 1,m) +mF (n− 1,m− 1).

Equation (7.1) therefore implies for all n,m ≥ 1, the analogous recursions for patterns

B(n,m) = mB(n− 1,m) +B(n− 1,m− 1)

and sequences

N(n,m, k) = mN(n− 1,m, k) + (k −m+ 1)N(n− 1,m− 1, k).

While there are no closed-form expressions for the Fubini or Bell numbers, or

for the number of strings with a given number of symbols, it is possible to express them as

sums. Consider the number of shapes with m symbols. A m-symbol shape is a sequence

over [m] containing all integers from 1 to m. For 1 ≤ j ≤ m, let Aj
def
= [m] − {j} be

the set of all integers from 1 to m, excluding j. Then Anj is the collection of length-n

sequences over [m] that do not include j. Therefore

S
n
m = [m]n − ∪mj=1A

n
j ,

hence

F (n,m) = mn −
∣
∣∪mj=1A

n
j

∣
∣ .

Let
([m]
l

)
be the collection of all l-sized subsets of [m]. For all Jl ∈

([m]
l

)

∣
∣
∣
∣
∣
∣

⋂

j∈Jl
Anj

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

⋂

j∈Jl
Aj

∣
∣
∣
∣
∣
∣

n

= (m− l)n

where the first equality holds because for all sets B1, . . . ,Bl

l⋂

i=1

Bn
i =

(
l⋂

i=1

Bi

)n

and the second equality holds as

∣
∣
∣
∣
∣
∣

⋂

j∈Jl
Aj

∣
∣
∣
∣
∣
∣

=
∣
∣
∣[m] − Jl

∣
∣
∣ = m− l.
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By the inclusion/exclusion principle

∣
∣∪mj=1A

n
j

∣
∣ =

m∑

l=1

(−1)l−1
∑

Jl∈([m]
l )

∣
∣
∣
∣
∣
∣

⋂

j∈Jl
Anj

∣
∣
∣
∣
∣
∣

=
m∑

l=1

(−1)l−1

(
m

l

)

(m− l)n.

Hence for all n,m ≥ 1

F (n,m) = mn −
m∑

l=1

(−1)l−1

(
m

l

)

(m− l)n

= (−1)m
m∑

l=0

(−1)l
(
m

l

)

ln.

For example, letting m = n, we obtain

(−1)n
n∑

i=0

(−1)l
(
n

l

)

ln = F (n, n) = n!

and letting m > n, we obtain

m∑

i=0

(−1)l
(
n

l

)

ln = 0.

Equation (7.1) then implies that for patterns

B(n,m) =
(−1)m

m!

m∑

l=0

(−1)l
(
m

l

)

ln (7.2)

and that for sequences over [k]

N(n,m, k) = (−1)m
(
k

m

) m∑

l=0

(−1)l
(
m

l

)

ln.

Expressing the nth Bell number as the sum of all B(n,m) and incorporating (7.2), we

obtain

B(n) =
∞∑

m=1

B(n,m) =
∞∑

m=1

(−1)m
m∑

l=1

(−1)l

l!(m− l)!
ln

=
∞∑

l=1

(−1)lln

l!

∞∑

m=l

(−1)m

(m− l)!

=
1

e

∞∑

l=1

ln

l!
.
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Using other techniques, a corresponding formula for shapes can be obtained:

F (n) =
∞∑

l=1

ln

2l+1
.
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We thank N. Alon, N. Jevtić, N. Kashyap, G. Shamir, W. Szpankowski, K.

Viswanathan, and J. Zhang for helpful discussions and comments. This chapter is

adapted from A. Orlitsky and N.P. Santhanam. Speaking of infinity. IEEE Trans-

actions on Information Theory, 50(10):2215—2230, October 2004. The author was a

primary researcher of the paper.



84

Table 7.1: Summary of terms and upper bounds

Sequences
over [k]

Shapes Patterns

S
t
r

Description
x1 . . . xn:

xi ∈ [k]

s1 . . . sn:

{s1, .. , sn} =

[max {s1, .. , sn}]

ψ1 . . . ψn:

For all j ≤ n

{ψ1, .. , ψj} =

[max {ψ1, .. , ψj}]
Example 51535 31323 12131

#, All
#, m−symbols

kn F (n) B(n)
N(n,m, k) F (n,m) B(n,m)

T
y
p
e
s

Description
(µ1, . . . ,µk) :

µi ≥ 0,
∑

i µi = n
(µ1, . . . ,µm) :

1 ≤ m ≤ n, µi ≥ 1,
∑

i µi = n

Example (1,0,1,0,3) (1,1,3) (3,1,1)

All
m−symbols

(
n+k−1
k−1

)
2n−1

(
k
m

)(
n−1
m−1

) (
n−1
m−1

)

# strings/type
(

n
µ1,...,µk

) (
n

µ1,...,µm

)
1
m!

(
n

µ1,...,µm

)

ϕ

Description (ϕn, . . . ,ϕ1), ϕµ ≥ 0,
∑

µ µϕµ = n

Example (0,0,1,0,2)
All
m−symbols

p(n)
pm(n)

#strings/profile
k

P

µ ϕµ ·
n!

Qn
µ=1(µ!)ϕµϕµ!

(
∑

µ ϕµ

)

! ·
n!

Qn
µ=1(µ!)ϕµϕµ!

n!
Qn
µ=1(µ!)ϕµϕµ!

R
d
n

Equiprobable strings Type Type Profile

All
Upper bound

m-symbols

log
(
n+k−1
k−1

)
n− 1 log p(n)

log
((

k
m

)(
n−1
m−1

))

log
(
n−1
m−1

)
log pm(n)

maximizing m d nk
n+k+1e dn2 e and bn2 c

√

6

π

√
n log n ·

(1 + o(1))



Chapter 8

Good Turing estimators

The focus of this chapter will be large alphabet distribution estimation.

In the large alphabet setting studied here, estimators assign probabilities to the

events that the next element is one of the elements that has appeared before, and assign

a probability that the next element is hitherto unseen. This represents a simplification

from estimating the distribution over the whole support at each step, and we will see

that this approach is analogous to doing sequential pattern compression.

We define the Good-Turing estimators and show that some common variants

perform well for large alphabet distribution estimation problems. However, they are not

diminishing attenuation estimators.

We derive two diminishing-attenuation estimators. The first is computationally

more efficient and requires only a constant number of operations per symbol. Its sequence

attenuation is at most 2O(n2/3), hence its symbol attenuation converges to 1 as 2O(n−1/3).

The second estimator requires a super-polynomial number of calculations, however its

sequence attenuation is lower, at most 2O(n1/2), hence its symbol attenuation converges

to 1 at the faster rate of 2O(n−1/2).

All constants involved in the asymptotic terms are small. The proofs of the

attenuations of the two estimators are rather different. The proof for the low complexity

estimator uses potential functions, while the proof for the higher complexity estimator

uses results on set partitions and celebrated results of Hardy and Ramanujan [50] on the

number of partitions of an integer.

To better understand the behavior of the estimator, we study the probability it
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assigns to some simple sequences, and show that while it often behaves as our intuition

would indicate, sometimes its estimates are surprising. For example, as we would intu-

itively guess, after observing a long sequence of identical symbols, the estimator predicts

that the next symbol will be the same too, and after seeing a long sequence whose sym-

bols are all different, it predicts that the next symbol will be new too. However if every

symbol in the sequence appears twice, then our intuition would say that since roughly

every other symbol is new, the probability of the next symbol being new is half. Yet the

probability that the estimator assigns to a new symbol is lower.

Estimators for the Good-Turing problem

An estimator associates with every sequence of observations a probability dis-

tribution over the set of elements in the sample, and “new”. For example, after observing

the sample

giraffe, hippopotamus, giraffe, elephant, elephant, giraffe,

an estimator postulates a distribution over the set {giraffe, hippopotamus, elephant,

“new”}, reflecting the probability that a randomly chosen element is any one of these

animals, or new.

Note that the estimator is not required to distinguish between unseen elements.

As mentioned in the introduction, this simplification is equivalent to universally com-

pressing patterns of strings instead of the strings themselves.

We assume no a priori knowledge on the elements in the sample, a giraffe is

no different to us from an elephant, hence we replace the name of each animal by the

order in which it appears. For example, in the sequence above, we denote giraffes by

1, hippopotami by 2, and elephants by 3. The sequence of animals then turns into the

integer sequence 1, 2, 1, 3, 3, 1, which we often abbreviate as 121331. Recall that this is

just the pattern of the original sequence.

This representation abstracts the names of the elements, always referring to the

numbers 1, 2, . . . ,k, thereby allowing us to enumerate, and hence assign probabilities, to

sequences of arbitrary elements. Note that a “new” element is represented by a number

one more than the number of elements hitherto seen.
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The estimator is sequential, namely for every pattern ψn1 , n ∈ N, it corresponds

to a probability distribution q(x|ψn1 ) over [m(ψn1 )+1] = {1, . . . ,m(ψn1 ) + 1}, representing

the probability that the estimator assigns to the possible values of ψn+1, after seeing ψn1 .

For example, q(x)
def
= q(x|Λ) is a distribution over {1}, namely, q(1|Λ) = 1, while q(x|121)

is a distribution over {1, 2, 3}.
For a simple example, consider the add-one estimator alluded to in Chapter 1,

and henceforth denoted q+1. After observing the pattern ψn1 it assigns to any x ∈
[m(ψn1 )+1] a probability proportional to one more than the number of times it appeared

in ψn1 . For example, after observing the pattern 1, it estimates q+1(1|1) = (1+1)/3 = 2/3

and q+1(2|1) = (0 + 1)/3 = 1/3.

For each n ∈ Z
+, an estimator q induces a probability distribution over Ψn

given by

q(ψn1 )
def
=

n∏

i=1

q(ψi|ψi−1
1 ).

For example, the probability that the add-one estimator ascribes to the pattern 1213 is

q+1(1213) = q+1(1|Λ) · q+1(2|1) · q+1(1|12) · q+1(3|121) =
1

1
· 1

3
· 2

5
· 1

6
=

1

45
.

8.1 Unbounded- and constant-attenuation estimators

We show that the add-one estimator has unbounded attenuation and that the

Good-Turing and a modified version of the add-one estimator have constant attenuations,

though these constants are larger than 1.

8.1.1 The add-one estimator and a variation

It is easy to see that add-constant estimators have unbounded attenuation.

Consider for example the add-one estimator. To the pattern 123 . . . n it assigns proba-

bility
1

1
· 1

3
· . . . · 1

2n+ 1
=

2n · n!

(2n+ 1)!
.

Since, as we saw in the introduction, p̂(12 . . . n) = 1, we obtain that q+1 has symbol

attenuation of roughly 2n/e, hence its attenuation is unbounded.
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By applying the add-one estimator in two steps, we obtain an estimator q
+1′

with attenuation of between 2.65 and 2.85. The estimator q
+1′

uses the add-1 rule

to estimate the probability of the next symbol being new or repeated. For repeated

symbols, q
+1′

assigns a probability proportional to the number of occurrences of the

symbol. Formally, given ψn1 , let m be the number of distinct symbols appearing in ψn1

and for 1 ≤ ψ ≤ m let µψ be the number of times the symbol ψ appeared in ψn1 . Then

q
+1′

assigns to each 1 ≤ ψ ≤ m+ 1 the probability

q
+1′

(ψ|ψn1 )
def
=







m+1
n+2 ψ = m+ 1

n−m+1
n+2 · µψn 1 ≤ ψ ≤ m.

The following can be proved.

Theorem 40.

2.65 ≤ Â∗(q
+1′

) ≤ 2.85. 2

It can be shown however that for sequences with m = o(n), the estimator q
+1′

has subexponential sequence attenuation, hence diminishing symbol attenuation.

8.1.2 The Good-Turing estimator

We show that the attenuation of the Good-Turing estimator is a constant be-

tween 1.39 and 2. First we need a few definitions.

The multiplicity of ψ ∈ Z
+ in ψn1 is

µψ
def
= µψ(ψn1 )

def
= |{1 ≤ i ≤ n : ψi = ψ}|,

the number of times ψ appears in ψn1 . The prevalence of the multiplicity µ ∈ N in ψ is

ϕµ
def
= ϕµ(ψ)

def
= |{ψ : µψ = µ}|,

the number of symbols appearing µ times in ψn1 . Given ψn+1
1 , let

r
def
= µψn+1(ψ

n
1 ).

The Good Turing estimator [40] is then

q(ψn+1|ψn1 ) =







ϕ′
1
n , r = 0

r+1
n

ϕ′
r+1

ϕ′
r
, r ≥ 1.
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where ϕ′
µ is a smoothed value of ϕµ. Smoothing is needed for a variety of reasons. One of

them is that if ϕµ(ψ
n
1 ) = 0 for some µ > 0, then, without smoothing the estimator would

assign q(ψn+1|ψn1 ) = 0 for the symbols appearing µ − 1 times in ψn1 . Many smoothing

methods have been proposed, some seem too difficult to analyze. All those we analyzed

yield attenuation > 1 and all will result with a constant > 1. Here we consider only one

of the simplest smoothing techniques

ϕ′
µ = max(ϕµ, 1)

which ensures nonzero probabilities for all symbols in [1,m(ψn1 ) + 1]. This smoothing

method results in the estimator

qGT1(ψn+1|ψn1 )
def
=







max(ϕ1,1)
S

GT1
(ψn1 ) , r = 0

r+1
S

GT1
(ψn1 )

max(ϕr+1,1)
ϕr

, r ≥ 1,

where

SGT1(ψ
n
1 )

def
= max(ϕ1, 1) +

∑

µ:ϕµ>0

ϕµ · (µ+ 1)
max(ϕµ+1, 1)

ϕµ
=

n∑

µ=0

(µ+ 1) max(ϕµ+1, 1)

is a normalization factor. The attenuation of qGT1 can be bounded as follows.

Theorem 41.

1.39 ≤ Â∗(qGT1) ≤ 2.

Proof outline The lower bound is proved by considering the pattern

1, 2, (1, 3, 2, )n/3
def
= 1, 2, 1, 3, 2, 1, 3, 2, . . . ,1, 3, 2.

The estimator qGT1 assigns to this sequence probability of Θ(72−n/3) while its maximum

likelihood probability is Θ(3−n/3). This bound can be improved using more complex

patterns.

To prove the upper bound, let r(i)
def
= µψi+1(ψ

i
1), and ϕiµ

def
= ϕµ(ψ

i
1). It can be

shown by induction that

qGT1(ψ
n
1 ) =

∏n
µ=1(µ!)ϕµ

∏n−1
i=1 SGT1(ψ

i
1)

·
n−1∏

i=1

max(ϕir(i)+1, 1)

ϕir(i)
.

This implies,

Ân(qGT1) ≤
(

max
ψn1 ∈Ψn

∏n
µ=1 ϕ

n
µ!

∏n−1
i=1 max(ϕir(i)+1, 1)/ϕ

i
r(i)

)

·
(

max
ψn1 ∈Ψn

∏n−1
i=1 SGT1(ψ

i
1)

n!

)

def
= ÂnG ·ÂnS .

To prove the theorem, we bound each of ÂnG and ÂnS individually. 2
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8.2 Diminishing-attenuation estimators

We describe two diminishing-attenuation estimators. The first is computation-

ally efficient and uses just a constant number of operations per symbol, hence has linear

complexity for the whole sequence. The second has super polynomial, though subexpo-

nential, complexity, but its attenuation diminishes to 1 faster.

8.2.1 A low complexity estimator

For c ∈ Z
+, let

fc(ϕ)
def
= max(ϕ, c)

and let

gc(ϕ)
def
=

ϕ
∏

i=1

fc(i) =







cϕ, 0 ≤ ϕ ≤ c− 1

cc

c!ϕ!, ϕ ≥ c.

Define also the sequence

c[n] = dn 1
3 e.

The estimator assigns q
2/3

(1) = 1, and for all n > 1, and ψn1 ∈ Ψn, it assigns the

conditional probability

q
2/3

(ψn+1|ψn1 ) =
1

Sc[n](ψ
n
1 )

·







fc[n](ϕ1 + 1), r = 0

(r + 1)
fc[n](ϕr+1+1)

fc[n](ϕr)
, r > 0,

where

Sc[n](ψ
n
1 )

def
= fc[n](ϕ1 + 1) +

n∑

µ=1

ϕµ · (µ+ 1)
fc[n](ϕµ+1 + 1)

fc[n](ϕµ)

is a normalization factor, and, as before, µψ is the multiplicity of ψ, ϕµ is the prevalence

of µ, and r
def
= µψn+1(ψ

n
1 ).

Theorem 42. For all n,

Ân(q
2/3

) ≤ 2O(n
2
3 )

where the implied constant is at most 10.

Proof outline The theorem holds trivially for n = 1. For n ≥ 2, it can be shown that

for all ψn1 ∈ Ψn,

q
2/3

(ψn1 ) =

∏n
µ=1

(
(µ!)ϕ

n
µgc[n](ϕ

n
µ)
)

∏n−1
i=1 Sc[i](ψ

i
1)

·
n−1∏

i=1





i∏

µ=1

gc[i](ϕ
i
µ)

gc[i+1](ϕiµ)




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where we used the abbreviation ϕiµ
def
= ϕµ(ψ

i
1). Therefore,

Ân(q
2/3

) ≤ max
ψn1 ∈Ψn

n∏

µ=1

ϕnµ!

gc[n](ϕnµ)
· max
ψn1 ∈Ψn

∏n−1
i=1 Sc[i](ψ

i
1)

n!
· max
ψn1 ∈Ψn

n−1∏

i=1





i∏

µ=1

gc[i+1](ϕ
i
µ)

gc[i](ϕiµ)





def
= ÂnG · ÂnS · ÂnL. (8.1)

Observing that for all c ∈ Z
+ and ϕ ∈ N, gc(ϕ) ≥ ϕ!, we obtain

ÂnG ≤ 1.

Let c[n] = γ ∈ Z
+, then it can shown that for all ψn1 ∈ Ψn,

Sc[n](ψ
n
1 ) ≤ (1 +

1

γ
)n+

√

2n(2γ + 1)2

γ
,

implying

ÂnG ≤
(

1

n− 1

n−1∑

i=1

(

1 +
1

c[i]
+

√

2(2c[i] + 1)2

ic[i]

))n−1

· 1

n
.

It can also be shown that

ÂnL ≤
n−1∏

i=1

(
ci+1

ci

)
√

2ic[i+1]

.

Incorporating these inequalities into Equation (8.1), we obtain

Ân(q
2/3

) ≤
n−1∏

i=1

(
ci+1

ci

)
√

2ic[i+1]

·
(

1

n− 1

n−1∑

i=1

(

1 +
1

c[i]
+

√

2(2c[i] + 1)2

ic[i]

))n−1

· 1

n
.

The theorem follows from the definition of c[n] = dn1/3e. 2

8.2.2 A low attenuation estimator

Building on an equivalence between set partitions and patterns [2], we obtain

an estimator q
1/2

achieving a sequence attenuation of 2O(
√
n). The estimator assigns

q
1/2

(1) = 1, and for all n > 1 and ψn1 ∈ Ψn, it assigns the conditional probability

q
1/2

(ψn+1|ψn1 ) =

∑

y∈Ψ2 tn2 (ψn1 .ψn+1)
p̃(y)

∑

y∈Ψ2 tn2 (ψn1 )
p̃(y)

. (8.2)
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where tn
2

def
= 2dlogn+1e−1 is the largest power of 2 smaller than n+ 1, and

Ψ2 tn
2 (ψn1 )

def
= {y2 tn

2
1 ∈ Ψ2 tn

2 : yn1 = ψn1 }

is the set of patterns of length 2 tn2 with prefix ψn1 . It follows that for all n > 1 and all

ψn1

q
1/2

(ψn1 ) = q
1/2

(ψ
tn
2

1 )

∑

y∈Ψ2 tn2 (ψn1 )
p̃(y)

∑

y∈Ψ2 tn2 (ψ
tn
2

1 )
p̃(y)

.

While this estimator is computationally complex, it achieves a lower attenuation.

We now analyze the attenuation of this estimator.

We now bound the redundancy of q1/2.

Theorem 43. For all n,

Ân(q
1/2

) ≤ exp

(
4π√

3(2 −
√

2)

√
n

)

.

Proof Recall that

Ân(q
1/2

) = max
ψn1

p̂ψn1 (ψn1 )

q1/2(ψ
n
1 )
.

The theorem holds trivially for n = 1. For n > 1, rewrite

p̂ψn1 (ψn1 )

q1/2(ψ
n
1 )

=
p̂ψn1 (ψn1 )

p̃tn(ψn1 )
· p̃

tn(ψn1 )

q1/2(ψ
n
1 )
.

For all ψn1 ∈ Ψn, Lemma 44 shows that

p̂ψn1 (ψn1 )

p̃tn(ψn1 )
≤ exp

(

π

√

2

3

√
tn

)

,

and Lemma 45 that
p̃tn(ψn1 )

q1/2(ψ
n
1 )

≤ exp

(

π

√

2

3

√
tn√

2 − 1

)

,

and the theorem follows. 2

Lemma 44. For all n and ψn1 ,

p̂ψn1 (ψn1 )

p̃tn(ψn1 )
≤ exp

(

π

√

2

3

√
tn

)

.
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Proof Let p̂ψi1
(ψk1 ) denote any probability induced on ψk1 by a distribution p̂ψi1

maxi-

mizing p(ψi1). Observe that

p̂ψn1 (ψn1 )
(a)
=

∑

y∈Ψtn (ψn1 )

p̂ψn1 (y)

(b)

≤
∑

y∈Ψtn (ψn1 )

p̂y(y)

(c)

≤




∑

y∈Ψtn (ψn1 )

p̃(y)



 exp

(

π

√

2

3

√
tn

)

= p̃tn(ψn1 ) exp

(

π

√

2

3

√
tn

)

,

where (a) follows since for all k ≥ n and any i.i.d. induced distribution,

∑

y∈Ψk(ψn1 )

p(y) = p(ψn1 ),

(b) from the definition of maximum-likelihood pattern probabilities, and (c) because

Equation (5.6), together with Lemmas 23 and 27 imply that for all n,

p̃(ψn1 ) =
1

N(ϕ(ψn1 )) |Φn| ≥
p̂ψn1 (ψn1 )

exp
(

π
√

2
3

√
n
) .

Note that this inequality corresponds to the upper bound on R̂(InΨ) in Section 5.4.2. 2

Lemma 45. For all n ≥ 2 and all ψn1 ,

p̃tn(ψn1 )

q1/2(ψ
n
1 )

≤ exp

(

π

√

2

3

√
tn√

2 − 1

)

.

Proof We prove by induction on i ≥ 0 that for all 2i < n ≤ 2i+1 and all ψn1 ,

p̃2i+1
(ψn1 )

q1/2(ψ
n
1 )

≤ exp

(

π

√

2

3

√
2i+1

√
2 − 1

)

. (8.3)

The lemma will follow since for every n, tn is a power of two.

The basis holds since for i = 0, n = 2, and all ψ2
1 satisfy

q1/2(ψ
2
1) = p̃(ψ2

1) =
1

2
.
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To prove the step, note from (5.7) that for i ≥ 1, all 2i < n ≤ 2i+1 and ψn1

satisfy

q1/2(ψ
n
1 ) = q1/2(ψ

2i

1 )
p̃2i+1

(ψn1 )

p̃2i+1(ψ2i
1 )
,

hence
p̃2i+1

(ψn1 )

q1/2(ψ
n
1 )

=
p̃2i+1

(ψ2i
1 )

q1/2(ψ
2i
1 )

=
p̃2i+1

(ψ2i
1 )

p̃(ψ2i
1 )

· p̃(ψ2i
1 )

q1/2(ψ
2i
1 )
. (8.4)

By the induction hypothesis,

p̃(ψ2i
1 )

q1/2(ψ
2i
1 )

=
p̃2i(ψ2i

1 )

q1/2(ψ
2i
1 )

≤ exp

(

π

√

2

3

√
2i√

2 − 1

)

. (8.5)

By definition (5.6) and Lemma 23,

p̃(ψ2i

1 ) =
1

N(ϕ(ψ2i
1 ))

∣
∣Φ2i

∣
∣
≥ 1

N(ϕ(ψ2i
1 )) exp

(

π
√

2
3

√
2i
) .

On the other hand, distinct patterns ψ2i
1 have disjoint sets Ψ2i+1

(ψ2i
1 ), while patterns of

the same profile have the same probability p̃2i+1
(ψ2i

1 ), hence

N
(

ϕ(ψ2i

1 )
)

· p̃2i+1
(ψ2i

1 ) ≤
∑

y∈Ψ2i+1
(ψ2i

1 )

p̃(y) = 1,

and thus

p̃2i+1
(ψ2i

1 ) ≤ 1

N(ϕ(ψ2i
1 ))

.

It follows that
p̃2i+1

(ψ2i
1 )

p̃(ψ2i
1 )

≤ exp

(

π

√

2

3

√
2i

)

.

Incorporating this inequality and (8.5) in (8.4), we get (8.3). 2

8.3 Lower bound on compression of patterns

A lower bound the attenuation of any estimator over patterns follows from

Theorem 26,

exp

(
3

2
n

1
3 (1 + o(1))

)

. 2
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8.4 Examples

To better understand the behavior of the diminishing-attenuation estimators,

we consider the conditional probabilities assigned to some simple sequences by the low-

complexity estimator q 1
3
, and compare it to what one would logically expect.

Consider first the sequence aaa . . .. Since the same symbol always repeats,

after observing a large portion of this sequence, one would guess that the next symbol

would be ‘a’ as well. Indeed after observing n elements, the estimator assigns probability

1 − Θ( 1
n) for the next symbol being ‘a’ and probability Θ( 1

n) to a new symbol.

For the alternating sequence abab . . ., one would predict probability half for the

next symbol being each of ’a’ and ’b. Similarly, the estimator assigns probability Θ( 1
n)

to a new symbol and splits the remaining probability evenly between ’a’ and ’b’.

Of course, we are more interested in the behavior of the estimator when the

number of symbols appearing is large. In the extreme case where all symbols are different,

for example, after observing the sequence abc . . ., we would expect the next symbol to

be new. Indeed the estimator assigns probability 1 − Θ( 1
n5/3 ) that the next symbol will

be new.

But for large-alphabet sequences where the probability of new is not 1, intuition

may not serve well. Consider perhaps the simplest such case, the sequence aabbcc . . ..

After observing an even number n of symbols, e.g., aabbcc, the estimator assigns prob-

ability 1/4 to the next symbol being new and 3/(2n) to each of the preceding symbols,

and after observing an odd number n of symbols, e.g., aabbc, the estimator assigns prob-

ability approaching 1 to the next symbol being the same as the last one, e.g., ‘c’ in this

example.

These estimations may be at odds with the intuition saying that since every

other element so far was new, the next symbol will be new with probability 1/2. One

possible explanation for the lower probability of new assigned by the estimator is that it

can be shown [72] that after seeing n symbols of the sequence, the most likely alphabet

is of size 0.62n, hence, roughly speaking, the probability of seeing a new one is about

(0.12n)/(0.62n) ≈ 0.2.
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Chapter 9

Entropy rate of patterns

In this chapter we determine the entropy rate of patterns of certain processes,

and for i.i.d. processes, we bound the speed at which the per-symbol pattern entropy

converges to this rate, and show that patterns satisfy an asymptotic equipartition prop-

erty. To derive some of these results, we upper bound the probability that the n′th

variable in a random process differs from all preceding ones. We note that related

entropy-rate results were independently derived by Gemelos and Weissman [52, 53], and

that subsequent results appeared in [54, 55, 56].

We denote a random n-symbol sequence by X = X1, . . . ,Xn and its pattern by

Ψ = Ψ1, . . . ,Ψn. The entropy of the sequence is

H(X) =
∑

x

p(x) log
1

p(x)
,

and its entropy rate is the asymptotic per-symbol entropy

HX = lim
n→∞

1

n
H(X).

Similarly, the pattern entropy is

H(Ψ) =
∑

ψ

p(ψ) log
1

p(ψ)
,

and the pattern entropy rate is the asymptotic per-symbol entropy

HΨ = lim
n→∞

1

n
H(Ψ).

These concepts are illustrated by the following examples.

97
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Example 2. Consider the process X1, X2, . . . where X1 = 1 and for n = 2, 3, . . ., Xn is

distributed uniformly over {Xn−1 + 1, . . . ,Xn−1 + n}. For example, 1,2,3,4 and 1,3,6,10

are two equally-likely realizations of X1, . . . ,X4. Since X1, . . . ,Xn can assume n! equally

likely realizations, the sequence entropy is

H(X) = log n!,

and its entropy rate is

HX = lim
n→∞

1

n
logn! = ∞.

On the other hand, Xn > Xi for all i = 1, . . . ,n − 1, hence the pattern is always

Ψ = 12 . . . n, implying zero pattern entropy rate,

HΨ = 0. 2

Example 3. Consider independent Bernoulli-half trials X1, X2, . . .. As with all i.i.d.

distributions,

H(X) = nH(X1),

hence the sequence entropy rate is

HX = H(X1) = 1.

It is easy to verify that the resulting patterns are all 2n−1 sequences over {1, 2}
starting with 1. Each pattern corresponds to two possible trial sequences hence has

probability 2−(n−1). If follows that

H(Ψ) = n− 1,

and the pattern entropy rate is

HΨ = lim
n→∞

n− 1

n
= 1. 2

Note that in the last example, HΨ = HX . We show that for all finite entropy

discrete stationary processes,

HΨ = HX . (9.1)

Recall that Kieffer [11] showed that i.i.d. distributions over infinite alphabets entail an

infinite per-symbol redundancy,

RX = ∞, (9.2)
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while, as shown in [2], the patterns of such processes incur asymptotically zero per-symbol

redundancy,

RΨ = 0. (9.3)

These results suggest conveying a sequence X by first describing its pattern

Ψ and then the dictionary ∆ that maps {1, . . . ,Ψn} to {X1, . . . ,Xn}. For example, if

X =“abracadabra”, we can convey the pattern Ψ = 12314151231 and the dictionary

∆(1) = a, ∆(2) = b, ∆(3) = r, ∆(4) = c, and ∆(5) = d.

Since the pattern and dictionary determine the sequence, it is easy to see that

RΨ + R∆|Ψ ≥ RX .

Hence

R∆|Ψ = ∞. (9.4)

Together, these results imply that for i.i.d. distributions over arbitrary alpha-

bets, not knowing the underlying distribution results in infinite redundancy (9.2). Yet

all the redundancy is associated with describing the dictionary (9.4), and none with the

pattern (9.3).

Two comparisons between these and existing pattern-compression results are

in order. For simplicity, we describe them using discrete i.i.d. distributions.

First, while the original sequence and its pattern have the same (asymptotic

per-symbol) entropy (9.1), the (asymptotic per-symbol) redundancy of the sequence is

infinite (9.2) whereas that of the pattern diminishes to zero (9.3). Hence, when the

distribution is known, describing the sequence and its pattern require the same number

of bits, but when the distribution is not known, the sequence may require infinitely many

additional bits whereas the pattern requires none.

Additionally, since (a) X determines Ψ, and (b) given Ψ there is a 1-1 corre-

spondence between X and ∆, we obtain

H(X)
(a)
= H(Ψ) +H(X|Ψ)

(b)
= H(Ψ) +H(∆|Ψ).

It follows that

H∆|Ψ
def
= lim

n→∞
1

n
H(∆|Ψ) = lim

n→∞
1

n
H(X) − lim

n→∞
1

n
H(Ψ) = HX −HΨ = 0. (9.5)
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Hence, while when the distribution is not known, essentially all the redundancy in de-

scribing a sequence derives from describing the dictionary (9.4) and none from the pat-

tern (9.3), when the distribution is known, essentially all the bits go towards describing

the pattern (9.1), and none towards the dictionary (9.5).

9.1 The probability of innovation

The essential difference between a sequence and its pattern is that the latter

groups all hitherto unseen symbols into a single new element. For symbols that have

been observed, the symbols and their indices in the pattern have 1-1 correspondence

given the past sequence. To relate sequence and pattern entropy, we therefore show

that for any discrete stationary distribution the probability of observing new elements

decreases to zero with time. We begin with some definitions.

For n ≥ 1, let xn−1 = x1, . . . ,xn−1 and let A(xn−1) = {x1, . . . ,xn−1} be the set

of elements observed in xn−1. For a random process X1, X2, . . ., let

In =







1 Xn 6∈ A(Xn−1),

0 otherwise.

indicate whether the n′th symbol is new, and let

Mn
def
= |A(Xn)| =

n∑

i=1

Ii,

be the number of distinct symbols in X1, . . . ,Xn. Finally. the innovation probability of

the process at time n is

νn
def
= p(In = 1) = EIn,

the probability that the nth symbol differs from all previous ones.

Since this section concerns only discrete distributions, assume without loss of

generality that these strings are drawn from N = {1, 2, . . .}. For a stationary distribution,

let pj
def
= p(Xn = j) denote the marginal probability that the nth random variable is j.

The distribution’s marginal entropy,

H
def
=

∞∑

j=1

pj log
1

pj
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is the entropy of each Xn.

The next lemma shows that for any stationary distribution the expected number

of symbols grows sublinearly with n and provides a stronger bound for distributions with

finite marginal entropy.

Lemma 46. For all discrete stationary distributions,

EMn = o(n)

and if, in addition, the distribution has finite marginal entropy H, then,

EMn ≤ nH

log n
(1 + o(1)).

Proof For j ∈ N, let

In,j =







1 Xn = j 6∈ A(Xn−1)

0 else,

indicate whether Xn is new and equals j. Then,

In =
∞∑

j=1

In,j .

For any function kn of n,

Mn =
n∑

i=1

kn∑

j=1

Ii,j +
n∑

i=1

∞∑

j=kn+1

Ii,j .

Since any element j can be new at most once,

n∑

i=1

kn∑

j=1

Ii,j =

kn∑

j=1

n∑

i=1

Ii,j ≤
kn∑

j=1

1 = kn,

and, since pj denotes the probability that Xn = j,

E





n∑

i=1

∞∑

j=kn+1

Ii,j



 =
n∑

i=1

∞∑

j=kn+1

p(Xn = j, In = 1) ≤
n∑

i=1

∞∑

j=kn+1

pj = n ·
∞∑

j=kn+1

pj .

Letting kn increase to infinity as o(n), we obtain

EMn ≤ kn + n ·
∞∑

j=kn+1

pj = o(n),
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where the equality follows since
∑∞

j=kn+1 pj = o(1).

To prove the second part of the lemma, assume without loss of generality that

the probabilities pj are non-increasing. Then pj ≤ 1
j for all j ≥ 1, and

∞∑

j=kn+1

pj <
1

log kn
·

∞∑

j=kn+1

pj log j ≤ 1

log kn
·

∞∑

j=kn+1

pj log
1

pj
≤ H

log kn
.

Hence

EMn ≤ kn + n · H

log kn
,

and the lemma follows by letting

kn =
nH

log2(nH)
. 2

In Corollary 48, we apply this lemma to show that the innovation probability

of any stationary distribution diminishes with time, a result used in the next section to

determine the entropy rate of patterns. We first show that the innovation probability of

any stationary process decreases monotonically.

Lemma 47. For any stationary process,

νn ≥ νn+1.

Proof For every stationary process and every n,

νn = p
(

Xn /∈ A({X1, . . . ,Xn−1}
)

= p
(

Xn+1 /∈ A({X2, . . . ,Xn})
)

≥ p
(

Xn+1 /∈ A({X1, . . . ,Xn})
)

= νn+1. 2

Corollary 48. For any discrete stationary process,

lim
n→∞

νn = 0,

and if, in addition, the distribution has finite marginal entropy H, then for all n,

νn ≤ H

log n
(1 + o(1)).

Proof From Lemmas 46 and 47,

nνn ≤
n∑

i=1

νi =
n∑

i=1

EIi = E
n∑

i=1

Ii = EMn = o(n),
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and if the distribution has finite marginal entropy H, then

nνn ≤ EMn ≤ nH

logn
(1 + o(1)). 2

For i.i.d. distributions, the last bound can be slightly improved.

Lemma 49. For all discrete i.i.d. distributions with finite entropy H and all n,

νn ≤ H

logn
.

Proof One simple proof notes that for every 0 < p < 1 and n ≥ 1, the Taylor series

expansion of ln(1 − x) yields

ln
1

p
= − ln(1 − (1 − p)) ≥

n−1∑

i=1

(1 − p)i

i
≥ (1 − p)n−1

n−1∑

i=1

1

i
≥ (1 − p)n−1 lnn.

Therefore,

νn =
∑

x∈A
p(x)(1 − p(x))n−1 ≤ 1

log n

∑

x∈A
p(x) log

1

p(x)
=

H

log n
.

An alternate proof uses the following relation between innovation and the en-

tropy. Observe that

∑

i≥1

νi+1

i
=
∑

i≥1

1

i

∑

j≥1

pj(1 − pj)
i

=
∑

j≥1

pj
∑

i≥1

1

i
(1 − pj)

i

=
∑

j≥1

pj ln
1

pj
.

The lemma then follows by observing that the innovation is strictly decreasing, hence

∑

j≥1

pj ln
1

pj
=
∑

i≥1

νi
i
>

n∑

i=1

νi
i
≥ νn

n∑

i=1

1

i
≥ νn lnn. 2

Note that while this bound is not tight for all i.i.d. distributions, for example

the independent Bernoulli-half process has νn = H/2n−1, it is tight in the following

sense.
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Lemma 50. For all positive H and ε there is a distribution with entropy H and

innovation probability

νn = Ω

(
1

(log n)1+ε

)

.

Proof We first show that for any ε > 0, there is a finite entropy distribution with

νn = Ω
(

1
(logn)1+ε

)

. Define the probability distribution (p2, p3, . . .) by

pi =
1

S i (log i)2+ε
,

where

S =
∑

i≥2

1

i(log i)2+ε
<∞ (9.6)

is a normalization factor. The distribution’s entropy is

Hε =
∑

i≥2

log i+ (2 + ε) log log i+ logS

S i(log i)2+ε
<∞, (9.7)

and, observing that S > 1/2, we obtain that for all n ≥ 4,

νn >
∑

i≥2

(1 − (n− 1)pi)pi

>
∑

i≥n

1

S i(log i)2+ε
−
∑

i≥n

n− 1

S2 i2(log i)4+2ε

>
∑

i≥n

1

S i(log i)2+ε
−
∑

i≥n

1

2S i(log i)2+ε

= Θ

(
1

(log n)1+ε

)

.

The distribution therefore has the desired innovation probability, and we now

modify it to also have the required entropy H. The modification depends on whether H

is larger or smaller than Hε.

If H > Hε, consider the distribution (p′2, p
′
3, . . .) defined by

p′i =
1

S i (log i)2+δ

where 0 < δ ≤ ε and S is a normalization factor defined as before. Its entropy can be

made arbitrarily large by decreasing δ and its innovation is

νn = Ω

(
1

(log n)1+δ

)

= Ω

(
1

(log n)1+ε

)

.



105

If H < Hε, consider the distribution (p′′1, p
′′
2, . . .) with p′′1 = 1 − q for some

0 < q < 1 and

p′′i =
q

S i (log i)2+ε

for i ≥ 2, where S is defined by (9.6). Its entropy is

h(q) + qHε,

where Hε is defined in (9.7). This entropy can be made equal to any value 0 < H < H ε

by an appropriate choice of q. Clearly the new distribution also satisfies

νn = Ω

(
1

(log n)1+ε

)

. 2

9.2 The entropy rate of patterns

We determine the entropy rate of patterns of certain processes. We observe that

when the alphabet is finite, the entropy rates of the process and its pattern coincide,

and extend this result to all discrete processes that are either i.i.d., or finite-entropy

stationary. For i.i.d. distributions with a continuous component we show that the

pattern entropy rate equals that of a modified process where the continuous probability

is assigned to a new discrete element. We note that similar results were independently

obtained by Gemelos and Weissman [52, 53].

It is easy to see that whenever the alphabet A is finite, the process and pattern

entropy rates coincide. Observe that

H(X) − log |A|! ≤ H(Ψ) ≤ H(X), (9.8)

where the upper bound follows as the sequence determines the pattern, and the lower

bound follows as, for the same reason,

H(X) = H(Ψ) +H(X|Ψ) (9.9)

and every pattern can derive from at most |A|! sequences, hence

H(X|Ψ) ≤ log |A|!.
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Taking limits in (9.8) we see that for all distributions over finite alphabets,

HΨ = lim
n→∞

1

n
H(Ψ) = lim

n→∞
1

n
H(X) = HX . (9.10)

Note that for i.i.d. processes, bounds similar to (9.8) appeared in [22, 51, 54, 55].

The rest of the section extends (9.10) to distributions over infinite alphabets.

We use the following lemma relating conditional pattern entropy and the pattern entropy

rate.

Lemma 51. For any process, if

H(Ψn|Ψn−1) ≥ hn.

and

lim
n→∞

hn = HX ,

then

HΨ = HX .

Proof Since Xn determines Ψn and H(Ψn) =
∑n

i=1H(Ψi|Ψi−1),

1

n
H(Xn) ≥ 1

n
H(Ψn) ≥ 1

n

n∑

i=1

hi.

Taking limits as n→ ∞, the lemma follows because Cesáro’s mean theorem implies that

lim
n→∞

1

n

n∑

j=1

hj = HX . 2

We begin with i.i.d. distributions, and among them start with those over dis-

crete alphabets. We show that a random sequence is likely to contain all high-probability

elements, and that when this happens, the conditional entropy of the pattern approaches

that of the sequence.

As in Section 9.1 we assume without loss of generality that the alphabet is

N = {1, 2, . . .} and let pi
def
= p(Xn = i). For ε ≥ 0, we let

Aε
def
= {i : pi > ε}

be the set of all elements whose probability exceeds ε.
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Theorem 52. For all discrete i.i.d. distributions,

HΨ = HX .

Proof We first show that a random sequence is likely to contain all elements of suf-

ficiently high probability. More precisely, recall that A(Xn) is the set of all elements

in Xn, and that A lnn
n

is the set of all elements whose probability exceeds lnn
n . Clearly,

|A lnn
n
| ≤ n

lnn , hence

p
(

A lnn
n

⊆ A(Xn)
)

> 1 − n

lnn

(

1 − lnn

n

)n

> 1 − 1

lnn
.

Let

Jn =







1 A lnn
n

⊆ A(Xn)

0 otherwise

indicate whether Xn contains all high-probability elements. Then

H(Ψn+1|Ψn) ≥ H(Ψn+1|Xn)

≥ H(Ψn+1|Xn, Jn)

≥ p(Jn = 1)H(Ψn+1|Xn, Jn = 1)

≥
(

1 − 1

lnn

)
∑

i∈A lnn
n

pi log
1

pi

def
=

(

1 − 1

lnn

)

H(A lnn
n

).

The theorem follows from Lemma 51 as

lim
n→∞

H(A lnn
n

) = HX . 2

For mixed i.i.d. distributions we show that the entropy rate of the pattern

equals that of a slightly modified process. Let X be a random variable drawn from a

mixed distribution p with discrete support A0 and continuous probability q. Define X̃

to be the discrete random variable obtained from X by replacing all elements present in

the continuous support with a single new discrete element. Then

HX̃ =
∑

i∈A0

pi log
1

pi
+ q log

1

q
= H(A0) + q log

1

q
.



108

Theorem 53. For all i.i.d. distributions,

HΨ = HX̃ .

Proof Since X̃n determines Ψn with probability 1, we proceed as in Theorem 52.

Recall the definitions of Jn, A lnn
n

, and H(A lnn
n

), and let X (x)c denote the set of symbols

not in x. Proceeding similarly to the proof of Theorem 52, we obtain

H(Ψn+1|Ψn) ≥ p(Jn = 1)H(Ψn+1|X̃n, Jn = 1)

≥
(

1 − 1

lnn

)(

H(A lnn
n

) + min
x:A lnn

n
⊆X (x)

p(X (x)c) log
1

p(X (x)c)

)

.

The theorem follows by applying Lemma 51 to X̃n as

lim
n→∞

H(A lnn
n

) = H(A0),

and

lim
n→∞

min
x:A lnn

n
⊆X (x)

p(X (x)c) = q. 2

We now address stationary processes. Note that while Theorem 52 shows that

HΨ = HX for all discrete i.i.d. processes, even those with infinite entropy, as the next

example indicates, this equality cannot hold for all discrete stationary processes with

infinite entropy.

Example 4. Consider the constant stationary process X1 = X2 = . . . defined by

pj = p(Xn = j) =
1

S

1

j log2 j
,

where S is a normalization factor. Then,

H(X1) =
∞∑

j=1

pj log
1

pj
= ∞,

hence

HX = ∞.

On the other hand, the pattern is always 11 . . . 1, hence

HΨ = 0. 2
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To prove that HΨ = HX for all discrete stationary processes with finite entropy,

we use the innovation results of Section 9.1. We show that the probability that Xn is

new, hence more “informative” than Ψn, is low for likely Xn−1, and that when Xn is

not new, the conditional entropy of the pattern is roughly HX .

Theorem 54. For all finite-entropy discrete stationary processes,

HΨ = HX .

Proof As before, we lower bound the conditional pattern entropy with a term that

approaches HX . We show that

H(Ψn|Ψn−1) ≥ H(Xn|Xn−1) − o(1),

and the theorem will follow from Lemma 51 as for all finite-entropy stationary processes,

lim
n→∞

H(Xn|Xn−1) = HX .

Recall that for n ≥ 1, In indicates whether Xn is new, hence

H(Xn|Xn−1) = H(Xn, In|Xn−1)

= H(In|Xn−1) +H(Xn|Xn−1, In)

= H(In|Xn−1) +H(Xn|Xn−1, In = 0)p(In = 0) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(In|Xn−1) +H(Ψn|Xn−1, In = 0)p(In = 0) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(In|Xn−1) +H(Ψn|Xn−1, In = 0)p(In = 0) +H(Xn|Xn−1, In = 1)p(In = 1)

+H(Ψn|Xn−1, In = 1)p(In = 1)

= H(In|Xn−1) +H(Ψn|Xn−1, In) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(Ψn, In|Xn−1) +H(Xn|Xn−1, In = 1)p(In = 1)

= H(Ψn|Xn−1) +H(Xn|Xn−1, In = 1)p(In = 1)

≤ H(Ψn|Ψn−1) +H(Xn|In = 1)p(In = 1)

We now use Corollary 48 to show that

H(Xn|In = 1)p(In = 1) = o(1).
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Recall that pj = p(Xn = j), that

Aνn = {j : pj > νn}

is the set of all elements whose probability exceeds νn, that νn = p(In = 1), and that

In,j indicates whether Xn is new and equals j. Define

νn,j
def
= p(In,j = 1) =

∑

xn−1:j /∈xn−1

p(xn−1, xn = j),

so that νn =
∑∞

j=1 νn,j . Then

H(Xn|In = 1)p(In = 1) =
∞∑

j=1

νn,j log
νn
νn,j

= νn log νn +
∑

j∈Aνn

νn,j log
1

νn,j
+
∑

j /∈Aνn

νn,j log
1

νn,j

(a)

≤ νn log (|Aνn | + 1) +
∑

j /∈Aνn

νn,j log
1

νn,j

(b)

≤ νn log

(
1

νn
+ 1

)

+
∑

j /∈Aνn

pj log
1

pj

(c)
= o(1),

where (a) follows because

∑

j∈Aνn

νn,j log
1

νn,j
≤
∑

j∈Aνn

νn,j log
1

νn,j
+ (νn −

∑

j∈Aνn

νn,j) log
1

νn −
∑

j∈Aνn νn,j

≤ νn log (|Aνn | + 1) + νn log
1

νn
,

(b) follows as |Aνn | < 1
νn

and νn,j ≤ pj ≤ νn, which for sufficiently large n is smaller

than 1
e , and (c) follows as Corollary 48 implies that νn → 0, and HX < ∞ implies that

the marginal entropy is finite, hence

lim
n→∞

∑

j /∈Aνn

pj log
1

pj
= 0. 2

9.3 The rate of convergence

In the previous section we determined the pattern entropy rate—the limit of

the per-symbol pattern entropy—of i.i.d. and certain related distributions. We now
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address the convergence rate

ρX ,n
def
=

∣
∣
∣
∣

1

n
H(Ψ) −HΨ

∣
∣
∣
∣

at which this limit is attained. In this section, we consider only discrete i.i.d. distribu-

tions. Then

ρX ,n =
1

n
(H(X) −H(Ψ)) =

1

n
H(X|Ψ),

where the first equality follows from Theorem 52, and the second from (9.9).

We first show that ρX ,n does not diminish uniformly for all distributions, or

even for all distributions with a given entropy. We then bound ρX ,n in terms of the

second moment of the self information.

To show that ρX ,n does not diminish uniformly, the next example shows that

it can be made arbitrarily high for all n.

Example 5. The i.i.d. process X1, X2, . . . , where each Xi is distributed uniformly

over {1, . . . ,k}, has

ρX ,n =
1

n
H(X|Ψ) ≥ 1

n
H(X1|Ψ) =

log k

n
,

which can be made arbitrarily high by choosing a sufficiently large k. 2

While the example shows that ρX ,n does not diminish uniformly for all i.i.d.

distributions (and in fact is unbounded), the processes it uses have unbounded entropy

themselves. It is natural to ask whether ρX ,n diminishes uniformly for all i.i.d. processes

with a given entropy. The next example answers this question in the negative, showing

that for all n, ρX ,n can be made arbitrarily close to the process entropy.

Example 6. For all n and ε > 0, we construct an i.i.d. distribution that satisfies

ρX ,n > H − ε.

Given H > 0, for all k ≥ 2H , there exists qk such that

h(qk) + qk log k = H.

Let pk = (1−qk, qk/k, . . . ,qk/k) be the distribution on [k+1], where the element “1” has

probability 1 − qk and all the remaining k elements have probability qk/k. The entropy

of pk is therefore H by construction.
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For all M ≥ 2H , it follows that if k > M ,

qk <
H

logM
.

As k increases to infinity, qk diminishes, implying that ∃N1 such that for k ≥ N1,

h(qk) ≤
ε

2
.

Consider an i.i.d. process on [k + 1]n with the marginal distribution being pk.

For all n, by making k sufficiently large, the probability that any element with probability

qk/k appears more than once can be made arbitrary small. In particular, ∃N2 such that

for k ≥ N2,

Pr(Any of {2, . . . ,k + 1} appear ≥ 2 times ) = k

[

1 −
(

1 − qk
k

)n
− n

qk
k

(

1 − qk
k

)n−1
]

≤ nqk

<
ε

2n logn
.

Hence with probability ≥ 1− ε
2n logn , there is a 1-1 correspondence between the pattern

and the set of locations where the element 1 appears. Consequently,

H(Ψ) < h(qk) +
ε

2n logn
n logn = h(qk) +

ε

2
.

It follows that for any fixed n, for k ≥ max {N1, N2},

ρX ,n =
1

n
H(X|Ψ) =

1

n

(
H(X) −H(Ψ)

)
≥ q log k − ε

2
≥ H − ε. 2

In the preceding examples we increased ρX ,n by constructing successively flat-

ter distributions, raising the possibility that ρX ,n will diminish when the distribution

p1, p2, . . . diminishes to 0 sufficiently quickly. In Theorem 56 and Corollary 57 we bound

ρX ,n in terms of the second moment of the self information

σ2 def
=
∑

i≥1

pi log
2 1

pi
.

To do so, we first prove the following technical lemma.
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Lemma 55. For any discrete distribution p, and all I ≥ 1,

∑

i≥I
pi log

1

pi
≤ σ

√
∑

i≥I
pi.

Proof Using the Cauchy-Schwartz Inequality,

∑

i≥I
pi log

1

pi
=
∑

i≥I

√

pi · pi log2 1

pi
≤




∑

i≥I
pi





1/2


∑

i≥I
pi log

2 1

pi





1/2

. 2

Theorem 56. For all discrete i.i.d. distributions with entropy H,

H

(

1 − Θ

(
σ2

H logn

)1/3
)

≤ 1

n
H(Ψ) ≤ H.

Proof Let

εn
def
=

(
2H2

σ log n

)2/3

and

Tn
def
=






xn−1 : p(In = 1|xn−1) =

∑

x/∈X (x)

p(x) ≤ εn






,

be the set of strings whose missing mass is at most εn. From Lemma 55,

min
xn−1∈Tn

H(Ψn|xn−1) ≥ H − σ
√
εn = H

(

1 − 2

(
σ2

4H logn

)1/3
)

def
= H(1 − 2δn).

Note that EXn−1p(In = 1|Xn−1) = p(In = 1) = νn, hence from Markov’s inequality and

Lemma 49,

p(Tn) ≥ 1 − H

εn log n
= 1 −

(
σ2

4H log n

)1/3

= 1 − δn.

It follows that for n ≥ 2,

H(Ψn|Ψn−1) ≥ H(Ψn|Xn−1) ≥
∑

xn−1∈Tn
p(xn−1)H(Ψn|xn−1) ≥ H(1 − 3δn).

Hence

1

n
H(Ψn) ≥ n− 1

n
H − 3

n
H

n∑

i=2

δi = H − Θ(Hδn) = H − Θ

(
σ2H2

log n

)1/3

. 2
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Lemma 55 implies that

H ≤ σ,

hence the rate of convergence of pattern entropy can be bounded as follows.

Corollary 57. For all discrete i.i.d. distributions,

ρX ,n ≤ O
(

σ4

log n

)1/3

. 2

9.4 Asymptotic equipartition of patterns

Shannon [73] showed that strings generated by i.i.d. distributions over finite

alphabets satisfy an asymptotic equipartition property. Chung [74] generalized this result

to infinite alphabets. We prove an equivalent property for patterns of such strings.

Specifically, we show that

1

n
log

1

p(Ψ)

p→ 1

n
E log

1

p(Ψ)
, (9.11)

where the convergence is in probability, uniformly over all i.i.d. distributions, see The-

orem 61. Since by definition,

1

n
E log

1

p(Ψ)
→ HΨ,

we obtain
1

n
log

1

p(Ψ)

p→ HΨ,

though here, the results of the last section show that we cannot have uniform convergence

over all i.i.d. distributions. To prove (9.11) we use profiles of patterns, defined next.

The multiplicity of ψ ∈ Z
+ in a pattern ψ is

µψ
def
= |{1 ≤ i ≤ |ψ| : ψi = ψ}|,

the number of times ψ appears in ψ. The prevalence of a multiplicity µ ∈ N in ψ is

ϕµ
def
= |{ψ : µψ = µ}|,

the number of symbols appearing µ times in ψ. The profile of ψ is

ϕ
def
=
(
ϕ1, . . . ,ϕ|ψ|

)
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the vector of prevalences of all possible multiplicities for 1 ≤ µ ≤ |ψ|. For example, the

pattern ψ = 12131 has multiplicities µ1 = 3, µ2 = µ3 = 1, and µψ = 0 for all other

ψ ∈ Z
+. Hence its prevalences are ϕ1 = 2, ϕ2 = 0, ϕ3 = 1, ϕ4 = ϕ5 = 0, and its profile

is ϕ(ψ) = (2, 0, 1, 0, 0).

If p is an i.i.d. distribution, then all length-n patterns ψ with profile ϕ, have

the same probability,

p(ψ) =
p(ϕ)

N(ϕ)
,

where

N(ϕ) =
n!

∏

µ µ!ϕµϕµ!

is the number of patterns with profile ϕ. Therefore

log
1

p(ψ)
= log

1

p(ϕ)
+ logN(ϕ).

Let Φ denote the profile of a random sequence X . The following bound by

McDiarmid can be used to show that logN(Φ) concentrates around its mean.

Lemma 58. [McDiarmid [75]] Let X = X1, . . . ,Xn be independent random vari-

ables and let the function f(x1, . . . ,xn) be such that any change in a single xi changes

f(x1, . . . ,xn) by at most η. Then,

p







∣
∣f(X) − Ef(X)

∣
∣ > η

√

n ln 2
δ

2






< δ. 2

Corollary 59. For all α > 0,

p
{∣
∣logN(Φ) − E logN(Φ)

∣
∣ > 3n

1+α
2 logn

}

<
2

e2nα
.

Proof Let f(x1, . . . ,xn) = logN(ϕ). A change in xi can change log
∏
ϕµ! by at most

2 log n, and log
∏
µ!ϕµ by at most logn. The corollary follows by setting δ = 2

e2n
α in

Lemma 58. 2

We now show that with high probability, the profile self-information deviates

from its expectation by at most roughly n
1+α

2 log n.



116

Lemma 60. For all α > 0,

p

{∣
∣
∣
∣
∣
log

1

p(Φ)
−H(Φ)

∣
∣
∣
∣
∣
≥
(

π

√

2

3
log e

)

n
1+α

2 log n

}

≤
exp

(

π
√

2n
3

)

exp
(

π
√

2n
3 n

α
2 log n

) .

Proof Let ρ(n) be the number of profiles of length-n patterns. Then the entropy of Φ

can be bounded by

E log
1

p(Φ)
= H(Φ) ≤ log ρ(n) ≤

(

π

√

2

3
log e

)

√
n.

where the second inequality follows as ρ(n) is, see e.g. [2], the number of integer parti-

tions of n, which has been computed by Hardy and Ramanujan [50].

Let ` =
(

π
√

2
3 log e

)

n
1+α

2 logn. Since ` ≥ H(Φ),

∣
∣
∣
∣
log

1

p(Φ)
−H(Φ)

∣
∣
∣
∣
≥ `⇒ log

1

p(Φ)
≥ `,

hence

p

{∣
∣
∣
∣
log

1

p(Φ)
−H(Φ)

∣
∣
∣
∣
≥ `

}

≤ p

{

log
1

p(Φ)
≥ `

}

≤
exp

(

π
√

2n
3

)

exp
(

π
√

2n
3 n

α
2 log n

) ,

where the last inequality follows as the probability of any profile with self-information

≥ ` is at most 2−` and there can be at most ρ(n) ≤ exp
(

π
√

2n
3

)

such profiles. 2

Corollary 59 and Lemma 60 imply the asymptotic equipartition property. Note

that the convergence bound is uniform for all i.i.d. distributions.

Theorem 61. For all δ > 0,

p

{
1

n

∣
∣
∣
∣
log

1

p(Ψ)
−H(Ψ)

∣
∣
∣
∣
≥ δ

}

= exp

(

−Ω

(
nδ2

log2 n

))

.
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Proof Observe that H(Ψ) = E log 1
p(Ψ)

, and that

p

{
1

n

∣
∣
∣
∣
log

1

p(Ψ)
− E log

1

p(Ψ)

∣
∣
∣
∣
≤ δ

}

≥ p

{
1

n

∣
∣
∣
∣
logN(Φ)−E logN(Φ)

∣
∣
∣
∣
+

1

n

∣
∣
∣
∣
log

1

p(Φ)
−E log

1

p(Φ)

∣
∣
∣
∣
≤ δ

}

≥ p

{{
1

n

∣
∣
∣
∣
logN(Φ) − E logN(Φ)

∣
∣
∣
∣
≤ 3n

α−1
2 logn

}

⋂
{

1

n

∣
∣
∣
∣
log

1

p(Φ)
− E log

1

p(Φ)

∣
∣
∣
∣
≤
(

π

√

2

3
log e

)

n
α−1

2 logn

}}

≥ 1 − 2

e2nα
−

exp
(

π
√

2n
3

)

exp
(

π
√

2n
3 n

α
2 log n

) ,

where for sufficiently large n, 0 < α ≤ 1, is the solution of

(

3 + π

√

2

3
log e

)

n
α−1

2 log n = δ.

The last inequality follows from Lemmas 59 and 60. Clearly,

nα =
n δ2

(

3 + π
√

2
3 log e

)2

log2 n

,

and the theorem follows by observing that the 2e−2nα term dominates. 2
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Chapter 10

Relative Redundancy

We consider a relative redundancy measure for universal compression proposed

in [76]. We state the problem formally below, summarize the underlying motivation, and

cite some similar measures that have been previously considered.

As before A is the alphabet, and A∗ be the collection of all finite sequences of

symbols from A. It will be convenient to adopt a different definition of an estimator for

this chapter. An estimator p over A∗ is a mapping p : A∗ → [0, 1] such that for every

n ∈ N
def
= {0, 1, . . .}, the restriction of p to An is a distribution.

Let P be a collection of estimators on A∗. The minimum encoding length of

x ∈ A∗ with respect to P is

ˆ̀(x) = − log max
p∈P

p(x),

the codelength of x using the estimator in P assigning x the highest probability.

The redundancy of a universal estimator q in describing x ∈ A∗ is

r(x) = log
1

q(x)
− ˆ̀(x),

the excess number of bits over x’s minimum encoding length. The standard redundancy

is usually considered as a function of the sequence length n. In particular for every n,

the standard (worst-case) redundancy of length-n sequences is the highest redundancy

of q among such sequences.

A simple, but important collection of estimators is I∗
m, the collection of i.i.d.

distributions over strings from an alphabet of size m. In this case, several researchers

118
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have shown [24, 25, 27, 28, 29, 30] that the standard redundancy of length n sequences

for the best universal estimator grows as (m−1)/2 log n+Θ(1). This implies that as the

sequence length increases, the redundancy, incurred since the distribution is unknown,

is negligible compared to the sequence length.

Note however that sequences of length n may have vastly different minimum

encoding lengths. Hence, in comparison with their encoding lengths, such a bound on

redundancy may be good for some sequences while lax for others.

For example, it is easy to see that most n-bit i.i.d. sequences have a minimum

encoding length of n − O(
√
n) [77], which is significantly higher than their standard

1
2 log n+ Θ(1) redundancy.

However, for some sequences the standard redundancy is not small compared

to their encoding lengths. For example, the minimum encoding length of the sequence

of n zeros is 0. A code with 1
2 log n redundancy may be inefficient in describing this

particular sequence. Similarly, the MDL of the sequence 0 . . . 001, consisting of n − 1

zeroes and a single 1 is logn + O(1). A code with 1
2 log n redundancy describes this

sequence using 50% more bits than the minimum necessary. It follows that the 1
2 log n

redundancy bound for all n-bit sequences, while tight for most, is lax for many.

The slack of uniform standard redundancy bounds for low-MDL sequences be-

comes more pronounced as the size and complexity of the collection of distributions

grows. Large and complex collections may have larger redundancy which may therefore

be significant compared to the encoding length of a larger number of sequences. For

example, a low-order Markov chain, or one with constrained transitions, may have a

modest encoding length compared to the standard redundancy of the class of all Markov

chains.

We therefore consider relative redundancy [76], defined as the maximum redun-

dancy over all sequences whose minimum encoding length at most `. This measure is in

the same flavor as, but different from [78] and also [26, 15].

For the collection P of estimators over A∗, the (worst case) relative redundancy

of an estimator q for sequences whose minimum encoding length at most ` is

R̂r(P, q, `) def
= max

x∈A∗:ˆ̀(x)≤`
r(x),

the highest redundancy over all such sequences.
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Relative redundancy therefore measures the number of extra bits as a function

of the smallest number of bits necessary if the distribution is known in advance. We say

an estimator has diminishing relative redundancy if its relative redundancy is o(`).

10.1 Results

We first note that the relative redundancy increases with the alphabet size.

Theorem 62. For all alphabet sizes m and estimators q, as ` grows,

R̂r(I∗
m, q, `) ≥ Ω(m log `).

Furthermore, for all ` > 0, R̂r(I∗
m, q, `) increases with m and as m→ ∞,

R̂r(I∗
m, q, `) → ∞ 2

As before, let InΨ be the set of distributions induced on patterns by i.i.d. dis-

tributions on length-n strings, and let

IΨ = ∪n≥1InΨ.

We show that the relative redundancy of compressing patterns of i.i.d. strings,

R̂r(IΨ, q, `) ≤ O
(

`√
log `− log log `

)

.

Hence, redundancy of patterns is only a small fraction of their encoding length, and

patterns can be encoded with diminishing relative redundancy. The rest of the paper

proves the result above, and a slight modification of the proof yields a bound on all

` > 0 (not just asymptotics). The proof is constructive, in Section 10.3, we describe the

estimator that achieves diminishing relative redundancy.

These result is analogous to large alphabet and pattern compression results

known e.g. [26, 23, 2, 1], for standard redundancy formulation.

10.2 Preliminaries

As before, let Φn be the set of all possible profiles of length-n patterns, let Φn
m

be the set of all possible profiles of length-n, m-symbol patterns, and for all ϕ ∈ Φn, let

Ψϕ the set of all length-n patterns with profile ϕ.



121

We require the following bounds repeatedly in the proofs to follow.

Lemma 63. For n ≥ 2 and for all 1 ≤ m ≤ n
2 ,

√
m

log
(
n
m

) ≤ 1√
log n

= o(1),

and hence
logm

log
(
n
m

) ≤ 2√
log n

= o(1).

Proof Both inequalities trivially hold for m = 1. Since

log

(
n

m

)

≥ m log
n

m
,

it follows that √
m

log
(
n
m

) ≤
√
m

m log n
m

.

If 1 < m ≤ log n,
√
m > 1 and log n

m ≥ log n
logn , hence

√
m

m log n
m

=
1√

m log n
m

<
1

log n
logn

When log n < m ≤ n
2 ,

√
m >

√
log n and log n

m ≥ 1, hence

1√
m log n

m

<
1√

log n
.

For all n ≥ 2, log n− log logn ≥ √
log n, and hence the first inequality follows.

Since for all m ≥ 1, logm ≤ 2
√
m,

logm ≤ 2 log
(
n
m

)

√
log n

. 2

Lemma 64. For n > 4, and for non-negative ϕµ (prevalences), positive µ ∈ Z (mul-

tiplicities) and 1 ≤ µ ≤ n, such that

n =
∑

µ≥1

µϕµ and m =
∑

µ≥1

ϕµ < n,

the following inequality holds,

n!
∏

µ µ!ϕµϕµ!
≥
(

n

m− 1

)

.



122

Proof If m = 1, ϕn = 1 and ϕµ = 0 for all 1 ≤ µ < n, therefore the lemma follows

trivially.

We consider the case when m > 1. Observe that if more than one ϕµ > 0,
∏

µ ϕµ! ≤ (m−1)!. To see this, note that there is at least one j such that 1 ≤ ϕj ≤ m−1,

and that

(m− 1)! = (m− 1)!1! ≥ ϕj !(m− ϕj)!

while

(m− ϕj)! ≥
∏

µ
µ6=j

ϕµ!.

Next, we show that if m < n

(n−m+ 1)!
∏

µ µ!ϕµ
≥ 1.

Both the numerator and denominator comprise of n − m numbers > 1. The result is

evident by writing the equation above as

2 · 3 · 4 · . . . (n−m+ 1)

2 · . . . · µ1 · 2 · . . . · µ2 . . . 2 · . . . · µm−ϕ1

,

where µ1, . . . ,µm−ϕ1 are the multiplicites that are > 1.

If ϕn/m = m, note that if n
m > 3 then n−m > 2m > 2 and

(n−m+ 1)!
∏

µ µ!ϕµ
=

2 · 3 · 4 · . . . (n−m+ 1)

2 · . . . · nm · 2 · . . . · nm2 · . . . · nm
≥ n−m

n/m− 1
= m,

and if n
m = 2, namely m = n/2, when n > 4,

2 · 3 · 4 · . . . (n/2 + 1)

2n/2
≥ n/2,

with equality when n = 6. 2

Lemma 65. Positive integers n ≥ 1 can be described in a prefix free manner using

2blog nc + 1 bits. 2

10.3 Description of the encoding

We provide a constructive proof, namely, we describe an estimator q for patterns

with relative redundancy

R̂r(IΨ, q, `) = o(`).
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The estimator q describes a pattern ψ ∈ Ψn by describing

ϕ: first describe the number m of distinct symbols in Ψn, followed by the profile

ϕ ∈ Φn
m with m symbols,

ψ: the description of ψ using a uniform encoding over Ψϕ.

Let q use `q(ϕ) bits to describe the profile ϕ, and and `q(ψ|ϕ) bits to describe

ψ ∈ Ψϕ.

We now specify how the profile is described. Observe that the number of distinct

symbols,

m =
n∑

i=1

ϕµ,

satisfies m ≤ n. To describe m, q uses one bit to describe if m > n
2 , or if m ≤ n

2 , followed

by a prefix free description of m using from Lemma 65 2 logm+ 1 bits.

If m ≤ n/2, we concatenate the prefix free descriptions of

ϕµ, µ : ϕµ ∈ ϕ and 0 < µϕµ ≤ n

2
,

ascending order of µϕµ, with a random ordering in case of ties, with the description of

ϕµ : ϕµ ∈ ϕ and µϕµ >
n

2
,

An extra bit is used in both cases to specify if both ϕµ and µ will be described.

If m > n
2 , we use the one-one correspondance between profiles of length-n m-

symbol patterns and the profiles of length-(n−m) patterns to describe the profile using

a uniform encoding of profiles in Φn−m.

10.4 Proof outline

10.4.1 Preliminaries

We bound `q(ϕ), the number of bits the estimator q uses to describe the profile

in Lemma 66, and `q(ψ|ϕ), the number of bits needed to specify the pattern given the

profile in Lemma 67. Using these results, in Lemma 68, we bound the relative redundancy

of q, and in Theorem 69, we show that q has diminishing relative redundancy.
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Lemma 66. For any profile ϕ ∈ Φn,

`q(ϕ) ≤







2 logm+ 2+

∑

µ:ϕµ 6=0
µϕµ≤n

2

(2 log µϕµ + 2)

+
∑

µ:ϕµ 6=0
µϕµ>

n
2

(2 logϕµ + 1) m ≤ n
2

2 log(n−m) + 2+

π
√

2
3 log e

√
n−m m > n

2 .

Proof We can describe any positive integer m in a prefix-free fashion with 2 logm+ 1

bits. Therefore, including an additional bit to describe if m > n
2 or not

2 log min {m,n−m} + 1 + 1

bits are used to describe m. When m ≤ n
2 , for all i, ϕµ such that 0 < µϕµ ≤ n

2 , q uses

2 log µϕµ + 2 + 1

bits to describe (µ, ϕµ), the extra bit needed to specify that both µ and ϕµ are being

specified, and for µϕµ >
n
2 , q uses

2 logϕµ + 1 + 1

bits.

Recall from [2] that the profile of a pattern is equivalent to the partition of a

positive integer. If m > n
2 , the number of partitions of n into m parts is the number of

partitions of n−m. Therefore [61],

π

√

2

3
log e

√
n−m

bits are used describe a profile ϕ ∈ Φn
m of a pattern with more than n

2 symbols. 2

Lemma 67. For all length-n patterns with profile ϕ = (ϕ1, . . . , ϕµ, . . . ϕn),

`q(ψ|ϕ) = log
n!

∏n
µ=1(µ!)ϕµϕµ!

. 2
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10.4.2 Estimation of relative redundancy

In this section, we bound the relative redundancy of the estimator q. In

Lemma 68, we relate the relative redundancy to the blocklength, and use it in The-

orem 69 to show that q has diminishing relative redundancy.

The asymptotic notation used below implies the minimum codelength, ˆ̀(ψ)

increases to infinity. Note that this also implies that the length of the pattern n(ψ) → ∞.

For example, f = O(g) reads as “∃L and C > 0, such that for all patterns with ˆ̀(ψ) ≥ L,

f ≤ Cg”.

For convenience, we write n and m for n(ψ) and m(ψ) respectively.

Lemma 68. For all patterns ψ ∈ Ψn, let ˆ̀(ψ) be the minimum codelength of ψ from

sources in InΨ. Then, for the estimator q described in Section 10.3,

`q(ψ) ≤ ˆ̀(ψ) + O`

(
ˆ̀(ψ)√
logn

)

.

Proof Observe that the shortest codelength [2] of a pattern assigned by a source in

InΨ, ˆ̀, is

ˆ̀(ψ) ≥ log
n!

∏n
i=1(i!)

ϕµϕµ!
,

where ϕ = (ϕ1, . . . ,ϕn) is the profile of the pattern. Hence

`q(ψ|ϕ) < ˆ̀(ψ).

We show that

`q(ϕ) ≤ O
(
`q(ψ|ϕ)√

log n

)

(10.1)

from which the lemma follows.

We prove Equation (10.1) for profiles of patterns with 1 < m ≤ n
2 and n

2 <

m < n symbols separately.

Case 1: n
2 < m < n

Observe that

`q(ψ|ϕ) = log
n!

∏

µ µ!ϕµϕµ!
≥ log

(
n

m− 1

)

. (10.2)



126

From Lemma 66 the number of bits needed to describe the profile is

`q(ϕ) = Θ
(√
n−m+ 2 log(n−m)

)

≤ O
( (

n
m

)

√
log n

)

,

from Lemma 63. Therefore, from Equation (10.2)

`q(ϕ) ≤ O
(
`q(ψ|ϕ)√

logn

)

.

Case 2: 1 < m ≤ n
2

From Lemma 66,

`q(ϕ)

`q(ψ|ϕ)
=

2 logm+ 2 +
∑

µ:µϕµ>0 `
ivi
q (ϕ)

∑

µ:µϕµ>0 `
ivi
q (ψ|ϕ)

where

`iviq (ϕ) =







2 log µϕµ + 2 0 < µϕµ ≤ n
2 ,

2 logϕµ + 1 µϕµ >
n
2 ,

and

`iviq (ψ|ϕ) = log
n!

µϕµ
n

µϕµ!
+ log

µϕµ!

µ!ϕµϕµ!
.

Noting that for µ such that µϕµ >
n
2 and ϕµ = 1,

`iviq (ϕ) = 1,

we write,

`q(ϕ)

`q(ψ|ϕ)
≤

2 logm+2+1+
P

0<µϕµ≤n
2
`
ivi
q (ϕ)

+
P

µϕµ>
n
2

ϕµ 6=1

`
ivi
q (ϕ)

1
2
`q(ψ|ϕ)+ 1

2

(

P

0<µϕµ≤n
2
`
ivi
q (ψ|ϕ)

+
P

µϕµ>
n
2

ϕµ 6=1

`
ivi
q (ψ|ϕ)

)

.
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It can be seen that

2 logm+ 2 +
∑

µ:µϕµ>0 `
ivi
q (ϕ)

∑

µ:µϕµ>0 `
ivi
q (ψ|ϕ)

≤ 2 max







2 logm+ 3

`q(ψ|ϕ)
, max
µϕµ>

n
2

ϕµ 6=1

`iviq (ϕ)

`iviq (ψ|ϕ)
,

max
0<µϕµ≤n

2

`iviq (ϕ)

`iviq (ψ|ϕ)

}

We show that

T1
def
=

2 logm+ 3

`q(ψ|ϕ)
≤ O

(
1√

log n

)

,

T2
def
= max

µϕµ>
n
2

ϕµ 6=1

`iviq (ϕ)

`iviq (ψ|ϕ)
≤ O

(
1√
n

)

T3
def
= max

0<µϕµ≤n
2

`iviq (ϕ)

`iviq (ψ|ϕ)
≤ O

(
1

logn

)

,

thus proving (10.1).

Bound on T1

We consider the bound on T1 first. For all m > 1, and `q(ψ|ϕ) large enough that n > 4

`q(ψ|ϕ) = log
n!

∏

µ µ!ϕµϕµ!
≥ log

(
n

m− 1

)

,

and from Lemma 63,

logm ≤
log
(

n
m−1

)

√
log n

.

Therefore for `q(ψ|ϕ) large enough that n > 4

2 logm+ 3

`q(ψ|ϕ)
≤ 7√

log n
.

Bound on T2

To prove the bound on T2, it can be shown that

`iviq (ψ|ϕ) ≥ log
µϕµ!

µ!ϕµϕµ!
≥ log

(
ϕµ!

µ−1
)
,

and, if µϕµ >
n
2 , and ϕµ > 1,

`iviq (ψ|ϕ) ≥ log
(
ϕµ!

i−1
)
≥

√
n

4
log n
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bits are needed for describing the pattern while at most 2 log n + 2 bits are needed to

describe for describing (µ, ϕµ) in this case.

Bound on T3

We now prove the bound on T3. If µϕµ ≤ n
2 , using Feller’s bounds on Stirling’s approx-

imation we obtain

1

T3
=

log n!
µϕµ
n

µϕµ! + log
µϕµ!

µ!ϕµϕµ!

2 log µϕµ + 3

≥
µϕµ log n

µϕµ
− 1

2 logµϕµ − 1
12µϕµ

log e− 1
2 log 2π

2 log µϕµ + 3

=
µϕµ log n

µϕµ

2 log µϕµ + 3
−

1
2 log µϕµ

2 logµϕµ + 3
−

1
12µϕµ

log e

2 logµϕµ + 3

−
1
2 log 2π

2 log µϕµ + 3

≥ min
1≤x≤n

2

g(x) − 1

4
− 1

36
log e− 1

8
log 2π

where

g(x)
def
=

x log n
x

2 log x+ 3

To see that

g(x) = Ω(log n)

for all 1 ≤ x ≤ n
2 , note that the derivative,

g′ = −2y2 − (2 log n− 3)y + 3 − log n

(2y + 3)2
.

where y = log x is a ratio of quadratic polynomials in log x. The denominator is positive

in the entire range 1 ≤ x ≤ n
2 and the numerator has one root between

log
n

2
− 4

2 log n− 1
≤ log x ≤ log

n

2

and another between

−1

2
≤ log x ≤ −1

2
+

4

2 log n− 1
.

The latter root is less than 1 for n ≥ 4. Since the numerator g ′ is quadratic and the

denominator is positive, we conclude that for n ≥ 4, that is one maximum of x between

1 and n
2 , namely g is unimodal.
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Since at x = 1 and x = n
2 ,

g(x) =







1
3 log n x = 1,

n/2
2 logn+3 x = n

2

it follows that for all 1 ≤ x ≤ n
2 , and n large enough,

g(x) ≥ 1

3
logn.

Therefore,

T3 ≤ O
(

1

logn

)

.

This concludes the proof of (10.1), thus proving the Theorem. 2

We now show that the above result implies that the relative redundancy is

asymptotically a negligible fraction of the MDL.

Theorem 69. As ` grows,

R̂r(IΨ, q, `) ≤ O
(

`√
log `− log log `

)

= o(`).

Proof Note that the right side increases to infinity, so we ignore the relative redun-

dancy of patterns with short minimum encoding length. Observe that the longest mini-

mum encoding length of any length n pattern is logn! ≤ n logn. Hence, for a given length

ˆ̀, the smallest blocklength n(ˆ̀) of any pattern with maximum likelihood codelength ˆ̀

should satisfy

n(ˆ̀) log n(ˆ̀) ≥ ˆ̀,

hence,

n(ˆ̀) ≥
ˆ̀

log ˆ̀
.

Therefore, for sufficiently large `,

R̂r(IΨ, q, `) ≤ O
(

`√
log `− log log `

)

.

which grows o(`). 2
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Note that the scheme q always uses 2 bits to code patterns with zero maximum

likelihood codelength. It follows from the Lemma 68 that for long enough patterns,

the relative redundancy is small. Furthermore, for all long enough, non-zero minimum

encoding length patterns the redundancy of q is a negligible fraction of the encoding

length.

It is possible to bound the relative redundancy for all values of ` ≥ 0, rather

than an asymptotic result as described above. This proof has been omitted since it

involves little more than keeping the constants in the proofs instead of covering them

with the asymptotic notation.
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