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Abstract

Flocks of Artificially Intelligent Swimming micro-Robots
with Long-range Hydrodynamic Interaction and Objectives

by

Mehdi Mirzakhanloo

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Mohammad-Reza Alam, Chair

This dissertation addresses various aspects of realizing a three-dimensional (3D) controlled
flock of swimming micro-robots that operate in, and cooperatively influence, viscous fluid
environments. A systematic approach is then presented to equip the agents with an adaptive
decision-making intelligence, so as to enable flocks of these artificially intelligent swimming
micro-robots to achieve various objectives in the presence of flow-mediated interactions.

In the first part of this dissertation, we introduce a versatile swimming robot with full 3D
maneuverability in viscous environments. The experimental realization of this artificial low-
Reynolds swimmer is then reported, and a hierarchical control strategy is implemented to
perform various swimming maneuvers. The major challenge, which makes the swarm-control
of swimming micro-robots substantially different from other well-studied swarms, is the pres-
ence of long-range flow-mediated (i.e. hydrodynamic) interactions. Therefore, the second
part of this dissertation is devoted to the investigation of swarm hydrodynamics, including
mutual interactions between these micro-swimmers, and their behavior in vicinity of solid
boundaries. In particular, we unveil orbital topologies of interacting micro-swimmers, and
report diverse families of attractors including dynamical equilibria, bound orbits, braids,
and pursuit-evasion games. The third part of this dissertation is focused on optimal swarm-
control strategies for swimming micro-robots to achieve various objectives in the presence
of flow-mediated interactions. We show that micro-swimmers can form a concealed swarm
through synergistic cooperation in suppressing one another’s disturbing flows. Various con-
trol schemes are then demonstrated for the concealed swarming and stealthy maneuvers
of swimming micro-robots. We also discuss how state-of-the-art reinforcement learning
algorithms can be used to realize flocks of artificially intelligent swimming micro-robots.
Specifically, a systematic approach is presented to equip the swimming micro-robots with
an adaptive decision-making intelligence in response to non-linearly varying hydrodynamic
loads. Flocks of these artificially intelligent micro-swimmers are then deployed to actively
cloak swimming targets in a crowded environment. This study provides a road-map toward
engineering cooperative flocks of smart micro-swimmers capable of accomplishing a new class
of group-objectives. We, therefore, hope that it will spur further research on this field at the
intersection of fluid mechanics, robotics and artificial intelligence.
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Chapter 1

Introduction

The science and engineering of multi-agent systems have significantly evolved over the past
two decades in the communities of statistical physicists [e.g., 1], applied mathematicians
[e.g., 2], and robotics engineers [e.g., 3, 4]. However, little is understood about how environ-
mental disturbances induced by individual animals/robots (hereafter referred to as ‘agents’)
affect their associates, preys or predators. For the agents swimming through fluid me-
dia, such environment-mediated interactions are known as hydrodynamic interactions, which
have a long-range nature when viscous drags dominate inertial forces [5] – that is when
the corresponding Reynolds number is small. Here we address various aspects of realizing
a three-dimensional (3D) controlled flock of swimming micro-robots that operate in, and
cooperatively influence, such viscous fluid environments.

The world of micro-scale swimming agents (hereafter referred to as ‘micro-swimmers’) is
the one associated with low Reynolds condition (Re� 1). Life in such viscosity dominated
regimes is different from what has shaped our intuition [6]. In particular, dynamics of the
incompressible flow around the agents swimming at low Reynolds is governed by the Stokes
equation which has no explicit time-dependency [5]. This along with its linearity, makes
the Stokes equation of motion invariant under time-reversal. As a result, body deformations
(i.e. swimming strokes) that are reciprocal (i.e. invariant under time-reversal), can not
generate a net propulsion at the Stokes regime – this is known as the scallop theorem [6].
Therefore, typical swimming strategies deployed by larger animals (such as fish, birds, or
insects) are not effective at micro-scales. Motile microorganisms have evolved alternative
propulsion mechanisms to break the time-symmetry, while retaining periodicity of their
swimming strokes in time. These swimming strategies often exploit the drag anisotropy
on a slender body in Stokes regime, and include the cork-screw propulsion of bacteria, the
flexible-oar mechanism of spermatozoa, and the asymmetric beats of bi-flagellate algae [6].

Inspired by the propulsion strategies deployed by natural micro-swimmers, several de-
sign concepts have been proposed for artificial low-Reynolds-number swimmers, such as the
multiple-link mechanisms [see e.g., 6], linked spheres [see e.g., 7], and the swimmers with
helical propellers [see e.g., 8]. Among these systems, linked spheres are relatively hard to
manufacture – especially the three-dimensional (3D) ones, because they need assemblies of
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linear actuators with relatively long stroke lengths. Helical swimmers are the easiest to re-
alize using 3D printers that use two-photon polymerization [9]. However, their locomotion
strategy is restricted only to one degree of freedom, and this drastically limits their path
planning. Multiple-linked mechanisms are relatively easy to fabricate and operate (as they
need only rotary actuators), but their motion is confined to the planar (2D) space – as to
the best of our knowledge, swimmers with 3D linkages have not been introduced.

In chapter 2 of this dissertation, we introduce a highly-controllable swimming robot
(called ‘Quadroar’) with full 3D maneuverability at low Reynolds number regimes. This
versatile swimming robot can be controlled to track any desired path in a 3D space, and
can be used either as a biomedical swimming micro-robot in biological fluids or a mm-scale
mobile robot performing inspection missions in highly viscous fluid environments. We then
describe the swimmer’s geometry and kinematics, followed by the mechatronic design and
fabrication process of a mm-scale Quadroar. A supervisory control scheme is also presented
in this chapter, to achieve an accurate trajectory tracking for swimmer’s actuators and to
realize various swimming maneuvers. A systematic experimental study is then conducted to
evaluate the swimmer’s performance and validate the behaviors predicted by our theoretical
modeling. In particular, two primary modes of swimming – i.e. the forward translation
and the planar reorientation modes – have been tested and compared with our numerical
simulations. The results of this chapter were mainly presented in Ref. [10].

The major challenge, which makes the swarm-control for these swimming micro-robots
substantially different from other well-studied swarms, is the presence of long-range flow-
mediated (i.e. hydrodynamic) interactions. In fact, the motion of each swimming robot (in
such low Reynolds number regimes) induces disturbing flows that strongly affect all nearby
swimmers (even those many body lengths away), and thus alters dynamics of the entire
system. Therefore, to control a collaborative flock of swimming micro-robots operating in
realistic environmental/biological setups, one needs to have a clear understanding about:
(i) the mutual hydrodynamic interactions between these micro-swimmers, and (ii) their
behavior in vicinity of solid boundaries – that is significantly affected by the presence of
swimmer-wall hydrodynamic interactions. Here, we will show rigorously that the presence of
hydrodynamic interactions makes formulating the problem of locomotion, the group behavior
of micro-swimmers and their active control a unique challenge.

In chapter 3, we unveil orbital topologies of interacting micro-swimmers using our arti-
ficial swimming micro-robot, i.e. the Quadroar. Depending on the initial conditions of the
micro-swimmers, we find diverse families of attractors including dynamical equilibria, bound
orbits, braids, and pursuit-evasion games. We show that two propelling micro-swimmers
may fall into an equilibrium state at which they both remain stagnant indefinitely. This
so-called ‘dynamic equilibrium’ is a result of hydrodynamic interactions between the two
micro-swimmers, and is obtained through the formation of a nested saddle-shaped flow field
near the swimmers. We also observe a hydrodynamic slingshot effect: a system of two
hydrodynamically interacting micro-swimmers moving along ‘braids’ (i.e. tightly woven tra-
jectories) can advance in space faster than non-interacting swimmers that have the same
actuation parameters and initial conditions as the interacting ones. Our findings suggest
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existence of complex collective behaviors of micro-swimmers, ranging from equilibrium to
rapidly streaming states. The results of this chapter were mainly presented in Ref. [11].

In chapter 4, we investigate the behavior of our model micro-swimmer (whose flow field
resembles that of the green algae, Chlamydomonas reinhardtii) near solid boundaries. In
particular, we show that through hydrodynamic interaction, these micro-swimmers can feel
and escape solid boundaries without the need for any physical contact with the wall. This
finding is then further generalized, pointing out a hydrodynamic nature for the surface-
scattering process of micro-swimmers with flow characteristics of bi-flagellate algae – i.e.
those that induce an oscillatory flow field with anterior, side and posterior vortices. The
results of this chapter were mainly presented in Ref. [12].

The rest of this dissertation is focused on optimal swarm-control strategies for swimming
micro-robots to achieve various group objectives in the presence of flow-mediated inter-
actions. As mentioned earlier, our findings in chapter 3 reveal that a pair of interacting
micro-swimmers can boost each other’s swimming speed while traveling through an ambient
fluid. This phenomenon – termed as ‘hydrodynamic slingshot effect’ – implies that by form-
ing a swarm, swimming micro-robots can collaborate and travel faster as a group than single
individuals. An intriguing question is then whether by forming a swarm, micro-swimmers
can be able to smartly cancel out each other’s disturbing effects to the surrounding fluid
environment. In other words, is it possible to form a stealth swarm minimally disturbing
the ambient fluid? And if so, to what extent such cooperation between the agents can be
effective in stifling the swarm’s hydrodynamic signature? The answer will inspire an even
more intriguing question, that is whether micro-swimmers can be actively cloaked, so as to
remain undetectable (generating no trace) when passing through a host medium? Is there
a way to realize an artificially intelligent flock of swimming micro-robots that not only can
remain stealth, but also can be deployed to actively cloak randomly swimming targets?

In chapter 5, we show that micro-swimmers can form a concealed swarm through syner-
gistic cooperation in suppressing one another’s disturbing flows. We then demonstrate how
such a concealed swarm can remain stealth while actively gathered around a favorite spot,
pointing toward a target, or tracking a desired trajectory in space. Our findings provide a
clear road map to control and lead flocks of swimming micro-robots in stealth versus fast
modes, tuned through their active collaboration in minimally disturbing the host medium.
The results of this chapter were mainly presented in Ref. [13].

In chapter 6, we demonstrate how state-of-the-art machine learning algorithms can be
utilized to realize an artificially intelligent flock of swimming micro-robots. In particu-
lar, a systematic methodology is presented to actively cloak swimming objects within any
arbitrarily crowded suspension of micro-swimmers. Our approach is to conceal the tar-
get swimmer throughout its motion using cooperative flocks of swimming agents equipped
with adaptive decision-making intelligence. Through a reinforcement learning algorithm, the
cloaking agents experientially learn an optimal adaptive behavior policy in the presence of
flow-mediated interactions. This artificial intelligence enables them to dynamically adjust
their swimming actions, so as to optimally form and robustly retain any desired arrange-
ment around a moving object without disturbing it from its original path. Therefore, the
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presented active cloaking approach not only is robust against disturbances, but also is non-
invasive to motion of the cloaked object. We then further generalize the proposed approach
and demonstrate how our cloaking agents can be readily used, in any region of interest, to
realize hydrodynamic invisibility cloaks around any number of arbitrarily moving intruders.
The results of this chapter were mainly presented in Ref. [14].

At the end, we summarize the main findings of this dissertation, discuss their potential
impacts/applications, and provide concluding remarks in chapter 7.
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Chapter 2

Quadroar: a Versatile Swimming
micro-Robot with 3D Maneuverability

The motion of swimming micro-robots – similar to that of motile microorganisms such as bac-
teria or spermatozoa – is governed by different physical rules than what we experience in our
day-to-day life. This is particularly due to the low-Reynolds-number condition of swimming
at micro-meter scales. The Quadroar, a swimmer with three-dimensional maneuverability,
is introduced for moving in these extreme conditions: either as a biomedical micro-robot
swimming in biological fluids or a mm-scale swimming robot performing inspection missions
in highly viscous fluid environments. In this chapter, we first briefly describe the Quadroar
swimmer’s geometry and kinematics. Then, the mechatronic design and fabrication of the
mm-scale Quadroar is presented. In particular, we describe the design methodology and com-
ponent selection of the system based on the required performance. A supervisory control
scheme is also presented that is deployed to achieve an accurate trajectory tracking for all the
swimmer’s actuators. Finally, we conduct an experimental study to validate the predicted
behaviors. In particular, the two primary modes of swimming – i.e. forward translation and
planar reorientation – have been tested and compared with our theoretical model.

2.1 Introduction

Although the physical laws of motion are universally governed by Newton’s equation, envi-
ronment plays a crucial role in developing the locomotory functions of animals and organisms.
Locomotion is a result of gaining reaction forces from an environmental entity by the con-
tinuous movements of body parts. In walking or running, a reaction force is generated at
the contact point with ground by pushing the Earth backwards, while in swimming and
flying, animals self-propel by displacing their environmental fluid. In all these known types
of locomotion, the center of mass of the moving object and its environment remains at rest
because there are no external forces involved. Although the flying of birds and swimming
of fish involve periodic movements of their body parts, displacing the environmental fluid
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Figure 2.1: Schematic representation of the Quadroar swimmer (a) versus its mm-scale
realization (b). The swimmer consists of four rotary disks (called the ‘paddles’), and a
linear actuator along its chassis. The expansion-contraction of the telescopic component in
conjunction with the step-wise or continuous rotation of the paddles provides the swimmer
with full 3D maneuverability, such that it can track any prescribed path in space.

becomes harder when viscous forces overwhelm inertial ones. Specifically, in the limit of zero
Reynolds number (Re � 1), when the motion of the background fluid is governed by the
Stokes equation, reciprocal movements of the body parts will not propel the organism [6, 5].
The same problem exists for robotic swimmers in these extreme conditions.

Several designs can be found for artificial low-Reynolds-number swimmers in the litera-
ture: multiple-link mechanisms [e.g. 6], linked spheres [e.g. 7], swimmers with helical pro-
pellers [e.g. 8], and the Quadroar swimmer (Fig. 2.1) introduced by our team [e.g. 15, 10].
Among these systems, linked spheres are hard to manufacture (especially three-dimensional
ones) because they need assemblies of linear actuators with relatively long stroke lengths.
Helical swimmers are the easiest to realize using 3D printers that use two-photon polymer-
ization [9], but they have only one degree of freedom, and thus path planning with internal
control – as one may need to realize smart swarms [see e.g. 13, 14] – for them is not feasible.
Multiple-linked mechanisms are relatively easy to manufacture and operate as they need only
rotary actuators, but their motion is confined to 2D space – to the best of our knowledge,
swimmers with 3D linkages have not been introduced.

One of the major advantages of the Quadroar as an artificial micro-swimmer is that it
consists of rotary paddles and only one reciprocating actuator (see Fig. 2.1). This remark-
ably simplifies experimental realization of the Quadroar – as linear actuators (in all scales)
are hard to fabricate and assemble. In nano-scales, the science and engineering of making
molecular rotary units have leapt forward and claimed the Nobel prize in Chemistry in 2016
[16]. Molecular-scale linear actuators can also, in principle, be made of certain proteins [15].
The Quadroar is highly controllable and has full three-dimensional maneuverability. It can
therefore track any prescribed spatial path [see e.g. 10]. This feature addresses some of the
current challenges in the design of biomedical micro-robots [17], and thereby makes a sub-
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millimeter-scale Quadroar a suitable candidate for various biological applications, such as
drug delivery or autonomous surgery [18, 17]. The Quadroar swimmer can also be used as
a model micro-swimmer to study the behavior of motile microorganisms (see e.g. chapters
3 and 4). In fact, even without actuating the chassis, the Quadroar swimmer can propel
along an straight line and induce a flow structure [see e.g. 19, 11, 12] similar to that of green
algae Chlamydomonas reinhardtii, which take breast strokes to swim. In macro scales, on the
other hand, Quadroar swimmers can be deployed to perform autonomous robotic inspection
missions in highly viscous fluid reservoirs [20] – such as oil tanks.

In this chapter, the Quadroar swimmer’s geometry and kinematics is briefly introduced.
We then report the design, fabrication and control of a mm-scale Quadroar. Finally, behavior
of the experimentally realized prototype is studied for two primary modes of operation: (i)
forward translation; and (ii) planar reorientation (see Fig. 2.2).

2.2 The Swimmer’s Geometry and Kinematics

The Quadroar (Quadru + oar) swimmer consists of an I-shaped frame including two axles
and a middle telescopic link as shown schematically in Fig. 2.1. Disks of radii a are placed
at each end of the rear and front axles, and can rotate around their supporting flange link.
Orientation of the ith propeller (i.e. the disk i∈ {1, 2, 3, 4}) with respect to the main frame
(or the swimmer’s chassis) is denoted here by the angle variable ϑi, and the length of each
axle is 2b. The telescopic link (with a linear actuator in the middle) has a variable length
2l+2s (t), where s (t) is the contribution of the expansion/contraction of the linear actuator.
At any given instant of time, the swimmer’s orientation is quantified by the roll-pitch-yaw
sequence of the Euler’s angles (α), and its motion is tracked by the position of its geometric
center, Xc. Throughout the calculations presented in this chapter, a local frame of reference
is considered with its origin fixed to the geometric center of the swimmer, so that the I-frame
lies in the x1 − x2 plane, and x1-axis is along the main link of the chassis (as shown in Fig.
2.1). We also consider a global stationary Cartesian coordinate system (Xi), which relates
to the body-fixed local coordinates (xi) through the rotation matrix (R) defined based on
the Euler’s angles (φ, θ, ψ) representing the swimmer’s orientation.

As a micro-robot swimming in biological fluids (or a mm-scale mobile robot performing
inspection missions in highly viscous fluid environments), the Quadroar swimmer is a low-
Reynolds-number swimmer (i.e. Re � 1). In the low-Reynolds regime, inertia is negligible
and viscous drags primarily govern dynamics of the system. Therefore, hydrodynamics of
these swimming micro-robots can be well-described by the Stokes equations,

∇P = µ ∇2u+ F , ∇ · u = 0, (2.1)

subject to boundary conditions imposed by their swimming stroke. Here, µ is the dynamic
viscosity of surrounding fluid, P denotes the pressure field, u is the velocity field, and F
represents the external body force per unit volume.
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In an otherwise stationary fluid of viscosity µ, the ith paddle (i.e. disk) of the swimmer
experiences a drag force/torque while translating/rotating. These forces/torques depend on
the dynamic viscosity (µ) of the ambient fluid, the disk geometry, and the linear/angular
velocity of its motion – denoted by vi and ωi, respectively. The drag force and torque acting
on the paddle i – which by the Newton’s third law, cause reactions of the same magnitude
from the paddle to ambient fluid – can be mathematically expressed as:

fi = µ Ki · vi, τi = µ G · ωi, (2.2)

where all geometric properties of the disk are gathered in two tensors: (i) the translation
tensor, Ki, and (ii) the isotropic rotation tensor, G , represented as [15]:

Ki =
8

3
a

5− cos (2ϑi) 0 sin (2ϑi)
0 4 0

sin (2ϑi) 0 5 + cos (2ϑi)

 , G =
32

3
a3I. (2.3)

Note that I denotes the identity tensor. Here, for simplicity, we have assumed that paddles
of the Quadroar swimmer are distant enough such that effects of the disturbing flows induced
by other propellers can be neglected in calculating hydrodynamics of each single paddle. In
chapters 3-4, we relax this assumption and consider the complete coupled hydrodynamic
interactions between the swimmer’s paddles. We also assume that cross section of the swim-
mer’s I-frame is negligibly small compared to the effective area of its paddles, and thus drag
forces on the swimmer’s chassis are neglected. A self-propelled swimmer in Stokes regime is
force-free and torque-free. Therefore, for a freely swimming Quadroar one must have

4∑
i=1

fi = µ
4∑
i=1

Ki · vi = 0 (2.4)

4∑
i=1

τi = µ
4∑
i=1

(G · ωi + ri ×Ki · vi) = 0, (2.5)

where ri = ± [l + s(t)] e1± be2 is the position vector of disk i with respect to the body-fixed
frame of reference. Note that the linear and angular velocities of each disk (i.e. vi and ωi) in
such a local frame of reference are calculated based on the velocity of the swimmer’s center
of mass, Vc, and the angular velocity of its chassis, Ω. To be more specific:

vi = RVc ± ṡ(t)e1 + Ω× ri, ωi = Ω + ϑ̇ie2 . (2.6)

Therefore, the force- and torque-balance equations can be combined and expressed as[
A11 A12

A21 A22

](
Vc
Ω

)
=

(
B1

B2

)
, (2.7)
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where components of the resistance matrices, Amn = Amn,jk ejek (m,n ∈ {1, 2}), and ele-
ments of the forcing vectors, Bm = Bm,jej (m ∈ {1, 2}), read as [see e.g. 15]

A11 =
4∑
i=1

KiR, A12,jk =
4∑
i=1

Ki,jlri,pεplk,

A21,jk =
4∑
i=1

εjplri,pKi,lqRqk, A22,jk =
4∑
i=1

(
32

3
a3δjk + εjplεqktri,pri,tKi,lq

)
,

B1,j = −
4∑
i=1

Ki,j1l̇i, B2,j = −
4∑
i=1

(
32

3
a3δ2jϑ̇i + l̇iri,kKi,l1εjkl

)
.

Here, Ki = Kjk ejek is the translation tensor (as defined in Eq. 2.3) corresponding to the
paddle i, and i ∈ {1, 2, 3, 4} is the paddle indicator. Also, l̇i = +ṡ(t) for i ∈ {1, 2} and −ṡ(t)
for i ∈ {3, 4}. Note that Eq. 2.7 represents a set of non-linear ordinary differential equations,
with parametric and external excitation. Once this non-linear system of equations is solved
for Vc and Ω, one can track the position (Xc) as well as the orientation (α) of the Quadroar
swimmer (in time) by integrating

Ẋc = Vc, α̇ = T−1 ·Ω, T =

1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ

 . (2.8)

In this chapter, we focus on the primary modes of propulsion (i.e. swimming strokes) in a
planar space. Note that in a two-dimensional (2D) space, the forward translation combined
with the ability to reorient (in-place) toward any desired direction, makes the swimming
robot able to track any prescribed path. The sequences of step-wise control inputs (the
so-called ‘swimming cycles’) which result in these two primary modes of planar motion are
presented in Fig. 2.2. Specifically, harmonic oscillation of the linear actuator while keeping
the rear disks normal (parallel) to the I-frame, and the front disks parallel (normal) to
the I-frame, during the expansion (contraction), results in the ‘forward translation’ mode.
A similar swimming cycle, except with disks {1, 4} normal (parallel) to, and disks {2, 3}
parallel (normal) to the swimmer’s I-frame during expansion (contraction), leads to the in-
place counter-clockwise rotation of the swimmer, called the ‘planar reorientation’ mode. In
general, behavior of the Quadroar swimmer is controlled by five control inputs: rotation
rate of the four paddles and motion of the linear actuator. Through these five degrees of
freedom, the swimming robot is able to move along transverse or forward straight lines, and
can perform full re-orientation maneuvers about any of its body-fixed local axes [see 15, 11].
As a result, the swimmer has a full 3D maneuverability and is able to track any prescribed
path in space by means of step-wise control strategies. This may potentially address some
of the main challenges that biological micro-robots are facing today [17].
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(a) Forward Translation

(b) Planar Reorientation

Top View:

Side View:

Top View:
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Figure 2.2: Schematic representation of stroke cycles leading to forward translation (a) and
planar reorientation (b) of the Quadroar swimmer.

2.3 Experimental Realization of

the mm-Scale Quadroar Swimmer

In this section, we report the designed and fabrication a mm-scale swimmer system according
to the proposed Quadroar architecture. We then test it when swimming in the highly
viscous silicone oil, so as to assure the low-Reynolds-number condition for such a mm-scale
Quadroar. The swimmer system is composed of four rotary disks attached at the ends of
its front and rear axles. These axles are located on a variable length chassis (see Fig. 2.3).
Five mm-size brushed DC geared motors are used to spin the disks relative to the swimmer
body, and to achieve linear expansion/contraction between the front and rear parts of the
chassis. Additionally, a sensory system is used to measure the paddle angles and the chassis
displacement to implement various modes of operation (i.e. ‘swimming strokes’). An on-
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board micro-controller is utilized to obtain trajectory tracking for all five actuators. In what
follows, we briefly present the design and fabrication of the main mechanical and electrical
components used in the Quadroar swimmer system.

2.3.1 Main Body and Chassis

The main body of the swimmer consists of two rectangular-shape sections (front and rear).
Since most of the components installed on the swimmer (such as DC motors, magnetic
encoders, lead-screw mechanism, etc.) have a density higher than that of silicone oil, a low-
density machinable foam with a density of about 0.2 gr/cm3 is used to fabricate the body
of the swimmer. The net density of the fabricated Quadroar swimmer is approximately 0.95
gr/cm3, suitable for submerging in the silicone oil. A lead-screw mechanism with two guide
rails, as well as a small geared DC motor to turn the lead-screw, are deployed to achieve
linear expansion/contraction between the front and rear sections (see Fig. 2.3).

2.3.2 Motors and Motor Drivers

In Stokes regimes, the required torque τmax to turn a thin circular disk of radius a in an
otherwise stationary ambient fluid with dynamic viscosity of µ can be calculated as τmax =
6µa3ω [5], where ω is the angular velocity of the disk. Based on this estimation, in order to
achieve a maximum angular speed of 25 rad/s, for a thin disk of diameter 4 cm, in a liquid
with dynamic viscosity of 5000 cP, one needs a 6 N.mm torque. Considering this maximum
required torque as well as other practical complexities in driving 1, cost and compactness, a
geared DC motor is selected (see Fig. 2.3) which has a 6 mm diameter, 19 mm length and
can provide 6 N.mm torque consuming 180 mA at 5V.

Three dual H-bridge DC motor controllers (TB6612FNG from Toshiba) are also used to
control these motors in both directions. Each driver works with a 5V electric power supply,
and is capable of applying a maximum continuous current up to 1.2A. Motor angular speed
can be controlled through a pulse width modulation (PWM) signal where the duty ratio
determines the angular speed of the motor.

2.3.3 Sensory System

Accurate tracking of the angular position of the swimmer paddles, as well as the phase lag
between these paddles and the chassis’ expansion/contraction, is crucial for the Quadroar
swimmer to perform various modes of propulsion (i.e. swimming strokes) through the ambi-
ent fluid. Therefore, an effective sensory system is necessary to measure the relative angles
between each paddle and the swimmer’s body, as well as the chassis’ expansion length. Here,
we used the AS5048A rotary magnetic encoder chip (see Fig. 2.3), which consists of four

1For example, brush-less DC motors require a complex driver system while brushed DC motors can be
driven simply by applying a voltage difference.
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Figure 2.3: The mm-scale realization of the Quadroar swimmer for viscous environments.
A) The angle measurement system: a magnetic encoder is used to measure the paddles’
angles. A ring magnet is attached to the paddle shaft, so as to induce a magnetic field in
the ferromagnetic cylinder which is installed on top of the magnetic encoder chip. B) The
linear actuator as an expansion/contraction mechanism: a lead-screw mechanism is used
to generate the expansion/contraction motion between the front and rear sections of the
swimmer. C) The expansion/contraction measurement system.
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Hall effect sensors located at its corners, and measures the absolute position of the magnet’s
rotation angle. This magnetic encoder has a resolution of 14 bit per revolution (i.e. 0.02
degree) and benefits from a small package size (4× 6× 1 mm).

To measure the paddle angle, a magnetic ring (to be radially magnetized) needs to be
attached to the paddle shaft while the encoder chip is in front of, and centered with, the
ring. However, in our swimmer system, it is not possible to attach a magnetic ring to the
paddle shaft ends such that it faces the encoder chip. Therefore, the chip has to be placed
with an offset (of 8 mm) from the ring (see Fig. 2.3). Such an offset, in turn, will disable the
encoder from measuring the correct angle of the paddle. To circumvent this practical issue,
a small ferromagnetic cylinder is attached to the encoder chip, so that the magnetic ring on
the paddle shaft induces a magnetic field inside the cylinder. While the paddle shaft and
magnetic ring combination is being turned, the magnetic encoder chip can then indirectly
estimate the paddle angle by measuring the induced field in the ferromagnetic cylinder.

Similarly, a combination of a linear magnetic encoder (AS5304) and a multi-pole mag-
netic strip is used to measure the expansion/contraction of the chassis (see Fig. 2.3). The
linear magnetic encoder is installed on the rear section of the chassis, while the magnetic
strip is attached to the front one. Expansion/contraction of the chassis generates a square
wave pulse. By counting the number of pulses with the on-board micro-controller, the in-
stantaneous length of the chassis can be measured. Considering the linear magnetic encoder
resolution (160 pulses per pole pair interval) and the pole interval on the magnetic strip (4
mm), the resolution of the chassis expansion measurement is equal to 0.025 mm.

2.3.4 Micro-Controller

An on-board micro-controller is used to perform low-level control algorithms, calculate the
command signals for the actuators, and measure the sensory values. Considering factors
including the number of I/O ports necessary for the system, as well as processor speed and
availability, the Atmega 2560 (from Atmel) is selected for on-board control of the Quadroar
swimmer. It has an 8-bit processor and can run with a maximum clock frequency of 16 MHz.
A unique board is designed and fabricated for installing this micro-controller as well as other
electronic components such as motor drivers, voltage regulators and linear encoders. The
fully assembled micro-swimmer system is shown in Fig. 2.3.

2.4 Hierarchical Control Strategy

The sampling rate between the micro-controller and sensors/actuators is more than 300
Hz, while the communication rate between the micro-controller and the computer (attached
via USB cable) is only 50 Hz. Therefore, a hierarchical control scheme (c.f. [21]) is used
here to improve the performance of the trajectory tracking (see Fig. 2.4). The two-level
control structure introduced in this chapter, includes a multi-rate system with the higher
level controller (i.e. Simulink) updating the reference signal at 50 Hz, and the lower level
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Figure 2.4: Block diagram presenting interconnections between different components of the
swimmer system. A two-level control strategy is used where the sampling rate between the
micro-controller and sensors/actuators is more than 300 Hz, while the communication rate
between the micro-controller and the computer (attached via USB cable) is only 50 Hz.

controller (i.e. on-board micro-controller) closing the loop at 300 Hz [22]. This control
architecture further improves the system performance through a fast and accurate tracking
of the paddle angles and chassis expansion/contraction.

The low-level controller is composed of a feedback and a feed-forward loop. The feed-
forward portion is obtained by an open-loop calibration test that is performed on each
motor individually. The calibration is mainly done to find and remove the dead-zone in
the motor control command. It is also needed to find a linear input/output model for each
actuator. The feedback portion is a proportional–integral–derivative (PID) controller that
has been tuned based on the motor model, as well as the hydrodynamic interaction between
the paddles rotating in the ambient fluid. The performance of this controller for trajectory
tracking (here a square wave) is shown in Fig. 2.5 for a sample case. This two-level control
scheme is then implemented on the swimmer to test various modes of operation in silicone
oil where each mode is composed of a unique sequence of paddles/chassis actuation profile.
The results of these experimental tests are presented in the next section.
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Figure 2.5: Trajectory tracking by paddles and the chassis, for a benchmark test case of
square wave signals. Here the paddles rotate between 0 and 90o, while the chassis ex-
pands/contracts between 0 and 8.1 mm.

2.5 Experimental Results and Discussion

After identifying and resolving minor mechanical and electrical issues in the system, the
Quadroar swimmer is submerged and tested in a tank of silicone oil. Experimental sample
tests for the two primary modes (i.e. the forward translation and the planar reorientation)
have been conducted (see e.g. Fig. 2.6), and the dynamic behavior of the swimmer system
is compared (Fig. 2.7) to that predicted by the theoretical model developed in section 2.2.

As a benchmark, snapshots of the forward translation experiment are shown in Fig. 2.6,
where red and blue LEDs are used on the swimmer to enable us determining its position
and orientation in the tank through the video processing toolbox in MATLAB. A sequence
of paddles’ angles and chassis’ stroke similar to that presented in Fig. 2.2 is applied on
the swimmer to achieve translation and reorientation motions. The Reynolds number cor-
responding to these test cases can be calculated as Re = ρvD/µ, where ρ and µ are the
density and dynamic viscosity of the surrounding fluid (here 1000 Kg/m3 and 5000 cP, re-
spectively); v is the maximum chassis expansion/contraction speed (here 10.5 mm/s); and
D is the paddle diameter (here 40 mm). Therefore, the Reynolds number corresponding to
these experiments is ∼ 0.1, which matches our assumption for low-Reynolds-number con-
dition (i.e. Re � 1). The results of these two tests are then compared (in Fig. 2.7) with
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Figure 2.6: The Quadroar swimmer performing the swimming stroke that generates forward
translation (see Fig. 2.2a) in the silicone oil tank. Two LEDs are placed on the swimmer
chassis, so as to precisely track the location and orientation of the swimmer through video
processing. The stroke and linear velocity of the chassis’ expansion/contraction (in the
presented test case) are 21.6 mm and 10.5 mm/s, respectively.

those achieved by our simplified theoretical model. The experimental results match well with
the theoretical prediction for both the forward translation and planar reorientation modes.
The slight difference between the experimental and theoretical results can mainly be due to
neglecting the following factors in the theoretical model: (i) the swimmer’s actual frame size
which generates additional drag force on the body; (ii) effects of the tank’s confining walls
and bottom surface (c.f. chapter 4); and (iii) the tension generated in the data/power cable
connected to the actual fabricated swimmer.

More experimental tests have also been performed to further investigate the effects of
chassis stroke on forward translation and planar reorientation. Specifically, three different
chassis strokes are used for each mode of operation: 8.1, 13.5 and 21.6 mm. As shown in Fig.
2.7, the chassis stroke does not affect the average linear velocity of the swimmer. This is also
in agreement with our theoretical prediction, which shows that the swimmer linear speed
only depends on the chassis expansion/contraction rate (i.e. speed), but not its stroke. In
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(a) (b)

(c) (d)

Figure 2.7: (a)-(b): Comparison between the behavior predicted by our simplified theoretical
model and the experimental results obtained for sample tests conducted on the forward
translation (a) and the planar reorientation (b) modes. Solid and dashed lines represent
trace of the marker on the swimmer in experiments and theoretical modeling, respectively.
Theoretical position of the centroid in panel (b) is shown by an asterisk, and the green
arrow shows direction of the performed reorientation. For the benchmark test presented
in panels (a) and (b), the stroke and linear velocity of chassis’ expansion/contraction are
21.6 mm and 10.5 mm/s, respectively. We also further explore experimental results for the
forward translation (c) and the planar reorientation (d) modes, when the swimmer uses
various strokes. The Quadroar swimmer is translating forward along x1 direction (c.f. Fig.
2.2a) in panel (c); and it is reorienting counter-clockwise in x1 − x2 plane (c.f. Fig. 2.2b) in
panel (d). Solid lines represent trace of the marker on the Quadroar swimmer (see Fig. 2.6).



CHAPTER 2. QUADROAR: A VERSATILE SWIMMING MICRO-ROBOT 18

planar reorientation, note that the presented trajectories belong to the marker point (Fig.
2.6), since motion of the swimmer’s centroid is negligible in our experiments – that is the
in-place reorientation as predicted by our theoretical model.

The promising match observed between predicted behaviors and the experimental results,
opens up a new avenue toward designing more advanced control algorithms to obtain complex
trajectory tracking in real time. This is the main topic of our future work, where we will
design and implement a passive velocity field control (PVFC) algorithm to navigate the
Quadroar swimmer along any prescribed trajectory through a viscous fluid environment
with several solid obstacles to be avoided.

2.6 Concluding Remarks

In this chapter, we reported the design, fabrication, control strategy, and experimental test-
ing of the first swimming robot with full 3D maneuverability in viscous environments. This
low-Reynolds-number swimmer (called Quadroar) is composed of four independent rotary
paddles and a chassis capable of expanding and contracting. The swimmer body is made
with a machinable foam to make it neutrally buoyant in the ambient fluid (here e.g. sil-
icone oil). A two-level supervisory control scheme was designed and implemented on the
swimmer to perform two primary modes of propulsion (i.e. swimming strokes), namely
the forward translation and planar reorientation. The supervisory controller (i.e. the com-
puter/Simulink) provides high-level commands by calculating the sequence of paddles’ angles
and chassis expansion/contraction mode, so as to obtain the desired motion. The on-board
micro-controller, on the other hand, implements feedback algorithms to track such angles
and strokes by the paddles and chassis, respectively.

Performance of the mm-scale Quadroar swimmer has then been experimentally evaluated
in silicone oil, where it satisfies the low-Reynolds-number condition (Re ∼ 0.1). The two
primary modes of propulsion – i.e. the forward translation and the planar reorientation –
have been tested and compared with our theoretical models. Experimental results match well
with the behavior predicted theoretically. Nevertheless, some minor deviations were observed
due to factors such as non-negligible drag force on the chassis, hydrodynamic interactions
with solid boundaries, and tension in the data/power cable, which were not considered in the
simplified theoretical model. Potential future steps include the design and implementation
of a passive velocity field control (PVFC) algorithm to navigate the swimming robot along
a predefined trajectory such that it avoids solid obstacles on its motion path.
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Chapter 3

Mutual Interactions and
Hydrodynamic Choreographies

In this chapter, we unveil orbital topologies of interacting micro-swimmers using an artificial
swimming micro-robot, called Quadroar. Depending on the initial conditions of the micro-
swimmers, we find diverse families of attractors including dynamical equilibria, bound orbits,
braids, and pursuit–evasion games. We also observe a hydrodynamic slingshot effect: a
system of two hydrodynamically interacting swimmers moving along braids can advance in
space faster than non-interacting swimmers that have the same actuation parameters and
initial conditions as the interacting ones. Our findings suggest existence of complex collective
behaviors of micro-swimmers, ranging from equilibrium to rapidly streaming states.

3.1 Introduction

Natural micro-swimmers (known as ‘microorganisms’) including all species of bacteria, pro-
tozoa, and also some of algae, are playing an important role in recycling nutrients in the
earth’s ecosystems [23, 24]. A recent report by National Science Foundation (NSF) estimates
the presence of about one trillion species right now on the earth, that only one-thousandth of
one percent of which have been studied [25]. This fact has put the investigation of natural,
as well as artificial, micro-swimmers under the spotlight [26].

Swimming microorganisms in nature nearly always come in groups, and understanding
their collective behaviors in the presence of hydrodynamic interactions requires multi-scale
models [27, 28]. The main challenge in developing statistical and continuum models is how
we deal with collisional and relaxation processes, which are basically determined by two-body
interactions [29]. This is exacerbated by the long range nature of hydrodynamic interactions
at low Reynolds number conditions that makes the investigation of the swarm dynamics of
micro-swimmers substantially different from other well-studied swarms. Specifically, swim-
mers at small scales strongly affect (at distances several body-length away) their fluidic
environment and hence their nearby swimmers (compare this with, say, Quadcopters whose
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influence on nearby copters is limited to a fraction of their body length). An interesting
example, showing the significance of hydrodynamic interactions, is that they may trigger the
locomotion of otherwise non-swimming reciprocal swimmers [30, 31].

Prior observations have revealed a glimpse of complex behaviors emerged from hydro-
dynamic interactions. For instance, the parallel motion of two flagella-driven bacteria have
been shown to be unstable [32], two nematodes tied to a wall from one end eventually get
entangled [33], and two Paramecia avoid each other solely due to hydrodynamic interac-
tions [34]. To addressed two-body dynamics for micro-scale swimmers, several studies have
proposed using simple minimal model swimmers and have been able to report few basic be-
haviors. For example, two puller-type squirmers are shown to experience a significant change
in their orientations after an encounter [35], which together with the swimmers’ inertial ef-
fects, causes hydrodynamic attraction [36]. For spherical swimmers with spatially confined
circular trajectories, the reported long-time cell-cell interaction is either an attraction or a
repulsion [37], whereas two rigid helices are shown not to attract or repel each other while
rotating in-phase [38]. Another example is a system of two linked-sphere swimmers [7] that
may converge, diverge oscillate or stay parallel to each other [39].

Recent experiments, nevertheless, uncover more complex flow fields around flagellated
microorganisms [40]. Specifically, flagellated microorganisms such as Chlamydomonas rein-
hardtii induce an oscillatory flow field that alternates between the flow fields of basic puller-
and pusher-type swimmers [41, 40], complicating the nature of two- or multi-body interac-
tions of such microorganisms. To gain insight into the two- and three-dimensional interac-
tions of microorganisms, we simulate them using the Quadroar swimmer whose flow field
[19] is similar to that of C. reinhardtii [41]. One of the major advantages of the Quadroar
as an artificial micro-swimmer is that it consists of rotary disks and only one reciprocating
actuator. This remarkably simplifies the realization of the Quadroar as linear actuators (in
all scales) are hard to fabricate and assemble. In nano-scales, the science and engineering
of making molecular rotary units have leapt forward and claimed the Nobel prize in Chem-
istry in 2016 [16], and molecular-scale linear actuators can, in principle, be made of certain
proteins [15]. The Quadroar is highly controllable and has full three-dimensional maneuver-
ability. It can therefore track any prescribed spatial path [15]. This has been a challenge in
the design of medical micro-robots [17] that makes a sub-millimeter-scale Quadroar also a
suitable candidate for various biological applications, such as drug delivery or autonomous
surgery [18, 17]. In macro scales, the Quadroar can be deployed as a robotic swimmer for
inspection missions in highly viscous fluid reservoirs [20].

In this chapter, we use the Quadroar swimmer to unveil the rich two-body dynamics
associated with hydrodynamic interactions of two micro-swimmers in the Stokes regime.
Unlike other existing theoretical models that try to simulate the swimming mechanism of
specific microorganisms [see e.g. 42], the Quadroar is designed to induce an oscillatory flow
field with anterior, side and posterior vortices in its surrounding [19]. Therefore, complex
interactions that we find in the phase-space of two swimmers are generic characteristics of
microorganisms generating anterior, side and posterior vortices.
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Figure 3.1: Quadroar, a swimming micro-robot whose induced flow field resembles that of
the green algae C. reinhardtii. (a) Geometry of the Quadroar swimmer. (b) Relative initial
positions of two planar swimmers considered in this study.

3.2 Kinematics and Numerical Framework

The Quadroar consists of an I-shaped frame including an active chassis and two axles of
length 2b (see Figure 3.1). Each axle (at its two ends) is connected to two disks of radii a.
The length of the chassis is variable and is equal to 2l+ 2s(t) where s(t) is the contribution
from the expansion/contraction of a linear actuator installed in the middle of the chassis.
The angular position of each disk Dn (n = 1, . . . , 4) with respect to the leg of its axle is
denoted by −π ≤ ϑn ≤ π. We define a body-fixed Cartesian coordinate system (x1, x2, x3)
with its origin at the geometrical center of the frame. The (x1, x2)-plane lies in the plane
of the swimmer and the x1-axis is along the chassis. We also define a global Cartesian
coordinate system (X1, X2, X3) as is shown in Figure 3.1(b). The body-fixed coordinates xi
are related to the global coordinates Xi (i = 1, 2, 3) through a transformation matrix R that
depends on three orientation (Euler’s) angles of the swimmer.

We assume that the influence of each disk on its surrounding environment can be modeled
as a point force and a point torque [43]. For each of the two swimmers, j = A,B, and for
each of their four disks n = 1, · · · , 4, the point forces (fjn) and torques (τ jn), expressed in
the global coordinate frame are given by [19]

fjn = µRT
j ·Kjn ·Rj · (vj,c + vjn − ujn) , (3.1)

τ jn = µG · (ωj,body + ωjn −Ωjn) , (3.2)

where µ denotes dynamic viscosity of the surrounding fluid; vjn and ωjn are the linear and
angular velocities of each disk with respect to the swimmer’s hydrodynamic center and body-
fixed coordinate frame, respectively; vj,c is the absolute velocity of the hydrodynamic center
and ωj,body is the angular velocity of the jth swimmer expressed in terms of Euler’s angles;
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ujn and 2Ωjn are the velocity and vorticity fields of the fluid at the center of each disk; G
is the isotropic rotation tensor and Kjn is the translation tensor corresponding to disk n of
swimmer j. These tensors are mathematically defined as [15]:

G =
32

3
a3I, Kjn =

8

3
a

5− cos (2ϑjn) 0 sin (2ϑjn)
0 4 0

sin (2ϑjn) 0 5 + cos (2ϑjn)

 . (3.3)

A self-propelled swimmer in the Stokes regime is force-free and torque-free. Therefore,

4∑
n=1

fjn = 0,
4∑

n=1

[(
RT
j · rjn

)
× fjn + τ jn

]
= 0, (3.4)

for swimmers j = A,B. These four sets of vectorial equations (i.e. a set of two vectorial
equations for each of the swimmers) require the values of velocities ujn and spins Ωjn (at the
position of disk n of swimmer j) to be complete and solvable for vc and ωbody. Considering
only the point-force contribution of each propeller in an infinite fluid domain, the Stokes
equation describing dynamics of the induced flow can be written as:

∇P = η ∇2u+ fδ(r), ∇ · u = 0, (3.5)

where δ (r) is Dirac delta function. The point-force is exerted at x0, and for a generic point
x in space r = x − x0 with r = |r|. Equation (3.5) can be analytically solved in several
ways [see e.g. 44], and the resultant velocity field is known as Stokeslet:

u (r, t) =
f

8πη
·
(
I

r
+
rr

r3

)
. (3.6)

The contribution of a point-torque γ exerted at a point x0 in an infinite fluid, on the other
hand, is derived from the following set of equations [44]:

∇P = η ∇2u+∇× (γδ(r)) , ∇ · u = 0. (3.7)

The exact solution to Eq. (3.7) is also available [see e.g. 44], and is called a rotlet:

u (r, t) =
1

8πη

(
γ × r
r3

)
. (3.8)

In the case of two interacting swimmers, the linear nature of the Stokes equation then allows
us to invoke superposition and obtain:

ujn =
1

c0

4∑
k=1,k 6=n

(
fjk
zkn,j

+
fjk ·Xkn,j

z3kn,j
Xkn,j +

τ jk ×Xkn,j

z3kn,j

)

+
1

c0

4∑
k=1

(
fik
zkn,ij

+
fik ·Xkn,ij

z3kn,ij
Xkn,ij +

τ ik ×Xkn,ij

z3kn,ij

)
, (3.9)
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and

2Ωjn = ∇× ujn, (3.10)

where c0 = 8πµ, and

Xkn,j = RT
j · (rjn − rjk) , (3.11)

Xkn,ij = (Xc,j +RT
j · rjn)− (Xc,i +RT

i · rik). (3.12)

The scalars zkn,j and zkn,ij are the magnitudes of the vectors Xkn,j and Xkn,ij, respectively,
and rjn denotes the position vector of the nth disk in the swimmer j’s local coordinate frame.
In all expressions we have i, j = A,B with the condition i 6= j in each expression.

In this chapter, we also assume that disks Dn (n = 1, . . . , 4), of each swimmer j = A,B
are spinning with angular velocities ϑ̇j1 = ϑ̇j2 = c0 ωs and ϑ̇j3 = ϑ̇j4 = −c0 ωs + δω where
δω is a detuning parameter, and the length of the linear actuator at the middle of the chassis
varies according to s (t) = s0 [1− cos (ωst)] /2.

Throughout our simulations, in this chapter, we set a = 1, b/a = 4, l/a = 4, s0/l = 1/2,
and ωs = 1. The characteristic time scale of the two-body system is Ts = 2π/ωs. The
parameter c0 affects both the swimmer’s dynamics and flow field around it. For c0 ≈ 0.5, it
has been shown [19] that the flow field induced by the Quadroar closely resembles that of C.
reinhardtii alga [41]. Our numerical experiments show that the resemblance holds for almost
any c0 ≥ 1. The similarity in behaviors for this broad range of c0, which even includes the
single-frequency case (i.e., c0 = 1), adequately addresses the concern about whether any of
emerging dynamical regimes is affected by the presence of two different frequencies. This
further highlights the significance of having an oscillatory flow field. To speed up numerical
simulations, we set c0 = 50. For individual swimmers, non-zero values of δω significantly
increase the number of orbital families, and in some cases lead to densely interwoven quasi-
periodic rosette-shaped trajectories capable of inducing chaotic mixing in the surrounding
environment [19]. Here, to focus on the basics of mutual interactions, we consider δω=0.
The results of this study are still valid for small δω, but start to deviate and become more
involved as δω increases. Note that a = 1µm leads to a Quadroar of ∼ 8-12µm, which is
similar to the size of a C. reinhardtii cell. Moreover, setting c0 = 50 results in the frequency
of 50Hz for the disks, reminiscent of the flagella beat frequency for a C. reinhardtii cell [41].
For a more detailed description of an isolated Quadroar swimmer’s dynamics and induced
flow fields, the reader is referred to chapters 2 and 4.

3.3 Results and Discussion

Two of our swimmers, depending on their relative initial locations (dX1, dX3) portray a
range of various trajectories as a result of their mutual hydrodynamic interactions. These
trajectories range from converging, diverging, and oscillatory motions (which are also seen in
other artificial micro-swimmers [e.g. 39]), to forming braids (Fig.3.2b), and even dynamical
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equilibria (Figs 3.2e and 3.5b) which, to the best of our knowledge, have never been observed
in low-Reynolds-number swimming. We also report capture into bound orbits (Fig. 3.5c) for
two interacting micro-swimmers swimming in an infinite unbounded fluid.

In order to systematically study different possibilities of two-swimmer choreographies,
induced by hydrodynamic interactions, we consider the effects of relative swimming directions
and initial locations which, in turn, also covers phase shift effects. To illustrate the latter,
note that since there is no explicit time dependency in the Stokes regime, swimmers with
an arbitrary phase shift between them (as a result of being launched at different times)
can be considered as two in-phase swimmers with initial locations described at the moment
that the second swimmer is turned on. For simplicity, through this chapter we focus on
interaction dynamics in the planar phase space. Nevertheless, our findings can be inherently
generalized to a three-dimensional (3D) space. Our study is also conventionally arranged
into two general categories: (i) the two swimmers are released in the same direction such that
their initial x3-axes are parallel and both aligned with the positive X3-axis (cf. Fig.3.1), and
(ii) the two swimmers are initially facing opposite directions such that at t = 0 the following
conditions hold: x̂3A · X̂3=1, and x̂3B · X̂3=-1, where the hat sign denotes unit vector. The
resulting parameter space for each of these general cases is still valid for small perturbations.
For larger perturbations, however, the parameter space starts to deviate from the presented
plot and gradually tends to that of the other extreme. For example, by changing the relative
angle between the swimmers’ initial x3-axes from zero to π, the corresponding parameter
space diagram will gradually transform from Fig. 3.2a (swimming in the same direction) to
Fig. 3.5a (swimming in opposite directions).

The parameter space for the trajectories of two swimmers released parallel and in the
same direction [case (i)] is displayed in Fig. 3.2(a) with sample trajectories demonstrated in
Figures 3.2(b)-(e). In these figures, the swimmers would follow dashed lines in the absence
of hydrodynamic interactions. If the two swimmers are released close to each other, and
depending on their relative locations, they form a variety of braids with different shapes
(Fig. 3.2b). Interestingly, we find that forward translational motion along a braid is faster,
sometimes by a factor of two, than the motion of individual swimmers in the absence of
hydrodynamic interactions. This phenomenon, which we refer to as hydrodynamic slingshot
effect, can be easily deduced from Fig.3.2(b): two hydrodynamically interacting swimmers
advance along braids, and therefore in space (motion along colored lines), faster than non-
interacting swimmers (moving along dashed lines) whose actuation parameters and initial
conditions exactly match those of the interacting ones. The slingshot effect is caused by a
synergistic process: each swimmer induces an advection field that sums with the relative ve-
locity of its companion swimmer with respect to the background fluid, boosting the absolute
velocity of the companion swimmer. A snapshot of the flow field induced by the system of
two swimmers advancing along a braid-like trajectory, as well as the corresponding stream-
lines, are presented in Fig. 3.3. It illustrates how each swimmer induces an advection field
at the geometric center of the other swimmer, boosting its absolute translational velocity.
The net flow field could also be described as a constructive interference of the two swimmers’
flow fields (see Fig. 3.3). Thus, the resultant net flow field is similar to the one induced by a
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Figure 3.2: Coupled dynamics of two initially co-moving micro-swimmers as a function
of their initial relative positions. (a) The orbital/trajectory structure in the parameter
space (dX1, dX3). Trajectories belong to two general families: braids (b) and non-orbiting
paths such as diverging (thin lines) and converging (thick lines) (c), pursuit-evasion (d), and
reversed motion that ends up at a dynamical equilibrium state (e). Orbits corresponding
to the initial conditions marked as “glancing” in panel (a) exhibit small drifts from straight
paths. All simulations have been performed over the time span of [0, 10Ts]. The trajectories
of the swimmers have been plotted in blue and red colors. The launch direction of each
swimmer and also the starting positions of swimmers A and B are marked in panels (c)-(e).
The swimmers would move on dashed lines in the absence of hydrodynamic interactions,
i.e. when swimming alone. Since simulation times are identical, the longer the traveled
distances, the faster the swimmers’ motions.
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Figure 3.3: Streamlines of the flow field induced by two micro-swimmers boosting each other’s
swimming speed via the hydrodynamic slingshot effect. The swimmers have initial velocities
of the same magnitude and swimming in the same direction. The presented snapshot at
t/Ts = 0.05, and relative initial positions are dX1/a = 0 and dX3/a = 5, which correspond
to the braid-like trajectories. Simulation parameters are the same as the ones used in Fig. 3.2.
Rectangular selection (magnified in the right panel) shows the area near the two swimmers,
and black bars in the right panel are the swimmers’ chassis.

single Quadroar swimmer [15], yet with a more powerful propellers (i.e. higher values of c0).
Other families of trajectories that we observe for interacting swimmers belong to a general

family of non-orbiting paths including diverging and converging trajectories (Fig. 3.2c).
Non-orbiting paths may occur as pursuit-evasion games when one of the swimmers chases
the other one (Fig. 3.2d). The most interesting non-orbiting path that we have found
happens when the swimmers get in a reverse motion (Fig. 3.2e, colored dark blue in Fig.
3.2a), eventually reaching to a dynamical equilibrium. In dynamical equilibrium states, the
swimmers’ propellers are working continuously and their flow fields form a saddle structure
(Fig. 3.4). The net flow of the saddle structure is zero, so follows the equilibrium state. In
the space between the swimmers, fluid is pumped out in a direction almost parallel to the
chassis of both swimmers, and is sucked back normal to the chassis. Four prominent vortices
are formed around the propellers of the swimmers. These vortices are enclosed by a large-
scale hyperbolic structure. Our long-term simulations show that dynamical equilibria are
stable to small perturbations. This is a counter-intuitive property because the existence of
hyperbolic structures usually implies local instability. The existence of dynamical equilibria
for N > 2 swimmers is an unsolved problem, whose solution can sharpen our understanding
of bacterial clustering and motile cell accumulations.[45, 46]

If the initial distance of the swimmers is large enough, their hydrodynamic interaction
will be very small, drifting the swimmers slightly off their straight trajectories. We have
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Figure 3.4: Snapshots of the flow field induced by two micro-swimmers representing the
reversed converging behavior that leads to a dynamical equilibrium – see the panel (e) in
Fig. 3.2. The swimmers have initial velocities of the same magnitude and in the same
direction. Their relative initial positions are dX1/a = 15 and dX3/a = 0. Snapshots have
been taken at t/Ts = 1 (a) and t/Ts = 40 (b), and the blue lines represent streamlines of
the induced flow fields. At full equilibrium state, corresponding to t/Ts = 40, four vortices
have been formed by the swimmers. Simulation parameters are same as the ones used in
Fig. 3.2. Thick solid black bars represent the side views of the chassis, and the area near
the two swimmers have been magnified in right panels.

also observed a switch between different trajectories as the two-body system evolves. For
instance, a converging motion may end up in an equilibrium state, or pursuit-evasion game
may bifurcate to either of converging or diverging paths. In the parameter space, we have
marked these cases with two or more colors (Fig. 3.2a).

Two swimmers starting their motions in opposite directions [case (ii)] exhibit different
orbital topologies from what we observed for co-directional ones. Their two-body dynamics
depends on the impact parameter dX1 (Fig. 3.5a). When the impact parameter is relatively
small (dX1/a . 5) and the swimmers initially move towards each other, dX3 > 0, we always
obtain an equilibrium state (Fig. 3.5b). Similar to the equilibria of case (i), the actuators
of the swimmers are operational at the equilibrium state and energy is consumed only for
flow generation (and not translation). For large impact factors, dX1/a & 15, trajectories
are deflected similar to the lensing/refraction of light rays (Fig. 3.5d). Our results are in
agreement with the angle-preserving behavior reported in the confrontation of two T-dual
swimmers [47]. For intermediate impact factors, we observe a capture phenomenon as the
micro-swimmers begin to orbit each other after a translational phase (Fig. 3.5c). It is to
be noted that capture into a quasi-periodic orbit is a transitional state between dynamical
equilibria and deflecting trajectories. Such transitional states fill a complex fractal-shaped
region of the parameter space, showing high degree of sensitivity to initial conditions [see
the zoomed-in box in Fig. 3.5(a)] with the dominant length-scale of a disk radius. This
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Figure 3.5: Coupled dynamics of two swimmers initially moving in opposite directions. (a)
The parameter space of possible trajectories. We have used finer grids in the zoomed area.
(b) Moving towards an equilibrium state. (c) Capture into a bound quasi-periodic orbit.
(d) Deflection of trajectories after a close encounter. In panels (b)-(d), the trajectories of
the swimmers have been shown by blue and red solid lines. The arrows denote the launch
directions of the swimmers, and the circles mark their starting positions. The swimmers
would follow dashed lines in the absence of hydrodynamic interactions.



CHAPTER 3. INTERACTIONS & HYDRODYNAMIC CHOREOGRAPHIES 29

result suggests the existence of highly chaotic N -body systems of micro-swimmers. Although
details of trajectories in an orbiting motion can be complex, the bounded nature of the overall
two-body motion in an infinite fluid domain is a unique physical process, for which many
applications can be sought. Examples include mixing by micro-swimmers and trapping
microorganisms by artificial swimming micro-robots.

3.4 Other Notes

3.4.1 On the Numerical Approach

At each time step of the presented numerical modeling, we first substitute expressions de-
scribing point-forces and -torques (4.12 and 4.6) into the force and torque balance equations.
Then, together with mathematical expressions describing velocity and vorticity fields (pre-
sented in 3.9 and 3.10), the system is solved for the 20 vectorial (i.e. 60 scalar in 3D)
unknowns; i.e. vj,c, ωj,body, ujn and Ωjn (j = A,B; n = 1, . . . , 4). We then find the position
and orientation of each swimmer by integrating vj,c and ωj,body in time. The angular velocity
of each swimmer, denoted by ωj,body, is then related to the yaw-pitch-roll sequence of the
Euler’s angles, α = (φ, θ, ψ), through

α̇j = T−1j · ωj,body, T =

1 0 −sin (θ)
0 cos (φ) cos (θ) sin (φ)
0 − sin (φ) cos (θ) cos (φ)

 . (3.13)

It is worth noting that there is a coordinate-type singularity in T when θ = ±π/2. Therefore,
here all computations have been carried out in the space of unit quaternions, q, and then
outputs are mapped back onto the space of Euler’s angles α [19]:

q̇j =
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 qj, ωj,body = (ω1, ω2, ω3) . (3.14)

3.4.2 Three-dimensional Beads Model Simulation

In order to further validate the employed model based representing the disks with point-
forces and -torques, here we develop a full three-dimensional beads realization of the disks
[48, 49]. To this end, we first briefly explain the concept of beads model using Fig. 3.6(a),
then compare the results of our numerical method with those of a beads model simulation.

A single spherical bead, moving with velocity v0, in Stokes regime induces a well-known
velocity field in the surrounding fluid. For an arbitrary point in cylindrical coordinate system,
this velocity field in radial and tangential directions is given by:

vr =

(
3R0

2r
− R3

0

2r3

)
v0 cosθ, vθ = −

(
3R0

4r
+
R3

0

4r3

)
v0 sinθ, (3.15)
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Figure 3.6: (a) Schematic representation for the basic idea of beads model. Beads B1 and
B2 are moving with absolute velocities v1 and v2 with respect to the stationary reference
frame fixed to the fluid at infinity. (b) Schematics of the three-dimensional (3D) beads model
realization of two nearby interacting disks of radius a and distance d apart. The inset shows
the 3D view of a single disk composed of 331 spherical beads.

where R0 is the radius of the bead, and rer is the position vector of the arbitrary point with
respect to the bead’s center. Let us consider two beads, B1 and B2, moving with absolute
velocities v1 and v2, in the stationary frame, as shown in Fig. 3.6(a). With respect to the
background fluid, B1 (or B2) has a hydrodynamic velocity v1H (or v2H), and thus induces
a velocity field v1H,2 (or v2H,1) at the position of B2 (or B1). Therefore, the hydrodynamic
velocity of each bead is given by the following implicit formula:

v1H = v1 − v2H,1, v2H = v2 − v1H,2. (3.16)

Generalization of this simple idea, in order to formulate hydrodynamics of a system composed
of N beads, results in the following system of linear algebraic equations:

viH +
N∑

j=1,j 6=i

vjH,i = vi, i ∈ {1, · · · , N}. (3.17)

The fluid velocity vjH,i, represents the flow induced at the position of bead Bi due to the
motion of bead Bj and follows from equation (3.15) as:

vr−jH,i =

(
3R0

2rji
− R3

0

2r3ji

)
vjH cosθji, (3.18)

vθ−jH,i = −
(

3R0

4rji
+

R3
0

4r3ji

)
vjH sinθji, (3.19)
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where rji = |ri − rj|; ri and rj are position vectors of beads B1 and B2; and θji is defined
by cosθji = (rji · vjH) / (rjivjH). To put the system of equations (3.17) into the standard
format of AX = B, the general hydrodynamic relations between beads is defined here as:

vm,n = Amnvm, {m,n} ∈ {1, · · · , N}, (3.20)

Amn = [S
(1)
3×1, S

(2)
3×1, S

(3)
3×1], (3.21)

where S
(k)
3×1 for each k ∈ {1, 2, 3} is a column vector given by:

S
(1)
3×1 =

(
3R0

2rmn
− R3

0

2r3mn

)x2xy
xz

− ( 3R0

4rmn
+

R3
0

4r3mn

)√
r2mn − x2
y2 + z2

−(y2 + z2)
xy
xz

 , (3.22)

S
(2)
3×1 =

(
3R0

2rmn
− R3

0

2r3mn

)yxy2
yz

− ( 3R0

4rmn
+

R3
0

4r3mn

)√
r2mn − y2
x2 + z2

 yx
−(x2 + z2)

yz

 , (3.23)

S
(3)
3×1 =

(
3R0

2rmn
− R3

0

2r3mn

)zxzy
z2

− ( 3R0

4rmn
+

R3
0

4r3mn

)√
r2mn − z2
x2 + y2

 zx
zy

−(x2 + y2)

 , (3.24)

Note that here rmn = rn − rm = (x, y, z). Applying this representation to the general
formulation of the system of N beads presented in equation (3.17), leads to the following
implicit system of linear equations:

I3×3 A21 · · · AN1

A12 I3×3 · · · AN2
...

...
...

...
A1N A2N · · · I3×3


3N×3N


v1H
v2H

...
vNH


3N×1

=


v1
v2
...
vN


3N×1

. (3.25)

This system of equations can then be solved using standard linear algebra methods. The
inputs of the system are absolute velocities, vi, which are assigned to individual beads that
assemble a rigid body, and outputs are hydrodynamic velocities.

To further validate the presented results (obtained through a simplified singularity method
that models influence of each disk using a pair of point-force and point-torque), we compare
them against those obtained by simulating the real geometry of the swimmers’ disks using
the described beads model. Specifically, we compare our simplified numerical method of
modeling hydrodynamic interactions, against a 3D beads model realization of two nearby
rotating disks, where each disk is composed of a large number of beads (see Fig. 3.6b).

Schematics of the problem setup are presented in Fig. 3.6(b), where two disks of radius
a located at a distance of d from each other, are rotating with angular velocities ω1 and ω2,
respectively. The interaction of these two disks is modeled using: (i) our singularity-based
method using the point-force and point-torque models, and (ii) the full three-dimensional
(3D) beads simulation. For the latter approach, the optimum number of beads required
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Figure 3.7: Comparison between the results obtained from the theoretical singularity-based
method (i.e. the ones based on point forces and torques) with those obtained from the 3D
beads model simulation. The panels demonstrate magnitudes of the total force (a) and torque
(b) exerted on two interacting rotary disks of radius a as a function of their distance. The
schematics of our setup has been shown in Fig. 3.6(b). We have set ω = |ω1| = |ω2| = 0.5ωs.
Stars and circles respectively correspond to the results of our theoretical singularity-based
(i.e. point forces and torques) and the 3D beads-based simulation, respectively.

to model each disk is determined through the convergence of numerical results. For the
case presented in Fig. 3.6(b), as an example, the optimum number of beads is 331, which
corresponds to R0/a = 1/21 ≈ 0.05. It should be noted that the thickness (2R0) of each disk
can be neglected compared to its diameter (2a), as expected by the swimmer model. For
the beads model simulation, the set of equations (3.25) must be solved for the entire system
of the beads. Drag element exerted on each bead ce be then determined by multiplying the
translational drag coefficient, 6πµR0, to the bead’s consequent hydrodynamic velocity. At the
end, we compare the results of this 3D beads-based simulation to numerical results obtained
for the singularity-based model using point forces and torques. Our results displayed in Fig.
3.7 show a good agreement between the two models, even for small distances as d = 2a
between the disks. In particular, we monitor (in Fig. 3.7) magnitudes of the total force
and torque exerted on the disks as a function of their distance. Here the disks are counter-
rotating with |ω1| = |ω2| = 0.5ωs, and the total exerted force and torque (on each) are
computed instantaneously for different distances between them.

3.5 Concluding Remarks

In this chapter, we revealed that two micro-swimmers in Stokes regime can stop each other
by forming a dynamic equilibrium in an infinite fluid domain. Furthermore, depending on
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where the two interacting micro-swimmers are released, they may also get trapped into
bounded orbits and revolve about each other indefinitely. We then systematically studied
the entire phase space of a hydrodynamically interacting two-swimmer system in Stokes
regime, and identified the basins of dynamical equilibria and periodic orbits in the parameter
space. We also found other diverse sets of orbits including closely winding braids, and
pursuit–evasion dynamics. Sensitivity to initial conditions, slingshot effect for motions along
braids, dynamical equilibria, and capture into bound orbits, as demonstrated in this study,
can have unexpected implications to motion of micro-swimmers. Our findings also provide
a new insight into the emergence of turbulence and energy budget in active fluids: two-
body dynamical equilibria, and if exist, N -body equilibria, dissipate the energy injected into
actuators without causing any directional streaming in the active particle phase (fluid of
micro-swimmers). This suggests that non-local models of passive and active stresses due
to hydrodynamic and steric interactions need modifications as diffusion in the phase space
cannot be modeled only as a function of macroscopic streaming velocity.
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Chapter 4

Near Wall Behavior and
Purely Hydrodynamic Scattering

In this chapter, we conduct a systematic investigation on the near-wall behavior of a model
micro-swimmer whose flow field resembles that of bi-flagellate green algae, Chlamydomonas
reinhardtii. In particular, we show that the scattering of these micro-swimmers from a
wall can be purely hydrodynamic and that no mechanical force is needed for sensing and
escaping solid boundaries. Our findings further suggest a hydrodynamic nature for the
surface-scattering process of micro-swimmers with flow characteristics of bi-flagellate algae
– i.e. those that induce an oscillatory flow field with anterior, side and posterior vortices.

4.1 Introduction

Interaction of swimming microorganisms with solid boundaries is vital to numerous biological
processes ranging from fertilization [50] to biofilm formation [51]. While the significance of
such interactions have been acknowledged extensively [e.g. 52, 53], the underlying mechanism
is yet a matter of dispute. Specifically, there is an unresolved debate over whether it is
the short-range steric or the long-range hydrodynamic that primarily rule micro-swimmers
interactions with solid boundaries. For microorganisms with rear-mounted flagella (‘pushers’,
such as Escherichia coli bacteria and human spermatozoa), recent studies finally put an end
to the debate in support of the hydrodynamic interactions [54, 55]. However, for the other
major group of microorganisms (‘pullers’, i.e. those with front-mounted flagella such as C.
reinhardtii) the primary mechanism of surface scattering has still remained unsettled.

Few recent theoretical and numerical studies [e.g. 56, 57] have shown that specific puller-
type swimmers (such as deformable swimmers with amoeboid motion) can undergo purely
hydrodynamic scattering in a channel (termed as ‘navigation swimming’ [56]). Whereas,
for the case of C. reinhardtii (widely known as the paradigm of puller-type swimmers), it
has been believed that the scattering process is mainly governed by contact/flagellar forces
rather than hydrodynamic interactions. Experiments have shown that C. reinhardtii cells
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can feel and escape a boundary after getting close enough to the wall [see e.g. 58]. Based
on a series of visual observations, it has been claimed that contact forces exerted by flagella
to the wall drives the interaction. The observation has been further generalized, suggesting
that surface scattering of swimming eukaryotes is primarily steric rather than hydrodynamic
[58]. More recent experimental observations [59], nevertheless, do not support this claim: in
scattering of C. reinhardtii cells from a curved surface, there exist some cases in which the
flagella do not even touch the wall [59].

Here, we consider a model micro-swimmer designed in such a way that its flow field closely
resembles that of a C. reinhardtii [19]. Specifically, it induces an oscillatory flow field with
anterior, side and posterior vortices in the surrounding fluid. These are characteristics of the
flow field generated by the green alga C. reinhardtii [41]. Through direct computation, we
show that this model swimmer can feel and escape the wall similar to C. reinhardtii, without
the need for a physical contact with the wall; hence, the scattering is purely hydrodynamic.

C. reinhardtii is usually categorized under the puller-type swimmers, mainly because it
induces the flow field of a contractile force dipole in the far field during its effective stroke.
However, the flow field induced by this motile cell in its close vicinity, which is of particular
importance in the swimmer-wall interactions, is not just a simple puller- or pusher-type: it
is an oscillatory flow field that includes side, anterior, and posterior vortices (see e.g. [41,
60]). To mimic this complex flow field, we use the proposed Quadroar micro-swimmer. As
discussed in chapter 2, the swimmer consists of two pairs of counter-rotating disks whose
distance is periodically varied (Fig. 4.1a). When all motions (reciprocating and rotating)
have the same frequency and there is no phase difference, the model swimmer moves along
a straight line in the x3 direction, and induces an oscillatory flow field with side, anterior
and posterior vortices (Fig. 4.1c). This flow field closely resembles the flow field of a C.
reinhardtii cell [19, 41]. Specifically, oscillation of the linear actuator creates the oscillatory
flow field between puller and pusher types, and the counter-rotation of disks contributes to
the emergence of anterior, posterior, and side vortices. Via varying the relative frequency of
propellers, or by imposing phase-differences between them, a full three dimensional reorien-
tation maneuvers and tumblings can be obtained [15, 19].

4.2 Mathematical Formulation

Here, we consider a single swimmer moving near a no-slip solid boundary. The global frame
of reference is fixed to the wall such that its X3-axis is normal to the wall and points toward
the semi-infinite fluid (Fig. 4.1b). The swimmer’s local frame of reference is attached to its
geometric center so that its frame lies in (x1, x2)-plane, and x1-axis is along the reciprocating
chassis (Fig. 4.1a). In our modelings, the length of each disk axle is denoted by 2b, and
reciprocating chassis’ length is 2l + 2s (t) where s (t) = sm [1− cos (ωst)] /2, in which sm is
the amplitude and ωs is the frequency of oscillations. Angular velocities of the disks on left
and right axles are c0ωs and −c0ωs, where c0 is a constant. We choose b/a = l/a = 4 and
sm/a = 2, and by choosing ωs = 1, all frequencies in the problem are normalized by ωs.
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Figure 4.1: (a) Schematic of the model swimmer, which combines harmonic oscillation of its
body length with counter-rotation of propellers. (b) Schematic representation of the model
swimmer scattering off a stationary solid wall. θin and θout are defined with respect to the
axis normal to the wall. (c) Snapshots of the oscillatory flow field induced by a single model
swimmer in an infinite fluid [19], which mimics the flow field around a C. reinhardtii cell
[41]. The red thick bar represents chassis of the swimmer, blue lines demonstrate the induced
streamlines, and the time scale is T = 2π/ωs.

Throughout this chapter, unless otherwise noted, c0 = 50 which is reminiscent of the flagella
beat frequency of a C. reinhardtii cell (that is ∼ 50 Hz).

4.2.1 Model swimmer in an infinite fluid: singularity solution

Due to the micro-scale size of the swimmer, the corresponding Reynolds number is very
small (i.e. Re � 1). Therefore, the effect of inertia is negligibly small compared to viscous
effects, and Navier-Stokes equation of motion can be simplified to the Stokes equation:

∇P = η ∇2u+ F , ∇ · u = 0, (4.1)

where P is the pressure filed, u is the velocity field, η is dynamic viscosity of the ambient
fluid, and F is the body force per unit volume.
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The model swimmer has four propellers (disks of radii a) which are placed at the ends of
its left and right axles. Contribution of each disk to background streaming can be modeled
as a combination of point-force (f) and point-torque (γ) flow fields. The force and torque
acting on each disk i is given by

fi = η Ki · (vi − ui) , (4.2)

γi = η G · (ωi −Ωi) , (4.3)

where vi and ωi are absolute linear and angular velocities of disk i; ui and 2Ωi are velocity
and vorticity fields of the background fluid at the position of disk i, and η is dynamic viscosity.
The geometry of disks are hidden in Ki,G , which are tensors of rank two. Specifically, Ki

is the translation tensor corresponding to disk i, and G is isotropic rotational tensor of a
circular disk rotating about its diameter, with the forms given by [61]:

Ki = 8
3
a

5− cos (2αi) 0 sin (2αi)
0 4 0

sin (2αi) 0 5 + cos (2αi)

 , (4.4)

G = 32
3
a3I, (4.5)

where I is the identity tensor, a is radius of each disk, and αi denotes the angle that disk i
makes with (x1, x2)-plane of the swimmer. Considering only the point-force contribution of
each propeller in an infinite fluid domain, the governing equation can be written as:

∇P = η ∇2u+ fδ(r), ∇ · u = 0, (4.6)

where δ (r) is Dirac delta function. The point-force is exerted at x0, and for a generic point
x in space r = x − x0 with r = |r|. Equation (4.6) can be analytically solved in several
ways (see e.g. [44]), and the resultant velocity field is known as Stokeslet:

u (r, t) =
f

8πη
·
(
I

r
+
rr

r3

)
. (4.7)

The contribution of a point-torque γ exerted at a point x0 in an infinite fluid, on the other
hand, is derived from the following set of equations [44]:

∇P = η ∇2u+∇× (γδ(r)) , ∇ · u = 0. (4.8)

The exact solution to (4.8) is also available (see e.g. [44]), and is called a rotlet:

u (r, t) =
1

8πη

(
γ × r
r3

)
. (4.9)

Linearity of Stokes equation allows us to invoke the principle of superposition. As a result,
the net contribution of each disk (when placed in an unbounded fluid domain) to background
streaming, can be modeled as the combination of a Stokeslet and a rotlet:

u (r, t) =
f

8πη
·
(
I

r
+
rr

r3

)
+

1

8πη

(
γ × r
r3

)
. (4.10)
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The velocity field that the model swimmer induces in its surrounding (when swimming in
an infinite fluid domain) is then the sum of contributions from all of its disks:

u (x, t) =
1

8πη

4∑
k=1

(
fk
rk

+
fk · rk
r3k

rk +
γk × rk
r3k

)
, (4.11)

where x is the position vector of a generic point in space, and rk is the vector connecting
geometric center of disk k to this point. To calculate the induced vorticity field, one needs
to then take curl of the velocity field (2Ω = ∇× u):

2Ω (x, t) =
1

8πη

4∑
k=1

[
2fk × rk

r3k
+

3(γk · rk)rk − r2kγk
r5k

]
. (4.12)

4.2.2 Model swimmer in vicinity of a solid boundary

As discussed in previous section, contribution of each disk to the background streaming is
modeled here as a combination of a point-force and a point-torque. Therefore, our model
swimmer involves four pairs of singularities. In the vicinity of a no-slip solid boundary, to
satisfy the no-penetration and no-slip boundary conditions on the wall, a specific arrange-
ment of singularities – called image systems [62, 63] – is placed at each singularity’s image
location. The image systems of a Stokeslet (f) that is parallel to and at a distance h from
a wall is a combination of a Stokeslet (−f), Stokes-doublet (2hf), and a source-doublet
(−4ηh2f). For a rotlet(γ) at a distance h and parallel to a wall the image system includes
a rotlet (−γ), a stresslet (16πηγ), and a source-doublet (8πhγ). For a rotlet (γ) that is
normal to a wall the image system is just a single rotlet (−γ), but for a Stokeslet (f) nor-
mal to a wall the image system includes a Stokeslet (−f), a Stokes-doublet (−2hf), and
a source-doublet (4ηh2f). Stokes-doublet, characterized by a strength tensor of rank two
(Djk), is (see e.g. [63, 64]):

ui =
Djk

8πη

[(
−riδjk

r3
+

3rirjrk
r5

)
+

(
rkδij − rjδik

r3

)]
. (4.13)

In the case of a force dipole which is symmetric and contributes no net torque to the sur-
rounding fluid, the solution is called stresslet and can simply be defined as the symmetric
part of a Stokes-doublet (first term on the right-hand-side of equation (4.13)):

usymi =
Djk

8πη

(
−riδjk

r3
+

3rirjrk
r5

)
. (4.14)

On the other hand, the skew-symmetric part of a Stokes-doublet (4.13) represents the net
torque contribution of a force dipole. Thus, it is equivalent to the rotlet solution:

uskewi =
Djk

8πη

(
rkδij − rjδik

r3

)
≡ 1

8πη

(γ × r)i
r3

,
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where γi = −εijkDjk. Finally, the flow field due to a point-source with outward mass flux M
is ui = (M/4π)(ri/r

3). Therefore, the velocity field induced by a source-doublet reads as:

ui =
Mj

4π

(
−δij
r3

+
3rirj
r5

)
. (4.15)

Using (4.7), (4.13), and (4.15) as the elements of our image system for a Stokeslet, velocity
field due to a point-force near a stationary no-slip wall is obtained as [62]:

ufi =
fj

8πη

[(
δij
r

+
rirj
r3

)
−
(
δij
r̄

+
r̄ir̄j
r̄3

)]
+

2hfj
8πη

(δjmδmk − δj3δ3k)
∂

∂r̄k

[
hr̄i
r̄3
−
(
δi3
r̄

+
r̄ir̄3
r̄3

)]
,

(4.16)

where η is dynamic viscosity and δij is Kronecker delta. The point-force f is exerted at
x0 = (ξ, ζ, h), and the image point of x0 with respect to the stationary wall is given by
x̄0 = x0− 2 (x0 · e3) e3, where e3 is the unit vector normal to the wall. Position of a generic
point in space is denoted by vector x, and r = x − x0. Similarly, relative position of a
generic point x from the image point x̄0 is defined as r̄ = x− x̄0. Here m ∈ {1, 2}, and the
expression δjmδmk− δj3δ3k is non-zero only if j = k. Then it is equal to −1 if j = k = 3, and
equal to +1 if j = k = 1 or j = k = 2. Equation (4.16) can be also written in the familiar
form of:

uf = G · f , (4.17)

where Gij (r, r̄) stands for the free space Green’s function of the Stokes equation:

Gij (r, r̄) =
1

8πη

[(
δij
r

+
rirj
r3

)
−
(
δij
r̄

+
r̄ir̄j
r̄3

)]
+

1

8πη

[
2h2 (1− 2δj3)

(
δij
r̄3
− 3r̄ir̄j

r̄5

)]
+

1

8πη

[
2h (1− 2δj3)

(
r̄jδi3
r̄3

+
3r̄ir̄j r̄3
r̄5

− r̄3δij
r̄3
− r̄iδj3

r̄3

)]
. (4.18)

Similarly, upon substituting (4.9), (4.14), and (4.15) into the image system of a rotlet, the
expression representing flow field induced by a point-torque in the vicinity of a stationary
no-slip wall is then derived as [63]:

uγi =
1

8πη

[
(γ × r)i

r3
− (γ × r̄)i

r̄3

]
+

1

8πη

[
2hεkj3γj

(
δik
r̄3
− 3r̄ir̄k

r̄5

)
+ 6εkj3

γj r̄ir̄kr̄3
r̄5

]
.

(4.19)

To sum up, for our model swimmer when swimming in vicinity of a solid boundary, the
contribution of each propeller (p) to background streaming is given by:

up (r, r̄, t) = ufp (r, r̄, t) + uγp (r, r̄, t) , (4.20a)

2Ωp (r, r̄, t) = ∇×
[
ufp (r, r̄, t) + uγp (r, r̄, t)

]
, (4.20b)
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where uf and uγ are given by (4.17) and (4.19). Note that the velocity (vorticity) field at
the position of propeller n, which in turn determines fn or γn, is the sum of contributions
from all other propellers:

un =
4∑

k=1,k 6=n

(
ufk + uγk

)
, 2Ωn = ∇× un, (4.21)

where 2Ωn is the vorticity field at the center of disk n. The force-free (
∑4

k=1 fk = 0) and
torque-free (

∑4
k=1 (rk × fk + γk) = 0) conditions in low-Reynolds-number regime, combined

with velocity and vorticity fields presented in (4.21), provide us with a closed system of thirty
coupled equations and thirty unknowns that must be solved at each time step. Integrating
linear and angular velocities in time, using RK78 method [65], will then provide the swim-
mer’s position and orientation as a function of time.

4.3 Results and Discussion

In our numerical experiments, the model swimmer is launched toward the wall with various
incidence angles θin (c.f. Fig. 4.1b). Scattering angle θout corresponding to each θin is
then measured with respect to the normal vector to the solid boundary after steady state is
reached. We show samples of behavior of the micro-swimmer for θin = 0o, 5o, 15o, 30o, 60o,
and 85o in figure 4.2, in which the trajectory of the swimmer is shown by a black dashed
line, chassis of the swimmer is denoted by a black thick bar, and the blue (red) filled circles
represents propellers initially on the left (right) side of the swimmer. Without even touching
the wall, the swimmer feels the solid wall in all cases, and escapes the boundary similar to
what has been observed experimentally for a C. reinhardtii cell [58, 59]. Note that sensing
and escaping the boundary here is purely hydrodynamic, as there is no contact/flagellar
force defined for the model swimmer.

The only exception in which the swimmer feels the boundary but cannot escape it,
happens when a swimmer approaches the wall with θin = 0 (i.e. exactly normal to the wall).
As theoretically required by the symmetry of our ideal numerical experiment, for θin = 0
the swimmer can not choose any direction over the other one. For a typical puller-type
swimmer, far-field analysis predicts a head-on collision with the wall for this situation. But,
here the swimmer has a complex oscillatory flow field in its close vicinity, which saves it
from hitting the wall. Surprisingly, the swimmer stops swimming forward after getting close
enough to the boundary (Fig. 4.2a). This state is, in fact, a dynamic equilibrium: the
swimmer is still struggling to swim forward with exactly the same stroke cycle as before
and energy is getting wasted continuously through the propellers, but the time-averaged
position of its geometric center has come to a halt . Note that on very short length scales,
there is an intrinsic oscillation in the trajectory of the model swimmer that originates from
the oscillatory nature of its flow field. These small-amplitude (∆Z/a ≈ 0.1) up-and-down
oscillations (also reported for swimming C. reinhardtii cells as the ‘zigzagging motion’ [66])
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Figure 4.2: Samples of the hydrodynamic sensing and escaping behavior of micro-swimmers
swimming near a solid boundary (denoted by the thick brown solid line at X3 = 0). The
swimmers initially swim toward the wall with different incidence angles: θin = 0o (a), 5o (b),
15o (c), 30o (d), 60o (e), and 85o (f). The initial and final (after scattering) states of each
case are shown. In each panel, the black thick bar represents the swimmer’s body (c.f. Fig.
4.1a), trajectory of the swimmer is shown by a dashed line, the start points are denoted by
asterisks, and arrows represent the initial direction.
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Figure 4.3: Time variation of the vertical position of a model swimmer approaching the wall
with θin = 0, i.e. exactly normal to the wall. Inset is the zoomed view of the tail, which
represents the very small-amplitude up-and-down oscillations.

will still be present in the dynamic equilibrium phase (see the inset of figure 4.3). However,
there will be no net translation over time for the swimmer in this phase (see Fig. 4.3).

To gain a better insight into the hydrodynamic scattering process, we also present (in
figure 4.4) snapshots of the flow field generated by the model micro-swimmer launched toward
the wall with θin = 30o. The flow field and its corresponding streamlines are denoted in the
panels by purple arrows and green solid lines respectively. As the swimmer approaches the
wall, the induced flow field and the generated vortices gradually rotate the swimmer and
turn it away from the wall (see Fig. 4.4). This enables the swimmer to scatter off the solid
boundary without physically touching the wall.

Hydrodynamic scattering of our model micro-swimmer presented in the space of (θout,
θin), is in a good agreement with recent set of experimental data reported [59] on scattering of
a real wild-type C. reinhardtii cell from a solid boundary (see figure 4.5). The only expected
exception happens at θin = 0 for which a perfect normal incidence (numerically easily achiev-
able) results in a dynamic equilibrium, whereas such equilibrium has not been reported in
the experiments, clearly due to extremely low probability of actual microorganisms approach
the wall at the exact zero angle, and in a perfectly symmetric setup.

The numerical results presented in figure 4.5 correspond to the case of c0 = 50 which
is reminiscent of the flagellar beat frequency of green alga C. reinhardtii. Our numerical
experiments show that the scattering behavior of the model swimmer will remain the same
for different values of c0. Changing the value of c0 will only change swimming speed of the
swimmer, and thus the time required for its scattering. The swimmer’s scattering angle
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Figure 4.4: Snapshots of the flow field generated by the model swimmer during scattering
process off a solid boundary. The incidence angle is θin = 30o and panels correspond to
t = T (a), 5T (b), 10T (c), 15T (d), 20T (e), and 25T (f). Purple arrows represent the
flow field, and green solid lines demonstrate the corresponding streamlines. Trajectory of
the swimmer during t ∈ [0 , 25T ] is shown by a black dashed line, chassis of the swimmer is
denoted by a black thick bar, and the blue (red) filled circles represents propellers initially
on the left (right) side of the swimmer.
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Figure 4.5: Comparison between the scattering angles (θout) resulted from purely hydro-
dynamic numerical simulations of the model micro-swimmer (black filled squares), and the
experimental data (green circles) reported by Contino et al. [59] for wild-type C. reinhardtii
cells. The scattering angles are presented in degrees.

(θout) and its minimum distance (dmin) from the wall, as a function of its incidence angle
(θin), are presented in figure 4.6(a) for different values of c0. The results further confirm
similarity of the behavior for swimmers with different propeller speeds. A similar effect has
been also reported for amoeboid swimmers [56, 67], where swimming stroke frequency does
not change the navigation behavior.

Moreover, in the presented numerical experiments throughout this chapter, we have con-
sidered (as a benchmark) a model swimmer with sm/a = 2 so that a = 1 µm provides us
with the body size of 8 − 12 µm similar to that of a C. reinhardtii cell [68]. To explore
the effect of body size on the scattering behavior of the swimmer, figure 4.6(b) represents
the scattering angles (θout) and minimum distances from the wall (dmin) of swimmers with
different values of sm. Qualitative and quantitative similarity of the scattering results ob-
served for swimmers with different values of sm, further highlights the primary role of flow
characteristics (i.e. oscillatory nature of the flow combined with side, posterior, and anterior
vortices) rather than body size of the swimmer.

Lastly, we also present the scattering results of the swimmer when launched toward the
boundary with different initial distances (h0) from the wall (figure 4.6c). Note that by
increasing the incidence angle (θin), the effect of initial distance becomes more clear. In its
extreme case, for θin = 90o (i.e. when the model swimmer initially swims parallel to the
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Figure 4.6: Exploring the parameter space for the model micro-swimmer’s surface scattering
process. In particular, here the scattering angle (θout) of the model micro-swimmer and
its minimum distance (dmin) from the wall are presented as a function of the swimmer’s
incidence angle (θin), its propulsion characteristics (a-b), and its initial distance from the
wall (c). The black (brown) axis on the left (right) measures the scattering angles (minimum
distances from the wall). For each incidence angle, the scattering angle (minimum distance
from the wall) of the swimmer is shown by a black unfilled (brown filled) square, right-
triangle, and up-triangle for: (a) c0 = 5, 50, and 500, respectively; (b) sm/a = 1, 2, and
4, respectively; and (c) h0/a = 15, 20, and 25, respectively. The reference case (as also
presented in Fig. 4.5) corresponds to c0 = 50, sm/a = 2, and h0/a = 20.
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wall) the minimum distance is equal to h0 itself, which here ie set to different values. As we
get closer to the other extreme (i.e. swimming normal to the wall), quantitative difference
between the results fades out both for the case of scattering angles and minimum distances
from the wall (see figure 4.6c).

4.4 Concluding Remarks

In this chapter, we demonstrated how inducing a complex oscillatory flow field (with anterior,
side, and posterior vortices) can be a sufficient tool for micro-swimmers to sense and escape
solid boundaries. The presented findings provide a new insight into the cell-surface scattering
process. Specifically, the results of our investigation point out the possibility of a purely
hydrodynamic surface-scattering for bi-flagellate green algae, C. reinhardtii, in agreement
with recently reported experimental studies [e.g. 59]. Our findings may also pave the path
for new techniques in controlling biological migration, for which many potential applications
(including diagnostics [50], drug delivery [69], and bio-remediation [70]) can be sought.
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Chapter 5

Stealthy Movements
and Concealed Swarms

In this chapter, we show that micro-swimmers can form a concealed swarm through syner-
gistic cooperation in suppressing one another’s disturbing flows. We then demonstrate how
such a concealed swarm can actively gather around a favorite spot, point toward a target, or
track a desired trajectory in space, while minimally disturbing the ambient fluid. Quench-
ing the flow signature (and thus shrinking the associated detection region) by swarming in
concealed modes, can potentially have a significant impact on trophic transfer rates among
a broad range of aquatic organisms. The findings presented in this chapter provide a clear
road map to control and lead flocks of swimming micro-robots in stealth versus fast modes,
tuned through their active collaboration in minimally disturbing the host medium.

5.1 Introduction

Swimming micro-robots capable of navigating through fluid environments are at the
forefront of minimally invasive therapeutics and theranostics [18]. They hold great promise
for a wide range of biomedical applications including targeted drug delivery, micro-surgery,
remote sensing and localized diagnostics [18, 71, 72]. The past decade has seen a great leap
forward in science and engineering of these miniaturized untethered robots [73]. Particularly,
remarkable progress has been made toward exploring various propulsion mechanisms [74,
75, 76], design and fabrication approaches [77], imaging technologies for real-time motion
tracking [78], and manipulation techniques for navigation and motion control [79, 80, 81].

However, optimal strategies in swarm control remain largely unexplored for swimming
micro-robots [75]. As a result, little is understood about their potential ability as a group
to optimize their fitness and functionality. A few recent studies have only shown a glimpse
of such potentials in the realm of micro-scale swimmers. For instance, actively controlled
cooperation between artificial micro-swimmers has been reported to significantly improve
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(both the capacity and precision of) micro-manipulation and cargo transport [82]. It has
also been recently shown [11] that a pair of interacting micro-swimmers can boost each
other’s swimming speed through ambient fluid. This observation (termed as ‘hydrodynamic
slingshot effect’) implies that by forming a swarm, swimming micro-robots can collaborate
and travel faster as a group than single individuals. Now, the more intriguing question is
whether by forming a swarm, swimmers are also able to smartly cancel out each other’s
disturbing effects to the fluid environment. In other words, is it possible to form a stealth
swarm minimally disturbing the ambient fluid? And if so, to what extent such cooperation
between the agents can be effective in stifling the swarm’s hydrodynamic signature?

In this chapter, a synergistic cooperation of micro-swimmers (in suppressing one another’s
disturbing flows) is unveiled, that leads to the formation of stealth swarms. We refer to this
mode of swarming as the concealed mode, which can reduce the swarm’s net induced distur-
bances by more than 99% (or 50%) in three-dimensional (or two-dimensional) movements.
This is equivalent to quenching the swarm’s hydrodynamic signature (and thus shrinking its
associated detection region) by an order of magnitude in range. Through numerical exper-
iments, it is then demonstrated how such a concealed swarm can actively gather around a
favorite spot, point toward a target, or track a desired trajectory in space, whilst minimally
disturbing the surrounding environment.

5.2 Problem Formulation and Approach

Dynamics of the incompressible flow around swimming objects is governed by the Navier-
Stokes equations:

ρ
Du

Dt
= −∇P + η ∇2u+ F , ∇ · u = 0, (5.1)

subject to boundary conditions imposed by their body deformations. Here, ρ and η are
density and dynamic viscosity of the surrounding fluid, P denotes the pressure field, u is
the velocity field, and F represents the external body force per unit volume. The relative
importance of inertial to viscous effects can also be quantified by the Reynolds number,
Re= ρUL/η, where U and L denote characteristic velocity and length, respectively. For
micro-scale swimmers (also known as micro-swimmers) swimming in water (ρ ≈ 103 kg/m3

and η ≈ 10−3 Pa.s) the corresponding Reynolds number is always very small (i.e., Re � 1).
Common examples include: (i) typical bacteria, such as Escherichia coli, with length of ∼
1-10 µm and swimming speed of ∼ 10 µms−1 [83], for which the Reynolds number is ∼
10−5-10−4 when swimming in water; or (ii) the green algae Chlamydomonas reinhardtii with
characteristic length L ∼ 10 µm and swimming speed U ∼ 100 µms−1 [68], which result in
the Reynolds number Re ∼ 10−3. Thereby, it is appropriate to study micro-swimmers in
the context of low Reynolds number regimes (Re � 1), where the fluid inertia is negligibly
small compared to the fluid viscosity, and the viscous diffusion dominates fluid transport.
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The Navier-Stokes equations then simplify to the Stokes equation:

∇P = η ∇2u+ F , ∇ · u = 0, (5.2)

which has no explicit time-dependency. This along with its linearity, makes the Stokes
equation invariant under time-reversal. As a result, sequence of body deformations (or
swimming strokes) that are reciprocal (i.e. invariant under time-reversal), do not generate
a net motion at Stokes regime. This means that typical swimming strategies used by larger
organisms (e.g. fish, birds, or insects), are not effective at micro- and nano-meter scales.
Therefore, motile microorganisms have evolved alternative propulsion mechanisms to break
the time-symmetry, while retaining periodicity in time [6]. Their swimming strategies are
often based on drag anisotropy on a slender body in Stokes regime, and include cork-screw
propulsion of bacteria, flexible-oar mechanism of spermatozoa, and asymmetric beats of
bi-flagellate alga [6].

These inherently available natural micro-swimmers, not only inspire the design of fully
synthetic micro-robots [75], but also may be functionalized and directly used as steerable
swimming micro-robots [76]. Bio-inspired micro-robots are artificial swimmers that mimic
the propulsion mechanism of their natural counter-parts [75]. For instance, the artificial
flagellate magnetic micro-robots [84, 9] adopt the helical tail of E. coli bacteria and mimic
their cork-screw propulsion mechanism. These synthetic swimming robots are capable of
programmed trajectory-tracking with micrometer-level precision [84]. In the bio-hybrid ap-
proach, on the other hand, a real swimming microorganism is modified with artificial parts
to be used as a remotely controllable micro-robot [76]. Common designs employ E. coli bac-
teria [85], spermatozoa [86], or green algae C. reinhardtii cells [87]. Here we are interested in
flocks of such bio-inspired and bio-hybrid swimming micro-robots, where each agent is either
a real microorganism or meticulously synthesized to mimic one. Therefore, to model their
induced disturbances, we will treat each individual swimmer as a swimming microorganism.

In Stokes regime, self-propelled buoyant micro-swimmers exert no net force and no net
torque to the ambient fluid. Flagellated microorganisms, for instance, use their flagella
– flexible external appendages – to generate a net thrust, and propel themselves through
ambient fluids. This propulsive force – generated mainly owing to the drag anisotropy of
slender filaments in Stokes regime [88] – is, however, balanced by the drag force acting on
the cell body (see e.g. Fig. 5.1). Hence, in the most general form, far-field of the flow
induced by each micro-swimmer can be well described by the flow of a force dipole. To
be more precise, by the flow of a force dipole composed of the thrust force generated by
swimmer’s propulsion mechanism, and the viscous drag acting on its body. Note that the
model dipole is contractile for swimmers with front-mounted flagella (i.e., ‘pullers’ such as
C. reinhardtii), and extensile for those with rear-mounted flagella (i.e., ‘pushers’ such as
E. coli). Schematic representations of the force dipoles generated by archetypal puller and
pusher swimming microorganisms, as well as direction of the induced flow fields are shown
in Fig. 5.1. This simple model has been validated and widely used in the literature [89,
26]. In the case of E. coli bacteria, for example, the validity of this model has been further
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Figure 5.1: Schematic representation of archetypal pusher (panel I) and puller (panel II)
micro-swimmers. Forces exerted by each swimming microorganism to the ambient fluid are
represented (±f0e shown in orange), and induced flow directions are shown by curly arrows.
The flow field induced by an extensile force dipole (as a model for pushers) is presented in
panel (III), where color shading represent the magnitude and white arrows show direction of
the induced flow field. Inward and outward flows are separated for the flow field presented
in panel (III) by y = ±1/

√
2 x red dashed lines. The scale bar denotes 10Ls.

confirmed by comparing it to the flow field experimentally measured around an individual
swimming cell [90].

Let us consider a model micro-swimmer swimming toward direction e, through an un-
bounded fluid domain. Disturbing flow induced by the swimmer can be modeled as the flow
of a force dipole located at instantaneous position of the swimmer (x0). Thrust and drag
forces of equal magnitude are exerted in opposite directions (±f0e) to the ambient fluid at
x0 ± e l/2, where the characteristic length l is on the order of swimmer dimensions. For
each point force f exerted at point xp in an infinite fluid domain, the governing equation
will turn into:

∇P = η ∇2u+ fδ(x− xp), ∇ · u = 0. (5.3)

where δ (r) is the Dirac delta function. Equation (5.3) can be analytically solved in several
ways [44], and the resultant velocity field is known as Stokeslet:

uS (rp, t) =
f

8πη

(
I

rp
+
rprp
r3p

)
≡ G · f , (5.4)

where rp = x− xp, and G is the corresponding Green’s function. A complete set of singu-
larities in Stokes regime, can then be obtained [44] by taking derivative of the fundamental
solution presented in (5.4). The induced flow field of a model force dipole, ±f0e, located at
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instantaneous position of the swimmer (x0), can therefore be mathematically expressed as:

uSD =
D

8πη r3

[
−1 + 3

(r · e
r

)2]
r, (5.5)

where r = x−x0, for any generic point x in space. Note that the dipole strength, D ≈ f0l,
has a positive (negative) sign for pusher (puller) swimmers and its value can be inferred from
experimental measurements. For instance, the values of f0 = 0.42 pN and l = 1.9 µm, have
been experimentally obtained [90] for E. coli, in agreement with resistive force theory [83],
and optical trap measurements [91].

Here, we use velocity scale Us = f0/8πηl, length scale Ls = l, and time scale Ts =
Ls/Us, to non-dimensionalize the reported quantities. Therefore, dimensionless disturbing
flow induced by a micro-swimmer reads as:

ūSD =
c0
r̄3

[
−1 + 3

(
r̄ · e
r̄

)2
]
r̄, (5.6)

where c0 = +1 (−1) for pushers (pullers) and bar signs denote dimensionless quantities. It
worths noting that near-field of the flow induced by a micro-swimmer can be described more
accurately via including an appropriately chosen combination of higher order terms from the
multipole expansion [e.g. 92, 93]. However, here we are interested in the span of swimmers’
induced disturbances and their consequent detection region, for which far-field of the flow is
of primary interest.

To assess optimality of various swarm arrangements (in stifling disturbing effects), one
needs to first quantify the induced fluid disturbances. A measure of distortion (caused by
a flock of swimmers to the ambient fluid) can be obtained [14] by directly computing the
Mean Disturbing Flow-magnitude (MDF) over a surrounding ring (C) of radius R, i.e.

MDF =
1

2πR̄

∮
C
|ūnet|ds, (5.7)

where R̄ = R/Ls, and ūnet is the overall dimensionless flow field induced by the flock. Due
to linearity of the Stokes equation (5.2), the net disturbing flow (ūnet) is computed through
superposition of the flow fields (ūSD) induced by individual swimmers forming the flock
(i.e. ūnet =

∑N
i=1 ū

i
SD). Alternatively, one can quantify swarm’s induced fluid disturbances

by computing Area of the Detection Region (ADR), within which disturbances exceed a
predefined threshold. More precisely, the detection region refers to the subset of space,
within which the magnitude of net induced disturbing flow (ūnet = unet/Us) exceeds a
predefined threshold (ūth = uth/Us), i.e.

R = {∀x : |ūnet (x) | ≥ ūth} , (5.8)

which is also consistent with previous numerical studies on swimming microorganisms [94].
The threshold value (uth) can be tuned based on characteristics of the specific problem of
interest. For the system representing a prey swarm, as an example, it can be inferred from
experimental observations on sensitivity of predators’ receptors in sensing flow signatures.
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5.3 Results and Discussion

Here, the described theoretical analysis is combined with direct computations and non-linear
optimization, to perform a systematic parametric study on flocks of N ≥ 2 swimmers with
a bottom-up approach. Specifically, we develop a general procedure to determine optimal
swarming configurations, and systematically investigate their significance in reducing the
swarm’s induced fluid disturbances. We then present computational evidences demonstrating
how such a concealed swarm can actively gather around a favorite spot, point toward a
target, or track a desired trajectory, while minimally disturbing the ambient fluid. As a
benchmark, here we consider planar arrangements/movements of pusher swimmers (say, E.
coli bacteria) in an infinite fluid domain. Nevertheless, the reported concealed arrangements
will be the same for pullers, and our study can be inherently extended to three-dimensional
(3D) scenarios (see section 5.4.1 for details).

5.3.1 Concealed Arrangements

Let us consider simple groups of only two and three swimmers. The relative orientation of
the swimmers primarily controls the amount of distortion (measured in terms of MDF/ADR)
they induce to the surrounding environment. Our results reveal that by swimming in optimal
orientations, swimmers can reduce their induced disturbances by more than 50% (Fig. 5.2)
compared to when they simply swim in schooling orientations (i.e. toward the same direc-
tion). In fact, there exist a range of optimal swarm configurations, arranging into which will
result in minimally disturbing the surrounding fluid. For instance, when two of the agents (in
a group of three) swim in directions normal to each other, the swarm arrangement remains
optimal regardless of the third one’s swimming direction (see the green dashed line in Fig.
5.2b). This is due to axisymmetric nature of the disturbing flow induced by two perpendic-
ular dipoles (Fig. 5.2a-II). It bears attention that computed values of induced disturbances
(in terms of ADR/MDF) vary depending on associated hyper-parameters – specifically, the
threshold value (ūth) considered in computing ADR, or the radius (R/Ls) of surrounding ring
over which MDF is computed. However, such dependencies can be avoided by normalizing
the computed values against MDF/ADR induced by a reference swarm arrangement (see e.g.
Fig. 5.2a). The consequent normalized values also represent a cross-match for MDF versus
ADR (Fig. 5.2a). This further confirms equivalence of the described measures in assessing
optimality of swarm arrangements.

For groups including a larger number of swimmers (i.e. those with N > 3 agents),
plotting MDF (or ADR) over the entire parameter-space is not practical. However, we
know that any flock of N ∈ {4, 5, . . .} swimmers can be divided into sub-groups of only
two or three agents. For each of such sub-groups, the optimal region configurations is then
readily available (Fig. 5.2), assuring about 50% reduction of induced disturbances. This
along with linearity of Stokes equations (5.2), which describes dynamics of the flow around
micro-swimmers, guarantee the existence of optimal swarm arrangements with the same
50% concealing efficiency. Therefore, the optimal region of configurations exists for any flock
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Figure 5.2: (a): Fluid disturbances induced by a group of two swimmers are measured
in terms of MDF/ADR, and plotted as a function of relative angle between the agents
(α). Values presented in each plot are normalized by their maximum, which corresponds to
the reference case of aligned swimmers (i.e. in schooling arrangement). We also compare
normalized values of MDF computed over surrounding rings of various radii, specifically
R/Ls = 50, 100, and 200. Similarly, the process of computing ADR has been repeated for
different threshold values. Specifically we present those corresponding to ūth = 0.1, 0.01,
0.001, and 0.0001. Insets: Magnitude of the flow induced by two micro-swimmers swimming
in parallel (I) or perpendicular (II) directions. (b): Fluid disturbances (in terms of MDF)
induced by a group of three swimmers is presented by color shading over the space of relative
angles (defined as α and β) between them. The values are computed over a surrounding
ring of radius R/Ls = 100, and then normalized by the reference case (i.e. their maximum
value). The green dashed-line highlights the set of all possible arrangements with β = 90o.
Inset schematically defines α and β.

of N swimmers, and one can extract an optimal arrangement by implementing non-linear
optimization over the parameter-space. Note that objective functions quantifying swarm’s
induced disturbances (i.e. MDF/ADR), are nonlinear and often subject to constraints (e.g.
minimum separation distance between the agents). Thereby, in search of the global minima
by starting from multiple points, here we perform sequential quadratic programming using
local gradient-based solvers.It worths mentioning that merely applying gradient-based solvers
will only find local optima, depending on the starting point. To avoid this, here the starting
points are generated using a scatter-search mechanism [95], which is a high-level heuristic
population-based algorithm, designed to intelligently search on the problem domain. Its
deterministic approach in combining high-quality and diverse members of the population
– rather than extensive emphasis on randomization – makes it faster than other similar
evolutionary mechanisms, such as genetic algorithm [96].

As a benchmark, magnitude of the disturbing flow induced by a random suspension of
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Figure 5.3: Magnitude of the disturbing flows induced by a randomly arranged suspension
of twelve swimmers (a), is compared to when they form a structured group and arrange into
an isotropic arrangement with schooling orientation (b), or concealed swarms (c-d). The
minimum separation distance (ξ) between the swimmers in all cases is set to 10Ls. Note
that positions of the swimmers in panel (b) are the same as those in panel (c). The only
difference is that swimmers are arranged into the schooling orientation in (b), whereas the
isotropic arrangement in (c) is a particular example from the infinite pool of concealing
arrangements (i.e. the optimal region of configurations). For a swarm of twelve swimmers
with minimum separation distance of ξ/Ls = 10, panel (d) represents arrangement of the
globally optimal swarm with minimal disturbing effects. Color shading represents the flow
magnitude, and MDF is computed over white dotted rings (with radius R/Ls = 100). The
reference case used to normalize reported MDF values, corresponds to the case of twelve
aligned swimmers all located at the center point.
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Figure 5.4: (a)-(b): Magnitude of the net disturbing flows induced by a flock of twelve swim-
mers schooling in an isotropic positioning with minimum separation distance ξ/Ls = 10
and 20 between them. (c)-(d): Magnitude of the net disturbing flows induced by concealed
swarms of twelve swimmers with minimum separation distance ξ/Ls = 10 and 20, respec-
tively. Here the reported values of MDF are computed over the white dotted rings (with
radii R/Ls = 100), and normalized against the reference case. Color shading represents the
net disturbing flow magnitudes in each panel.

twelve swimmers, and the one induced by the same group arranged into an isotropic organized
school are compared in Fig. 5.3, to that induced by concealed swarms of twelve swimmers.
It worth noting that the amount of disturbances induced by a flock of swimmers depends
also on the minimum separation distance between the agents. Our numerical results show
that the role of this factor is more significant for a concealed swarm than for an organized
school (see e.g. Fig. 5.4). However, it can still be considered as a minor factor compared to
relative orientation of the swimmers.
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5.3.2 Concealed Swarming

There exist many situations (for both motile microorganisms and swimming micro-robots)
that swimmers form an active swarm (i.e. a disordered cohesive gathering) around a desired
spot. For instance, this can be a swarm of bacteria around a nutrient source [97], or a flock of
biological micro-robots performing a localized micro-surgery [18, 98]. Remaining concealed
in these scenarios can keep a bacterial swarm stealth from nearby predators, or help keeping
a deployed flock of micro-robots non-disturbing to the host medium.

Note that forming a swarm (as opposed to a random suspension), by itself, keeps the
net induced distortions bounded (see e.g. Fig. 5.3). However, to have minimal disturbing
effects, arrangement of the swimmers (forming a swarm) must lie within the optimal region
of configurations at every instant of time. To this end, we choose the proposed measure
of net induced disturbances (i.e. MDF) as the objective function (Z) to be minimized by
the swarm arrangement. Dynamics of an active concealed swarm can then be described as
follows: (i) swimmers forming the swarm get into an optimal arrangement (with minimal
fluid disturbances); (ii) each swimmer then swims steadily forward (i.e. ‘runs’) for a fixed
period of time (say, τr); (iii) the swimmers will then reorient quickly (i.e. ‘tumble’) into a
new optimal arrangement, and then (iv) start running once again toward the new directions.
This sequence of events occur in turn, repeatedly. Parameters including swimming speed
and frequency of tumbling events (τ−1r ) can be tuned according to the system of interest.
As a benchmark, here we present a sample time evolution of an active concealed swarm in
Fig. 5.5. Through the above described dynamics, the swarm remains cohesive, keeps itself
confined within a finite region of space (around a desired spot), and is able to stifle the
induced disturbances by ∼ 50% through system evolution (Fig. 5.5). This is equivalent to
shrinking the swarm’s detection region by half.

It also worths mentioning that motion of each individual swimmer in the presented sys-
tem, can be seen as a controlled version of the so-called run-and-tumble mechanism. This is
inspired by the observed behavior of swimming microorganisms, such as E. coli bacteria –
known as the paradigm of run-and-tumble locomotion [99]. Recent observations [100] reveal
that even C. reinhardtii cells swim in a version of run-and-tumble. From a practical point
of view, realization of the smart form of run-and-tumble mechanism also seems feasible in
the context of internally/externally controlled artificial micro-swimmers. The recently pro-
posed Quadroar swimmer [15, 12], for instance, propels (i.e. runs) on straight lines, and can
perform full three-dimensional (3D) reorientation (i.e. tumbling) maneuvers [10].

5.3.3 Stealthy Maneuvers and Target Pointing

Through altruistic collaborations, micro-swimmers can also remain stealth while traveling
toward a target point or tracking a desired trajectory in space. There is only one caveat here.
The objective function (Z), to be minimized by the traveling swarm during each consecutive
run, must now represent a measure not only for the overall disturbances induced by the
swimmers, but also their distances from the target point (or from the desired trajectory).
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Figure 5.5: Fluid disturbances (in terms of MDF) monitored over the time evolution of an
active concealed swarm of ten swimmers. The agents are initially positioned and oriented
randomly (at t/Ts = 0). Thereafter, each agent represents a version of run-and-tumble
dynamics (with τr/Ts = 5), so that to keep the swarm’s arrangement within the optimal
region of configurations at every instant of time. The insets (I and II) represent snapshots
of the swarm’s activity at an early (t/Ts = 10) and late (t/Ts = 225) stages of the system
evolution, respectively. The immediate values of MDF (computed over surrounding rings of
radii R/Ls = 100) for the presented snapshots are 49.9% and 49.6%, respectively. In each
panel, the instantaneous positions of the swimmers are marked with colored dots, and their
trajectories are shown by gray-scale lines. As a benchmark, we have also highlighted one of
the trajectories with an orange dashed-line. The presented scale bar is 10Ls.

Therefore, we define

Z = ε× ¯MDF + (1− ε)× ¯RMSd , (5.9)

where ¯RMSd stands for the normalized root mean square of swimmers’ distances from the
target point; ¯MDF quantifies the overall induced disturbances; and 0 ≤ ε ≤ 1 is the detuning
parameter which determines the importance of concealing versus travel time. Note that the
ratio ε/(1− ε) properly covers the entire span of [0,∞) when ε ∈ [0, 1). In practice, a variety
of imaging techniques [78] can be used to feed back the state information (including swim-
mers’ distance toward the target point) into the agents’ decision-making unit. However,
some bio-hybrid systems may rely on local (point-wise) sensing capabilities of swimming
microorganisms (in measuring quantities such as light or chemicals) to obtain state informa-
tion. To optimally control such systems, a more realistic objective function can be devised
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(see section 5.4.2) by replacing ¯RMSd in Eq. (5.9) with ¯RMSθ. The latter stands for normal-
ized root mean square of the swimmers’ deviations from their locally desired directions, in
the absence of concealing interests. Nevertheless, our numerical experiments reveal that the
bottom-line of analysis conducted using such an alternative objective function still remains
the same (Fig.5.9, section 5.4.2).

Sample flocks of micro-swimmers, controlled to travel from a starting point (A ) toward a
target point (B) in stealth versus fast modes (tuned by ε), are shown in Fig. 5.6. Note that
ε = 0 corresponds to the fastest traveling swarm, for which the swimmers travel in schooling
arrangements (i.e. toward the same direction), but it provides no concealing benefits (i.e.
MDF = 100% for ε = 0). On the other extreme, i.e. for ε = 1, the swarm will have the highest
concealing efficiency (MDF = 49.7%), yet never reaches the target point (Fig. 5.6a). Trade-
off between the travel time and the overall efficiency of concealing is demonstrated with more
details in Fig. 5.6(c). To illustrate, we have monitored the induced fluid disturbances for
traveling swarms controlled with various values of ε, during their migration from A to B. As
ε→ 1 (→ 0), the swarm will travel slower (faster), yet induces less (more) disturbances to the
ambient fluid. Recall that for a traveling swarm controlled by ε = 0, the objective function
(5.9) encodes only a measure of the swimmers’ distances to the target point. This results in
reaching the target point in minimum amount of time (Fig. 5.6a). However, once an ε > 0
is introduced to the swarm control strategy, the objective function (to be minimized by the
traveling swarm) will also include a measure for the swimmers’ overall induced disturbances
(in terms of MDF). Thereby, the fluid disturbance (measured in terms of normalized MDF)
induced by a controlled traveling swarm, rapidly decays with ε and eventually converges to
the highest possible concealing efficiency (i.e. MDF = 49.7%) at ε ≈ 0.5 (Fig. 5.6c). It
is remarkable that swarming in such an optimally concealed mode (Fig. 5.6b), that is the
fastest among those with highest possible concealing efficiency, costs only 23% increase in the
trip duration compared to the fastest possible swarm. The associated concealing efficiency

Figure 5.6: For caption see next page.
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Figure 5.6: (cntd). Sample flocks of micro-swimmers, controlled by different values of ε, so
as to travel from a starting point (A ) toward the target point (at B). (a): Comparison
between trajectories of the swimmers when controlled by extreme values of ε = 0 and 1,
respectively. Denoted by dashed thin lines are trajectories of the fastest traveling swarm
(travel time = 130Ts) with no concealing (ε = 0). On the other hand, trajectories of the
traveling swarm with the highest possible concealing efficiency (MDF = 49.7%), yet no
constraints on preferred direction (ε = 1), are denoted by solid thick lines. The latter
never reaches the target point. (b): Snapshots of the optimal concealed traveling swarm
(ε = 0.5) having the most possible concealing efficiency in the cost of only 23% increase in
the travel time. Blue, green, and red thick (thin) solid (dashed) lines represent trajectories
of the swimmers after t/Ts = 50 (160). Instantaneous arrangement of the swimmers at
t/Ts = 50 is schematically shown in a magnified view as inset (I) and is compared to the
arrangement of an organized school (II) with MDF of about 100%. The dashed circles in
panels (a) and (b) mark instantaneous position of each flock in the presented snapshots. (c):
Fluid disturbances induced by the traveling swarms controlled with various values of ε, are
measured in terms of MDF and monitored during their trip from A to B. The terminal
time, at which a swarm reaches to the target point B, is denoted in each case by an asterisk.
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for such an optimal traveling swarm is equivalent to ∼ 50% shrink of the swarm’s detection
region throughout its migration from A to B.

In the end, it also worths noting that although the focus of our analysis in this chapter
has been on planar (2D) swarm arrangements/movements, the present study can be readily
extended to three-dimensional (3D) scenarios. As a benchmark, we discuss 3D concealed
arrangements in section 5.4.1 (Fig. 5.7), for which reduction of the swarm’s induced distur-
bances exceed 99%. We then demonstrate how such swarm configurations can help a group
of swimmers to remain stealth (with ≥ 90% reduction in MDF) throughout their trip from
A to B in a 3D space (Fig. 5.8). Additionally, a sample concealed swarm of micro-swimmers
tracking a desired trajectory through a non-uniform environment is also discussed in section
5.4.3 (and specifically Fig. 5.10).

5.4 Other Notes

5.4.1 Concealed Swarms with 3D Arrangements/Movements

The focus of this chapter has been on planar (2D) swarm arrangements/movements. How-
ever, the present study can be readily extended to three-dimensional (3D) scenarios. In
particular, the same procedure can be used to also find 3D optimal (i.e. concealed) swarm
arrangements for any flock of N swimmers. The exception is that to quantify fluid distur-
bances induced by a 3D swarm arrangement, one needs to either: (i) compute the mean
disturbing flow-magnitude (MDF) over the surface of a surrounding sphere, or (ii) compute
the volume of a swarm’s detection region (VDR).

As a benchmark, a 3D concealed arrangement is demonstrated in Fig. 5.7 for the same
flock of twelve swimmers presented in Fig. 5.3 of this chapter. We highlight that forming
such a 3D concealed swarm suppresses the induced disturbance by more than 99% – compare
this value to the ∼ 50% reduction achieved for 2D concealed arrangements of the same flock
(Fig. 5.3). This is equivalent to more than 99% shrink of the instantaneous detection region
for the swarm. Note that such a dramatic suppression of the induced disturbances, achieved
by forming a 3D concealed swarm (versus a 2D one), reflects a sudden drop in leading order
of the swarm’s induced disturbing flows. In fact, for any sub-group of three orthogonally
oriented agents, within a 3D swarm, the leading order of induced disturbances switches from
being a dipole (decaying as 1/r2) to a quadrapole (vanishing as 1/r3).

Through altruistic collaborations, micro-swimmers also can form a 3D concealed swarm
while traveling toward a target point in a 3D space (see Fig. 5.8). The objective function
(to be minimized by the swarm through cooperation of the agents) remains untouched, and
one can follow the same procedure (as outlined in the paper) to find the optimally concealed
traveling swarm. The caveat here is that the 3D MDF has to be computed over the surface
of a surrounding sphere. As a benchmark, here we show (in Fig. 5.8) a sample 3D concealed
swarm of micro-swimmers traveling from a starting point (A ) toward a target point (at B).
Our numerical experiments reveal that by setting ε = 0.5 the traveling swarm can shrink its
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Figure 5.7: Magnitude of the net disturbing flows induced by a three-dimensional (3D)
concealed swarm of N = 12 swimmers (c.f. the 2D arrangements presented in Fig. 5.3).
Forming the presented optimal swarm arrangement suppresses the induced disturbances
(and thus shrinks the swarm’s detection region) by more than 99%. Here the induced fluid
disturbances are quantified by computing mean disturbing flow-magnitude (MDF) over the
surface of a surrounding sphere (with R/Ls = 100). Also, as a benchmark, the minimum
separation distance (ξ) between swimmers forming the swarm is set to 10Ls, which is the
same as those presented in Fig. 5.3. Insets (I-II) represent (x-y) and (y-z) cross sections
of the swarm arrangement, respectively. In the panels, color shading represents the flow
magnitude, and white dotted rings represent cross-sections of the surrounding sphere used
to compute MDF. The reference case used to normalize MDF, corresponds to the case of
twelve aligned swimmers (i.e. in schooling arrangement) all located at the center point.
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Figure 5.8: Fluid disturbances (measured in terms of MDF) induced by a 3D concealed swarm
of three micro-swimmers are monitored throughout their migration (in an unbounded three-
dimensional space) from a starting point (A ) toward a target point (B). The 3D MDF is
computed over the surface of a surrounding sphere of radius R/Ls = 100, and the swarm
is controlled by ε = 0.5 –see Eq.(5.9). The terminal time, at which the swarm reaches the
desired target point at B, is denoted by an asterisk. The insets represent trajectories of the
swimmers in full 3D and 2D views, respectively. For the sake of comparison, disturbances
induced by the fastest swarm with no concealing efficiency (ε = 0) is also monitored (in
terms of normalized MDF) over time, and is shown by a black dashed line.

detection region by more than 90% and remain concealed throughout the trip from A to B
(see Fig. 5.8).

5.4.2 Stealth Target Pointing via Local Sensory Information

In the presented study we demonstrated that through altruistic collaborations, micro-swimmers
can form a concealed swarm while traveling toward a target point or track a desired trajec-
tory in space. These traveling swarms can represent: (i) flocks of swimming micro-robots
traveling (in vivo) toward a target point while controlled to be fast/concealed (as tuned
by ε); (ii) a swarm of predators attacking a target prey flock (at point B) in stealth ver-
sus fast modes (tuned by ε); or even (iii) flocks of motile microorganisms swarming under
influence of an external gradient (the intensity of which being modeled as 1 − ε) from A
to B – e.g. in chemotaxis of sperm cells toward an egg. However, we note that sensing
capabilities of swimming microorganisms are often limited to the point-wise measurement of
various quantities – e.g. light or chemicals [101]. This makes them unable to identify their
distance toward a desired target point, as required for the model presented in Eq. 5.9 of the
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Figure 5.9: (a) Fluid disturbances induced by sample flocks of micro-swimmers, which are
controlled to migrate from a starting point (A ) toward a target point (B) with different
values of ε tuning their alternative objective function (5.10). The presented traveling swarms
can represent flocks of micro-swimmers swarming from A to B under influence of an external
gradient, the intensity of which being tuned by different values of 1− ε. The terminal time,
at which a swarm reaches the target point at B, is denoted in each case by an asterisk. Note
that the swarm corresponding to the extreme case of ε = 1, never reaches the target. (b)
Snapshots of the optimally concealed traveling swarm (controlled with ε = 0.9) which has
the highest possible concealing efficiency (MDF = 49.7%) in cost of only 23% increase in the
travel time compared to the fastest possible swarm. As a benchmark, the deviation angle
(θi) for the swimmer i swimming in direction ei is shown (in red). Blue, green, and red solid
lines represent trajectories of the swimmers after 70Ts.

article. Therefore, for a bio-hybrid system which relies on sensing capabilities of swimming
microorganisms, a more realistic objective function (Z) can be devised by replacing ¯RMSd
in Eq. 5.9 with ¯RMSθ, which stands for the normalized root mean square of the swimmers’
deviations from their locally desired directions in the absence of concealing interests. The
alternative objective function thereby reads as

Z = ε× ¯MDF + (1− ε)× ¯RMSθ . (5.10)

Note that when concealing is not of interest, the desired direction at the location of each
swimmer is the steepest ascent in the external field that leads it toward the target. Thus,

¯RMSθ stands for the normalized root mean square of the swimmers’ deviations from the
direction representing maximal gradient – i.e. the direction toward the target point (see e.g.
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Fig. 5.9b). Mathematically, we define

¯RMSθ =

√√√√( N∑
i=1

θ2i

)
/N . (5.11)

This requires the swimmers to only identify deviation of their swimming direction from that
of the maximal gradient in the external field of interest, that can be obtained locally.

Trade-off between the travel time and the overall efficiency of concealing in this case
is demonstrated in Fig. 5.9. The induced fluid disturbances (measured in terms of MDF)
are monitored during the trip from A to B, while the traveling swarm is controlled with
various values of ε. Similar to what was observed for the test cases presented in Fig. 5.6,
as ε → 0 (→ 1) the swarm travels faster (slower) in space, i.e. the travel time decreases
(increases), but it will induce more (less) disturbances to the ambient fluid. Our results
reveal that the bottom-line of our analysis also remains the same. In particular, the results
reveal that swarming in an optimally concealed mode (via such an alternative local sensory
information), with more than 50% reduction in disturbances, may cost only 23% increase in
the trip duration compared to the fastest possible trip (Fig. 5.9). This is equivalent to 50%
shrink in detection region of the swarm throughout its migration from A to B.

5.4.3 Stealth Trajectory Tracking in a non-Uniform Environment

There exist many situations, for both biological micro-robots and swimming microorganisms,
in which they have to travel through a non-uniform environment. Examples include fluids at
the interface of different organs inside the human body with distinct viscosities, or those in
vicinity of a mucus zone [102]. Depending on their propulsion mechanism, motile microor-
ganisms experience different energy expenditures, and thus distinct swimming speeds, while
traveling in regions with different rheological properties [103, 104, 105, 106, 107, 108].

Here, we show that through altruistic collaborations, micro-swimmers can also remain
stealth while traveling toward a target point or tracking a desired trajectory in such non-
uniform environments. In particular, we are interested to find an optimally concealed trav-
eling swarm, that is the fastest among those with highest possible concealing efficiency – see
e.g. the one presented in Fig. 5.6(b) passing through a uniform environment. Note that
a straight line connecting two points in non-uniform environments no longer represents the
fastest pathway between them. Therefore, one needs to first find the optimal (i.e. fastest)
pathway from the starting point to the target point. Then, a similar procedure (as outlined
in section III-C) can be used to track the specified trajectory. However, there is a caveat
here: ¯RMSd in the objective function (Z), now stands for the normalized root mean square
of swimmers’ distances from the optimal pathway.

As a benchmark, let us consider a simple example of two side-by-side regions (Fig. 5.10),
each with a distinct swimming cost for swimmers. This, for instance, can represent the
interface between two distinct liquids. A concealed swarm of three micro-swimmers tracking
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Figure 5.10: A concealed swarm of three micro-swimmers tracking an optimal trajectory in
a non-uniform environment from a starting point (A ) to a target point at B. Detection
region of the swimmers is significantly stifled, such that reduction in ADR exceeds 50%
during the trip. This is equivalent to minimal disturbances toward the ambient fluid with
50.4% reduction in MDF. Total time taken for the swimmers to reach the target point is
210Ts. The normalized swimming cost is C̄(x, y) = 1 for x/l < 50, and C̄(x, y) = 2 for
x/l ≥ 50. The optimal (i.e. fastest) pathway from A to B is computed through fast
marching level-set method, and is shown by a black dashed line. Isolines correspond to
T̄ (x, y), that is the minimum time required to reach any point (x, y), starting from point A .
Trajectories of the swimmers (tracking the optimal pathway) are also shown by blue, red
and green solid lines. The inset represents a specific moment from the trip (as marked by a
dashed circle), where schematics demonstrate arrangement of the swimmers at this moment.
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Figure 5.11: Snapshots of a single traveling swimmer joining a nearby (traveling) concealed
swarm to minimize the overall disturbing flows. (a)-(b) There is a mutual desire to bring
the single swimmer into the swarm. (c)-(d) Members trying to form a new optimal swarm
arrangement to include the new member in the group. (e) A concealed swarm of three
swimmers is formed with more than 50% reduction in MDF.

a prescribed optimal pathway (from A to B) through such an inhomogeneous environment is
represented in Fig. 5.10. At the cost of only 30% increase in the travel time, compared to the
fastest possible swarm, detection region of the swarm is significantly stifled, so that reduction
in ADR exceeds 50% during the trip. This is also equivalent to minimally disturbing the
ambient fluid with 50.4% reduction in MDF.

It also worths noting that by solving the normalized Eikonal equation, i.e. |∇T̄ | =
C̄(x̄, ȳ), using a fast marching level-set method [109, 110], one can find T̄ (x̄, ȳ), which is
the minimum cost (i.e., the least required time) of reaching to any arbitrary point (x̄, ȳ) in
space. Here, the bar signs denote dimensionless quantities and C̄(x̄, ȳ) is the swimming cost
at (x̄, ȳ) normalized by U−1s . Values of T are also normalized by the time scale Ts = Ls/Us.
Tracing back from point B to A , while always moving normal to the isolines of T̄ (see Fig.
5.10), will then provide the optimal pathway from A to B [110].

5.4.4 Expansion of a concealed swarm

As we discussed in section 5.3.1, it is desired for individual swimmers to form a group and
collaborate to cancel out each others disturbing effects to the surrounding fluid. Our results
further reveal that a traveling concealed swarm can attract nearby individual swimmers
(those swimming in its vicinity), and subsequently expand by re-forming into a new larger
swarm. To provide further insight, the minimal example is demonstrated in Fig. 5.11 via
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successive snapshots (a)-(e). It is shown how a single traveling swimmer joins a nearby
concealed swarm of two swimmers, and together, they form a new concealed swarm of three
swimmers. Note that the only imposed constraint on the motion of swimmers is the upward
swimming (c.f. gravitaxis). Relaxing this constraint will simply result in a quasi-random
walk of the swarm with no preferred direction.

5.5 Concluding Remarks

To summarize, in this chapter we revealed that micro-swimmers can form a stealth swarm
through controlled cooperation in suppressing one another’s disturbing flows. Specifically,
our results unveil the existence of concealed arrangements, which can stifle the swarm’s
hydrodynamic signature (and thus shrink its detection region) by more than 50% (or 99%)
for planar (or 3D) movements. We then demonstrated how such a concealed swarm can
actively gather around a desired spot, point toward a target, or track a prescribed trajectory
in space. Our study provides a road map to optimally control/lead a swarm of interacting
micro-robots in stealth versus fast modes. This, in turn, paves the path for non-invasive
intrusion of swimming micro-robots with a broad range of biomedical applications [18].

The presented findings also provide insights into dynamics of prey-predator systems. Im-
portance of the fluid mechanical signals (i.e. flow signatures) produced by swimming objects,
in dynamics of prey-predator systems is well appreciated for a broad range of aquatic or-
ganisms. Free-living copepods, for example, possess highly sensitive fluid-mechanoreceptors
[111] capable of detecting disturbing flows as small as 20 µms−1. These sensors enable the
organism to accurately measure fluid disturbances induced by nearby predators (preys), es-
timate their distance/size, and thereby properly trigger escape (catch) behavior [112, 113].
Another example is the Gram-negative Bdellovibrio bacteriovorus [114], which is a proto-
typical predator among motile microorganisms and hunts other bacteria, such as E. coli.
Recent experiments [115] show that it is, in fact, hydrodynamics rather than chemical clues
that lead this predator into regions with high density of prey. Therefore, quenching the flow
signature (and thus shrinking the associated detection region) by swarming in concealed
modes, can potentially have a significant impact on trophic transfer rates among a broad
range of aquatic organisms. In particular, stifling the induced disturbances may help an
active swarm of prey swimmers gathered around a favorite spot (say, a nutrient source) to
lower their detectability (and thus predation risk) through shrinking their detection region.
Quenching flow signatures induced by a traveling swarm, on the other hand, may help a
swarm of predators to remain concealed while attacking a target prey flock.
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Chapter 6

Active Cloaking
via Reinforcement Learning

Hydrodynamic signatures at the Stokes regime, pertinent to motility of micro-swimmers,
have a long-range nature. This implies that movements of an object in such a viscosity-
dominated regime, can be felt tens of body-lengths away and significantly alter dynamics of
the surrounding environment. In this chapter, a systematic methodology is presented to ac-
tively cloak swimming objects within any arbitrarily crowded suspension of micro-swimmers.
Specifically, our approach is to conceal the target swimmer throughout its motion using co-
operative flocks of swimming agents equipped with adaptive decision-making intelligence.
Through a reinforcement learning algorithm, the cloaking agents experientially learn opti-
mal adaptive behavior policy in the presence of flow-mediated interactions. This artificial
intelligence enables them to dynamically adjust their swimming actions, so as to optimally
form and robustly retain any desired arrangement around a moving object without disturb-
ing it from its original path. Therefore, the presented active cloaking approach not only is
robust against disturbances, but also is non-invasive to motion of the cloaked object. We
then further generalize the proposed approach and demonstrate how our cloaking agents can
be readily used, in any region of interest, to realize hydrodynamic invisibility cloaks around
any number of arbitrarily moving intruders.

6.1 Introduction

Living organisms in aquatic environments highly depend on detecting the fluid-mechanical
signals caused by motions in the surrounding fluid [116]. A broad range of swimming organ-
isms, for instance, possess intricate sensors to directly measure the magnitude of disturbing
flows (i.e. flow signatures) induced by nearby swimming objects [see 111, 113, 116]. This
invaluable information is then used, as a ‘tool’, to detect the presence of nearby predators
(preys), estimate their relative distance/size, and subsequently trigger an appropriate es-
cape (catch) behavior [see 117, 118, 119]. For micro-swimmers, however, it was recently
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revealed [13] that an interacting flock can significantly suppress the induced disturbances
(by ∼ 50%) once swarming in specific arrangements (referred to as concealed modes). This
finding inspires an even more intriguing question, that is whether a micro-swimmer can be
actively cloaked, so as to remain undetectable (generating no trace) when passing through
a host medium? Equivalently, is there a way to actively cloak random intruders to protect
a sensitive region from disturbing effects of their induced fluid flows?

The concept of cloaking has long been of great interest to physicists and engineers, and
remarkable progress has been made toward cloaking an object in the realm of electromagnetic
waves [see e.g. 120, 121], gravity waves [see e.g. 122], fluid flows [see e.g. 123, 124], acoustics
[see e.g. 125, 126], quantum mechanics [see e.g. 127], thermodynamics [see e.g. 128], solid
mechanics [see e.g. 129], and even time [see e.g. 130].

Realizing a hydrodynamic invisibility cloak for a motile micro-swimmer, however, faces
two fundamental challenges: (i) the dynamic nature of the subject, that is continuously
moving in arbitrary directions; and (ii) the long-range nature of underlying flow-mediated
interactions, which can easily induce chaos and bring disorder to any potentially designed
cloaking system that is initially set to a perfect order. The latter is further exacerbated for
the case of cloaking specific subjects within a crowded suspension of micro-swimmers. In fact,
the motion of each swimming object in the Stokes regime, perturbs the net flow field at the
position of all nearby swimmers, and thus alters dynamics of the entire system. Therefore,
to properly conceal swimming objects in a viscous environment, the cloak formation has to
dynamically adjust in response to such non-linearly varying hydrodynamic loads. This leads
us to the concept of active cloaking.

In this chapter, the first demonstration of active cloaking in Stokes flows is presented
using cooperative flocks of micro-swimmers – hereafter referred to as the ‘cloaking agents ’.
In the presented method, hydrodynamic signature of the cloaked object – hereafter referred
to as the ‘intruder ’, is actively suppressed (throughout its motion) by a group of cloaking
agents that form specific arrangements around it. To optimally form (and robustly retain)
such desired cloaking arrangements around a moving intruder, the agents indeed need to
dynamically adjust their swimming actions. Therefore, we first provide a rigorous approach
to systematically train the cloaking agents through a reinforcement learning algorithm. This
experiential learning process, equips the agents with an optimal adaptive behavior policy
in the presence of flow-mediated interactions. The sequence of actions taken by the agents
based on such an artificial intelligence, enables them to keep any arbitrary intruder concealed
throughout its motion without disturbing it from its original path. Therefore, the presented
active cloaking approach is also non-invasive to the intruder’s motion. We then further
generalize our approach, and demonstrate how these smart cloaking agents can be readily
used to realize hydrodynamic invisibility cloaks around any number of swimming objects,
within any arbitrarily crowded suspension of micro-swimmers.
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Figure 6.1: (a) Schematic representation of the archetypal puller and pusher swimmers. The
force dipole (±f0e) exerted by each swimmer to the surrounding fluid is shown by red arrows.
Vector e denotes the swimming direction, and curly blue arrows demonstrate direction of
the induced disturbing flows in each case. (b) Schematic representation for a system of
interacting micro-swimmers. The position vector of swimmer i ∈ {1 . . . N}, swimming with
speed Vs in direction ei, is denoted by ri with respect to the fixed frame of reference. Here
N = 6, and the system includes both pusher and puller swimmers.

6.2 Interaction Dynamics in Viscous Environments

Dynamics of the flow induced by a micro-swimmer (i.e. a swimming micro-robot or a motile
microorganism) can be described by the Stokes equations:

∇P = µ ∇2u+ F , ∇ · u = 0. (6.1)

where µ is dynamic viscosity of the surrounding fluid, P represents the pressure field, u is
the velocity field, and F is the notion of body forces per unit volume. In the absence of
external (magnetic or electric) fields, a self-propelled buoyant micro-swimmer exerts no net
force/torque to the surrounding fluid. Therefore, in the most general form, far-field of the
disturbing flow induced by a micro-swimmer is well-described by the flow of a force dipole
(±fse) composed of the thrust force (generated by the swimmer’s propulsion mechanism)
and the viscous drag acting on its body (Fig. 6.1a). To be more precise, for a micro-swimmer
swimming with speed vs toward direction e through an unbounded fluid domain, the induced
flow field can be formulated [see e.g. 26] as

uSD =
D

8πµ r3

[
−1 + 3

(r · e
r

)2]
r, (6.2)

where r = x−x0, for any generic point x in space; x0 represents the instantaneous position
of the swimmer, and r = |r|. The dipole strength, |D | ∼ vsL

2
s ∼ fsLs, has a positive

(negative) sign for pusher (puller) swimmers, and its value can be inferred from experimental
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measurements [see e.g. 90]. Here the characteristic length Ls is on the order of swimmer
dimensions, and we use {Us = vs, Ls, Ts = Ls/vs} to make the quantities dimensionless.

Swimming in the Stokes regime is significantly affected by the presence of long-range
hydrodynamic interactions. In fact, disturbing flows induced by the motion of each micro-
swimmer highly affects dynamics of other nearby swimming objects. Here we take into
account both hydrodynamic and steric interactions between the swimmers. To this end, let
us consider a generic flock of ‘N ’ interacting micro-swimmers as presented schematically in
Fig. 6.1(b). For any swimmer i ∈ {1, . . . , N} in the flock, dynamics of the position vector,
ri, and the swimming direction, ei, are governed by

ṙi = vse
i +
∑
j 6=i

[
uj
(
ri
)

+
1

6πµLs
F j
(
ri
)]

+ uf
(
ri
)
, (6.3a)

ėi =

{
1

2
ωf
(
ri
)

+
1

2

∑
j 6=i

ωj
(
ri
)

+ Bei ×

[
Ef
(
ri
)

+
∑
j 6=i

Ej
(
ri
)]
· ei
}
× ei, (6.3b)

where uj (ri) = uSD (ri − rj) is the disturbing flow induced by swimmer ‘j’ at the position
of swimmer ‘i’ (6.2), and ωj = ∇×uj is the corresponding vorticity field. Similarly, uf (ri)
denotes the background (external) flow at the position of swimmer ‘i’, and ωf = ∇ ×
uf is the corresponding vorticity field. Here each swimmer is modeled as an infinitesimal
spheroid of aspect ratio λ, for which the Bretherton constant [see e.g. 131] is defined as
B = (λ2 − 1) / (λ2 + 1). The rate of strain tensor, defined as

E
(
ri
)

=
1

2

[
∇u(ri) +∇u>(ri)

]
, (6.4)

is also denoted by Ej and Ef , for uj and uf , respectively. To regularize our dipole models
(diverging as 1/r2), we also define a purely repulsive force [c.f. 132], based on the Lenard-
Jones-type potential:

F j
(
ri
)

= −∂L ji/∂rji, L ji = 4εL

[( σ
rji

)12
−
( σ
rji

)6]
+ εL, (6.5)

where rji = |ri−rj|, the constant σ indirectly specifies the equilibrium distance (i.e. 21/6σ ∼
2Ls), and εL tunes strength of the steric interactions. This ensures the excluded volume
constraints, and thus pushes the swimmers away from each other when approaching closer
than a certain distance (determined by 21/6σ).

It is worth noting that the presented framework (6.3) can be readily extended by incor-
porating a more detailed description of uj (ri). In particular, near-field of the flow induced
by micro-swimmers can be described more accurately through including an appropriately
chosen combination of higher order terms from the multipole expansion [see e.g. 133, 92].
However, in this work, we are interested in the span of swimmers’ induced disturbances and
their consequent detection region, for which far-field of the flow is of primary interest. There-
fore, as discussed earlier, the disturbing flow induced by each micro-swimmer is formulated
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here, in the most general form, as the flow of a force dipole. This simple model has been
validated and widely used in the literature [see 89, 26]. In particular, for archetypal pusher
and puller swimmers (i.e. Escherichia coli bacteria and Chlamydomonas reinhardtii alga)
used as benchmarks throughout this work, the validity of this model is further confirmed
via direct comparison to the disturbing flows (experimentally) measured around individual
swimming cells [60, 90]. In the case of E. coli bacteria, for instance, values of fs = 0.42
pN and Ls = 1.9 µm, have been suggested [90] in agreement with resistive force theory [83]
and optical trap measurements [91]. The corresponding dipole model (with D ∼ fsLs) is
proven to be highly accurate in predicting magnitude of the induced disturbing flows, even
at distances comparable to characteristic length of the swimmer [90]. To be more specific,
the predicted values are in agreement with those experimentally measured around an in-
dividual swimming cell at ranges r & 3Ls. At shorter distances, the induced disturbing
flows are shown to be less significant than those estimated by the dipole model [90], and
thus steric interactions (‘soft’ collisions) are known to dominate the hydrodynamic interac-
tion. Therefore, it is expected that the dipolar hydrodynamics, when supplemented by the
Lennard-Jones-type excluded volume interactions (6.5), well-describe interaction dynamics
in a semi-dilute suspension (see e.g. [132, 134]).

To keep the model simple and tractable in this work, we specifically consider swimmers
with spherical body shapes (with B = 0) for our swimmers. Nevertheless, the presented
framework (6.3) explicitly incorporates the effects of swimmers’ geometry. Thus, it can be
used to describe the interaction dynamics of micro-swimmers with different shapes. In the
case of ellipsoidal body shapes with eccentricity λ, for instance, the Bretherton constant
can be evaluated as B = (λ2 − 1) / (λ2 + 1). This stands for the values of B = 0/1 for
spheres/needles, and takes positive (negative) values for prolate (oblate) objects.

6.3 Cloaking a micro-Swimmer in Stokes Flows

A cloak is commonly referred to as a patch enclosing an object to make it invisible. In
an aquatic environment, however, swimming organisms nearly always use fluid disturbances
(caused by motions in the surrounding fluid), as hydrodynamic signals to detect the nearby
objects. Therefore, to be invisible in such environments, one needs to generate no dis-
turbances to the ambient fluid. Accordingly, here we define the cloak as a patch virtually
covering/enclosing a swimmer to cancel out its induced disturbances. This will then keep the
enclosed swimmer ‘invisible’ to others in the medium – by stifling its flow signature. Similar
to other forms of cloaking, a suitable cloak is also required to be omni-directional, that is, to
keep itself and the enclosed swimmer ‘invisible’ from any direction. It worths highlighting
that the induced disturbing flows have a long-range nature at the Stokes regime pertinent
to motility of micro-swimmers. This means that despite high Reynolds number motions in
which hydrodynamic signature is relatively confined to the immediate neighborhood, the
motion of an object at a low Reynolds number regime can be felt tens of body-lengths away.
Thus, movements of micro-swimmers significantly alter their surrounding environment. As a
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result, specific to biological applications, cloaking a micro-swimmer may be more important
in protecting sensitive regions (e.g. organs) against disturbing flows induced by intruders –
such as passing-by swimming microorganisms or deployed biomedical micro-robots. This, in-
deed, is equivalent to making such intruders hydrodynamically invisible (i.e. cloaked) within
the surrounding environment.

We assess the effectiveness of an invisibility cloak in Stokes regime, by evaluating its
efficiency in stifling the swimmer’s induced disturbing flows. A measure of distortion caused
by swimming objects to the ambient fluid can be obtained through directly computing the
mean disturbing flow-magnitude (U ) over a surrounding ring of radius R (c.f. Fig. 6.2a) –
here denoted by C(R). The cloaking efficiency (η) can then be calculated as

η = 1− Uc

Ui

, U =
1

2πR

∮
C(R)

|ū| ds, (6.6)

where Uc measures the induced disturbances once the cloak is implemented (i.e. corre-
sponding to the net flows generated by the swimmer and its implemented cloak), and is
directly compared to disturbances induced by the isolated swimmer (Ui) – when no cloaking
is in place. Here, ‘ds’ is the differential length along the surrounding ring, and ū = u/vs
represents the net dimensionless flow field induced by the swimmer/system.

The simplest strategy in cloaking a single swimmer (an intruder) at any given instance
of time is to properly position, next to it, another swimmer of the same dipolar strength, but
from the opposite type. This basically replaces the dipolar (vanishing as 1/r2) leading order
of the overall disturbing flows (in the far-field) with a quadrupole (rapidly decaying as 1/r3),
and thus can effectively cloak the intruder by drastically stifling its induced disturbances in
the ambient fluid. To give an example, a single cloaking agent positioned next to the intruder
with a separation distance of r0, dramatically reduces magnitude of the overall detectable

Figure 6.2: For caption see next page.
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Figure 6.2: (cntd). (a) Schematic representation of the proposed method for cloaking an
intruder (here a puller swimmer shown in green) using properly positioned single (ψ = 0) or
double (ψ 6= 0) cloaking agents (here the pusher swimmers shown in blue). To compute the
cloaking efficiency of different arrangements, the induced fluid disturbances are measured
over a surrounding (dashed) ring of radius R. The dipole strength of each smart agent
is half of the intruder’s (i.e. D/2). The agents are positioned on a (highlighted dashed)
ring of radius r0 around the intruder – i.e. their separation distance from the intruder is
set to r0, and their relative position vectors are denoted by r1 and r2, respectively. The
angle between these two vectors is denoted by ψ and represents a measure of symmetry.
Also, β is defined as the angle between intruder’s swimming direction (green arrow) and the
position vector r1. (b) Magnitude of the net fluid disturbances (Uc) induced by the cloaked
intruder and its cloaking agents, normalized by that of an isolated intruder (Ui), is plotted
for various cloak arrangements as a function of distance from the swimmer (R). Specifically,
Uc/Ui is plotted as a function of R/r0 for ψ = 0, π/4, π/2, 3π/4, and π, where β is set to
π/2. (c) The cloaking efficiency of the arrangements associated with each of the ψ-angles
presented in panel (b), is plotted as a function of R/r0. Insets also demonstrate how the
cloaking performance (in terms of η%) varies with ψ (I) and β (II), respectively. For all
cases presented in (I), β is fixed to π/2, and for those presented in (II), ψ is fixed to π. The
presented values are measured at R/r0 = 5, 10, and 20.
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disturbing flows (measured by U ) to 11.6% and 4.4% of its original value, once measured
at distances R/r0 = 20, and 50 from the intruder, respectively (Fig. 6.2b for ψ = 0). This
is equivalent to more than 88.4% and 95.6% in cloaking efficiencies at the ranges of R/r0
≥ 20, and ≥ 50, respectively (Fig. 6.2 for ψ = 0). For this simple approach, however,
the underlying hydrodynamic interaction between the intruder and its cloaking agent will
inevitably disturb the intruder from its original path. Therefore, using a single cloaking
agent, although effective, is not the smartest approach.

Here, we are particularly interested in implementing non-invasive active cloaking, where
the cloaked swimmer (i.e. the intruder) is not deviated from its original path by the cloak
implementation. This is fundamentally impossible using only a single cloaking agent. Al-
ternatively, a proper positioning of two half-sized cloaking agents around an intruder (e.g.
see Fig. 6.2-a for ψ = π and β = π/2), can potentially prevent its deviation from the orig-
inal path. This also significantly improves the cloaking efficiency (by switching the leading
order in the far-field of induced disturbing flows to an octupole rapidly vanishing as 1/r4)
compared to the single-agent method (with quadrupolar far-field decaying as 1/r3).

The schematic representations of cloaking an intruder using single (ψ = 0) and double
(ψ 6= 0) cloaking agents are presented in Fig. 6.2(a). We also present cloaking performances
corresponding to various arrangements of the agents around an intruder in Fig. 6.2 – both
in terms of the relative magnitude of induced disturbances (Uc/Ui) and the cloaking effi-
ciency (η). Note that the presented efficiencies correspond to a set of optimally designed
cloaking agents which can provide an ideally canceling set of dipole strengths for the specific
intruder of interest. Our results show that the effect of angular positioning (measured by
β) on cloaking efficiency is negligible (Fig. 6.2c-II), whereas ψ (as a measure of symmetry)
primarily controls the efficiency (Fig. 6.2c-I). Variation of ψ in the range of [0, π] basically
covers the whole spectrum from single-agent (ψ = 0) to symmetric double-agent (ψ = π)
cloaking. It is worth highlighting that the symmetric arrangement of cloaking agents on the
sides of an intruder (i.e. the arrangement with ψ = π and β = π/2 in Fig. 6.2-a), represents
not only a non-invasive, but also the most efficient double-agent cloaking strategy. The
latter, in particular, is not immediately clear a priori, and has been revealed through the
presented results (Fig. 6.2). In practice, such an optimal arrangement can potentially be
used to realize a virtually perfect non-invasive cloak, the efficiency of which reaches beyond
99%, and 99.9% at distances R/r0 ≥ 20 and 50, respectively (Fig. 6.2).

Active cloaking of an arbitrarily moving intruder in the Stokes regime, however, still
remains a challenge. For naive (i.e. non-smart) pair of cloaking agents, even if they are
initially placed accurately in their predefined positions, the arrangement will soon be dis-
torted due to the presence of long-range hydrodynamic interactions – causing the swimming
agents to either diverge from one another or collide. In fact, disturbing flows induced by the
intruder (although canceled out by its cloak in the far-field) are internally disruptive for the
cloak itself – i.e. disturbs the agents’ arrangement and thus breaks the cloak. Therefore,
to realize active cloaking in the presence of such complex flow-mediated interactions, key
questions still remain to be addressed in the following section: First, what is the optimal
sequence of actions (corresponding to the shortest non-invasive path) for each cloaking agent
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to position itself in a desired arrangement around an arbitrary intruder? Then, what is the
optimal behavior policy for the cloaking agents to dynamically adjust their swimming ac-
tions in response to non-linearly varying hydrodynamic loads, so as to robustly keep their
concealing arrangements around an intruder? Lastly, to what extent is the presented ap-
proach generalizable? That is, can we use it to actively cloak multiple arbitrary intruders
within crowded suspensions, where each swimmer moves toward an arbitrary direction and
experiences frequent close encounters?

6.4 Learning to Cloak Random Intruders via

Reinforcement Learning

Here, a systematic methodology is presented to equip micro-swimmers with adaptive decision-
making intelligence in response to flow-mediated interactions. We then use these smart
agents to elucidate active cloaking of arbitrary intruders within a crowded environment. Note
that once an agent is equipped with such an artificial intelligence, it will consider potential
consequences of its actions when making any decision – hence, is called a planning agent. One
may alternatively suggest the implementation of an external active control to lead each of the
employed swimming micro-robots (i.e. cloaking agents) toward the desired arrangements.
However, the efficacy of such approaches suffer from nonlinearly varying hydrodynamic loads
due to the presence of flow-mediated interactions. In fact, the dynamical system represent-
ing a group of interacting micro-swimmers, is a complicated four-way-coupled system, where
any tiny perturbation/deviation in prescribed motions of the swimmers can induce unpre-
dicted complex choreographies [11, see e.g.]. It also worths noting that the reflex agents (by
definition) are incapable of identifying optimal pathways to form non-invasive cloaks, espe-
cially in crowded suspensions or in the presence of obstacles. Therefore, here our approach
is to let the cloaking agents learn optimal action policies by their own experience through
a reinforcement learning algorithm [135]. By accumulating experience, our cloaking agents
learn how to optimally collaborate, and dynamically adjust their swimming actions, to form
a robust non-invasive cloak for any randomly moving intruder.

The implemented reinforcement learning algorithm was initially inspired by the concept of
animal learning [136], and has been shown effective in learning previously unknown strategies,
solely based upon the received feedback on performance [137]. The great potential of this
approach has also been recently demonstrated in fish schooling [138], soaring of birds through
turbulent environments [139], and flow navigation of gravitactic particles [140].

Here, we formulate the reinforcement learning algorithm as a Markov Decision Process
(MDP). This allows us to use the Q-learning framework, which not only benefits from algo-
rithmic simplicity, but also is proven [141] to converge to an optimal behavior policy. In this
framework, the agent (here a micro-swimmer capable of decision-making) gradually learns
the optimal behavior policy through exploring the environment (see Fig. 6.3a). At any given
instance of time (the nth learning step), the agent is able to sense some information about
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Figure 6.3: (a) Schematic representation of the reinforcement learning algorithm cou-
pled with the presented flow-mediated interaction dynamics in viscous environments. (b)
Schematic illustration of the state-space (ξ, θ), when two of our smart micro-swimmers (i.e.
the agents A and B, shown here in blue) attempt to form a desired active cloak around a
randomly moving intruder (shown in green).

the environment (referred to as the state, sn), depending on which, it will choose an action
(an) according to its current policy (πn). Taking this action will then transit the agent to
a new state (sn+1), and it will be given a reward (rn+1) quantifying its immediate success
(Fig. 6.3a). The experience acquired by the agent (after going through each learning step)
is stored as an action-value function, Q(s, a), in the Quality matrix ‘Q’ – hence the name of
algorithm. To be more precise, for any state-action pair (sn, an), the Q-matrix encodes the
expected sum of discounted future rewards when taking the action an at the current state
(sn) and following the current policy (πn) thereafter; i.e.,

Q (sn, an) = rn+1 + γrn+2 + γ2rn+3 + . . . . (6.7)

This Q-matrix is updated throughout the learning process, and is proven [141] to encode
optimal action-value function (Q∗) at convergence. The optimal behavior policy (π∗ : sn →
an) is then readily available. To be more precise, in any given state (sn), the optimal action
(a∗n) is the one that maximizes the expected sum of future rewards (which is encoded in Q∗).
This policy (π∗), in fact, serves as the agent’s adaptive decision-making intelligence.

Here, an off-policy control is implemented using the described Q-learning scheme. During
the learning phase, an ε-greedy behavior policy has been employed to ensure exploration of
new solutions while appropriately exploiting the gained knowledge. Specifically, at the nth

learning step, the policy (πn : sn → an) is to choose the action (an) that maximizes current
evaluation of the action-value function (Q). Except for a small probability (ε), in which case,
a random action will be chosen (independent of Q) from the set of possible actions (A) to
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further explore the state-space; i.e.

an =

{
arg maxaQ(sn, a) probability of 1− ε
random action a ∈ A probability of ε

. (6.8)

After going through each learning step, the current estimation of the action-value function
(Q) is then updated according to

Q (sn, an)← Q (sn, an) + α
[
rn+1 + γmax

a
Q (sn+1, a)−Q (sn, an)

]
, (6.9)

where the learning rate, 0 ≤ α ≤ 1, specifies the rate at which, previously learned experience
is overwritten by the newly gained information. The discount factor, 0 ≤ γ < 1, determines
to what extent the value of expected future rewards is incorporated into the agent’s decision-
making: for γ → 0 (→ 1) its behavior will be myopic (farsighted) tending to maximize
immediate (future) rewards. Here, the state-transition (sn → sn+1), i.e. evolution of the
system dynamics, is directly simulated taking into account the four-way coupled nature of
the system through flow-mediated interactions (see section 6.2 for details). Once in the new
state (sn+1), the agent will then take another action, based on the updated policy, and the
process will be repeated (Fig. 6.3a). Note that the updated action policy (πn+1) in the
new state will still be the same ε-greedy policy, yet based on the updated estimation of Q.
Therefore, the behavior policy is continuously improved through the learning phase, and
eventually converges to the optimal behavior policy (n→∞ : πn → π∗). We then employ a
purely deterministic (and greedy) behavior policy (i.e. with ε = 0) for our cloaking agents,
according to the obtained optimal action-value function, Q∗, to further assure the success of
any assigned task.

Let us now consider the problem of cloaking arbitrarily moving intruders using pairs of
swimming agents. In the following, we first outline a rigorous approach to equip our cloaking
agents with adaptive decision-making intelligence – i.e. realizing the concept of smart micro-
swimmers. As a benchmark, we consider puller intruders (say e.g. motile C. reinhardtii
cells) swimming in an infinite two-dimensional fluid domain. Nevertheless, the results will
be similar for pushers, and our study can be inherently generalized to a 3D domain. Each of
the cloaking agents is modeled as a self-propelled micro-swimmer of the opposite type (here
pushers) with a half-sized dipole strength (D/2). We are particularly interested in realizing
the active (and robust) form of the most effective cloak presented in section 6.3 (Fig. 6.2)
– for which, η > 99% at R/r0 ≥ 20. Therefore, the approach is to position two cloaking
agents symmetrically arranged (with a predefined separation distance r0) on the sides of each
intruder throughout its motion. This non-invasive cloak will effectively keep the enclosed
swimmer hydrodynamically ‘invisible’ within the surrounding fluid.

In order to form this active cloak, our cloaking agents must learn optimal behavior policy
in the presence of long-range hydrodynamic interactions. A pair of these smart micro-
swimmers can then be assigned to cloak each of the randomly moving swimmers within
any arbitrarily crowded suspension. The learning objective for each of these two cloaking
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agents can be translated into two specific tasks: (i) learning how to optimally catch the
assigned (randomly moving) intruder by forming a desired cloaking arrangement around
it; and once reached to the target positions (e.g. points A and B in Fig. 6.3b), then (ii)
learning how to keep on following the assigned intruder while robustly retaining the desired
arrangement. Hereafter, we refer to these two consecutive learning tasks as to ‘catch’ and
‘follow ’ a random intruder – both required in realizing an active cloak. Note that optimal
execution of the former requires the cloaking agents to identify shortest non-invasive paths
toward positioning themselves (from anywhere in the state space) into predefined desired
arrangements around any moving subject.

To accomplish these tasks, each swimming agent can sense (or is provided with) an
estimation of its distance and relative orientation with respect to the intruder. In practice,
a range of imaging techniques [see 78] can be used to feed such information into the agent’s
decision-making unit. For instance, magnetic resonance imaging (MRI) has successfully been
integrated into robotic platforms to provide the information required for real-time navigation
of untethered micro-robots (or bacteria) swimming through human micro-vasculature [see
e.g. 142, 79]. The acquired information by each agent, mathematically translates to the
normalized distance ξ = |xt − x|/Ls and relative orientation θ with respect to the assigned
target point, as depicted in Fig. 6.3(b) for the catching phase. This representation of
the state-space is also consistent with previous studies (e.g. [138]) on swarm control of
swimming agents. Note that once the agents successfully catch the intruder (by forming the
desired cloaking arrangement around it), they still will need to follow the intruder, so as to
actively keep the desired arrangement throughout its motion. Therefore, once in the cloaking
positions, θ is defined as the deviation angle that each agent senses for its own swimming
direction relative to the assigned intruder’s.

Although the micro-swimmers are free to move in a continuous two-dimensional space,
here we map the state-space, s = (ξ, θ), on a finite-size 2D pseudo-grid. This way of rep-
resenting the state-space dramatically mitigates the curse of dimensionality, and makes the
learning process computationally feasible. Also, from the practical point of view, the agents
will then only need an estimation of their distance and deviation from their assigned target
points. The required accuracy of such estimation is specified by the grid-size. Therefore, let
us consider the discretized representation of our state-space (S), which is the product of two
finite-size subsets, i.e. S = Sξ × Sθ. Specifically, Sξ represents the distance ξ as nξ discrete
states within the range of ∆ξ, and Sθ indexes the angle θ as nθ discrete states within the
range of ∆θ. Hence, at every instance of time (tn), the state of an agent is represented by a
tuple sn = (ξn, θn), where

ξn = min (∆ξ, bξnξ/∆ξc ·∆ξ/nξ), (6.10a)

θn = min (∆θ, bθnθ/∆θc ·∆θ/nθ). (6.10b)

For instance, here we set nξ = 100, ∆ξ = 50, nθ = 36, and ∆θ = 2π. This means a total of
3,600 discrete possible states for each agent.

The deployed cloaking agents are able to swim in three distinct speeds: v0 (nominal),
v+ = v0 + δv (fast), and v− = v0 − δv (slow). They can also instantly turn to right
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(θ ← θ+ δθ) or left (θ ← θ− δθ) with different choices of angle δθ. Therefore, the motion of
each swimming agent during the learning process can be described as a repeated occurrence
of the following two-step process: (i) the agent updates its swimming velocity (through either
a change in orientation by δθ, or a modification in speed by δv) according to the current
policy; and then (ii) it moves with the new velocity for a fixed time τr (=1 in non-dimensional
time units scaled by Ts = Ls/v

0). Note that each agent takes an exclusive swimming action
(e.g. turning to the right/left with an angle δθ, or speeding up/down with δv) based on the
current policy (πn), at intervals of τr during the learning process. Once an action is taken,
the agent swims steadily forward (i.e. ‘runs’), until a new action (potentially a change in
orientation, i.e. ‘tumbling’) is taken after τr. This is inspired by the observed behavior
of natural swimming microorganisms, and is reminiscent of the so-called run-and-tumble
locomotion. In practice, realization of the smart version of this locomotion dynamics seems
also feasible in the context of artificial and model micro-swimmers. The recently proposed
Quadroar swimmer [15, 12], for instance, propels on straight lines (runs), and can perform
full 3D reorientation (tumbling) maneuvers [10].

Here, the nominal swimming speed for the agents is set to that of the intruders (i.e.
v0 = vs), and we consider δv = 0.05 v0 (0.5 v0) while following (catching) an intruder.
Nevertheless, our numerical experiments reveal that a learned policy (under this specifica-
tion) can be readily adopted by agents with different speed characteristics (v0, δv), and so
in cloaking intruders with various swimming speeds (see Appendix A.1 for details). Fur-
thermore, the space of possible values for δθ, inherently covers the entire range of [0, π].
However, selecting only a finite-size set of options for δθ, substantially reduces the com-
putational costs associated with the recurrent identification of optimal actions, during the
reinforcement learning process. Therefore, here we assume the agents are only able to turn
right/left with δθ ∈ {π/18, π/4, π/2}. This finite-size simplified set is particularly devised
to provide each agent with the ability to: (i) make major changes in the swimming direction
(with δθ = π/2), typically done in early stages of a catching process; (ii) perform moderate
re-orientations (with δθ = π/4) commonly used during a catching process; and (iii) fine tune
slight deviations from a desired orientation (with δθ = π/18), which is particularly required
at final stages of a catching process or while following an intruder. Therefore, our set of pos-
sible actions (A) consists of nine specified swimming actions. This, along with the described
discretized state-space, result in 32,400 entries for the space of state-action pairs, to be used
in evaluating the action-value function Q(sn, an). We note that the frequency of taking an
action by each agent (i.e. τ−1r ) can also be tuned according to the system of interest.

For the swimming agents, realization of an active cloak around an arbitrary intruder
is translated into taking an optimal sequence of actions to actively catch and follow the
assigned target points in a predefined arrangement. The immediate success of each agent in
satisfying this assigned task is mathematically interpreted as a numerical reward signal

rn = [1/(ξn + δξ)− ξn] + [δ(vn − v0)− 1] + Cn + Pn, (6.11)

where δξ is the system precision (i.e. the grid-size) in measuring the distance. The δ(x) is
defined such that {δ(x) = 0 | ∀x 6= 0} and δ(0) = 1. In our reward signal definition, the first
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term reflects how well the agent is following (or catching) an assigned target point, while
the second term penalizes any unnecessary speed-ups or -downs. This penalty is assigned
because the dipole strength of the swimmers is directly proportional to their swimming
speed (D ∼ vsl

2
s), and thus any change in the value of swimming speeds can disturb the

balance of dipole strengths. However, the relative value of these speed modifications is kept
negligibly small (here e.g. δv/v0 = 0.05) while the agents are actively cloaking an intruder
(i.e. robustly following it in a predefined arrangement). Contribution of the third term in
the reward signal (Cn) is two-folded: (i) it encourages the agent to accurately get into the
assigned target point once fairly close (here e.g. Cn = 100 when |xt − x| ≤ δξ), and (ii)
it strictly penalizes wandering of the agent far off the target (here e.g. Cn = −100 when
|xt−x| ≥ ∆ξ). Finally the last term, Pn = − cos−1(e·ei), ensures that the agents learn how
to smartly collaborate in a way that their induced disturbing flows do not disturb the cloaked
object (i.e. the intruder) from its original path (ei) – hence, encouraging the realization of
a non-invasive active cloaking.

It is to be noted that realizing an active cloak around the assigned intruder, as the ulti-
mate goal of this learning algorithm for each agent, is mathematically encoded as achieving
maximal long-term accumulated rewards. Therefore, negative nature of the reward signal rn
(6.11) further ensures that our cloaking agents learn the shortest paths toward positioning
themselves in the desired cloaking arrangement – as taking any unnecessary action will result
in an extra accumulation of negative rewards.

Here, the cloaking agents are trained in pairs, and we employ a shared policy approach
among them to accelerate the learning process. Training is conducted through consecutive
learning episodes, denoted by E = 1, 2, . . . , nE, where nE is the total number of episodes
in the learning phase. Each episode starts with an intruder randomly entering a guarded
(sensitive) region – i.e. from a random position and toward a random direction. The cloaking
agents are also initially located on either side of the entrance (see Figs. 6.4 and 6.5). The
first episode (E = 1) is initialized by zero entries for all elements of the Q-matrix (i.e. an
optimistic initialization) to further encourage exploration of new solutions and avoid trapping
in local optima – recall the negative nature of the reward signal. For the subsequent episodes
(E = i + 1, i ≥ 1), the action-value function, Q, will be initialized by that obtained at the
end of previous episode (i.e. E = i). The end of each training episode is declared when:
either (i) the agents have formed a desired cloak around the intruder – i.e. when they both
have reached to the assigned target points in a predefined arrangement (see e.g. Fig. 6.5c);
or (ii) a certain number of state changes has passed without any success (e.g. Ns,max = 250
in Fig. 6.4). The process is in turn repeated until the action-value function coverages to an
optimal value (i.e. Qn → Q∗ as nE → ∞) – or practically, when the policy (πn) converges
to the optimal behavior policy (πn → π∗).

To assess the learning process at different stages, we run a set of 100 random active-
cloaking tests throughout the training phase – here, specifically after every 1000 learning
episodes. In testing the agents’ intelligence, we deploy a purely deterministic (greedy) policy
(i.e. ε = 0) based on the most-updated acquired Q-matrix. During each of these testing
episodes, the agents are subject to cloak a random intruder using their so-far gained ex-
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Figure 6.4: The learning process is assessed in terms of the agents’ success rate, and number
of the required swimming actions. After every 1000 training episodes, a set of 100 random
active-cloaking tests have been performed using a purely deterministic policy based on the
most updated Q-matrix at the moment. Each of the testing episodes starts with an intruder
randomly entering a guarded region (shaded in gray; see Fig. 6.5) from a random position
and swimming toward a random direction, while the cloaking agents are initially positioned
on the sides of entrance (see the samples presented in Fig. 6.5). The test results are presented
throughout the learning phase in terms of: (i) the success rate (shown in green) of the agents
in catching the intruders and forming the desired active cloak, as well as (ii) the number of
total state-changes (average ± Standard Error) in each set of testing episode (shown in red).
Here, the learning hyper-parameters are set to α = 0.3, γ = 0.95, and ε = 0.01.

perience (encoded in the given Q-matrix). For each set of the (100) performed tests, we
then compute the average number of total state-changes (Ns), along with success rate of the
agents in catching the intruders and forming desired active cloaks. Both measures are mon-
itored throughout the learning phase as demonstrated in Fig. 6.5. The learning is evident
in the gradual increase (decrease) of the agents’ success rate (required number of swimming
actions) in collaborative formation of the desired active cloak around random intruders (Figs.
6.4 and 6.5). As a benchmark, we also demonstrate, in panels (a)-(c) of Fig. 6.5, a specific
sample test performed in three different learning stages – the corresponding episode numbers
(E) are marked in Fig. 6.4 as (I)-(III). While the agents are too naive at early stages (e.g.
Fig. 6.5a) and fail to catch and cloak the subject, they eventually learn how to actively cloak
the moving intruder through an optimal set of non-invasive actions (e.g. Fig. 6.5c). Note
that both of the monitored measures (i.e. the success rate and the number of swimming
actions required to form a desired cloak) eventually converge to their optimal values as the
number of learning episodes increases sufficiently (here, after E ∼ 25, 000). The converged
value of 100% success rate for the cloaking agents, clearly shows their ability to smartly
form a non-invasive active cloak around any randomly moving intruder (see e.g. the samples
presented in Fig. 6.5 d-f). In doing so, they find shortest non-invasive paths using only their
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Figure 6.5: (a)-(c): Benchmark samples of different stages in the learning process (presented
in Fig. 6.4). The panels represent a sample test to realize active cloaking around a random
intruder, performed in three different learning stages, i.e. non-adaptive (a), intermediate-
adaptive (b), and well-adaptive (c) stages. The episode number (E) corresponding to each
of the panels (a-c) is marked in Fig. 6.4 (I-II-III), and agents use the most updated behavior
policy at each stage. The intruder (here a puller shown in green) and the cloaking agents
(pushers shown in blue) are also represented both at the initial and final positions with
stripe and solid schematics, respectively. Trajectories of the swimmers are shown in each
panel by dashed lines, and color-coded based on the swimming speed at the moment – see
the legend in panel (b). The assigned target points (to realize the desired symmetrical active
cloak) for each of the agents is also marked in each panel (pink markers). (d)-(f): Sample
tests performed using well-trained cloaking agents, equipped with well-adaptive behavior
policy, which is obtained after convergence of the success rate to 100% (see Fig. 6.4). The
number of required swimming actions (or equivalently the number of state-changes, Ns) is
denoted on each panel. The target arrangement here is to symmetrically position on the
sides of intruder, with a separation distance r0/Ls = 5 (see e.g. panel d). The learning
hyper-parameters are set to α = 0.3, γ = 0.95, and ε = 0.01.
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Figure 6.6: Evolution of the normalized element-wise sum of the Q-matrix (Σ̄) through
successive training episodes (E) during the learning phase. The agents’ behavior policy is
also visualized (see insets I-IV) by color-coding over a selected sector of the state-space. Its
evolution is monitored at four different learning stages (marked over the curve by I-IV),
and eventually converges to the optimal behavior policy. Here, each swimming action is
presented by a color-code (see the color-bar legend), and every point in the state-space is
shaded by a color representing the agents’ current understanding of the best action at that
specific state. The training episodes are the same as those presented in Figs. 6.4 and 6.5,
for which the learning hyper-parameters are set to α = 0.3, γ = 0.95, and ε = 0.01.

own adaptive decision-making intelligence – hence, the name smart micro-swimmers.
Convergence of the cloaking agents’ adaptive decision-making intelligence (encoded in the

Q-matrix) is better demonstrated in Fig. 6.6, where we show evolution of the element-wise
sum of the Q-matrix (Σ), normalized by its converged value. Additionally, the experientially
learned behavior policy is visualized by color-coding over a sector of the state-space, in four
different learning stages (marked in Fig. 6.6 by I-IV). Here, convergence of the action-value
function (and thus the behavior policy) is achieved when the number of successive training
episodes (E) exceeds ∼ 25, 000 (Figs. 6.4 and 6.6).

Once the learning process is converged, the cloaking agents are readily equipped with
an optimal behavior policy. To be more precise, the optimal behavior policy refers to the
policy (π∗ : s → a) that in any given state (s), determines the action (a) which maximizes
the expected sum of future rewards (encoded in Q∗). Here, the reward signal (rn+1) received
(during the learning process) by the agents after taking an action (an), has two salient
features – c.f. Eq. (6.11): (i) it reflects a penalty for disturbing the intruder from its
original path, and (ii) it is designed to always have a negative value, except at the target
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state. Therefore, maximizing the discounted sum of future rewards will ensure, not only to
successfully realize the desired non-invasive cloak, but also to do so with minimum number
of actions (Fig. 6.4). Note that spending more time (by taking excessive actions) will simply
result in accumulating more negative rewards, which is discouraged by the optimal policy.
This enables the agents to find shortest non-invasive paths toward positioning themselves
in desired cloaking arrangements around arbitrarily moving intruders (see e.g. the samples
presented in Fig. 6.5 d-f).

However, there is still a caveat here: the presence of long-range flow-mediated inter-
actions, if not responded adaptively by taking proper swimming actions, will soon distort
the arrangement and reveal the cloaked object. Our swimming agents, however, have been
trained not only to ‘catch’ and form desired cloaks around random intruders, but also to ‘fol-
low ’ them robustly, while maintaining the implemented cloak throughout their motion. As
a benchmark, let us monitor the time evolution of a sample crowded suspension of intruders
(Fig. 6.7), where the deployed pairs of our smart micro-swimmers have already formed the
desired cloak around each of the subjects – see the examples presented in Fig. 6.5. Periodic
boundary conditions are imposed on the presented panels, as if they represent just a window
of an infinite domain of suspension. Such a complex random system is mainly characterized
by each of the swimmers moving toward a random direction in space (Fig. 6.7a), with fre-
quent close encounters happening between them (e.g. Fig. 6.7b-c). It worths noting that
even an isolated intruder, swimming (alone) on a straight line in an unbounded domain,
can distort the arrangement of an implemented cloak, and cause naive cloaking agents to
diverge or collapse. The situation here is further exacerbated by the presence of other nearby
swimmers, given their disturbing flows and long-range flow-mediated interactions – let alone

Figure 6.7: For caption see next page.
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Figure 6.7: (cntd). Time evolution of a crowded suspension of intruders (shown in green),
each of which actively cloaked by a pair of smart micro-swimmers (shown in blue). Here the
intruders are freely moving toward random directions in space – specified by green arrows
in (a). Periodic boundary conditions are imposed on the presented panels – i.e. each panel
represents just a window of an infinite domain at that specific moment. As demonstrated
through snapshots (a)-(d) of the system’s time evolution, using their adaptive decision-
making intelligence, our agents are able to robustly maintain the cloak formation in the
presence of complex hydrodynamic interactions. They are also able to immediately restore
the desired formation after any severe close encounters (b-c) which cause major disruptions
to the cloak. As a benchmark, the evolution dynamics of four sample groups (G.1-4) are
tracked in the panels. Specifically, the close encounter between G.1 and G.2, as well as
G.3 and G.4, are marked by red dashed circles in panels (b) and (c), respectively. Also,
trajectories of the swimmers in G.1 are shown by solid lines throughout the time, while
other groups’ trajectories are only demonstrated (by dashed lines) within the last 25Ts of
their motion. The time corresponding to each snapshot is noted in each panel, and swimmer
schematics are added to panels (a) and (d) for readability. Here, the goal was to realize an
active version of the symmetric cloak presented in Fig. 6.2. Thus, for the reference, rings
of radii r/Ls = 5 (that is equal to the predefined desired separation distances) are depicted
around intruders in the final snapshot (d).
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close encounters happening in such a crowded system, and the consequent disruptions in
cloak arrangements. However, as it is evident throughout the system evolution, the pro-
posed smart active cloaking strategy is robust. In particular, by taking optimal adaptive
swimming actions, the cloaking agents not only successfully retain their arrangement in the
presence of hydrodynamic interactions, but also immediately re-form the desired cloaking
arrangements after any sudden disruption (Fig. 6.7).

In practice, it is often of interest to conceal a single micro-swimmer (e.g. a biological
micro-robot) within a crowded suspension (e.g. inside the human body) using only a pair of
cloaking agents. However, for the sake of generality, here we have used a flock of cloaking
agents to cloak all the (randomly moving) swimmers in the presented crowded suspension (see
Fig. 6.7). To assess performance of the deployed flock in concealing the assigned swimming
objects, we then monitor the overall cloaking efficiency (η%) throughout the system’s time
evolution (Fig. 6.8a). The magnitude of disturbing flows (i.e. flow signatures) induced by
the system is also monitored throughout the represented time evolution, and is compared to
the same system when no cloaking agents are deployed (Fig. 6.8 b-e).

The implemented cloaks are dynamically adjustable, as the cloaking agents behave adap-
tively in response to fluid-mediated interactions. This enables them to robustly keep their
specified arrangement, and actively conceal any moving subject throughout its motion (see
e.g. Fig. 6.7). Not to mention that the agents first need to smartly collaborate in pairs
and find optimal paths to separately catch each of the assigned subjects (see the samples
in Fig. 6.5) forming an active set of perfect cloaks (with η > 98%) around these randomly
moving intruders (Figs. 6.7a, 6.8b). Once realized, throughout the system evolution, the
cloaking efficiency remains well above 75% even in the presence of non-linearly varying com-
plex flow-mediated interactions (Fig. 6.8a). The two relatively notable sudden drops in the
cloaking performance (i.e. to η ∼ 70%) occur right after the reported close encounters, which
cause major disruptions to the cloaks’ arrangements (Fig. 6.7 b-c, Fig. 6.8 c-d). However,
the implemented active cloaks are robust, thus are immediately re-formed and the cloaking
efficiency is quickly recovered. For instance, note the final stage (Figs. 6.7d, 6.8e) with a
remarkable 93% cloaking efficiency, that is recovered after going through many interactions
and encounters. It is noteworthy that the deployed flock of cloaking agents have never been
trained for, neither exposed to, this (or any other) specific scenario with multiple intruders.
This means that once the agents undergo the described catch and follow training processes
(see Figs. 6.4 and 6.5), they can be readily used in pairs to actively cloak any number of
arbitrary intruders within unexposed crowded suspensions.
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Figure 6.8: (a) Time evolution of the overall cloaking performance (η%) corresponding to the
flock of smart micro-swimmers deployed within the crowded suspension presented in Fig. 6.7
to cloak random intruders. Here η (%) is monitored over the entire time evolution at ranges
R/L = 1 (red solid line), R/L = 10 (black dashed line), and R/L = 100 (black dash-dotted
line), where L is the length of each presented window in Fig. 6.7. (b-e) Snapshots of the
induced fluid disturbances are visualized (by color shading) over the entire system (cloak:
on), and also compared to those induced when no cloaking agents are deployed (cloak: off).
The moment corresponding to each of the snapshots in (b-e) is marked on the curve in (a).
Specifically, we demonstrate the snapshots at: (i) an early stage, where the desired cloaks
(η ≈ 98%) have been just formed (Figs. 6.7a, 6.8b); (ii) the moments of close encounters
happening between G.1 & G.2 (1st Disruption, see Figs. 6.7b, 6.8c) as well as G.3 & G.4
(2nd Disruption, see Figs. 6.7c, 6.8d), respectively, where the implemented cloaks undergo
severe disruptions; and (iii) a final recovered stage (Figs. 6.7d, 6.8e) where the agents are
once again perfectly in the desired cloaking arrangements (η ≈ 93%).
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6.5 Other Notes

6.5.1 On the Generality of a Learned Policy

As discussed in section 6.4, the reinforcement learning process will equip our cloaking agents
with an adaptive decision-making intelligence. A flock of these smart micro-swimmers can
then be readily used to actively cloak any number of arbitrarily moving intruders, within
any unexposed crowded suspension (see e.g. Figs. 6.7-6.8). However, it still remains unclear
to what extent a learned policy can be effective once used: (i) by agents with different
swimming speeds, and/or (ii) for cloaking intruders of various swimming speeds.

Let us consider the optimal policy (π∗) obtained specifically for the agents with δv/va =
0.5, through episodes of catching intruders swimming in random directions with the speed
of vi/va = 1 (see e.g. Figs. 6.4, 6.5, and 6.6). The generality of this policy is assessed in Fig.
6.9 over the parameter-space (vi/va, δv/va). In particular, for every point in the presented
parameter-space (i.e. corresponding to each specific choice of vi/va and δv/va), we run a set
of 25 random active-cloaking tests (similar to those demonstrated in Fig. 6.5). The results of
our numerical experiments (presented in Fig. 6.9) reveal a wide range of ideal applicability
(region I), within which the learned policy is fully effective (with a success rate of 100%)
in cloaking random intruders. This almost covers the entire parameter-space, except the
cases with vi > va + δv (region II), for which catching the intruder is not physically feasible,
followed by a transition zone (region III).

Our numerical experiments also reveal that the agents equipped with a learned behavior
policy, can be readily deployed to realize any other form of cloaking arrangements around
a random intruder. Here, as a benchmark, we demonstrate how our smart agents can be
readily used in triple- or quadruple-agent cloaking strategies (Fig. 6.10). Note that when a
pair or multiple micro-swimmers perform active cloaking, the state space is defined for each
agent independently. To be more precise, the state space for each agent includes its distance
and relative orientation with respect to the intruder, while all the agents use a shared action
policy. It is to be highlighted that the policy (π∗) adopted by agents in the presented triple-
and quadruple-agent cloaking test cases (Fig. 6.10), is the one obtained through consecutive
learning episodes of double-agent cloaking (demonstrated in Figs. 6.4-6.6). Therefore, the
deployed agents have no prior experience in forming such three- or four-agent cloaks.

6.5.2 On the Design of a Reward Signal

In the reinforcement learning process, actions taken by an agent are rewarded with a feedback
signal (rn) that quantifies immediate success in achieving a predefined objective. This form
of feedback on performance is the only information that agents receive throughout their
interaction with the environment. For them, the learning objective is to maximize the sum
of accumulated rewards, which should properly reflect the ultimate physical objective. This
makes the design of a proper reward signal a challenge for any reinforcement learning process.
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Figure 6.9: Applicability of a learned policy (measured in terms of the success rate) in
cloaking intruders with various swimming speeds (vi), once adopted by agents with different
speed characteristics (i.e. va and δv). The employed policy (π∗) is specifically the one
learned by agents with δv/va = 0.5, through episodes of catching intruders swimming in
random directions with the speed of vi/va = 1 (see Figs. 6.4 and 6.5). The corresponding
reference point is marked (with a red asterisk) on the parameter-space (vi/va, δv/va). To
assess the generality of this policy, we run a set of 25 random active-cloaking tests (similar
to those demonstrated in Fig. 6.5) for every point in the presented parameter-space (i.e.
corresponding to each specific choice of vi/va and δv/va). Color shading represents success
rate of the deployed agents (equipped with the same π∗) in forming desired cloaks (i.e. the
one with β = π/2 and ψ = π in Fig. 6.2) around the corresponding randomly moving
intruders. Three distinct regions can be identified in the parameter-space: (I) the region
of ideal applicability within which the learned policy is fully effective with a success rate of
100%, (II) the region associated with vi > va + δv, for which catching the intruder is not
physically possible, and (III) a transition region.
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Figure 6.10: Applicability of a learned policy in realizing multi-agent active cloaks for random
intruders. Here, the employed policy (π∗) is the one obtained through consecutive learning
episodes of double-agent cloaking, as demonstrated in Figs. 6.4 and 6.5. Once the agents are
equipped with this behavior policy, they can be readily deployed to form any other forms
of cloaking arrangements around random intruders. Here, as a benchmark, we demonstrate
samples of triple- and quadruple-agent cloaking strategies in panels (a) and (b), respectively.
Similar to those presented in Fig. 6.5, each testing episode starts with an intruder entering
a guarded region (shaded in gray) from (toward) a random position (direction), while the
cloaking agents are initially positioned on the sides of entrance. The intruder (here a puller,
shown in green) and the cloaking agents (pushers shown in blue) are also represented both
at the initial and final positions with stripe and solid schematics, respectively. Trajectories
of the swimmers are shown in each panel by dashed lines, and color-coded based on the
swimming speed at the moment – see the legend in panel (b). The assigned target points for
each of the agents (to realize the desired symmetrical active cloaks) are also marked in each
panel (with pink markers). Note that the agents (equipped with optimal behavior policy)
are capable of identifying the shortest non-invasive paths toward forming any desired active
cloak around any randomly moving intruder. The target arrangements here are symmetric
configurations, achieved by positioning three (a) or four (b) agents around the subject, with
a separation distance of r0/Ls = 5 (denoted by a pink circle around the intruder).
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Here, the ultimate goal for the agents is to obtain the ability to identify optimal (i.e.
shortest) non-invasive pathways toward positioning themselves into desired cloaking arrange-
ments, around any arbitrarily moving intruder. In section 6.4, we devised a reward function
(6.11) composed of four elements, each meticulously encoding a particular aspect of this ob-
jective into the feedback signal received by the agents. Here, we further explore robustness of
the presented learning approach against excluding each of those elements from the proposed
signal. To this end, let us consider the following set of alternative reward functions:

r(1)n = [1/(ξn + δξ)− ξn] + [δ(vn − v0)− 1] + Cn + Pn , (6.12a)

r(2)n = [1/(ξn + δξ)− ξn] + [δ(vn − v0)− 1] + Cn , (6.12b)

r(3)n = [1/(ξn + δξ)− ξn] + [δ(vn − v0)− 1] , (6.12c)

r(4)n = [1/(ξn + δξ)− ξn], (6.12d)

r(5)n = −1 , (6.12e)

where r
(1)
n is the original reward signal (used throughout this work), and r

(2)
n to r

(5)
n are

the ones obtained through systematic elimination of the constitutive elements from r
(1)
n . As

discussed in section 6.4, the first term of the original reward signal (i.e. r
(1)
n ) reflects how

well each agent is following (or catching) an assigned target point. The second term is to
penalize any unnecessary speed-ups or -downs by the agents, and thereby further encourages
them to keep the dipole-strength in balance. The third term in the signal has two main
contributions: (i) it encourages each agent to get into the precise position of an assigned
target point (once in its close proximity), and (ii) it strictly penalizes wandering of the agents
far away from their target points. Finally, the last term ensures that the agents learn how to
smartly collaborate in a way that their induced flow fields do not disturb the cloaked object
(i.e. the intruder) from its original path – hence, realizing non-invasive active cloaking.
We also note that the negative nature of the presented reward signals further ensures that
our cloaking agents learn the shortest paths toward positioning themselves in the desired
cloaking arrangement – as taking any unnecessary action will result in an extra accumulation
of negative rewards, which is discouraged by the algorithm.

Here we repeat the learning process, using each of the proposed alternative feedback
signals. Similar to the original process (demonstrated in Figs. 6.4 and 6.5), alternative
learning processes are then independently assessed (Fig. 6.11) via running random sets of
100 active-cloaking tests after every 1000 training episodes. The results further suggest ro-
bustness of the presented methodology against excluding different elements from the devised
reward signal (r

(1)
n ). However, there is a caveat here: each of the described components, are

included to quantify the agents’ success in achieving a particular aspect of their ultimate
goal. Failing to provide an explicit feedback on any of these aspects, makes the learning
process substantially longer, and thus significantly increases the computational costs. For
instance, by eliminating the last term from the reward signal r

(1)
n , the agents will no longer

receive an explicit (negative) feedback when disturbing the intruder. As a result, it takes a
significantly larger number of trial-and-errors (i.e. training episodes) for them to learn that
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Figure 6.11: The learning process repeated for each alternative reward signal, r
(1)
n to r

(5)
n , is

assessed in terms of the agents’ success rate. Similar to the original process demonstrated
in Figs. 6.4 and 6.5, a set of 100 random active-cloaking tests have been performed after
every 1000 training episodes, where the agents use a purely deterministic (greedy) policy
based on the most updated Q-matrix at the moment. Results are presented for each case
throughout the corresponding learning process, in terms of the success rate of the agents in
catching the random intruders and forming desired active cloaks. The target arrangement
is defined similar to the original process, that is the symmetric double-agent cloaking with
a separation distance of r0/Ls = 5. Learning hyper-parameters are also kept the same – i.e.
α = 0.3, γ = 0.95, and ε = 0.01. Here, the learning processes represented by curves (1)-(4)
have converged (as marked in green) to the 100% success rate after ∼ 25000, 100000, 260000,
and 270000 training episodes, respectively. Note that curve (1) corresponds to the originally
proposed learning process, also presented in Fig. 6.4.

such a behavior is sub-optimal – as it will increase the number of actions (and thus the time)
required to catch an intruder. Therefore, performance of the agents trained by the reward
signal r

(2)
n requires ∼ 100,000 learning episodes to converge to the 100% success rate (Fig.

6.11), which is significantly higher than the ∼ 25,000 episodes required for those trained by

r
(1)
n . Similarly, the learning processes corresponding to the agents trained by further trun-

cated signals r
(3)
n and r

(4)
n , converge to the full performance rate after ∼ 260,000 and 270,000

episodes, respectively (Fig. 6.11). We once again highlight that using an appropriately
devised reward signal will significantly facilitate the learning process (see e.g. Fig. 6.11).
In fact, as the reward signal (received by the agents) becomes less informative about the
ultimate objective, the required number of training episodes (i.e. the computational cost)
for the agents to learn optimal behavior policy grows substantially. As an extreme case, let
us consider r

(5)
n , where all components are eliminated from the originally proposed reward
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signal, keeping only the negative nature of the feedback. This means that throughout the
learning process agents will merely receive a constant reward of ‘−1’ after any action they
take, regardless of the outcome. Swimming agents trained by this naively defined feedback
on performance, still can potentially learn how to realize desired active cloaks – as it is
the only way for them to stop accumulating more negative rewards. However, the process
is cumbersome, reaching to only ∼ 20% success rate after 300,000 training episodes (Fig.
6.11), and requires a few million to achieve the full performance.

6.5.3 Alternative Control Strategies

In section 6.4 of this chapter, we presented a systematic methodology to equip cloaking agents
with an adaptive decision-making intelligence in response to flow-mediated interactions. We
then described how such an artificial intelligence encodes consequences of each possible ac-
tion (at any given state) into the learned behavior policy (π∗), based on which optimal
actions are taken. This makes the agents inherently aware of the shortest non-invasive paths
(from anywhere in the state space) toward positioning themselves into a desired cloaking
arrangement around an arbitrarily moving intruder.

Alternatively, one may use an active optimal control strategy to guide the deployed
swimming micro-robots (i.e. the cloaking agents) toward the desired arrangement. Here,
as a benchmark, we implement a model predictive control strategy [143] based on the same
state-action space (sn, an) used in the proposed reinforcement learning algorithm (see section
6.4 for details). In this alternative approach, the swimming agents are actively controlled to
target the optimal double-agent cloaking configuration (already identified in section 6.3). In
doing so, the controlled agents are provided (throughout the process) with a feedback signal
informing them about their current state, and then use a predictive model (that incorporates
agent/intruder hydrodynamic interactions) to take the best action at any given state. We
compare the performance of this alternative agent-control strategy on a benchmark test case
(illustrated in Fig. 6.12), against the smart agents equipped (via reinforcement learning)
with the optimal behavior policy (π∗). Although efficacy of the implemented active control
approach suffers from nonlinearly varying hydrodynamic loads (due to the presence of long-
ranged flow-mediated interactions), the controlled agents are able to correct the induced
deviations and eventually form the desired cloak (see Fig. 6.12-a).

It is also worth noting that in a model predictive control strategy, swimming actions (i.e.
the control inputs) at each state, are determined by solving an on-line optimization problem.
Therefore, the main drawback of such an alternative approach is the potentially exorbitant
on-line computational requirement [144]. Instead in the proposed reinforcement learning
algorithm, the cloaking agents experientially learn optimal action policies through an off-
line trial-and-error training process (see e.g. Figs. 6.4 and 6.5). The learned behavior policy
(encoded in the so-called Q-matrix) then serves as the agents’ decision-making intelligence,
and the control actions are implemented on-line in the form of a simple table look-up (see
section 6.4 for details). To give an example, for the model predictive control implemented
on the simple test case presented in Fig. 6.12, the on-line computation in taking each single
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Figure 6.12: Performance of the implemented model predictive control (as an alternative
agent-control strategy) is compared (on a benchmark test case) to the performance of smart
agents equipped with the optimal behavior policy (π∗) obtained through the proposed rein-
forcement learning-based algorithm. Similar to the sample test cases presented in Fig. 6.5,
the testing episode starts with an intruder entering a guarded region (shaded in gray) from
(toward) a random position (direction), while the cloaking agents are initially positioned
on the sides of entrance. Throughout the process, cloaking agents in panel (a) are actively
controlled through a model predictive control scheme that targets the pre-identified optimal
double-agent cloaking configuration. On the other hand, the agents deployed in panel (b)
use their own adaptive decision-making intelligence encoded in the learned optimal policy
(π∗), to realize the desired cloak. In both panels, the intruder (here, a puller shown in green)
and the cloaking agents (pushers shown in blue) are represented both at their initial and
final positions, with stripe and solid schematics, respectively. Trajectories of the swimmers
are shown in each panel by dashed lines (color-coded based on the instantaneous swimming
speed). The number of swimming actions (or equivalently, the number of state-changes Ns)
taken to form the desired cloaks around the intruder in each case is reported within panels.
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action required ∼ 4.47× 10−1 s on a personal computer, whereas taking the optimal action
based on the learned policy (i.e. through the table look-up) requires only ∼ 6.76 × 10−5 s
on the same machine (2019 Lenovo ThinkPad T470p; Intel Core i7-7700 HQ CPU @ 2.80
GHz; 8.00 GB RAM). It is, however, to be mentioned that in principle, using the exact same
state-action space as for the learning strategy, one can also pre-compute the optimal actions
(as a function of initial state) in the predictive control scheme to make a look-up table [145].

6.5.4 Incorporation of the Swimmers’ Realistic Geometry

In this section, we further explore effectiveness of the presented approach for cases where
realistic geometry of the micro-swimmers is simulated in a three-dimensional (3D) setting.
Common approaches to provide precise description of swimmers’ hydrodynamics in such
settings include the boundary element method [e.g. 146, 147] and the regularized Stokeslets
approach [e.g. 148, 149]. Formulation of the boundary element method (BEM) for Stokes
flows is based on integrating a distribution of Stokeslets over the surface of each swimmer
(see e.g. [150, 151]). As a result, the computational costs associated with this mesh-based
method is relatively high, and can drastically increase with grid refinement [146]. The
regularized stokeslet method, on the other hand, can be a mesh-free approach for discretizing
the boundary integral equations. A nearest-neighbor-based discretization of this approach
(recently proposed by [152], has been shown to considerably reduce the computational cost
without compromising the accuracy. Therefore, here we use this technique (as outlined
by [153] to discretize the regularized Stokeslet boundary integral equations, and accurately
model 3D geometry of the intruder as well as our swimming agents.

Performance of the learned behavior policy (as an agent-control strategy to realize desired
cloaking arrangements around arbitrarily moving intruders) is then evaluated for cases where
the swimmers’ hydrodynamics is simulated using the described high-accuracy method (see
Fig. 6.13). In particular, we adapt the simulation framework and the open-source code
provided by [153] to accurately model realistic 3D geometry of the intruder and cloaking
agents. Here, for example, 3D models of self-propelled sperm cells (which propel based on
the flexible-oar mechanism) are used to represent our pusher-type swimming agents. The
puller-type intruder is also simulated using a 3D model bi-flagellate algae, in consistent
with other sample tests presented throughout this chapter. Detailed (3D) geometry of the
deployed model micro-swimmers and their beating patterns (i.e. swimming strokes) are
also presented in panels (b)-(c) of Fig. 6.13. Our numerical experiments further confirm
that through implementing the sequence of actions provided by the learned policy (π∗),
the swimming agents (simulated with realistic 3D geometries) can indeed form any desired
cloaking arrangements (see e.g. Fig. 6.13) around an arbitrarily moving intruder (which
is also simulated with its realistic 3D geometry). In doing so, the swimming agents use
an action space (A) similar to the one described in section 6.4. Particularly, they can
instantly turn to their right (θ ← θ + δθ) or left (θ ← θ− δθ) with different choices of angle
δθ ∈ {π/18, π/4, π/2}. Note that such actions are chosen (with frequency τ−1r ) by the agents,
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Figure 6.13: (a) Applicability of the learned behavior policy for agent-control, when the
simulation of hydrodynamics incorporates the swimmers’ realistic 3D geometry. Specifically,
the swimmers’ hydrodynamics and their flow-mediated interactions are modeled using a
high-accuracy 3D simulation framework (proposed by Gallagher and Smith [153]) based on
discretization of the regularized Stokeslets in boundary integral (RS-BI) formulation (solid
trajectories). For the sake of comparison, we also plot (with dashed line) the trajectories
presented in Fig. 6.5(e) associated with the test case conducted using ideal cloaking agents,
modeled through the theoretical singularity method (as described in section 6.3). In both
cases, the cloaking agents are equipped with the optimal behavior policy (π∗), obtained
through the consecutive learning episodes demonstrated in Figs. 6.4 and 6.5. Here, the
desired arrangement for the deployed agents is to symmetrically position themselves on the
sides of intruder (with a separation distance r0/Ls = 5) that is properly achieved in both
cases. The assigned target point for each agent is marked (in pink) at the final stages.
Note that the RS-BI approach precisely models realistic geometry of the intruder and our
swimming agents, as demonstrated in their final positions in panel (a). Here, as a benchmark,
3D models of self-propelled sperm cells (which propel based on the flexible-oar mechanism)
are used to represent our pusher-type swimming agents. The 3D geometry of these model
sperm cells and their beating pattern (i.e. swimming stroke) are presented in panel (b). The
puller-type intruder, on the other hand, is simulated using a 3D model bi-flagellate algae,
for which the swimming trajectory is also monitored over time, throughout the presented
window in inset (I) of panel (a). The 3D geometry of the deployed bi-flagellate swimming
cell along with its beating pattern is presented in panel (c).
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Figure 6.14: Effectiveness of the double-agent symmetric cloak formed at final stage of the
numerical experiment (presented in Fig. 6.13) that incorporates the swimmers’ realistic
geometry by simulating hydrodynamics using a high-accuracy 3D framework based on dis-
cretization of the regularized Stokeslets in boundary integral (RS-BI) formulation. In panel
(a) we compare the efficiency (η, quantified as a function of R/r0) of the realized cloak (shown
in red with ‘o’ markers) to that associated with an ideal set of cloaking agents (shown in
blue with ‘x’ markers) modeled through the theoretical singularity method as described in
section 6.3 of this chapter. Inset also compares the model force-dipoles used in the singular-
ity method, against the 3D realistic geometries used in the RS-BI simulation. In panel (b),
we visualize performance of the cloak formed using the latter approach, where a realistic
geometry of the intruder and cloaking agents are incorporated into the simulation of hydro-
dynamics. The color shading represents the magnitude of induced disturbing flows. For the
sake of comparison, we also visualize (via color shading) the magnitude of fluid disturbances
induced by an isolated intruder (c), when no cloaking agents are deployed (i.e. cloak: off).
The presented snapshots correspond to the final stage of numerical experiment demonstrated
in Fig. 6.13, and the scale bars denote 20Ls.

based on the optimal behavior policy (π∗) obtained through consecutive learning episodes
demonstrated in Figs. 6.4 and 6.5.

Effectiveness of the implemented cloak is then evaluated (see Fig. 6.14) for the benchmark
numerical experiment presented in Fig. 6.13. For the realized non-invasive cloak (in which
the hydrodynamics are simulated by incorporating the swimmers’ realistic geometry), our
results reveal an efficiency (η) that reaches beyond 80% and 85% at ranges R/r0 ≥ 20 and 30,
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respectively (Fig. 6.14). This is owing to the fact that (as discussed in section 6.2) far-field
of the disturbing flow induced by a micro-swimmer, can be well-described by the flow of a
force dipole. The difference (observed in Fig. 6.14) between far-field cloaking efficiencies of
the presented test case (conducted using the RS-BI method) compared to those predicted
in section 6.3 (using the theoretical singularity method) is due to the following fact. In
computing the cloaking efficiencies presented in section 6.3, we use a set of artificial agents
(i.e. swimming micro-robots) carefully designed to provide an ideally canceling set of dipole
strengths for the specific intruder of interest (that is the +D/2 dipole strength for each
of the pusher-type cloaking agents, where −D is the dipole strength of the puller-type
intruder). Therefore, the results associated with the theoretical singularity method, portray
the theoretical limit for efficiencies that can be achieved using optimally designed cloaking
agents. Whereas, here we implement the RS-BI method to demonstrate an active cloaking
test case using a set of micro-swimmers with geometric characteristics of swimming micro-
organisms. In fact, 3D models of self-propelled sperm cells (with their realistic geometry as
opposed to being carefully designed) are used to represent our pusher-type swimming agents,
and a 3D model of bi-flagellate algae (with its realistic geometry) is used to represent the
puller-type intruder (Fig. 12). As a result, the associated dipole strengths (for the latter case)
do not precisely cancel out, and thus the cloaking efficiency is expected to be less than those
predicted (in section 6.3) for an ideal set of cloaking agents (see the comparison in Fig. 6.14).
Nevertheless, in principle, by changing details of the swimmers’ geometry (and/or swimming
stroke), one can tune the force-dipoles representing far-field of their induced disturbances.
Therefore, when using the sperm-like swimming micro-robots to cloak a specific intruder of
interest, further optimization of their shape (and swimming stroke) can provide a perfectly
canceling set of dipole strengths. This, however, is beyond the scope of this chapter and
deserves an independent investigation.

In the end, we note that the implemented singularity method is based on modeling the
disturbing flow induced by each micro-swimmer as the flow of a force dipole with fixed
strength/direction. As discussed in section 6.2, this simple model has been widely used in
the literature [89], and its validity is particularly confirmed (through experimental measure-
ments) for modeling the flow induced by E. coli bacteria [90], as well as the time-averaged
flow induced by C. reinhardtii algae [60]. However, it is worth mentioning that swimmers
may induce time-varying flows characterized by a time-dependent dipole strength. Examples
include the swimming cells simulated in the presented numerical experiment (Fig. 6.13) –
i.e. the bi-flagellate algae and spermatozoa, which transition between pusher- and puller-
type dipoles over the course of their beat period. In this section, we demonstrated (Figs.
6.13-6.14) the possibility of using such swimming agents (with time-dependent flow fields)
to form a desired arrangement and cloak an arbitrarily moving intruder (with a different
time-varying disturbing flow). To optimally conceal an intruder (over time) in such settings,
however, the cloaking agents must additionally learn how to adjust their swimming gates
(and/or beating patterns) in response to the time-varying flow induced by the intruder. This,
indeed, can be an interesting topic for future work.
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6.6 Concluding Remarks

In this chapter, a rigorous approach was presented to actively cloak swimming objects in
the Stokes regime using a flock of micro-swimmers equipped with adaptive decision-making
intelligence. Through a reinforcement learning algorithm, our cloaking agents experientially
learn optimal adaptive behavior policy in the presence of non-linear flow-mediated interac-
tions. This artificial intelligence enables them to dynamically adjust their swimming actions,
so as to optimally form, and robustly retain, desired cloaking arrangements around any ar-
bitrarily moving object. In doing so, our smart agents optimally cooperate, such that their
overall generated flows not only cancel out the cloaked object’s induced fluid disturbances,
but also do not disturb it from its original path. Therefore, the presented active cloaking
approach is also non-invasive to the subject’s motion. We then generalized our methodology,
and demonstrated that a cooperative flock of well-adapted cloaking agents can be readily
used in a crowded environment to actively cloak any number of arbitrary intruders.

This work provides a clear road-map toward realizing hydrodynamic invisibility cloaks
for externally or internally controlled artificial swimming micro-robots [e.g. 71]. This is sig-
nificant in non-invasive intrusion of swimming micro-robots with a broad range of biomedical
applications [see e.g. 18]. Moreover, our findings demonstrate the great potential of reinforce-
ment learning in paving the path toward engineering of smart micro-swimmers capable of
accomplishing a new class of group-objectives. We, therefore, hope that this study will spur
further research on this field at the intersection of fluid mechanics and artificial intelligence.

Acknowledgments

This work is supported by the National Science Foundation grant CMMI-1562871.



101

Chapter 7

Conclusions

To summarize, in this dissertation we addressed various aspects of realizing a three-dimensional
(3D) controlled flock of swimming micro-robots that operate in, and cooperatively influence,
viscous fluid environments. We then demonstrated how to equip each individual agent with
an adaptive decision-making intelligence, so as to enable the flock of these artificially in-
telligent swimming micro-robots to achieve various objectives in the presence of long-range
flow-mediated interactions. Specific contribution of each chapter is as follows.

In chapter 2, we reported the design, fabrication, control strategy, and experimental
testing of a swimming robot with full 3D maneuverability in viscous environments. This low-
Reynolds-number swimmer (called Quadroar) is composed of four independently controlled
rotary paddles (hence the name, Quadru oars) and a linear actuator on its chassis which
is capable of reciprocal expansion/contraction. These five degrees of freedom enable the
Quadroar to swim along forward/transverse straight lines and perform full three-dimensional
reorientation maneuvers. A hierarchical supervisory control scheme was also designed and
implemented on the swimmer to perform primary modes of swimming maneuvers. This
highly-controllable artificial low-Reynolds swimmer can be used either as: (i) a swimming
micro-robot for various biomedical purposes such as targeted drug delivery and autonomous
surgery [18]; or (ii) a mm-scale swimming robot performing inspection, monitoring and
remediation missions in highly viscous fluid environments such as oil reservoirs [20].

In chapter 3, we used this artificial swimming micro-robot as a model to unveil orbital
topologies of interacting micro-swimmers. Depending on the initial conditions of the swim-
mers, diverse families of attractors including dynamical equilibria, bound orbits, braids,
and pursuit-evasion games were reported. In particular, we revealed that through flow-
mediated interaction, two micro-swimmers in Stokes regime can trap each other into: (i)
a dynamical equilibrium state at which they both remain stagnant indefinitely, or (ii) a
bound orbit in which they revolve about each other indefinitely. We also observed the hy-
drodynamic slingshot effect: a system of two hydrodynamically interacting micro-swimmers
moving along braids can boost each other’s swimming speed and advance in space faster than
non-interacting swimmers. Our findings suggest existence of complex collective behaviors of
micro-swimmers, ranging from equilibrium to rapidly streaming states.
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In chapter 4, we reported a systematic investigation on the near-wall behavior of a model
micro-swimmer with flow characteristics of bi-flagellate algae. Specifically, we showed that
inducing an oscillatory flow field with anterior, side, and posterior vortices, can be a sufficient
tool for micro-swimmers to sense and escape solid boundaries. Our finding provides a new
insight into the cell-surface scattering process, and may pave the path for new techniques
in controlling biological migration, for which a broad range of potential applications can be
sought – including diagnostics [50], drug delivery [69], and bio-remediation [70].

In chapter 5, we revealed that micro-swimmers can form a stealth swarm through a
controlled cooperation in suppressing one another’s disturbing flows. Specifically, our results
unveiled the existence of concealed arrangements, which can stifle the swarm’s hydrodynamic
signature (and thus, shrink its detection region) by more than 99% (or 50%) for three-
dimensional (or planar) movements. We then demonstrated how such a concealed swarm
can actively gather around a desired spot, point toward a target, or track a prescribed
trajectory in space. The systematic study presented in this chapter provides a road map to
optimally control/lead a swarm of interacting swimming micro-robots in stealth versus fast
modes. This paves the path for non-invasive intrusion of bio-medical swimming micro-robots
with a broad range of potential applications [18]. The presented findings also provide insights
into dynamics of prey-predator systems. For instance, stifling the induced disturbances (via
forming a concealed swarm) may help an active swarm of prey swimmers gathered around a
favorite spot (e.g. a nutrient source) to lower their detectability and thus the predation risk.
Stealthy movements by quenching flow signatures induced by a traveling flock, on the other
hand, can help a flock of predators to remain stealth while attacking a target prey swarm.
Therefore, stealthy movements and swarming in concealed modes, can potentially have a
significant impact on trophic transfer rates among a broad range of aquatic organisms.

In chapter 6, a systematic approach was presented to equip swimming micro-robots with
an adaptive decision-making intelligence in response to long-range flow-mediated interac-
tions. Flocks of these artificially intelligent micro-swimmers were then deployed to actively
cloak swimming objects within an unforeseen crowded environment. In particular, we demon-
strated how a reinforcement learning algorithm can be used to let the agents experientially
learn an optimal adaptive behavior policy in the presence of non-linear hydrodynamic in-
teractions. This artificial intelligence enables them to dynamically adjust their swimming
actions, so as to optimally form and robustly retain, desired cloaking arrangements around
any arbitrarily moving object. In doing so, our smart agents optimally cooperate, such that
their overall generated flows not only cancel out the cloaked object’s induced fluid distur-
bances, but also do not disturb it from its original path. Therefore, the presented active
cloaking approach is also non-invasive to the cloaked object’s motion. We then general-
ized our methodology, and demonstrated that a cooperative flock of well-trained swimming
micro-robots can be readily used in a crowded environment to actively cloak any number
of arbitrary intruders. This work provides a clear road-map toward realizing hydrodynamic
invisibility cloaks for/using externally or internally controlled artificial swimming micro-
robots. This is a significant step toward non-invasive intrusion of swimming micro-robots
with a broad range of biomedical applications [see e.g. 18]. Moreover, our findings demon-
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strate the great potential of reinforcement learning in paving the path toward engineering of
smart micro-swimmers capable of accomplishing a new class of group-objectives. We, there-
fore, hope that the presented study will spur further research on this field at the intersection
of fluid mechanics, robotics and artificial intelligence.
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