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Abstract
Advanced omics technologies and facilities generate a wealth of valuable data daily; however, the data often lack the essential metadata required 
for researchers to find, curate, and search them effectively. The lack of metadata poses a significant challenge in the utilization of these data 
sets. Machine learning (ML)–based metadata extraction techniques have emerged as a potentially viable approach to automatically annotating 
scientific data sets with the metadata necessary for enabling effective search. Text labeling, usually performed manually, plays a crucial role in 
validating machine-extracted metadata. However, manual labeling is time-consuming and not always feasible; thus, there is a need to develop 
automated text labeling techniques in order to accelerate the process of scientific innovation. This need is particularly urgent in fields such as 
environmental genomics and microbiome science, which have historically received less attention in terms of metadata curation and creation of 
gold-standard text mining data sets. In this paper, we present two novel automated text labeling approaches for the validation of ML-generated 
metadata for unlabeled texts, with specific applications in environmental genomics. Our techniques show the potential of two new ways 
to leverage existing information that is only available for select documents within a corpus to validate ML models, which can then be used 
to describe the remaining documents in the corpus. The first technique exploits relationships between different types of data sources related
to the same research study, such as publications and proposals. The second technique takes advantage of domain-specific controlled vocabularies 
or ontologies. In this paper, we detail applying these approaches in the context of environmental genomics research for ML-generated metadata 
validation. Our results show that the proposed label assignment approaches can generate both generic and highly specific text labels for the 
unlabeled texts, with up to 44% of the labels matching with those suggested by a ML keyword extraction algorithm.
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
High-throughput omics technologies such as genome sequenc-
ing produce a wealth of data in domains ranging from human 
health, biosurveillance, and environmental microbial ecology. 
However, these data frequently lack the metadata necessary 
for scientists to curate, search, integrate, and interpret these 
data appropriately. Manual labeling is time-consuming and 
error prone and is made more difficult by the paucity of gold-
standard training sets, particularly in domains such as envi-
ronmental science. Machine learning (ML)–based keyword 
extraction techniques have emerged as a potential solution to 
the challenge of automatically annotating scientific artifacts 
such as documents and images with the metadata necessary 
for enabling effective curation and search (1, 2). An exam-
ple of ML-based keyword extraction is YAKE (3), which 
uses an unsupervised approach to generate keywords mak-
ing use of surrounding document context. However, these 
ML-based approaches depend on the existence of text labels 
for either training the models (supervised methods) or vali-
dating the ML-generated metadata (unsupervised methods). 

Thus, applying these approaches to unlabeled scientific texts 
still requires the annotation of some of the documents before 
the quality of any ML-generated keywords can be determined 
(Figure 1). Given that manual annotation is tedious and not 
always feasible (4), the creation of annotated data sets and 
development of efficient automated annotation techniques for 
biomedical data sets are critical to ensuring effective data 
curation and accelerating scientific progress.

The biomedical community has produced a number of 
curated, high-quality annotation corpora such as CRAFT (5) 
that could potentially be leveraged to evaluate unsupervised 
keyword extraction methods. These corpora provide expert-
curated linkages between spans of text and concepts and can 
be used to benchmark or train ML approaches to automat-
ing the linkages [a process called Concept Recognition (CR)]. 
However, these corpora focus on human health, covering 
human diseases, human and model organism anatomy, and 
drugs and do not cover many relevant concepts in envi-
ronmental genomics. For example, consider a study of the 
response of microbiome communities in wetland ecosystems 
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2 Amusat et al.

Figure 1. Potential approaches for validating ML-generated keywords for unlabeled texts when human labels are unavailable; our proposed approaches 
are shown in green.

to rising sea levels and how they mediate methane emis-
sions and carbon stocks (6). The study involves a number of 
concepts related to environmental genomics (e.g. rising sea 
levels and wetland ecosystems), which are not represented in 
biomedical corpora. Other examples include the study of root 
exudates in fabricated ecosystems under conditions of abiotic 
stress (7), which also requires concepts from corpora outside 
the biomedical domain (i.e. plant anatomy and genomics). An 
additional challenge arises from the disparate nature of text 
and metadata in modern team science and high-throughput 
multiomics studies. Text and metadata are often fragmented 
across the literature as well as different omics databases and 
sequencing facilities. In order to make maximal use of this 
information, it has to be intelligently curated and linked 
together such that information can be propagated.

The driving use case for our study is the vast amount of 
heterogeneous data generated by the Joint Genome Institute 
(JGI), a US Department of Energy (DOE) user facility with the 
mission to advance genomics in service of clean energy gen-
eration and environmental characterization and cleanup. The 
JGI has generated over 14 petabytes of data and is able to 
hone in on data sets via metadata search is crucial. Most JGI 
projects are initiated from a proposal, which includes rich tex-
tual information that can be indexed in search. These projects 
may then be linked to other information, such as publications, 
or paired omics data generated at other facilities. The meta-
data, while still complex, has more uniformity and structure 
than the diverse omics data that it describes and is thus more 
amenable to indexing. Still, curating all this information and 
indexing it with relevant concepts is challenging, especially as 
existing biomedical annotators are not trained with concepts 

directly relevant to the broad environmental problems being 
tackled by the JGI. 

In this paper, we describe two automated text annotation 
techniques for the validation of ML keywords in order to 
enhance data curation and search. These approaches and their 
integration into a wide data science ecosystem is shown in 
Figure 1. The first approach, called “artifact linking”, exploits 
the relationships between different types of data artifacts 
related to the same research. Establishing direct relationships 
between artifacts is extremely powerful since it enables the 
transfer of text labels between the related labeled and unla-
beled artifacts, making it a rich source of metadata. The 
second approach assigns labels to the unlabeled texts from 
controlled domain-specific ontologies. The technique exploits 
the fact that the most relevant text labels for scientific texts 
will contain domain-specific language that will be present in 
the ontologies relevant to that domain. The domain-specific 
relevance of the words and phrases in the unlabeled texts is 
determined via ontologies, with a frequency-based approach 
used to assign keyphrases to the texts.

Our work presents novel nonhuman, non-ML tech-
niques for validating ML-generated metadata for unlabeled 
texts such as proposals (narrative descriptions of proposed 
hypothesis-driven research). Additionally, we compile parts of 
existing vocabularies and ontologies, primarily from the Open 
Bio Ontologies Library (8) into a novel application ontol-
ogy called Biological and Environmental Resource Ontology 
(BERO), intended for applications such as environmental 
genomics.

Building on the foundations and infrastructure already in 
ScienceSearch (9), the approaches are applied to proposal 
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texts from the JGI. Developing semiautomated text labeling 
techniques for JGI’s unlabeled data artifacts will enhance its 
search and indexing capabilities, thus potentially accelerating 
scientific discovery in genomics research. While the techniques 
presented are being demonstrated in the specific context of 
genomics, the techniques are general and can be applied 
to other scientific domains. Our semiautomated techniques 
for text labeling advance the state-of-the-art in keyphrase 
extraction in two ways.

1 We develop computationally inexpensive, nonhuman, 
non-learning-based text labeling approaches for the val-
idation of ML-generated keywords for unlabeled texts. 
Once validated, the ML models can be applied to gener-
ate keywords for other documents in a given corpus for 
which the aforementioned annotations are not available 
or possible. Automated labeling removes the bottle-
neck of absent labels/keywords, one of the primary 
challenges associated with extracting relevant keywords 
with high accuracy (3).

2 Our approaches primarily exploit real available pub-
lic (human) knowledge such as related scientific works 
and controlled vocabularies. This has several advan-
tages, including being particularly suited to handling 
and exploiting the domain-specific nature of scientific 
texts.

The rest of the paper is organized as follows: the Back-
ground section provides important background informa-
tion. The Methodology section presents our framework for 
automated label generation and details our two proposed 
approaches for automated label generation. It also presents 
the ML-based keyphrase evaluation approach employed, 
along with information about some of the other decisions 
made regarding label ranking and hyperparameter optimiza-
tion. The results obtained for our proposed approaches are 
presented and discussed in the Results section, and some 
important observations about the results and methods pro-
posed are discussed in the Discussion section. We conclude 
by presenting a review of related work in the Related Work 
section.

Background
Our text labeling approaches have been developed and inte-
grated into the ScienceSearch pipeline for automated meta-
data generation. In this section, we first present a summary 
of how the unlabeled JGI data artifacts that require labels are 
generated and stored. We then present a brief overview of the 
ScienceSearch infrastructure and how our work fits into the 
framework.

JGI data generation and management
The sequencing and computational analysis capabilities 
offered by JGI lead to the generation of massive volumes of 
labeled and unlabeled data artifacts.

The use of JGI’s facilities begins with an application pro-
cess, with submitted proposals evaluated by expert domain 
scientists as to their scientific significance and relevance to 
DOE science missions. As part of the JGI data management 
process, each approved proposal is assigned a unique inte-
ger Proposal ID that links projects and samples associated 
with the proposal. These archived proposals are the unla-
beled scientific texts of interest in this work. For further 

context on the content and structure of the JGI propos-
als, we provide links to two examples of the proposals in 
our data set (https://jgi.doe.gov/wp-content/uploads/2022/09
/example-JGI-Functional-Genomics-proposal.pdf, https://jgi.
doe.gov/wp-content/uploads/2020/08/example-NI-Proposal-
503942.pdf). The JGI proposals typically lack metadata 
related to their scientific contents, so developing techniques 
to automatically generate text labels is critical to facilitating 
search and indexing.

ScienceSearch
ScienceSearch (9) is a generalized scientific search infras-
tructure that uses ML to capture metadata from data 
and surrounding artifacts. The ScienceSearch platform 
enhances search capabilities across several scientific domains 
including genomics, earth sciences, and microscopy. The 
search capabilities provided by the ScienceSearch infrastruc-
ture are critical to advancing scientific data exploration, 
allowing end users to search across different data arti-
fact types (e.g. publications, proposals, file system paths, 
and images) and provide feedback on automatically gen-
erated tags. A key piece of the ScienceSearch pipeline is 
“SciKey,” the component responsible for automated metadata
extraction.

SciKey
“SciKey” (10) is a domain-specific, modular, customizable, 
keyword extraction pipeline that incorporates different natu-
ral language processing (NLP) extraction techniques for auto-
matically generating keywords and keyphrases from scientific 
data sets. Figure 2 shows a simplified representation of the 
three submodules that make up “SciKey”: “preprocessing”, 
“keyword extraction” and “keyword evaluation.”

The “preprocessing” module prepares the raw input data 
for NLP ingestion. Scientific texts typically contain domain-
specific, nonstandard text information such as abbreviations 
and acronyms, as well as nontext information such as num-
bers and punctuations. The preprocessing step contains sub-
modules for (i) dummy word removal, (ii) named entity 
recognition, and (iii) text cleaning. The “keyword extrac-
tion” module generates keywords from the sanitized texts via 
NLP. “SciKey” offers a suite of unsupervised learning algo-
rithms for NLP keyphrase extraction, including TextRank 
(11), RAKE (12), and YAKE (3). The “keyword evaluation” 
component of the “SciKey” pipeline computes quantitative 
metrics for the quality of the NLP keywords generated in the 
“keyword extraction” stage by comparing against a set of 
provided ground truths (i.e. labels) based on common infor-
mation retrieval metrics such as cosine similarity and F-1 
scores.

“SciKey” has been demonstrated to work well for labeled 
data sets (where ground truth labels are available). However, 
to take advantage of all the scientific information available, 
there is a need to extend these capabilities to unlabeled sci-
entific data sets such as proposals and reports (where ground 
truth labels are not available). The techniques developed in 
this work are integrated into the “SciKey” pipeline (a key 
component of the keyphrase extraction step in this work) as 
a potential solution to this challenge. 

Methodology
Figure 3 shows our automated label generation process and 
how it interacts with the “SciKey” pipeline.
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Figure 2. “SciKey’s” metadata generation pipeline and submodules.

Figure 3. Overview of the automated labeling and metadata generation process. Built on top of the “SciKey” module, the automated label generation 
process (shown in the rounded rectangle) takes in a text blob containing semantic information and a set of labels that are used for ML-generated 
keyword validation. Based on these labels, “SciKey” outputs a set of validated ML keywords (i.e. “good” labels) and quantitative metrics reflecting 
keyword quality.

The “text preparation” method extracts the semantic infor-
mation from the raw input data and converts it into a for-
mat suitable for further NLP processing. The “automated 
label generation” component generates text labels from the 
processed outputs of the “text preparation” method. The 
method offers two techniques for generating text labels that 
exploit real, publicly available (human) knowledge such as 
related scientific works and controlled vocabularies. Finally, 
the generated text labels from the “automated label gen-
eration” step are passed to SciKey’s “keyword evaluation” 
submodule to assess the quality of the ML-generated key-
words. The output from Scikey’s “keyword evaluation” is a set 
of quantitative metric scores that provide information about 
the quality of the ML-generated keywords when validated 
against the text labels. It should be noted that the automated 
label generation component and the first two SciKey modules
(“pre-processing” and “keyword extraction”) can be run in 
parallel.

Text preparation
The input data for the metadata extraction process are a raw, 
unlabeled data set of 2143 approved genomic research pro-
posals available as comma-separated text (“.csv”). The “.csv” 
file contains a subset of all research proposed for investigation 
with the facilities available at the JGI over a period of 12 years 
(2009–20). The proposal file contains 35 metadata fields, as 
shown in Table 1, and can be classified as containing two types 
of information:

Table 1. List of metadata fields available

Semantic fields Non-semantic fields

Proposal ID Other Collaborators
Type All Collaborators
Cycle Survey Comment

Title Focus Area Contracts Office 
Contact for UA

Description PI Name Transfer Agreements 
Contact

Justification PI Institution Non-US Samples

Utilization PI Email Samples Regulatory 
Compliance

Community Interest Co-PIs Primary Funding 
Source

DOE Mission Status Funding Source 
Comment

Sample Preparation Survey Choice Completion Date

Summary of Work All Institutions Planned Publications

Created At Syn Bio Total KB
Submitted At Syn Bio Data 

Mining
Date Approved

The fields containing semantic information are shown in the left column.

1 Fields containing document-related information about 
the proposal such as author institutions, proposal cycle, 
and completion date.
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Automated annotation of scientific texts for ML-based keyphrase extraction and validation 5

2 Fields containing semantic information related to the 
actual proposed research such as work description, 
justification, and community interest.

While the document-related information is useful for prove-
nance and data management purposes, they contain no infor-
mation of semantic value and only introduce noise to the 
NLP process. Thus, for the label generation process, we only 
consider the fields containing semantic information; fields 
containing only document-related information (excluding the 
“proposal ID” field) were discarded. In the “text extraction” 
step, we identify and extract the columns containing relevant 
semantic information from each proposal. Of the 35 fields 
available in the raw proposal data set, eight fields were found 
to contain useful semantic information about the proposal: 
the “title, description, justification, community interest, sum-
mary of work, sample preparation, utilization,” and “DOE 
mission” fields.

The text strings contained in the eight fields are joined 
together to form a single text string for the next steps of the 
process.

Automated label generation
We implemented two semiautomated techniques for gener-
ating quality text labels to be used in validating the ML-
generated keywords: artifact linkages and ontology matching.

Artifact linkages
Linking unlabeled artifacts to directly related artifacts with 
known labels can provide a set of “derived labels” with which 
the unlabeled artifact can be associated and/or archived. In 
our case, we linked the unlabeled proposals to publication 
records; with each proposal inheriting the keywords from 
the publication(s), it could be associated with directly. An 
advantage of linking to publications is that since they con-
tain human labels, the keywords transferred to the unlabeled 
texts as labels naturally incorporate the necessary semantic 
knowledge.

Figure 4 presents a schematic representation of the artifact 
linkage process. For our use case, artifact linkage was achieved 
by cross-referencing the list of proposals against a curated list 
of publications. For the JGI problem, publications with JGI 
users and personnel as authors are linked to proposals that 
produced data or materials used in a given publication. These 
linkages are established by a combination of automatic assign-
ments and manual curation by JGI staff. The proposal ID field, 
common to both proposals and publications, provided us with 
a way to link both types of artifacts. 

We created direct links between 184 proposals and 337 
publications by cross-referencing the full proposal set against 
a list of 488 JGI publications. The direct links were created 
by matching the unique “Proposal ID” field present in both 
types of data artifacts. These 184 proposals with associated 
publications were considered the training data/subset for the 
NLP keyphrase extraction model.

For each proposal, the keywords associated with the linked 
publications were then automatically curated from three 
online sources:

1 the “Author keywords” field from Web of Science 
(https://clarivate.com/webofsciencegroup/solutions/

Figure 4. Flowchart of the artifact linkage process for label generation

web-of-science/), a collection of keywords chosen by the 
author of the publication;

2 the “Keywords” field from PubMed (https://pubmed.
ncbi.nlm.nih.gov/), also a collection of author-defined 
keywords for the publication; and

3 PubMed’s “MeSH terms” field, a collection of con-
trolled vocabulary (medical subject headings) used to 
label articles topically by trained indexers.

Users will typically search for documents based on words 
expected to be present in its contents. Important keywords 
for a document will typically appear in the text body; words 
absent from a document’s content are less likely to be used 
to search for it. As such, we filtered out any keywords that 
did not appear in the proposal text. The remaining keywords 
obtained from these sources were assigned as training labels 
for the associated proposals (known as publication-derived 
labels henceforth).

The artifact linkage approach takes advantage of the rela-
tionships between artifacts; it is generally applicable and can 
be applied to any case where connections between labeled and 
unlabeled artifacts can be established in some way. This con-
nection can be in the form of numeric tags (e.g. IDs, funding 
award numbers), strings (e.g. filenames), or even established 
manually (through interactions with the researchers). Addi-
tionally, in research environments, most unlabeled artifacts 
such as proposals and theses often lead to publications, which 
can serve as at least one recognized source of labels that is 
common to all scientific domains. Generally, different artifact 
types will be related to one another to varying degrees, and 
the level of relatedness of the artifacts being linked will have 
an impact on the strength and validity of the keyword associ-
ation. In our case, there is a clear and direct link between the 
proposals for a work and the publications that arise out of it, 
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Figure 5. Flowchart of the ontology-based process for label generation

and thus the derived labels are mostly expected to have a high 
degree of validity.

Ontology-based text annotation
We use expert-curated ontologies to annotate the proposals 
and identify words/phrases within each unlabeled proposal 
that are representative of the ideas and topics explored.

Figure 5 presents the key steps in the ontology-based label-
ing process. We identify potential metadata using ontologies 
via a two-stage process:

1 Identifying relevant phrases and keywords that are rel-
evant to the domain (numbered 1–3 in Fig. 5).

2 Ranking the identified words and phrases in terms of 
importance to determine the proposal labels.

Identification of relevant phrases:
Written texts such as proposals are typically a mixture of 
both generic and domain-specific words and phrases. The 
goal of this step is to identify the list of all candidate labels 
for each proposal based on information curated by experts 
with domain knowledge. Ontologies predominantly con-
tain domain-specific terms and phrases, and exploiting them 
allows us to identify which words present in the proposal 
domain experts believe are relevant in the context of the 
environmental genomics domain.

For our use case, to generate the candidate set of poten-
tial text labels for the 184 training proposals, we created an 
application ontology called BERO, consisting of the genomic, 
biological, and environmental subject areas and compiled a 
list of all the identified words and phrases ( “matched terms”). 
Table 2 provides the components ontologies used to cre-
ate BERO. The ontologies are all open-source and publicly 

Table 2. Components of BERO

Ontology Focus/domain References

Environment Ontology (EnvO) Environmental 
features, habitats

(16, 17)

Gene Ontology (GO) Biological functions 
and processes

(18, 19)

Chemical Entities of Biological 
Interest (ChEBI)

Molecular entities (20)

National Centre for Biotech-
nology Information Taxonomy 
(NCBITaxon)

Organisms (21)

Ontology of bioscientific data 
analysis and management 
(EDAM)

Bioscientific data and 
bioinformatics

(22)

Plant Ontology (PO) Plant anatomy and 
genomics

(23, 24)

Molecular Process Ontology Molecular processes (25, 26)
Ontology for Biomedical 
Investigations (OBI)

Biomedical investiga-
tions

(27)

Phenotype And Trait Ontology 
(PATO)

Phynotype qualities (28, 29)

Ontology of core ecological 
entities (ECOCORE)

Ecological entities (31)

curated. The ontology is maintained on GitHub (https://
github.com/berkeleybop/bero) and is available from BioPortal 
(https://bioportal.bioontology.org/ontologies/BERO). Identi-
fied in collaboration with domain experts, the ontologies 
cover the entire spectrum of focus areas and work investigated 
by the institute, including genomics, multiomics, bioinfor-
matics, plants, organisms, and biological and environmental 
entities. We implement the ontology search and entity recog-
nition step by embedding links to the ontologies into text 
processing and annotation tools specific to the biomedical 
domain. We use two tools:

1 OntoGene Entity Recognition (OGER) (13, 14), a 
biomedical named entity recognizer, and

2 scispaCy (15), a python package for biomedical text 
processing and Named Entity Recognition (NER).

OGER and scispaCy parse the unlabeled text, query the var-
ious ontologies, and return an annotated list of matched 
terms. Part-of-speech tagging was done on the text with Scis-
paCy, allowing us to filter out parts of speech and matched 
terms that provided no information of semantic value (e.g. 
geographical locations).

An unguided ontology search would return every match 
found in the proposal texts without taking into account any 
sort of context, leading to some spurious word and phrase 
matches. At least two types of spurious matches were found 
to occur frequently:

1 cases where the ontologies matched words or phrases in 
the proposal exactly, but in the wrong context. This was 
found to be the case with words that have both domain-
specific and general-purpose meaning (e.g. data, well, 
and sample);

2 cases in which words in the proposals were wrongly 
matched to acronyms for domain-specific phrases. This 
was found to occur with shorter words, especially when 
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word stemming is applied. For example, an unguided 
search with the word “serv” (the stemmed version of 
the words serve and service) is a match (and acronym) 
for “simian endogeneous retrovirus type D, SERV” in 
NCBITaxon.

It is therefore important to implement search and downs-
election rules to minimize the likelihood of such spurious 
matches as candidate text labels. To achieve this and keep the 
size of the matched candidates manageable, two downselec-
tion rules were applied:

Branch pruning: Terms in the “branches” of the ontologies 
were selectively removed. Concepts in ontologies are typi-
cally categorized under a small number of subclasses called 
branches; in this case, we only considered a carefully 
curated selection of branches. This process, called “branch 
pruning,” was carried out before the ontology search (Step 
1 in Fig. 5). The curation process was handled by a domain 
scientist familiar with the ontologies to ensure that only rel-
evant ontology subclasses are retained. For example, within 
the Ontology of bioscientific data analysis and management 
(EDAM), of the branches “Topic,” “Operation,” “Data,”
“Data Identifier,” and “Format,” only the “Topic” branch 
was retained because it includes broader interdisciplinary 
concepts from the biological domain. Similarly, for Pheno-
type And Trait Ontology, only the “physical quality” branch 
was retained.

Exclude short words: Words with less than three characters 
were dropped from the matched terms list. This rule was 
implemented such that acronyms are unaffected, so impor-
tant keyphrases like DNA and Sulphur-Oxidizing Bacteria 
are retained. Short word removal is a postprocessing step 
after generating the ontology matches (Step 3 in Fig. 5).

The result of this step is the set of candidate labels present 
in the proposal that have been curated by experts with domain 
knowledge specific to the genomics field.

Ranking and filtering for ontology comparisons:
The output of the Ontology search process described ear-
lier is a rich corpus of words per document. However, the 
returned words and phrases are unranked and have no asso-
ciated scores to reflect the relative importance of the different 
words. Thus, we needed to devise an approach to rank the 
extracted labels. For this, we adopt the “document frequency” 
(DF), a measure of the rarity of a phrase in a given corpus. The 
DF for any phrase w is given by 

DF(w) =
number of documents containing the term w

total number of documents in corpus
.

With this metric, the more unique a word is, the more 
important it is. The frequency of a word is inversely related to 
its value, with uniqueness treated as a proxy for importance.

The ontology-based annotation process typically results 
in a large number of word/phrase matches per document. 
However, documents are typically indexed by a limited set 
of keywords (typically under 20). Therefore, there needs to 
be a downselection of the number of labels based on their 
importance, as the number of labels can significantly impact 
the keyword evaluation process. To control the number of 
text labels to be considered per document, we tested different 
threshold limits for the DF across the corpus. For any spe-
cific threshold limit, only words with a DF score below that 

limit were considered as text labels for the documents. The 
threshold limit considered ranged from 1% (limiting to words 
occurring at most in two documents in the corpus) to 100% 
(no limit on the frequency of occurrence), with 1% arbitrarily 
selected as the baseline value. Setting threshold limits achieves 
two purposes:

1 it serves as a way to control the size/number of 
ontology-derived text labels used in the evaluation pro-
cess and

2 it provides a way to independently assess the per-
formance of the NLP algorithm on different types 
of ontology-derived text labels. The DF metric is a 
measure of how unique a keyphrase is, so low DF 
threshold limits allow us to investigate performance 
on document-specific labels, while high DF thresholds 
allow us to evaluate performance on both specific and 
generic labels. For the baseline case, we want the labels 
to be as document-specific as possible and hence the 1% 
threshold.

The matched terms which fall below the set threshold 
limit were treated as potential labels for the proposals (called 
ontology-derived labels henceforth). These labels are for-
warded to “SciKey’s” keyword evaluation module.

The only requirement for the ontology-based approach 
is the availability of the domain-specific vocabularies. It is 
therefore generalizable to most ontology-aware domains (i.e. 
domains where collections of controlled vocabularies exist). 
We believe that there are a sufficiently similar usage and struc-
ture to most online ontologies that would allow our methods 
to apply to new domains. The applicability of the ontology-
based approach is expected to cover a wide breadth of 
domains, from biology to environmental sciences to linguistics 
to computing.

The derived labels generated from the artifact linkage 
and ontology-based approaches proposed here are passed 
to “SciKey” as ground truths to validate the quality of the 
ML-generated keywords and tune the NLP models (Fig. 3).

“SciKey” configuration for NLP keyphrase 
extraction and evaluation
As previously shown in Figure 3, the overall goal of the auto-
mated label generation process is to provide ground truth 
labels for the validation of ML-generated keywords from 
NLP algorithms. The ML keyword generation and validation 
process was done using the “SciKey” pipeline. Here, we sum-
marize the ML keyword evaluation process with the SciKey 
pipeline (Figure 2) for our use case.

Preprocessing:
First, the text from the “text preparation” step was sani-
tized for NLP ingestion. Punctuations, URLs, numbers, and 
citations were removed using Regex-based approaches. We 
employed NER techniques and custom expert-curated lists to 
handle nonstandard scientific words and concepts. The san-
itized text was then passed to the “keyphrase extraction” 
module.
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Keyword extraction:
For our use case, we selected the YAKE NLP algorithm (3); an 
open-source Python implementation is available on GitHub 
(https://github.com/LIAAD/yake). While “SciKey” offers a 
variety of unsupervised learning algorithms for keyphrase 
extraction, we focus on YAKE because, for our use case, it 
produced the best results of the NLP algorithms we consid-
ered (YAKE, Rake, and KPMiner) in the keyword evaluation 
step based on exact matching metrics. However, any of the 
algorithms available in the pipeline could have been selected 
for the analysis. YAKE returns the extracted keywords for 
each proposal. These keywords (called machine-generated or 
YAKE-generated keywords henceforth) were forwarded to the 
keyword evaluation component of the ScienceSearch pipeline.

We used the training subset of 184 proposals to tune the 
YAKE parameters that control how the ML algorithm was 
applied or “hyperparameters:”

1 n-gram size. Longest contiguous sequence of n-words 
occurring in the text (ngram ∈ [1,2,3]),

2 Window size. Sliding window size for YAKE 
(ws ∈ [1,2,3] )

3 Deduplication method. Similarity metric for control-
ling deduplication (dedupm ∈ [Levenshtein distance, 
sequence matcher, Jaro-Winkler]).

4 Deduplication threshold. Allowable similarity between 
candidate ML keyphrases (dedupv ∈ [0.6,0.7,0.8,0.9,
0.95]).

Hyperparameter tuning was done independently for the 
two sets of derived labels: for each top-N case, with N in 
(5,10,20), we ran all 135 combinations of the four hyperpa-
rameters and chose the combination with the best F-1 scores 
for the training subset (Eq. 3), resulting in a different set hyper-
parameters in each case. These optimized models could then 
be used to generate keywords for the 1959 available proposals 
not in our training subset.

Keyword evaluation:
The quality of the ML-generated keywords generated in the 
previous stage were evaluated here using the “keyword eval-
uation” component of the SciKey pipeline. The keyword 
evaluation module takes two inputs (Fig. 2):

1 a list of machine-generated keywords (produced in the 
“keyword extraction” submodule of SciKey) and

2 a list of derived or ground truth labels for the ML labels 
to be compared against (produced by either the artifact 
linkage or ontology-based text annotation techniques 
described in the Automated label generation section).

We adopt the exact matching approach where the ML-
generated keywords are compared against the derived labels 
for an exact string matching (2). For quantitative evaluation, 
we adopt the classical evaluation metrics used in information 
retrieval: precision, recall, and F-1 (2), 

precision =
number of correctly matched keywords

total number of extracted keywords
, (1)

recall =
number of correctly matched keywords
total number of assigned/derived labels

, (2)

F-1 = 2
recall−1 + precision−1

. (3)

Here, “correctly matched” means that the ML-generated 
keyword is also found in the list of derived labels. Stemming 
is applied to both the ML and derived labels using NLTK’s
PorterStemmer (https://www.nltk.org/_modules/nltk/stem/
porter.html) to eliminate spurious mismatches. We generate 
the metrics for top-N ranked (by YAKE) keywords, with N
being 5, 10, or 20.

Summary
We have presented two techniques by which labels may be 
automatically generated for unlabeled scientific texts. Once 
the semantically important section of the unlabeled text is 
identified and extracted, text labels can be (i) transferred over 
from generated from directly related research or (ii) generated 
using expert-curated ontologies. The derived labels generated 
by these techniques can be treated as ground truth labels for 
evaluating the quality of the ML-generated keywords (e.g. 
from the “SciKey” pipeline). The “automated label genera-
tion” pipeline is unique, providing us with alternative ways 
to evaluate the performance of an ML model and validate 
the quality of the ML-generated keywords without the depen-
dence on direct manual human labeling. The validated model 
can, in turn, be used to generate keywords for the rest of the 
corpus with a good degree of confidence. For example, while 
we are only able to create artifact linkages for a subset of our 
proposal corpus (184 out of 2143), the validated ML model 
we train can be used to generate keywords for the rest of the 
proposals. Thus, for scientific texts, exploiting the domain 
knowledge already available via ontologies and artifact link-
ages for the labeling are a first step toward the automation of 
keyword extraction.

Results
This work proposes two techniques—artifact linkages and 
ontologies—for validating ML-generated keywords for unla-
beled scientific texts. In this section, we assess the charac-
teristics and quality of both techniques. First, we present 
an analysis of the text labels generated by both approaches. 
We follow this with an analysis of the YAKE ML algorithm 
with respect to both sets of derived labels (NLP performance 
section).

These results were generated using Python 3.8 on a 
Thinkpad X1 Extreme running Windows 10 Pro version 
21H2 with 32GB RAM and an Intel i7 processor.

Analysis of derived labels
Both approaches derived labels for 184 scientific proposals.

Publication-derived labels
A total of 1294 labels were obtained from the keywords of 
publications associated with the proposals, as described in 
Artifact linkages. Figure 6a shows the distribution of the num-
ber of labels obtained per proposal. Most of the proposals 
(83%) have 10 or fewer labels, while roughly 4% of the 
proposals have over 20.
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Figure 6. Distribution of derived labels.

Table 3. “n-gram” summary for derived labels

 Publication-derived  Ontology-derived

No. of 
labels

Percent No. of 
labels

Percent

1-gram 1094 84.5 3360 62.7
2-gram 183 14.1 1810 33.7
3-gram 17 1.3 171 3.2
4-gram 22 0.4
Total 1294 5363

An assessment of the lengths of the derived labels (Table 3) 
shows that all the labels had between one word (unigrams) 
and three words (trigrams). About 85% of the labels are 
unigrams (one word), and less than 2% are trigrams (three 
words). The result is weighted more toward unigrams which 
is in line with other works such as Campos et. al. (30), 
who report averages of 47%, 34%, and 13% for unigrams, 
bigrams, and trigrams, respectively.

The 1294 labels contain 520 distinct words or phrases 
(Table 4). Frequency analysis shows that ≈ 70% of the labels 
are associated with one specific proposal, indicating that the 
labels generated for each proposal tend to be fairly unique. 
Over 80% of the labels are associated with two proposals 
at most (i.e. 1% of our training corpus). Of the 520 unique 
labels, nine (1.7%) occur in over 10% of the corpus. Table 5 
shows examples of some of the labels found. The most fre-
quent labels are typical and representative of the subject area, 
with the most common keyword, “genom” (stemmed version 
of genome and genomic), occurring in over 40% of the pro-
posals. The labels for each document are also semantically 
different in meaning and context; an evaluation of the pair-
wise cosine similarity scores of the labels of each proposal 
(Table 6) shows that most of the label pairs are semantically 
unrelated (both the average and median scores are close to 
zero), with over 90% of the label pairs falling between -0.15 
and 0.59.

To gain a better understanding of how the labels are 
linked to each other across documents, we investigated the 
frequency of co-occurrence of all 520 unique publication-
derived labels (Figure 7). Most label pairs either never co-
occur or only co-occur in the corpus once—of the 1 34 940 
potential co-occurrence pairs, only 681 pairs (< 1%) occur 

more than once. This suggests that the combination of labels 
for any specific document is unique and not redundant. As 
expected, the most frequent co-occurring label pairs are those 
made up of the most common labels (Table 5), with the top 
five pairs being “genom-metagenom” (23), “genom-divers” 
(21), “genom-sequenc” (20), “genom-bacteria” (16), and 
“bacteria-metagenom” (15).

Ontology-derived labels
A total of 5363 ontology matches were found for the 184 
proposals, using the methodology described in the Ontology-
based text annotation section. Figure 6b shows the distribu-
tion of the number of labels obtained per proposal. Most of 
the documents (≈ 76%) have 50 or fewer labels, while roughly 
4% of the proposals have over 100. An analysis of the ontol-
ogy terms (Table 3) reveals that the labels are more evenly 
distributed than in the publication-derived label case, with 
bigrams making up just over a third of the labels. Again, very 
few labels have more than two words. We find that a large 
proportion of the bigrams and trigram labels are simple com-
binations of the unigram labels identified (e.g. whole-genome 
sequencing and soil metagenome).

The predominance of unigrams and bigrams in both sets of 
derived labels is in agreement with the literature, which sug-
gests that people rarely use more than three terms to describe 
a given subject (33).

The 5363 ontology matches obtained contain 3933 distinct 
words or phrases (Table 4). Most of the matches are unique, 
with over 80% associated with one specific proposal. As with 
the publication-derived case, the pair-wise cosine similarity 
scores show that the labels for each document are also seman-
tically distinct in meaning, with over 90% of the label pairs 
falling between -0.17 and 0.28 (Table 6). Where synonyms 
of species or important concepts are present in the document 
(e.g. willow/salix, cycad/macrozamia), both terms are often 
identified as document labels.

NLP performance
We ran the YAKE NLP algorithm and evaluated the gen-
erated keywords as described in “SciKey” configuration 
for NLP keyphrase extraction and evaluation section. This 
section presents the performance against the publication and 
ontology-derived labels.
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Table 4. Summary of frequency of occurrence of all derived labels (after stemming) in 184 proposals.

Frequency  Publication-derived  Ontology derived

No. of labels Percent No. of labels Percent

1 360 69.2 3153 80.2
2 66 12.7 544 13.8
3 29 5.6 151 3.8
4 15 2.9 56 1.4
5 13 2.5 12 0.3
6–10 17 3.3 17 0.4
11–20 15 2.9 0 0
> 20 5 1.0 0 0
Total 520 3933

Table 5. Ten most and least common publication-derived labels (after 
stemming) by frequency

 Most common “genom”: 76, “bacteria”: 38, “divers”: 36, 
“metagenom”: 33, “sequenc”: 27, “gene”: 20, 
“carbon”: 20, “dna”: 19, “rna”: 19, “soil”: 16

Least common “aromat compound”: 1, “valor”: 1, “sac-
charum”: 1, “hybrid”: 1, “haplotyp”: 1, 
“phylogenet analysi”: 1, “polyploidi”: 1, 
“spontaneum”: 1, “sugarcan”: 1, “glycin 
betain”: 1

Table 6. Pair-wise cosine similarity statistics and examples.

Publication-derived Ontology derived

Mean 0.0645 0.0229
Standard deviation 0.02079 0.1430
min. -0.3461 -0.4306
5% -0.1575 -0.1626
50% 0.0143 0.0061
95% 0.5910 0.2742
max. 0.9903 0.9930
Top-3 most similar “cassava-manihot,”

“archea-bacteria,”
“soil-peatland”

“willow-salix,”
“cycad-macrozamia,”
“sand-quartz”

Publication-derived labels
Table 7a shows the results of evaluating YAKE against the 
publication-derived labels. The F-1 scores are similar to 
recently published results on keyphrase extraction for pop-
ular author-labeled scientific data sets such as Krapavin, 
Semieval2010, NUS, and Inspec (Table 8). Thus, we are able 
to obtain good metadata for the proposals (compared to the 
state-of-the-art). The best results were obtained at F-1@10, 
which indicates that @10 provides the best balance between 
increasing the number of correct matches overall (recall) and 
keeping the number of false positives low (precision). 

Table 9 summarizes the optimal YAKE hyperparameter val-
ues for the three F-1 cases. The optimal YAKE settings are 
similar in all cases; the only difference occurs in the choice of 
window size for the F-1@5 case. The optimal “ngram” size of 
one is not surprising given the heavy bias of the derived labels 
toward unigrams, as highlighted in the Publication-derived 
labels section.

Sample results from the first three proposal documents 
(Table 10) illustrate some aspects of the matches that are not 
obvious from the quantitative metrics. All three of the exam-
ples show that we can match both general (e.g. “genom”) and 

Figure 7. Co-occurrence plot for all publication-derived labels. Most of the 
labels either do not co-occur at all (white space) or co-occur once (small 
orange circles).

very specific keyphrases (“amanita”, “desulfitobacterium”). 
The third document shows that while the ML algorithm is 
unable to match the trigram keyphrase “evolut of symbiosi” 
since “of” is a stopword, it does match the component words 
“evolut” and “symbiosi”. Thus, while some of the keyphrases 
suggested by the ML algorithm are not present in the exact 
form listed in the derived labels and are penalized by the exact 
matching metric, they still represent valid keywords for the 
documents and should not be discarded. Furthermore, a cur-
sory comparison of the keywords to the proposal titles reveals 
that some potential representative keywords present in the 
ML-generated keyphrase list are absent from the derived label 
list. For example, the keyword “thersii” refers to the specific 
strain of Amanita under investigation and is thus an important 
keyword; however, the quantitative results do not capture this 
since it is not present in the list of labels. This suggests that the 
quality of the metadata obtained for the proposals extends 
beyond just the keywords matched and quantitative metrics 
and reflects one of the well-known challenges of extracting 
relevant keywords: the high number of candidate keywords 
that can be generated from any single text makes it difficult 
to position the most important ones at the top (3).

While the F-1 score is highest for the top-10 keywords, the 
choice of metrics for a search or indexing task may depend on 
the specific use case and priorities. In some situations, prior-
itizing precision may be more appropriate, while in others, 
maximizing recall is more important. For instance, during 
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Table 7. YAKE precision (P), recall (R), and F-1 scores on derived labels.

P R F-1

(a) Publication-derived
@5 0.255 0.246 0.250
@10 0.200 0.340 0.252
@20 0.149 0.438 0.222

(b) Ontology-derived for a DF threshold of 1%
@5 0.094 0.105 0.099
@10 0.079 0.138 0.100
@20 0.068 0.163 0.096

Table 8. Best F-1 scores reported in (2) for some classical scientific 
collections using the exact matching approach.

Data set Type F-1 @ 10 F-1 @ 20

NUS Full-text papers 0.259 0.243
Krapivin Full-text papers 0.190 0.161
Semeval2010 Full-text papers 0.208 0.219
Inspec Paper abstracts 0.278 0.295
Our work (w/YAKE) Proposals 0.252 0.222

For comparison, our results are shown in bold on the last row.

Table 9. Optimal YAKE hyperparameters with publication-derived labels

ws ngram dedupm dedupv

@5 3 1 Levenshtein distance, 
sequence matcher

0.9

@10 2 1 Sequence matcher 0.9
@20 2 1 Sequence matcher 0.9

research conceptualization, finding all relevant literature on 
a given subject is crucial, and in such cases, a higher recall 
may be more desirable. Our results show that predicting 
the top-20 keywords provides the highest recall, retrieving 
approximately 44% of the derived keyphrases (Table 7a). 
However, if noise in the ML results is a concern, precision may 
be a more appropriate metric to focus on, and F-1@5 repre-
sents the best option, ensuring that 26% of the generated ML 
keywords are relevant. 

Ontology-derived labels
Table 7b presents the results obtained for the JGI proposals 
with YAKE for the baseline DF threshold of 1%. The F-1 
scores obtained are slightly worse than those obtained with 
the publication-derived labels (Table 7a) as well as scientific 
data sets in the literature. This may be attributed to two rea-
sons. First, ontology searches do not account for semantic 
and contextual information, so while we find many ontol-
ogy matches, the matches also contain a lot of noise: matches 
that have domain-specific meaning but are not contextually 
important. For example, words like “co-culture,” “food,”
“annotation,” “assay,” and “human” are present as derived 
labels because they have biological relevance and are thus 
present in the ontologies, but they have little value as key-
words for the proposals. The absence of ranking for the ontol-
ogy labels means that these contextually irrelevant matches 
are difficult to separate out automatically. The NLP algorithm 
is thus unfairly evaluated because the performance metrics 
(recall and F-1) are computed based on an inflated number of 

Table 10. Examples of derived and ML-generated keyphrases obtained 
with YAKE for F-1@10.

Title
Publication-derived 
labels

ML-generated 
keyphrases

1 – Halorespir-
ing Firmicutes: 
Exploring genomic 
plasticity of closely 
related dedicated 
degraders with 
diverging ecophys-
iological features 
and bioremediating 
capacity

“desulfito-
bacterium,”
“genom”

“desulfitobac-
terium,” strain, 
isol, environment, 
sequenc, dehalobact,
“genom,” halorespir, 
bacteria, degrad

2 – Resources for 
study of diversity 
and divergence 
in Sorghum, a C4 
cereal model

polymorph, rice, 
evolut, diverg, trait, 
gene, “genom,”
“sorghum”

function, saccharum, 
crop, saccharina, 
sequenc, grass, 
variat, “genom,”
“sorghum,” divers

3 – Sequencing the 
genome of the basid-
iomycete fungus 
Amanita thiersii, 
a cellulose degrad-
ing fungus in an 
ectomycorrhizal 
genus

compar genom, 
evolut of sym-
biosi, “sequenc,”
“genom,” 
evolutionari,
“amanita”

symbiosi, ectomy-
corrhiz, evolut, 
thiersii, saprotroph, 
speci, “sequenc,”
“genom,” genu,
“amanita”

Table 11. YAKE performance on ontology-derived keywords for DF different 
thresholds.

 F-1

Threshold (%)

Average num-
ber ontology 
keywords 
(prestemming) @5 @10 @20

1.0 21.64 0.099 0.100 0.096
2.0 23.50 0.102 0.105 0.101
5.0 27.20 0.107 0.112 0.108
10.0 28.48 0.108 0.113 0.110
20.0 29.39 0.108 0.113 0.110
25.0 29.55 0.108 0.113 0.111
50.0 29.88 0.109 0.115 0.112
100 29.93 0.109 0.115 0.112

The highest F-1 score for each threshold is bolded.

false negatives. Second, ontologies often have additional syn-
onyms for a concept, in addition to the primary label, and can 
represent the same concept at different levels of abstraction. 
For example, “dehalobacterium” and “dehalobacterium sp.” 
exist as different entries in one ontology database and are thus 
treated as separate labels despite referring to the same bacteria 
genus. While a match to either of these terms is sufficient in 
reality, the evaluation technique penalizes labels not matched 
exactly (i.e. as false negative), leading to lower F-1 scores.

To understand the sensitivity of the results to the DF 
threshold value, we retrained the ML model with different 
threshold values from 1 to 100% and computed the F-1 scores 
(Table 11). The best F-1 scores are obtained when the NLP 
algorithm generates only 10 keywords; further increases in 
the number of keywords only worsen the NLP algorithm per-
formance. This indicates that keywords that are most unique 
to each of the proposal texts are ranked high and returned 
early by the NLP algorithm. The analysis also revealed that 
precision and recall are influenced differently by the selected 
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Table 12. Examples of ML-generated keyphrases obtained with YAKE @ 10; threshold=1%.

Title Derived labels (from ontologies) ML-generated keyphrases

1 – Halorespiring Firmicutes: Explor-
ing genomic plasticity of closely related 
dedicated degraders with diverging eco-
physiological features and bioremediating 
capacity

(36a) - halogen compound, dehalo-
gen, clostridium, dehalobact restrictu,
dehalobact, dehalobact sp., verrucomicro-
bium, gram-posit bacteria, sedimentibact, 
sedimentibact sp., desulfitobacterium, 
desulfitobacterium hafniens tcp-a, 
desulfitobacterium hafniens dp7, desulfi-
tobacterium hafniens, desulfitobacterium 
metallireducen, threat, reduct, adapt

plastic, elucid genom, halorespir, strain desulfi-
tobacterium, strain, dehalobact, genom sequenc, 
genom, desulfitobacterium, sequenc

2 – Resources for study of diversity and 
divergence in Sorghum, a C4 cereal model

(16) - high temperatur, fossil-fuel, 
population-genet, demograph, strength, 
mutat rate, bac, gene order, saccha-
rum, water suppli, johnson grass, motiv,
sorghum, saccharina, bank, attract

saccharina function, sorghum genom, sorghum 
genu, johnson grass, sorghum, saccharina, cell 
wall, genom, function genom, sorghum sorghum

3 – Sequencing the genome of the 
basidiomycete fungus Amanita thier-
sii, a cellulose degrading fungus in an 
ectomycorrhizal genus

(7) - decompos, cellulos degrad, amanita: 
thiersii, laccaria, amanita thiersii, laccaria 
bicolor, isotop

thiersii genom, genu amanita, compar genom,
amanita thiersii, ectomycorrhiz genu, heather 
hallen, genom sequenc, amanita speci, genom, 
ectomycorrhiz symbiosi

The total number of ontology-derived labels below the threshold is shown in brackets, while the matched keywords are in bold.
aOnly half of the 36 ontology-derived labels are shown here.

threshold and number of keywords. Precision increases pro-
portionally with the threshold but decreases with the higher 
number of keywords. On the other hand, while the recall 
increases with the number of keywords, it is relatively unaf-
fected by the selected threshold.

In all the F-1@10 cases, the best results were obtained in 
YAKE with setting ngram = 2. This marks a change from the 
optimal setting of ngram = 1 obtained with the publication-
derived labels (NLP performance section) and reflects the 
higher fraction of bigrams in the ontology-derived labels set 
(Table 3).

Table 12 presents the keywords obtained for the first three 
proposal documents for F-1@10 and threshold = 1%. A qual-
itative comparison of the generated keywords shows that we 
are able to find unigram and bigram keyphrases specific to 
each document (e.g. “johnson grass, saccharina”). However, 
keyphrases that are likely to be more generic (e.g. “genome”) 
are not validated because they are absent from the ontology-
derived label set (eliminated by the frequency filter). For 
example, the ML-generated keyword “cell wall” is present in 
the full list of labels for the second proposal; however it occurs 
in five documents (2.7%) and is therefore not considered in 
this case. It is worthwhile to note that some of the validated 
keywords match those found in the publication-derived labels 
case.

The labels for the first document highlight the key chal-
lenges with the ontology-based approach: we have at least 
three variants of Desulfitobacterium hafniense, while some of 
the labels would be poor representatives for the proposals (e.g. 
threat and adapt). Further postprocessing of the labels before 
ML would therefore be beneficial in improving the quality of 
the results.

Discussion
Strength of association and validity of derived 
labels.
The ML-generated keywords have been evaluated using 
keyphrases not directly associated with the texts, thus 
requiring an assessment of the validity of the derived labels. 

The publication-derived labels are from published works 
that directly leverage data or materials produced through 
the linked proposals. Thus, these labels are expected to be 
strongly representative of the proposals, but this may not 
always be the case. There are two specific conditions where 
the association may be weak: when the products of the 
proposal are used but do not play a significant role in the 
publication or when the publication covers topics or con-
cepts that differ from those originally stated in the proposal. 
In such cases, the publication-derived keywords may not 
accurately reflect the contents of a given proposal. Gener-
ally, however, we expect the publication-derived keywords 
to be representative of the proposals. The ontology-derived 
keyphrases are extracted directly from the proposal texts, 
making them strongly associated. However, with a frequency-
based ranking approach for the ontology-derived labels, ques-
tions remain over whether the frequency-based ranks assigned 
to the individual keyphrases accurately reflect their actual 
contextual and semantic importance as document labels. The 
publication-derived keyphrases are considered the more reli-
able of the two sources due to the semantic and contextual 
information incorporated by humans into the keyphrase selec-
tion process (expert annotators in the case of MESH terms 
assigned by PubMed). Developing a ranking approach that 
takes into account the contexts of the extracted keyphrases 
would help increase confidence in the ontology-derived
labels.

Quality and human-in-the-loop for derived labels.
Assigning labels and/or keywords to any document is inher-
ently subjective. User-specified labels are considered the gold 
standard for text summarization (32); however, even with 
that approach, not all the potentially correct keywords are 
assigned by users. Researchers typically pick keywords in ad 
hoc ways that are far from optimal and usually biased (33), 
and some phrases that are unsuitable as keywords are often 
included. We encountered the same challenge with the labels 
generated via artifact linkages (i.e. the publication-derived 
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labels): the ML algorithm found several good candidate key-
words that were absent from the derived labels list (e.g. “thier-
sii,” “halorespiring”). Thus, a “post-ML” step of human-in-
the-loop keyphrase validation of the ML-generated keywords 
will be beneficial for improving the quality of the publication-
derived labeling approach and ensuring that good keywords 
are not lost.

As expected, the ontology search returns significantly more 
derived keywords per document than the artifact linkage 
approach. However, it also returns a few generic, low-quality, 
nondomain-specific terms (e.g. “threat,” “strength,” and 
“attract”). With the ontology-derived labels, the challenge is 
the opposite of that described earlier with artifact linkage, 
with potential candidate keywords possibly being lost at the 
filtering stage. Thus, with the ontology-CR based approach, 
human-in-the-loop intervention to improve keyword quality 
will be most beneficial as a “pre-ML” step.

Generality of ML-generated keywords.
Our results show that the ML-generated keywords for both 
cases contain some keywords too generic to be semanti-
cally or contextually useful (e.g. “grass,” “diversity,” and 
“divergence”). These could be eliminated by improving the 
stopword list.

Regarding the validated (i.e matched) keywords, the results 
show that we can match both generic and document-specific 
keywords irrespective of the derived labels source. However, 
the ontology-based approach has the advantage of having 
a hyperparameter (i.e. the threshold limit) that controls the 
uniqueness of the validated keywords. This is very useful 
for eliminating words like “genome” and “sequencing” that, 
while domain-specific, will occur frequently in a genomic 
corpus.

Sensitivity to stopwords.
The results observed with the ontology-derived labels were 
found to be very sensitive to the list of stopwords. Some of 
the words generally found in scientific texts such as “obser-
vations,”, “findings,” and “field” have domain-specific con-
notations in the field of genomics and therefore have entries 
in biological and biomedical ontologies. Such words need 
to be handled explicitly to avoid their inclusion as potential 
ontology-derived labels, and the most logical approach is to 
include them in the list of stopwords. Thus, careful curation 
of the stopwords list is crucial if the ontology-based labeling 
process is to be adopted. Since the publication-derived labels 
are human-curated, such words are less likely to exist in the 
keyword list.

Performance.
The results show that we perform better in validating the 
labels generated via artifact linkages (i.e. the publication-
derived labels generated as described in the Artifact link-
ages section). This occurs because the publication-derived 
labels are fewer but of higher quality. A total of 44% of 
the ML-generated keywords were validated via the artifact-
linkage approach, compared to the 23% validated with the 
ontology-derived labels. The two cases require different n-
gram settings, each reflecting the “ngram” distribution of their 

derived labels. Both approaches have some validated key-
words in common; such keywords are expected to be good 
representative summarizations of the proposal texts.

Comparison against current state-of-the-art.
To demonstrate the benefits of our annotation methods, we 
compare our results against a state-of-the-art technique for 
text annotation, which involves the utilization of pretrained 
language models.

Table 13 shows the labels generated for three documents 
(same proposals shown in Tables 10 and 12) by two state-of-
the-art language models: Vicuna-7B (34) and LLAMA2-13B 
(35). The language models were run on graphics processing 
unit (GPU) nodes on the National Energy Research Scien-
tific Computing Center (NERSC) Perlmutter supercomputer; 
details about the exact prompt may be found in the Appendix 
A: Generative model prompt for label generation section. 
First, we observe that Vicuna-7B fails to generate labels for 
the first two documents because the proposal lengths exceed 
the maximum context window size (2048 tokens). This high-
lights one of the challenges with using language models for 
annotation: while they work well for short documents such as 
abstracts, they can often fail for longer documents (although 
techniques such as chunking can be used to get around this). 
The approaches we present in this work, which are unaffected 
by the length of the unlabeled texts, provide an alternative in 
such cases.

A comparison of the labels produced by the language 
models against our methods shows that our non-ML-based 
approaches find over 50% of the labels suggested by the 
language models. This indicates that there is fairly good 
agreement between our approaches and the state-of-the-art; 
the remaining portion of unmatched terms generated by the 
language model would require validation themselves. While 
Vicuna-7B and LLAMA2-13B find some good labels not 
suggested by our approaches (e.g. “halorespiration, biofeed-
stock”), they also miss other quality labels found by our 
methods (e.g. “desulfitobacterium, Johnson grass”). In cases 
where the matches are partial, we find that this is because our 
proposed approaches tend to find more specific terms than the 
language models (e.g. “gram-positive bacteria” and “cellulose 
degradation” from our methods vs. “bacteria” and “cellu-
lose” from the language models). In such cases, we believe 
that our more specific labels are more useful. Overall, we find 
that the quality of the labels generated by our approaches are 
at least as good as those obtained with the pretrained language 
models. Our methods achieve this at significantly lower com-
putational and financial costs. Language models have large 
memory (i.e. RAM) requirements, often necessitate the need 
for special hardware to run efficiently locally (e.g. GPUs), and 
may incur financial costs at inference time (e.g. GPT models); 
our proposed approaches do not require anything more than 
a desktop machine (no GPUs required).

An additional consideration here is that the use of ML tech-
niques to generate the labels for evaluating the performance 
of another ML algorithm is conceptually circular; validating 
one ML algorithm with another lacks independent verifica-
tion, raising questions around the credibility of the outputs. A 
key strength of our labeling approaches, which do not rely on 
machine learning, is that rather than depending on ML models 
to validate themselves or one another, we identify human-
generated labels for validating the output of ML models. 
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Table 13. Comparison against two state-of-the-art language models.

 Vicuna-7B  LLAMA2-13B
Doc No. Labels % match Labels % match

1 - - dehalogen, genom, adapt, pollut, bac-
teria, sequenc, halorespir, microdivers, 
environment, biotechnolog

60%

2 - - diverg, saccharina, sorghum, evolut, genom,
divers, C4 photosynthesi, biofeedstock, 
variat, select

50%

3 genom, compar genom, laccaria 
bicolor, cellulos, symbiosi, fungu, 
ectomycorrhiz, saprotroph, phylo-
genet, carbon metabol

50% genom, amanita, thiersii, symbiosi, cellulos,
saprotroph, ectomycorrhiz, carbon, metabol, 
biofuel

50%

Inference time (s)  17.3  26.4

The bold words are exact matches to either the publication- or ontology-derived labels, while the words in italics are partial matches. Vicuna-7B fails for the 
first two documents due to context window restrictions.

This is essential for transparency and to eliminate bias, given 
the black-box nature of current language models. Thus, our 
methods achieve comparable performance to state-of-the-art 
approaches while significantly requiring significantly lower 
computational costs. Notably, our approaches retain the cru-
cial element of human-like validation, support transparency, 
and demonstrate enhanced suitability for longer documents 
and privacy-sensitive use cases (e.g. with JGI proposals which 
are not public).

We acknowledge that the language models can be used to 
generate keywords for the documents directly, rather than to 
generate labels for training an NLP model like YAKE. The 
keywords we used to validate our YAKE model also could 
arguably be used to train or provide context to more mod-
ern models instead. However, the inference process with this 
approach would be both computationally expensive and time 
consuming and thus would not scale well to a large cor-
pus. For example, running YAKE for all 184 documents on 
a desktop takes 11.2 s (i.e. 0.06 s per document); in com-
parison, generating keywords from Vicuna-7B and LLAMA-
13B requires 5–9 s per document on a 40GB RAM GPU 
supercomputer node.

Generality of proposed text labeling approaches.
While this work demonstrates the applicability of the text 
labeling approaches proposed in the genomics domain, we 
believe that the techniques are generalizable to other scientific 
domains.

The artifact linkage approach comprises three main steps 
(Figure 4): (i) document cross-referencing, (ii) keyword collec-
tion for linked artifacts from online scientific databases, and 
(iii) keyword filtering. The cross-referencing step involves the 
use of additional input in the form of labeled artifacts that can 
be linked to the unlabeled input texts. Most unlabeled scien-
tific texts can be directly linked to specific scientific research 
projects that produce other labeled artifacts, such as publi-
cations or DOE technical reports. However, while JGI has 
implemented workflows and practices for associating publi-
cations with user proposals, doing so may be a nontrivial 
and expensive process, and the information required to create 
these links reliably may not always be available. Furthermore, 
the criteria for associating research artifacts like publications 
and proposals could be different at other organizations than 
those used by JGI. Having access to an existing corpus or a 

means for producing similar artifact linkages is thus a pre-
condition for this approach. Provided that an organization 
can satisfy this precondition, a new application will simply 
require custom scripts based on how the artifact links are 
created and the systems involved. The resulting information 
remains the same as that leveraged in the present study, mak-
ing the cross-referencing step feasibly generalizable to other 
domains. Additionally, the cross-referencing step only requires 
enough information that allows the labeled text to be found 
(e.g. title, DOI, or PMID), not the full document itself. The 
second stage of the artifact linkage process is generic and 
can be applied out of the box if the labeled documents are 
on PubMed or Web of Science. For other online databases 
(e.g. Scopus), custom methods specific to parsing information 
for those databases will be required, but the general con-
cepts will remain the same. The keywords are extracted from 
the metadata that third-party databases have indexed about 
the articles, rather than from the articles themselves. The 
approach, therefore, avoids paywall bottlenecks. The final 
keyword filtering stage utilizes Regex string matching—it is 
generic and requires no additional customization to use. Thus, 
while the process of identifying the link between the labeled 
and unlabeled artifact may be bespoke based on how connec-
tions between the artifacts are established, the other steps are
generic.

The ontology-based approach for the text label generation 
consists of four main steps, as shown in Figure 5: branch prun-
ing, ontology term matching, short word filter, and threshold 
filtering. To use the ontology-based approach in a different 
application area, the first stage of the pipeline needs to be 
modified to fit the specific domain of interest by incorporating 
and integrating the links to the appropriate domain-specific 
ontologies into an NLP tool. Most scientific application areas 
are ontology-aware (36), and there is a reasonable similarity 
in usage and structure to most online ontologies that would 
allow the proposed methods to be applied directly to those 
domains. Thus, while the ontology embedding stage requires 
some domain-specific customization, the requirements, infor-
mation, and tools required are the same irrespective of the 
domain, making the approach generalizable. The remaining 
stages of the pipeline require no modifications or domain-
specific customizations and can be implemented essentially as 
described in this work.

An example use case where these methods could be applied 
beyond our JGI use case is in enhancing the accessibility 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baae093/7780645 by guest on 05 N

ovem
ber 2024



Automated annotation of scientific texts for ML-based keyphrase extraction and validation 15

of the wide variety of social science research data sets 
available through the Inter-University Consortium for Politi-
cal and Social Research (ICPSR (https://www.icpsr.umich.edu/
web/pages/)). ICPSR curates and maintains linkages between 
its hosted data sets and scientific literature and provides 
public unlabeled, unstructured text information describing 
the hosted data sets (https://www.icpsr.umich.edu/web/pages/
ICPSR/citations/). Exploiting the publication-data set linkages 
already available would provide a way to generate labels for 
the unstructured text contents of the data set descriptions. 
Similarly, our ontology-based approach could be applied to 
generate labels for the data set descriptions. The social sci-
ence domain is ontology-aware; for example, the report by 
National Academy of Sciences, Engineering and Medicine (37) 
provides a list of some of the existing ontologies in the behav-
ioral sciences. Ontologies representing different social science 
subfields of interest (e.g. behavioral science, education, aging, 
and criminal justice) would need to be identified and curated 
into a single ontology. In the absence of domain-specific NER 
tools, the ontologies can be embedded directly into general-
purpose NER tools such as SpaCy(38). Once this is done, our 
technique could be applied directly to generate labels for the 
data set descriptions.

Related Work
In this section, we present a brief review of works related to 
keyword extraction and initiatives to automatically label or 
augment data for NLP.

Keyword extraction:
There is a large body of work focused on addressing the 
longstanding problem of extracting relevant keywords from 
scientific data. NLP provides the capacity to understand 
(39,40), summarize (41), paraphrase (42), categorize (43), and 
extract key terms and phrases (44) from scientific texts. Super-
vised, semisupervised, and unsupervised ML methods have 
all been applied to keyphrase extraction problems to varying 
degrees of success (45) and (46) provide an extensive review of 
the current state-of-the-art. Within the context of keyphrase 
extraction, the approach we adopt in this work (via SciKey) 
is unsupervised, with additional capabilities for incorporat-
ing domain-specific text processing, named entity recognition, 
and frequency analysis.

Automated text labeling and data augmentation:
There have been numerous efforts to automatically label 
and/or improve the training data for these NLP problems. 
The traditional approach to addressing the lack of labels has 
been to focus on generative data augmentation using pre-
trained or large language models (47–50). With this approach, 
a small amount of labeled data is used to train a language 
model that produces labeled synthetic data for supervised 
NLP tasks, with the synthetic data used to train the final 
NLP model. For example, several researchers have adopted 
this approach to perform data augmentation for text classi-
fication by fine-tuning a language model to synthesize new 
inputs x for a given label y (47, 48). Similarly, data augmenta-
tion techniques such as “AugGPT” (51), “GPT3Mix” (52), 
“LAMBADA” (53), and “DARE” (50) generate synthetic 
training data for supervised learning and text classification 

by fine-tuning neural network models such as GPT-2 (54) 
and GPT-3 (55). More recently, the concept of “zero-label 
language learning” for NLPs has been explored to eliminate 
the need for fine-tuning the pretrained language models (55, 
56). With zero-label language learning, no human-annotated 
data are used anywhere during training: the NLP models are 
trained purely on synthetic data generated from pretrained 
language models. For example, the “Unsupervised Data Gen-
eration” technique (56) uses a few user-supplied unlabeled 
examples to train a language model to synthesize high-quality 
training data without real human annotations; the model 
produces comparable results to baseline models trained on 
human-labeled data for classification problems. Furthermore, 
with the successes of foundational language models such as 
GPT-3, GPT-4 (57), and LLAMA (35, 58), there have been 
attempts to apply large language models directly to unlabeled 
data annotation task via prompt engineering and in-context 
learning; for example, (4) evaluates the capabilities of GPT-
3 for different data annotation tasks such as classification
and NER.

Weakly supervised learning approaches that depend on 
programmable rules and heuristics (i.e. labeling functions) 
to generate labels or synthesize new examples have also 
been explored (59); however, the technique works best on 
classification problems, and defining sensible rules is difficult.

The aforementioned approaches allow us to generate 
labeled training data for supervised and unsupervised ML 
training and validation; however, they either require some 
labeled examples to fine-tune the language models (4), work 
only for text classification, do not label the existing data 
directly, require significant postprocessing (56), or do not take 
into account the domain-specific nature of scientific texts, thus 
limiting their applicability to the labeling of domain-specific 
scientific artifacts for keyphrase extraction. Using pretrained 
language models for text labeling is also computationally 
intensive and often fails to cover the full diversity and com-
plexity of real examples (47). Previous research has shown 
that large language models like GPT-3 may not perform well 
when applied directly to complex data annotation tasks such 
as NER without additional fine-tuning (4, 60), although prop-
erly contextualizing generative models with domain-specific 
knowledge is a promising approach for science tasks (at the 
risk of losing generalizability). Generative models also suf-
fer from hallucinations (61), which make them less attractive 
for science tasks where reliability and reproducibility are
critical.

The methods proposed in this work address some of these 
challenges. Our approaches generate labels for the existing 
training data rather than creating synthetic training data; they 
require no pretrained language models or labeled examples. A 
unique feature of the methods we present in this work is that 
our proposed techniques do not use ML techniques for the 
label generation/assignment task at all; instead, we primar-
ily exploit real available public (human) knowledge such as 
related scientific works and controlled vocabularies. This has 
several advantages. First, our proposed approaches are partic-
ularly suited to handle and exploit the domain-specific nature 
of scientific texts, a task that would be more difficult with 
out-of-the-box pretrained general language models. Second, 
in addition to being computationally inexpensive, the meth-
ods developed here allow us to carry out keyword assignment 
and extraction tasks, not just text classification.
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Conclusion
In this work, we presented two approaches to automati-
cally generate labels for validating ML-generated keywords 
for unlabeled texts. The first approach overcomes the lack of 
user-defined labels by exploiting direct links between scien-
tific proposals and publications. In the second approach, we 
take advantage of domain-specific ontologies and frequency-
based techniques to produce a set of derived labels against 
which the ML-generated keywords were validated. The results 
show varying degrees of success for both approaches based 
on the exact matching technique, with up to 44% of the link-
derived keywords found by the ML algorithm and more than 
one in four of the extracted ML keyphrases found to be rel-
evant. The approaches presented in this work can be applied 
to enhance data curation and improve the search of unlabeled 
texts in scientific databases and other information retrieval
systems.

In the future, we plan to develop additional intelligent 
techniques for ranking the ontology-derived labels that incor-
porate semantic and contextual information. Furthermore, 
we plan to expand these approaches for validating unlabeled 
texts to other scientific artifacts (reports and theses) and other 
domains such as earth sciences.
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Appendix A: Generative model prompt for 
label generation
For our comparison against state-of-the-art generative mod-
els, we generate labels for the given input text using Vicuna-7B 
and LLAMA-13B. The prompt, in both cases, was to generate 
the best 10 keywords for the specified text.

For example, below is the exact prompt used for
LLAMA-2: 
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