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Efficient codes for multi-modal pose regression
Leif Johnson Joseph Cooper Dana Ballard

Department of Computer Science, The University of Texas at Austin, USA
{leif,jcooper,dana}@cs.utexas.edu

Abstract

Redundancy reduction, or sparsity, appears to be an
important information-theoretic principle for encoding
natural sensory data. While sparse codes have been
the subject of much recent research, they have primarily
been evaluated using readily available datasets of natu-
ral images and sounds. In comparison, relatively little
work has investigated the use of sparse codes for repre-
senting information about human movements and poses.
This paper proposes a basic architecture for evaluating
the impact of sparsity when coding human poses, and
tests the performance of several coding methods within
this framework for the task of mapping from a kinematic
(joint angle) modality to a dynamic (joint torque) one.
We show that sparse codes are indeed useful for effective
mappings between modalities and examine in detail the
sources of error for each stage in the model.

Overview
Recent work from machine learning (Ranzato, Boureau,
& LeCun, 2007; Lee, Battle, Raina, & Ng, 2007)
and neuroscience (Olshausen & Field, 1996; Smith &
Lewicki, 2006) has emphasized the role that sparsity, or
redundancy reduction (Barlow, 1961), appears to play
when coding sensory data. Sparse codes are well suited
to represent natural sensory data because the space of
all possible inputs (e.g., all possible 1000× 1000 images)
is not uniformly covered by the samples (e.g., photos or
retinal inputs) that we tend to encounter in the natural
world. In fact, many types of natural data are theo-
rized to lie along a low-dimensional manifold embedded
in the larger space (Olshausen & Field, 2004). Sparse
codes are effective for representing data along such low-
dimensional manifolds because the basis vectors in the
code can be used efficiently (i.e., using just a few nonzero
coefficients) to indicate, for a particular data point, its
location along the manifold rather than its coordinates
in the higher-dimensional space.

Many of the results in this area of research have fo-
cused on codes for sensory information like images and
sounds. Concurrently, research in control theory has
suggested that human movements might also lie along
a relatively low-dimensional manifold embedded in the
space of all possible movements (Scholz & Schöner, 1999;
Latash, Scholz, & Schöner, 2002). Sparse codes might be
useful, then, for representing information about move-
ment and pose in humans. To our knowledge, however,
such codes have not been evaluated extensively on nat-
ural movement or pose data.

This paper proposes a basic architecture for testing
the effectiveness of a broad class of coding techniques
when mapping from kinematic (joint angle) to dynamic

(torque) data in human poses. While computationally
straightforward, the model allows us to compare and
evaluate several possible approaches to this coding and
regression task. We show that, for the class of tech-
niques captured by our model, sparsity is indeed useful
for representing and manipulating pose data. In fact,
even though the absolute decoding error associated with
sparse codes can be larger than the corresponding ab-
solute error for dense codes, the information captured
by each coefficient in a sparse code is larger than for
dense codes. In addition, sparse codes appear to facil-
itate the task of mapping or regressing from one infor-
mation modality to another, making these codes partic-
ularly interesting from the perspective of a whole organ-
ism, which must integrate information from many dif-
ferent sources of information to make effective survival
decisions.

Problem setting
The human body is marvelously complex, with over 630
muscles and, by some estimates, more than 240 degrees
of freedom (Winter, 2009; Zatsiorsky & Prilutsky, 2012).
Despite this complexity, humans are skilled at control-
ling their bodies to make movements that accomplish a
wide variety of tasks in the world. Humans also seem
to be skilled at transforming information about move-
ment between different modalities. For example, a per-
son can normally mimic the posture of another person
without much conscious effort, even though this task re-
quires some sort of conversion from the visual configu-
ration of the conspecific’s body (possibly expressed in
world or visual coordinates) to the kinematic configura-
tion of their own. Along these lines, it is conceivable that
the tasks of computing potential movements, evaluating
proposed movements, and selecting and executing a par-
ticular movement all require separate ways of looking at
the movements.

Studying human movements is difficult: the param-
eters describing movements are high-dimensional and
time-varying, and, in addition, most of the quantities
that are relevant for describing the control of movement
are invisible to an outside observer. Although we do
not have a practical way to observe the control signals
or even accurately measure all of the joint torques or
angles during a complex, multijoint human movement,
we can use technologies like motion capture (Figure 2)
to measure the external aspects of movement with high
accuracy. Given motion capture data, Cooper and Bal-
lard (2012) proposed a technique to compute the angles
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Figure 1: Information processing architecture for multi-
modal coding and regression. Information from a frame
of one modality of pose data, such as angles (orange), is
to be mapped onto information from another modality,
such as torques (blue). This mapping is accomplished by
coding a frame of angle data, augmented with its deriva-
tive ∆, using parameters P; likewise, torques augmented
with derivatives ∆ are encoded using parameters Q. Fi-
nally, a parametric regression R is computed between
the codes (yellow and green).

and forces that would have been required for a simplified
model of the human skeleton to effect the same move-
ments. These computed angles and forces, while still a
coarse proxy for some of the information that might be
used by the central nervous system, constitute the data
for this paper.

Theoretically, one could transform information from
one modality into another by amassing a large quan-
tity of corresponding data from these two modalities and
computing regression coefficients directly. However, this
is inefficient for at least two reasons. First, computing
a regression between two datasets becomes increasingly
problematic as the dimensionality of the data increases;
this difficulty is compounded when there is noise in the
data. Second, if the manifold hypothesis is accurate,
then each modality of the raw data will have statistical
redundancies that would need to be captured by the re-
gression process. Rather than working in the space of
raw measurements, then, we hypothesize that manipu-
lating or combining movement information is more effi-
cient in a space defined by codes that somehow repre-
sent the raw signals (Srivastava & Salakhutdinov, 2012).
The question addressed by this paper is, which types of
codes are most efficient for processing information about
movement?

Pose coding and regression
We assume that we have a set of data that represents
kinematic and dynamic views of human motion, modeled
using an articulated body with n degrees of freedom, and
measured over a consecutive sequence of m discrete time

steps. Formally, we represent a sequence of raw joint
angles as a matrix B ∈ Rn×m, where each column b(t)

represents a single frame of angle data. Similarly, we
represent a sequence of raw joint torques as a matrix
U ∈ Rn×m whose columns u(t) each contain a frame of
torque data. We define these matrices as complementary
views of a single motion trajectory, so that for any frame
t, the joint angles b(t) correspond to the torques u(t).

As mentioned above, movement is complex to model
because it is high-dimensional (n is often large) and
varies over time (m is often large). Rather than at-
tempt to tackle both of these challenges at once, we sim-
plify the modeling task here by considering the task of
mapping between these two modalities for single poses
(frames). Such a simplification makes the modeling task
obviously difficult, since a single frame of kinematic pose
data, for instance, does not indicate the direction in
which the joint angles will be changing in subsequent
frames. To address this issue, we make use of a com-
mon technique from speech recognition (Picone, 1993)
and augment each of the raw data frames in our system
with its first derivative. This provides information about
the rates at which the angles and torques are changing,
which could be useful when trying to compute torques
on the basis of angles. The augmented data matrices
A,V ∈ R2n×m are then defined as

A =

[
B
∆B

]
and V =

[
U
∆U

]
,

where ∆X(t) = (x(t+1) − x(t−1))/2 represents a secant
approximation to the derivative at each frame.

Having created a set of kinematic and matched dy-
namic data describing sequences of human poses, we
propose an information processing architecture for com-
puting regressions from angles to torques. In this frame-
work (see Figure 1), a single frame of n input angles,
augmented with its derivative, is encoded first into k
angle-code coefficients using a coding model character-
ized by parameters P ∈ Rk×2n. Then a regression model
characterized by parameters R ∈ Rk×k transforms the k
angle-code coefficients into a k torque-code coefficients.
Finally, this torque encoding is converted back into a
frame of n torques, augmented with its first derivative,
by inverting the torque coding model characterized by
parameters Q ∈ R2n×k. If the manifold hypothesis holds
for human pose data, then code parameters P and Q can
be learned independently, because these parameters will
describe the structure of the manifold for each modal-
ity of pose data; codes for each manifold should then be
useful for a wide variety of other information processing
tasks (Vincent, Larochelle, Lajoie, Bengio, & Manzagol,
2010). Regression parameters R can then be learned
using the encoded data from each modality.

Given our parametric framework for coding and re-
gression, the coding approaches considered here all as-
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sume a finite “codebook” D ∈ R2n×k whose columns di

each represent a “basis vector” that is used in some way
to encode data. This paper does not focus specifically
on learning the codebook, though it does mention a few
approaches to codebook learning below.

Separating the model into coding and regression stages
brings three advantages to the problem at hand. First,
it allows us to manipulate the number of parameters in
the model in a controlled way. The multistage model
contains k2+4kn parameters, while direct regression re-
quires 4n2 parameters. When k < 2n, the multistage
model has fewer parameters than direct regression, but
when k exceeds the dimensionality of the data, the mul-
tistage model has more parameters. Models with more
parameters tend to be more accurate, but they might
overfit the data and capture more noise than desired.
Second, separate modules for coding in each modality,
and regression between codes, allows for in-depth anal-
ysis of the performance of each module: codes for one
modality that provide for low decoding error could also
be ones that do not permit easy regression, for example.
Finally, defining distinct coding modules permit an anal-
ysis of the degree to which coding, in isolation, provides
an efficient representation of the data.

Coding algorithms
Mathematically, this paper treats coding as a general
term for transforming a vector of raw data x ∈ R2n

into another vector of coefficients z ∈ Rk, such that z
contains sufficient information to recover x with some
tolerated level of error. More formally, coding is often
defined in terms of minimizing a cost function

∥g(D, z)− x∥22 + λR(z)

where g(D, z) refers to a decoding operation that con-
verts coefficients z into an estimate of the raw data x̂,
and R is a regularizer that can be chosen to prevent over-
fitting, promote sparsity in the code, etc. For this paper,
we evaluate several approaches to coding, each described
briefly below.

PCA Principal component analysis (PCA) is widely
used as a data preprocessing technique, but here we use
PCA to refer to an encoding that simply computes the
inner product of a data point x with each of the codebook
vectors di: that is, z = DTx.

The PCA codebook consists of the eigenvectors of the
covariance matrix of the data, sorted in decreasing or-
der of magnitude of the corresponding eigenvalue. By
retaining only the first k eigenvectors in the codebook,
PCA retains the maximally varying components of the
data first, and progressively refines the error by retaining
smaller components.

Used in this way, PCA implicitly models the under-
lying data as a multivariate normal distribution. Be-
cause the codebook for PCA is composed of eigenvec-

tors (which are orthogonal to each other), there can be
at most as many codebook vectors as dimensions in the
input data.

K-means K-means (MacQueen et al., 1967) can be
seen as an extremely sparse coding technique that rep-
resents a data point x using only the closest basis vector
in the codebook: for this approach, z = [ξ1 . . . ξk]

T such
that

ξi =

{
1 if ∥x− di∥2 < ∥x− dj∥2 for j ̸= i

0 otherwise.

The codebook corresponding to this coding approach
is learned from the data by setting the di to random
elements from the training data, and then iteratively
adjusting the columns of D so that the sum of the Eu-
clidean distances from each data point to its closest code-
book vector is minimized.

Sparse coding Sparse coding (Tibshirani, 1996), also
called lasso regression, computes the coefficients z for
data point x by minimizing a least-squares cost function
with a regularization penalty on the magnitude of the
code coefficients:

z = argmin
ζ

∥Dζ − x∥22 + λ ∥ζ∥1 .

λ is a parameter that controls the tradeoff between accu-
rate representation and sparsity; following results from
the literature, we set λ ∝ 1/

√
n.

Coates and Ng (2011) reported that sparse coding
worked well across many types of codebooks for their
tasks (image classification). For this coding algorithm,
then, we tested several different codebooks: random,
sampled, and learned. The random codebook consisted
of IID vectors drawn from the standard normal distribu-
tion, normalized to unit length. The sampled codebook
contained samples drawn uniformly from the training
data, also normalized to unit length. The learned code-
book used a fast, online algorithm developed by Mairal,
Bach, Ponce, and Sapiro (2009) to tune the codebook
to the data. Briefly, the general algorithm is a variation
of coordinate descent, where sparse encoding computa-
tions are alternated with codebook updates. The code-
book learning process attempts to minimize the lasso
cost function above, both with respect to the codes z
and also with respect to the codebook D.

Regression
Once codes have been computed for the source and tar-
get datasets, the next task is to compute a regression
matrix R that will convert coefficients from one modality
into coefficients from another. We used ridge regression
(Hoerl & Kennard, 1970) to compute the best parame-
ters for inferring coefficients across coded modalities. We
can express the regression task between codes zα and zβ
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Figure 2: The motion capture environment consists of
a full-body motion capture suit (black, with red LEDs),
and a treadmill centered in the motion capture space.

as optimizing the cost function

∥Rzα − zβ∥22 + λ∥R∥2F

where λ captures the degree to which the modeler is
willing to tolerate large values in R when explaining the
observed data. Essentially, ridge regression is the same
as linear regression, but it adds a penalty on large values
of the coefficients that are used to describe the data. In
our experiments, the value of λ was set empirically by
cross-validation on the training set.

Experiments
To measure and collect human movement data, we used
a 16–camera Phasespace1 motion capture system in con-
junction with a standard treadmill (Figure 2). Human
subjects in the motion tracking area wore a full-body suit
equipped with active-pulse LED motion tracking mark-
ers and were recorded as they walked and ran on the
treadmill at a variety of speeds.

For the results reported here, we recorded the posi-
tions of L = 48 markers from one subject as he walked
at speeds ranging from 0.22 to 2.68 m/s. The record-
ing lasted twenty minutes. The Phasespace system pro-
duces frames of motion capture data at a rate of 120Hz,
so this recording resulted in more than 120,000 frames
of raw motion-capture data. These frames were pro-
cessed using the articulated forward model proposed by
Cooper and Ballard (2012), resulting in three sequences
of measurements for the observed motion: the sequence
of interpolated marker positions X =

[
x(1) . . . x(N)

]
1
phasespace.com/impulse_motion_capture.html

representing the positions of the segments of the artic-
ulated model over time; the sequence of observed an-
gles A =

[
a(1) . . . a(N)

]
for each of the 54 degrees of

freedom in the model; and the corresponding torques
V =

[
v(1) . . . v(N)

]
that were necessary to cause those

angles to move through the observed dynamic trajectory
of the model.

Preprocessing
For this paper, we were concerned with mapping angles
to torques, so we discarded the marker data X. To ob-
tain datasets for training and testing the coding and re-
gression models, we needed to perform some preprocess-
ing to obtain matched sets of frames that would permit
a fair comparison.

First, the sequences obtained from the model were
smoothed by convolving each channel in each modal-
ity with a 5-sample (42 millisecond) rectangular window
over time. After smoothing, each channel of the data was
normalized by subtracting out the mean value and divid-
ing by the standard deviation. These steps ensured that
the data did not contain residual noise due to marker
dropouts, and also that the data values were all approx-
imately the same scale.

Each frame of data was then augmented with an ap-
proximation of its first derivative by calculating the se-
cant approximation of these quantities using the neigh-
boring two frames.2

Next, the smoothed, normalized, derivative-
augmented frames were segmented into three distinct
regions, each containing 24000 frames (200 seconds)
of data: the first (segment A) consisted of slow walks,
the second (segment B) consisted of fast walks, and
the third (segment C) consisted of running movements.
To evaluate the coding and regression models, each
segment was further partitioned into disjoint training,
validation, and test sets such that 10% of frames from
each segment were used for validation, 10% were used
only for testing, and the remainder were available for
training.

Coding efficiency
We first analyzed the performance of the different cod-
ing techniques discussed above when reconstructing the
raw torque data using the torque codes. Formally, after
training the dictionaries as needed, we computed z for
each frame of augmented torque data v in the test set,
and then computed the decoding operation to obtain an
estimate v̂. The decoding error ev was then defined as
the RMS value of the residual:

ev =

√
1

n
∥v̂ − v∥22.

2The first frame was dropped from each dataset to match
the number of frames of data with the number of frames of
derivative.
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Figure 3: Mean RMS decoding error for joint torques,
measured with respect to the size of the codebook.
Larger codebooks result in codes that capture more of
the variance in the data, even when the codebook is cre-
ated using IID standard normal samples. A log scale has
been used on both axes to reveal trends more clearly.

Figure 3 shows the mean RMSE for each coding ap-
proach, measured with various sizes of codebooks, and
applied solely to the torque data. (Results for the
angle data were similar.) Unsurprisingly, larger code-
books were able to capture more of the variance in
the data than smaller codebooks, regardless of the cod-
ing method. Perhaps more interesting, however, was
the finding shown in Figure 4: when measured by
the number of nonzero coefficients used in the code,
sparse codes produced more accurate reconstructions
than dense codes. This was somewhat vacuously true
of K-means, since it only uses 1 coefficient for each z; in
comparison, however, this was not true for sparse coding
combined with the random codebook.

Predicting torques from angles
In addition to comparing the effectiveness of different
coding schemes for torque data, we also used our frame-
work to compare the encoding methods in a larger con-
text, namely predicting torque values on the basis of
angle values. This task could be seen as a coarse ap-
proximation for a control task: given a target kinematic
pose, what might be the torques that would be associ-
ated with that pose?

Because the analysis framework proposed in this pa-
per breaks down this task into three separate stages—
encoding, regression, and decoding—we can analyze the
regression component of the task separately from the
other components. In general, RMS error for the regres-
sion task alone (Figure 5) followed the same pattern as
errors for the encoding and decoding components: larger
codebooks tended to yield lower errors. However, spar-
sity played a critical role in this task, since K-means
yielded the lowest regression errors, while PCA yielded
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Figure 4: Mean RMS decoding error for joint torques,
measured per nonzero coefficient in the encoding. Sparse
codes like lasso regression were more effective, per coef-
ficient, than dense codes like PCA, but only when the
codebook was tuned to the dataset.

100 101 102 103 104

Codebook Size

10-2

10-1

100

101

R
eg

re
ss

io
n 

R
M

SE

PCA
K-means
Sparse, random
Sparse, sampled
Sparse, learned

Figure 5: RMS regression error, measured with respect
to encoded torque values.

relatively large errors.

Finally, we compared the overall torque regression er-
ror for all components of the model together, as mea-
sured by comparing the outputs from our processing
model with the true torques measured during the exper-
iment (Figure 6). As a baseline, we computed a direct
regression from angle to torque data: this resulted in an
RMS error of 0.65 on the test set. PCA performed at
baseline for complete codebooks, which is unsurprising
since PCA simply rescales the data. However, some of
the sparse coding approaches did outperform PCA by a
large margin (up to 30% reduction in error). In partic-
ular, using lasso coding combined with a large, learned
dictionary produced lower RMS errors than any of the
other approaches examined here.
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Figure 6: Mean RMS reconstruction error, measured
with respect to true torque values for each frame. Note
that the RMS reconstruction error for direct regression
between true angles and true torques is 0.652, which is
approximately at the asymptote shown for PCA.

Discussion
This paper presented an efficient coding and regression
model for human pose information, and used this model
to examine the performance of several coding algorithms
on human pose information. The model allowed us to ex-
amine separately the errors in coding information about
poses and in regressing from one modality to another.
We learned that even though some approaches produce
extremely low coding and decoding errors, and other ap-
proaches were conducive to learning regressions between
codes, in order to perform well on the task of predict-
ing information across information modalities, a coding
approach must have extremely low error on both tasks.

In several ways this paper is just a first look at this sort
of modeling on human pose information. In particular,
we limited our examination of human pose information
to snapshots of single moments in time. Movement, how-
ever, is fundamentally dynamic, so we plan to expand
the techniques presented here to temporal sequences of
poses, by learning codes for entire movements.
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