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Most, if not all, institutions benefit from diverse populations. The benefits of diversity are 

also seen in non-human populations, including on the levels of genomes. My three 

dissertation projects all touch on processes that can influence diversity in some 

capacity. My first chapter describes the effectiveness of the University of California, Los 

Angeles (UCLA) Competitive Edge (CE) bridge program in supporting PhD students 

from historically excluded and underrepresented groups (URG). Through surveys of 55+ 

first-year students, my study reveals CE's success in enhancing key aspects such as 

mentoring relationships, socialization, and overall preparedness. These are all crucial 

factors influencing student retention. Moving into the genetic sphere, my second chapter 

examines meiotic recombination, a process generating genetic diversity in sexually 

reproducing species through the decoupling of alleles. Focusing on the impact of 
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domestication on recombination rates, my study uses wolves and breed dogs as a 

model. I tested and rejected the hypothesis that domestication leads to increased 

recombination rates. My work shows intriguing patterns emerge. For example, border 

collies exhibit higher inferred recombination rates, while pugs have lower rates 

compared to wolves. Despite these differences, I estimated a stable recombination 

landscape in dogs and wolves. Additionally, my work created a genetic map for further 

exploration of the canid genome. My final chapter employs this genetic map to 

investigate the role of recombination in inferring the distribution of fitness effects (DFE) 

of new mutations. The DFE is a crucial aspect in population genetics because it reveals 

how selection impacts genetic diversity. However, Poisson Random Field (PRF) 

methods of DFE inferences assume sites are unliked. My work investigates how 

estimates of the DFE vary with linkage and recombination rates in wolves. I find that 

estimating the DFE in low recombination regions is similar to high recombination 

regions, despite differences in patterns of linked selection. Thus, my results suggest 

that DFE inference using PRF methods is not significantly biased by linked 

selection. Altogether, these results have implications for mechanisms that influence 

diversity in their relevant contexts.  
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Chapter 1: 

UCLA’s Competitive Edge Program Provides an Advantage 

to STEM Doctoral Students from Historically Excluded and 

Underrepresented Groups 

 

In preparation for submission to CBE: Life Science Education 

A Supplemental Appendix is available online as this dissertation’s Supplementary 

Materials: Ch1_Supplementary_Information.pdf  

 

Abstract 

 

Universities benefit from recruiting and retaining diverse students, as it leads to more 

creative and rigorous problem solving. Efforts to improve the diversity, equity, and 

inclusion of graduate education have historically been focused on recruitment but are 

now shifting to retaining enrolled students. A low percentage of doctoral students, 

particularly those from historically underrepresented groups (URGs), complete their 

PhD within 10 years. To increase support of incoming doctoral students from URGs, 

UCLA established the Competitive Edge (CE) bridge program. CE provides six weeks of 

professional development and research training at the start of the PhD program. We 

surveyed 55+ first-year doctoral students (14 CE students, eight non-CE students from 

URGs, and 34 well-represented (WR) students) in STEM fields to understand CE’s 
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effectiveness. We found that the CE program aided students in four areas that influence 

graduate student attrition: mentor/mentee relationship, socialization, finances, and 

preparedness. At the end of their first academic year, CE students reported that the 

program helped them in multiple areas relating to student success, such as mental 

wellbeing and sense of belonging. CE students reported a larger mean growth in seven 

of eight skills needed in graduate school compared to NonCE URG and WR students. 

Short answer responses revealed that NonCE students wished for more support in 

areas covered by the CE program, such as managing advising relationships and 

protecting mental health. Additionally, CE students received significant funding during 

the program. The CE program's successful model at UCLA can be adapted to improve 

support for underrepresented doctoral students at other institutions. 

 

Introduction 

 

Diversity among researchers is known to lead to a diversity of ideas and approaches 

that in turn leads to more creative and rigorous problem solving. Thus, it is in 

universities’ best interests to recruit and retain diverse students. However, historic 

efforts in graduate education have been more focused on recruitment and only recently 

began to shift towards support of matriculated students. In the literature on graduate 

student education, there are multiple studies focused on the reasons students leave 

graduate school (e.g. Bowlin, Sweat, Watts, & Throne, 2017; Hardré, Liao, Dorri, & 

Beeson Stoesz, 2019; Maher, Wofford, Roksa, & Feldon, 2017; Meara, Griffin, & 

Robinson, 2017; Rockinson-Szapkiw, 2019), but the literature is more limited on how 
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institutions can counteract those factors to retain diverse talent. Some literature that 

focused on undergraduates explored the role of “bridge programs” to facilitate students 

in successfully applying to graduate schools (e.g. Mccoy, Winkle-wagner, & Winkle-

wagner, 2020; Peteet et al., 2016), yet there are limited peer-reviewed publications on 

doctoral bridge programs that target admitted students. To meet the need for supporting 

incoming doctoral students from historically excluded and underrepresented groups 

(URGs), the University of California, Los Angeles (UCLA) has instituted the Competitive 

Edge (CE) bridge program. The program takes place over six weeks during the summer 

before typical doctoral programs begin. During this time, students receive professional 

and “soft” skills development, as well as research training. Additionally, CE gives 

students a chance to acclimate to graduate school and build community before the start 

of their Ph.D. program. In this article, we have surveyed 55+ first-year doctoral students 

in science, technology, engineering, and math (STEM) fields to gain insight into the 

effectiveness of CE as an approach to support diverse students in their transition to 

doctoral study.  

 

Why students leave graduate school 

Part of the urgency to increase support and retention of students comes from data 

showing that, after 10 years from starting their graduate program, less than 60% of all 

doctoral students in all fields complete their PhD (Sowell, Zhang, Redd, & King, 2008). 

Additional data shows seven year completion rates to be similarly low for 

Hispanic/Latino students, and the rates for Black/African-American students to be as 

low as ~50% (Sowell, Allum, & Okahana, 2015). It is also worth noting that other ethnic 
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and racial minorities were not analyzed by Sowell et al. (2015) because there were too 

few students in the doctoral student body to reach a significant sample size. Increasing 

retention of historically underrepresented groups is also an important piece in actively 

creating a balance of people from diverse backgrounds at all levels of the academia 

hierarchy.  

  

A meta analysis of 79 graduate student attrition studies identified four key themes that 

repeatedly emerge as reasons students leave: 1) advisor-advisee relationship, 2) 

socialization, 3) finances, and 4) preparedness (Bowlin et al., 2017). 

 

Advisor-Advisee Relationship: The impact of the advising relationship on student 

retention is unsurprising given its central role in the model of graduate school. For 

example, in most STEM fields, students work within a given lab under the supervision of 

a principal investigator (PI), particularly so in Biology. (Note the terms PI, mentor, and 

advisor are typically used interchangeably in STEM PhD programs.) The advisor is 

charged with overseeing the student’s academic and professional growth, but also has 

a significant role in a student’s degree progress and future career of the student through 

dissertation project assignments, funding, and letters of recommendation. Given the 

central role of an advisor to a STEM PhD student’s work, it follows that having a 

constructive and supportive advisor-advisee relationship is crucial to a student’s 

experience and chances for success (Weiss, 1981, Girves & Wemmerus, 1988; Lovitts, 

2001; Ruud, Saclarides, George-Jackson, & Lubienski, 2018; National Academies of 

Sciences, Engineering, and Medicine, 2019). 
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Socialization: Student experiences are also impacted by socialization with peers, 

faculty, and staff. Peer interactions can provide a sense of support as well as be 

important in transferring heuristic knowledge about navigating graduate school 

(Gardner, 2007; Knight, Hall, & Green-Powell, 2014; Padilla, 1999; Tinto, 1982; Lovitts, 

2001). Interactions with faculty (beyond just the advisor) contribute to a student’s sense 

of belonging in the broader academic community. Further, faculty and staff interactions 

shape a student’s perception of departmental and institutional support, which can 

impact retention (Astin, 2014; Bean, 1980; Golde, 2005; Knight et al., 2014; Zhou & 

Okahana, 2019) 

  

Finances: Financial stability and support is also a core factor in student persistence and 

eventual completion. STEM PhD students are in a unique situation where their tuition is 

typically paid for them and they receive a stipend or salary to pay for personal expenses 

such as housing and meals. This funding may come in the form of employment as a 

teaching assistant (TA) or research assistant (RA) or as a stipend from a fellowship. But 

even with these sources of support, there can be great disparities in financial stability 

depending on amount of support and a student’s particular circumstances. 

Unsurprisingly, the types and amount of funding play a role in doctoral students’ 

decisions to remain in graduate school (Ampaw & Jaeger, 2012; Herman, 2008; 

Martinez, Ordu, Sala, & McFarlane, 2013) 
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Preparedness: Graduate study, particularly doctoral research, is a huge undertaking 

that differs significantly from undergraduate education. Many students enter graduate 

school without a robust understanding of the expectations thereof and are unaware that 

the skill set to succeed is very different from that needed in undergraduate studies (Brill, 

Balcanoff, Land, Gogarty, & Turner, 2014). Students from underrepresented 

backgrounds may be further disadvantaged with fewer personal connections to 

graduate students and professors who can share the expectations and “hidden 

curriculum” of graduate school. 

  

While previous studies have identified these core reasons why graduate students leave, 

more evidence is needed for student support strategies that can counteract these 

factors and increase student retention. 

 

Description of the CE program 

CE is a bridge program at UCLA that aims to support URG doctoral students in STEM 

fields during their transition to graduate studies. Incoming students are nominated by 

their home department, and then a subset of nominees is selected to participate. The 

program began in 2008 with just a few students per year. However, since 2010, CE 

cohorts have ranged from 10 to 44 students, with recent cohorts averaging near 40 

students. It should be noted that in 2019, the program expanded to include a few social 

science students, and in 2020 it also included humanities students. But given the history 

of the program and the primary constituency, this study focuses solely on STEM 

students. The program was initially funded by a National Science Foundation (NSF) 
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Alliances for Graduate Education and the Professoriate (AGEP) grant and is currently 

funded by UCLA’s Division of Graduate Education. 

 

CE students participate in an intensive six-week schedule with activities and 

programming that address a wide variety of skills and support for graduate students. In 

2021, the program was conducted remotely on Zoom due to COVID-19 precautions. 

Students were expected to participate in the program full-time (40 hours a week); eight 

of those hours consisted of structured professional development / soft skills 

programming, and the rest of the time was spent performing research. The structured 

time included workshops on topics such as managing the advising relationship, writing 

grant and fellowship applications, and managing mental well-being. Students also 

participated in a journal club for their discipline that met four times over the course of 

the program. Additionally, there was a session with a panel of past CE student 

participants and another panel of faculty who were first-generation students. There was 

also built-in time for students to get to know each other and ask questions of program 

leaders. The schedule for the 2021 program can be found in supplemental materials 

(Table S1.1) Outside of structured events, students were expected to begin doing 

research guided by their advisor. The research aspect of the program could be remote, 

but some students did their research in person. Additionally, students worked with their 

advisor to write a research proposal by the end of the CE program that could be used to 

apply for a fellowship such as the NSF Graduate Research Fellowship Program. 

Additionally, students were funded during the program with a $6,000 stipend.  
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Objectives of the CE program 

Through the various components, CE seeks to meet several broad learning objectives. 

Specifically, 1) students will learn how to conduct research, 2) students will learn how to 

communicate their research with others, 3) students will learn how to work with faculty 

members, and 4) students will be connected to others at UCLA. We recognized that 

these four objectives are well-designed to address three of the four primary reasons that 

students leave doctoral study without a PhD: preparedness, advisor-advisee 

relationship, and socialization. The unaddressed reason for student attrition is finances. 

While not a stated goal of the program, CE arguably addresses this area of concern 

with its stipend and its programming on applying to fellowships and how to budget. 

Additionally, every program component has specific learning objectives that aim to 

support students in these four areas (Table S2).  

 

Our study  

In this work, we use quantitative and qualitative survey data of 55+ first-year STEM 

doctoral students to analyze the impact of the CE bridge program on matriculated URG 

students. We consider multiple measures of student skills and experiences that align 

with both the program’s objectives and known causes of graduate student attrition. 

Given the alignment between the CE program’s objectives and known causes of 

graduate student attrition, we expect to see better acclimation and possibly retention 

outcomes for URG doctoral students who participate in the program. Evaluating the 

impacts of the CE program can determine the effectiveness of program elements as 

well as provide a basis for iterative improvements. Additionally, others seeking to create 



 9 

better support for PhD students can learn from any strengths or weaknesses revealed 

by our analysis of the CE program. 

 

Materials and Methods 

 

This study was done with an approved UCLA Institutional Review Board protocol #21-

000756.  

  

Survey Question Development 

Our survey instruments (Supplemental Text) were developed with feedback from the 

individuals administering the 2021 Competitive Edge (CE) program to ensure we 

measured metrics related to the program goals. The CE program administers its own 

feedback surveys focused on curricula assessment; these surveys have significantly 

fewer questions and a narrower scope. We looked at the responses of past CE 

administered surveys to gain insight into what parts of the program our own survey tool 

should focus on. In 2021, the program still administered their own feedback survey but it 

was conducted separately from the survey we use here. 

 

Additionally, we surveyed faculty and staff who led program workshops on their 

individual learning objectives, and we consulted the program director on what the 

overall program objectives were. The majority of our instruments consist of questions 

written for this study that directly address those objectives. Furthermore, we used a 

previously published set of questions addressing the topic of sense of belonging 
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(Hermida 2017). The majority of our questions were framed as Likert scale questions 

asking respondent agreement with a statement ranging from strongly disagree (1) to 

strongly agree (5). Statements selected reflected the skills and attitudes we 

hypothesized that CE would increase. For example, one statement read “I can set 

expectations with my advisor.” Lastly, we collected demographic data with questions 

modeled closely after the Grad Student Experience in the Research University survey 

(SERU Consortium 2021).  

 

Study Population 

All students surveyed were first-year doctoral students in STEM fields at the University 

of California, Los Angeles (UCLA). Definition of STEM fields for this study included 

social science disciplines (Table S1.3). The study population consists of three 

subgroups referred from here on as 1) Competitive Edge (CE), 2) Non-Competitive 

Edge Under-Represented Group (NonCE URG), and 3) Non-Competitive Edge Well-

Represented (NonCE WR). CE students were those that participated in the 2021 

Competitive Edge program. To be eligible for CE, students must be a U.S. citizen, U.S. 

national, permanent resident, or undocumented student who qualifies for nonresident 

supplemental tuition exemptions under California law AB 540 (University of California 

Office of Admissions 2023). Thus we limited our results for our two NonCE cohorts to 

the same citizenship categories. Additionally CE students must have a background that 

is underrepresented in graduate education. Students in both NonCE groups did not 

participate in the program (that year or any other). For NonCE students, URG vs WR 

students were classified by UCLA’s Graduate Division’s definition of URG students. 



 11 

Functionally, this designation separated White, Asian, and mixed-race White and Asian 

students as WR and all others as URG. UCLA identified URG students through self-

reported information on graduate school applications. We identified URG students 

based on self-reported information on our survey. However, we note that this definition 

of URG does not apply to every STEM field. For example, Asian students are 

underrepresented in Ecology (Kou-Giesbrecht 2020). Nonetheless, given that the aims 

of the program are to address the needs of disadvantaged students, particularly those 

defined by the university as belonging to these racial and ethnic/racial categories, we 

find it prudent to evaluate the strengths of the program under those same categories. 

We present broad self-reported demographic information on our respondents in Table 

1.1.  

 

Survey Deployment 

All surveys were administered via Google forms. Students were incentivized to 

participate via a raffle for $100 gift cards to Target. In July 2021, we requested the CE 

program leaders forward our email to the 36 STEM students who made up the 2021 

cohort of CE. This was done separately from the CE program’s own feedback surveys. 

We asked CE students to complete the pre-program questions and had 22 respondents. 

In June 2022, we again had CE program leaders contact the 2021 cohort students to fill 

out our end of year-one survey (n = 14).  

 

To survey non-CE students, we had student affairs officers for all STEM PhD programs 

at UCLA contact current first-year students to take our end of year-one non-CE survey. 
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We also reached out to various graduate student identity-based affinity groups to 

contact students from racial and ethnic minority backgrounds. According to UCLA 

STEM Ph.D. program enrollment data, there were 639 first-year PhD students in fall 

2021 (UCLA Department of Graduate Education 2023). Of those students, 55% were 

male, 44% female, and 1% non-binary. Almost a third (31.5%) were international 

students. UCLA does not release race/ethnicity data for international students. But 

within domestic students, 20.8% were classified as members of URGs. We received a 

total of 42 respondents for non-CE students, with eight grouped as from URG 

backgrounds and 34 grouped from WR backgrounds.  

 

Survey Response Analysis  

To quantitatively analyze our results, we asked CE students to rate how the program 

improved their experiences across five categories during their first year of doctoral 

study. The five categories we selected are: 1) research skills, 2) sense of belonging, 3) 

self confidence, 4) overall well being, and 5) interactions with advisors. These 

categories were hypothesized by us, the CE staff, and contributors to be highly 

impacted by the program. Furthermore, these categories are highly correlated with 

success in graduate school (Maher et. al 2020, Holmes et. al 2019, Martinez et. al 2013, 

Brill et. al 2014). 

 

For additional quantitative insights, we focused on skills relevant to student success that 

were targeted by the CE program. We asked CE and NonCE students to rate 

themselves on eight skills: 1) interacting with faculty, 2) science communication, 3) 
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mental wellbeing strategies, 4) connection to resources, 5) conducting research, 6) 

evaluating journal articles, 7) financial literacy, and 8) fellowship application writing. 

These eight areas were chosen because one or more components of CE focuses on 

building these skills. For example, students attend a journal club where they learn both 

how to evaluate literature in their field and how to communicate the findings of those 

articles. Furthermore, these skills are critical to success in graduate school. 

 

To assess these five experience categories and eight skills, we asked one or more 

Likert scale questions relating to each one. If multiple questions were incorporated into 

the score for a specific category or skill, we averaged the answers to all the relevant 

questions. Additionally, for the eight skills, we calculated students' growth by subtracting 

how they rated themselves prior to starting CE or doctoral study (pre-score) from self 

ratings at the end of their first year of graduate school (post-score).  

 

Our end of year-one surveys concluded with three open ended questions. For the CE 

students, we asked separately about positive impacts and negative impacts of CE on 

their doctoral study. We also asked for any additional comments about their first year 

not addressed by the rest of the survey. For the two NonCE groups, we asked about 

any programs or experiences that positively impacted and then any that negatively 

impacted their first year. We also asked for additional comments not addressed 

elsewhere. These qualitative answers were categorized using an inductive coding 

method (Thomas 2003). To do this, one author read through all the responses before 

listing possible categories. They then re-read every response and assigned one or more 
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categories to each response. They consolidated all those themes into 13 broader 

themes and re-coded all responses with those 13 themes. Those were then collapsed 

into five final themes: 1) community support, 2) financial resources, 3) mental health, 4) 

mentorship/advising, and 5) skills development (Table S1.4). The first author then 

labeled all responses with those classifications. The second author reviewed them and 

agreed they were consistent with the theme definitions. For the additional comment 

responses, the text segments were classified as positively or negatively impacting 

student experiences and combined with the appropriate group of responses. We then 

tabulated the number of times a given category was present in each cohort’s positive 

and negative responses.  

 

Statistical Analysis 

Quantitative analysis and plotting of results was carried out in RStudio (RStudio Team 

2020). For all statistical tests, an alpha of 0.05 was used. Statistical tests used the T 

test for comparing differences between two groups. For the statistical comparisons we 

carried out, we also calculated a power analysis. For the power analysis, we simulated 

1,000 data sets per condition for T tests comparing CE vs NonCE URG and CE vs 

NonCE WR students. We tested effect sizes varying from 0.2 to 2. Effect sizes were 

defined as the mean of the CE cohort minus the mean of NonCE Cohort then divided by 

the standard deviation of the NonCE cohort. The means and standard deviations of our 

simulated data were based on the same parameters from our observed data for NonCE 

cohorts. To examine the power of each condition, we calculated the proportion of 

simulations that correctly resulted in a statistically significant T test result of < 0.05.  
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Results 

 

What experiences relating to student success did CE help students with? 

Importantly, we asked CE students to rate at the end of their first year how much the 

program impacted their experiences in 5 key areas. The areas we focused on were 1) 

research skills, 2) sense of belonging, 3) self-confidence, 4) overall wellbeing, and 5) 

interactions with advisors. Students rated if CE positively influenced their experience 

with a Likert scale 1 (strongly disagree) to 5 (strongly agree) (Fig. 1.1). We present our 

areas of focus here in ascending order of mean student response. Research skills had 

the lowest mean response of 3.7 (between neutral and somewhat agree). CE students 

predominantly agreed that the program improved their sense of belonging with an 

average response of 3.9 (between neutral and somewhat agree). All but one student 

agreed that CE improved their self-confidence with a mean response of 4.2 (somewhat 

agree). CE students agreed that CE improved their overall wellbeing with a mean 

response of 4.2 (somewhat agree). CE student respondents unanimously agreed that 

the program aided their interactions with their advisors (mean = 4.5). CE students 

reported generally having improved experiences across these five areas relating to 

student success that they attribute to the CE program. These responses speak to the 

high value of the CE program.  
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What structured components of CE were most helpful? 

We asked CE students to select up to three of the most helpful structured components 

of the program for them. The majority of students reported benefiting from the mental 

health strategies workshop focused on “Resiliency and Managing Negative Thoughts” 

(71.4%). They also identified one of the two workshops focused on managing their 

relationship with their mentor (42.8%). And students did also report benefits from the 

writing skills workshop on grant and fellowship applications (35.7%).  

 

CE students reported improvement in skills related to success in graduate school 

Students rated themselves before doctoral study and at the end of year-one in eight 

skills: 1) interacting with faculty, 2) science communication, 3) mental wellbeing 

strategies, 4) connection to resources, 5) conducting research, 6) evaluating journal 

articles, 7) financial literacy, and 8) fellowship application writing. We calculated 

students’ change (post score - pre score) in our eight skills for our three cohorts (CE, 

NonCE URG, and NonCE WR) (Fig. 1.2). CE students reported a larger mean increase 

in skills than both NonCE cohorts for all skills except financial literacy. For financial 

literacy, NonCE URG students indicated the most increase in this skill.  

 

We were most interested in statistically testing if CE students reported more 

improvements than each of the NonCE cohorts. We did so using a T test to make two 

pairwise comparisons (CE vs NonCE URG and CE vs NonCE WR) for each skill. We 

found two statistically significant differences. For CE vs NonCE URG students, CE 

students reported a larger growth in their connection to resources (T test, p-value = 
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0.030). For CE vs NonCE WR students, CE students indicated larger growth in working 

with faculty (T test, p-value = 0.045). All other tests resulted in p-values > 0.05 (Table 

S5). 

 

Additionally, we used a power analysis to determine the probability that we could 

accurately detect a difference between our cohorts with our sample sizes plus the 

observed mean and standard deviation of our control NonCE groups (Fig. 1.S1). For 

comparisons of NonCE students we used the averages of their mean and standard 

deviation per skill. For URG students the mean was 0.60 and standard deviation was 

1.0. WR students had a mean of 0.66 and a standard deviation of 0.80. For our power 

analysis of comparisons between CE and NonCE URG students, we find that a large 

effect size > 1.25 would be needed to correctly find a statistical difference in at least 

80% of simulated data sets. For CE vs NonCE WR students, a large effect size of 0.75 

would be needed to reach 80% accurate statistical tests. Given the means and standard 

deviations of the NonCE groups, our power analysis suggests we could accurately 

detect statistical significance in 80% of cases where our CE cohort had a mean 

response that is > 1.85 units above NonCE URG students or > 1.22 units above NonCE 

WR students. Our two statically significant cases have a smaller difference in mean 

than those thresholds, but still may be in the less than 80% of cases where we could 

detect a true difference.  
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What did students say? 

Students were asked to identify factors that influenced their first year of graduate school 

and separate them by those that had positive vs negative impacts. For CE students, 

there were 9 responses (64.2% of cohort) for positive factors and 5 responses (35.7% 

of cohort) for negative factors. Among NonCE URG students, 2 responded (18.2% of 

cohort) with positive and the same 2 (18.2% of cohort) with negative factors. NonCE 

WR students had 15 responses (26.3% of cohort) for positive and 15 responses (26.3% 

of cohort) for negative factors.  

 

We coded student responses based on our inductively created categories of 1) 

community support, 2) skills development, 3) mentorship/advising, 4) mental health, and 

5) financial resources. A given response could be coded as discussing more than one 

category. We totaled the number of responses for each category subdivided by cohort 

and positive vs negative factors (Table 1.2). The themes are listed above and in the 

table by order of their popularity ranging from community support with 31 responses to 

financial resources with 6 responses for all cohorts and positive and negative factors 

combined.  

 

The most common theme was community support which appeared in over 65% of 

responses. All but one CE student who responded to the positive question commented 

on how CE made them feel supported. One CE student wrote: “Because of CE, I felt like 

I belonged at UCLA.” And 3 of the 4 negative CE responses about community support 

noted that they think the online delivery of the program hindered their community 
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building within CE. For example: “...the program being completely virtual made it difficult 

to connect with other students.” NonCE students generally referred to student groups 

and structured university activities that connected them to others at UCLA. One NonCE 

WR student noted they found community through a student association: “The 

engineering graduate student association plans a lot of events which helps us get to 

know each other and meet new people.” While another NonCE WR student found 

connection to be lacking: “I didn't feel very connected to my department or the school as 

a whole…” Reflecting the importance of community for diversity, a NonCE URG student 

poignantly wrote, “I feel like I don't belong in a lot of the spaces I have been a part of 

thus far.” 

 

Skills development was also a popular topic, but referred to both technical and “soft 

skills” such as achieving work life balance. NonCE WR students in particular 

commented on skills they wish they had been taught, including interacting with an 

advisor. For example, “Interacting with advisors has been a difficult journey for me.” 

They also noted programs that were not effective, such as a departmental coding 

“bootcamp.” CE students also reiterated points about a software workshop that wasn't 

particularly relevant to them because their field favors a similar but different software 

program: “I would have appreciated an R [software] tutorial day versus a Tableau 

[software] training.” 

 

Mentorship and advising proved to be a salient topic for students. CE students noted 

that it was particularly helpful to begin working with their advisor over the summer. One 
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student wrote, “I really appreciated the opportunity to do a small research project and 

start working with my advisor before the beginning of the school year.” And another 

added, “I was also able to publish two manuscripts within my first year because I was 

able to begin working on them during [CE].” In contrast, both NonCE URG students and 

one WR respondent specifically wished for help with navigating their advising 

relationship. One URG student wrote, “I need help navigating the relationship with my 

advisor…” and the WR student similarly stated, “I wish there were more tips and 

guidance about how to find and interact with an advisor.” Furthermore, when NonCE 

WR and URG students cited mentorship as playing a positive role in their first year, they 

only credited mentorship from sources other than their advisor such as student 

organizations, senior graduate students, or “younger faculty.” 

 

Mental health was highlighted as impacting first year experiences in nearly 20% of 

student responses. Two of the 10 CE students focused on how mental health oriented 

workshops benefited them and the one negative response expressed a desire for more 

workshops on mental health related topics including “burnout.” In contrast, only two of 

the 19 NonCE WR students remarked on having support in maintaining their mental 

health. And four NonCE WR remarked that they were struggling with their mental 

health. For example, one NonCE WR student wrote: “It has been very hectic trying to 

balance coursework with research expectations and finding a project I want to work on.” 

and another added, “I'm super depressed.” 
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Lastly, a factor multiple students identified was financial resources. One CE student 

commented, “I am very thankful for this program in their financial support…” But another 

CE student wrote, “I was unable to do research in-person [due to constraints with my 

access to health insurance]. That significantly hindered my ability to make progress in 

my project.” While the CE program was conducted online, students had the option to 

carry out CE research in person. But some mechanism relating to accessing health 

insurance hindered this student’s experience in the program. For the NonCE cohorts, no 

URG students mentioned finances. For the four NonCE WR students who mentioned 

financial resources, three commented specifically on housing. One was grateful for 

university subsidized family housing. But the other two NonCE WR students 

commented on the strains of the Los Angeles housing market. For example, “Looking 

for affordable housing within a 20 minute walking distance to campus has been very 

difficult… [Commuting] while living not within walking distance to campus makes it hard 

to get enough rest and maintain well-being.” 

 

Discussion 

The research described here highlights ways a diversity-oriented STEM summer bridge 

program can benefit students during their first year of doctoral study. In particular, 

quantitative and qualitative analyses of responses from CE students and control cohorts 

identified data trends supporting a positive impact of CE on research skills and 

psychosocial traits important for success in graduate school. From the perspective of 

diversifying STEM graduate programs, we present the benefits reported by CE students 

in the context of four major causes of graduate student attrition.  
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Advisor-Advisee Relationship / Working with Faculty  

A positive effect of CE on students’ advisor-advisee relationships was evident 

throughout our analyses. Notably, CE students unanimously agreed that the program 

improved their interactions with their advisor (Fig. 1.1). When asking students to rate 

their skill of interacting with faculty, CE students reported a higher mean growth in 

working with faculty compared to NonCE URG and WR students (Fig. 1.2). The positive 

impact was likely driven by two workshops which focused entirely on how to manage 

interactions with advisors. CE students identified the “Mentoring Up” workshop as the 

second most helpful CE program component.  

 

Additionally, CE students repeatedly commented on the benefit of starting research 

training with their advisor over the summer. Summer may be a particularly 

advantageous time to begin working with an advisor because faculty generally have 

more availability due to limited teaching and service requirements. While many faculty 

may take vacation during the summer, and in some disciplines may conduct field work 

over this time, the CE program requires students to have a faculty member who 

commits to mentoring the student during the program. So the students are paired with 

advisors who are explicitly available during the six week program. Thus, compared to 

NonCE cohorts, CE students in our study had additional training in how to manage their 

advising relationship and additional time to navigate the interaction.  
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It is worth noting that multiple NonCE students commented on difficulties interacting 

with their advisors. One URG and one WR student explicitly wished for more support in 

navigating this relationship. These observations emphasize the need for this type of 

support for STEM PhD students and highlight the significance of our finding that all CE 

respondents viewed the program as specifically assisting them in interacting with their 

advisors.  

 

Socialization / Connection to others at UCLA 

Receiving social support may be particularly salient to CE students because of their 

minoritized racial/ethnic identities as well as first-generation status. All but one CE 

student identified with a URG racial or ethnic identity (Table 1.2). There is strong 

evidence that it is important for mentees from URG backgrounds to have mentors with 

cultural awareness (Thomas 2001, Osula & Irvin 2009, Womack et al. 2020). 

Additionally, 50% of CE students reported being first-generation with regards to college 

degrees and 78.6% with regards to advanced degrees. In contrast, 17.5% of NonCE 

WR students were first-generation college students and 45.6% first-generation for post-

college education. The lack of familial experience in advanced degree studies may 

translate to fewer avenues for first-generation students to learn how to navigate the 

non-technical parts of graduate school. Additionally, we view socialization as linked to 

mental health. Social connections can offer emotional support, companionship, and a 

sense of belonging, which can help individuals cope with stress, reduce feelings of 

loneliness, and enhance overall well-being. Notably, multiple aspects of our analyses 

show that CE students benefited from the social aspects of CE.  
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Most CE students agreed that the program improved their sense of belonging, their self-

confidence and their overall well-being during their first year (Fig. 1.1). These findings 

are also reflected in CE students reporting a larger increase in their mental wellbeing 

strategies and their connection to resources compared to both NonCE groups (Fig. 1.2). 

When asked for the most helpful components of CE, students' top answer was a 

workshop that highlighted social strategies to build self-efficacy (belief that one can do 

what is necessary to achieve their goals). These results all support a conclusion that CE 

student socialization was aided by the program.  

 

In all cohorts’ short answer responses, community support was the most common 

theme. CE students explicitly commented on how the program made them feel more 

connected at UCLA. While many NonCE URG and WR students described community 

support they had found, some described a lack of belonging. Relatedly, students from 

the CE and NonCE WR cohorts commented on mental health topics. CE students 

reaffirmed how the self-efficacy workshop helped them as well as a workshop on 

resilience and negative thoughts. Two NonCE WR students remarked on the support 

they found for their mental health, but four described ways they needed more support.  

 

The very nature of the CE program gave this cohort of students access to URG peers 

and invested faculty and staff, which created a natural space for these students to feel 

connected and supported from the start of their program. Also, the workshops the CE 

students highlighted focused on non-technical or so-called “soft skills.” These types of 
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skills are not usually taught explicitly in graduate education. Instead, most traditional 

elements of graduate education, such as coursework and advising from PIs, is focused 

on developing the critical technical skills needed for the research field. Notably, CE 

student open-ended responses specifically commented that the program’s focus beyond 

technical skills was a significant benefit of the program. This speaks to students' desire 

and need to develop skills that contribute to graduate student success beyond 

knowledge of their field of study. Thus it is not surprising that CE students valued 

support in areas that are not typically a focus of STEM doctoral study.  

 

Finances 

Finances may be particularly relevant to the >70% CE students who self-reported being 

from low-income and working class socioeconomic backgrounds. This contrasts with 

~36% of NonCE URG students and ~26% of NonCE WR students with these 

backgrounds. For the duration of the program, CE students are paid a $6,000 stipend 

for living expenses and possibly to offset some of their moving costs . For reference, 

UCLA graduate student teaching assistants in Fall 2023 would be paid a minimum of 

only $3,608 for the same time period (UAW Local 2865 2023). The pay above the 

university minimum that CE provides may be a significant boost to financial stability for 

CE students during the critical period of transition to their doctoral study. Such an effect 

was noted by one CE student’s open-ended response stating gratitude for the 

program’s financial support. Additionally, CE students are encouraged to move to Los 

Angeles to conduct their research in person. As the program occurs in the summer, this 

may give CE students greater potential to find housing at a time when there is less 
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competition from incoming students for housing, including UCLA subsidized housing, 

near campus. Lastly, CE students have the potential for better financial support in the 

future from a boost in writing skills from the CE workshop on fellowship applications 

(discussed in more detail under preparedness).  

 

Preparedness / Doing and communicating research 

In addition to the topics described above, students need to know and develop skills that 

are important for success in graduate school. We find evidence in multiple of our 

analyses that CE students developed important skills, including doing and 

communicating research.  

 

We asked CE students if they thought that the program improved their research skills. 

The mean response of students was between neutral and somewhat agree (Fig. 1.1). 

This moderate response likely reflects the limited opportunity for students to delve in 

depth into research in a program of only 6 weeks. Even so, the most common response 

was “somewhat agree” (4) suggesting that many students believe their overall research 

skills benefited from the program.  

 

When asked about the most helpful program components, CE students identified the 

grant and fellowship writing workshop as one of the top three. Better proficiency in 

writing can help students more easily secure funding for themselves through fellowships 

and their research through grants. Additionally, many doctoral programs also have 

milestones such as a dissertation proposal which has similarities to grant applications. 
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Being able to effectively communicate one’s research plans will likely help these 

students meet these milestones more easily. Lastly, the final milestone in doctoral study 

is of course completion of the dissertation itself. The boost in writing skills that CE 

students gain during their first year has the potential for large long-term advantages.  

 

Lastly, we found a striking trend that CE students reported a larger mean improvement 

in seven of the eight skills relating to student success compared to NonCE students 

(Fig. 1.2). The eight skills we focused on were chosen both because the CE program 

specifically seeks to support students in these areas and because the skills are 

important for one or more metrics of doctoral student success. Specifically we found 

statistically significant differences in connection to resources relative to NonCE URG 

students and interactions with faculty relative to NonCE WR students. However, we 

note that our statistical power was limited (Fig. S1.1) likely due to our small sample 

sizes. So we argue that the overall trend of CE students indicating more growth in 

almost all skills we measured is worth consideration. 

 

Limitations and future directions 

Small sample size limits this study, especially statistical inferences. The number of CE 

respondents was 14 students, or about one-third of eligible CE students. We chose to 

focus on a single cohort of CE students because the leadership, instructors, and 

program topics have varied between years. These variations introduce confounding 

differences between cohorts that would complicate analysis of data from larger sample 

sizes obtained by surveying multiple cohorts. The 11 NonCE URG student respondents 
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was also a small sample. This reflects the inherently smaller proportion of the overall 

student body that URG students comprise by definition. This was also a lower response 

rate than CE students, likely because NonCE students have no invested interest in the 

program. 

 

It is worth noting that students are not randomly selected for the CE program. They 

must be nominated by their department and then selected by a committee. Because of 

the non-random nature of selecting students to participate in CE there are some 

uncontrolled variations between our study groups.  

 

We also acknowledge that in our skills comparisons between CE and NonCE groups, 

there are many paths for students to acquire and develop the skills we studied. While 

the CE program directly targets these skills and the quantitative data show a trend of 

more CE students improving than NonCE URG students, CE is not the only way that 

gap could have developed. However, because the trend occurs across all but one skill, 

the parsimonious interpretation is that CE conferred an advantage to participating 

students over their NonCE peers.  

 

In order to explore impacts of CE further, we suggest future studies look across multiple 

cohorts of CE students. With sufficient sample size, the confounding differences of 

program and environmental differences could be more easily controlled for in statistical 

analyses. For example, an ordered logistic regression could incorporate program year 

as a variable in the statistical model. Additionally, other demographic information such 
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as gender and first generation status could be tested as model components as well.  

 

Lastly, a longitudinal approach should incorporate long term metrics of success for CE 

students. A particular metric of interest would be attrition, given the alignment between 

CE’s goals and the causes of graduate student attrition. Future studies could also track 

other outcomes such as publication record and time to degree. While the primary focus 

of CE is to assist students during their acclimation to graduate school, it would be 

prudent to explore the potential long-term effects of beginning doctoral study with a 

“competitive edge”. 

 

Conclusion 

 

The Competitive Edge (CE) program at the University of California, Los Angeles (UCLA) 

seeks to support first year doctoral students from historically excluded and 

underrepresented groups (URGs). Survey results of CE and NonCE first year PhD 

students at UCLA suggest that CE achieved the goal of better preparing program 

participants. Specifically, we found ways that the CE program addressed four major 

causes of graduate student attrition: 1) advisor-advisee relationship, 2) socialization, 3) 

finances, and 4) preparedness. Advising Relationship: A higher percentage of CE 

students than their nonCE peers reported improvements in managing interactions with 

their advisor. Furthermore, all CE respondents indicated that the program specifically 

helped those interactions. Socialization: The majority of CE students agreed that the 

program improved their sense of belonging and overall well-being. Finances: CE 
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students received a significant stipend and were grateful for that financial support. They 

also reported benefiting greatly from a workshop on fellowship writing, which could 

improve future funding prospects. Preparedness: In seven of eight key skills for 

graduate students, proportionally more CE students improved compared to their NonCE 

peers. Based on the program’s impact in these areas, we anticipate the program having 

long term effects on participants’ retention and success in graduate school, a 

hypothesis that warrants longitudinal studies of multiple CE student cohorts. Given the 

positive results of the CE program at UCLA, the program's model could be used to build 

or improve upon institutional support for doctoral students from URGs at other 

institutions.  
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Figures 

 

Figure 1.1 

 

Figure 1.1. CE improves student experience in categories relevant to success in 

graduate school. Box plots of CE students’ level of agreement with the statements: 

“During the 2021-2022 academic year, the Competitive Edge program improved my…” 

for five categories that the program focuses on improving (x-axis). Responses (y-axis) 

were on a Likert scale from 1 (Strong Disagree) to 5 (Strongly Agree). Light gray dots 

represent individual responses while black dots represent mean responses. Thick black 

lines represent median values.  
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Figure 1.2 

Figure 1.2. Self-reported change in skills related to success in graduate school. 

Box plots showing the self-reported change in skills related to success in doctoral 

studies during the first year of grad school (scale -4 to 4). Cohorts are shown in different 

colors (CE = dark purple, NonCE URG = purple, and NonCE WR = light purple). Skills 

we measured are displayed at the top of each panel. White dots represent mean 

responses and thick black lines represent median values. Black dots represent outliers. 

Horizontal lines with an asterisk represent T tests that were statistically significant for p-

values < 0.05. For all skills but financial literacy, CE students report a higher mean 

improvement in these skills.  
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Tables 

 

Table 1.1 

Demographic breakdown of responses by cohort. Numbers represent the total 

number of responses for a specific cohort and demographic category. Percentages in 

parentheses show what percentage that number makes up of a given cohort. 

 

  Cohort 

Race / Ethnicity  CE NonCE URG NonCE WR All Cohorts 

Asian   0 (0.0%) 0 (0.0%) 40 (70.2%) 40 (48.8%) 

Black / African American  1 (7.1%) 1 (9.1%) 0 (0.0%) 2 (2.4%) 

Filipino   1 (7.1%) 0 (0.0%) 0 (0.0%) 1 (1.2%) 

Hispanic / Chicano / Latinx  10 (71.4%) 4 (36.4%) 0 (0.0%) 14 (17.1%) 

Middle Eastern/North African   0 (0.0%) 1 (9.1%) 0 (0.0%) 1 (1.2%) 

Mixed Race Asian and White  0 (0.0%) 0 (0.0%) 5 (8.8%) 5 (6.1%) 

Mixed Race Not Asian and White   1 (7.1%) 5 (45.5%) 0 (0.0%) 6 (7.3%) 

White  1 (7.1%) 0 (0.0%) 12 (21.1%) 13 (15.9%) 
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Gender 

Female   8 (57.1%) 6 (54.5%) 35 (61.4%) 49 (59.8%) 

Male  4 (28.6%) 4 (36.4%) 21 (36.8%) 29 (35.4%) 

Non-binary or Androgynous   2 (14.3%) 1 (9.1%) 1 (1.8%) 4 (4.9%) 

First Generation*      

Undergraduate   7 (50.0%) 5 (45.5%) 10 (17.5%) 22 (26.8%) 

Graduate or Professional School  11 (78.6%) 7 (63.6%) 26 (45.6%) 44 (53.7%) 

Socioeconomic Class      

Low Income / Working Class   10 (71.4%) 4 (36.4%) 15 (26.3%) 29 (35.4%) 

Middle Class  4 (28.6%) 4 (36.4%) 24 (42.1%) 32 (39.0%) 

Upper-Middle Class / Upper Class   0 (0.0%) 3 (27.3%) 17 (29.8%) 20 (24.4%) 

*Students whose parents did not complete the degree indicated 
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Table 1.2.  

Counts of student responses to open ended questions classified by cohort, 

question, and themes. All students were asked to name factors that contributed 

positively to their first year of doctoral study. Then they were asked about negative 

factors. Column titles divide response counts by the three cohorts and/or the question 

prompt of positive vs negative factors. Five common themes were identified in these 

responses with inductive coding. These themes are listed in column 1. The final row 

shows the total number of responses for a given column. A single response could be 

categorized with discussing multiple themes, so the total responses in a column may be 

smaller than the total number of times a given topic was discussed by that group.  
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Chapter 2: Exploring the dynamics of recombination rates 

across Canis familiaris 

 

In preparation for submission to Molecular Biology and Evolution 

A Supplemental Appendix is available online as this dissertation’s Supplementary 

Materials: Ch2_Supplementary_Information.pdf  

 

Abstract 

Meiotic recombination is a notable mechanism that, in sexually reproducing species, 

permits the proper alignment and segregation of homologous chromosomes while also 

generating novel combinations of alleles in populations. Recombination rates are known 

to vary on the level of species, populations, sexes, and individuals. Thus, it is a trait that 

can be acted upon by forces of evolution such as natural selection and genetic drift. In 

fact, it has been hypothesized that domesticated animals may have higher 

recombination rates due to selection. Here, we investigate the possible changes in 

recombination rate due to the process of domestication in canids. We estimated rates of 

recombination using patterns of linkage disequilibrium (LD) from high-coverage whole 

genome sequence data from a population of North American gray wolves and four 

breeds of domestic dogs. Performing inference using the software pyrho, we find similar 

estimated recombination rates in wolves (mean r = 4.2e-9/bp/generation) and two dog 

breeds: labs (mean r = 3.0e-9/bp/generation) and Tibetan mastiffs (mean r = 4.3e-9 

/bp/generation). Interestingly, we infer that border collies (mean r = 1.6e-8 
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/bp/generation) have ~4X higher recombination rate than wolves, and pugs (mean r = 

1.6e-10/bp/generation) have a recombination rate ~27X lower than wolves (Kruskal-

Wallis test, p value < 2.2e-16). Simulations suggest that this difference in mean 

recombination rate between our populations is not driven solely by differences in 

demography, presence of runs of homozygosity, or variation in mutation rate. However, 

we also find that the landscape of recombination along the genome is concordant 

across populations. Our findings indicate that there is still much more to discover 

regarding the recombination landscape of canids, which will further enhance our 

understanding of evolutionary patterns associated with recombination. 

 

Introduction 

Meiotic recombination is observed across sexually reproducing species and serves as a 

mechanism to create genetic diversity by decoupling alleles. The patterns and rates of 

recombination are known to vary at many levels including between species (Kawakami 

et al., 2017; Singhal et al., 2015; Wall & Stevison, 2016), populations (Chan, Jenkins, & 

Song, 2012; Kawakami et al., 2017), and individuals (Kong et al., 2010). Because of this 

variation and the impact recombination can have on phenotypes, it is a trait that can 

evolve under selection and/or drift. For example, natural selection has been shown to 

influence relative recombination rates in two populations of Drosophila (Samuk, 

Manzano-Winkler, Ritz, & Noor, 2020). 

  

Rates of recombination are known to vary throughout the genome with spikes in 1 to 

2KB regions known as hotspots. In many vertebrates, the gene PRDM9 has been 
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shown to direct the location of these hotspots (Baker et al. 2015; Cavassim et al. 2020; 

Grey, Baudat, & de Massy, 2018; Oliver et al., 2009; Parvanov, Petkov, & Paigen, 

2010). Despite recombination being directed by this shared gene, sister taxa do not 

necessarily share hotspot locations. A striking example exists in humans and 

chimpanzees where overlap in recombination rates is present at the broad scale, but 

not on a fine scale (Auton et al., 2012). Additionally, many lineages have experienced 

loss of function mutations in the PRDM9 gene including canids (Muñoz-Fuentes, 

Rienzo, & Vilà, 2011). Additionally, within vertebrates the whole PRDM9 gene has been 

lost multiple times (Cavassim et al. 2022). Despite a non-functional or absent PRDM9, 

recombination hotspots have still been found in many species including but not limited 

to birds (e.g. Kawakami et al., 2017; Singhal et al., 2015), flies (e.g. Samuk, Manzano-

Winkler, Ritz, & Noor, 2020), and dogs (Auton et al., 2013; Campbell, Bhérer, Morrow, 

Boyko, & Auton, 2016; Wong et al., 2010). These studies in taxa without functioning 

PRDM9 have found that hotspots tend to overlap with transcriptional start site (TSS) 

elements and CpG islands. Despite hotspots being enriched near TSSs, they are not 

necessarily conserved in the same places in closely related species (e.g. Kawakami et 

al., 2017; Samuk et al., 2020) 

  

Domestic dogs (Canis familiaris) and their sister wolves (Canis lupus) serve as an 

interesting case study of evolutionary patterns of recombination in species lacking a 

functional PRDM9. This is partially due to the potential impacts of domestication. The 

breeding of dogs is believed to be the earliest domestication event (Larson et al. 2012). 

Domestication is a form of artificial selection that is a faster and goal-oriented form of 
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evolution relative to natural selection. Through this repeated process of selecting 

multiple traits, domestication can result in extreme phenotypic differences among 

breeds (Clutton‐Brock 1992; Diamond 2002). However, it has long been hypothesized 

that domestication may have also been unknowingly selected for higher recombination 

rates (Gornall, 1983). The logic behind this hypothesis is that increased recombination 

can amplify the genetic diversity underlying the extreme phenotypic diversity in species 

such as domestic dogs. And while this has been suggested, to the authors’ knowledge, 

most empirical studies on this topic have been conducted primarily in plants (Dreissig, 

Mascher, Heckmann, & Purugganan, 2019; Gornall, 1983; Ross-Ibarra, 2004; Fuentes 

et al. 2022). One study in mammals that compared dogs and wolves did not find support 

for the hypothesis that domesticates have increased recombination rates, but this study 

was limited to comparing fewer than 20 gene regions(Munoz-Fuentes et al., 2015). 

Given the already available research on genome-wide recombination rates in village 

dogs (Auton et al., 2013) and breed dogs (Campbell et al., 2016; Wong et al., 2010), 

this is a prime opportunity to further test this hypothesis in mammals.  

 

Here we explore how recombination rates differ between North American gray wolves 

and some domestic dogs to examine how domestication may have influenced 

recombination rates on an evolutionary time scale. Specifically, we focus on the 

patterns of recombination between four dog breeds (border collies, labs, pugs, and 

Tibetan mastiffs) and their sister taxa of wolves. We find that recombination rates of two 

of our focal breeds (labs and Tibetan mastiffs) resemble those inferred in wolves while 

rates for pugs and border collies vary significantly in opposite directions compared to 
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wolves. We explore how runs of homozygosity, mutation rates and demographic history 

impacts our inferences of recombination. Our surprising finding of variation between dog 

breeds suggests potential differentiation in genomic parameters between dog breeds 

and highlights challenges in inferring recombination rates from genomic data.  

 

Results 

Demographic inferences 

To infer recombination across the genome in the five candid populations, we used the 

program pyrho which leverages patterns of linkage disequilibrium (LD), or the 

correlations in alleles at different loci. Pyrho accounts for the fact that demographic 

history also influences LD patterns across the genome by allowing users to input a 

model of population history. Thus, we first used SMC++ to estimate the demography of 

our five canid populations. (Fig. 2.1). The demographic history estimated for all dog 

breeds shows a bottleneck at approximately 20,000 generations ago, consistent with 

the domestication process leading to a much smaller effective population size relative to 

wolves (Freedman et al. 2014, Mooney et al. 2021). We then used these demographic 

models in our LD-based inference of recombination rates.  

 

Recombination maps 

We inferred the per base-pair recombination rate, r, across the genome in wolves and 

four dog breeds using pyrho. As seen in the map of recombination across chromosome 

one, the recombination rate varies between some populations (Fig. 2.2, and Fig. S2.1 

for other chromosomes). We observe that relative to wolves, labs and Tibetan mastiffs 
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have similar ranges of estimated recombination rates while the rates in border collies 

and pugs deviate from those inferred in wolves. Estimated recombination rates are the 

highest for border collies throughout the genome and lowest for pugs. We observe 

similar patterns when considering the chromosome-wide average rates for all 

populations (Fig. 2.3). Additionally we found that the chromosomal averages of 

recombination rate are significantly different between at least one of these five 

populations (Kruskal-Wallis test, p value < 2.2e-16).  

 

Comparing rates between species and populations 

After observing the global differences in recombination rates between the canid 

populations, we also explored how recombination rates vary on more localized scales. 

For example, while the pugs have the lowest global recombination rate, we asked 

whether the areas of the pug genome with the highest recombination rates are the 

same as the regions of the wolf genome with the highest recombination rate. To 

compare the intensity of recombination rates in given windows of the genome, we 

calculated the average recombination rate for non-overlapping windows of three 

different sizes: 100KB, 1MB, and 5MB. Due to the difference in scale between pug and 

wolf recombination rates, we calculated the rank for each window within a given 

population.  

 

We then compared the ranks of the windows between our four dog breeds and wolves 

(Fig. 2.4 Panel A, 2.S2 Panel A, S2.3 Panel A). We find similar trends across our 

window sizes, and focus here on the correlations at the scale of 5MB windows. Among 
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breed dogs, we find the recombination landscape along the genome is significantly 

correlated with that of wolves. For example, the highest correlation to wolves is the 

Tibetan mastiff recombination rate ranks (R2 = 0.709, p-value = 1.2e-114). Border 

collies (R2 = 0.474, p-value = 1.2e-60) and labs (R2 = 0.55, p-value = 9.6e-75) had 

similar levels of correlation with wolves. In contrast, the pugs had the lowest correlation 

with wolves (R2 = 0.157, p-value = 2.6e-17). These results suggest that the relative 

intensity of recombination on a localized 5MB and smaller scale is fairly concordant 

across the genome between wolves and domestic dogs. Pugs are an outlier, with a 

notably lower correlation.  

 

To validate our LD-based recombination maps, we also compared the ranks of 

recombination for wolves and the four breed dogs to estimates of recombination from a 

pedigree based genetic map derived from mixed-breed dogs (Campbell et al. 2013) 

(Fig. 2.4 Panel B, S2.2 Panel B, S2.3 Panel B). Genetic maps derived from pedigrees 

estimate recombination events directly between parents and offspring, albeit on a 

broader scale than LD based methods. In contrast, LD-based methods, as those used 

in this study, can estimate the impact of recombination on longer evolutionary time 

scales but at higher resolution (McVean et. al 2004, Myers et. al 2005, Dapper and 

Payseur 2017). By comparing our estimates of r based on LD patterns to those derived 

from pedigrees, we can validate our LD-based inferences and test the concordance of 

recombination rates over different timescales.  
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We found moderate levels of correlation between the pedigree-based genetic map and 

the LD-based map from all of our populations (border collie: R2 = 0.425, p-value = 1.1e-

49; lab: R2 = 0.442, p-value = 2.1e-52; pug: R2 = 0.138, p-value = 1.7e-14; Tibetan 

mastiff: R2 = 0.612, p-value = 7.4e-84; wolf: R2 = 0.595, p-value = 4.4e-80). Again, pugs 

have the lowest correlation. This moderate correlation suggests the relative intensity of 

recombination is conserved at the broad-scale across the dog populations we 

evaluated. Some of the differences observed are likely attributed to the differences in 

time scale and spatial specificity of LD-based vs pedigree based methods. The further 

deviation of pugs specifically is consistent with our finding that the ranking of pug 

recombination rates differed the most from wolves compared to our three other breeds. 

Overall, these results suggest general agreement in recombination rate inferences 

between our LD based inferences and those made from pedigree based observations, 

validating our LD-based estimates.  

Simulations  

Given the observed differences in average recombination rates of two dog breeds 

relative to wolves, we used population genetic simulation to explore the robustness of 

the LD-based inference of recombination rate to various assumptions. We used pugs as 

a case study for this exploration via simulated genomic data.  

 

Demography 

One potential explanation for the apparent differences in r inferred using pyrho between 

pugs and wolves is that pyrho cannot accurately infer r due to the complex 

demographies of these populations (see Fig. 1). To directly test the role demography 
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plays in our inference of recombination rates using pyrho, we performed coalescent 

simulations of pug and wolf populations with identical mutation and recombination rates, 

but with differing demographic histories. Specifically, the demographies used for 

simulations were those we inferred from our empirical genomic data with SMC++.  

 

We simulated 10 replicate populations for both wolves (simWolf) and pugs (simPug) 

with a constant recombination rate of 1e-8 /bp/generation, similar to the rate estimated 

in the literature (Campbell et al. 2016). We inferred the demography of each simulated 

dataset using SMC++ and then inferred r using the same pyrho pipeline as used for the 

empirical analyses. For each replicate, we calculated a mean recombination rate for the 

40 chromosomes simulated. Among those 40 chromosome-wide recombination rates, 

we calculated the median value resulting in one value per replicate. We compared 

median values of each replicate(Fig. 2.5). The range and mean values for our simulated 

wolf and simulated pug replicates are very similar to each other (simWolf: range 4.3e-9 

to 5.2e-9 and mean 4.6e-9 ; simPug: range 4.8e-09 to 6.0e-9 and mean 5.3e-9 per BP 

per generation). However, it is noteworthy that the estimated values of r are ~2-fold 

smaller than the true values used to generate the data. We next conducted additional 

simulations to explore why there might be an underestimate. 

 

As demographic inference is imperfect and this uncertainty could contribute to the 

underestimation of r, we analyzed the recombination rates of these simulated genomes 

using the true demography they were simulated under (instead of inferring the 

demography using SMC++). We find that recombination rates are again similar between 
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simulated pugs and simulated wolves (Fig. 2.S5). The mean values are similar (simWolf 

= 8.23 e-9 /bp/generation and simPug = 6.96 e-9 /bp/generation ). These results are still 

below the true recombination rate, but closer than the estimates using inferred 

demographic models.  

 

Next, we hypothesized that recent population size would have the biggest impact on 

patterns of LD in dogs and, in turn, our inferences of r. Thus we repeated our analysis of 

our simulated data assuming a constant population size equal to the most recent Ne 

from the true demographies (15,820 for pug and 34,630 for wolf) of these simulated 

populations. Again, the mean genome-wide recombination rate per simulated population 

does not differ significantly between pugs and wolves (Fig. S2.5). However, the mean 

estimates of r (simWolf = 9.22 e-9 /bp /generation and simPug = 9.03 e-9 /bp 

/generation) are much closer to the true recombination rate. This finding suggests that 

recent population sizes have a strong impact on the inference of recombination rate. 

Assuming a constant population size that is the same as the true most recent population 

size results in more accurate inference of r using pyrho. While our real populations differ 

in more ways than just demographic history, these simulations give insights into the 

influence different demographic models have on our analysis. Furthermore, these 

simulations suggest that different demographic histories the populations do not 

artificially generate apparent decreased estimates of recombination rates in pugs.  

 

ROHs  
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As a result of inbreeding during domestication and breed formation, dogs are known to 

have large portions of their genomes in runs of homozygosity (ROHs; Sams and Boyko 

2019). To examine whether ROHs can impact inference of recombination rates using 

pyrho, we altered our simulated pug genomes to include ROHs. We added ROHs in two 

different ways. First, we added ROHs in individuals independent of ROHs in other 

individuals. We then re-inferred r using our pyrho analysis pipeline. Adding in ROHs 

resulted in a wider range (5.0e-9 to 7.2e-8 /bp/generation) but similar mean (1.3e-

08/bp/generation) of recombination rates per simulated pug population (Fig. 2.5). As an 

alternate strategy, we added ROHs in the same genomic location across all 15 

individuals (Fig. S2.5). We randomly selected an individual from our original ROH 

simulations and duplicated their ROHs in all individuals such that all ROHs were at 

identical locations in all individuals. The simulations with overlapping ROHs lead to 

similar inferences of r as our other model that introduced ROHs (range = 5.05 e-9 to 

6.72 e-8 /bp /generation, mean = 1.21 e-8 /bp /generation). While the presence of ROHs 

can influence inferences of recombination rate from LD patterns, for our simulated 

populations, it mostly increased the variance of inferred recombination rates. Thus 

ROHs in dogs do not appear to be a driver of the recombination rate differences we 

observed between pugs and wolves.  

 

Mutation rate  

 

Importantly, pyrho uses the demographic history inferred from SMC++ to accurately 

disentangle r from ⍴=4Nr. SMC++ is calibrated by the mutation rate (𝜇) when inferring 
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Ne from the patterns of genetic variation in the genome. Thus, inference of r could be 

sensitive to the underlying 𝜇 used in the analysis. For our analyses and simulations thus 

far, we assumed the same mutation rate of 4.5e-9 /bp/generation for wolves and pugs 

estimated from a different population of North American wolves (Koch et al. 2019). To 

explore the role of mutation rate on our results, we repeated our simulations for pugs 

with varying values of 𝜇. We modified 𝜇 only for pugs because the assumed mutation 

rate is more likely to be accurate for wolves since it was estimated from a population of 

North American gray wolves. 

 

For pugs, we simulated datasets with three different true values of 𝜇: 4.5e-10, 2.25e-8 

and 4.5e-8 per bp per generation; and then inferred r assuming 𝜇=4.5e-9 /bp/generation 

(Fig. 2.5, Fig. S2.5). Thus we had conditions where we assumed a value of 𝜇 that was 

10X, 0.5X, and 0.1X of the true 𝜇, respectively. Importantly, this analysis assumes the 

incorrect 𝜇 in the SMC++ inference, allowing us to test how misspecification of the 

mutation rate impacts the pyrho inference of r.  

 

When the assumed mutation rate is 10-fold larger than the true mutation rate, inferred 

recombination rates are overestimated (2.59 e-8 /bp /generation mean value). Because 

the assumed 𝜇 is too large, our simulated data has fewer SNPs than would be expected 

with this assumed mutation rate. Thus to reconcile the number of SNPs observed with 

this assumed larger mutation rate, SMC++ infers the population size to be smaller than 

the true population size (Fig. S2.5). This smaller population size is then used by pyrho 

when converting rho to r, resulting in the inferred values of r being larger than the true 



 53 

values. As expected, we do find that when we inferred the demography using a a tue 

assuming a 𝜇 10X larger than the true 𝜇, inferred population sizes were ~10 fold smaller 

than those in the other misspecified 𝜇 scenarios (Fig. S2.4). 

 

For the case of assuming a 𝜇 that 0.1X the true value, r was slightly underestimated 

(5.92 e-9 /bp/generation mean value) (Fig. S2.5). For an assumed mutation rate that is 

0.5X of the true 𝜇, r also was overestimated (1.43 e-8 /bp/generation mean value), but 

not as significantly as in the case of the assumed 𝜇 being 10X the true 𝜇. In these cases 

of assuming a smaller 𝜇 than truth, the number of SNPs observed is larger than 

expected with the assumed 𝜇, thus SMC++ infers larger than true population sizes (Fig. 

S2.4). While these large population sizes would drive down estimates of r through rho 

as discussed above, the larger number of SNPs increases power for inferring higher 

values of r. Thus, there are two competing forces that might offset each other here, 

potentially explaining why assuming a smaller mu may not consistently drive our 

inferred r in one direction relative to the true r.. While these inferred values of r are 

somewhat influenced by varying three different true values of 𝜇, they do not suggest 

that changes only in pug mutation rates can fully explain the low inferred recombination 

rates in pugs.  

 

Inference of recombination assuming different demographic models 

The simulations described above provided some guidance as to how assumed 

demographic histories impact recombination rate inferences using pyrho. Thus, we 

performed additional inferences of r on the empirical data considering different 
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demographic models. We summarized recombination rates by the average rate per 

each chromosome under different demographic models (Fig. 2.6.). We inferred rates 

under the three demographic models: 1) demography inferred from SMC++ (left panel 

A), 2) the SMC++ inferred demography with recent demography replaced with estimates 

of population size previously inferred (Mooney et al 2021) with the software IBDNe 

(Browning and Browning 2015) (middle panel A), and 3) and a constant Ne of the 

smallest dog Ne and the largest Ne for wolves previously inferred population size of 

similar populations from IBDNe (right panel A). In the two most realistic models, those 

generated with SMC++, we observe that the mean, per-chromosome wolf 

recombination rate is 11+ times (model 1) and 25+ times (model 2) larger than the 

median rates in pugs (Fig. 2.6. Left and middle Panel B). Under these two models, the 

range of average chromosome rates does not overlap between wolves and pugs. Only 

when we inferred under model 3, the demography of a constant population size, the 

mean chromosome-wide values are very similar (wolves = 3.0e-8 and pugs = 5.5e-8) 

(Fig. 2.6. Right panel B). Only under such an extreme model will the recombination 

rates be the same. There is no evidence for such a difference in Ne (e.g Gray et al 

2009, Freedman et al 2016, Mooney et al 2021). Additionally, we considered additional 

demographic models, such as the one in the middle panel of Figure 2.6, but using a 

smaller ancestral population size for pugs, and found broadly similar patterns to those 

shown here (Fig. S2.6). In sum, these results support that the demographic model used 

can influence our estimates of r; however, analysis under likely demographies 

recapitulates the pattern of diminished dog recombination rate relative to wolves.  
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Discussion 

In this work we used patterns of linkage disequilibrium to examine patterns of meiotic 

recombination in four dog breeds (border collies, labs, pugs, and Tibetan mastiffs) and a 

north american population of wolves. Estimates of recombination rates for certain 

breeds are similar to those of wolves, while for other breeds, such as the border collie 

and pug, estimated recombination rates appear to be significantly different from those in 

wolves. However, the local patterns of recombination rate variation along the genome 

appear to be more concordant across populations. We use simulations to test the role of 

various potential confounders of estimation of recombination rate from LD, such as 

complex demographic history, the presence of ROHs in dogs, or a misspecification of 

mutation rates. While some of these confounders appear to influence the average 

estimates of r, they cannot explain all of the observed patterns. Altogether our results 

raise the possibility that the intensity of recombination rates may have shifted in breed 

dogs following domestication. 

 

To assess the validity of our estimates of the local recombination rate along the 

genome, we compared them to a previously generated genetic map from pedigrees. All 

populations, except for pugs, showed a moderate to high correlation (R2 ranging from 

0.425 to 0.612) with the inferred pedigree-based maps. Interestingly, while Campbell et 

al. (2016) found an R2 of 0.740 between their pedigree-based map and an LD based 

map in village dogs (Auton et al 2013), they found an R2 of 0.562 when comparing their 

pedigree-based map to another pedigree-based map. Auton et al. (2013) compared 

their LD based genetic maps of village dogs to a pedigree based map from 
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microsatellite data of mixed-breed dogs (Wong et al. 2010), and found a correlation of 

R2 = 0.76 at the 5 MB scale). The correlations between LD-based and pedigree based 

genetic maps reported in the literature for different species seem to vary from very high 

in humans (R2=0.966 at the 5Mb scale; Myers 2005) to more intermediate for 

flycatchers (R2 of 0.38 at the 200kb scale; Kawakami et al. 2017) and Drosophila 

(R2=0.4-0.6 at a finer scale; Chan et al. 2012; note that recombination rates and 

polymorphism rates are higher in flycatcher and Drosophila, thus making the smaller 

scale comparisons relevant for these species). Thus, the concordance between our LD-

based maps of recombination in wolves and three of four breed dogs with the pedigree-

based genetic map is generally concordant with what has been observed for different 

species in the literature.  

 

We compared the concordance local patterns of inferred recombination across 

populations. Variation in local recombination rate is documented at the population level, 

particularly on fine scales, in species such as fruit flies and birds (Chan, Jenkins, & 

Song, 2012; Kawakami et al., 2017; Samuk, Manzano-Winkler, Ritz, & Noor, 2020). In 

many vertebrate species, differences in recombination rate hotspot locations can be 

attributed to shifting binding motifs in the protein PRDM9 (Baker, Walker, Kajita, Petkov, 

& Paigen, 2014; Grey, Baudat, & de Massy, 2018; Oliver et al., 2009; Parvanov, Petkov, 

& Paigen, 2010). However, domestic dogs present an interesting case study because of 

canids’ lack of a functional PRDM9 protein (Muñoz-Fuentes, Rienzo, & Vilà, 2011). We 

instead focus on broader scale patterns across species. 
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We found high correlations between the rankings of 5 MB (ordered by average weighted 

recombination of a given window) between wolves and our three non-Pug populations 

(R range = 0.69 to 0.84). Pugs in contrast have an R of only 0.40 with wolves. However, 

the lower R for pugs could be due to the limited range of inferred recombination rate 

rates making the ranks of recombination rates for genomic windows less meaningful. 

The concordance of the recombination landscape between dogs and wolves is 

comparable to what has been seen when comparing sister taxa of chimp and bonobo. 

Specifically, estimates of r in great ape populations find a spearman rank R of ~0.7 

between sister taxa of chimps and bonobos (Stevison et al. 2015). Thus, overall, 

broadly speaking, the landscape of recombination rates seems to be fairly similar 

across dogs and wolves. 

 

When considering the average rate of recombination genome-wide, wolves, labs, and 

Tibetan mastiffs all share similar ranges and median values of chromosome wide r. In 

contrast, border collies exhibit drastically higher and pugs exhibit notably reduced 

inferred recombination rates. Differences in average genome-wide recombination rates 

between populations have been noted previously. Specifically, Samuk et al found an 8% 

difference in average recombination rates between populations of Drosophila 

pseudoobscura (Samuk et al. 2020). We find a 196% difference in average 

recombination rates between pugs and border collies . And compared to wolves, pugs 

have an 186% difference and border collies 117%. Thus, the differences in estimated 

recombination rates in canids appear extreme relative to previous comparisons in flies.  
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Given the surprising variation of average estimated recombination rates across canids, 

we examined several possible explanations. The first possibilities focus on technical 

issues including data quality and biases of our analysis pipeline. We then consider 

differences in biological factors, such as demographic history and mutation rates.  

 

First, we considered variation in data quality. Quality of samples measured as the 

number of individuals sampled and mean coverage were comparable for all populations, 

ranging from 16X to 41.6X (Table 2.1). We then examined genetic diversity measured 

as Watterson’s θper called site. Our findings reflect that wolves have the most diversity, 

which is expected given the impact of breed formation on decreasing genetic diversity. 

Border collies, labs, and Tibetan mastiffs have similar values of θ to one another while θ 

in pugs is about half as much. 

 

We next investigated the level of observed LD for SNPs 50KB +/- 5KB apart to 

understand how LD varied between our populations. Because our methods of 

investigating recombination were based on LD patterns, we expected our inferences of 

recombination rates to correlate inversely with overall levels of LD. Given pugs’ low 

estimated recombination rates, we expected for pugs to have more LD than our four 

other canid populations. Indeed, that is what we found (Table 2.1). We then normalized 

LD by Watterson’s θ per site. Assuming the same mutation rate (𝜇) across populations, 

Watterson’s θ provides a proxy for the effective size of each population. Pugs have the 

highest ratio of r2/θ out of all 4 populations, suggesting that pugs have an usually high 

amount of LD compared to their effective population size. This result supports the pyrho 
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analysis, where the exceptionally high levels of LD relative to the demographic model 

lead to pugs having a lower recombination rate. Overall, these metrics suggest that 

estimated differences in recombination rates are not caused simply by differences in 

data quality.  

 

We next used simulations to test inferred recombination rates were driven by runs of 

homozygosity (ROHs) and demography. For these simulations, we focused on wolves 

and pugs as one of the differing dog breeds. Our simulations used known recombination 

rates, so we could understand how our inference varied from ground truth.  

 

Our simulations for the two populations initially used the demographic histories inferred 

in SMC++ from the empirical genomic data. Recombination rates estimated for the 

wolves and pugs were not notably different from each other. In both the case of pugs 

and wolves, we did estimate recombination rates lower than ground truth suggesting 

that pyrho may be underestimating r in both dogs and wolves. 

 

We explored this underestimation of true recombination rates by analyzing 

recombination rates while assuming different demographic histories. When 

recombination rates were inferred assuming a constant population size of a given 

population's most recent Ne, estimates of r were closer to the true value. This relation is 

driven in part by the inverse relationship of Ne and r given a constant value of rho. While 

this resulted in more accurate inferences of recombination rates, it did not lead to 

differences in the estimates of r between pugs and wolves, and thus does not explain 
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the recombination patterns observed in the empirical data. However, since these 

simulations showed that recent population sizes had a strong relationship with 

inferences of recombination rate, we examined the recent Ne for each canid population. 

Notably border collies, have the smallest estimate of recent Ne which may lead to larger 

estimates of recombination rates (Table 2.1). Pugs, however, do not have the highest 

recent Ne. 

 

Next, we examined how more elaborate demographic histories impacted recombination 

inference using pyrho. We re-inferred r using pyrho on the empirical data assuming 

previously published demographic histories inferred for dog and wolf populations 

(instead of the demography inferred by SMC++). While the assumed demographic 

histories affected the inferred values (Fig. 5, Fig. S2.5), we found the rates were higher 

in wolves. Unlikely demographic models could cause our inferences of recombination 

rate between wolves and pugs to converge. Only when assuming a constant Ne of our 

overall largest population size for wolves and smallest for pugs, we did see a change in 

the difference of estimate of r with a decrease for wolves and increase for pugs. But 

These values we selected were on the extreme ends of those inferred for these 

populations and thus unlikely to be accurate reflections of the overall demographic 

history of these populations. Furthermore, inferring r under these demographic models 

results in average estimates of r that nearly double what is observed in other 

mammalian species (e.g. Dumont and Payseur 2008). Thus, while we found that the 

inference of average r using pyrho is sensitive to the assumed demographic history, the 
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demographic models we were able to examine do not recapitulate the large differences 

we estimate in recombination rates for wolves versus pugs and border collies. 

 

Another potential explanation for some of the variation in the inferred recombination 

rates we see across breeds comes from the practices of breed formation and 

maintenance. One way this happens is through the demographic history and inbreeding. 

Purebred dogs that are registered with the American Kennel Club may have pedigrees 

dating as far back as 1875 (American Kennel Club 2017). The nonrandom mating of 

breed dogs includes the maintenance of specific lines within a given breed. Additionally, 

dog breeders commonly preserve sperm for future use in artificial insemination meaning 

a dog can sire pups after its death. A pedigree study of purebred dogs found in labs that 

only 8% of males are sires and the most popular sire had nearly 2,000 offspring (Calboli 

et al 2008). Dams are also limited to a subset of a breed population, but the percentage 

of females used as dams is about double compared to sires. While these breeding 

practices are done typically to meet the breed standards and the aesthetic preferences 

of a given breeder, loci of the genome unrelated to those phenotypes are also being 

subjected to this selection and drift, potentially affecting LD patterns. We found that 

large ROHs generated from recent inbreeding are unlikely to bias estimates of the 

average recombination rate (Fig. 2.5, Fig. S2.5). 

 

Another way that breed formation could affect LD is through selective sweeps. As 

expected with the intense artificial selection of dogs, there has been an increase in 

deleterious variation near loci under selection due to selective sweeps (Marsden et al. 
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2015). Selective sweeps are known to bias patterns of LD in different ways such as 

increasing LD during a sweep (Sabeti et al. 2002) and then eliminating LD once an 

advantageous allele has reached fixation (Przeworski 2002, Kim and Neilson 2004, 

Stephan, Song, and Langley 2006, McVean 2007). Additionally in the case of soft 

sweeps, LD patterns are affected (Pennings and Hermission 2006). While sweeps alter 

patterns of LD in the canid genome, we do not believe it to have biased our overall 

findings of variation in recombination rates in some breed dogs. The patterns of 

decreased recombination in pugs and increased recombination in border collies occurs 

across the entire genome. Selective sweeps impact only a small portion of the genome. 

Thus masking of sites undergoing selective sweeps may yield finer resolution of the 

differences in recombination, it is highly unlikely that sweeps alone could be biasing our 

results of these genome wide differences. However, it is possible that dog breeders 

have unintentionally selected for breeds that have recombination rates or related 

genomic patterns different from wolves in some but not all breeds. Interestingly, 

previous work by Mooney et. al (2023) analyzing these data sets found that pugs had 

the largest weighted Fst of the four dog breeds relative to the wolf population (Table 

2.1). This suggests that pugs may be our most genetically distant dog population to 

wolves.  

 

Another potential factor that could affect the estimates of the average r is the mutation 

rate assumed in the inference. Specifically, a value of 𝜇 is used to calibrate estimates of 

Ne via SMC++ based on observed genetic diversity. As we have shown, estimates of Ne 

can influence our estimates of r primarily because pyrho calculates r from an inferred 
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value of rho=4Nr that is calibrated by Ne. Thus, through the intermediate term of Ne, our 

assumptions about mutation rate can potentially impact our inferences of recombination 

rates. For our analyses, we generally assumed the mutation rate of our dog and wolf 

populations to be the same as that measured in a different North American wolf 

population (Koch et al. 2019). Previous work has found in mammals that phylogenetic 

distance is a strong predictor of differences in mutation spectra (Beichmen et al 2023) 

suggesting that dogs and wolves likely do have mutation rates more similar to one 

another than compared to more distantly related taxa. Despite a likely similarity in 

mutation patterns relative to other taxa, differences in the mutation spectra have been 

observed between human populations (Harris 2015; Harris and Pritchard 2017). Thus, 

we simulated pug genomes under a true mutation rate that did not match the value of 𝜇 

assumed in our inferences of r. Regardless of the direction, our analysis of simulated 

data showed an increased recombination rate estimates for pugs, which is the opposite 

direction of the observed differences in the empirical data. Thus differences in inferred 

recombination rates are likely not explained by solely a shift in mutation rate between 

dogs and wolves.  

 

In any event, our study suggests more direct methods are required to falsify the 

hypothesis that recombination rates have shifted in canid evolution. Pedigree-based 

genetic maps in pugs would provide direct estimates of the recombination rate that 

could then be compared to those in other breeds. Similarly, trio-based whole-genome 

sequencing studies could be used to infer whether 𝜇 differs from that inferred in wolves 

(Lindsay et al. 2019, The 1000 Genomes Project 2011, Suárez-Menéndez et al. 2023, 
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Wang et al. 2022, Bergeron et al. 2023). If direct estimates of these parameters in pugs 

appear similar to those of other dog breeds, it would indicate that misspecification of 

some key parameter, perhaps in the demographic model, is accounting for the 

increased LD and decreased r in pugs. 

  

Our work builds on recent studies (Wall and Stevison 2016, Dapper and Payseur 2017, 

Samuk and Noor 2022, and Raynaud et al. 2023) suggesting care is required when 

inferring recombination from patterns of LD. While Dapper and Payseur focused on 

inference of hotspots, our work suggests that the average rate of recombination 

appears to be highly sensitive to the assumed demographic history of the population. 

We saw this when pyrho systematically underestimated the recombination rate in 

simulated data under certain demographies but not others (Fig. 2.5, Fig. S2.5). This 

same trend was observed in the analysis of the empirical data, where the estimates of r 

also depended on the assumed demographic model (Fig. 2.6). Our simulations suggest 

that assuming a constant population size equivalent to the recent effective population 

size may provide more reliable estimates of the average r than using a demographic 

history inferred from patterns of polymorphism. Further work is required to test how 

general this conclusion is across demographic histories. 

 

While inference of average recombination rates is challenging for the reasons discussed 

above, we found that the local landscapes of recombination along the genome are fairly 

similar across dog and wolf populations. Further, three of 4 dog breeds showed similar 

or lower average recombination rates compared to wolves. Only the border collie 
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appeared to have potentially higher rates of recombination than the wolves. Thus, 

overall, our study provides little support for Gornall’s hypothesis (Gornall, 1983) that 

recombination is higher in domesticated species. 

 

Materials and Methods 

Genomic data  

We analyzed previously published data on 60 canid genomes comprising 15 wolves 

(Robinson et al. 2019) and 45 breed dogs. We examined four breeds consisting of: 10 

border collies (Plassais et al. 2019), 10 labradors (Plassais et al. 2019), 15 pugs 

(Marchant et al. 2017), and 10 Tibetan mastiffs (Phung et al. 2019). The genomes were 

previously sequenced at high coverage, and reads were previously processed, filtered, 

and aligned to the canFam3.1 dog reference genome as described in Marsden et al. 

2016. To call single nucleotide polymorphisms (SNPs), we used GATK (McKenna et al. 

2010) and retained only biallelic SNPs while excluding indels for these analyses. For 

more detailed description of genotype and variant calling, see Mooney et al. 2023.  

 

Recombination rate inference and demographic inference 

To infer the fine-scale recombination maps, we used these unphased high coverage 

polymorphism data from unrelated individuals by analyzing patterns of linkage 

disequilibrium (LD). We used pyrho (Spence and Song 2019) for recombination 

inference. pyrho accepts non-equilibrium demographic histories (Spence and Song 

2019). Therefore, to account for the changes in Ne through time, we used the software 

SMC++ (Terhorst, Kamm, and Song 2017) and, for each population, we estimated their 

https://paperpile.com/c/C993kU/h4Uh
https://paperpile.com/c/C993kU/h4Uh
https://paperpile.com/c/C993kU/1kQh
https://paperpile.com/c/C993kU/1kQh
https://paperpile.com/c/C993kU/tSme
https://paperpile.com/c/C993kU/tSme
https://paperpile.com/c/C993kU/tSme
https://paperpile.com/c/C993kU/iizw
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demographic histories based on the joint inference of all autosomes (38 autosomes in 

total). We set the mutation rate () to 4.5e-9 based on previous estimates in wolves 

(Koch et al. 2019). When computing a lookup table in pyrho, we used the manual 

recommendation of calculating statistics of LD and rho based on a population size that 

was 50% larger than our sample size and then down sampled to our population size. 

For the final step of inferring r in pyrho, we used a window size and block penalty of 50.  

 

Comparisons of the genetic maps 

 To compare the concordance of different maps, we first binned the genome into 

non-overlapping windows. We used three window sizes: 100 kb, 1MB, and 5MB. 

Windows were created only for segments of the chromosome sequenced in both data 

sets being compared. Then the estimates of r within that window were multiplied by the 

number of basepairs with the same r value. Then the sum of the r times length values 

were divided by the total window size. Our formula for n values of r within a given 

window was  

 

 

 

(r1 * length1) + (r2 * length2) +.... (rn * lengthn) 

window size 

 

 

https://paperpile.com/c/C993kU/wfEq
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This yielded a mean weighted value of r for each window. For each population, we 

calculated a rank for every window. For a given window we then compared the ranks for 

pairs of populations. We compared the four breed dog populations against the wolf 

population. We also compared the inferred recombination maps from the breed dogs 

and wolves against previously published mixed-breed dog recombination maps inferred 

from a pedigree (Campbell et al. 2016). We calculated recombination rates per window 

from the results of Campbell et al. using the same formula above. For each pairwise 

comparison, we fit a linear model with the lm function in RStudio.  

 

Simulated wolf and pug data 

To test the impact of multiple variables such as demography, mutation rate, and runs of 

homozygosity (ROHs) on pyrho inferences, we performed coalescent simulations of 

wolves (simulated Wolf) and pugs (simulated Pug). We selected pugs as a case study 

for dogs because their inferred recombination rates differed from wolves. We used 

msprime (Kelleher, Etheridge, & McVean 2016; Baumdicker et al. 2022) to simulate 

genetic variation data. For both populations, we simulated 40 contigs of 20 MB each 

with a population size of 15 diploid individuals. We choose these parameters to 

approximate the size and number of chromosomes in the wolf and dog genome as well 

as the sample size of our study populations.  

 

We simulated the data under a constant recombination rate or 1 x 10-8 bp/generation. 

This rate is close to the mean rate previously described in mixed breed dogs in 

Campbell et al 2016. Unless otherwise stated, we performed 10 replicates of the 
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simulation for each set of parameters. After generating the simulated canid genomes, 

we followed our analysis pipeline described above to infer recombination rates. Below 

we detail the different scenarios we explored with the simulations. 

 

Simulations with changing demography 

To understand how demography affects the inference of recombination rates using 

pyrho, we simulated genomes under our inferred demography from SMC++ for wolves 

and pugs. All other parameters were held constant per above and we followed our 

analysis pipeline to estimate recombination rates on the simulated data. 

 

To determine how the demographic model assumed in pyrho affects our analysis of 

recombination rates, we re-analyzed this same simulated data, but supplied pyrho with 

the true demography used to simulate the data, rather than a demography inferred from 

the simulated data. We also repeated the pyrho inference assuming a constant size of 

the true most recent population size for a given population. 

 

ROHs 

Dogs have notable runs of homozygosity (ROHs) as a result of inbreeding during breed 

formation (Sams and Boyko 2019). To test their impact on our analysis of recombination 

rates as inferred from LD patterns, we altered the simulated dog genomes to include 

ROHs. We based the sizes and proportion of runs on previously published data (Sams 

and Boyko 2019). To randomly select locations in the genome, we used the shuffle 

function from the program bedtools (Quinlan and Hall 2010). Then using a custom R 
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script, we altered VCFs for a random individual at each location to a genotype of 0/0. 

We then proceeded with our analysis pipeline where we inferred demography using 

SMC++ and then inferred r using pyrho.  

 

The simulation described above placed ROHs at random locations in each individual. 

We also tested the impact of ROHs overlapping between all individuals in a given 

population. To do this, we randomly selected one individual and duplicated the ROHs 

previously inserted into that individual into the original VCFs of the 14 other individuals. 

We then inferred recombination rates using the pipeline described above.  

 

Misspecified mutation rate 

The mutation rate used in our simulations and analyses was measured in a wolf 

pedigree (Koch et al. 2019) distinct from the wolves analyzed here. Thus, we 

investigated the effect of having a true mutation rate in our simulated data that did not 

match the mutation rate used in the inferences of recombination. For pugs, we 

simulated data under the following mutation rates: 4.5e-10 per bp per generation (1/10th 

of our assumed 𝜇 for recombination rate inference), 2.25e-8 per bp per generation (5X 

our assumed 𝜇), and 4.5e-8 per bp per generation (10X our assumed 𝜇). For wolves, we 

tested a mutation rate of 4.5e-10 per bp per generation (1/10th of our assumed 𝜇 for 

recombination rate inference). We then continued with our analysis pipeline assuming 

the published wolf mutation rate of 4.5e-9 per bp per generation. 

 

https://paperpile.com/c/C993kU/wfEq
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Data Availability 

Detailed scripts and set parameters are available at GitHub 

https://github.com/cad17/canid_recombination#canid_recombination 

 

Data from Robinson et al. 2019 are available on SRA under PRJNA512209; from 

Marchant et al. 2017 are available on European Nucleotide Archive (ENA) under 

PRJEB17926; and from Plassais et al. 2019 are available on SRA under 

PRJNA448733. 

 

Software availability: 

SMC++: https://github.com/popgenmethods/smcpp  

msprime: https://tskit.dev/msprime/docs/stable/intro.html 

pyrho: https://github.com/popgenmethods/py 

  

https://github.com/cad17/canid_recombination#canid_recombination
https://github.com/popgenmethods/smcpp;
https://tskit.dev/msprime/docs/stable/intro.html
https://github.com/popgenmethods/pyrho;
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Figures 

Figure 2.1 

 

 

Fig 2.1. Population size histories inferred with SMC++ for wolves (black), border collies 

(yellow), labs (green), pugs (blue), and Tibetan mastiffs (purple). The x axis is 

measured as generations ago with present time on the left and older time on the right. 

All dog populations show a bottleneck around 15,000 generations ago, likely 

corresponding with domestication.  
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Figure 2.2 

 

Fig 2.2. Inferred recombination rates of chromosome one for border collies (yellow), 

labs (green), pugs (blue), Tibetan mastiffs (purple), and wolves (black). The y-axis is the 

same for all populations. Some values for border collies that exceed the y-axis are not 

shown here. Relative to the other populations, border collies consistently have high 

recombination rates while pugs have consistently low recombination. All groups show 

an increase in recombination at the telomeric (right) end of the chromosome similar to 

observations in previous studies. See Figure S2.1 for similar plots for other 

chromosomes. 
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Figure 2.3 

 

Fig 2.3. Weighted average recombination rates inferred for all 38 autosomes of wolves 

(black), border collies (yellow), labs (green), pugs (blue), and Tibetan mastiffs (purple). 

Each data point represented is the weighted average recombination rate for a single 

chromosome. Thick horizontal lines represent median values. Boxes represent second 

and third quartiles. Whiskers represent first and fourth quartiles. Dots represent outliers. 

Ranges and median values are similar between wolves, labs, and Tibetan mastiffs. 

Border collies and pugs have median values that do not overlap with the ranges of other 

populations.  
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Figure 2.4 
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Fig 2.4. Scatter plot of Ranks of inferred recombination rates in 5MB genomic windows 

for each dog breed vs wolves (panel A) and those dog breeds plus wolves vs a 

pedigree-based genetic map (panel B, Campbell et al. 2013). Populations are color 

coded (border collie = yellow, lab = green, pug = blue, Tibetan mastiff = purple, Wolf = 

black). Lower ranks correspond to higher recombination rates. Each point represents a 

non-overlapping window in the canid genome and plots the rank of that specific window 

between the two populations. For panel A, the y-axis corresponds to the window's rank 

in a given dog breed, and the x-axis is the same window’s rank for wolves. In panel B, 

the y-axis corresponds to the window's rank in breed dogs or wolves, and the x-axis is 

the same window’s rank from the pedigree-based map. The blue line represents the 

trend line of the data with gray shading representing the 92.5 confidence intervals. The 

R2 value of the linear regression is printed on each grid. The black line is the y=x line. All 

trend lines have a positive slope suggesting some correlation between the “hotter” 

areas of the dog genomes and the “hotter” areas of the wolf genome.  
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Figure 2.5 

 

Fig 2.5. Recombination rates estimated from simulated canid populations with different 

parameters. The first condition (Simulated Wolf) was created using the demographic 

model inferred from wolves with SMC++. The second condition (Simulated Pug) used 

the demography inferred from pugs. The third condition (Simulated Pug with ROHs) 

added ROHs similar to those seen in dogs to the simulated pug data. Lastly, we 

simulated under the pug demography with a true mutation rate of 2.25 x 10-8 

/bp/generation and then inferred r assuming a mutation rate that was 4.5 x 10-9 

/bp/generation (Simulated Pug with Assumed Mu 0.5X True Mu). For each condition we 

simulated 10 replicates. The points shown for each condition represent the median 

chromosome-wide estimate of recombination for a given replicate. Note that one outlier 

of 7.2 x 10-8  is omitted for the ROH population for plot scaling purposes. The ranges of 

recombination rates estimated for these four conditions are all overlapping.  
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Figure 2.6 

 

Fig 2.6. Sensitivity of inferred recombination rates to the assumed demographic 

model. Demographic models used for inferring recombination rates (top plots) and 

corresponding inferences of recombination rates (bottom plots). These results are 

generated from the same sequence data for wolves (black) and pugs (blue) using the 

different demographic models shown. For demographic plots, the x-axis is measured as 

generations ago with present time on the left and older time on the right. The y-axis 

represents estimated effective population sizes. For recombination plots, each data 

point represented is the weighted average recombination rate for a single chromosome. 

Thick horizontal lines represent median values. Boxes represent second and third 

quartiles. Whiskers represent first and fourth quartiles. Dots represent outliers. SMC++ 

plots (left) follow the recommended pyrho analysis pipeline. The middle plots represent 

when we use both our population sizes from SMC++ and recent population sizes 

inferred in related populations using the program IBDNe (Mooney et al. 2021). On the 

right, we show results using a fabricated demographic model can lead to similar 
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inferences of recombination rates in our wolf and pug populations.  
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Tables 

Table 2.1 

Summary of genetic variation data across populations. 

 Border 
Collie Lab Pug Tibetan 

Mastiff Wolf 

Median chr wide r  1.40E-08 3.00E-09 2.00E-10 4.00E-09 4.00E-09 

N 10 10 15 10 15 

Median individual 
average read depth 23.7 29.3 46.1 16 37.3 

Recent Ne    171 1799 714 11,007 1605 

Watterson's Theta 
per site 8.98E-04 9.14E-04 6.34E-04 1.08E-03 1.44E-03 

Weighted Fst v 
Wolves* 0.296 0.311 0.421 0.237 NA 

r2 of SNPs 50kb +/- 
0.5KB Apart 0.27 0.26 0.44 0.2 0.15 

r2 / Watterson's 
Theta per site 300.53 284.51 694.37 185.48 103.82 

*Data from Mooney et. al 2023 
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Chapter 3: Impact of Recombination on Inference of the 

Distribution of Fitness Effects  

A Supplemental Appendix is available online as this dissertation’s Supplementary 

Materials: Ch3_Supplementary_Information.pdf  

Abstract  

Quantifying the distribution of fitness effects (DFE) is a foundational concept in 

population genetics. Current approaches to inferring the DFE of new mutations depend 

on the assumption of sites being independent and unlinked. In truth, sites on the same 

chromosome are often linked unless decoupled by meiotic recombination. It is not fully 

understood how unmodeled linkage biases DFE inferences. In this work, we find a 

limited impact of linkage and recombination rate on inferring the DFE. We use wolves 

as a model due to the relatively stable recombination landscape across canids. This 

stability stems from a non-functional gene (PRDM9) that is central to evolutionary 

changes in recombination hotspots in vertebrates. We inferred the DFE based on the 

whole wolf genome and three subsets of the genome with different ranges of estimated 

recombination rates: 0 to 1.9 x 10-9 (low r), >1.9 x 10-9 to 4.3 x10-9 (med r), and >4.3 x 

10-9 to 2 x 10-8 (high r) per bp per generation. To condition our DFE models, we 

estimated the demographic history of these 4 datasets. We found subtle differences in 

the ratio of ancestral to current population sizes (𝜈) and time since population size 

change (τ). There was wider variation in estimated ancestral population sizes (Na) 

(range: ~45 K to ~81 K). These differences in Na estimates may be due to biases from 

selection affecting the amount of variation at linked neutral sites. We inferred the DFE of 
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these datasets conditioned on their respective demographic models. We found similar 

DFE estimates between low and high recombination regions. Despite regions of 

moderate recombination having overall different DFEs from high and low recombination 

regions, we found a similar proportion of neutral mutations in all three categories. Thus 

we find support that inference of the DFE using PRF methods is not notably biased by 

the effects of background selection. 

 

Introduction 

Understanding the distribution of fitness effects (DFE) of new mutations is a 

foundational topic in population genetics because it describes how selection can shape 

genetic variation (Eyre-Walker and Keightley 2007). Additionally, the DFE is important 

for estimating genetic load, modeling introgression, and understanding the strength of 

selection on disease loci.  

 

A challenge in quantifying the DFE is the effect of demography on patterns of genetic 

variation that may bias DFE inference and selection, in turn biasing demographic 

inferences (see review of Johri et al. 2021). A two-step process of inferring DFEs can 

circumvent this issue by using site frequency spectra (SFS) of synonymous variants in 

exons to infer demographic history and then infer the DFE from the SFS of the 

nonsynonymous mutations conditioned on the demography (e.g. Kim et al. 2017, 

Keightley and Eyre-Walker 2007, Boyko et al. 2008, and Li et al. 2010). However, this 

approach of inferring the DFE makes the assumption that sites are independent and 

unlinked. Specifically, DFE inference using Poisson Random Field (PRF) models 
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assume mutations are independent of each other (i.e. free recombination). This is 

because the PRF framework is based on the emergence of a Poisson distribution of 

new mutations each generation, and those allele frequencies are changed only by 

selection and drift (Hartl et al. 1994, Sawyer and Hartl 1992). Intermediate or low levels 

of recombination will violate this assumption of independence, potentially biasing 

estimates of the DFE.  

 

It is also well known that there are differences in effective population size along the 

genome of organisms and that these variations differ among organisms (e.g 

Charlesworth 2009, Gossman et al. 2011, Jiménez-Mena et al. 2016). Gossman et al. 

(2011) find that estimates of Ne along the genome are positively correlated to 

recombination rate in Drosophila melanogaster and negatively correlated with the 

density of selected sites in humans and Arabidopsis thaliana.  

 

Mounting evidence supports a widespread prevalence of slightly deleterious alleles in 

the human genome (Bustamante et al. 2005, Eyre-Walker and Keightley 2007, 

Lohmueller et al. 2011, Kim et al. 2017). Purifying selection removing these slightly 

deleterious sites can also cause a decrease of genetic diversity at linked neutral sites 

through background selection (Charlesworth et al. 1995, Charlesworth 2012). The 

impact of background selection is greatest when recombination rates are low 

(Charlesworth et al. 1995). This is because lower levels of recombination create higher 

rates of linkage disequilibrium (LD) leading to larger portions of a chromosome sharing 

the same genealogy as nearby selected sites. In regions of low recombination, 
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background selection may also cause an increase in rare variants of synonymous sites 

(Lohmueller et al. 2011, Good et al. 2014). Additionally, it has been suggested that 

some linked selection can impact estimates of adaptive evolution and maybe the DFE 

(Messer and Petrov 2013). However, it has not yet been fully explored to what degree 

low recombination rates impact estimates of the DFE.  

 

Canids are a useful model for determining the effects of linkage and recombination rate 

variation on DFE inference because they lack a functional PRDM9 gene (Muñoz-

Fuentes, Rienzo, & Vilà, 2011, Cavassim et al. 2022). PRDM9 is known in vertebrates 

to influence location and intensity of recombination hotspots (Baker et al. 2015; 

Cavassim et al. 2022; Grey, Baudat, & de Massy, 2018; Oliver et al., 2009; Parvanov, 

Petkov, & Paigen, 2010). In dogs, recombination hotspots typically occur near 

transcription start sites (Auton et al., 2013; Campbell et al. 2016). All together this 

suggests that recombination patterns are more stable between canid species versus 

vertebrate taxa with functional PRDM9 genes.  

 

In this study, we infer the DFE for the wolf genome as well as three subsets of the 

genome with different ranges of estimated recombination rates. We use fit∂a∂i, a PRF 

based method, to estimate the DFE. We observed a reduction in diversity in neutral 

sites in regions of low recombination, consistent with background selection. Despite 

this, the inferred DFE for low recombination regions of the genome closely resembled 

that of high recombination regions and the genome-wide DFE. Thus, we find strong 
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support that PRF-based inferences of the DFE are not biased by violation of the 

assumption of unliked variants.  

 

Materials and Methods 

Genomic data  

We inferred recombination rates and DFE on previously published genomes of 15 

wolves (Robinson et al. 2019). These genomes were sequenced at high coverage, with 

individuals’ read depth averaging to >35X. Sites were filtered and aligned to the 

canFam3.1 dog reference genome as described in Marsden et al. 2016. Single 

nucleotide polymorphisms (SNPs) were called using GATK (McKenna et al. 2010) with 

only biallelic SNPs being retained. Indels were excluded for these analyses. More 

detailed information on genotype and variant calling of this data can be found in Mooney 

et al. 2023.  

 

Inferring recombination rates 

We used the recombination rate map previously inferred for this data using linkage 

disequilibrium data (LD) as previously described in chapter 2 (see Materials and 

Methods: Recombination rate inference and demographic inference).  

Dividing the genome by recombination rate 

We divided our genome-wide data (all r) into 3 different bins of inferred recombination 

rates: 0 to 1.9 x 10-9 (low r), >1.9 x 10-9 to 4.3 x10-9 (med r), and >4.3 x 10-9 to 2 x 10-8 

(high r) per bp per generation. We excluded regions with recombination rates inferred 

above 2 x 10-8 per bp per generation. These bins were selected based on dividing the 
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genome wide recombination map into 3 ranges with roughly equal portions of the whole 

genome.  

 

We divided the genome into non-overlapping 1 MB windows. For each window we 

calculated the weighted mean of the recombination rates. Details of how weighted 

averages were calculated are given in chapter 2 (see Materials and Methods: 

Comparisons of the genetic maps). We binned the 1 MB windows of the genome by 

recombination rates. The data binned by subsets of recombination rates all contained 

roughly ⅓ the number of synonymous and nonsynonymous SNPs found across all 

exons (Table S3.1). The values of the synonymous sequence length (LS) varied 

somewhat by recombination bin. The ratio of synonymous SNPs / LS ranged from 3.76 x 

10-3 (low r) to 6.55 x 10-3 (high r). For each bin, we then created synonymous and 

nonsynonymous SFSs. 

 

Computing Site Frequency Spectra 

One individual was removed due to first-degree relatedness (i.e., parent-child and 

siblings). To compensate for missing data, we projected our data down to a sample size 

of 13. Using ∂a∂i (Gutenkunst et al. 2009), we generated folded SFSs for the observed 

synonymous sites and separately for the observed nonsynonymous sites. Folded SFSs 

were used to avoid the effects of mis-specifying ancestral alleles (Hernandez et al. 

2007). 
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Calculating synonymous and nonsynonymous sequence lengths  

All exonic sites were classified as 0-, 2-, 3-, or 4-fold degenerate sites based on the 

canFam3 reference genome. The nonsynonymous sequence length (LNS) was 

calculated by the formula: 

 

LNS = (# of 0-fold sites) + (⅔ * # of 2-fold sites) + (⅓ * # of 3-fold sites) 

 

Conversely the synonymous sequence length (LS) was calculated as: 

 

LS = (# of 4-fold sites) + (⅔ * # of 3-fold sites) + (⅓ * # of 2-fold sites) 

 

Additionally, we assumed a mutation 10 X the exon rate in putatively methylated CpG 

sites (Kong et al. 2012, Bird 1980). This resulted in a calculation of the LNS:LS ratio of 

2.21 for canids (Amorim et al. 2023). Given that ratio of 2.21 nonsynonymous mutations 

for every 1 synonymous mutation, we calculated the LS as 1 / 3.31 of all callable sites.  

 

Demographic Inference 

We inferred demographic models using the synonymous SFS from each of the 3 

recombination rate bins and the genome-wide synonymous SFS. We focused on the 

synonymous SFS because these sites are putatively neutral and thus largely impacted 

by demographic history rather than direct selection (Kim et al. 2017). We assumed a 

two-epoch demographic model with an instantaneous size change. We inferred the 

best-fit parameters of 𝜈 (ratio of ancestral to current population sizes) and τ (time since 
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population size change) for the synonymous SFS data using ∂a∂i. We assumed an exon 

mutation rate (μexon) of 5.39 x 10-9 per bp per generation (Koch et al. 2019). The best 

model was the one with the largest multinomial log-likelihood.  

 

We calculated the ancestral population size (Na) using the equation: 

 

Na = Θsyn /(4 * μexon * Ls) 

 

Θ of synonymous sites (Θsyn) was calculated from the synonymous SFS.  

 

DFE inference 

We inferred DFEs for the nonsynonymous mutations in each of the three recombination 

rate bins as well as for all nonsynonymous mutations using the fit∂a∂i module (Kim et al. 

2017). We conditioned our DFE models on the demographic histories inferred from the 

synonymous SFS. By conditioning our DFE inference on a model of demography, we 

can remove the majority of the impact of demographic history (Kim et al. 2017). For our 

DFE models, we assumed a gamma distribution and selected the best model as the one 

with the largest Poisson log likelihood.  

 

For plotting, we discretized the gamma DFE into 4 bins of selection coefficients (|s|), 

assuming all mutations are deleterious. These bins included s < 1 x 10-4 (nearly 

neutral), 1 x 10-4 to 1 x 10-3 (weakly deleterious), 1 x 10-3 to 1 x 10-2 (moderately 
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deleterious), and > 1 x 10-2 (strongly deleterious). We report values of s by dividing 2Ns 

by the ancestral population size inferred from the synonymous SFS.  

 

Results and Discussion 

SFSs 

We characterized the synonymous and nonsynonymous proportional SFS and a 

normalized count SFS for all four datasets (Fig. 3.1). For the proportional SFS we 

divided the number of SNPs with a given frequency by the total number of SNPs for that 

dataset. For the normalized count SFS, we divided the number SNPs with a given count 

in the sample by the total number of called sites (including invariant sites) for that 

dataset. This normalization provides for a direct comparison between datasets 

controlling for the fact that each dataset contains a different proportion of the genome.  

 

For the proportional SFS, we find similar synonymous and nonsynonymous SFSs for all 

datasets (Fig. 3.1 Left). However, we note that regions of low recombination have a 

subtle skew towards singletons for synonymous sites relative to med and high r regions 

(Proportion of SFS - Low r: 0.201, Med r: 0.194, High r: 0.193). Background selection is 

known to cause an increase of rare variants of synonymous sites in regions of low 

recombination (Lohmueller et al. 2011, Good et al. 2014). 

 

By contrast, for our normalized count SFSs, we observe notable variation in proportions 

of each frequency class across the recombination rate bins for both synonymous and 

nonsynonymous sites (Fig. 3.1 Right). We find a positive correlation of genetic diversity 



 100 

and recombination rate, with low r regions having the least diversity and high r regions 

having the most diversity. This result is consistent with the observation that background 

selection decreases the diversity of linked neutral sites particularly in regions of low 

recombination (Charlesworth et al. 1995, Charlesworth 2012). The genome wide SFSs 

most closely resemble the med r regions suggesting that genome wide estimates of the 

SFS reflect a more moderate ratio of SNPs to all sites than regions with extreme (low or 

high) recombination. 

 

The results of our observed synonymous and nonsynonymous SFSs provide validation 

for our approach of dividing the genome into three subsets of recombination rate bins. 

Our study focuses on the influence of recombination rate on inferring DFEs with a 

hypothesis that regions of low recombination may bias DFE inferences due to 

background selection. The observed SFS results are consistent with the notion that our 

three bins of recombination rates may experience differing levels of background 

selection. Thus, these genomic regions with different recombination rates can inform us 

as to whether background selection impacts DFE inference.  

 

Demographic inference 

We inferred demographic models using the synonymous SFS for our four datasets (low, 

med, high, and all r). For all the datasets we inferred two-epoch demographic models 

with similar maximum likelihood estimates of the parameter values (Table 3.1). The 

estimates of the 𝜈 and τ parameters differed slightly across the recombination rate bins. 

And while values of Θ were similar between the datasets binned by recombination rate, 
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their values of Na ranged from ~45K to ~82K. For all the demographic models, we found 

that the observed SFS and the expected SFS of the model matched well, suggesting a 

satisfactory fit of the model (Fig. 3.2). The inferred different Na for each recombination 

rate bin is consistent with findings that effective population size (Ne) is positively 

correlated with recombination rate (Gossman et al. 2011).  

 

The differences in parameters for the low, med, and high r datasets suggests that either 

1) the effects of linked selection are affecting the demographic inferences differently or 

2) multiple combinations of demographic history parameters fit each dataset similarly 

well. To test the second possibility, we used ∂a∂i to evaluate how the demographic 

parameters of 𝜈 and τ inferred from one dataset fit another dataset. For example, we 

evaluated how a demographic model with the values of 𝜈 and τ inferred from the med r 

observed synonymous SFS fit the data of the low r observed synonymous SFS. We 

then also considered a Θ parameter to examine the fit of the model on the non-scaled 

synonymous SFS. For the example of the med r model fit to the low r data, we 

calculated Θ based on the Na of the med r model and the LS of the low r dataset. We 

used these parameters to calculate Θ because Na is a property of the model while LS is 

a property of the data. We did this for the 3 bins of data with a subset of recombination 

rates (low, med, and high r). We tested all 6 pairwise combinations of observed 

synonymous SFS and demographic parameters inferred from a different dataset. We 

evaluated the model fit by comparing the multinomial and Poisson log likelihoods 

(Tables 3.2 and 3.3). 
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The log likelihood tables represent fitting the demographic model from one data set 

(labeled data and listed as column headings) to another dataset (labeled data and listed 

as row names) (Tables 3.2 and 3.3). The log likelihood of the example described above 

of fitting the med r demographic model to the low r data is found in the cell of row 1 and 

column 2. The diagonal cells highlighted in bold represent the log likelihood of the 

models inferred from a given data set and how they fit that data.  

 

Fitting different demographic models to our low, med, and high r datasets resulted in a 

small range of multinomial log likelihoods (-61.7 to -57.3) (Table 3.2). The model that fit 

the low r data best was the low r model. And the data that fit the high r data best was 

the high r model. By contrast, the med r data was fit equally well by the med and high r 

models. The fit of these model and data combinations can be visualized by comparing 

the synonymous proportional SFS of the observed data and the model’s expected SFS 

(Fig. 3.3 Left). Given that the synonymous proportional SFS of the observed low, med, 

and high data were very similar, this result is not surprising. Because all the models 

were fit to similar data (with the exception of the very subtle rare variance skew in the 

low r data set), the models all produce similar proportional SFSs.  

 

By contrast, there is wide variation of the Poisson log likelihood of these model and data 

combinations (-57.3 to -2183.4) (Table 3.4). When measuring model fit by Poisson log 

likelihood, each dataset is best fit by its own model. This is shown in Table 3.4 where 

the bolded diagonal of matched models and datasets has Poisson log likelihoods larger 

(and thus better) than any of the mismatched models and datasets. This pattern is also 
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reflected in the wide range of expected count SFSs from the different models (Fig. 3.3 

Right). 

 

This difference in Poisson log likelihoods is likely driven by the differences in the Θ 

values for scaling the SFS. The scaled SFS is used to evaluate the Poisson log 

likelihood. For the example of fitting the med r model to the low r data, we calculated a 

Θ of ~4.4 K calculated with the low r LS of ~ 3 M and the med r Na of ~ 65 K. By 

contrast, the Θ of the low r data we inferred was ~3.1 K based on the low r LS of ~ 3 M 

and the low r Na of ~ 45 K. These differences are also consistent with the observation 

that the normalized count SFSs of the low, med, and high r datasets vary noticeably 

(Fig. 3.1 Right).  

 

The substantial variations in Poisson log likelihoods between our six model and data 

combinations indicate significant differences in the demographic models we derived. In 

turn this reflects that there are large and meaningful differences of genetic diversity 

between our datasets with low, med, and high r rates. Although these regions of the 

genome have a shared true demographic history, methods to estimate Na for these 

subsets of the genome are consistent with how Ne varies with recombination rate 

because of linked selection (Gossman et al. 2011). Given the differences of genetic 

diversity between these bins of recombination rates, we might expect to see variation in 

the inferred DFEs of these bins. 
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DFE Inference 

We inferred DFEs for nonsynonymous mutations from our 4 datasets of varying 

recombination rate ranges. The DFE models are conditioned on the best fitting 

demographic model for that dataset’s synonymous SFS. We found similar DFEs for all 

datasets except the med r data (Fig. 3.4). Parameters inferred and statistics measured 

for these DFEs are shown in Table 3.4. Both the 𝛂 and 𝜷 parameters of the inferred 

DFE of the med r data vary noticeable from the other data. Notably, the DFE for med r 

data was skewed towards strongly deleterious new mutations compared to the low, 

high, and all r data (Proportion of new mutations with |s| > 0.01 low r: 0.48, med r: 0.67, 

high r: 0.47, and all r: 0.54).  

 

To examine if there was a statistically significant difference in the med r DFE versus 

other DFEs inferred from the other recombination rate bins, we evaluated the fit of all 

our DFE models via the models’ Poisson log likelihoods and the expected SFS of each 

model. The best DFE model for each dataset was selected by the largest Poisson log 

likelihood of models inferred using fit∂a∂i. The Poisson log likelihood of the DFE models 

for the low, med, and high r were within a small range (-59.0 to -56.8). The all r Poisson 

log likelihood was somewhat smaller than the others (-71.5). Adequate fit of all our 

models was supported by a close match between the observed nonsynonymous SFSs 

and the respective models’ expected SFS (Fig. 3.5). Given that all our datasets have 

mostly similar log likelihoods and good matches between observed and expected SFSs, 

there is strong support that each DFE model is well fit to the data it was inferred from. 

This means there may be other DFE models that fit our datasets better or similarly well 
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to those we inferred. In other words, while our med r DFE fits that data well, there may 

be other models that fit it just as well or better. And if there is no difference in the true 

DFE of all our datasets, perhaps the models we inferred from the low and/or high r 

datasets meet that criterion.  

 

To test if any of our inferred DFEs for the low, med, and high r data fit all datasets well, 

we considered how the DFE parameters (𝛂 and 𝜷) of one subset of recombination rate 

data fit a different subset of recombination rate data. For example, to test the fit of the 

med r data’s inferred DFE on the low r data, we conditioned the DFE on the 𝜈 , τ, and Θ 

values inferred from the low r data. We created the DFE model using the 𝛂 and 

unscaled 𝜷 values of the med r data. To scale the 𝜷 value, we used the Na inferred from 

the low r data. We calculated the scaled 𝜷 value as 𝜷 * 2Na. To quantify the DFE model 

fit, we calculated the multinomial and Poisson log likelihoods of the model’s expected 

nonsynonymous SFS compared to the observed nonsynonymous SFS. We repeated 

this for all 6 directional pairwise comparisons of low, med, and high r datasets.  

 

The log likelihood tables for the DFE (Table 3.5 and 3.6) are structured the same as 

those described for the demographic models (Table 3.2 and 3.3). The example listed 

above of fitting the med r DFE to the low r data can be found in cell row 1 x column 2. 

The bolded diagonal represents the DFE model’s log likelihood when fit to the data it 

was inferred from.  
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We found that trying to fit the DFE parameters from one recombination rate data set to 

another resulted in a range of multinomial log likelihoods (-86.1 to -55.7) (Table 3.5). 

The DFE model with the largest, and thus best, multinomial log likelihood for each 

dataset was the DFE inferred from that data. And notably, the DFE parameters inferred 

from med r data had the smallest multinomial log likelihood for the low and high data. 

This suggests that the med r DFE skewed towards strongly deleterious new mutations 

was a worse fit for the low and high r data than the other two models (low r and high r). 

By contrast, the med r parameters had the largest multinomial log likelihood for all 

parameter sets applied to the med r data supporting that the med r model fits that data 

the best. The DFE model fits as measured by the multinomial log likelihoods is 

visualized by comparing the proportional SFS of the observed nonsynonymous sites 

and the models' expected SFS (Fig. 3.6 left). The models with larger log likelihoods 

have expected SFSs more similar to the observed data.  

 

We also examined the Poisson log likelihood of fitting DFE models to different 

recombination rate bins. We found a wider range of Poisson log likelihoods than the 

multinomial (-58.8 to -113.9) (Table 3.6). Like the comparisons of the multinomial log 

likelihoods, we found that the DFE model with the largest, and thus best, Poisson log 

likelihood for each dataset was the DFE inferred from that data. This is seen in the fact 

that the bolded diagonal values (e.g. low r data and low r model) have much larger 

values than mismatches (e.g. low r data and med r model). These differences are much 

more apparent in the Poisson log likelihoods than the multinomial log likelihoods. This is 

because the Poisson log likelihood has greater potential to reject worse models due to 
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the increased data of the number of mutations. The model fits quantified by Poisson log 

likelihoods are visualized in comparisons of the count SFS of nonsynonymous sites for 

the observed data and the expected SFS of the model (Fig. 3.6 Right). The worse fit of 

the expected count SFS vs the expected proportional SFS can be seen in the med r 

model applied to the low r data (Fig. 3.6 Top Left vs Right).  

 

This difference of multinomial and Poisson log likelihoods supports that the DFE models 

have statistically significant differences. While these DFE models may be statistically 

distinct, it is important to consider whether they are different from one another in 

biologically meaningful ways.  

 

One potential reason we see this skew towards highly deleterious mutations in the med 

r data could be driven by the medium recombination rate regions having genes with 

different functions than other bins of the genome. If the med r regions of the wolf 

genome are enriched for genes with essential function, for example homeobox genes, 

these regions would also be enriched towards strong negative selection (larger 

estimates of s).  

 

Yet, it is important to consider how different these DFE inferences are in the context of 

variation of the DFE across taxa. Kyriazis et al. (2023) reviewed published DFE 

inference of several species and shows that less than 20% of new mutations in mice, 

Drosophila, yeast, and Arabidopsis are strongly deleterious. That contrasts with all our 

inferred DFE models in wolves with more than 45% of new mutations being strongly 
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deleterious. So while we infer that wolves have a higher proportion of strongly 

deleterious mutations in regions with moderate recombination rates, this result is still 

more similar to our findings in the low, med, and all r genomic regions in wolves than to 

many other species. Additionally, we should not over interpret the biological significance 

of the med r DFE skew towards strongly deleterious variations as this class of mutations 

is more difficult to measure in small sample sizes (Kim et al. 2017). In contrast, 

estimating the density of nearly neutral sites among new mutations is less likely to be 

impacted by sample size. And in the case of nearly neutral sites, we inferred highly 

similar proportions for the four datasets varied by recombination rate (Low r = 0.34, Med 

r = 0.29, High r = 0.32, and All r = 0.32).  

 

Importantly, a major motivation for this work was the question of how increased 

background selection in regions of low recombination (Charlesworth et al. 1995, 

Charlesworth 2012) might bias DFE inferences. In our data we observed the impact of 

background selection notably in the positive correlation of recombination rate and 

genetic diversity as seen in the normalized count SFSs (Fig. 3.1). Additionally, we see a 

subtle skew towards rare variants in the low r data which can be caused by background 

selection (Lohmueller et al. 2011, Good et al. 2014) (Fig. 3.1). Despite the prevalence of 

background selection in our low r data set and lack of background selection in the high r 

data (Fig. 3.1); the estimated DFE of the low, high, and all r data are substantially 

similar to each other (Fig. 3.3, Table 3.4). If background selection was strongly biasing 

inferences of the DFE, we would have expected to find larger variation in the low r DFE 
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relative to all other data sets. Thus we find strong support that background selection 

does not bias inferences of the DFE using PRM methods.  

 

Future Directions 

This work focused on inferring the DFE of wolves because canids lack a functional copy 

of PRDM9, a gene that influences vertebrates’ recombination location and intensity 

(Muñoz-Fuentes et al. 2011; Cavassim et al. 2022, Baker et al. 2015; Grey, Baudat, & 

de Massy, 2018; Oliver et al., 2009; Parvanov et al. 2010). Prior work (see chapter 2 Fig 

2.4A) has shown significant correlation in the recombination landscape of wolves and 

breed dogs. However, inferred global recombination rates vary in the domestic dog 

breeds of border collies and pugs relative to their sister taxa of wolves. Additionally, the 

estimates of the genome wide DFE of these two breeds is similar to estimates in wolves 

(Amorim et al. 2023). Given this combination of differences in the genome-wide 

recombination rates but similar DFE estimates, these two dog breeds could be an 

interesting comparison to the results of this work. Furthermore, the question of how 

recombination does or does not influence estimates of the DFE with PRF methods 

should be considered in other species with high quality genetic maps. Lastly, inferring 

the DFE for simulations of genetic data with different recombination rates and 

background selection could further our understanding of how these two mechanisms 

affect estimates of the DFE.  
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Conclusion  

The DFE is a foundational concept in population genetics, thus methods to accurately 

estimate the DFE are of critical importance to the field. Inferring the DFE with PRF 

based methods depends on the assumption of free recombination (Hartl et al. 1994, 

Sawyer and Hartl 1992). A particular concern is the increased influence of background 

selection in regions of low recombination (Charlesworth et al. 1995). In this work we 

support that violation of this assumption does not bias DFE inferences. We inferred the 

DFE of the North American gray wolf for the whole genome as well as subsets of the 

genome with different ranges of recombination rates. We observed a decrease of 

diversity in neutral sites in regions of low recombination consistent with background 

selection. However, our inferred DFE for genomic regions with low recombination is 

notably similar to regions with high recombination and the genome wide DFE. Thus, we 

found strong evidence that PRF based inferences of the DFE are not biased by violation 

of assuming sites are unlinked via free recombination. Our findings provide valuable 

support for the accuracy of contemporary methods of inferring the DFE (e.g. Kim et al. 

2017, Boyko et al. 2008, Keightley and Eyre-Walker 2007).  
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Figures 

Figure 3.1  

 

Fig 3.1. Observed Synonymous and Nonsynonymous SFSs. Bar plots showing the 

proportion of exonic SNPs with a given frequency by recombination rates. SNPs are 

separated by synonymous sites (top) and nonsynonymous sites (bottom). Left panels 

show SNPs as a proportion of all SNPs of that type for a given recombination rate 
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range. Right panels show SNPs as a proportion of all callable sites in a specific range of 

recombination rates. 1MB windows of the genome were classified into three subsets of r 

values: 0 to 1.9 x 10-9 (low), 1.9 x 10-9 to 4.3 x10-9 (med), and 4.3 x 10-9 to 2 x 10-8 

(high). SFSs for those three bins and all recombination rates are color coded: low 

(blue), med (purple), high (red), and all (white).  
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Figure 3.2 
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Fig 3.2. Observed and Expected SFSs for Demographic Models. Bar plots showing 

the observed (data, white) and expected (model, color) SFSs of synonymous sites by 

recombination rate. The count (panel A) and proportion (panel B) SFSs are shown. 1MB 

windows of the genome were classified into three subsets of r values: 0 to 1.9 x 10-9 

(low), 1.9 x 10-9 to 4.3 x10-9 (med), and 4.3 x 10-9 to 2 x 10-8 (high). SFSs for those three 

bins and all recombination rates are color coded: low (blue), med (purple), high (red), 

and all (white). Expected SFSs are derived from a two-epoch demographic model fit to 

the observed data.  
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Figure 3.3 
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Fig 3.3. Observed and Expected SFSs for Various Demographic Models. Bar plots 

showing the observed (data, white) and expected (model, color) SFSs of synonymous 

sites for various demographic models. The proportion (left) and count (right) SFSs are 

shown. Genes were classified into three subsets of r values: 0 to 1.9 x 10-9 (low), >1.9 x 

10-9 to 4.3 x10-9 (med), and >4.3 x 10-9 to 2 x 10-8 (high). Rows are separated by 

recombination rate of the data. For each set of data, we tested 3 demographic model 

parameters of nu and tau. The parameters tested came from two-epoch demographic 

models derived from 1 of the 3 data sets binned by recombination rates (see Table 3.1). 

Expected SFSs for those 3 parameter sets are color coded: low r (blue), med r (purple), 

high r (red).  
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Figure 3.4 

 

Fig 3.4. Inferred DFE for nonsynonymous mutations in regions of the genome 

with different recombination rates. Bar plot showing proportion of nonsynonymous 

mutations inferred to have a specific range of selection coefficient (s) compared by 

recombination rates. 1MB windows of the genome were classified into three subsets of r 

values: 0 to 1.9 x 10-9 (low), >1.9 x 10-9 to 4.3 x10-9 (med), and >4.3 x 10-9 to 2 x 10-8 

(high). DFEs for those three bins and all recombination rates are color coded: low 

(blue), med (purple), high (red), and all (white). Selection coefficients ranges include < 1 

x 10-4 (nearly neutral), 1 x 10-4 to 1 x 10-3 (weekly deleterious), 1 x 10-3 to 1 x 10-2 

(moderately deleterious), and > 1 x 10-2 (strongly deleterious). 
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Figure 3.5 
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Fig 3.5. Observed and Expected SFSs for DFE Models. Bar plots showing the 

observed (data, white) and expected (model, color) SFSs of nonsynonymous sites by 

recombination rate. The count (panel A) and proportion (panel B) SFSs are shown. 1MB 

windows of the genome were classified into three subsets of r values: 0 to 1.9 x 10-9 

(low), 1.9 x 10-9 to 4.3 x10-9 (med), and 4.3 x 10-9 to 2 x 10-8 (high). SFSs for those three 

bins and all recombination rates are color coded: low (blue), med (purple), high (red), 

and all (white). Expected SFSs are derived from models of DFEs conditioned on a two-

epoch demographic model and the observed data.  
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Figure 3.6 
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Fig 3.6. Observed and Expected SFSs Conditioned on Various DFE Models. Bar 

plots showing the observed (data, white) and expected (model, color) SFSs of 

synonymous sites for various DFE models. The proportion (left) and count (right) SFSs 

are shown. Genes were classified into three subsets of r values: 0 to 1.9 x 10-9 (low), 

>1.9 x 10-9 to 4.3 x10-9 (med), and >4.3 x 10-9 to 2 x 10-8 (high). Rows are separated by 

recombination rate of the data. For each set of data, we tested 3 DFE model 

parameters of 𝛂 and 𝜷. The parameters tested came from DFE models derived from 1 

of the 3 data sets divided by recombination rates. Expected SFSs for those 3 parameter 

sets are color coded: low r (blue), med r (purple), high r (red).  
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Tables  

Table 3.1 

Parameters inferred and statistics measured from demographic models for synonymous 

SFS data. 

r Values 𝜈  τ Na Θ Poisson Log Likelihood 

Low 0.32313 0.03313 45321 3089 -59.6 

Med 0.20271 0.01616 64652 3522 -60.0 

High 0.19515 0.01581 81654 3296 -57.3 

All 0.18375 0.01319 62697 10373 -69.8 
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Table 3.2 

Multinomial log likelihood of demographic parameters inferred from synonymous SFSs 

(model, column headers) fit to the synonymous SFS data (data, row headers) for 

regions of the genome in 3 different recombination rate ranges.  

Model 
 

Data 

Low r Med r High r 

Low r -59.6 -61.2 -61.7 

Med r -61.6 -60.0 -60.0 

High r -59.3 -57.4 -57.3 

 

 

 

Table 3.3 

Poisson log likelihood of demographic parameters inferred from synonymous SFSs 

(model, column headers) fit to the synonymous SFS data (data, row headers) for 

regions of the genome in 3 different recombination rate ranges.  

Model 
 

Data 

Low r Med r High r 

Low r -59.6 -785.7 -2183.4 

Med r -714.3 -60.0 -386.4 

High r -1587.1 -317.9 -57.3 
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Table 3.4 

Parameters inferred and statistics measured from DFE models. 

r Values 𝛂 Scaled 𝜷 𝜷 Poisson Log Likelihood 

Low 0.092 1.70E+06 1.88E+01 -56.8 

Med 0.029 9.24E+19 7.14E+14 -57.8 

High 0.106 1.20E+06 7.33E+00 -59.0 

All 0.078 4.90E+07 3.90E+02 -71.5 

 

 

 

Table 3.5 

Multinomial log likelihood of DFE parameters inferred from SFSs (model, column 

headers) fit to the SFS data (data, row headers) for regions of the genome in 3 different 

recombination rate ranges. 

Model 
 

Data 
Low r Med r High r 

Low r -55.7 -72.7 -58.0 

Med r -78.5 -57.5 -86.1 

High r -57.1 -75.6 -58.4 
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Table 3.6 

Poisson log likelihood of DFE parameters inferred from SFSs (model, column headers) 

fit to the SFS data (data, row headers) for regions of the genome in 3 different 

recombination rate ranges. 

Model 
 

Data 
Low r Med r High r 

Low r -56.8 -113.9 -67.1 

Med r -113.5 -57.8 -88.5 

High r -86.3 -75.7 -59.0 
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