UC Irvine

UC Irvine Previously Published Works

Title

Digital Frequency-Domain FLIM

Permalink

https://escholarship.org/uc/item/8vm1n94n

ISBN

9781557528612

Author

Gratton, Enrico

Publication Date

2008

DOI

10.1364/fio.2008.fwp1

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

FWP1.pdf

Digital Frequency-Domain FLIM

Enrico Gratton

Laboratory for Fluorescence Dynamics, University of California, Irvine egratton22@yahoo.com

Abstract: We present a mathematical model and physical implementation for a Digital Frequency Domain FLIM system which provides lifetime resolution comparable to TCSPC methods. We present data on cells and on molecules diffusing in solution. © 2008 Optical Society of America

Fluorescence lifetime imaging (FLIM) is a powerful microscopy technique for providing contrast of biological and other systems by differences in molecular species or their environments. However, the cost of equipment and the complexity of data analysis have limited the application of FLIM. We present a mathematical model and physical implementation for a low cost Digital Frequency Domain FLIM (DFD-FLIM) system which can provide lifetime resolution with quality comparable to time-correlated single photon counting methods. Our implementation provides data natively in the form of phasors. Based on the mathematical model, we present an error analysis which shows the precise parameters for maximizing the quality of lifetime acquisition, as well as data to support this conclusion. The hardware and software of the proposed DFD-FLIM method simplifies the process of data acquisition for FLIM, presents a new interface for data display and interpretation, and optimizes the accuracy of lifetime determination.