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Quantile regression (QR) is a powerful tool for learning the relationship between a con-

tinuous outcome and a set of covariates while exploring heterogeneous effects. This dissertation

focuses on statistical learning (estimation and inference) in the increasing dimensional regime

with random designs, and the outcome is possibly subject to random censoring. We provide a

comprehensive analysis on three problems: (i) the classical QR and multiplier bootstrap infer-

ence; (ii) QR with a convolution-based smoothed approach that achieves adequate approximation

to computation and inference; (iii) censored QR with a smoothed martingale-based sequential

estimating equations approach, and an `1-regularized regression problem in the high-dimensional

regime. The unified principle of these methods is to turn the non-differentiable check function
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into a twice-differentiable, globally convex and locally strongly convex surrogate, which admits

fast and scalable gradient-based algorithms to perform optimization. For all the aforementioned

tasks, we theoretically establish explicit non-asymptotic bounds on estimation and Bahadur-

Kiefer linearization errors, from which we show that the asymptotic normality holds, when

the covariate dimension grows with the sample size at a sublinear rate. In particular, uniform

convergence rate (over a range of quantile indexes) and weak convergence are established for

censored quantile regression process. The multiplier bootstrap inference, as a companion, is

also rigorously justified for all the problems. Extensive numerical experiments confirm the

computational scalability and reliability to large-scale data, and demonstrate the advantage of

our methods over existing ones.
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Chapter 1

Introduction

1.1 Quantile Regression

Since Koenker and Bassett’s seminal work [Koenker and Bassett, 1978], quantile regres-

sion (QR) has attracted enormous attention in statistics, econometrics and other scientific fields.

Compared to the least squares regression that focuses on modeling the conditional mean of y

given xxx, quantile regression models the entire conditional distribution of y given xxx, and thus

provides valuable insights into heterogeneity in the relationship between xxx and y. Moreover,

quantile regression is robust against outliers and can be performed for skewed or heavy-tailed

response distributions without correct specification of the likelihood. These advantages make

quantile regression an appealing method to explore data features that are invisible to the least

squares regression.

Classical theory of quantile regression including statistical consistency and asymptotic

normality has been thoroughly developed [Bassett and Koenker, 1978, 1986, Portnoy and

Koenker, 1989, Welsh, 1989, Pollard, 1991, Zhao, Rao and Chen, 1993, Arcones, 1996, He and

Shao, 1996, 2000]. A common thread of the previous work is that the regression estimators are

studied under the fixed design setting, that is, the covariates {xxxi}n
i=1 are deterministic vectors

with a fixed dimension and satisfy some (asymptotic and non-asymptotic) conditions, and the

only randomness arises from the regression errors {εi}n
i=1. A comprehensive review of the

asymptotic theory under fixed design can be found in Chapter 4 of Koenker [2005].
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In contrast to fixed designs, modern statistics have emphasized non-asymptotic results in

the random design setting, where the covariates {xxxi}n
i=1 are treated as random vectors [Vershynin,

2018, Wainwright, 2019], and the dimension p = pn is subject to a growth condition p� na for

some a ∈ (0,1). This additional randomness increases the complexity of the model, and makes

theoretical analysis more subtle because the empirical processes involved now depend on the

random covariates with dimensionality possibly growing with the sample size. A main difficulty

is that the quantile loss is piecewise linear, and hence its “curvature energy” is concentrated

in a single point. This is substantially different from other popular regression loss functions,

such as the least squared loss and Huber loss, which are at least locally strongly convex. The

lack of smoothness and strong convexity makes it much more challenging to establish non-

asymptotic theory for quantile regression under random designs, and is the main motivation of

this dissertation. We refer to Belloni and Chernozhukov [2011], Chao, Volgushev and Cheng

[2017], Belloni et al. [2019] for some well-known developments of quantile regression under

random designs with growing dimensionality.

1.2 Statistical Inference for Quantile Regression

In addition to the finite sample theory of standard quantile regression, we are also

interested in large-scale inference for quantile regression under the increasing dimension regime.

Broadly speaking, inference of quantile regression can be categorized into two classes: normal

calibration and bootstrap calibration (resampling) methods. Normal calibration heavily depends

on either the estimation of 1/ fε|xxx(0), where fε|xxx(·) is the conditional density function of ε given

xxx, or the regression rank scores [Gutenbrunner and Jurečková, 1992]. Even if the asymptotic

variance is well estimated, its approximation accuracy to the finite-sample variance depends on

the design matrix and the quantile level. Resampling, or bootstrap calibration methods [Efron,

1979], on the other hand, provide a more reliable approach to quantile regression inference. Over

the past two decades, various bootstrap calibration methods have been developed for constructing
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confidence intervals, including the residual bootstrap and pairwise bootstrap (Section 9.5 of

Efron and Tibshirani [1994]), bootstrapping pivotal estimation functions method [Parzen, Wei

and Ying, 1994], Markov chain marginal bootstrap [He and Hu, 2002, Kocherginsky, He and Mu,

2005] and wild bootstrap [Feng, He and Hu, 2011]. Inevitably, the resampling approach requires

repeatedly computing QR estimates up to thousands of times, and therefore is unduly expensive

for large-scale data. For relatively small samples or in the presence of heteroscedastic errors,

resampling methods have proven to outperform calibration through the normal approximation.

Therefore, in this dissertation we only focus on the resampling method.

Among a variety of bootstrap methods, we are primarily interested in the multiplier boot-

strap, also known as the weighted bootstrap, which is one of the most widely used inference tools

for constructing confidence intervals and measuring the significance of a test. The theoretical

validity of the empirical bootstrap [Efron, 1979] is typically guaranteed by the bootstrapped law

of large numbers and central limit theorem; see, for example, Giné and Zinn [1990], Arcones

and Giné [1992], Praestgaard and Wellner [1993] and Wellner and Zhan [1996], among others.

Rigorous theoretical guarantees of the multiplier bootstrap for M-estimation can be found in

Chatterjee and Bose [2005] and Ma and Kosorok [2005], in which
√

n-consistency and asymp-

totic normality are established. See also Cheng and Huang [2010] for extensions to general

semi-parametric models. It has since become an effective and nearly universal inference tool for

both parametric and semi-parametric M-estimations. We refer to Spokoiny and Zhilova [2015]

for the use of multiplier bootstrap on constructing likelihood-based confidence sets, and Chen

and Zhou [2020] for a systematic study of multiplier bootstrap for adaptive Huber regression

[Sun, Zhou and Fan, 2020] with applications to large-scale multiple testing for heavy-tailed data.

1.3 Computation of Quantile Regression

Quantile regression involves a convex optimization problem with a piecewise linear loss

function, also known as the check function. One can reformulate the QR problem as a linear
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program (LP), solvable by the Frisch-Newton algorithm with an average-case computational

complexity that grows as a cubic function of p, i.e., OP(n1+α p3 logn) for some constant α ∈

(0,1/2) [Portnoy and Koenker, 1997], where n is the sample size and p is the parametric

dimension. However, when applied to large-scale problems—both n and p are large, QR

computation via LP reformulation tends to be slow or too memory-intensive. To better appreciate

such a challenge, we take the empirical study of U.S. equities from Gu, Kelly and Xiu [2020]

as an example. The dataset consists of monthly total individual equity returns, which begins in

March 1957 and ends in December 2016, from CRSP for all firms listed in the NYSE, AMEX,

and NASDAQ. Within this span of 60 years, the average number of stocks considered is around

6200 per month. After processing, the number of observations (over 60 years) in the entire panel

exceeds 4 million, and the number of stock-level covariates is 920. Even with preprocessing, the

interior point QR solver in R [Koenker, 2022] may either run out of memory or take too much

time on a personal computer. This shortcoming arguably makes QR less attractive compared

to various machine learning tools. Chapter 5 of Koenker et al. [2017] provides an overview of

the prevailing computational methods for quantile regression, such as simplex-based algorithms

[Barrodale and Roberts, 1974, Koenker and d’Orey, 1987], interior point methods [Portnoy

and Koenker, 1997], and alternating direction method of multipliers, among other first-order

proximal methods [Parikh and Boyd, 2014].

1.4 Censored Quantile Regression

Censored data are prevalent in many scientific areas where the response variable of

interest is partially observed, mostly due to loss of follow-up. For instance, in a lung cancer

study considered by Shedden et al. [2008], 46.6% of the lung cancer patients’ survival time are

censored, due to either early withdrawal from the study or death because of other reasons that

are unrelated to lung cancer. Commonly used methods to study the association between the

censored response and explanatory variables (covariates) are through the use of Cox proportional
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hazards model and the accelerated failure time model [Andersen et al., 1993, Kleinbaum and

Klein, 2012]. Both models assume homogeneous covariate effects and are not applicable to

the case in which the lower and upper quantiles of the conditional distribution of the censored

response, potentially with different covariate effects, are of interest. Moreover, in many scientific

studies, the quantiles of the censored response are of more interest than the mean effect. To

capture heterogeneous covariate effects and to better predict the censored response at different

quantile levels, various censored quantile regression (CQR) methods have been developed under

different assumptions on the censoring mechanism [Powell, 1984, 1986, Ying, Jung and Wei,

1995, Buchinsky and Hahn, 1998, Chernozhukov and Hong, 2002, Honoré, Khan and Powell.,

2002, Portnoy, 2003, Wang and Wang, 2009, Leng and Tong, 2013, Yang, Narisetty and He,

2018, De Backer, El Ghouch and Van Keilegom, 2019, 2020]. In addition, a comprehensive

review of censored quantile regression can be found in Chapters 6 and 7 in Koenker et al. [2017]

as well as Peng [2021].

In this dissertation, we consider the random right censoring mechanism, in which the

censoring points are unknown for the uncensored observations. Statistical methods for CQR

were first proposed under the stringent assumption that the uncensored response variable (not

observable due to censoring) is marginally independent of the censoring variable; see, for

example Ying, Jung and Wei [1995], Honoré, Khan and Powell. [2002]. Under a more relaxed

conditional independence assumption, conditioned on the covariates, Portnoy [2003] generalized

the Kaplan-Meier estimator for estimating the (univariate) survival function to the regression

setting, based on Efron [1967]’s redistribution-of-mass construction. From a different perspective,

Peng and Huang [2008] employed a martingale-based approach for fitting CQR, and the resulting

method has been shown to be closely related to Portnoy [2003]’s method [Neocleous, Branden

and Portnoy, 2006, Peng, 2012]. Both Portnoy [2003]’s and Peng and Huang [2008]’s methods,

along with their variants, involve solving a series of quantile regression problems that can be

reformulated as linear programs, solvable by the simplex or interior point method [Barrodale and

Roberts, 1974, Portnoy and Koenker, 1997, Koenker and Mizera, 2014]. Statistical properties of
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the aforementioned methods have been well studied, assuming that the number of covariates, p,

is fixed [Neocleous, Branden and Portnoy, 2006, Peng and Huang, 2008, Portnoy and Lin, 2010,

Peng, 2012]. To this date, the impact of dimensionality in the increasing-p regime, in which

p is allowed to increase with the number of observations, remains unclear in the presence of

censored outcomes.

In the high-dimensional setting in which p > n, convex and nonconvex penalty functions

are often employed to perform variable selection to achieve a trade-off between statistical bias

and model complexity. While penalized Cox proportional hazards and accelerated failure time

models have been well studied [Fan and Li, 2002, Huang, Ma and Xie, 2006, Cai, Huang and

Tian, 2009, Bradic, Fan and Jiang, 2011], existing work on penalized CQR under the framework

of Portnoy [2003] and Peng and Huang [2008] in the high-dimensional setting is relatively

lacking. Large-sample properties of penalized CQR estimators were first derived under the

fixed-p setting (p < n), mainly due to the technical challenges introduced by the recursive nature

of the procedure [Shows, Lu and Zhang, 2010, Wang, Zhou and Li, 2013, Volgushev, Vagener

and Dette, 2014]. More recently, Zheng, Peng and He [2018] studied a penalized CQR estimator,

extending the method of Peng and Huang [2008] to the high-dimensional setting (p > n). They

showed that the estimation error (under `2-norm) of the `1-penalized CQR estimator is upper

bounded by O
(

exp(Cs)
√

s log(p)/n
)
, where C > 0 is a dimension-free constant. Compared to

`1-penalized QR for uncensored data [Belloni and Chernozhukov, 2011], whose convergence

rate is of order O
(√

s log(p)/n
)
, there is a substantial gap in terms of the impact of the sparsity

parameter s.

In addition to the above theoretical issues, our study is also motivated by the computa-

tional hardness of CQR under the framework of Portnoy [2003] and Peng and Huang [2008]

for problems with large dimension. Their framework involves fitting a series of quantile re-

gressions sequentially over a dense grid of quantile indexes, each of which is solvable by the

Frisch-Newton algorithm with computational complexity that grows as a cubic function of p

[Portnoy and Koenker, 1997]. Moreover, under the regime in which p < n, the asymptotic
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covariance matrix of the estimator is rather complicated and thus resampling methods are often

used to perform statistical inference [Portnoy, 2003, Peng and Huang, 2008]. A sample-based

inference procedure (without resampling) for Peng-Huang’s estimator [Peng and Huang, 2008]

is available by adapting the plug-in covariance estimation method from Sun et al. [2016]. In the

high-dimensional setting in which p > n, the computation of `1-penalized QR is based on either

reformulation as linear programs [Koenker and Ng, 2005] or alternating direction method of

multiplier algorithms [Yu, Lin and Wang, 2017, Gu et al., 2018]. These algorithms are generic

and applicable to a broad spectrum of problems but lack scalability. Since `1-penalized CQR

not only requires the estimation of the whole quantile regression process, but also relies on

cross-validation to select the sequence of (mostly different) penalty levels, the state-of-the-art

methods [Zheng, Peng and He, 2018, Fei et al., 2021] can be highly inefficient when applied to

large-p problems.

1.5 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we formulate the

quantile regression problem, then develop estimation theory and justify multiplier bootstrap

inference. In Chapter 3, we provide a comprehensive study on quantile regression with a

convolution-type smoothing mechanism, and develop a scalable computational device. In

Chapter 4, we analyze (regularized) censored quantile regression via a smoothed estimation

equation approach, and establish theory as well as computational methods. Throughout the

dissertation, we focus on non-asymptotic theory with growing (intrinsic) dimension under

random designs. All the theoretical proofs are collected in the Appendix.

1.6 Notation

For every integer k ≥ 1, we use Rk to denote the the k-dimensional Euclidean space. The

inner product of any two vectors uuu = (u1, . . . ,uk)
T,vvv = (v1, . . . ,vk)

T ∈ Rk is defined by uuuTvvv =
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〈uuu,vvv〉=∑
k
i=1 uivi. We use ‖·‖p (1≤ p≤∞) to denote the `p-norm in Rk: ‖uuu‖p = (∑k

i=1 |ui|p)1/p

and ‖uuu‖∞ = max1≤i≤k |ui|. For k ≥ 2, Sk−1 = {uuu ∈ Rk : ‖uuu‖2 = 1} denotes the unit sphere in

Rk. Throughout the dissertation, we use bold capital letters to represent matrices. For k ≥ 2, Ik

represents the identity/unit matrix of size k. For any k× k symmetric matrix A ∈ Rk×k, ‖A‖2 is

the operator norm of A, and we use λ A and λ A to denote the minimal and maximal eigenvalues

of A, respectively. For a positive semidefinite matrix A ∈ Rk×k, ‖ · ‖A denotes the norm linked

to A given by ‖uuu‖A = ‖A1/2uuu‖2, uuu ∈ Rk. Moreover, given r ≥ 0, define the Euclidean ball and

ellipse as Bk(r) = {uuu ∈ Rk : ‖uuu‖2 ≤ r} and BA(r) = {uuu ∈ Rk : ‖uuu‖A ≤ r}, respectively. For any

integer d ≥ 1, we write [d] = {1, . . . ,d}. For any set S , we use |S | to denote its cardinality, i.e.

the number of elements in S . Given an event/subset A , 1{A } or 1A represents the indicator

function of this event/subset. For any two real numbers a and b, we write a∧b = min{a,b} and

a∨b = max{a,b}. For two sequences of non-negative numbers {an}n≥1 and {bn}n≥1, an . bn

indicates that there exists a constant C > 0 independent of n such that an ≤ Cbn; an & bn is

equivalent to bn . an; an � bn is equivalent to an . bn and bn . an.
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Chapter 2

Quantile Regression: A Finite Sample Per-
spective

2.1 Theory for Estimation and Inference

2.1.1 Finite sample theory under random design

We consider a response variable y and p-dimensional covariates xxx = (x1, . . . ,xp)
ᵀ such

that the τ-th (0 < τ < 1) conditional quantile of y given xxx is given by F−1
y|xxx (τ|xxx) = 〈xxx,βββ

∗〉,

where βββ
∗ = (β ∗1 , . . . ,β

∗
p)
ᵀ ∈ Rp. Here we assume x1 ≡ 1 so that β ∗1 represents the intercept.

Let {(yi,xxxi)}n
i=1 be independent and identically distributed (iid) data vectors from (y,xxx). The

preceding model assumption is equivalent to

yi = 〈xxxi,βββ
∗〉+ εi, (2.1)

where εi’s are independent noise variables that satisfy P(εi ≤ 0 |xxxi) = τ . The quantile regression

estimator of βββ
∗ is then defined as

β̂ββ = β̂ββ (τ) ∈ argmin
βββ∈Rp

Qn(βββ ), (2.2)
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where

Qn(βββ ) =
1
n

n

∑
i=1

ρτ(yi−〈xxxi,βββ 〉) with ρτ(u) = u{τ− I(u < 0)} (2.3)

is the empirical loss. The loss function ρτ is known as the “check function” or “pinball loss”.

This section presents two non-asymptotic results, the concentration inequality and Ba-

hadur representation, for the quantile regression estimator under random design. First, we specify

the conditions on the random pair (xxx,ε) under which the analysis applies.

Condition 2.1.1 (Random design). The random predictor xxx ∈ Rp is sub-Gaussian: there exists

υ0 ≥ 1 such that P(|〈uuu,xxx〉| ≥ υ0‖uuu‖ΣΣΣ · t)≤ 2e−t2/2 for all uuu ∈ Rp and t ≥ 0, where ΣΣΣ = E(xxxxxxᵀ).

Condition 2.1.2 (Regularity condition on error distribution). The conditional probability density

function of ε given xxx, fε|xxx(·), is continuous on its support. Moreover, there exist constants

f̄ ≥ f > 0 and L0 > 0 such that

f ≤ fε|xxx(0)≤ f̄ and | fε|xxx(u)− fε|xxx(0)| ≤ L0|u| for all u ∈ R, almost surely.

Condition 2.1.1 is satisfied for a class of multivariate distributions. Typical examples

include: (i) Multivariate Gaussian and (symmetric) Bernoulli distributions, (ii) uniform distribu-

tion on the sphere in Rp with center at the origin and radius
√

p, (iii) uniform distribution on

the Euclidean ball, and (iv) uniform distribution on the unit cube [−1,1]p. The constant υ0 is

dimension-free, and thus can be viewed as an absolute constant. See Chapter 6 in Wainwright

[2019] and references therein for further discussion of sub-Gaussian distributions in higher

dimensions. Condition 2.1.2 on the conditional density function of ε given xxx is standard and

routinely used in the study of quantile regression.

Our first two results characterize the non-asymptotic versions of (i) deviation bound, and

(ii) the Bahadur representation for the quantile regression estimator.
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Theorem 2.1.1. Assume Conditions 2.1.1 and 2.1.2 hold. Then, for any t ≥ 0, the quantile

regression estimator β̂ββ = β̂ββ (τ) (0 < τ < 1) given in (2.2) satisfies

‖β̂ββ −βββ
∗‖ΣΣΣ .

1
f

√
p+ t

n
(2.4)

with probability at least 1−2e−t as long as n& L2
0 f−4(p+ t).

Theorem 2.1.2. Under the same conditions in Theorem 2.1.1, for any t ≥ 0,

∥∥∥∥S1/2(β̂ββ −βββ
∗)+S−1/2 1

n

n

∑
i=1

xxxi
{

I(εi ≤ 0)− τ
}∥∥∥∥

2

.
(p+ t)1/4(p logn+ t)1/2

n3/4 +
(p+ logn)1/2 p logn+(p logn)1/2t

n
(2.5)

with probability at least 1−4e−t whenever n& L2
0 f−4(p+ t), where S = E{ fε|xxx(0)xxxxxxᵀ}.

The significance of Bahadur representation lies in expression of a complicated nonlinear

estimator as a normalized sum of independent random variables from which asymptotically

normal behavior follows. To validate this point, the following result provides a Berry-Esseen

bound for any linear contrast of the quantile regression estimator.

Theorem 2.1.3. Let λλλ ∈ Rp be a deterministic vector that defines a linear contrast of interest.

Under the conditions of Theorem 2.1.1, it holds that

sup
x∈R

∣∣P(n1/2〈λλλ , β̂ββ −βββ
∗〉 ≤ x

)
−Φ(x/στ)

∣∣. (p+ logn)1/4(p logn)1/2

n1/4 , (2.6)

where σ2
τ = τ(1− τ)‖S−1λλλ‖2

ΣΣΣ
and Φ(·) denotes the standard normal distribution function.

Remark 2.1.1 (Large-p asymptotics). Modern statistical research allow p = pn→ ∞ as n→ ∞.

Results of quantile regression with increasing p are available in Welsh [1989], He and Shao

[2000] and Belloni et al. [2019] when p = o(n), and in Belloni and Chernozhukov [2011], Wang,

Wu and Li [2012] and Koenker et al. [2017] for regularized quantile regression when p� n.
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In particular, Welsh [1989] shows that p3(logn)2/n→ 0 suffices for a normal approximation.

This growth condition remains the best known one although under weaker assumptions on the

(fixed) design [He and Shao, 2000, Belloni et al., 2019]. To our knowledge, the weakest fixed

design assumption is max1≤i≤n ‖xxxi‖2
2 = O(p). In the (sub-Gaussian) random design setting, the

obtained non-asymptotic Bahadur representation (2.5) with t = logn reads:

n1/2(
β̂ββ −βββ

∗) = S−1 1√
n

n

∑
i=1

{
τ− I(εi ≤ 0)

}
xxxi

+OP

{
p3/4(logn)1/2 + p1/2(logn)3/4

n1/4 +
p3/2 logn+ p(logn)3/2

n1/2

}
.

Combined with a multivariate central limit theorem [Portnoy, 1986] or Theorem 2.1.3, this shows

that the normal approximation holds as long as p3(logn)2/n→ 0, which matches the scaling

under fixed design although the proofs are entirely different.

2.1.2 Multiplier bootstrap and confidence estimation

The multiplier bootstrap method, which dates back to Dudewicz [1992] and Barbe

and Bertail [1995], is based on reweighting the summands of empirical loss with random

weights. To be specific, let Rn = {e1, . . . ,en} be a sequence of independent Rademacher

random variables that are independent of the observed data Dn = {(yi,xxxi)}n
i=1. That is, ei ∈

{−1,1} and satisfies P(ei = 1) = P(ei = −1) = 1/2. Randomly perturb the empirical loss

Qn(βββ ) = (1/n)∑
n
i=1 ρτ(yi−〈xxxi,βββ 〉) by multiplying its summands with wi := ei +1, we obtain

the bootstrapped loss function

Q[
n(βββ ) :=

1
n

n

∑
i=1

wi ρτ(yi−〈xxxi,βββ 〉), βββ ∈ Rp. (2.7)

Note that wi ∈ {0,2} satisfies E(wi) = 1 and var(wi) = 1. Moreover, the bootstrapped loss

Q[
n : Rp 7→ [0,∞) is also convex.

Let E∗(·) = E(· |Dn) and P∗(·) = P(· |Dn) be the conditional expectation and probability
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given Dn, respectively. Then we have E∗{Q[
n(βββ )} = Qn(βββ ) for any βββ ∈ Rp. This indicates

that the quantile estimator β̂ββ (τ) = (β̂1, . . . , β̂p)
T in the Dn-world is the target parameter in the

bootstrap world:

argmin
βββ∈Rp

E∗{Q[
n(βββ )}= argmin

βββ∈Rp
Qn(βββ ) = β̂ββ (τ).

This simple observation motivates the following multiplier bootstrap estimator:

β̂ββ
[

:= β̂ββ
[
(τ) ∈ argmin

βββ∈Rp
Q[

n(βββ ). (2.8)

We refer to Chatterjee and Bose [2005] for a general asymptotic theory for weighted bootstrap

for estimating equations, where a class of bootstrap weights is considered. Extensions to

semiparametric M-estimation can be found in Ma and Kosorok [2005] and Cheng and Huang

[2010].

Let 1−α ∈ (0,1) be a prespecified confidence level. Based on the bootstrap statistic

β̂ββ
[
= (β̂ [

1, , . . . , β̂
[
p)
ᵀ, we consider three methods to construct bootstrap confidence intervals.

(i) (Efron’s percentile method). For every 1≤ j≤ d and q∈ (0,1), let ζ̂ j,q be the (conditional)

upper q-quantile of β̂ [
j , that is,

ζ̂ j,q = inf
{

z ∈ R : P∗(β̂ [
j > z)≤ q

}
. (2.9)

Efron’s percentile interval is of the form

I per
j = [ζ̂ j,1−α/2, ζ̂ j,α/2], j = 1, . . . , p. (2.10)
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(ii) (Normal interval). The second method is the normal interval:

I norm
j = [β̂ j− zα/2ŝeboot

j , β̂ j + zα/2ŝeboot
j ], j = 1, . . . , p, (2.11)

where ŝeboot
j is the conditional standard deviation of β̂ [

j given Dn, and zα/2 is the upper

α/2-quantile of the standard normal distribution.

(iii) (Pivotal interval). The third method, which uses the conditional distribution of β̂ββ
[
(τ)−

β̂ββ (τ) to approximate the distribution of the pivot β̂ββ (τ)−βββ
∗, is the pivotal interval. Specif-

ically, the 1−α bootstrap pivotal confidence intervals for β ∗j ’s are

I piv
j = [2β̂ j− ζ̂ j,α/2, 2β̂ j− ζ̂ j,1−α/2], j = 1, . . . , p. (2.12)

In fact, there is a simple connection between the bootstrap pivotal interval and the percentile

interval: the percentile interval is the pivotal interval reflected about the point β̂ j.

Before we formally investigate the theoretical properties of the bootstrap estimator β̂ββ
[
(τ),

recall the Bahadur representation of β̂ββ (τ):

β̂ββ (τ) = βββ
∗+

1
n

n

∑
i=1

{
τ− I(εi ≤ 0)

}
S−1xxxi + rrrn,

where rrrn is the higher-order remainder term. Heuristically, the bootstrap estimator β̂ββ
[
(τ)

can be viewed as the quantile regression estimator of β̂ββ (τ) in the bootstrap world under the

model yi = 〈xxxi, β̂ββ (τ)〉+ ε[i . According to the Bahadur representation, it can be written as

yi ≈ 〈xxxi,βββ
∗〉+(1/n)∑

n
i=1〈xxxi,S−1xxxi〉{τ − I(εi ≤ 0)}. The accuracy of the percentile interval,

however, relies on the property that β̂ββ
[

τ is randomly concentrated around βββ
∗. Motivated by

this observation and the finite-sample correction method used in Feng, He and Hu [2011], for

practical implementation we replace the original response yi in the multiplier bootstrap by

ŷi = yi−{ f̂ε(0)}−1hi{τ− I(ε̂i ≤ 0)}, where hi = xxxT
i (∑

n
j=1 xxx jxxxT

j)
−1xxxi and f̂ε(0) is estimated from
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the fitted residuals ε̂i = yi−〈xxxi, β̂ββ (τ)〉. In particular, the density estimate f̂ε employs the adaptive

kernel method [Silverman, 1986].

Back to β̂ββ
[

defined in (2.8), the following two results provide (i) a conditional deviation

inequality, and (ii) a conditional Bahadur representation conditioned on some event that occurs

with high probability.

Theorem 2.1.4. Assume Conditions 2.1.1 and 2.1.2 hold. For any t ≥ 0, there exists some event

Et with P{E (t)} ≥ 1−2e−t such that the bound (2.4) holds on E (t), and with P∗-probability at

least 1− e−t conditioned on E (t), the bootstrap estimator β̂ββ
[
= β̂ββ

[
(τ) (0 < τ < 1) given in (2.8)

satisfies

‖β̂ββ
[
−βββ

∗‖ΣΣΣ .

√
p+ t

n
(2.13)

as long as n& p+ t.

Theorem 2.1.5. Suppose that the conditions in Theorem 2.1.2 hold. Under the scaling n &

p+ logn, there exists some event En with P(En) ≥ 1− 4n−1 such that, with P∗-probability at

least 1−n−1 conditioned on En,

S1/2(β̂ββ
[
− β̂ββ ) = S−1/2 1

n

n

∑
i=1

eixxxi
{

τ− I(εi ≤ 0)
}
+ rrr[n, (2.14)

where rrr[n = rrr[n({(ei,yi,xxxi)}n
i=1) satisfies ‖rrr[n‖2 = OP∗(χn), and χn = χn({(yi,xxxi)}n

i=1) is such that

χn = OP{(p+ logn)1/4(p logn)1/2 n−3/4 +(p+ logn)1/2 p log(n)n−1}.

We end this section by validating the (Rademacher) multiplier bootstrap.

Theorem 2.1.6. Let λλλ ∈ Rp be an arbitrary d-vector defining a linear contrast of interest.

Assume Conditions 2.1.1 and 2.1.2 hold, and that the parameter dimension p satisfies the scaling
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p3(logn)2 = o(n). Then, as n→ ∞,

sup
x∈R

∣∣P(n1/2〈λλλ , β̂ββ −βββ
∗〉 ≤ x

)
−P∗

(
n1/2〈λλλ , β̂ββ

[
− β̂ββ 〉 ≤ x

)∣∣ P−→ 0. (2.15)

2.1.3 Goodness-of-fit testing

As a by-product, the multiplier bootstrap method can also be applied to goodness-of-fit

testing for quantile regression. Under model (2.1), consider a subset Ω0 ⊆ Rp and a test

H0 : βββ
∗ ∈Ω0 versus H1 : βββ

∗ ∈ Rp \Ω0. (2.16)

We first construct the test statistics based on the empirical loss Qn(βββ ) defined in (2.3). Let β̂ββ be

quantile estimator under the full model (2.2), and set β̂ββ 0 ∈ argminβββ∈Ω0
Qn(βββ ). The test statistic

is defined as

Tn = Qn(β̂ββ 0)−Qn(β̂ββ ).

In the bootstrap world, we intend to mimic the distribution of Tn using that of Q[
n(βββ ) defined

in (2.7). Let β̂ββ
[
∈ argminβββ∈Rp Q[

n(βββ ) and β̂ββ
[

0 ∈ argminβββ∈Ω0
Q[

n(βββ ) be the bootstrap statistics in

the full model and null model, respectively. Motivated by Chen et al. [2008], we consider the

bootstrap test statistic

T [
n =

{
Q[

n(β̂ββ
[

0)−Q[
n(β̂ββ

[
)
}
−
{

Q[
n(β̂ββ 0)−Q[

n(β̂ββ )
}
.

See Remark 2 therein for the intuition behind this construction. The conditional distribution of

T [
n given the data then serves as an approximation of the distribution of Tn. For every q ∈ (0,1),

let γq be the (conditional) upper q-quantile of T [
n , that is,

γq = inf
{

z ∈ R : P∗(T [
n > z)≤ q

}
,
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Consequently, for significance level α ∈ (0,1), we reject H0 in (2.16) whenever Tn > γα .

The above method was first proposed and studied by Chen et al. [2008] using standard

exponential weights in the case of median regression, and as discussed earlier, the Rademacher

multiplier bootstrap is computationally more attractive and also has provable finite-sample

guarantees.

2.2 Numerical Experiments

In this section, we conduct numerical experiments to compare the multiplier bootstrap

on constructing confidence intervals and goodness-of-fit testing with some well-known existing

methods for quantile regression. Our computational results are reproducible using codes available

from https://github.com/XiaoouPan/mbQuantile.

2.2.1 Confidence estimation

We first consider the problem of confidence estimation. The limiting distribution of

the quantile regression estimator involves the density of the errors, making the non-resampling

(plug-in) inference procedure unstable and unreliable. We refer to Kocherginsky, He and Mu

[2005] for an overview and numerical comparisons between plug-in and resampling methods. In

this paper, we focus on the following bootstrap calibration methods:

• pair: pairwise bootstrap by resampling {(yi,xxxi)}n
i=1 in pairs with replacement (Section 9.5

of Efron and Tibshirani [1994]);

• pwy: a resampling method based on pivotal estimating functions [Parzen, Wei and Ying,

1994];

• wild: wild bootstrap with Rademacher weights [Feng, He and Hu, 2011];

• mb-per: multiplier bootstrap percentile method defined in (2.10);

• mb-norm: multiplier bootstrap normal-based method defined in (2.11).
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The first three methods can be directly implemented using the R package quantreg.

To better evaluate the performance of these methods under various environments, we

generate data vectors {(yi,xxxi)}n
i=1 from two types of linear models:

1. (Homoscedastic model):

yi = β
∗
0 + 〈xxxi,βββ

∗〉+ εi, i = 1, . . . ,n; (2.17)

2. (Heteroscedastic model):

yi = β
∗
0 + 〈xxxi,βββ

∗〉+ 2exp(xi1)

1+ exp(xi1)
εi, i = 1, . . . ,n. (2.18)

Here we use separate notations to differentiate the intercept β ∗0 and coefficient vector βββ
∗ ∈ Rp.

For each model, we consider three error distributions as follows.

1. t2: εi ∼ t2;

2. Normal mixture type I: εi = az1 +(1− a)z2, where a ∼ Ber(0.5), z1 ∼N (−1,1) and

z2 ∼N (1,1);

3. Normal mixture type II: εi = az1 + (1− a)z2, where a ∼ Ber(0.9), z1 ∼ N (0,1) and

z2 ∼N (0,52).

Moreover, we generate random predictors with three different covariance structures:

1. Independent design: xxxi ∼N (0,Ip) for i = 1, . . . ,n;

2. Weakly correlated design: first generate a covariance matrix ΣΣΣ = (σ jk)1≤ j,k≤p with diag-

onal entries σ j j independently drawn from Unif(0.5,1) and σ jk = 0.5| j−k|(σ j jσkk)
1/2 if

j 6= k, and then generate xxxi’s independently from N (0,ΣΣΣ);
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3. Equally correlated design: first generate a covariance matrix ΣΣΣ = (σ jk)1≤ j,k≤p with diago-

nal entries σ j j independently drawn from Unif(0.5,1) and σ jk = 0.5(σ j jσkk)
1/2 if j 6= k,

and then generate xxxi’s independently from N (0,ΣΣΣ).

We set β ∗0 = 2, βββ
∗ = (2, . . . ,2)T and (n, p) = (200,10). The confidence level is taken to be

1−α ∈ {80%,90%,95%}. All of the five methods are carried out using B = 1000 bootstrap

samples. Tables 2.1 and 2.2 display the average coverage probabilities and average interval

widths over all the regression coefficients based on 200 Monte Carlo simulations. We refer to

Pan and Zhou [2021] for more comprehensive simulation results.

Table 2.1. Average coverage probabilities and confidence interval (CI) widths over all the
coefficients under homoscedastic model (2.17) with type I mixture normal error.

Independent Gaussian design
Coverage probability Width

α pair pwy wild mb-per mb-norm pair pwy wild mb-per mb-norm
0.05: 0.963 0.966 0.930 0.967 0.935 0.620 0.635 0.554 0.542 0.540
0.1: 0.922 0.930 0.873 0.925 0.873 0.520 0.533 0.465 0.451 0.453
0.2: 0.828 0.844 0.776 0.824 0.769 0.405 0.415 0.362 0.347 0.353

Weakly correlated Gaussian design
Coverage probability Width

α pair pwy wild mb-per mb-norm pair pwy wild mb-per mb-norm
0.05: 0.962 0.966 0.921 0.964 0.926 0.920 0.941 0.815 0.806 0.802
0.1: 0.915 0.921 0.867 0.917 0.873 0.772 0.790 0.684 0.670 0.673
0.2: 0.821 0.835 0.769 0.821 0.767 0.601 0.615 0.533 0.515 0.525

Equally correlated Gaussian design
Coverage probability Width

α pair pwy wild mb-per mb-norm pair pwy wild mb-per mb-norm
0.05: 0.964 0.968 0.925 0.967 0.930 0.980 1.004 0.868 0.860 0.856
0.1: 0.913 0.926 0.861 0.921 0.867 0.823 0.842 0.729 0.714 0.718
0.2: 0.826 0.831 0.766 0.816 0.767 0.641 0.656 0.568 0.550 0.559

From Tables 2.1 and 2.2, we find that all the bootstrap methods preserve nominal levels,

while pairwise bootstrap and bootstrap based on estimating functions (pwy) tend to be more

conservative with wider intervals, and wild bootstrap loses coverage probability under some

cases; see Table 2.1. Across all the settings, the multiplier bootstrap methods (percentile and

normal-based) provide desirable results in terms of both accuracy (narrow width) and reliability

(high confidence). It is worth noticing that the normal-based confidence interval (mb-norm)

tends to have lower coverage probabilities compared with the percentile method. As the sample

size increases, the coverage probability of mb-norm approaches the nominal level gradually; see
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Table 2.2. Average coverage probabilities and CI widths over all the coefficients under het-
eroscedastic model (2.18) with type I mixture normal error.

Independent Gaussian design
Coverage probability Width

α pair pwy wild mb-per mb-norm pair pwy wild mb-per mb-norm
0.05: 0.972 0.974 0.946 0.966 0.945 0.542 0.555 0.481 0.478 0.474
0.1: 0.936 0.938 0.898 0.920 0.905 0.454 0.466 0.404 0.395 0.398
0.2: 0.861 0.870 0.811 0.828 0.805 0.354 0.363 0.315 0.303 0.310

Weakly correlated Gaussian design
Coverage probability Width

α pair pwy wild mb-per mb-norm pair pwy wild mb-per mb-norm
0.05: 0.968 0.970 0.941 0.966 0.938 0.820 0.840 0.729 0.722 0.716
0.1: 0.932 0.933 0.885 0.913 0.886 0.688 0.705 0.612 0.597 0.601
0.2: 0.849 0.859 0.791 0.816 0.785 0.536 0.549 0.476 0.458 0.468

Equally correlated Gaussian design
Coverage probability Width

α pair pwy wild mb-per mb-norm pair pwy wild mb-per mb-norm
0.05: 0.968 0.974 0.938 0.964 0.941 0.877 0.898 0.778 0.772 0.765
0.1: 0.928 0.932 0.881 0.917 0.883 0.736 0.754 0.653 0.638 0.642
0.2: 0.839 0.847 0.787 0.804 0.786 0.573 0.587 0.509 0.490 0.500

Table 2.3. After taking into account the interval width, we recommend the multiplier bootstrap

percentile method that has the best overall performance.

Table 2.3. Average coverage probabilities and CI widths (in brackets) over all the coefficients
under homoscedastic model (2.17) with type I mixture normal error.

Independent Gaussian design
n = 200 n = 500 n = 1000

α mb-per mb-norm mb-per mb-norm mb-per mb-norm
0.05: 0.967 (0.542) 0.935 (0.540) 0.950 (0.346) 0.923 (0.346) 0.960 (0.247) 0.948 (0.247)
0.1: 0.925 (0.451) 0.873 (0.453) 0.904 (0.289) 0.871 (0.290) 0.923 (0.206) 0.895 (0.207)
0.2: 0.824 (0.347) 0.769 (0.353) 0.817 (0.224) 0.768 (0.226) 0.824 (0.160) 0.792 (0.161)

Weakly correlated Gaussian design
n = 200 n = 500 n = 1000

α mb-per mb-norm mb-per mb-norm mb-per mb-norm
0.05: 0.964 (0.806) 0.926 (0.802) 0.954 (0.512) 0.933 (0.512) 0.966 (0.364) 0.948 (0.364)
0.1: 0.917 (0.670) 0.873 (0.673) 0.905 (0.428) 0.875 (0.430) 0.913 (0.305) 0.899 (0.306)
0.2: 0.821 (0.515) 0.767 (0.525) 0.798 (0.331) 0.770 (0.335) 0.824 (0.236) 0.799 (0.238)

Equally correlated Gaussian design
n = 200 n = 500 n = 1000

α mb-per mb-norm mb-per mb-norm mb-per mb-norm
0.05: 0.967 (0.860) 0.930 (0.856) 0.960 (0.547) 0.941 (0.546) 0.961 (0.389) 0.944 (0.389)
0.1: 0.921 (0.714) 0.867 (0.718) 0.912 (0.456) 0.873 (0.458) 0.909 (0.326) 0.888 (0.327)
0.2: 0.816 (0.550) 0.767 (0.559) 0.804 (0.353) 0.773 (0.357) 0.818 (0.253) 0.792 (0.255)

Regarding computational complexity, for each bootstrap sample, pairwise and wild

bootstraps solve a quantile regression on a sample of size n, bootstrap based on estimating

functions (pwy) solves a quantile regression of size n+1, while multiplier bootstrap solves a

quantile regression essentially on a subsample of size n/2 on average. In summary, the multiplier

bootstrap provides a computationally efficient way to construct confidence intervals with high
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precision and reliability.

2.2.2 Goodness-of-fit testing

In this section, we compare the multiplier bootstrap with classical non-resampling

methods on goodness-of-fit testing for quantile regression. Specifically, we consider the following

methods:

• Wald: Wald test based on unrestricted estimator [Koenker and Bassett, 1982];

• rank: rank score test [Gutenbrunner et al., 1993];

• mb-exp: multiplier bootstrap with exponential weights [Chen et al., 2008];

• mb-Rad: multiplier bootstrap with Rademacher weights.

The first three methods are included in the R package quantreg.

We generate data vectors the same way as in Section 2.2.1. Moreover, we set (n, p) =

(200,15), and the confidence level is taken to be 1−α ∈ {90%,95%,99%}. We consider testing

H0 : β
∗
j = 0, for j = 1, . . . ,15 versus H1 : β

∗
j 6= 0, for some j.

To assess the overall performance, we employ the following three measurements:

1. Type I error under null model: βββ
∗ = 0;

2. Power under sparse and strong signal: β ∗1 = 0.5, and β ∗j = 0 for j = 2,3, . . . ,15;

3. Power under dense and weak signal: β ∗j = 0.1 for j = 1,2, . . . ,10, and β ∗j = 0 for j =

11,12, . . . ,15.

The two resampling methods (mb-exp and mb-Rad) are carried out using B = 1000

bootstrap samples. Tables 2.4 and 2.5 display the average type I error and power over 200 Monte

Carlo simulations. Additional simulation results can be found in Pan and Zhou [2021].
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Table 2.4. Average type I error and power under homoscedastic model (2.17) with type I mixture
normal error.

Independent Gaussian design
Type I error under null model Power under sparse model Power under dense model

α Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad
0.01 0.370 0.000 0.000 0.005 0.805 0.185 0.295 0.330 0.580 0.035 0.045 0.075
0.05 0.490 0.025 0.055 0.050 0.915 0.460 0.570 0.540 0.725 0.150 0.315 0.300
0.1 0.615 0.080 0.140 0.125 0.945 0.625 0.750 0.695 0.775 0.290 0.390 0.360

Weakly correlated Gaussian design
Type I error under null model Power under sparse model Power under dense model

α Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad
0.01 0.300 0.010 0.005 0.010 0.650 0.115 0.230 0.250 0.710 0.160 0.210 0.230
0.05 0.450 0.060 0.060 0.055 0.790 0.350 0.465 0.435 0.820 0.380 0.500 0.485
0.1 0.555 0.095 0.120 0.090 0.850 0.515 0.605 0.575 0.870 0.535 0.640 0.600

Equally correlated Gaussian design
Type I error under null model Power under sparse model Power under dense model

α Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad
0.01 0.300 0.010 0.010 0.010 0.660 0.135 0.205 0.225 0.915 0.470 0.595 0.615
0.05 0.450 0.060 0.060 0.055 0.790 0.325 0.400 0.385 0.960 0.755 0.825 0.800
0.1 0.555 0.095 0.120 0.090 0.870 0.460 0.575 0.515 0.970 0.860 0.860 0.860

Table 2.5. Average type I error and power under heteroscedastic model (2.18) with type I mixture
normal error.

Independent Gaussian design
Type I error under null model Power under sparse model Power under dense model

α Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad
0.01 0.315 0.005 0.000 0.000 0.815 0.410 0.475 0.510 0.590 0.085 0.095 0.110
0.05 0.435 0.035 0.030 0.030 0.930 0.685 0.755 0.725 0.705 0.275 0.305 0.305
0.1 0.510 0.065 0.065 0.050 0.955 0.785 0.840 0.810 0.780 0.415 0.415 0.380

Weakly correlated Gaussian design
Type I error under null model Power under sparse model Power under dense model

α Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad
0.01 0.380 0.010 0.005 0.005 0.810 0.200 0.330 0.365 0.790 0.235 0.260 0.295
0.05 0.480 0.060 0.055 0.050 0.885 0.525 0.610 0.565 0.865 0.510 0.595 0.565
0.1 0.565 0.110 0.115 0.090 0.905 0.655 0.740 0.700 0.910 0.680 0.725 0.690

Equally correlated Gaussian design
Type I error under null model Power under sparse model Power under dense model

α Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad Wald rank mb-exp mb-Rad
0.01 0.350 0.010 0.005 0.005 0.690 0.205 0.270 0.300 0.960 0.610 0.715 0.735
0.05 0.470 0.060 0.045 0.040 0.815 0.450 0.550 0.520 0.990 0.850 0.900 0.880
0.1 0.535 0.125 0.115 0.100 0.865 0.610 0.695 0.640 0.990 0.900 0.935 0.935
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From Tables 2.4 and 2.5 we see that the Wald test suffers from severe size distortion

by rejecting much more often than it should, while the other three methods have type I errors

close to the nominal level. Under both sparse and dense alternatives, the multiplier bootstrap

outperforms the rank score test with higher power throughout all the combinations of design and

error distributions.

To further compare the power of the last three methods, we draw the power curve with

gradually increasing signal strength under sparse and dense settings. Figure 2.1 is a visualization

of Table 2.4 and Table 2.5 with type I mixture normal error and independent design. The

advantage of multiplier bootstrap over rank test is conspicuous under homoscedastic model, and

multiplier bootstrap reveals perceptible advantage as signal gets stronger under heteroscedastic

model.
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(a) Homoscedastic model (2.17) with
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(b) Homoscedastic model (2.17) with
dense signal.

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Signal strength

P
ow

er

rank
mb-exp
mb-Rad

(c) Heteroscedastic model (2.18)
with sparse signal.
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(d) Heteroscedastic model (2.18)
with dense signal.

Figure 2.1. Power curves of the three methods under independent design and type I mixture
normal error with α = 0.05.
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Chapter 3

Scalable Learning via Convolution-type
Smoothing

3.1 Smoothed Quantile Regression

3.1.1 Motivation and overview

Recall that given a random sample {(yi,xxxi)}n
i=1, the standard quantile regression estimator

is obtained as

β̂ββ (τ) ∈ min
βββ∈Rp

Q̂(βββ ) = min
βββ∈Rp

1
n

n

∑
i=1

ρτ(yi−〈xxxi,βββ 〉), (3.1)

where ρτ(u) = u{τ −1(u < 0)}. To circumvent the non-differentiability stemmed from the

indicator of the QR loss function, Horowitz [1998] proposed to smooth the indicator part of the

check function via the survival function of a kernel. This smoothing method, which we refer

to as Horowitz’s smoothing throughout, has been widely used for various QR-related problems

with complex data [Wang, Stefanski and Zhu, 2012, Wu, Ma and Yin, 2015, Galvao and Kato,

2016, de Castro et al., 2019, Chen, Liu and Zhang, 2019]. However, Horowitz’s smoothing

gains smoothness at the cost of convexity, which inevitably raises optimization-related issues.

In general, computing a global minimum of a non-convex function is intractable: finding an

ε-suboptimal point for a k-times continuously differentiable function f : Rp→ R requires at

least as many as (1/ε)p/k evaluations of the function and its first k derivatives [Nemirovski and
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Yudin, 1983]. As we shall see from the numerical studies in Section 3.4, the convergence of

gradient-based algorithms can be relatively slow for high and low quantile levels. To address

the aforementioned issue, Fernandes, Guerre and Horta [2021] proposed a convolution-type

smoothing method that yields a convex and twice differentiable loss function, and studied the

asymptotic properties of the smoothed estimator when p is fixed. To distinguish this approach

from Horowitz’s smoothing, we adopt the term conquer for convolution-type smoothed quantile

regression.

In this chapter, we first provide an in-depth statistical analysis of conquer under various

nonstandard asymptotics settings in which p increases with n. Our results reveal a key feature of

the smoothing parameter, often referred to as the bandwidth: the bandwidth adapts to both the

sample size n and dimensionality p, so as to achieve a tradeoff between statistical accuracy and

computational stability. Since the convolution smoothed loss function is globally convex and

locally strongly convex, we propose an efficient gradient descent algorithm with the Barzilai-

Borwein stepsize and a Huber-type initialization. The proposed algorithm is implemented via

RcppArmadillo [Eddelbuettel and Sanderson, 2014] in the R package conquer. We next focus

on large-scale statistical inference (hypothesis testing and confidence estimation) with large

p and larger n. We propose a bootstrapped conquer method that has reduced computational

complexity when the conquer estimator is used as initialization. Under appropriate restrictions on

dimension, we establish the consistency (or concentration), Bahadur representation, asymptotic

normality of the conquer estimator as well as the validity of the bootstrap approximation. In

the following, we provide more details on the computational and statistical contributions of this

paper.

Theoretically, by allowing p to grow with n, the “complexity” of the function classes

that we come across in the analysis also increases with n. Conventional asymptotic tools for

proving the bootstrap validity are based on weak convergence arguments [van der Vaart and

Wellner, 1996], which are not directly applicable in the increasing dimension setting, especially

with a non-differentiable loss. In this paper we turn to a more refined and self-contained analysis,
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and prove a new local restricted strong convexity (RSC) property for the empirical smoothed

quantile loss. This validates the key merit of convolution-type smoothing, i.e., local strong

convexity. The smoothing method involves a bandwidth, denoted by h. Theoretically, we show

that with sub-exponential random covariates (relaxing the bounded covariates assumption in

Fernandes, Guerre and Horta [2021]), conquer exhibits an `2-error of order
√
(p+ t)/n+ h2

with probability at least 1−2e−t . When h is of order {(p+ logn)/n}γ for any γ ∈ [1/4,1/2], the

conquer estimation is first-order equivalent to QR. Under slightly more stringent sub-Gaussian

condition on the covariates, we show that the Bahadur-Kiefer linearization error of conquer is of

order (p+ t)/(nh1/2)+h3/2
√

(p+ t)/n+h4 with probability at least 1−3e−t . Based on such

a representation, we establish a Berry-Esseen bound for linear functionals of conquer, which

lays the theoretical foundation for testing general linear hypotheses, encompassing covariate-

effect analysis, analysis of variance, and model comparisons, to name a few. It is worth noting

that with a properly chosen h, the linear functional of conquer is asymptotically normal as

long as p8/3/n→ 0, which improves the best known growth condition on p for standard QR

[Welsh, 1989, He and Shao, 2000, Pan and Zhou, 2021]. We attribute this gain to the effect of

smoothing. Under similar conditions, we further establish upper bounds on both estimation and

Bahadur-Kiefer linearization errors for the bootstrapped conquer estimator.

To better appreciate the computational feasibility of conquer for large-scale problems, we

compare it with standard QR on large synthetic datasets, where the latter is implemented by the R

package quantreg [Koenker, 2022] using the Frisch-Newton approach after preprocessing “pfn”.

We generate independent data vectors {yi,xxxi}n
i=1 from a linear model yi = β ∗0 +xxxT

i βββ
∗+εi, where

(β ∗0 ,βββ
∗T
)T = (1, . . . ,1)T ∈ Rp+1, xxxi ∼Np(0,I) and εi ∼ t2. We report the estimation error and

elapsed time for increasing sample sizes n ∈ {1000,5000,10000, . . . ,100000} and dimension

p = bn1/2c, the largest integer that is less than or equal to n1/2. Figure 3.1 displays the average

estimation error, average elapsed time and their standard deviations based on 100 Monte Carlo

samples. This experiment shows promise of conquer as a practically useful tool for large-scale

quantile regression analysis. More empirical evidence will be given in the latter section.
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Figure 3.1. A numerical comparison between conquer and QR. The latter is implemented by
the R package quantreg using the “pfn” method. Panels (a) and (b) display, respectively, the
“estimation error and its standard deviation versus sample size” and “elapsed time and its standard
deviation versus sample size” as the size of the problem increases.

3.1.2 Convolution-type smoothing

Let Q(βββ ) = E{Q̂(βββ )} be the population quantile loss function. Under mild conditions,

Q(·) is twice differentiable and strongly convex in a neighborhood of βββ
∗ with Hessian matrix

J := ∇2Q(βββ ∗) = E{ fε|xxx(0)xxxxxxT}, where ε = y−〈xxx,βββ ∗(τ)〉 is the random noise and fε|xxx(·) is the

conditional density of ε given xxx. In contrast, the empirical quantile loss Q̂(·) is not differentiable

at βββ
∗, and its “curvature energy” is concentrated at a single point. This is substantially different

from other widely used loss functions that are at least locally strongly convex, such as the squared

or logistic loss. The non-smoothness property not only brings challenge to theoretical analysis,

but more importantly, also prevents gradient-based optimization methods from being efficient.

In his seminal work, Horowitz [1998] proposed to directly smooth the check function ρτ(·) to

obtain

`Horo
h (u) = u

{
τ−G (−u/h)

}
, (3.2)

where G (·) is a smooth function that takes values between 0 and 1, and h > 0 is a smoothing

parameter/bandwidth. However, Horowitz’s smoothing gains smoothness at the cost of convexity,
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which inevitably raises optimization issues especially when p is large. On the other hand, by the

first-order condition, the population parameter βββ
∗ satisfies the moment condition

∇Q(βββ ∗) = E
[{
1(y < xxxT

βββ )− τ
}

xxx
]∣∣∣

βββ=βββ
∗ = 0.

This property motivates a smoothed estimating equation (SEE) estimator [Whang, 2006, Kaplan

and Sun, 2017], defined as the solution to the smoothed moment condition

1
n

n

∑
i=1

[
G
{
(〈xxxi,βββ 〉− yi)/h

}
− τ
]
xxxi = 0. (3.3)

Let K(·) be a kernel function that integrates to one, and h> 0 be a bandwidth. Throughout

the paper, we write

Kh(u) = h−1K(u/h), Kh(u) = K (u/h) and K (u) =
∫ u

−∞

K(v)dv, u ∈ R. (3.4)

From an M-estimation viewpoint, the aforementioned SEE estimator can be equivalently defined

as a minimizer of the empirical smoothed loss function

Q̂h(βββ ) =
1
n

n

∑
i=1

`h(yi−〈xxxi,βββ 〉) with `h(u) = (ρτ ∗Kh)(u) =
∫

∞

−∞

ρτ(v)Kh(v−u)dv, (3.5)

where ∗ denotes the convolution operator. Therefore, as stated in the Introduction, we refer to

the aforementioned smoothing method as conquer. The ensuing conquer estimator is given by

β̂ββ h = β̂ββ h(τ) ∈ argmin
βββ∈Rp

Q̂h(βββ ). (3.6)

The key difference between the conquer loss (3.5) and Horowitz’s loss (3.2) is that the former is

globally convex, while Horowitz’s loss is not. This is illustrated in Figure 3.2.

As we shall see later, the ideal choice of bandwidth should adapt to the sample size n and
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dimension p, since the quantile level τ is prespecified and fixed. Thus, the dependence of β̂ββ h

and Q̂h(·) on τ will be assumed without display. Commonly used kernel functions include: (a)

uniform kernel K(u) = (1/2)1(|u| ≤ 1), (b) Gaussian kernel K(u) = φ(u) := (2π)−1/2e−u2/2, (c)

logistic kernel K(u) = e−u/(1+e−u)2, (d) Epanechnikov kernel K(u) = (3/4)(1−u2)1(|u| ≤ 1),

and (e) triangular kernel K(u) = (1−|u|)1(|u| ≤ 1). Explicit expressions of the corresponding

smoothed loss function ρτ ∗Kh will be given in Section 3.2.
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Figure 3.2. Quantile loss in (3.1), conquer loss (3.5), and Horowitz’s smoothed loss (3.2) with
Gaussian and uniform kernels, respectively.

The convolution-type kernel smoothing yields an objective function βββ 7→ Q̂h(βββ ) that is

twice continuously differentiable with gradient and hessian matrix

∇Q̂h(βββ ) =
1
n

n

∑
i=1

{
Kh
(
〈xxxi,βββ 〉− yi

)
− τ
}

xxxi and ∇
2Q̂h(βββ ) =

1
n

n

∑
i=1

Kh(yi−〈xxxi,βββ 〉)xxxixxxT
i , (3.7)

respectively, where Kh(·) =K (·/h) is defined in (3.4). Provided that K is non-negative, Q̂h(·) is

a convex function for any h > 0, and β̂ββ h = β̂ββ h(τ) satisfies the first-order condition ∇Q̂h(β̂ββ h) = 0.

This reveals the connection between the SEE and the conquer methods. Together, the smoothness

and convexity of Q̂h(·) warrant the superior computation efficiency of first-order gradient based

algorithms for solving large-scale smoothed quantile regressions. The computational aspect of

conquer will be discussed in Section 3.2.

When the dimension p is fixed, asymptotic properties of the SEE or conquer estimator
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have been studied by Kaplan and Sun [2017] and Fernandes, Guerre and Horta [2021]. The

former used a higher-order kernel to deal with the instrumental variables QR problem (see

Section 3.1.4 for further discussions), and the latter showed that the conquer estimator has a

lower asymptotic mean squared error than Horowitz’s smoothed estimator, and also has a smaller

Bahadur linearization error than the standard QR in the almost sure sense. The optimal order

of the bandwidth based on the asymptotic mean squared error is unveiled as a function of n. In

Section 3.3, we will establish exponential concentration inequalities and non-asymptotic Bahadur

representation for the conquer estimator, while allowing the dimension p to grow with the sample

size n. Our results reveal a key feature of the smoothing parameter: the bandwidth should adapt

to both the sample size n and dimensionality p, so as to achieve a tradeoff between statistical

accuracy and computational stability.

Remark 3.1.1. As discussed in Fernandes, Guerre and Horta [2021], another advantage of con-

volution smoothing is that it facilitates conditional density estimation for the quantile regression

process. Assume Qy(τ|xxx) = F−1
y|xxx (τ) = 〈xxx,βββ

∗(τ)〉 for all τ ∈ [τL,τU ]⊆ (0,1). Under mild regu-

larity conditions, qy(τ|xxx) := ∂Qy(τ|xxx)/∂τ = 1/ fy|xxx(〈xxx,βββ ∗(τ)〉) exists. The inverse conditional

density function plays an important role in, for example, the study of quantile treatment effects

through modeling inverse propensity scores [Firpo, 2007, Chen, Hong and Tarozzi, 2008]. By the

linear conditional quantile model assumption, ∂Qy(τ|xxx)/∂τ = 〈xxx,∂βββ
∗(τ)/∂τ〉 for τ ∈ (τL,τU).

Recall that the conquer estimator β̂ββ h = β̂ββ h(τ) satisfies the first-order condition ∇Q̂h(β̂ββ h(τ)) = 0.

Taking the partial derivative with respect to τ on both sides, it follows from (3.7) and the chain

rule that

∂ β̂ββ h(τ)

∂τ
=
{

∇
2Q̂h
(
β̂ββ h(τ)

)}−1 1
n

n

∑
i=1

xxxi =

{
1
n

n

∑
i=1

Kh
(
yi− xxxT

i β̂ββ h(τ)
)
xxxixxxT

i

}−1
1
n

n

∑
i=1

xxxi.

Consequently, the inverse densities 1/ fyi|xxxi(xxx
T
i βββ
∗(τ)) can be directly estimated by xxxT

i
∂ β̂ββ h(τ)

∂τ
. This

bypasses the use of any nonparametric method for density estimation with fitted residuals.
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3.1.3 Multiplier bootstrap inference

In this section, we apply the multiplier bootstrap procedure discussed in Section 2.1.2

to construct confidence intervals for conquer. Specifically, define the weighted quantile loss

Q̂[
h : Rp→ R as

Q̂[
h(βββ ) =

1
n

n

∑
i=1

wi`h(yi−〈xxxi,βββ 〉), (3.8)

where `h(u) = (ρτ ∗Kh)(u) is as in (3.5) and wi ∈ {0,2}. The ensuing multiplier bootstrap

statistic is then

β̂ββ
[

h = β̂ββ
[

h(τ) ∈ argmin
βββ∈Rp

Q̂[
h(βββ ). (3.9)

Consequently, element-wise confidence intervals can be constructed using one of the three

methods mentioned in Section 2.1.2.

In the next section, we will present a finite-sample theoretical framework for convolution-

type smoothed quantile regression, including the concentration inequality and non-asymptotic

Bahadur representation for both the conquer estimator (3.6) and its bootstrap counterpart (3.9)

using Rademacher multipliers. As a by-product, a Berry-Esseen-type inequality (see Theo-

rem 2.1.3) states that, under certain constraints on the (growing) dimensionality and band-

width, the distribution of any linear projection of β̂ββ h converges to a normal distribution as the

sample size increases to infinity. Informally, for any given deterministic vector aaa ∈ Rp, the

scaled statistic n1/2〈aaa, β̂ββ h−βββ
∗〉 is asymptotically normally distributed with asymptotic variance

σ2
0 (aaa) := τ(1− τ)aaaTJ−1ΣΣΣJ−1aaa, where ΣΣΣ is the population covariance matrix of the covariates xxx.

Another interesting implication from our theoretical analysis is that the unit variance requirement

var(wi) = 1 for the random weight is not necessary to ensure (asymptotically) valid bootstrap

inference after a proper variance adjustment. See Remark 3.3.3 for more details.

To make inference based on such asymptotic results, we need to consistently estimate the
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asymptotic variance. Fernandes, Guerre and Horta [2021] suggested the following estimators

Ĵh := ∇
2Q̂h(β̂ββ h) =

1
nh

n

∑
i=1

K(ε̂i/h) · xxxxxxT
i and V̂h :=

1
n

n

∑
i=1

{
Kh(−ε̂i)− τ

}2xxxixxxT
i (3.10)

of J and τ(1− τ)ΣΣΣ, respectively, where ε̂i = yi−〈xxxi, β̂ββ h〉 are fitted residuals. The ensuing 1−α

normal-based CIs are given by β̂h, j±Φ−1(1−α/2) · n−1/2(Ĵ−1
h V̂hĴ−1

h )
1/2
j j , j = 1, . . . , p. The

normal approximations to the CI may suffer from the sensitivity to the smoothing needed to

estimate the conditional densities, namely, the matrix J = E{ fε|xxx(0)xxxxxxT}. When p is large,

inverting the estimated density matrix Ĵh may be numerically unstable. This is typically true

when τ is in the upper or lower tail.

3.1.4 Connections to instrumental variable quantile regression

This work focuses on large-scale estimation and inference for linear quantile regression

with many exogenous covariates. However, in many economic applications, some regressors

of interest (e.g., education, prices) are endogenous, making conventional quantile regression

inconsistent for estimating causal quantile effects. To address this problem, Chernozhukov and

Hansen [2005] proposed an instrumental variable quantile regression (IVQR) model, which has

become a popular tool for estimating quantile effects with endogenous covariates. Due to the

non-convex and non-smooth nature of the problem, there is a burgeoning literature on estimation

and inference of IVQR models and the related computational issues, dating back to Chen, Linton

and Van Keilegom [2003] and Chernozhukov and Hansen [2006]. We refer to Chernozhukov,

Hansen and Wüthrich [2020]—Chapter 9 of Koenker et al. [2017]—for an overview of IVQR

modeling, from identification conditions to estimation and inference. More specifically, see

Horowitz and Lee [2007] and Chen and Pouzo [2009] for non- and semi-parametric IVQR

estimation; Kaplan and Sun [2017] and de Castro et al. [2019] for smoothed methods; and

Chen and Lee [2018] and Zhu [2018] for methods based on reformulation as mixed integer

optimization (MIO), Machado and Santos Silva [2018] for moment-based estimators, and Kaido
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and Wüthrich [2021] for a decentralization approach which decomposes the IVQR estimation

problem into a set of conventional QR sub-problems.

The convolution smoothing method studied in this paper can be directly linked to the

SEE approach in Kaplan and Sun [2017]. The latter addressed the more challenging IVQR

problem, and derived both asymptotic mean squared error and normality for the SEE estimator

when the dimension is fixed. Our study complements that of Kaplan and Sun [2017] in two ways.

First, we provide a systematic analysis for smoothed (conventional) QR from an M-estimation

viewpoint under the growing dimension setting. Our results provide explicit finite-sample

bounds for the estimation error, Bahadur linearization error as long as their (multiplier) bootstrap

counterparts. Asymptotic validity of the multiplier bootstrap is also rigorously established.

Secondly, we propose tailored computational methods for smoothed QR computation, which

rely on the use of non-negative kernels and the resulting local strong convexity. Compared

with generic optimization toolboxes for solving linear programs, the computational efficiency of

the gradient-based algorithm for conquer is considerably improved, especially for large-scale

problems with many (exogenous) regressors and massive sample size. A potential application is

empirical asset pricing via quantile regression, extending the existing machine learning tools for

average return forecasting [Gu, Kelly and Xiu, 2020].

In the presence of both exogenous and endogenous covariates, the advantage of smoothing

is diluted because the non-convexity issue prevails. The MIO-based IVQR estimation procedure

can be implemented by the Gurobi commercial MIO solver, which is free for academic use. The

MIO solver converges fast when the number of endogeous covariates varies in the range of 5

and 20 [Zhu, 2018]. The MIO solver in moderate dimensions typically takes much longer to

complete the optimization: optimal solutions may be found in a few seconds, but it can take

much longer to certify optimality via lower bounds [Bertsimas, King and Mazumder, 2016]. 1

Recently, Kaido and Wüthrich [2021] proposed a “decentralized” approach for IVQR es-

1MIO solvers provide both feasible solutions and lower bounds to the optimal value. As the MIO solver
progresses toward the optimal solution, the lower bounds improve and provide an increasingly better guarantee of
suboptimality. It is the lower bounds that take so long to converge.
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timation. The idea is to decompose the non-convex program into pd +1 conventional (weighted)

quantile regression sub-problems. The IVQR estimator is then characterized as a fixed point

of such sub-problems. Since pd—the number of endogenous variables—is typically small, the

overall computational complexity depends primarily on the QR fitting step. When the number of

exogenous variables, px, is large in the range of hundreds to thousands, the proposed framework

in this paper, along with the accompanying software conquer, provides a viable option to further

reduce the computational cost of the above IVQR estimation method. We leave a rigorous

theoretical investigation (when pd is fixed, px = px(n)→ ∞ and px/n→ 0 as n→ ∞) as well as

empirical applications with many (exogenous) regressors to future work.

3.2 Computational Methods

To solve optimization problems (3.6) and (3.9) with non-negative weights, arguably the

simplest algorithm is a vanilla gradient descent algorithm (GD). For a prespecified τ ∈ (0,1) and

bandwidth h > 0, recall that Q̂h(βββ ) = (1/n)∑
n
i=1 `h(yi−〈xxxi,βββ 〉). Starting with an initial value

βββ
0 ∈ Rp, at iteration t = 0,1,2, . . ., GD computes

βββ
t+1 = βββ

t−ηt ·∇Q̂h(βββ
t) = βββ

t− ηt

n

n

∑
i=1

{
Kh(〈xxxi,βββ

t〉− yi)− τ
}

xxxi, (3.11)

where ηt > 0 is the stepsize. In the classical GD method, the stepsize is usually obtained by

employing line search techniques. However, line search is computationally intensive for large-

scale settings. One of the most important issues in GD is to determine a proper update step

ηt decay schedule. A common practice in the literature is to use a diminishing stepsize or a

best-tuned fixed stepsize. Neither of these two approaches can be efficient, at least compared

to the Newton-Frisch algorithm with preprocessing [Portnoy and Koenker, 1997]. Recall that

the smoothed loss Q̂h(·) is twice differentiable with Hessian ∇2Q̂h(βββ ) = (1/n)∑
n
i=1 Kh(yi−

〈xxxi,βββ 〉)xxxixxxT
i . It is therefore natural to employ the Newton-Raphson method, which at iteration t
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would read

βββ
t+1 = βββ

t +dddt with dddt :=−
{

∇
2Q̂h(βββ

t)
}−1

∇Q̂h(βββ
t). (3.12)

In practice, the Newton method is often paired with Armoji stepsize: choose a stepsize λ t =

max{1,1/2,1/4, . . .} such that Q̂h(βββ
t)− Q̂h(βββ

t +λ tdddt)≥−cλ t∇Q̂h(βββ
t)dddt , where c ∈ (0,1/2).

Then redefine the current iterate as βββ
t+1 = βββ

t +λ tdddt . Since such a backtracking line search

requires evaluations of the loss function itself, in the following remark we present the explicit

expressions of the convolution smoothed check function for several commonly used kernels.

Remark 3.2.1. Recall that the check function can be written as ρτ(u) = |u|/2+(τ − 1/2)u,

which, after convolution smoothing, becomes `h(u) = (1/2)
∫

∞

−∞
|u+hv|K(v)dv+(τ−1/2)u.

• (Gaussian kernel K(u) = (2π)−1/2e−u2/2): `h(u) = (h/2)`G(u/h)+ (τ − 1/2)u, where

`G(u) := (2/π)1/2e−u2/2 +u{1−2Φ(−u)}.

• (Logistic kernel2 K(u) = e−u/(1+ e−u)2): `h(u) = (h/2)`L(u/h)+ (τ − 1/2)u, where

`L(u) := u+2log(1+ e−u).

• (Uniform kernel K(u) = (1/2)1(|u| ≤ 1)): `h(u) = (h/2)`U(u/h)+ (τ − 1/2)u, where

`U(u) := (u2/2+1/2)1(|u| ≤ 1)+ |u|1(|u|> 1) is a shifted Huber loss [Huber, 1973].

• (Epanechnikov kernel K(u) = (3/4)(1− u2)1(|u| ≤ 1)): `h(u) = (h/2)`E(u/h)+ (τ −

1/2)u, where `E(u) := (3u2/4−u4/8+3/8)1(|u| ≤ 1)+ |u|1(|u|> 1).

• (Triangular kernel K(u)= (1−|u|)1(|u| ≤ 1)): `h(u)= (h/2)`T(u/h)+(τ−1/2)u, where

`T(u) := (u2−|u|3/3+1/3)1(|u| ≤ 1)+ |u|1(|u|> 1).
2Logistic kernel smoothed approximation of the check function dates back to Amemiya [1982], which is used as

a technical device to simplify the analysis of the asymptotic behavior of a two-stage median regression estimator.
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3.2.1 The Barzilai-Borwein stepsize

In this section, we propose to solve conquer by means of the gradient descent with a

Barzilai-Borwein update step [Barzilai and Borwein, 1988], which we refer to as the GD-BB

algorithm. Motivated by quasi-Newton methods, the BB method has been proven to be very

successful in solving nonlinear optimization problems.

Computing the inverse of the Hessian when p is large is an expensive operation at each

Newton step (3.12). Moreover, in circumstances where h is small or τ is very close to 0 or 1,

∇2Q̂h(·) may have a large condition number, thus leading to slow convergence. For this reason,

many quasi-Newton methods seek a simple approximation of the inverse Hessian matrix, say

(Jt)−1, satisfying the secant equation Jtδδδ
t = gggt , where

δδδ
t = βββ

t−βββ
t−1 and gggt = ∇Q̂h(βββ

t)−∇Q̂h(βββ
t−1), t = 1,2, . . . . (3.13)

To mitigate the computational cost of inverting a large matrix, the BB method chooses η

so that η∇Q̂h(βββ
t) = (η−1Ip)

−1∇Q̂h(βββ
t) “approximates” (Jt)−1∇Q̂h(βββ

t). Since Jt satisfies

Jtδδδ
t = gggt , it is more practical to choose η such that (1/η)δδδ t ≈ gggt or δδδ

t ≈ ηgggt . Via least squares

approximations, one may use η
−1
1,t = argminα ‖αδδδ

t−gggt‖2
2 or η2,t = argminη ‖δδδ t−ηgggt‖2

2. The

BB stepsizes are then defined as

η1,t =
〈δδδ t ,δδδ t〉
〈δδδ t ,gggt〉

and η2,t =
〈δδδ t ,gggt〉
〈gggt ,gggt〉 . (3.14)

Consequently, the BB iteration takes the form

βββ
t+1 = βββ

t−η`,t∇Q̂h(βββ
t), `= 1 or 2. (3.15)

Note that the BB step starts at iteration 1, while at iteration 0, we compute βββ
1 using standard

gradient descent with an initial estimate βββ
0. The procedure is summarized in Algorithm 1. Based
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Algorithm 1. Gradient descent with Barzilai-Borwein stepsize (GD-BB) for solving conquer.

Input: data vectors {(yi,xxxi)}n
i=1, τ ∈ (0,1), bandwidth h ∈ (0,1), initialization βββ

0, and gradient
tolerance δ .

1: Compute βββ
1← βββ

0−∇Q̂h(βββ
0)

2: for t = 1,2 . . . do
3: δδδ

t ← βββ
t−βββ

t−1, gggt ← ∇Q̂h(βββ
t)−∇Q̂h(βββ

t−1)
4: η1,t ← 〈δδδ t ,δδδ t〉/〈δδδ t ,gggt〉, η2,t ← 〈δδδ t ,gggt〉/〈gggt ,gggt〉
5: ηt ←min{η1,t ,η2,t ,100} if η1,t > 0 and ηt ← 1 otherwise
6: βββ

t+1← βββ
t−ηt∇Q̂h(βββ

t)

7: end for when ‖∇Q̂h(βββ
t)‖2 ≤ δ

on extensive numerical studies, we find that at a fixed τ , the number of iterations is insensitive

to varying (n, p) combinations. Moreover, as h increases, the number of iterations declines

because the loss function is “more convex” for larger h. In Algorithm 1, the quantity δ > 0

is a prespecified tolerance level, ensuring that the final iterate βββ
T satisfies ‖∇Q̂h(βββ

T )‖2 ≤ δ .

Provided that δ .
√

p/n, the statistical theory developed in Section 3.3 prevails. In our R

package conquer, we set δ = 10−4 as the default value; this value can also be specified by the

user.

As τ approaches 0 or 1, the Hessian matrix becomes more ill-conditioned. As a result,

the stepsizes computed in GD-BB may sometimes fluctuate drastically, causing instability

of the algorithm. Therefore, in practice, we set an upper bound for the stepsizes by taking

ηt = min{η1,t ,η2,t ,100}, for t = 1,2, . . .. Another case of an ill-conditioned Hessian arises when

we have covariates with very different scales. In this case, the stepsize should be different for

each covariate, and a constant stepsize will be either too small or too large for one or more

covariates, which leads to slow convergence. To address this issue, we scale the covariate inputs

to have zero mean and unit variance before applying gradient descent.

3.2.2 Warm start via asymmetric Huber regression

A good initialization helps reduce the number of iterations for GD, and hence facilitates

fast convergence. Recall from Remark 3.2.1 that with a uniform kernel, the smoothed check
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function is proximal to a Huber loss [Huber, 1973]. Motivated by this subtle proximity, we

propose using the asymmetric Huber M-estimator as an initial estimate, and then proceed by

iteratively applying gradient descent with BB update step.

Let Hτ,γ(u) = |τ−1(u < 0)| · {(u2/2)1(|u| ≤ γ)+ γ(|u|− γ/2)1(|u|> γ)} be the asym-

metric Huber loss parametrized by γ > 0. The asymmetric Huber M-estimator is then defined

as

β̃ββ γ ∈ argmin
βββ∈Rp

L̂γ(βββ ), where L̂γ(βββ ) =
1
n

n

∑
i=1

Hτ,γ(yi−〈xxxi,βββ 〉). (3.16)

The quantity γ is a shape parameter that controls the amount of robustness. The main reason

for choosing a fixed (neither diminishing nor diverging) tuning parameter γ in Huber [1981]

is to guarantee robustness towards arbitrary contamination in a neighborhood of the model.

This is at the core of the robust statistics idiosyncrasy. In particular, Huber [1981] proposed

γ = 1.35σ to gain as much robustness as possible while retaining 95% asymptotic efficiency

for normally distributed data, where σ > 0 is the standard deviation of the random noise.

We estimate σ using the median absolute deviation of the residuals at each iteration, i.e.,

MAD({rt
i}n

i=1) = median(|rt
i −median(rt

i)|).

Noting that the asymmetric Huber loss is twice continuously differentiable, convex, and

locally strongly convex, we use the GD-BB method described in the previous section to solve

the optimization problem (3.16). Starting at iteration 0 with βββ
0,0 = 0, at iteration t = 0,1,2, . . .,

we compute

βββ
0,t+1 = βββ

0,t−ηt∇L̂γ(βββ
0,t) = βββ

0,t +
ηt

n

n

∑
i=1

ψτ,γ(yi−〈xxxi,βββ
0,t〉)xxxi (3.17)

with ηt > 0 automatically obtained by the BB method, where ψτ,γ(u) = |τ−1(u< 0)| ·H ′τ,γ(u) =

|τ−1(u < 0)| ·min{max(−γ,u),γ}. The final iterate βββ
0,T ′ for some T ′ > 1 will be used as the

initial value in Section 3.2.1. We summarize the details in Algorithm 2.
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Algorithm 2. GD-BB method for solving (3.16).
Input: {(yi,xxxi)}n

i=1 and convergence criterion δ .

1: Initialize βββ
0,0 = 0

2: Compute γ0 = 1.35 ·MAD({r0
i }n

i=1), where r0
i ← yi−〈xxxi,βββ

0,0〉, i = 1, . . . ,n, where MAD(·)
is the median absolute deviation

3: βββ
0,1← βββ

0,0−∇L̂γ0(βββ
0,0)

4: for t = 1,2 . . . do
5: γ t = 1.35 ·MAD({rt

i}n
i=1), where rt

i ← yi−〈xxxi,βββ
0,t〉, i = 1, . . . ,n

6: δδδ
t ← βββ

0,t−βββ
0,t−1, gggt ← ∇L̂γt (βββ 0,t)−∇L̂γt (βββ 0,t−1)

7: η1,t ← 〈δδδ t ,δδδ t〉/〈δδδ t ,gggt〉, η2,t ← 〈δδδ t ,gggt〉/〈gggt ,gggt〉.
8: ηt ←min{η1,t ,η2,t ,100} if η1,t > 0 and ηt ← 1 otherwise
9: βββ

0,t+1← βββ
0,t−ηt∇L̂γt (βββ 0,t)

10: end for when ‖∇L̂γt (βββ 0,t)‖2 ≤ δ

3.3 Statistical Analysis

Under the linear quantile regression model, we write, for convenience, the generic data

vector (y,xxx) in a linear model form: given a quantile level τ ∈ (0,1) of interest,

y = 〈xxx,βββ ∗(τ)〉+ ε(τ), (3.18)

where the random variable ε(τ) satisfies P{ε(τ) ≤ 0|xxx} = τ . Let fε|xxx(·) be the conditional

density function of the regression error ε = ε(τ) given xxx = (x1, . . . ,xp)
T (p≥ 2). We first derive

upper bounds for the smoothing bias under mild regularity conditions on the conditional density

fε|xxx and the kernel function. For any vector uuu ∈ Rp, we write uuu− ∈ Rp−1 as the sub-vector of uuu

with its first component removed. Recall that x1 ≡ 1, and xxx− = (x2, . . . ,xp)
T ∈ Rp−1 is assumed

to be random. Without loss of generality, we assume µµµ− := E(xxx−) = 0 throughout this section;

otherwise, set x̃xx = (1,(xxx−−µµµ−)
T)T, so that model (3.18) can be written as y = 〈x̃xx, β̃ββ

∗
〉+ε , where

β̃ββ
∗
= (β̃ ∗1 ,β

∗
2 , . . . ,β

∗
p)

T with β̃ ∗1 = β ∗1 + 〈µµµ−,βββ
∗
−〉. The analysis then applies to {(yi, x̃xxi)}n

i=1, and

the probabilistic bounds for β̃ββ
∗

naturally lead to those for βββ
∗.
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3.3.1 Smoothing bias

Condition 3.3.1 (Kernel function). Let K(·) be a symmetric and non-negative function that

integrates to one, that is, K(u) = K(−u), K(u)≥ 0 for all u ∈R and
∫

∞

−∞
K(u)du = 1. Moreover,

K(·) is bounded with κu := supu∈RK(u)< ∞.

We will use the notation κk =
∫

∞

−∞
|u|kK(u)du for k ≥ 1. Furthermore, we define the

population smoothed loss function Qh(βββ ) = E{Q̂h(βββ )}, βββ ∈ Rp and the pseudo parameter

βββ
∗
h(τ) ∈ argmin

βββ∈Rp
Qh(βββ ), (3.19)

which is the population minimizer under the smoothed quantile loss. For simplicity, we write

βββ
∗ = βββ

∗(τ) and βββ
∗
h = βββ

∗
h(τ) hereinafter. In general, βββ

∗
h differs from βββ

∗, and we refer to

‖βββ ∗h−βββ
∗‖2 as the approximation error or smoothing bias.

Condition 3.3.2 (Conditional density). There exists f > 0 such that fε|xxx(0)≥ f almost surely

(for all xxx). Moreover, there exists a constant l0 > 0 such that | fε|xxx(u)− fε|xxx(v)| ≤ l0|u−v| for all

u,v ∈ R almost surely (over xxx).

Condition 3.3.3 (Random design: moments). The (random) vector xxx ∈Rp of covariates satisfies

m3 := supuuu∈Sp−1 E(|〈uuu,ΣΣΣ−1/2xxx〉|3)< ∞, where ΣΣΣ = E(xxxxxxT) is positive definite.

Condition 3.3.3 requires that all the one-dimensional marginals of ΣΣΣ
−1/2xxx have bounded

third absolute moments. When xxx− follows a multivariate normal distribution, Condition 3.3.3

holds trivially. The following result characterizes the smoothing bias from a non-asymptotic

viewpoint.

Proposition 3.3.1. Assume Conditions 3.3.1–3.3.3 hold, and let the bandwidth satisfy 0 < h <

1
l0{κ1+(m3κ2)1/2} f . Then, βββ

∗
h is the unique minimizer of βββ 7→ Qh(βββ ) and satisfies

δh := ‖βββ ∗h−βββ
∗‖ΣΣΣ <

l0κ2h2

f − l0κ1h
. (3.20)
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In addition, assume fε|xxx(·) is continuously differentiable and satisfies almost surely (over xxx) that

| f ′
ε|xxx(u)− f ′

ε|xxx(0)| ≤ l1|u| for some constant l1 > 0. Then

∥∥∥∥ΣΣΣ
−1/2J(βββ ∗h−βββ

∗)+
1
2

κ2h2 ·ΣΣΣ−1/2E
{

f ′
ε|xxx(0)xxx

}∥∥∥∥
2
≤ 1

6
l1κ3h3 +

1
2

l0m3δ
2
h + l0κ1hδh, (3.21)

where J = E{ fε|xxx(0)xxxxxxT}.

To better understand the bounds (3.20) and (3.21), note that ‖βββ ∗h−βββ
∗‖2

ΣΣΣ
=E〈xxx,βββ ∗h−βββ

∗〉2

is the average prediction smoothing error. Interestingly, the upper bound on the right-hand side is

dimension-free given h as long as the uniform third moment m3 in Condition 3.3.3 is dimension-

free. Another interesting implication is that, when both fε|xxx(0) and f ′
ε|xxx(0) are independent of xxx,

i.e., fε|xxx(0) = fε(0) and f ′
ε|xxx(0) = f ′ε(0), the leading term in the bias simplifies to

1
2

κ2h2 ·J−1E
{

f ′
ε|xxx(0)xxx

}
=

f ′ε(0)
2 fε(0)

κ2h2 ·ΣΣΣ−1E(xxx) =
f ′ε(0)

2 fε(0)
κ2h2 ·

 1

0p−1

 .
In other words, the smoothing bias is concentrated primarily on the intercept. In the asymptotic

setting where p is fixed, and h = o(1) as n→ ∞, we refer to Theorem 1 in Fernandes, Guerre

and Horta [2021] for the expression of asymptotic bias.

3.3.2 Finite sample theory

In this section, we provide two non-asymptotic results, the concentration inequality and

the Bahadur-Kiefer representation, for the conquer estimator under random design.

Condition 3.3.4 (Random design: sub-exponential case). The predictor xxx = (x1, . . . ,xp)
T ∈ Rp

is sub-exponential with x1 ≡ 1 and E(x j) = 0 for j = 2, . . . , p. That is, there exists υ0 > 0 such

that P{|〈uuu,www〉| ≥ υ0t} ≤ e−t for all uuu ∈ Sp−1 and t ≥ 0, where www = ΣΣΣ
−1/2xxx with ΣΣΣ = E(xxxxxxT)

being positive definite.

Condition 3.3.4 asserts that the distribution of the covariates is sub-exponential, which
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encompasses the bounded case considered by Fernandes, Guerre and Horta [2021]. For the

standardized predictor www = ΣΣΣ
−1/2xxx, we define the uniform moment parameters (including m3

that first occurred in Condition (3.3.3))

mk = sup
uuu∈Sp−1

E|〈uuu,www〉|k, k = 1,2, . . . , (3.22)

with m2 = 1. In particular, m4 can be viewed as the uniform kurtosis parameter. Under Condi-

tion 3.3.4, a straightforward calculation shows that mk ≤ υk
0k!, valid for all k ≥ 1.

Theorem 3.3.1. Assume Conditions 3.3.1, 3.3.2 and 3.3.4 hold. For any t > 0, the smoothed

quantile regression estimator β̂ββ h with f−1m1/2
3 υ0

√
(p+ t)/n. h. f m−1/2

3 satisfies the bound

‖β̂ββ h−βββ
∗‖ΣΣΣ .

1
f

{
υ0

√
log2(1/h)+ p+ t

n
+ l0κ2h2

}
, (3.23)

with probability at least 1−2e−t , where log2(x) := log log(x∨1).

With high probability, the estimation error in (3.23) is upper bounded by two terms,

f−1l0κ2h2 and f−1
υ0
√

(p+ t)/n, which can be interpreted as the bias and statistical rate of

convergence, respectively. The parameter t ≥ 0 controls the confidence level through 1−2e−t .

The additional factor log2(1/h) in the upper bound is a consequence of the peeling argument,

which can be removed via a more refined analysis yet under slightly stronger technical conditions;

see Section B.2.3 in the supplement for details. Adjusting the proof by changing high probability

bounds to OP statements, it can be shown that ‖β̂ββ h−βββ
∗‖ΣΣΣ = OP(

√
p/n) under the condition

h = O((p/n)1/4) and
√

p/n = O(h). Next we explain the bandwidth constraint
√

p/n. h. 1

required in Theorem 3.3.1 and all the other results below. On the one side, the smoothing

parameter should be sufficiently small, typically h = hn → 0, so that the smoothing bias is

negligible and does not change the target parameter to be estimated. On the other side, the

bandwidth cannot be too small in the sense that we need h&
√

p/n. Intuitively, this is because the

main motivation for smoothed QR is to seek a tradeoff between statistical rate of convergence and
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computational precision (unless the data is noiseless). The standard QR estimator β̂ββ = β̂ββ (τ) has a

convergence rate ‖β̂ββ−βββ
∗‖2 =OP(

√
p/n) under the growth condition psupxxx∈X ‖xxx‖2

2 ·(logn)2 =

o(n); see Theorem 1 in Belloni et al. [2019]. Here X ⊆Rp is the support of the covariate vector

xxx ∈ Rp. Therefore, smoothing will become redundant if the bandwidth is set at a level below the

best possible statistical convergence radius.

Our results provide non-asymptotic bounds via high probability statements, which com-

plement the classical Big OP (OP) and little op (oP) statements frequently used in statistics and

econometrics. Probabilistic bounds of this kind can also be extended to analyze high-dimensional

models [Belloni and Chernozhukov, 2011, Wang, Wu and Li, 2012] or nonparametric methods

[Belloni et al., 2019].

Next, we establish a Bahadur representation for the conquer estimator, which lays the

theoretical foundation for the ensuing statistical inference. To this end, we impose a slightly

more stringent sub-Gaussian condition on the covariates, where the sub-Gaussian parameter is a

dimension-free constant.

Condition 3.3.5 (Random design: sub-Gaussian case). The predictor xxx = (x1, . . . ,xp)
T ∈ Rp is

sub-Gaussian with x1 ≡ 1 and E(x j) = 0 for j = 2, . . . , p. That is, there exists υ1 > 0 such that

P{|〈uuu,www〉| ≥ υ1t} ≤ 2e−t2/2 for all uuu ∈ Sp−1 and t ≥ 0, where www = ΣΣΣ
−1/2xxx.

Theorem 3.3.2. In addition to Conditions 3.3.1, 3.3.2 and 3.3.5, assume supu∈R fε|xxx(u) ≤ f̄

almost surely. Let t > 0, and suppose n and h satisfy f−1m1/2
3 υ1

√
(p+ t)/n . h . f m−1/2

3 .

Then, with probability at least 1−3e−t ,

∥∥∥∥∥ΣΣΣ
−1/2Jh(β̂ββ h−βββ

∗)− 1
n

n

∑
i=1

{
τ−Kh(−εi)

}
ΣΣΣ
−1/2xxxi

∥∥∥∥∥
2

.
p+ t
nh1/2 +h3/2

√
p+ t

n
+h4, (3.24)

where Jh = ∇2Qh(βββ
∗) = E

{
Kh(ε)xxxxxxT

}
, Kh(u) =

∫ u/h
−∞ K(v)dv. When Jh on the left-hand side

of (3.24) is replaced by J = E{ fε|xxx(0)xxxxxxT}, the upper bound is of order (p+ t)/(nh1/2) +

h
√

(p+ t)/n+h3.
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With growing dimensions (many regressors), Theorem 3.3.2 is directly comparable to

and complements Theorem 2 in Belloni et al. [2019], although the latter concerns the linear

approximation of the quantile regression process. To see the connection, we write n1/2(β̂ββ h−

βββ
∗) = J−1

h UUUh + rrrh, where UUUh = n−1/2
∑

n
i=1(1−E){τ −Kh(−εi)}xxxi is a zero-mean random

vector, and the remainder rrrh is such that ‖rrrh‖2 . (p+ t)/(nh)1/2 +n1/2h2 with high probability.

Minimizing the right-hand side over h in terms of order leads to a convergence rate p4/5/n3/10.

For standard QR with fixed design, Theorem 2 in Belloni et al. [2019] implies n1/2(β̂ββ −βββ
∗) =

J−1UUU + rrr, where UUU = n−1/2
∑

n
i=1{τ − 1(εi ≤ 0)}xxxi, and ‖rrr‖2 = OP(p3/4ζp(logn)1/2n−1/4),

where ζp = supxxx∈X ‖xxx‖2. From an asymptotic perspective, the QR estimator has the advantage

of being (conditionally) pivotal asymptotically. However, possibly due to the non-smoothness of

the check function, the linear approximation error has a slower rate of convergence (p5/n)1/4

even for bounded design, i.e., ζp ≤ Bp1/2 for some constant B > 0. For the conquer estimator,

although the linear term UUUh is not pivotal, we will show that Rademacher multiplier bootstrap

provides accurate approximations both theoretically and numerically.

The Bahadur representation can be used to establish the limiting distribution of the

estimator or its functionals. Here we consider a fundamental statistical inference problem for

testing the linear hypothesis H0 : 〈aaa,βββ ∗〉= 0, where aaa ∈ Rp is a deterministic vector that defines

a linear functional of interest. It is then natural to consider a test statistic that depends on

n1/2〈aaa, β̂ββ h〉. Based on the non-asymptotic result in Theorem 3.3.2, we establish a Berry-Esseen

bound for the linear projection of the conquer estimator.

Theorem 3.3.3. Assume that the conditions in Theorem 3.3.2 hold, and
√
(p+ logn)/n. h. 1.

Then,

∆n,p(h) := sup
x∈R,aaa∈Rp

∣∣∣P(n1/2
σ
−1
h 〈aaa, β̂ββ h−βββ

∗〉 ≤ x
)
−Φ(x)

∣∣∣. p+ logn
(nh)1/2 +n1/2h2, (3.25)

where σ2
h = σ2

h (aaa) = aaaTJ−1
h E

[
{Kh(−ε)− τ}2xxxxxxT

]
J−1

h aaa, where Φ(·) denotes the standard nor-
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mal distribution function. Moreover,

sup
aaa∈Rp

∣∣∣∣∣ σ2
h (aaa)

aaaTJ−1
h ΣΣΣJ−1

h aaa
− τ(1− τ)

∣∣∣∣∣= O(h) as h→ 0.

If, in addition, that fε|xxx(·) is twice continuously differentiable and satisfies | f ′′
ε|xxx(u)− f ′′

ε|xxx(v)| ≤

l2(xxx)|u− v| for all u,v ∈ R and xxx ∈ Rp, and l2 : Rp→ R+ is such that E{l2
2(xxx)} ≤C for some

C > 0. Then,

sup
x∈R,aaa∈Rp

∣∣∣P(n1/2
σ
−1
h 〈aaa, β̂ββ h−βββ

∗+0.5κ2h2J−1
h E{ f ′

ε|xxx(0)xxx}〉 ≤ x
)
−Φ(x)

∣∣∣
.

p+ logn
(nh)1/2 +(p+ logn)1/2h3/2 +n1/2h4. (3.26)

Theorem 2.1.3 shows that for certain choice of bandwidth h = hn → 0, all the linear

functionals of β̂ββ h, after properly standardization, are asymptotically normal as n, p→ ∞ subject

to some conditions. For example, if h satisfies h = o(n−1/4), then the smoothing bias does not

affect the asymptotic distribution. The Berry-Esseen bound (3.25) immediately yields a large-p

asymptotic result. Taking h = hn = {(p+ logn)/n}2/5 therein, the Gaussian approximation

error ∆n,p(h) is of order (p+ logn)4/5n−3/10. Consequently, n1/2〈aaa, β̂ββ h−βββ
∗〉, for any given

(deterministic) vector aaa ∈ Rp, is asymptotically normally distributed as long as p8/3/n→ 0,

which improves the best known growth condition on p for quantile regression [Welsh, 1989].

Remark 3.3.1 (Large-p asymptotics). This is a follow-up discussion of Remark 2.1.1. For smooth

robust regression estimators, asymptotic normality can be proven under less restrictive conditions

on p. Huber [1973] showed that if the loss is twice differentiable, the asymptotic normality for

〈aaa, β̂ββ 〉, where aaa ∈ Rp, holds if p3/n→ 0 as n increases. Portnoy [1985] and Mammen [1989]

weakened this condition to (p logn)3/2/n→ 0 and p3/2 log(n)/n→ 0, respectively, when the loss

function is four times differentiable. For Huber loss that has a Lipschitz continuous derivative,

He and Shao [2000] obtained the scaling p2 log p = o(n) that ensures the asymptotic normality

of arbitrary linear combinations of β̂ββ . Table 1 summarizes our discussion here and shows that
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the smoothing for conquer helps ensure asymptotic normality of the estimator under weaker

conditions on p than what we need for the usual quantile regression estimator.

Table 3.1. Summary of scaling conditions required for normal approximation under various loss
functions.

Loss function Design Scaling condition

Huber loss [Huber, 1973] Fixed design p3 = o(n)
Four times differentiable loss [Portnoy, 1985] Fixed design (with symmetric error) (p logn)3/2 = o(n)
Four times differentiable loss [Mammen, 1989] Fixed design p3/2 logn = o(n)
Huber loss [He and Shao, 2000] Fixed design p2 log p = o(n)
Huber loss [Chen and Zhou, 2020] Sub-Gaussian p2 = o(n)
Quantile loss [Welsh, 1989, He and Shao, 2000] Fixed design p3(logn)2 = o(n)
Quantile loss [Pan and Zhou, 2021] Sub-Gaussian p3(logn)2 = o(n)
Convolution smoothed quantile loss [He et al., 2022] Sub-Gaussian p8/3 = o(n)

Remark 3.3.2. In this work, we show that the accuracy of conquer-based inference via the

Bahadur representation (and normal approximations) has an error of rate faster than n−1/4 yet

slower than n−1/2; see Theorems 3.3.2 and 3.3.3. For standard regression quantiles, Portnoy

[2012] proposed an alternative expansion for the quantile process using the “Hungarian”

construction of Komlós, Major and Tusnády. This stochastic approximation yields an error of

order n−1/2 (up to a factor of logn), and hence provides a theoretical justification for accurate

approximations for inference in regression quantile models.

3.3.3 Theoretical guarantees for inference

We next investigate the statistical properties of the Rademacher multiplier bootstrap

(RMB) defined in (3.9). As before, we consider array (non)asymptotics, and the obtained

bootstrap approximation errors depend explicitly on (n, p) and h.

Theorem 3.3.4. Assume Conditions 3.3.1, 3.3.2 and 3.3.5 hold. For any given t ≥ 0, let the

sample size and bandwidth satisfy f−1m1/2
3 υ1

√
(p+ t)/n . h . f m−1/2

3 . Then, there exists

some “good” event E (t) with P{E (t)}≥ 1−3e−t such that, with P∗-probability at least 1−2e−t
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conditioned on E (t),

‖β̂ββ
[

h−βββ
∗‖ΣΣΣ .

1
f

{
υ1

√
log2(1/h)+ p+ t

n
+ l0κ2h2

}
. (3.27)

Analogously to Theorem 3.3.2, we further provide a Bahadur representation result for

the bootstrap estimator β̂ββ
[

h, which paves the way for validating the conquer-RMB method.

Theorem 3.3.5. In addition to Conditions 3.3.1, 3.3.2 and 3.3.5, assume supu∈R fε|xxx(u) ≤ f̄

almost surely (in xxx) and K(·) is lK-Lipschitz continuous. Suppose the sample size satisfies

n & q := p+ logn, and set the bandwidth as h � (q/n)2/5. Then, there exists a sequence of

events {Fn} with P(Fn)≥ 1−6n−1 such that, with P∗-probability at least 1−3n−1 conditioned

on Fn,

∥∥∥∥∥ΣΣΣ
−1/2Jh(β̂ββ

[

h− β̂ββ h)−
1
n

n

∑
i=1

ei
{

τ−Kh(−εi)
}

ΣΣΣ
−1/2xxxi

∥∥∥∥∥
2

.

(
q
n

)4/5∨(q
n

)3/5( p logn
n

)1/4∨(q
n

)3/5 p logn
n1/2 . (3.28)

As suggested by Theorem 2.1.3 and the discussion below, if we set the order of the

bandwidth h as {(p+ logn)/n}2/5, the normal approximation to the conquer estimator is asymp-

totically accurate provided that p8/3 = o(n) as n→ ∞. For the same h, the right-hand side of

(3.28) is of order o(n−1/2) provided that p8/3(logn)5/3 = o(n). Putting these two parts together,

we have the following asymptotic bootstrap approximation result.

Corollary 3.3.1. Assume the same conditions of Theorem 3.3.5, and let the bandwidth be of

order h� {(p+ logn)/n}2/5. If the dimension p = pn is subject to p(logn)5/8 = o(n3/8), then

for any deterministic vector aaa ∈ Rp,

sup
x∈R

∣∣P(n1/2〈aaa, β̂ββ h−βββ
∗〉 ≤ x

)
−P∗

(
n1/2〈aaa, β̂ββ

[

h− β̂ββ h〉 ≤ x
)∣∣ P→ 0 as n→ ∞. (3.29)
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The proof of (3.29) follows the same argument as that in the proof of Theorem 3.3.3, and

therefore is omitted. The additional logarithmic factor in the scaling may be an artifact of the

proof technique.

Remark 3.3.3. (Multiplier bootstrap with more general weighting schemes) By examining

the proof of Theorem 3.3.5, we see that the assumption E(e2
i ) = 1 is not necessarily required

for the bound (3.28) on bootstrap Bahadur linearization error. To retain the convexity of the

bootstrap loss Q̂[
h(βββ ) = (1/n)∑

n
i=1(1+ei)`h(yi−xxxT

i βββ ), we restrict our attention to non-negative

multipliers 1+ ei ≥ 0. More generally, assume that e1, . . . ,en are i.i.d. satisfying

E(ei) = 0, ei ≥−1 and logEeλei ≤ λ
2
ν/2 for all λ ≥ 0 and some ν > 0. (3.30)

This means that ei has sub-Gaussian right tails. Typical examples satisfying (3.30) include: (i)

uniform distribution on [−1,1], (ii) symmetric triangular distribution on [−1,1], (iii) shifted

folded normal distribution (π/2)1/2|g|−1 where g∼N (0,1). The proof of the bound (3.28)

under such a general scheme requires more involved argument; see, for example, the proof of

Theorem 2.3 in Chen and Zhou [2020] (the unit variance assumption therein can also be relaxed).

When κ2 := E(e2
i ) 6= 1, although the bootstrap approximation result (3.29) will no longer hold,

by a simple variance adjustment it can be shown that

sup
x∈R

∣∣P(n1/2〈aaa, β̂ββ h−βββ
∗〉 ≤ x

)
−P∗

{
(n/κ)1/2〈aaa, β̂ββ

[

h− β̂ββ h〉 ≤ x
}∣∣ P→ 0 as n→ ∞.

The pivotal bootstrap confidence intervals can thus be constructed by slightly adapting the

method described in Section 3.1.3.

The numerical performance of the Rademacher multiplier bootstrap inference for conquer

will be examined in Section 3.4.2. The main advantage of the multiplier bootstrap method is

that it does not require estimating the variance-covariance matrices in (3.10), which can be quite

unstable and thus causes outliers when τ is close to 0 or 1.
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The construction of normal-based confidence intervals is based on the estimated vari-

ances σ̂2
h (aaa) = aaaTĴ−1

h V̂hĴ−1
h aaa for aaa ∈ Rp, where Ĵh and V̂h are given in (3.10). In view of

Theorem 3.3.3, the validity of normal calibration relies on the consistency of Ĵh and V̂h. In the

following, we provide the consistency of Ĵh and V̂h under the operator norm, again in the regime

“p/n→ 0 as p,n→ ∞”.

Note that both Ĵh and V̂h depend on the conquer estimator, whose rate of convergence is

already established in Theorem 3.3.1. For δδδ ∈ Rp, define matrix-valued functions

Ĵh(δδδ ) =
1
n

n

∑
i=1

Kh(εi−〈xxxi,δδδ 〉)xxxixxxT
i and V̂h(δδδ ) =

1
n

n

∑
i=1
{Kh(〈xxxi,δδδ 〉− ε)− τ}2xxxixxxT

i , (3.31)

so that Ĵh = Ĵh(δ̂δδ ) and V̂h = V̂h(δ̂δδ ) with δ̂δδ = β̂ββ h−βββ
∗. Conditioned on the event {‖δ̂δδ‖ΣΣΣ ≤ r}

for some prespecified r > 0 which determines the convergence rate of β̂ββ h, we have

‖Ĵh−Jh‖2 ≤ sup
‖δδδ‖ΣΣΣ≤r

‖Ĵh(δδδ )−Jh‖2 and ‖V̂h−Vh‖2 ≤ sup
‖δδδ‖ΣΣΣ≤r

‖V̂h(δδδ )−Vh‖2,

where Vh := E
[
{Kh(−ε)− τ}2xxxxxxT

]
. The problem is thus reduced to controlling the above

suprema over a local neighborhood.

Proposition 3.3.2. In addition to the conditions in Theorem 3.3.2, assume that the kernel K(·)

is lK-Lipschitz continuous. For any given r ≥ 0,

sup
‖δδδ‖ΣΣΣ≤r

‖ΣΣΣ−1/2{Ĵh(δδδ )−Jh}ΣΣΣ−1/2‖2 .

√
p logn+ t

nh
+ r (3.32)

holds with probability at least 1−e−t , provided that max{
√

(p+ t)/n, p log(n)/n}. h. 1. The

same probabilistic bound also applies to sup‖δδδ‖ΣΣΣ≤r ‖ΣΣΣ−1/2{V̂h(δδδ )−Vh}ΣΣΣ−1/2‖2.

Following the discussions below Theorem 3.3.3, if we set the bandwidth as h� {(p+

logn)/n}2/5, ‖β̂ββ h− βββ
∗‖ΣΣΣ = OP(

√
(p+ logn)/n) and n1/2aaaT(β̂ββ h− βββ

∗)/σh(aaa)→ N (0,1) in

distribution uniformly over aaa ∈ Rp as n→ ∞ under the constraint p8/3 = o(n). With the same
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bandwidth, it follows from Proposition 3.3.2 that

max
(
‖Ĵh−Jh‖2,‖V̂h−Vh‖2

)
= OP

[{
(logn)1/2 p3/10 +(logn)3/10 p1/2}n−3/10

]
= oP(1).

This ensures the consistency of variance estimators, that is, |σ̂2
h (aaa)/σ2

h (aaa)−1| P−→ 0.

3.4 Numerical Studies

In this section, we assess the finite-sample performance of conquer via extensive numeri-

cal studies. We compare conquer to standard QR [Koenker and Bassett, 1978] and Horowitz’s

smoothed QR [Horowitz, 1998]. Both the convolution-type and Horowitz’s smoothed methods

involve a smoothing parameter h. In view of Theorem 3.3.3, we take h = {(p+ logn)/n}2/5 in

all of the numerical experiments. In all the numerical experiments, the convergence criterion in

Algorithms 1 and 2 is taken as δ = 10−4.

We first generate the covariates xxxi = (xi,1, . . . ,xi,p)
T from a multivariate uniform distribu-

tion on the cube 31/2 · [−1,1]p with covariance matrix ΣΣΣ = (0.7| j−k|)1≤ j,k≤p using the R package

MultiRNG [Falk, 1999]. The random noise εi is generated from two different distributions: (i)

Gaussian distribution, N (0,4); and (ii) t distribution with two degrees of freedom, t2. Let

βββ
∗ = (1, . . . ,1)T

p, and β ∗0 = 1. Given τ ∈ (0,1), we then generate the response yi from the

following homogeneous and heterogeneous models:

1. Homogeneous model:

yi = β
∗
0 + 〈xxxi,βββ

∗〉+{εi−F−1
εi

(τ)}, i = 1, . . . ,n; (3.33)

2. Linear heterogeneous model:

yi = β
∗
0 + 〈xxxi,βββ

∗〉+(0.5xi,p +1){εi−F−1
εi

(τ)}, i = 1, . . . ,n; (3.34)
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3. Quadratic heterogeneous model:

yi = β
∗
0 + 〈xxxi,βββ

∗〉+0.5{1+(xi,p−1)2}{εi−F−1
εi

(τ)}, i = 1, . . . ,n. (3.35)

To evaluate the performance of different methods, we calculate the estimation error under

the `2-norm, i.e., ‖β̂ββ −βββ
∗‖2, and record the elapsed time. The details are in Section 3.4.1. In

Section 3.4.2, we examine the finite-sample performance of the multiplier bootstrap method for

constructing confidence intervals in terms of coverage probability, width of the interval, and

computing time.

3.4.1 Estimation

For all the numerical studies in this section, we consider a wide range of the sample size

n, with the size-dimension ratio fixed at n/p = 20. That is, we allow the dimension p to increase

as a function of n. We implement conquer with four different kernel functions as described in

Remark 3.2.1: (i) Gaussian; (ii) uniform; (iii) Epanechnikov; and (iv) triangular. The classical

quantile regression is implemented via a modified version of the Barrodale and Roberts algorithm

[Koenker and d’Orey, 1987, 1994] by setting method= “br” in the R package quantreg, which

is recommended for problems with up to several thousands of observations in Koenker [2022].

For very large problems, the Frisch-Newton approach after preprocessing “pfn” is preferred.

Since the same size taken to be at most 5000 throughout this section, the two methods, “br” and

“pfn”, have nearly identical runtime behaviors. In some applications where there are a lot of

discrete covariates, it is advantageous to use method “sfn”, a sparse version of Frisch-Newton

algorithm that exploits sparse algebra to compute iterates [Koenker and Ng, 2003]. Moreover,

we implement Horowitz’s smoothed quantile regression using the Gaussian kernel, and solve the

resulting non-convex optimization via gradient descent with random initialization and stepsize

calibrated by backtracking line search (Section 9.3 of Boyd and Vandenberghe, 2004). The

results, averaged over 500 replications, are reported.
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Figure 3.3 depicts estimation error of the different methods under the simulation settings

described in Section 3.4 with τ = 0.9. We see that conquer has a lower estimation error

than the classical QR across all scenarios, indicating that smoothing can improve estimation

accuracy under the finite-sample setting. Moreover, compared to Horowitz’s smoothing, conquer

has a lower estimation error in most settings. Estimation error under various quantile levels

τ ∈ {0.1,0.3,0.5,0.7} with the N (0,4) and t2 random noise are also examined. The results are

reported in He et al. [2022], from which we observe evident advantages of conquer, especially at

low and high quantile levels.
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Figure 3.3. Estimation error under models (3.33)–(3.35) in Section 3.4 with N (0,4) and t2
errors, τ = 0.9, averaged over 500 data sets for three different methods: (i) quantile regres-
sion qr, (ii) Horowitz’s method with Gaussian kernel Horowitz-Gauss, and (iii) the conquer
method with four different kernel functions conquer-trian, conquer-para, conquer-unif,
and conquer-Gauss.

To assess the computational efficiency, we compute the elapsed time for fitting the

different methods. Figure 3.4 reports the runtime for the different methods with growing sample

size and dimension under the same settings as in Figure 3.3. We observe that conquer is
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computationally efficient and stable across all scenarios, and the runtime is insensitive to the

choice of kernel functions. In contrast, the runtime for classical quantile regression grows rapidly

as the sample size and dimension increase. Figure 3.4 shows that the runtime of Horowitz’s

smoothing method increases significantly at extreme quantile levels τ ∈ {0.1,0.9}, possibly due

to the combination of its non-convex nature and flatter gradient. In summary, we conclude that

conquer significantly improves computational efficiency while retaining high statistical accuracy

for fitting large-scale linear quantile regression models. Moreover, through a sensitivity analysis

regarding the smoothing bandwidth h [He et al., 2022], it can be found that conquer is insensitive

to the choice of bandwidth h.
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Figure 3.4. Elapsed time of standard QR, Horowitz’s smoothing, and conquer when τ = 0.9.
The model settings are the same as those in Figure 3.3.

3.4.2 Inference

In this section, we assess the performance of the multiplier bootstrap procedure for

constructing confidence interval for each of the regression coefficients obtained from conquer.
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We implement conquer using the Gaussian kernel, and construct three types of confidence

intervals: (i) the percentile mb-per; (ii) pivotal mb-piv; (iii) and regular mb-norm confidence

intervals, as described in Section 3.1.3. We also refer to the proposed multiplier bootstrap

procedure as mb-conquer for simplicity. We compare the proposed method to several widely

used inference methods for QR. In particular, we consider confidence intervals by inverting a

rank score test, rank (Gutenbrunner and Jurečková [1992]; Section 3.5 of Koenker [2005]); a

bootstrap variant based on pivotal estimating functions, pwy [Parzen, Wei and Ying, 1994]; and

wild bootstrap with Rademacher weights, wild [Feng, He and Hu, 2011]. The three methods

rank, pwy, and wild are implemented using the R package quantreg. Note that rank is a

non-resampling based procedure that relies on prior knowledge on the random noise, i.e., a user

needs to specify whether the random noise are independent and identically distributed. In our

simulation studies, we provide rank an unfair advantage by specifying the correct random noise

structure.

We set (n, p) = (800,20), τ ∈ {0.5,0.9}, and significance level α = 0.05. All of the

resampling methods are implemented with B = 500 bootstrap samples. To measure the reliability,

accuracy, and computational efficiency of different methods for constructing confidence intervals,

we calculate the average empirical coverage probability, average width of confidence interval, and

the average runtime. The average is taken over all regression coefficients without the intercept.

Results based on 500 replications are reported in Figure 3.5, and in He et al. [2022].

In these figures, we use the rank-inversion method, rank, as a benchmark since we

implement rank using information about the true underlying random noise, which is practically

infeasible. In the case of τ = 0.9, pwy is the most conservative as it produces the widest

confidence intervals with slightly inflated coverage probability, and wild gives the narrowest

confidence intervals but at the cost of coverage probability. The proposed methods mb-per,

mb-piv, and mb-norm achieve a good balance between reliability (high coverage probability)

and accuracy (narrow CI width), and moreover, has the lowest runtime.

To further highlight the computational gain of the proposed method, we now perform
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Figure 3.5. Empirical coverage, confidence interval width, and elapsed time of six methods:
rank, pwy, wild and three types of mb-conquer: mb-per, mb-piv, and mb-norm under models
(3.33)–(3.35) with t2 errors. For the running time, rank is not included since it is not a resampling-
based method. The quantile level τ is fixed to be 0.9, and the results are averaged over 500 data
sets.

numerical studies with larger n and p. In this case, the rank inversion method rank is computa-

tionally infeasible. For example, when (n, p) = (5000,250), rank inversion takes approximately

80 minutes while conquer with multiplier bootstrap takes 41 seconds for constructing confidence

intervals. We therefore omit rank from the following comparison. We consider the quadratic

heterogeneous model (3.35) with (n, p) = (4000,100) and t2 noise. The results are reported in

Figure 3.6. We see that pwy and wild take up to 200 seconds while mb-conquer takes less than
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10 seconds. In summary, mb-conquer leads to a huge computational gain without sacrificing

statistical efficiency.
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Figure 3.6. Empirical coverage, confidence interval width and elapsed time of pwy, wild and
3 types of mb-conquer: mb-per, mb-piv, and mb-norm under quadratic heterogeneous model
(3.35) with t2 errors. This figure extends the rightmost column of Figure 3.5 to larger scale:
(n, p) = (4000,100).

3.5 Discussion

In this chapter, we provide a comprehensive study on the statistical properties of conquer,

namely, convolution-type smoothed quantile regression, under the non-asymptotic setting in

which p is allowed to increase as a function of n while p/n being small. When a non-negative

kernel is used, the smoothed objective function is convex, twice continuously differentiable,

and locally strongly convex in a neighborhood of βββ
∗ (with high probability). An efficient

gradient-based algorithm is proposed to compute the conquer estimator, which is scalable to very

large-scale problems. For traditional QR computation with linear programming, interior point

algorithms are typically used to get solutions with high precision (low duality gap) [Portnoy and

Koenker, 1997]. When applied to large-scale datasets, this may be inefficient for two reasons: (i)

it takes a lot more time to reach a duality gap of the order of machine precision, and (ii) such

a generic algorithm, which is less tailored to problem structure, tends to be very slow or even

run out of memory. In this regard, convolution smoothing offers a balanced tradeoff between

statistical accuracy and computational complexity.
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In the context of nonparametric density or regression estimation, it is known that when

higher-order kernels are used (and if the density or regression function has enough derivatives),

the bias is proportional to hν for some ν ≥ 4 which is of better order than h2. Since a higher-

order kernel has negative parts, the resulting smoothed loss is non-convex and thus brings the

computational issue once again. Motivated by the two-stage procedure proposed by Bickel [1975]

whose original idea is to improve an initial estimator that is already consistent but not efficient,

we further propose a one-step conquer estimator using higher-order kernels but without the

need for solving a large-scale non-convex optimization. With increasing degrees of smoothness,

the one-step conquer is asymptotically normal under a milder dimension constraint of roughly

p2/n→ 0. Due to space limitations, the details of this method are relegated to Section B.1 in the

supplementary material.

In high-dimensional settings in which p� n, various authors have studied the regularized

quantile regression under the sparsity assumption that most of the regression coefficients are zero

[Belloni and Chernozhukov, 2011, Wang, Wu and Li, 2012, Zheng, Peng and He, 2015]. The

computation of `1-penalized QR is based on either reformulation as linear programs or alternating

direction method of multiplier algorithms [Gu et al., 2018]. The theory and computation of

regularized conquer with flexible penalties have been developed in Tan, Wang and Zhou [2021]

and Man et al. [2022]. In Chapter 4, we analyze regularized conquer in a more complicated

scenario with randomly censored outcomes, and show that gradient-based algorithms enjoy

superior computational efficiency without sacrificing statistical accuracy.
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Chapter 4

Scalable Learning on Censored Data

4.1 Overview

In this chapter, we develop a smoothed framework for censored quantile regression

(CQR) that is scalable to problems with large dimension p in both the low- and high-dimensional

settings. Our proposed method is motivated by the smoothed estimating equation approach

that has surfaced mostly in the econometrics literature [Whang, 2006, Wu, Ma and Yin, 2015,

Kaplan and Sun, 2017, de Castro et al., 2019, Fernandes, Guerre and Horta, 2021, He et al.,

2022], which can be applied to the stochastic integral based sequential estimation procedure

proposed by Peng and Huang [2008] for CQR. We show in Section 4.2.2 that the smoothed

sequential estimating equations method can be reformulated as solving a sequence of optimization

problems with (at least) twice-differentialble and convex loss functions for which gradient-based

algorithms are available. Large-scale statistical inference can then be performed efficiently

via multiplier/weighted bootstrap. In the high-dimensional setting, we propose and analyze `1-

penalized smoothed CQR estimators obtained by sequentially minimizing smoothed convex loss

functions plus `1-penalty, which we solve using a scalable and efficient majorize-minimization-

type algorithm.

This chapter is mainly motivated by the computational challenge for CQR. To illustrate

this issue, we compare the `1-penalized CQR proposed by Zheng, Peng and He [2018] and our

proposed method by analyzing a gene expression dataset studied in Shedden et al. [2008]. In this
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study, 22,283 genes from 442 lung adenocarcinomas are incorporated to predict the survival time

in lung cancer, with 46.6% subjects that are censored. We implement both methods with quantile

levels grid set as {0.1,0.11, . . . ,0.7}, and use a predetermined sequence of penalty weights.

For Zheng, Peng and He [2018], we use the rqPen package to compute the `1-penalized QR

estimator at each quantile level [Sherwood and Maidman, 2022]. The computational time and

maximum allocated memory are reported in Table 4.1. The reference machine for this experiment

is a worker node with 2.5 GHz 32-core processor and 512 GB of memory in a high-performance

computing cluster.

Table 4.1. Computational runtime and maximum allocated memory for fitting `1-penalized CQR
and the proposed method on the gene expression data with censored response in Shedden et al.
[2008]. One gigabyte (GB) equals 1024 megabytes (MB).

Methods Runtime Allocated memory
`1-penalized CQR 170 hours+ 38 GB
Proposed method 2 minutes 926 MB

Theoretically, we provide a unified analysis for the proposed smoothed estimator in

both low- and high-dimensional settings. In the low-dimensional case where the dimension

is allowed to increase with the sample size, we establish the uniform rate of convergence and

a uniform Bahadur-type representation for the smoothed CQR estimator. We also provide a

rigorous justification for the validity of a weighted/multiplier bootstrap procedure with explicit

error bounds as functions of (n, p). To our knowledge, these are the first results for censored

quantile regression in the increasing-p regime with p < n. The main challenges are as follows.

To fit the QR process with censored response variables, the stochastic integral based approach

entails a sequence of estimating equations which correspond to a prespecified grid of quantile

indexes. A sequence of pointwise estimators can then be sequentially obtained by solving these

equations. The recursive nature of this procedure poses technical challenges because at each

quantile level, the objective function (or the estimating equation) depends on all of the previous

estimates. To establish convergence rates for the estimated regression process, a delicate analysis
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beyond what is used in He et al. [2022] is required to deal with the accumulated estimation error

sequentially. The mesh width of the grid should converge to zero at a proper rate in order to

balance the accumulated estimation error and discretization error. In the high-dimensional setting,

we show that with suitably chosen penalty levels and bandwidth, the `1-penalized smoothed CQR

estimator has a uniform convergence rate of O(
√

s log(p)/n), provided the sample size satisfies

n & s3 log(p). The technical arguments used in this case are also very different from those in

Zheng, Peng and He [2018] and subsequent work Fei et al. [2021], and as a result, our conclusion

improves that of Zheng, Peng and He [2018] by relaxing the exponential term exp(Cs) in the

convergence rate to a linear term in s. Such an improvement is significant when the effective

model size s is allowed to grow with n and p in the context of censored quantile regression.

4.2 Censored Quantile Regression

Let z ∈R be a response variable of interest, and xxx = (x1, . . . ,xp)
T be a p-vector (p≥ 2) of

random covariates with x1 ≡ 1. In this work, we focus on a global conditional quantile model on

z described as follows. Given a closed interval [τL,τU ]⊆ (0,1), assume that the τ-th conditional

quantile of z given xxx takes the form

F−1
z|xxx (τ) = xxxT

βββ
∗(τ) for any τ ∈ [τL,τU ], (4.1)

where βββ
∗(τ)∈Rp, formulated as a function of τ , is the unknown vector of regression coefficients.

We assume that z is subject to right censoring by C, a random variable that is conditionally

independent of z given the covariates xxx. Let y = z∧C the censored outcome, and ∆ = 1(z≤C)

be an event indicator. The observed samples {yi,∆i,xxxi}n
i=1 consist of independent and identically

distributed (i.i.d.) replicates of the triplet (y,∆,xxx). In addition, we assume at the outset that the

lowest quantile of interest τL satisfies P{y≤ xxxTβββ
∗(τL),∆ = 0}= 0. This condition, interpreted

as no censoring below the τL-th quantile, is commonly imposed in the context of CQR; see, e.g.,

Condition C in Portnoy [2003] and Assumption 3.1 in Zheng, Peng and He [2018]. Moreover, our

61



quantiles of interest are confined up to τU < 1 subject to some identifiability concerns, which is

a subtle issue for CQR problems. Briefly speaking, the model (4.1) may become non-identifiable

as τ moves towards 1, due to large amount of censored information in the upper tail. In practice,

determining τU is usually a compromise between inference range of interest and data censoring

rate, and determining τL requires a careful investigation if censoring can occur at early stages.

Theoretically, the above assumption on τL helps us simplify the technical arguments.

The above model is broadly defined, yet it is inspired by approaching survival data with

quantile regression [Koenker and Geling, 2001]. To briefly illustrate, let T be a non-negative

random variable representing the failure time to an event. The conditional quantile model (4.1)

on z = log(T ) can be viewed as a generalization of the standard accelerated failure time model

in the sense that coefficients not only shift the location but also affect the shape and dispersion of

the conditional distributions.

4.2.1 Martingale-based estimating equation estimator

Under the global linear model (4.1), two well-known methods are the recursively re-

weighted estimator of Portnoy [2003] and the stochastic integral based estimating equation

estimator of Peng and Huang [2008]. Both methods are grid-based algorithms that iteratively

solve a sequence of (weighted) check function minimization problems over a predetermined grid

of τ-values. Motivated by the recent success of smoothing methods for uncensored parametric

and nonparametric quantile regressions [Fasiolo et al., 2021, Fernandes, Guerre and Horta, 2021,

He et al., 2022], we propose a smoothed estimating equation approach for CQR in the next

subsection. We start with a brief introduction of Peng and Huang [2008]’s method that is built

upon the martingale structure of randomly censored data.

To this end, denote Λz|xxx(t) =− log{1−P(z≤ t|xxx)} as the cumulative conditional hazard

function of z given xxx, and define the counting processes as Ni(t) = 1{yi ≤ t,∆i = 1} and N0i(t) =

1{yi≤ t,∆i = 0} for i= 1, . . . ,n, where ∆i = 1(zi≤Ci). Define Fi(s) = σ{Ni(u),N0i(u) : u≤ s}

as the σ -algebra generated by the foregoing processes. Note that {Fi(s) : s ∈R} is an increasing
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family of sub-σ -algebras, also known as filtration, and Ni(t) is an adapted sub-martingale.

By the unique Doob-Meyer decomposition, one can construct an Fi(t)-martingale Mi(t) =

Ni(t)−Λz|xxxi(yi ∧ t) satisfying E{Mi(t)|xxxi} = 0; see Section 1.3 of Fleming and Harrington

[1991] for details. Taking t = xxxT
i βββ
∗(τ) for each i, the martingale property implies

E

[
n

∑
i=1

{
Ni
(
xxxT

i βββ
∗(τ)

)
−Λz|xxxi

(
yi∧ xxxT

i βββ
∗(τ)

)}
xxxi

]
= 000.

This lays the foundation for the stochastic integral based estimating equation approach. The

monotonicity of the function τ 7→ xxxTβββ
∗(τ), implied by the global linearity in (4.1), leads to

Λz|xxxi

(
yi∧ xxxT

i βββ
∗(τ)

)
= H(τ)∧H

(
P(z≤ yi|xxxi)

)
=
∫

τ

0
1{yi ≥ xxxT

i βββ
∗(u)}dH(u)

for τ ∈ [τL,τU ], where H(u) :=− log(1−u) for 0 < u < 1. This motivates Peng and Huang’s

estimator [Peng and Huang, 2008], which solves the following estimating equation

1
n

n

∑
i=1

[
Ni
(
xxxT

i βββ (τ)
)
−
∫

τ

0
1{yi ≥ xxxT

i βββ (u)}dH(u)

]
xxxi = 000, for every τL ≤ τ ≤ τU .

However, the exact solution to the above equation is not directly obtainable. By adapting

Euler’s forward method for ordinary differential equation, Peng and Huang [2008] proposed

a grid-based sequential estimating procedure as follows. Let τL = τ0 < τ1 < · · · < τm = τU

be a grid of quantile indices. Noting that P{y ≤ xxxTβββ
∗(τ0),∆ = 0} = 0, we have E

∫ τ0
0 1{yi ≥

xxxT
i βββ
∗(u)}dH(u) = τ0, and hence βββ

∗(τ0) can be estimated by solving the usual quantile equation

(1/n)∑
n
i=1{Ni(xxxT

i βββ )− τ0}xxxi = 000. Denote β̃ββ (τ0) as the solution to the above equation. At grid

points τk, k = 1, . . . ,m, the estimators β̃ββ (τk) are sequentially obtained by solving

1
n

n

∑
i=1

[
Ni(xxxT

i βββ )−
k−1

∑
j=0

∫
τ j+1

τ j

1{yi ≥ xxxT
i β̃ββ (τ j)}dH(u)− τ0

]
xxxi = 000. (4.2)

The resulting estimated function β̃ββ (·) : [τL,τU ] 7→ Rp is right-continuous and piecewise-constant
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that jumps only at each grid point. Computationally, solving the above equation is equivalent to

minimizing an `1-type convex objective function after introducing a sufficiently large pseudo

point. The minimizer, however, is not always uniquely defined. To avoid this lack of uniqueness

as well as grid dependence, Huang [2010] introduced a more general (population) integral

equation, and then proposed a Progressive Localized Minimization (PLMIN) algorithm solve

its empirical version exactly. This algorithm automatically determines the breakpoints of the

solution and thus is grid-free. Under a continuity condition on the density functions (see, e.g.

condition (C2) in Huang [2010]), the estimating functions used in Peng and Huang [2008] and

Huang [2010] are asymptotically equivalent.

4.2.2 A smoothed estimating equation approach

Due to the discontinuity stemming from the indicator function in the counting process

Ni(·), exact solutions to the estimating equations (4.2) may not exist. In fact, β̃ββ (τ j) for j =

0, . . . ,m are defined as the general solutions to generalized estimating equations [Fygenson and

Ritov, 1994], which correspond to subgradients of some convex yet non-differentiable functions.

Computationally, one may reformulate these equations as a sequence of linear programs, solvable

by the Frisch-Newton algorithm described in Portnoy and Koenker [1997]. The computation

complexity grows rapidly when the dimensionality p increases with the sample size. To mitigate

the computational burden of the existing methods, we use a smoothed estimating equation (SEE)

approach for fitting large-scale censored quantile regression models.

Let K(·) be a symmetric and non-negative kernel function and let K̄(u) =
∫ u
−∞

K(x)dx,

which is a non-decreasing function that is between 0 and 1. The non-smooth indicator function

1(u ≥ 0) can thus be approximated by K̄(u/h) for some h > 0 in the sense that as h→ 0,

K̄(u/h)→ 1 for u ≥ 0 and K̄(u/h)→ 0 for u < 0. Hereinafter, h > 0 will be referred to as a

bandwidth. As the aforementioned, let τL = τ0 < τ1 < · · ·< τm = τU be a grid of quantile indices
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for some m≥ 1. Given a kernel function K(·) and a bandwidth h > 0, write

Kh(u) = h−1K(u/h) and K̄h(u) = K̄(u/h) =
∫ u/h

−∞

K(v)dv, u ∈ R,

so that K̄′h(u) = Kh(u). We now propose a smooth SEE approach for CQR.

1. At τ = τ0, we estimate βββ
∗(τ0) by β̂ββ (τ0), obtained from solving Q̂0(βββ ) = 000, where

Q̂0(βββ ) :=
1
n

n

∑
i=1

{
∆iK̄h(−ri(βββ ))− τ0

}
xxxi and ri(βββ ) = yi− xxxT

i βββ . (4.3)

2. At grid points τk for k = 1, . . . ,m, set β̂ββ (τ) = β̂ββ (τk−1) for any τ ∈ (τk−1,τk), and then

obtain estimators β̂ββ (τk) of βββ
∗(τk) by solving Q̂k(βββ ) = 000, where

Q̂k(βββ ) :=
1
n

n

∑
i=1

[
∆iK̄h(−ri(βββ ))−

k−1

∑
j=0

K̄h(ri(β̂ββ (τ j)){H(τ j+1)−H(τ j)}− τ0

]
xxxi. (4.4)

Note that the resulting estimator β̂ββ (·) : [τL,τU ] 7→ Rp is right-continuous and piecewise-constant

with jumps only at grids. For notational convenience, throughout the manuscript, let

βββ
∗
k = βββ

∗(τk) and β̂ββ k = β̂ββ (τk), k = 0,1, . . . ,m.

Before proceeding, it is worth noticing that the above smoothed estimating equations

method is closely related to the convolution smoothing approach studied in Chapter 3. Consider

the check function ρτ(u) = τ{u−1(u < 0)}, and its convolution smoothed counterpart

`τ,h(u) = (ρτ ∗Kh)(u) =
∫

∞

−∞

ρτ(v)Kh(v−u)dv,

where ∗ denotes the convolution operator. Given censored data {(yi,∆i,xxxi)}n
i=1, define the
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empirical smoothed loss

L̂0(βββ ) =
1
n

n

∑
i=1

{
∆i`τ0,h(yi− xxxT

i βββ )+ τ0(∆i−1)xxxT
i βββ
}
, (4.5)

whose gradient and Hessian are

∇L̂0(βββ ) = Q̂0(βββ ) and ∇
2L̂0(βββ ) =

1
n

n

∑
i=1

∆iKh(ri(βββ ))xxxixxxT
i ,

respectively. Hence, the foregoing estimator β̂ββ 0 can be equivalently defined as the solution to the

(unconstrained) optimization problem minβββ∈Rp L̂0(βββ ). When a non-negative kernel is used, the

objective function L̂0(·) is convex, and thus any minimizer satisfies the first-order condition. At

subsequent grid points τk for k = 1, . . . ,m, the estimator β̂ββ k can also be viewed as an M-estimator

that solves

min
βββ∈Rp

{
L̂k(βββ ) := L̂0(βββ )−

〈
1
n

n

∑
i=1

k−1

∑
j=0

K̄h(yi− xxxT
i β̂ββ j){H(τ j+1)−H(τ j)}xxxi,βββ

〉}
. (4.6)

Notably, kernel smoothing produces continuously differentiable estimating functions Q̂k(·)

(k = 0, . . . ,m), or equivalently, convex and twice-differentiable loss functions L̂k(·), which have

the same positive semi-definite Hessian matrix ∇2L̂k(βββ ) = (1/n)∑
n
i=1 ∆iKh(xxxT

i βββ − yi)xxxixxxT
i . As

we shall see, the empirical loss functions L̂k(·) are not only globally convex but also locally

strongly convex (with high probability). This property ensures the existence of global solutions

to the sequential estimation problems, which can efficiently solved by a quasi-Newton algorithm.

4.2.3 Inference with bootstrapped process

In this subsection, we construct component-wise confidence intervals for βββ
∗(τ) at

some quantile index τ of interest by bootstrapping the quantile process, following the idea

in Section 2.1.2. Recall that β̂ββ k’s are the solutions to the equations Q̂k(βββ ) = 000, where Q̂k(·)
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(k = 0,1, . . . ,m) are defined in (4.3) and (4.4). Analogously, we construct bootstrap estimators

β̂ββ
[

k following a sequential procedure based on the bootstrapped SEEs obtained by perturbing

Q̂k(·) with random weights. Independent of the observed data {yi,∆i,xxxi}n
i=1, let W1, . . . ,Wn

be exchangeable non-negative random variables, satisfying E(Wi) = 1 and var(Wi) > 0. The

bootstrap estimators can be constructed as follows:

1. Set β̂ββ
[

0 as the solution of Q̂[
0(βββ ) = 000, where

Q̂[
0(βββ ) :=

1
n

n

∑
i=1

Wi
{

∆iK̄h(−ri(βββ ))− τ0
}

xxxi with ri(βββ ) = yi− xxxT
i βββ . (4.7)

2. For k = 1, . . . ,m, compute β̂ββ
[

k sequentially by solving Q̂[
k(βββ ) = 000, where

Q̂[
k(βββ ) :=

1
n

n

∑
i=1

Wi

[
∆iK̄h(−ri(βββ ))−

k−1

∑
`=0

K̄h(ri(β̂ββ
[

`)){H(τ`+1−H(τ`)}− τ0

]
xxxi. (4.8)

3. Define the bootstrap estimate of the coefficient process β̂ββ
[
(·) : [τL,τU ] 7→ Rp as β̂ββ

[
(τ) =

β̂ββ
[

k−1 for τ ∈ [τk−1,τk) and k = 1, . . . ,m.

For a prescribed nominal level, we can construct component-wise percentile or normal-

based confidence intervals for βββ
∗
j(τ) ( j = 1, . . . , p). The above multiplier bootstrap estimator

β̂ββ
[
(·) : [τL,τU ] 7→ Rp of the coefficient process behaves similarly as β̂ββ (·), in the sense that they

are both right-continuous and piecewise-constant with jumps only at the grids.

We complete this section with a brief discussion of other resampling methods for quantile

regression. Given the random weights {Wi}n
i=1 independent of data, another available approach

is to minimize the randomly perturbed objective functions [Jin, Ying and Wei, 2001, Peng and

Huang, 2008]. In the current setting, it seems more natural to directly bootstrap the estimating

equations. In terms of bootstrapping estimating equations with uncensored data, Parzen, Wei

and Ying [1994]’s method is based on the assumption that the estimating equation is exactly or
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asymptotically pivotal, and Hu and Kalbfleisch [2000]’s proposal is based on resampling with

replacement. A generalized weighted bootstrap and its asymptotic theory has been rigorously

studied in Chatterjee and Bose [2005] and Ma and Kosorok [2005]. For censored quantile

regression, the sequential SEEs (4.4) are not directly formulated as empirical averages of

independent random quantities, nor do they satisfy the required assumptions in the literature;

see Section 2 of Parzen, Wei and Ying [1994], Section 2 of Hu and Kalbfleisch [2000], and

Section 3 of Chatterjee and Bose [2005]. Hence, the validity of weighted bootstrap for CQR is

of independent interest, and will be examined in Section 4.3.3.

Remark 4.2.1. In practice, random weights {Wi}n
i=1 can be generated from one of the following

distributions. (i) (W1, . . . ,Wn) ∼Multinomial(n,1/n, . . . ,1/n). This leads to Efron’s nonpara-

metric bootstrap, for which the random weights are exchangeable but not independent; (ii)

W1, . . . ,Wn ∼ Exp(1) are i.i.d. exponentially distributed random variables; and (iii) Wi = ei +1,

where ei’s are i.i.d. Rademacher random variables, defined by P(ei = 1) = P(ei = 0) = 1/2. We

refer to this as the Rademacher multiplier bootstrap. Its theoretical properties will be investigated

in Section 4.3.3.

4.3 Theoretical Analysis

4.3.1 Regularity conditions

We first impose some technical assumptions required for the results in Sections 4.3.2

and 4.3.3.

Condition 4.3.1 (Kernel function). Let K(·) be a symmetric, Lipschitz continuous and non-

negative kernel function, that is, K(u) = K(−u), K(u) ≥ 0 for all u ∈ R and
∫

∞

−∞
K(u)du = 1.

Moreover, κu = supu∈RK(u)< ∞, κl = min|u|≤c K(u)> 0 for some c > 0. We define its higher-

order absolute moments as κ` =
∫

∞

−∞
|u|`K(u)du for any positive integer `.

Condition 4.3.2 (Random design). The random covariate vector xxx = (x1, . . . ,xp)
T ∈X ⊆Rp is

compactly supported with ζp := supxxx∈X ‖Σ−1/2xxx‖2 < ∞, where Σ = E(xxxxxxT) is positive definite.
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Condition 4.3.3 (Conditional densities). Assume (z,xxx) follows the global conditional quantile

model (4.1). Define the conditional cumulative distribution functions Fz(u|xxx) = P(z ≤ u|xxx),

Fy(u|xxx) = P(y ≤ u|xxx) and G(u|xxx) = P(y ≤ u,∆ = 1|xxx), where y = z∧C and C is independent

of z given xxx. Assume that the conditional densities fz(u|xxx) = F ′z (u|xxx), fy(u|xxx) = F ′y(u|xxx) and

g(u|xxx) = G′(u|xxx) exist, and satisfy almost surely (over xxx) that

inf
τ∈[τL,τU ]

min
{

fy(xxxT
βββ
∗(τ)|xxx), fz(xxxT

βββ
∗(τ)|xxx)

}
≥ f > 0, sup

u∈R
fy(u|xxx)≤ f ,

0 < g≤ inf
|u−xxxTβββ

∗(τ)|≤1/2,τ∈[τL,τU ]
g(u|xxx)≤ sup

u∈R
g(u|xxx)≤ g.

Moreover, there exists a constant l1 > 0 such that for any u ∈ R,

sup
xxx∈Rp,τ∈[τL,τU ]

| fy(xxxT
βββ
∗(τ)+u|xxx)− fy(xxxT

βββ
∗(τ)|xxx)| ≤ l1|u|,

sup
xxx∈Rp,τ∈[τL,τU ]

|g(xxxT
βββ
∗(τ)+u|xxx)−g(xxxT

βββ
∗(τ)|xxx)| ≤ l1|u|.

Condition 4.3.4 (Grid size). The grid of quantile levels τL = τ0 < τ1 < · · ·< τm = τU satisfies

n−1 ≤ δ∗ ≤ δ ∗ . n−1/2, where δ ∗ = max1≤k≤m(τk− τk−1) and δ∗ = min1≤k≤m(τk− τk−1).

Condition 4.3.1 is similar to Condition 3.3.1. To simplify the analysis, we take c = 1 in

Condition 4.3.1; otherwise if c< 1 and K(±1)= 0, we can simply use a re-scaled kernel Kc(u) :=

cK(cu), so that min|u|≤1 Kc(u) = cmin|u|≤c K(u). The compactness of X in Condition 4.3.2

is a common requirement for a global linear quantile regression model (quantile regression

process) [Koenker, 2005]. If the support of the covariate space—the set of x j’s that occur with

positive probability—is unbounded, at some points there will be “crossings” of the conditional

quantile functions, unless these functions are parallel, which corresponds to a pure location-shift

model. The quantity ζp plays an important role in the theoretical results. Alternatively, one may

assume ‖Σ−1/2xxx‖∞ ≤C0 (almost surely) as in Zheng, Peng and He [2018], which in turn implies

ζp ≤C0 p1/2 in the worst-case scenario. In general, it is reasonable to assume that ζp � p1/2. In
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addition to ζp, define the moment parameters

mq = sup
uuu∈Sp−1

E
(
|uuuT

Σ
−1/2xxx|q

)
for q = 3,4, (4.9)

which satisfy the worst-case bounds m3 ≤ ζp and m4 ≤ ζ 2
p .

Conditions 4.3.2 and 4.3.3 ensure that the coefficient function βββ
∗(·) is Lipschitz con-

tinuous. Since βββ
∗(τ) solves the equation E[{τ − 1(z ≤ xxxTβββ )}xxx] = 0, we have d

dτ
βββ
∗(τ) =

E{ fz(xxxTβββ
∗(τ)|xxx)xxxxxxT}−1E(xxx). Under Condition 4.3.2, it holds

max
τ∈[τL,τU ]

∥∥∥∥ d
dτ

Σ
1/2

βββ
∗(τ)

∥∥∥∥
2
≤ f−1 max

τ∈[τL,τU ]
‖E(Σ−1/2xxx)‖2 ≤ f−1,

which, together with the mean value theorem, implies

||βββ ∗(τ)−βββ
∗(τ ′)||Σ ≤ f−1|τ− τ

′| for any τ,τ ′ ∈ [τL,τU ]. (4.10)

By the definitions in Condition 4.3.3, G(u|xxx) ≤ F(u|xxx) for any u > 0. Recall that we have

assumed no censored observations at the low quantiles with τ ≤ τL. Hence, G(xxxTβββ
∗(τL)|xxx) =

F(xxxTβββ
∗(τL)|xxx) = τL, and G(xxxTβββ

∗(τ)|xxx)≤ τ ≤ F(xxxTβββ
∗(τ)|xxx) for τL < τ ≤ τU . Condition 4.3.4

assures a fine grid by controlling the gap between two contiguous points, so that the approxima-

tion error does not exceed the statistical error.

4.3.2 Uniform rate of convergence and Bahadur representation

In this section, we characterize the statistical properties of the SEE estimators for censored

quantile regression with growing dimensions. That is, the dimension p = pn is subject to the

growth condition p � na for some a ∈ (0,1). Our first result provides the uniform rate of

convergence for the estimated coefficient function β̂ββ (·) under mild bandwidth constraints.

Theorem 4.3.1 (Uniform consistency). Assume Conditions 4.3.1–4.3.4 hold, and choose the

bandwidth h = hn � {(p+ logn)/n}γ for some γ ∈ [1/4,1/2). Furthermore, let n & {ζ 2
p(p+
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logn)1/2−γ}1/(1−γ). Then, the SEE estimator β̂ββ (·) : [τL,τU ] 7→ Rp satisfies

sup
τ∈[τL,τU ]

‖β̂ββ (τ)−βββ
∗(τ)‖Σ .

(
1− τL

1− τU

)C0 f/g

g−1

√
p+ logn

n
(4.11)

with probability at least 1−C1n−1, where C0,C1 > 0 are constants independent of (n, p).

Since the deviation bound in (4.11) depends explicitly on n, p as well as other model

parameters, this non-asymptotic result implies the classical asymptotic consistency by let-

ting n→ ∞ with p fixed. From an asymptotic perspective, Theorem 4.3.1 implies that the

smoothed estimator with a bandwidth h = hn � {log(n)/n}γ for some γ ∈ [1/4,1/2) satisfies

supτL≤τ≤τU
‖β̂ββ (τ)−βββ

∗(τ)‖2→ 0 in probability as n→ ∞.

Recall that in the sequential estimation procedure described in Section 4.2.2, the j-th

estimator β̂ββ j ( j ≥ 1) depends implicitly on its predecessors through the estimating function

(4.4). In other words, the accumulative estimation errors of β̂ββ (τ) for τL ≤ τ < τ j may have a

non-negligible impact on β̂ββ j = β̂ββ (τ j). The next result explicitly quantifies this accumulative

error. For τ ∈ [τL,τU ], define p× p matrices

J(τ) = E
{

g(xxxT
βββ
∗(τ)|xxx)xxxxxxT

}
and H(τ) = E

{
f (xxxT

βββ
∗(τ)|xxx)xxxxxxT

}
, (4.12)

both of which are positive definite under Conditions 4.3.2 and 4.3.3. Moreover, define the

integrated covariate effect and its estimate

βββ
∗
int(τ) := J(τ)βββ ∗(τ)+

∫
τ

τL

H(u)βββ ∗(u)dH(u)

and β̂ββ int(τ) := J(τ)β̂ββ (τ)+
∫

τ

τL

H(u)β̂ββ (u)dH(u),

respectively, so that êee(τ) := β̂ββ int(τ)−βββ
∗
int(τ) can be interpreted as the accumulated error in the
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sequential estimation procedure up to τ . That is,

êee(τ) = J(τ){β̂ββ (τ)−βββ
∗(τ)}︸ ︷︷ ︸

current step

+
∫

τ

τL

H(u){β̂ββ (u)−βββ
∗(u)}dH(u)︸ ︷︷ ︸

preceding steps

. (4.13)

The following theorem provides a uniform Bahadur representation for êee(·).

Theorem 4.3.2 (Uniform Bahadur representation). Assume that the same set of conditions in

Theorem 4.3.1 hold. Moreover, assume δ ∗ � n−(1/2+α) for some α ∈ (0,1/2). Then, the SEE

estimator β̂ββ (·) : [τL,τU ] 7→ Rp satisfies

êee(τ) = β̂ββ int(τ)−βββ
∗
int(τ) =

1
n

n

∑
i=1

UUU i(τ)+ rrrn(τ), (4.14)

where

UUU i(τ) :=

{
τL +

∫
τ

τL

K̄h(yi− xxxT
i βββ
∗(u))dH(u)−∆iK̄h(xxxT

i βββ
∗(τ)− yi)

}
xxxi (4.15)

satisfies supτ∈[τL,τU ] ‖EUUU i(τ)‖Σ−1 . h2, and the remainder process rrrn(·) : [τL,τU ] 7→ Rp is such

that

sup
τ∈[τL,τU ]

‖rrrn(τ)‖Σ−1 . m1/2
4

p+ logn
nh1/2 +m3

p+ logn
n

+h

√
p+ logn

n
+n−1/2−α (4.16)

with probability at least 1−C2n−1 for some absolute constant C2 > 0, where mq (q = 3,4) are

given in (4.9).

Remark 4.3.1. Together, the above uniform Bahadur representation and the production integra-

tion theory [Gill and Johansen, 1990] establish the asymptotic distribution of β̂ββ (·). Define

θθθ
∗(τ) = J(τ)βββ ∗(τ), θ̂θθ(τ) = J(τ)β̂ββ (τ) and ΨΨΨ(τ) =

1
1− τ

H(τ)J(τ)−1, τ ∈ [τL,τU ].
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Then, equation (4.13) reads êee(τ) = θ̂θθ(τ)−θθθ
∗(τ)+

∫
τ

τL
ΨΨΨ(u){θ̂θθ(u)−θθθ

∗(u)}du. Combined with

Theorem 4.3.2, this implies

n1/2{θ̂θθ(τ)−θθθ
∗(τ)}+

∫
τ

τL

ΨΨΨ(u)n1/2{θ̂θθ(u)−θθθ
∗(u)}du

=
1

n1/2

n

∑
i=1
{UUU i(τ)−EUUU i(τ)}+ r̄rrn(τ), τ ∈ [τL,τU ], (4.17)

where the rescaled remainder r̄rrn(·) satisfies supτ∈[τL,τU ] ‖r̄rrn(τ)‖2 = oP(1), with a properly chosen

bandwidth that will be discussed in Remark 4.3.2. Note that equation (4.17) is a stochastic

differential equation for n1/2{θ̂θθ(τ)− θθθ
∗(τ)} [Peng and Huang, 2008]. From the classical

production integration theory (Gill and Johansen [1990] and Section II.6 of Andersen et al.

[1993]), it follows that

n1/2{θ̂θθ(τ)−θθθ
∗(τ)}= φφφ

(
1

n1/2

n

∑
i=1
{UUU i(τ)−EUUU i(τ)}

)
+oP(1), (4.18)

where φφφ is a linear operator from F to F defined as

φφφ(ggg)(τ) = Πu∈[τL,τ]

{
Ip−ΨΨΨ(u)du

}
ggg(τL)+

∫
τ

τL

Πu∈(s,τ]
{

Ip−ΨΨΨ(u)du
}

dggg(s) (4.19)

for ggg ∈F := { fff : [τL,τU ]→ Rp | fff is left-continuous with right limit}, and Π denotes the prod-

uct integral; see Definition 1 in Gill and Johansen [1990]. After careful proofreading, we believe

that the above form of φφφ(·) corrects an error (possibly a typo) in the proof of Theorem 2 in Peng

and Huang [2008]; see the arguments between (B.1) and (B.3) therein. Specifically, the linear

operator φφφ in Peng and Huang [2008] reads

φφφ(ggg)(τ) = Πu∈[τL,τ]

{
Ip +ΨΨΨ(u)du

}
ggg(τL)+

∫
τ

τL

Πu∈(s,τ]
{

Ip +ΨΨΨ(u)du
}

dggg(s).

The asymptotic distribution of n1/2{θ̂θθ(τ)−θθθ
∗(τ)} or its linear functional is thus deter-
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mined by that of

φφφ

(
1

n1/2

n

∑
i=1
{UUU i(τ)−EUUU i(τ)}

)
and

1
n1/2

n

∑
i=1
{UUU i(τ)−EUUU i(τ)}.

Remark 4.3.2 (Order of bandwidth). We further discuss the order of bandwidth h, as a func-

tion of (n, p), required in Theorem 4.3.2 and Remark 4.3.1. Following (4.17), if the moment

parameters m3 (absolute skewness) and m4 (kurtosis) are dimension-free, the Bahadur lineariza-

tion remainder r̄rrn(·) satisfies with high probability that supτ∈[τL,τU ] ‖r̄rrn(τ)‖Σ−1 . n1/2h2 +(p+

logn)/(nh)1/2 + n−α . Set the bandwidth h � {(p+ logn)/n}γ for some γ ∈ [1/4,1/2), this

implies

sup
τ∈[τL,τU ]

‖r̄rrn(τ)‖Σ−1 .
(p+ logn)2γ

n2γ−1/2 +
(p+ logn)1−γ/2

n1/2−γ/2 +
1

nα
= oP(1),

provided that p = o(n1−1/(4γ)∧n(1−γ)/(2−γ)). In particular, letting 1−1/(4γ) = (1− γ)/(2− γ)

yields γ = 2/5. We therefore choose the bandwidth h � {(p+ logn)/n}2/5, so that all the

asymptotic results (from uniform rate of convergence to Bahadur representation) hold under the

growth condition p = o(n3/8) of dimensionality p in sample size n.

Theorem 4.3.2 explicitly characterizes the leading term of the integrated estimation

error (4.13), along with a high probability bound on the remainder process. As discussed in

Remark 4.3.1, the asymptotic distributions of n1/2{β̂ββ (τ)−βββ
∗(τ)} or its linear functional can

be established based on the stochastic integral representation (4.18), which further depends

on the centered random process n−1/2
∑

n
i=1{UUU i(·)−EUUU i(·)}. Let {aaan}∞

n=1 be a sequence of

deterministic vectors in Rp, and define

Gn(τ) :=
1

n1/2

n

∑
i=1
〈aaan/||aaan||Σ,UUU i(τ)−EUUU i(τ)〉, τ ∈ [τL,τU ]. (4.20)

The asymptotic behavior of {Gn(τ) : τ ∈ [τL,τU ]} is provided in the following result.
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Theorem 4.3.3 (Weak convergence). Assume Conditions 4.3.1–4.3.4 hold with δ ∗ � n−(1/2+α)

for some α ∈ (0,1/2). Moreover, assume h � {(p+ logn)/n}2/5 and p = o(n3/8) as n→ ∞.

For any deterministic sequence of vectors {aaan}n≥1, if the following limit

H(τ,τ ′) := lim
n→∞

1
‖aaan‖2

Σ

aaaT
nE
{

UUU i(τ)UUU i(τ
′)T
}

aaan (4.21)

exists for any τ,τ ′ ∈ [τL,τU ] with UUU i(·) defined in (4.15), then

Gn(·) G(·) in `∞([τL,τU ]), (4.22)

where Gn(·) is given in (4.20), and G(·) is a tight zero-mean Gaussian process with covariance

function H(·, ·) and has almost surely continuous sample paths.

Regarding the relative efficiency of the SEE estimator compared to its non-smoothed

counterpart [Peng and Huang, 2008], note that the (integrated) kernel K̄h(u) converges to 1(u≥ 0)

as h→ 0. Hence, the smoothed process n−1/2
∑

n
i=1UUU i(τ) with UUU i(τ) given in (4.15) has the

same asymptotic distribution as

1√
n

n

∑
i=1

{
τL +

∫
τ

τL

1(yi ≥ xxxT
i βββ
∗(u))dH(u)−∆i1(yi ≤ xxxT

i βββ
∗(τ))

}
xxxi.

As a result, the covariance function H(·, ·) defined in (4.21) coincides with that in Peng and

Huang [2008]; see ΣΣΣ(·, ·) in the proof of Theorem 2 therein. In other words, the SEE estimator

and Peng and Huang’s estimator converge to the same Gaussian process as n→ ∞ with p fixed,

and thence the asymptotic relative efficiency is 1. The technical devices required to deal with the

fixed-p and growing-p cases are quite different. For the former, the consistency follows from the

Glivenko-Cantelli theorem, and the weak convergence is a consequence of Donsker’s theorem.

To establish non-asymptotic results, we rely on a localized analysis as well as a (local) restricted

strong convexity of the smoothed objective function that holds with high probability. The weak
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convergence is based on the non-asymptotic uniform Bahadur representation (Theorem 4.3.2),

complemented by showing the convergence of finite-dimensional marginals and the asymptotic

tightness.

4.3.3 Rademacher multiplier bootstrap inference

In this section, we establish the theoretical guarantees of the Rademacher multiplier

bootstrap for censored quantile regression as described in Section 4.2.3. In this case, Wi = ei +1

and ei’s are i.i.d. Rademacher random variables. For the random covaviate vector xxx ∈ Rp, we

assume that the moment parameters m3 and m4 defined in (4.9) are dimension-free. We first

present the (conditional) uniform consistency of the bootstrapped process {β̂ββ
[
(τ) : τ ∈ [τL,τU ]}

given the observed data Dn = {(yi,∆i,xxxi}n
i=1. Let P∗(·) = P(· |Dn) be the conditional probability

given Dn.

Theorem 4.3.4 (Conditional uniform consistency). Assume Conditions 4.3.1–4.3.4 hold, and let

the bandwidth satisfy h = hn � {(p+ logn)/n}γ for some γ ∈ [1/4,1/2). Then, there exists an

event E = E (Dn) with P(E ) ≥ 1−C3n−1 such that conditional on E , the bound (4.11) holds,

and the bootstrapped process β̂ββ
[
(·) : [τL,τU ] 7→ Rp satisfies

sup
τ∈[τL,τU ]

||β̂ββ
[
(τ)− β̂ββ (τ)||Σ .

√
p+ logn

n
, (4.23)

with P∗-probability at least 1−C3n−1, provided ζ 2
p(p+ logn)1/2−γ(p logn)1/2 . n1−γ . Here

C3 > 0 is an absolute constant.

Analogously to (4.13), define the bootstrapped integrated error as

êee[(τ) := J(τ){β̂ββ
[
(τ)− β̂ββ (τ)}+

∫
τ

τL

H(u){β̂ββ
[
(u)− β̂ββ (u)}dH(u), (4.24)

where J(·) and H(·) are given in (4.12). We then develop a linear representation for êee[(τ), which

can be viewed as a parallel version of Theorem 4.3.2 in the bootstrap world.

76



Theorem 4.3.5 (Conditional uniform Bahadur representation). Assume the conditions in The-

orem 4.3.4 hold, and that the kernel K(·) in Condition 4.3.1 is Lipschitz continuous. More-

over, assume δ ∗ . n−(1/2+α) for some α > 0. Then, there exists an event F = F (Dn) with

P(F )≥ 1−C4n−1 such that conditional on F , (4.14)–(4.16) hold, and the bootstrapped process

β̂ββ
[
(·) : [τL,τU ] 7→ Rp satisfies

êee[(τ) =
1
n

n

∑
i=1

UUU [
i (τ)+ rrr[n(τ), (4.25)

where UUU [
i (τ) = eiUUU i(τ) with UUU i(τ) defined in (4.15), and

sup
τ∈[τL,τU ]

‖rrr[n(τ)‖Σ−1

. m1/2
4

p+ logn
nh1/2 +h

√
p+ logn

n
+ζ

2
p
(p+ logn)(p logn)1/2

n3/2h
+n−1/2−α (4.26)

with P∗-probability at least 1−C4n−1.

Theorem 4.3.5 shows that the bootstrap integrated error êee[(·) can be approximated, up

to a higher order remainder, by the linear process {(1/n)∑
n
i=1 eiUUU i(τ) : τ ∈ [τL,τU ]}, where

ei’s are independent Rademacher random variables, and E∗UUU [
i (τ) = 000. Provided that h� {(p+

logn)/n}2/5 and p satisfies the growth condition p = o(n3/8) as in Theorem 4.3.3, then applying

the same analysis in Remark 4.3.1 gives us the following stochastic integral representation: with

probability (over Dn) approaching one, supτ∈[τL,τU ] ‖rrr[n(τ)‖Σ−1 = oP∗(1), and

n1/2J(τ){β̂ββ
[
(τ)− β̂ββ (τ)}= φφφ

(
1

n1/2

n

∑
i=1

UUU [
i (τ)

)
+oP∗(1), (4.27)

where φφφ is the linear operator defined in (4.19). Note that E∗{UUU [
i (s)UUU

[
i (t)

T}=UUU i(s)UUU i(t)T for

any s, t ∈ [τL,τU ]. It can be shown that on [τL,τU ], n−1/2
∑

n
i=1{UUU i(·)−EUUU i(·)} has the same

asymptotic distribution as n−1/2
∑

n
i=1UUU [

i (·) conditionally on the data Dn; see Theorem 4.3.3 and
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Theorem 4.3.6 below. This, together with (4.18) and (4.27), validates to some level the use of

the bootstrap process β̂ββ
[
(·) in the inference. To illustrate this, consider the following bootstrap

counterpart of the process Gn(·) defined in (4.20):

G[
n(τ) :=

1
n1/2

n

∑
i=1
〈aaan/||aaan||Σ,UUU [

i (τ)〉, τ ∈ [τL,τU ]. (4.28)

Theorem 4.3.6 (Validation of bootstrap process). Assume Conditions 4.3.1–4.3.4 hold with

δ ∗ . n−(1/2+α) for α ∈ (0,1/2), h� {(p+ logn)/n}2/5 and p = o(n3/8). In addition, assume

the kernel K(·) is Lipschitz continuous. Then, for any sequence of (deterministic) vectors {aaan}∞
n=1,

there exists a sequence of events {Fn = Fn(Dn)}∞
n=1 such that P(Fn)→ 1, and conditional

on {Fn}∞
n=1, (4.25) holds and the conditional distribution of G[

n(·) given Dn is asymptotically

equivalent to the unconditional distribution of Gn(·) established in (4.22).

4.4 Regularized Censored Quantile Regression

We extend the proposed SEE approach to high-dimensional sparse QR models with

random censoring. The goal is to identify the set of relevant predictors, defined as

S ∗ =
⋃

τ∈[τL,τU ]

supp
(
βββ
∗(τ)

)
, (4.29)

assuming that its cardinality s := |S ∗| is much smaller than the ambient dimension p—the total

number of predictors, but may grow with sample size n. Recall the sequentially defined smoothed

loss functions L̂k(·) (k = 0,1, . . . ,m) in (4.5) and (4.6). When p < n, finding the solution to the

SEE Q̂k(βββ ) = 0 is equivalent to solving the optimization problem minβββ∈Rp L̂k(βββ ). For fitting

sparse models in high dimensions, we start with the `1-penalized approach [Tibshirani, 1996,

Belloni and Chernozhukov, 2011]. At quantile levels τL = τ0 < τ1 < · · ·< τm = τU , we define

78



`1-penalized smoothed CQR estimators β̂ββ k := β̂ββ (τk) sequentially as

β̂ββ (τk) ∈ argmin
βββ∈Rp

{
L̂k(βββ )+λk · ‖βββ‖1

}
, (4.30)

for k ∈ {0, . . . ,m}, and define β̂ββ (τ) = β̂ββ (τk−1) for τ ∈ (τk−1,τk). It is worth noticing that

for each k ≥ 1, L̂k(·) is essentially a shifted or perturbed version of L̂0(·), that is, L̂k(βββ ) =

L̂0(βββ )−(1/n)∑
n
i=1 ∑

k−1
j=0 K̄h(yi−xxxT

i β̂ββ j){H(τ j+1)−H(τ j)}xxxT
i βββ , where H(u) =− log(1−u). All

these empirical loss functions are convex, and have the same second-order properties on the

Hessian.

Condition 4.4.1 (Random design in high dimensions). The covariate vector xxx = (x1, . . . ,xp)
T ∈

X ⊆Rp (x1≡ 1) is compactly supported with max1≤ j≤p |x j| ≤C0 almost surely for some C0≥ 1.

For convenience, assume C0 = 1. The normalized vector Σ−1/2xxx has uniformly bounded kurtosis,

that is, m4 defined in (4.9) is a dimension-free constant, where Σ = E(xxxxxxT) is positive definite.

Theorem 4.4.1. Assume Conditions 4.3.1, 4.3.3, 4.3.4 and Condition 4.4.1 hold. Under the

sample size scaling n& s3 log p, let the bandwidth h and penalty levels λk’s satisfy s
√

log(p)/n.

h. {s log(p)/n}1/4 and λk � {1+ log(1−τL
1−τk

)}
√

log(p)/n for k = 0,1, . . . ,m. Then, there exist

constants C1,C2 > 0 independent of (s, p,n) such that

sup
τL≤τ≤τU

‖β̂ββ (τ)−βββ
∗(τ)‖Σ ≤C1

σ

g
√

γl
log
( 1−τL

1−τU

)√s log p
n

with probability at least 1−C2 p−1, where γl = λmin(Σ), the minimal eigenvalue of Σ, and

σ = max1≤ j≤p σ j j.

Theorem 4.4.1 provides the rate of convergence for the `1-penalized smoothed CQR

estimator β̂ββ (·) uniformly in the set of quantile indices τ ∈ [τL,τU ]. Under a similar set of assump-

tions, Zheng, Peng and He [2018] established the uniform convergence rate for the `1-penalized

(non-smoothed) CQR estimator, which is of order exp(Cs)
√

s log(p∨n)/n. We conjecture that
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the additional exponential term exp(Cs) is a consequence of the marginal smoothness condition

posed in Zheng, Peng and He [2018] (see Condition (C4) therein), and can be relaxed as in our

Theorem 4.4.1. In fact, our analysis relies on the global Lipschitz property (4.10), which follows

directly from the model assumption (4.1) and a lower bound on the conditional density.

Remark 4.4.1 (Comments on the tuning parameters h and {λk}m
k=0). To achieve the same

convergence rate
√

s log(p)/n as for the `1-penalized QR estimator with non-censored data

[Belloni and Chernozhukov, 2011], the bandwidth h is required to be in the range specified in

Theorem 4.4.1; for example, one may choose h� {s log(p)/n}1/4. Since such a choice depends

on the unknown sparsity, in practice we simply choose h to be of order {log(p)/n}1/4. Since the

numerical performance is rather insensitive to the choice of bandwidth, we suggest a default

value h = max{0.05,0.5{log(p)/n}1/4} in high dimensions although it can also be tuned by

cross-validation.

The penalty levels λk’s play a more pivotal role in obtaining a reasonable fit for the

whole CQR process. Our theoretical analysis suggests that {λk}m
k=0 should be chosen as a

slowly growing sequence along the τ-grid. Numerical results also confirm that a single λ value,

even after proper tuning, cannot guarantee a quality estimation of the entire regression process.

On the other hand, it is computationally prohibitive to determine each λk (k = 0,1, . . . ,m) via

cross-validation. By examining the proof of Theorem 4.4.1, we see that once λ0 is specified,

the subsequent λk’s satisfy λk = {1+ log(1−τL
1−τk

)}λ0 for k = 1, . . . ,m. Therefore, to implement

the proposed sequential procedure, we only treat λ0 as a tuning parameter, and use the above

formula to determine the rest of λk’s.

Remark 4.4.2 (Adaptive `1-penalization). It has been recognized that the `1-penalized estimator,

with the penalty level determined via cross-validation, typically has small prediction error but

has a non-negligible estimation bias and tends to overfit with many false discoveries. To reduce

the estimation error and false positives, a popular strategy is to use reweighted `1-penalization

via either adaptive Lasso [Zou, 2006] or the local linear approximation (LLA) method for
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folded-concave penalties [Fan and Li, 2001, Zou and Li, 2008]. Let w(·) be a non-increasing

and non-negative function defined on [0,∞). Fix k, let β̂ββ
(0)
k = β̂ββ (τk) be the `1-penalized censored

QR estimator at quantile level τk. For t = 1, . . . ,T , we iteratively update the previous estimate

β̂ββ
(t−1)
k by solving

β̂ββ
(t)
k = (β̂

(t)
k,1, . . . , β̂

(t)
k,p)

T ∈ argmin
βββ∈Rp

{
L̂k(βββ )+λk ·

p

∑
j=1

w
(
|β̂ (t−1)

k, j |/λk
)
|β j|
}
.

When T = 1 and w(u) = u−1 for u> 0 (or (u+ε)−1 for a small constant ε > 0) , this corresponds

to an adaptive Lasso-type estimator [Zou, 2006]; when w(u) = 1(u≤ 1)+ (a−u)+
a−1 1(u > 1) for

u≥ 0 and some a > 2, this corresponds to the LLA method using the smoothly clipped absolute

deviation (SCAD) penalty [Fan and Li, 2001]; when w(u) = (1− u/a)+ for u ≥ 0 and some

a≥ 1, this corresponds to the LLA method using the minimax concave penalty (MCP) [Zhang,

2010].

4.5 Numerical Studies

We apply the proposed methods in Sections 4.2 and 4.4 on simulated datasets and

compare to that of Peng and Huang [2008] and Zheng, Peng and He [2018] for both low-

and high-dimensional settings in Sections 4.5.1 and 4.5.2, respectively. The proposed method

involves selecting a smoothing parameter h: for p < n, we set h = {(p+ logn)/n}2/5∨ 0.05;

for p > n, guided by Remark 4.4.1, we set h = {0.05∨ 0.5{log(p)/n}1/4}. We found that

the performance of our proposed method is insensitive to the choice of bandwidth, as also

observed in Fernandes, Guerre and Horta [2021] and He et al. [2022]. We implemented Peng

and Huang [2008] using the crq function with method = "PengHuang" from the quantreg

package [Koenker, 2008]. On the other hand, Zheng, Peng and He [2018] is implemented

using the barebones function LASSO.fit from rqPen [Sherwood and Maidman, 2022] instead

of the function rq(..., method = "lasso") in the package quantreg. This is because the
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function rq(..., method = "lasso") reports some numerical issues (e.g., singular design

error) frequently in our numerical studies. All of the numerical studies are performed on a

worker node with 32 CPUs, 2.5 GHz processor, and 512 GB of memory in a high-performance

computing cluster.

4.5.1 Censored quantile regression: estimation and inference

We assess the performance of our proposed method in the low-dimensional setting with

n = 5000 and p = 100. We start with generating the random covariates x̃xxi ∈ Rp from a mixture

of different distributions to represent different types of variables commonly encountered in many

datasets. In particular, we generate the first 45 covariates from N (000,Σ = (σ jk)1≤ j,k≤45), where

σ jk = 0.5| j−k| for 1≤ j,k≤ 45, the second 45 covariates from a multivariate uniform distribution

on the cube [−2,2]45 with the same covariance matrix Σ using the R package MultiRNG, and the

last 10 covariates from a Bernoulli distribution. Note that the three blocks of covariates generated

are independent across the blocks. The response variables zi ∈ R are then generated from the

following models, both of which satisfy the global assumption in (4.1).

(i) Homoscedastic model: zi = 〈x̃xxi,γγγ〉+ εi for i = 1, . . . ,n, where γ j ∼ Uniform(−2,2) for

j = 1, . . . , p. Let Qt2(τ) be the τ-quantile of the t2-distribution, and let xxxi = (1, x̃xxT
i )

T. Then,

the above model can be equivalently formulated as

zi = 〈xxxi,βββ
∗(τ)〉, i = 1, . . . ,n, where βββ

∗(τ) = (Qt2(τ),γγγ
T)T ∈ Rp+1. (4.31)

Under the above model, the covariate effects remain the same across all quantile levels.

(ii) Heteroscedastic model: zi = 〈x̃xxi,γγγ〉+ |x̃i,1| · εi for i = 1, . . . ,n, where γ1 = 0 and γ j ∼

Uniform(−2,2) for j = 2, . . . , p. Let xxxi = (1, |x̃i,1|, x̃xxT
i,−1)

T, where x̃xxi,−1 ∈Rp−1 is obtained
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by removing the first element of x̃xxi. The model is equivalent to

zi = 〈xxxi,βββ
∗(τ)〉, i = 1, . . . ,n, where βββ

∗(τ) = (0,Qt2(τ),γ2, . . . ,γp)
T ∈ Rp+1. (4.32)

In this model, the first covariate has varying marginal effects for different quantile levels.

Specifically, the effect of |x̃1| on the τ-th quantile of z is F−1
t2 (τ), which is negligible when

τ ≈ 0.5, but grows stronger as τ moves towards 0 or 1.

For both types of models, the random censoring variables are generated from a Gaussian mixture

distribution, that is,

Ci ∼ 1{wi = 1}N (0,16)+1{wi = 2}N (5,1)+1{wi = 3}N (10,0.25) (4.33)

for i = 1, . . . ,n, where wi is sampled from {1,2,3} with equal probability, and yi = zi∧Ci is the

censored outcome. The corresponding censoring rate varies from 25% to 50%.

We implement both methods with a quantile grid of {τk}m
k=0 = {0.05,0.1, . . . ,0.75,0.8}.

At each quantile level τk, we use the estimation error under the `2 norm, ‖β̂ββ (τk)−βββ
∗(τk)‖2, as a

general measure of accuracy. We also calculate the run-time in seconds for both methods. Results,

averaged across 500 independent replications, are reported in Figure 4.1. Figures 4.1(a) and (d)

contain the estimation error under the `2 norm across all quantile levels; Figures 4.1(b) and (d)

contains the regression coefficient that varies across quantile levels, i.e., {β0(τk)}m
k=0 for model

(4.31) and {β1(τk)}m
k=0 for model (4.32); and Figures 4.1(c) and (f) contain the computation

time for fitting the entire QR process. We see that the two methods perform very closely at low

quantile levels, and the smoothed approach is particularly advantageous at high quantile levels.

Computationally, our implementation of the smoothed method is about 10 to 20 times faster than

Peng and Huang [2008]’s method, implemented by the crq function in quantreg.

Next, we consider both the proposed multiplier bootstrap detailed in Section 4.2.3 and

the classical paired bootstrap for performing statistical inference at τ = 0.5. Three types of 95%
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Figure 4.1. Numerical comparisons among CQR and our smoothed CQR for models (4.31)–
(4.32) along the quantile grid. The left panels (a) and (d) display the `2-induced estimation errors
‖β̂ββ (τk)−βββ

∗(τk)‖2. The middle panels (b) and (e) present the estimated quantile effects, which
are β̂0(τk) in model (4.31) and β̂1(τk) in model (4.32) accordingly. The blue dashed lines in the
middle panels represent the true quantile effects Qt2(τ). The right panels (c) and (f) record the
empirical running time of the processes along the grid points.

confidence intervals (CIs) are constructed with B= 1000 bootstrap samples: the percentile CI, the

pivotal CI, and the normal CI. Coverage proportions for all of the covariates, confidence interval

width for the first covariate, and computational time for the entire bootstrap process, averaged

over 500 replications, are plotted in Figure 4.2. Under the homogeneous setting (4.31), all types

of confidence intervals produced by multiplier bootstrap maintain the nominal level, while the

normal intervals by pair resampling suffer from under coverage. In the heterogeneous setting

(4.32), although outliers that correspond to the confidence intervals for the first covariate exist

for both methods, multiplier bootstrap manages to mitigate this issue. Furthermore, compared

to pair resampling, multiplier bootstrap constructs narrower confidence intervals with slightly
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smaller standard deviations. Finally, the computational advantage of multiplier bootstrap for

smoothed CQR is evident in Figures 4.2(c) and (f).

To better appreciate the computational advantage of smoothed CQR, we further consider

large-scale simulation settings by setting n ∈ {1000,2000, . . . ,20000} and p = n/100. We use

the same data generating processes as in (4.31)–(4.33), except that the covariates x̃xxi are now

generated from N (000p,Σ) with Σ = (0.5| j−k|)1≤ j,k≤p. The censoring rate varies from 30% to

45%. In this case, we restrict attention to the estimation error and runtime of the two methods

when τ = 0.7. The results, averaged over 500 repetitions, are presented in Figure 4.3. We see

from Figure 4.3 that the computation gain of the proposed method over Peng and Huang [2008]

is dramatic, without compromising the statistical accuracy.

4.5.2 High-dimensional censored quantile regression

In this section, we examine the numerical performance of the regularized smoothed

CQR method with different penalties, which will also be compared with its non-smoothed

counterpart [Zheng, Peng and He, 2018]. For the smoothed method, we consider both the `1 and

folded-concave penalties (SCAD and MCP). The latter is implemented by the LLA algorithm

as described in Remark 4.4.2. The computational details are described in Section A.2 of the

supplementary material.

Penalized CQR involves selecting a sequence of regularization parameters {λk}m
k=0 that

correspond to the predetermined τ-grid {τk}m
k=0. Guided by Theorem 4.4.1 and Remark 4.4.1,

we adopt a sequence of dilating λk’s with λk = {1+ log(1−τL
1−τk

)}λ0 for k = 1, . . . ,m, where λ0 is

chosen via the K-fold cross-validation (K = 3 in our studies). To accommodate censoring, the

cross-validation criterion is based on the the empirical mean of deviance residuals [Therneau,

Grambsch and Fleming, 1990]

R(λ ) :=
1
n

1
m+1

n

∑
i=1

m

∑
k=0

√
−2{Mi(τk,λ )+∆i log(∆i−Mi(τk,λ ))} (4.34)
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Figure 4.2. Box plots of the empirical coverage, confidence interval width, and running time for
two resampling-based methods. “Multiplier” refers to the proposed multiplier bootstrap method,
and “Pair” refers to pair resampling with replacement in the regression setting. In panels (a), (b),
(d), and (e), within each method, different colors of boxes represent different types of confidence
interval: (i) green boxes for percentile interval, (ii) orange boxes for pivotal interval, and (iii)
purple boxes for normal interval.

on the validation set, where

Mi(τk,λ ) = 1{yi ≤ xxxT
i β̂ββ (τk,λ ),∆i = 1}−

∫
τk

τ0

1{yi ≥ xxxT
i β̂ββ (u,λ )}dH(u)− τ0

for k = 0, . . . ,m are the martingale residuals and β̂ββ (τ,λ ) refers to the estimated βββ (τ) with a

dilating λk’s starting with λ0 = λ . The deviance (4.34) produces a more symmetric distribution

through a transformation on the skewed martingale residuals, and is also used in Zheng, Peng

and He [2018] and Fei et al. [2021]. In our simulations, we choose λ0 from 50 candidates equally

spaced on the interval [0.01,0.2].
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Figure 4.3. Numerical comparisons between CQR and smoothed CQR under models (4.31) and
(4.32) with increasing (n, p) subject to p = n/100. The left panels (a) and (c) display the `2-error
at τ = 0.7 versus sample size. The right panels (b) and (d) present the runtime (in second) versus
sample size.

In all of our numerical studies, we generate covariates x̃xxi ∈Rp from N (000,Σ), where Σ is

as defined in Section 4.5.1, and the random errors εi ∼ t2. The response variables zi are generated

from Models (4.31)–(4.32), but with different γγγ . For Model (4.31), we consider a sparse γγγ with

global sparsity s = 10 by setting γ j ∼ Uniform(1,1.5) for j = 1, . . . ,10, and the rest to be zero.

For Model (4.32), γγγ is generated similarly except with γ1 = 0. The random censoring variables

are generated from (4.33), with overall censoring rates approximately 25%–30%.

Since the estimated active set depends on the entire quantile process, all numerical

experiments are conducted via an estimation-after-selection procedure [Zheng, Peng and He,

2018]. That is, in stage one, we perform regularized smoothed CQR to obtain the set Ŝ =

∪τ∈{τ0,...,τm}supp
(
β̂ββ (τ)

)
. In stage two, we perform smoothed CQR using the covariates in Ŝ .

Recall that S is the true active set defined in (4.29), and let S c be its complement. To assess
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the numerical performance of our proposed method, we report (1) the true positive rate (TPR),

TPR = |S ∩Ŝ |
/
|S |; (2) the false discovery rate (FDR), FDR = |S c∩Ŝ |

/
|Ŝ |; (3) average

`2-error, (1/m)∑
m
k=0 ‖β̂ββ (τk)−βββ (τk)‖2; and (4) elapsed time for running the estimation-after-

selection process, including cross-validation.

Results for the proposed method using different penalty functions, averaged over 500

replications when (n, p) = (400,1000), are reported in Figure 4.4. As expected, `1-penalized

method tends to select larger models with many spurious variables, and thus has higher false

discovery rates than SCAD and MCP. Under the heterogeneous model, both SCAD and MCP

sometimes miss the first true signal and have lower TPR than Lasso. This is due to the fact that

the first signal corresponds to the evolving quantile effect Qt2(τ) that vanishes as τ approaches

0.5, and therefore is more likely to be missed by folded-concave regularization.

To better demonstrate the computational efficiency of our method on large-scale data,

we consider the `1-penalized CQR (CQR-Lasso) method [Zheng, Peng and He, 2018] as a

benchmark. As discussed in Zheng, Peng and He [2018], CQR-Lasso can be reformulated

as a sequence of `1-penalized median regressions with two pseudo observations, to which

existing packages for penalized QR can be applied. Moreover, Zheng, Peng and He [2018]

used cross-validation to choose λ0 (the initial penalty level) and the increment c > 0 by a

two-dimensional grid search. In principle, we can apply this tuning scheme to both CQR-

Lasso and its smoothed counterpart to achieve better variable selection performance. From a

computational point of view, we apply a simpler tuning method by only choosing λ0 via cross-

validation and focus on speed comparisons. To be specific, we first compute cross-validated

SCQR-Lasso and record its runtime, and then compute CQR-Lasso estimator using the same

selected λ -sequence and record the runtime. For SCQR-Lasso, we apply the LAMM algorithm,

described in Section C.1.2 of the Appendix, to compute each β̂ββ (τk) defined in (4.30); for CQR-

Lasso, we use the LASSO.fit function in rqPen to fit the penalized median regression at each

quantile level. The box plots of running time (in second) over 500 replications are displayed

in Figure 4.5. On average, our implementation of the cross-validated SCQR-Lasso is more
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Figure 4.4. Box plots of the false discovery rate, `2-error, and runtime for the `1, SCAD, and
MCP regularized smoothed CQR. The true positive rates (TPR) are not visually informative,
and thus are reported as follows. For the homoscedastic model, the average TPR are 1.00 for
Lasso, 0.9996 for SCAD, and 0.9992 for MCP; for the heteroscedastic model, the average TPR
are 0.9872 for Lasso, 0.919 for SCAD, and 0.917 for MCP. The censoring rates vary between
25% and 30%.

than 10 times faster than the CQR-Lasso implementation without cross-validation (18 seconds

versus 250 seconds). We refer to He et al. [2022] for more tails of simulations. The code for the

proposed method and our implementation of Zheng, Peng and He [2018]’s method is available at

https://github.com/XiaoouPan/scqr.
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The dissertation author was the primary investigator and author of this paper.

90



Appendix A

Supplementary Material for Chapter 2

A.1 Proofs of Main Results

All the probabilistic bounds presented in the proof are non-asymptotic with explicit

errors. The values of the constants involved are obtained with the goal of making the proof

transparent, and may be improved by more careful calculations or under less general distributional

assumptions on the covariates and noise variables.

A.1.1 Preliminaries

Recall that Qn(βββ ) = (1/n)∑
n
i=1 ρτ(yi−〈xxxi,βββ 〉) is the empirical quantile loss function.

Since Qn : Rp→ R is convex, we define its subdifferential ∂Qn by

∂Qn(βββ ) =
{

ξξξ ∈ Rp : Qn(βββ
′)≥ Qn(βββ )+ 〈ξξξ ,βββ ′−βββ 〉 for all βββ ∈ Rp}. (A.1)

A vector ξξξ ∈ ∂Qn(βββ ) is called a subgradient of Qn in βββ . More specifically, the subdifferential

∂Qn is the collection of vectors ξξξ βββ = (ξβββ ,1, . . . ,ξβββ ,p)
ᵀ satisfying, for j = 1 . . . , p,

ξβββ , j =−
τ

n

n

∑
i=1

xi jI(yi > 〈xxxi,βββ 〉)

+
1− τ

n

n

∑
i=1

xi jI(yi < 〈xxxi,βββ 〉)−
1
n

n

∑
i=1

xi jviI(yi = 〈xxxi,βββ 〉), (A.2)
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where vi ∈ [τ−1,τ].

Of particular interest is the subdifferential ∂Qn(βββ
∗) under model (2.1). By (A.2), every

vector ξξξ = (ξ1, . . . ,ξp)
T ∈ ∂Qn(βββ

∗) can be written as

ξ j =−
τ

n

n

∑
i=1

xi j{I(εi > 0)− (1− τ)}

+
1− τ

n

n

∑
i=1

xi j{I(εi < 0)− τ}− 1
n

n

∑
i=1

xi jviI(εi = 0), j = 1, . . . , p, (A.3)

where vi ∈ [τ−1,τ].

Proposition A.1.1. Assume Conditions 2.1.1 and 2.1.2 hold. Then, every subgradient ξξξ
βββ
∗ ∈

∂Qn(βββ
∗) satisfies

P

(
‖ΣΣΣ−1/2

ξξξ
βββ
∗‖2 ≥ 3υ0

√
2p+ x

n

)
≤ e−x, valid for any x≥ 0.

The following proposition provides a form of the restricted convexity for the empirical

quantile loss function.

Proposition A.1.2. Assume Conditions 2.1.1 and 2.1.2 hold. Then, for any t ≥ 0, it holds with

probability at least 1− e−t/2 that

〈ξξξ βββ −ξξξ
βββ
∗ ,βββ −βββ

∗〉 ≥ 1
8

f ‖βββ −βββ
∗‖2

ΣΣΣ−4υ
2
0‖βββ −βββ

∗‖ΣΣΣ

√
2(p+ t)

n
(A.4)

uniformly over βββ ∈ Rp satisfying 0≤ ‖βββ −βββ
∗‖ΣΣΣ ≤ f/(6L0υ2

0 ).

Propositions A.1.1 and A.1.2 provide the key ingredients to prove Theorems 2.1.1 and

2.1.2. Similarly, the finite sample performance of the multiplier bootstrap estimator relies

on the corresponding properties of the weighted quantile loss function, which are given by

Propositions A.1.3 and A.1.4 below.

Recall that P∗ and E∗ denote, respectively, the probability measure and expectation (over
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Rn = {ei}n
i=1) conditioning on Dn = {(yi,xxxi)}n

i=1. For i = 1, . . . ,n, define

ζi = I(εi ≤ 0)− τ and zzzi = ΣΣΣ
−1/2xxxi, (A.5)

which satisfy E(ζi|xxxi) = 0, E(ζ 2
i |xxxi) = τ(1− τ) and E(zzzizzzT

i ) = Ip.

Proposition A.1.3. Assume Conditions 2.1.1 and 2.1.2 hold, and let ξξξ
[ ∈ ∂Q[

n(βββ
∗). For any

t > 0, there exists some event G1(t) = G1(t;Dn) with P{G1(t)} ≥ 1− e−2t such that, with P∗-

probability at least 1− e−2t conditioned on G1(t),

‖ΣΣΣ−1/2(ξξξ
[−E∗ξξξ [

)‖2 ≤ 2

√
p+ t

n
(A.6)

as long as n& p+ t.

Similarly to Proposition A.1.2, the following result establishes the restricted strong

convexity for the weighted quantile loss function.

Proposition A.1.4. Assume Conditions 2.1.1 and 2.1.2 hold. For any t ≥ 0, there exists some

event G2(t) = G2(t;Dn) such that P{G2(t)} ≥ 1−e−t , and with P∗-probability at least 1−e−t/2

conditioned on G2(t),

〈ξξξ [
βββ −ξξξ

[
βββ
∗ ,βββ −βββ

∗〉 ≥ 1
8

f ‖βββ −βββ
∗‖2

ΣΣΣ−8υ
2
0‖βββ −βββ

∗‖ΣΣΣ

√
2(p+ t)

n
(A.7)

uniformly over βββ ∈ Rp satisfying 0≤ ‖βββ −βββ
∗‖ΣΣΣ ≤ f/(6L0υ2

0 ) as long as n& log(p)+ t.

The theory of classical quantile regression is not the focus of this dissertation, and we

refer to Pan and Zhou [2021] for the proofs of Propositions A.1.1–A.1.4.

A.1.2 Proof of Theorem 2.1.1

By the convexity of βββ 7→ Qn(βββ ), β̂ββ satisfies the first-order condition that ξξξ
β̂ββ
= 0 for

some ξξξ
β̂ββ
∈ ∂Qn(β̂ββ ). The proof builds on the symmetrized Bregman divergence associated with
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Qn, defined as

D(βββ 1,βββ 2) = 〈ξξξ βββ 1
−ξξξ βββ 2

,βββ 1−βββ 2〉, for ξξξ βββ 1
∈ ∂Qn(βββ 1),ξξξ βββ 2

∈ ∂Qn(βββ 2).

By convexity, D(βββ 1,βββ 2)≥ 0 for any subdifferentials ξξξ βββ 1
and ξξξ βββ 2

. Taking (βββ 1,βββ 2) = (β̂ββ ,βββ ∗),

we have

0≤ 〈ξξξ
β̂ββ
−ξξξ

βββ
∗, β̂ββ −βββ

∗〉= 〈−ξξξ
βββ
∗, β̂ββ −βββ

∗〉 ≤ ‖ΣΣΣ−1/2
ξξξ

βββ
∗‖2‖β̂ββ −βββ

∗‖ΣΣΣ, (A.8)

for any ξξξ
βββ
∗ ∈ ∂Qn(βββ

∗). Starting with (A.8), we bound the left- and right-hand sides of (A.9)

separately. To establish the lower bound, we use a localized argument [Sun, Zhou and Fan, 2020]

and a new restricted strong convexity property for the empirical quantile loss (Proposition A.1.2).

Define the rescaled `2-ball BΣΣΣ(t) = {βββ ∈ Rp : ‖βββ‖ΣΣΣ ≤ t}, t > 0. For some 0 < r ≤

f/(6L0υ2
0 ) to be determined, define

η = sup
{

u ∈ [0,1] : u(β̂ββ −βββ
∗) ∈ BΣΣΣ(r)

}
and β̃ββ = βββ

∗+η(β̂ββ −βββ
∗).

By the above definition, η = 1 if β̂ββ ∈ βββ
∗+BΣΣΣ(r), and η < 1 if β̂ββ /∈ βββ

∗+BΣΣΣ(r). In the latter

case, we have β̃ββ ∈ βββ
∗+∂BΣΣΣ(r). Applying Lemma C.1 in Sun, Zhou and Fan [2020] with slight

modifications yields the bound D(β̃ββ ,βββ ∗)≤ ηD(β̂ββ ,βββ ∗), leading to

〈ξξξ
β̃ββ
−ξξξ

βββ
∗, β̃ββ −βββ

∗〉 ≤ η〈ξξξ
β̂ββ
−ξξξ

βββ
∗, β̂ββ −βββ

∗〉, (A.9)

where ξξξ
βββ
∗ ∈ ∂Qn(βββ

∗) and ξξξ
β̃ββ
∈ ∂Qn(β̃ββ ). This, together with the fact ξξξ

β̂ββ
= 0 and Cauchy-

Schwarz inequality, implies

〈ξξξ
β̃ββ
−ξξξ

βββ
∗, β̃ββ −βββ

∗〉 ≤ η〈−ξξξ
βββ
∗ , β̂ββ −βββ

∗〉 ≤ ‖ΣΣΣ−1/2
ξξξ

βββ
∗‖2‖β̃ββ −βββ

∗‖ΣΣΣ. (A.10)
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Note that (A.10) is a localized version of (A.8) because β̃ββ falls in a local neighborhood of βββ
∗.

Setting δ̃δδ = β̃ββ −βββ
∗ ∈ BΣΣΣ(r), it follows from Proposition A.1.2 that

〈ξξξ
β̃ββ
−ξξξ βββ∗, β̃ββ −βββ

∗〉 ≥ 1
8

f ‖δ̃δδ‖2
ΣΣΣ−4υ

2
0‖δ̃δδ‖ΣΣΣ

√
2(p+ t)

n

with probability at least 1− e−t/2. Combining this with (A.9) and (A.10), and taking x = t > 0

in Proposition A.1.1, we obtain

1
8

f ‖δ̃δδ‖2
ΣΣΣ <

(
4υ

2
0 +3υ0

)
‖δ̃δδ‖ΣΣΣ

√
2(p+ t)

n

with probability at least 1−2e−t . Canceling ‖δ̃δδ‖ΣΣΣ on both sides yields

‖δ̃δδ‖ΣΣΣ < r := 8 f−1(4υ
2
0 +3υ0)

√
2(p+ t)

n

with probability at least 1−2e−t as long as n≥CL2
0 f−4(p+t) for some constant C > 0 depending

only on υ0. Consequently, β̃ββ falls in the interior of βββ
∗+BΣΣΣ(r), enforcing η = 1 and β̂ββ = β̃ββ ∈

βββ
∗+BΣΣΣ(r). Otherwise if β̂ββ /∈ βββ

∗+BΣΣΣ(r), we must have β̃ββ on the boundary, i.e. ‖β̃ββ −βββ
∗‖ΣΣΣ = r,

which leads to contradiction. This completes the proof.

A.1.3 Proof of Theorem 2.1.2

To begin with, define the “gradient” function ∇Qn : Rp→ Rp as

∇Qn(βββ ) =
1
n

n

∑
i=1

xxxi
{

I(yi ≤ 〈xxxi,βββ 〉)− τ
}
, βββ ∈ Rp. (A.11)

Recall from Condition 2.1.2, the conditional distribution of ε given xxx is continuous. Lemma A.1

in Ruppert and Carroll [1980] states that with probability one, ξξξ βββ = ∇Qn(βββ ) for any ξξξ βββ ∈

∂Qn(βββ ). Hence, we will treat ∇Qn as the gradient of Qn throughout the proof. Moreover,

consider the population loss EQn(βββ ) = Eρτ(y−〈xxx,βββ 〉), whose gradient vector and Hessian
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matrix are given, respectively, by

∇EQn(βββ ) = E
[
xxx{I(ε ≤ 〈xxx,βββ −βββ

∗〉)− τ}
]

and ∇
2EQn(βββ ) = E

{
fε|xxx(〈xxx,βββ −βββ

∗〉)xxxxxxT
}
.

Next, define the vector-valued random process

∆(βββ ) = S−1/2{
∇Qn(βββ )−∇Qn(βββ

∗)
}
−S1/2(βββ −βββ

∗), (A.12)

where S = ∇2EQn(βββ
∗) = E{ fε|xxx(0)xxxxxxT}. The goal is to bound ‖∆(βββ )‖2 uniformly over βββ in

a local neighborhood of βββ
∗. To this end, we deal with E∆(βββ ) and ∆(βββ )−E∆(βββ ) separately,

starting with E∆(βββ ). Applying the mean value theorem for vector-valued functions yields

E∆(βββ ) = S−1/2
〈∫ 1

0
∇

2EQn(βββ
∗
t )dt,βββ −βββ

∗
〉
−S1/2(βββ −βββ

∗)

=

〈
S−1/2

∫ 1

0
∇

2EQn(βββ
∗
t )dt S−1/2− Ip,S1/2(βββ −βββ

∗)
〉
, (A.13)

where βββ
∗
t = (1− t)βββ ∗+ tβββ and ∇2EQn(βββ

∗
t ) = E{ fε|xxx(t〈xxx,βββ −βββ

∗〉)xxxxxxT}. For r > 0, define the

local elliptic neighborhood of βββ
∗ as ΘΣΣΣ(r) :=

{
βββ ∈ Rp : ‖βββ −βββ

∗‖ΣΣΣ ≤ r
}

. By Conditions 2.1.1

and 2.1.2, ΣΣΣ is positive definite and f ≤ fε|xxx(0)≤ f̄ , so that f ΣΣΣ� S� f̄ ΣΣΣ. For δδδ = βββ −βββ
∗ with

βββ ∈ΘΣΣΣ(r), the Lipschitz continuity of fε|xxx ensures that

∥∥S−1/2
∇

2EQn(βββ
∗
t )S
−1/2− Ip

∥∥
2 =

∥∥S−1/2E
[{

fε|xxx(t〈xxx,δδδ 〉)− fε|xxx(0)
}

xxxxxxT
]
S−1/2∥∥

2

≤ L0t · sup
uuu∈Bp(1)

E
{
〈S−1/2xxx,uuu〉2|〈xxx,δδδ 〉|

}
≤ f−1L0t ·

(
sup

uuu∈Bp(1)
E|〈ΣΣΣ−1/2xxx,uuu〉|3

)2/3(
E|〈xxx,δδδ 〉|3

)1/3

≤ L0 f−1m3rt,

where mk := supuuu∈Bp(1)E|〈ΣΣΣ−1/2xxx,uuu〉|k (for k ≥ 1) depends only on υ0 and k. Combining this
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with (A.13), we obtain

sup
βββ∈ΘΣΣΣ(r)

‖E∆(βββ )‖2 ≤
1
2

L0 f−1 f̄ 1/2m3r2. (A.14)

Turning to the stochastic term ∆(βββ )−E∆(βββ ), define the centered gradient function

Rn(βββ ) =
1
n

n

∑
i=1

(1−E)
{

I(〈xxxi,βββ −βββ
∗〉 ≥ εi)− τ

}
xxxi,

so that ∆(βββ )−E∆(βββ ) = S−1/2{Rn(βββ )−Rn(βββ
∗)}. By a change of variable vvv = ΣΣΣ

1/2(βββ −βββ
∗),

we have

sup
βββ∈ΘΣΣΣ(r)

‖∆(βββ )−E∆(βββ )‖2 ≤ f−1/2 sup
βββ∈ΘΣΣΣ(r)

‖ΣΣΣ−1/2{Rn(βββ )−Rn(βββ
∗)}‖2

= f−1/2 sup
vvv∈Bp(r)

‖ΣΣΣ−1/2{Rn(βββ
∗+ΣΣΣ

−1/2vvv)−Rn(βββ
∗)}‖2

= f−1/2r−1 sup
uuu,vvv∈Bp(r)

〈ΣΣΣ−1/2{Rn(βββ
∗+ΣΣΣ

−1/2vvv)−Rn(βββ
∗)},uuu〉︸ ︷︷ ︸

n−1/2∆0(uuu,vvv)

,

(A.15)

where ∆0(uuu,vvv) = n−1/2
∑

n
i=1(1−E)〈zzzi,uuu〉{I(εi ≤ 〈zzzi,vvv〉)− I(εi ≤ 0)}. To bound its supremum,

we first show its concentration around the mean, and then bound the mean via a maximal

inequality specialized to VC type classes (see, e.g., Chapter 2.6 in van der Vaart and Wellner

[1996]). Consider the following two classes of real-valued functions on R×Rp:

F1 = {(z0,zzz) 7→ 〈zzz,uuu〉 : uuu ∈ Bp(r)} and F2 = {(z0,zzz) 7→ I(〈zzz,vvv〉− z0 ≥ 0) : vvv ∈ Bp(r)}.

(A.16)

Moreover, define the function f0 : (z0,zzz) 7→ I(z0 ≤ 0), and write z̄i = (εi,zzzi) ∈ R×Rp for

i = 1, . . . ,n. Then, the supremum supuuu,vvv∈Bp(r)∆0(uuu,vvv) can be written as the supremum of an
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empirical process:

sup
vvv,uuu∈Bp(r)

∆0(uuu,vvv) = sup
f∈F

1√
n

n

∑
i=1
{ f (z̄i)−E f (z̄i)}︸ ︷︷ ︸

Gn f

, (A.17)

where F = F1 · (F2− f0) is the pointwise product of F1 and F2− f0. Under the assumption

that supu | fε|xxx(u)| ≤ M0 almost surely, we have, for each i ∈ [n], sup f∈F f (z̄zzi) ≤ r‖zzzi‖2 and

sup f∈F E f (z̄zzi)
2 ≤M0 supuuu,vvv∈Bp(r)E〈zzzi,uuu〉2|〈zzzi,vvv〉| ≤M0m3r3. By Lemma 2.2.2 in van der Vaart

and Wellner [1996],

∥∥∥∥max
1≤i≤n

sup
f∈F
| f (z̄zzi)|

∥∥∥∥
ψ1

≤ r
∥∥∥∥max

1≤i≤n
‖zzzi‖2

∥∥∥∥
ψ1

≤ rp1/2
∥∥∥∥ max

1≤i≤n,1≤ j≤p
|zi j|
∥∥∥∥

ψ1

≤ (log2)1/2rp1/2
∥∥∥∥ max

1≤i≤n,1≤ j≤p
|zi j|
∥∥∥∥

ψ2

≤ c0(p logn)1/2r,

where c0 > 0 depends only on υ0, and ‖ · ‖ψq (1≤ q≤ 2) denotes the ψq-Orlicz norm. Applying

Theorem 4 in Adamczak [2008] with α = 1 and δ = η = 1/2, we obtain that for any x≥ 0,

sup
f∈F

Gn f ≤ 3
2
E

(
sup
f∈F

Gn f

)
+ x

with probability at least 1− e−x2/(3M0m3r3)−3e−x
√

n/{c1(p logn)1/2r}, where c1 > 0 depends only

on c0. Given t ≥ 0 such that 4e−t ≤ 1, taking

x = max
{
(3M0m3)

1/2r3/2t1/2,2c1rt(p logn)1/2n−1/2}
in the above bound yields that, with probability at least 1− e−t−3e−2t ≥ 1−2e−t ,

sup
f∈F

Gn f ≤ 3
2
E

(
sup
f∈F

Gn f

)
+max

{
(3M0m3)

1/2r3/2t1/2,2c1rt

√
p logn

n

}
. (A.18)

To bound E(sup f∈F Gn f ), we control the covering numbers N(F ,L2(Q),ε‖F‖Q,2) for
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all finitely supported probability measures Q on R×Rp and 0 < ε < 1, where F(z̄zz) = r‖zzz‖2

is a measurable envelope of F . Respectively, for the function classes F1 and F2 that have

envelopes F1(z̄zz) = r‖zzz‖2 and F2(z̄zz) = 1, using Theorem B in Dudley [1979] and Theorem 2.6.7

in van der Vaart and Wellner [1996] we have

sup
Q

N(F1,L2(Q),ε‖F1‖Q,2)≤ (A1/ε)2(p+2) and sup
Q

N(F2,L2(Q),ε)≤ (A1/ε)2(p+2)

for some A1 > e, where the suprema are taken over all finitely discrete probability measures Q on

R×Rp. Combining the above bounds with Corollary A.1 in the supplement of Chernozhukov,

Chetverikov and Kato [2014] shows that

sup
Q

N(F ,L2(Q),ε‖F‖Q,2)

≤ sup
Q

N(F1,L2(Q),2−1/2
ε‖F1‖Q,2) · sup

Q
N(F2,L2(Q),2−1/2

ε)≤ (A2/ε)4(p+2),

where A2 = 21/2A1. For the envelop function F : R×Rp→ R+, we have EF(zzz)2 = r2 p. Conse-

quently, it follows from Corollary 5.1 in Chernozhukov, Chetverikov and Kato [2014] that

E

(
sup
f∈F

Gn f

)
.
√

M0m3r3 p log
(
A2

2 p/(M0m3r)
)
+ rMn

p
n1/2 log

(
A2

2 p/(M0m3r)
)
, (A.19)

where Mn := (Emax1≤i≤n ‖zzzi‖2
2)

1/2. To bound Mn, we will reply on an exponential-type tail

inequality for X := max1≤i≤n ‖zzzi‖2
2. Assume there exist constants A,a > 0 such that P(X ≥

A+au)≤ e−u for every u ∈ R. Then

E(X) =
∫

∞

0
P(X ≥ t)dt ≤ A+

∫
∞

A
P(X ≥ t)dt

= A+
∫

∞

0
P(X ≥ A+ t)dt = A+a

∫
∞

0
P(X ≥ A+au)du≤ A+a.

Given ε ∈ (0,1), there exits a finite subset Nε ⊆ Sp−1 with |Nε | ≤ (1 + 2/ε)p such that
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max1≤i≤n ‖zzzi‖2 ≤ (1− ε)−1 max1≤i≤n maxuuu∈Nε
〈uuu,wwwi〉. For every i ∈ [n] and uuu ∈ Nε , Con-

dition 2.1.1 indicates that P(|〈uuu,wwwi〉| ≥ υ0u) ≤ 2e−u2/2 for any u ∈ R. Taking the union

bound over i ∈ [n] and uuu ∈ Nε , and setting u =
√

2v+2log(2n)+2p log(1+2/ε) (v > 0),

we obtain that with probability at least 1− 2n(1+ 2/ε)pe−u2/2 = 1− e−v, max1≤i≤n ‖zzzi‖2 ≤

(1− ε)−1υ0
√

2v+2log(2n)+2p log(1+2/ε). Minimizing this upper bound with respect to

ε ∈ (0,1), we conclude that

P
[

max
1≤i≤n

‖zzzi‖2
2 ≥ 2υ

2
0
{

3.7d + log(2n)+ v
}]
≤ e−v, valid for every v > 0.

Taking A = 2υ2
0{3.7p+ log(2n)} and a = 2υ2

0 in the earlier analysis yields the bound M2
n =

E(max1≤i≤n ‖zzzi‖2
2)≤ 2υ2

0{3.7p+ log(2en)}. Plugging this into (A.19) gives

E

(
sup
f∈F

Gn f

)
.
√

M0m3r3 p log
(
A2

2 p/(M0m3r)
)
+ r(p+ logn)1/2 p

n1/2 log
(
A2

2 p/(M0m3r)
)
.

(A.20)

Together, (A.15), (A.17), (A.18) and (A.20) imply that with probability at least 1−2e−t ,

sup
βββ∈ΘΣΣΣ(r)

‖∆(βββ )−E∆(βββ )‖2

≤C1

{√
rt
n
+

√
log(C2 p/r)

rp
n
+(p+ logn)1/2 log(C2 p/r)

p
n
+(p logn)1/2 t

n

}
. (A.21)

Thus far, we have established a high probability bound on the `2-norm of ∆(βββ ) =

S−1/2{∇Qn(βββ )−∇Qn(βββ
∗)
}
−S1/2(βββ −βββ

∗) uniformly over βββ ∈ΘΣΣΣ(r), a local neighborhood

of βββ
∗, for any prespecified r > 0. By Theorem 2.1.1, we have β̂ββ ∈ ΘΣΣΣ(rt) with probability at

least 1−2e−t as long as n≥CL2
0 f−4(p+ t), where rt =C3

√
(p+ t)/n. Setting r = rt in (A.14)
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and (A.21), we find that with probability at least 1−2e−t ,

sup
βββ∈ΘΣΣΣ(rt)

‖∆(βββ )‖2 .
(p+ t)1/4(p logn+ t)1/2

n3/4 +(p+ logn)1/2 p logn
n

+(p logn)1/2 t
n
.

Recalling that ∇Qn(β̂ββ ) = 0, this completes the proof.

A.1.4 Proof of Theorem 2.1.3

Let λλλ ∈ Rp be an arbitrary vector defining a linear contrast. Define the normalized

partial sum Sn = n−1/2
∑

n
i=1 γiζi of independent zero-mean random variables, where ζi =

I(εi ≤ 0)−τ and γi =−〈S−1λλλ ,xxxi〉. Moreover, write δn = (p+ logn)1/4(p logn)1/2n−1/4+(p+

logn)1/2 p log(n)n−1/2. Applying Theorem 2.1.2 with t = logn yields that, under the scaling

n& p+ logn,

∣∣n1/2〈λλλ , β̂ββ −βββ
∗〉−Sn

∣∣
= n1/2

∣∣∣∣〈S−1/2
λλλ ,S1/2(β̂ββ −βββ

∗)+S−1/2 1
n

n

∑
i=1

{
I(εi ≤ 0)− τ

}
xxxi

〉∣∣∣∣≤ c1‖S−1/2
λλλ‖2 δn (A.22)

with probability at least 1−4n−1 for some constant c1 > 0.

For the partial sum Sn, note that var(Sn) = σ2
τ = τ(1−τ)‖S−1λλλ‖2

ΣΣΣ
. Then it follows from

the Berry-Esseen inequality (see, e.g., Tyurin [2011]) that

sup
x∈R

∣∣P{Sn ≤ var(Sn)
1/2x

}
−Φ(x)

∣∣
≤ E|{I(ε ≤ 0)− τ}〈S−1λλλ ,xxx〉|3

2n1/2σ3
τ

≤ 1−2(τ− τ2)

2(τ− τ2)1/2
m3

n1/2 = c2n−1/2. (A.23)

Moreover, for any a ≤ b, Φ(b/στ)−Φ(a/στ) ≤ (2π)−1/2(b− a)/στ . Combining this with
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(A.22) and (A.23), for any x ∈ R, we obtain

P
(
n1/2〈λλλ , β̂ββ −βββ

∗〉 ≤ x
)

≤ P
(
Sn ≤ x+ c1‖S−1/2

λλλ‖2 δn
)
+4n−1

≤ P
{

var(Sn)
1/2G≤ x+ c1‖S−1/2

λλλ‖2 δn
}
+ c2n−1/2 +4n−1

≤ P
(
στG≤ x

)
+ c1{2πτ(1− τ)}−1/2

δn + c2n−1/2 +4n−1,

where G ∼N (0,1). A similar argument leads to the reverse inequality. Putting together the

pieces established the Berry-Esseen bound (2.6).

A.1.5 Proof of Theorem 2.1.4

Without loss of generality, we assume t > 0 is such that 2e−t ≤ 1 throughout the proof.

By the convexity of βββ 7→ Q[
n(βββ ), β̂ββ

[
satisfies the first-order condition that ξξξ

[

β̂ββ
[ = 0 for some

ξξξ
[

β̂ββ
[ ∈ ∂Q[

n(β̂ββ
[
). Again, we follow the same localized analysis as in the proof of Theorem 2.1.1.

For some 0 < r ≤ f/(6L0υ2
0 ) to be determined, if β̂ββ

[
/∈ βββ
∗+BΣΣΣ(r), there exists η ∈ (0,1) such

that β̃ββ := βββ
∗+η(β̂ββ

[
−βββ

∗) ∈ βββ
∗+∂BΣΣΣ(r); otherwise if β̂ββ

[
∈ βββ

∗+BΣΣΣ(r), we take η = 1 so that

β̃ββ = β̂ββ
[
.

Similar to (A.9) and (A.10), we have that for any ξξξ
[
βββ
∗ ∈ ∂Q[

n(βββ
∗) and ξξξ

[

β̃ββ
∈ ∂Q[

n(β̃ββ ),

〈ξξξ [

β̃ββ
−ξξξ

[
βββ
∗ , β̃ββ −βββ

∗〉 ≤ ‖ΣΣΣ−1/2
ξξξ
[
βββ
∗‖2‖β̃ββ −βββ

∗‖ΣΣΣ.

For the right-hand side, Proposition A.1.3 implies that there exists some event G1(t) with

P{G1(t)} ≥ 1− e−2t such that, conditioned on G1(t),

‖ΣΣΣ−1/2
ξξξ
[
βββ
∗‖2 ≤ 2

√
p+ t

n
+‖ΣΣΣ−1/2E∗ξξξ [

βββ
∗‖2

with P∗-probability at least 1−e−2t as long as n& p+t. On the other hand, since ‖β̃ββ−βββ
∗‖ΣΣΣ≤ r,
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by Proposition A.1.4, there exists some event G2(t) = G2(t;Dn) with P{G2(t)} ≥ 1− e−t such

that, conditioned on G2(t),

〈ξξξ [

β̃ββ
−ξξξ

[
βββ
∗, β̃ββ −βββ

∗〉 ≥ 1
8

f ‖δ̃δδ‖2
ΣΣΣ−8υ

2
0‖δ̃δδ‖ΣΣΣ

√
2(p+ t)

n

with P∗-probability at least 1− e−t/2 as long as n& log(p)+ t, where δ̃δδ = β̃ββ −βββ
∗. Together,

the last three displays imply

‖δ̃δδ‖ΣΣΣ ≤ 8 f−1(21/2 +8υ
2
0
)√2(p+ t)

n
+8 f−1‖ΣΣΣ−1/2E∗ξξξ [

βββ
∗‖2 (A.24)

with P∗-probability at least 1− e−t conditioned on G1(t)∩G2(t).

For ‖ΣΣΣ−1/2E∗ξξξ [
βββ
∗‖2, it follows from (A.3) and Proposition A.1.1 that

‖ΣΣΣ−1/2E∗ξξξ [
βββ
∗‖2 < 3υ0

√
2(p+ t)

n
(A.25)

with probability at least 1− e−2t . Let G3(t) be the event that (A.25) holds so that P{G3(t)} ≥

1− e−2t .

Combining (A.24) and (A.25), we conclude that conditioned on G1(t)∩G2(t)∩G3(t),

‖δ̃δδ‖ΣΣΣ < r :=C4 f−1
√

(p+ t)/n with P∗-probability at least 1− e−t as long as n≥C5L2
0 f−4(p+

t), and P{G1(t)∩G2(t)∩G3(t)} ≥ 1−2e−t , where the constants C4,C5 > 0 depend only on υ0.

This enforces β̃ββ = β̂ββ
[
. Finally, taking E (t) = G1(t)∩G2(t)∩G3(t) establishes the claim.

A.1.6 Proof of Theorem 2.1.5

Following the proof of Theorem 2.1.2, we treat ∇Q[
n(βββ ) := (1/n)∑

n
i=1 wixxxi{I(yi ≤

〈xxxi,βββ 〉)− τ} as the gradient of Q[
n(βββ ). Under this notation, define the vector-valued random

process

∆
[(βββ ) = S−1/2{

∇Q[
n(βββ )−∇Q[

n(βββ
∗)
}
−S1/2(βββ −βββ

∗) for βββ ∈ Rp.
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Recalling E(wi) = 1, we have E∗∇Q[
n(βββ ) = ∇Qn(βββ ) = (1/n)∑

n
i=1 xxxi{I(yi ≤ 〈xxxi,βββ 〉)− τ}. De-

fine R[
n(βββ ) = ∇Q[

n(βββ )−∇Qn(βββ ), so that

∆
[(βββ ) = S−1/2{R[

n(βββ )−R[
n(βββ

∗)+∇Qn(βββ )−∇Qn(βββ
∗)−S(βββ −βββ

∗)
}

and E∗∆[(βββ ) = ∆(βββ ) with ∆(βββ ) defined in (A.12). By the triangle inequality, for any r > 0 we

have

sup
βββ∈ΘΣΣΣ(r)

‖∆[(βββ )‖2 ≤ sup
βββ∈ΘΣΣΣ(r)

‖∆[(βββ )−E∗∆[(βββ )‖2 + sup
βββ∈ΘΣΣΣ(r)

‖∆(βββ )‖2, (A.26)

where ΘΣΣΣ(r) = {βββ ∈ Rp : ‖βββ −βββ
∗‖ΣΣΣ ≤ r}.

The last term supβββ∈ΘΣΣΣ(r) ‖∆(βββ )‖2 in (A.26), which only depends on the data Dn =

{(yi,xxxi)}n
i=1, has been dealt with in the proof of Theorem 2.1.2. Hence, it remains to bound the

random fluctuation ∆[(βββ )−E∗∆[(βββ ) = S−1/2{R[
n(βββ )−R[

n(βββ
∗)} over βββ ∈ΘΣΣΣ(r), given Dn. As

before, we use a change of variable vvv = ΣΣΣ
1/2(βββ −βββ

∗) and obtain

sup
βββ∈ΘΣΣΣ(r)

‖∆[(βββ )−E∗∆[(βββ )‖2 = sup
βββ∈ΘΣΣΣ(r)

‖S−1/2{R[
n(βββ )−R[

n(βββ
∗)}‖2

≤ f−1/2 sup
βββ∈ΘΣΣΣ(r),uuu∈Bp(1)

〈R[
n(βββ )−R[

n(βββ
∗),ΣΣΣ−1/2uuu〉

= f−1/2r−1 sup
uuu,vvv∈Bp(r)

〈ΣΣΣ−1/2{R[
n(βββ

∗+ΣΣΣ
−1/2vvv)−R[

n(βββ
∗)},vvv〉︸ ︷︷ ︸

n−1/2∆[
0(uuu,vvv)

, (A.27)

where ∆[
0(uuu,vvv) = n−1/2

∑
n
i=1 ei〈zzzi,uuu〉{I(εi ≤ 〈zzzi,vvv〉)− I(εi ≤ 0)}. Let F1 and F2 be the function

classes defined in (A.16), and let F = F1 · (F2− f0) be the pointwise product between F1

and F2− f0 with f0 : (z0,zzz) 7→ I(z0 ≤ 0). With this notation, we have supuuu,vvv∈Bp(r)∆[
0(uuu,vvv) =

sup f∈F n−1/2
∑

n
i=1 ei f (z̄zzi). Recall that E∗ denotes the conditional expectation given Dn. By

Theorem 13 in Boucheron et al. [2005] and the bound sup1≤i≤n, f∈F f (z̄zzi)≤ r max1≤i≤n ‖zzzi‖2,

we obtain that, with Z := E∗{sup f∈F |(1/n)∑
n
i=1 ei f (z̄zzi)|} denoting the conditional Rademacher
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average,

{
E(Z−EZ)2k

+

}1/(2k) ≤ 2

√
EZ · kκr

Mn,k

n
+2kκr

Mn,k

n
≤ EZ +3kκr

Mn,k

n
, valid for any k ≥ 1,

where κ =
√

e/(2
√

e−2)< 1.271 and Mn,k := (Emax1≤i≤n ‖zzzi‖2k
2 )1/(2k). By (A.27), Markov’s

inequality and the bound Z ≤ (Z−EZ)++EZ, we obtain that

sup
βββ∈ΘΣΣΣ(r)

‖∆[(βββ )−E∗∆[(βββ )‖2 = OP∗
(
r−1Z

)
and Z = OP

(
EZ + rMn,1/n

)
. (A.28)

For EZ, by a similar argument to (A.20) and (A.21), we get

EZ . r3/2
√

log(C2 p/r)
p
n
+ r(p+ logn)1/2 log(C2 p/r)

p
n
. (A.29)

With the above preparations, we are ready to prove the claim. Together, Theorems 2.1.1–

2.1.4 imply that under the scaling n& p+ logn, there exists some event En, satisfying P(En)≥

1−4n−1, on which ‖β̂ββ −βββ
∗‖ΣΣΣ ≤ rn =C3

√
(p+ logn)/n and

χ1n :=

∥∥∥∥∥S1/2(β̂ββ −βββ
∗)+S−1/2 1

n

n

∑
i=1

xxxi
{

I(εi ≤ 0)− τ
}∥∥∥∥∥

2

≤ sup
βββ∈ΘΣΣΣ(rn)

‖∆(βββ )‖2 .
(p+ logn)1/4(p logn)1/2

n3/4 +(p+ logn)1/2 p logn
n︸ ︷︷ ︸

:=∆n,p

.

Moreover, with P∗-probability at least 1−n−1 conditioned on En, ‖β̂ββ
[
−βββ

∗‖ΣΣΣ ≤ rn so that

∥∥∥∥∥S1/2(β̂ββ
[
−βββ

∗)+S−1/2 1
n

n

∑
i=1

wixxxi
{

I(εi ≤ 0)− τ
}∥∥∥∥∥

2

≤ sup
βββ∈ΘΣΣΣ(rn)

‖∆[(βββ )‖2.

By (A.26), (A.28), (A.29) and (A.21), χ2n = χ2n(Dn) := E∗{sup
βββ∈ΘΣΣΣ(r[n)

‖∆[(βββ )‖2} satisfies

χ2n = OP(∆n,d). Let rrr[n = S1/2(β̂ββ
[
− β̂ββ )− S−1/2(1/n)∑

n
i=1 eixxxi{τ − I(εi ≤ 0)}. Then, with

105



P∗-probability at least 1− n−1 conditioned on En, ‖rrr[n‖2 ≤ χ1n + supβββ∈ΘΣΣΣ(r) ‖∆[(βββ )‖2 with

supβββ∈ΘΣΣΣ(r) ‖∆[(βββ )‖2 = OP∗(χ2n) and χ1n + χ2n = OP(∆n,p). This establishes the claim result

(2.14).

A.1.7 Proof of Theorem 2.1.6

Let λλλ ∈ Rp be an arbitrary vector defining a linear contrast of interest. Write γi =

〈S−1λλλ ,xxxi〉 and ζi = I(εi ≤ 0)− τ for i = 1, . . . ,n, and define

Sn =
1√
n

n

∑
i=1

γiζi and S[n =
1√
n

n

∑
i=1

eiγiζi.

It follows from Theorem 2.1.2 that under the scaling n& p+ logn, there exists a sequence of

events {En} with P(En)≥ 1−4n−1 such that, |n1/2〈λλλ , β̂ββ −βββ
∗〉−Sn| ≤ c1‖S−1/2λλλ‖2δn,d on En,

where δn,p := (p+ logn)1/4(p logn)1/2n−1/4 +(p+ logn)1/2 p log(n)n−1/2. By Theorems 2.1.4

and 2.1.5, we further have |n1/2〈λλλ , β̂ββ
[
− β̂ββ 〉−S[n| ≤ ‖S−1/2λλλ‖2‖n1/2rrr[n‖2 with P∗-probability at

least 1− n−1 conditioned on En. For the remainder rrr[n = rrr[n({(ei,yi,xxxi)}n
i=1), using Markov’s

inequality with the bounds (A.28) and (A.29), there exits some event Gn with P(G c
n ). (δn,d/δ2)

2

such that, conditioned on En∩Gn,

P∗
(
‖n1/2rrr[n‖2 ≥ δ1

)
. δ

−1
1 (δn,p +δ2),

valid for any δ1,δ2 > 0. Taking δ1 = δ
2/5
n,p and δ2 = δ

4/5
n,p yields that P(G c

n )≤ c2δ
2/5
n,p and

P∗
(
‖n1/2rrr[n‖2 ≥ δ

2/5
n,p
)
≤ c3δ

2/5
n,p , conditioned on En∩Gn.

Next we establish the closeness in distribution between Sn and S[n. Note that γiζi

are independent random variables with mean zero and var(γiζi) = τ(1− τ)‖S−1λλλ‖2
ΣΣΣ

. Thus,
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var(Sn) = τ(1− τ)‖S−1λλλ‖2
ΣΣΣ
≥ τ(1− τ) f̄−1‖S−1/2λλλ‖2

2. Moreover, under Condition 2.1.1,

E
(
|γiζi|3

)
≤ τ(1− τ)E|〈S−1

λλλ ,xxxi〉|3 ≤ τ(1− τ)m3‖S−1
λλλ‖3

ΣΣΣ
.

Let Φ(·) be the standard normal distribution function. By the Berry-Esseen inequality (see, e.g.,

Tyurin [2011]),

sup
x∈R

∣∣P{Sn ≤ var(Sn)
1/2x

}
−Φ(x)

∣∣≤ m3

2
√

τ(1− τ)n
. (A.30)

For S[n, using a conditional version of the Berry-Esseen inequality for sums of independent

random variables [Tyurin, 2011], we have

sup
x∈R

∣∣P∗{S[n ≤ var∗(S[n)
1/2x

}
−Φ(x)

∣∣≤ (1/n)∑
n
i=1 |ζiγi|3

2
√

n{var∗(S[n)}3/2 , (A.31)

where var∗(S[n)= (1/n)∑
n
i=1(γiζi)

2. Recall that zzzi =ΣΣΣ
−1/2xxxi, and let uuu=ΣΣΣ

1/2S−1λλλ/‖S−1λλλ‖ΣΣΣ ∈

Sp−1 be a unit vector. For the two data-dependent quantities var∗(S[n) and (1/n)∑
n
i=1 |γiζi|3, we

have

∣∣var∗(S[n)/var(Sn)−1
∣∣= 1

τ(1− τ)

∣∣∣∣1n n

∑
i=1

ζ
2
i 〈uuu,zzzi〉2− τ(1− τ)

∣∣∣∣ (A.32)

and

1
n

n

∑
i=1
|γiζi|3 ≤ max

1≤i≤n
|γiζi| ·

1
n

n

∑
i=1

ζ
2
i 〈S−1

λλλ ,xxxi〉2 ≤ max
1≤i≤n

|γiζi| · ‖S−1
λλλ‖2

ΣΣΣ ·
1
n

n

∑
i=1

ζ
2
i 〈uuu,zzzi〉2.

(A.33)

For independent zero-mean sub-Gaussian random variables γiζi, it can be shown that with

probability at least 1− e−x, max1≤i≤n |γiζi| . ‖S−1λλλ‖ΣΣΣ

√
log(n)+ x. Furthermore, following
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the proof of Proposition A.1.3, it can be similarly shown that

∣∣∣∣1n n

∑
i=1

ζ
2
i 〈uuu,zzzi〉2− τ(1− τ)

∣∣∣∣≤ 2υ
2
0

√
2x
3n

+2υ
2
0

x
n

with probability at least 1−2e−x. Putting together the pieces, it follows from (A.32) that there

exists an event E ′n, satisfying P(E ′n)≥ 1−n−1, on which max1≤i≤n |γiζi|. ‖S−1λλλ‖ΣΣΣ(logn)1/2,

1
n

n

∑
i=1
|γiζi|3 . ‖S−1

λλλ‖3
ΣΣΣ
(logn)1/2 and

∣∣var∗(S[n)/var(Sn)−1
∣∣.√ logn

n
(A.34)

as long as n& logn.

For the normal distribution function, we have the following property derived from

Pinsker’s inequality (see Lemma A.7 in the supplement of Spokoiny and Zhilova [2015]):

sup
x∈R

∣∣Φ(x/var(Sn)
1/2)−Φ(x/var∗(S[n)

1/2)
∣∣≤ 1

2

∣∣var∗(S[n)/var(Sn)−1
∣∣ (A.35)

as long as |var∗(S[n)/var(Sn)−1| ≤ 1/2. Moreover, for any a≤ b,

Φ(b/var(Sn)
1/2)−Φ(a/var(Sn)

1/2)≤ b−a√
2πvar(Sn)

≤ f̄ 1/2(b−a)

‖S−1/2λλλ‖2
√

2πτ(1− τ)
. (A.36)
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Combining the ingredients, we derive that for any x ∈ R,

P
(
n1/2〈λλλ , β̂ββ −βββ

∗〉 ≤ x
)
≤ P

(
Sn ≤ x+ c1‖S−1/2

λλλ‖2δn,p
)
+4n−1

(i)
≤ P

{
var(Sn)

1/2G≤ x+ c1‖S−1/2
λλλ‖2δn,p

}
+

m3

2
√

τ(1− τ)n
+4n−1

(ii)
≤ P

{
var(Sn)

1/2G≤ x−‖S−1/2
λλλ‖2δ

2/5
n,p
}
+ f̄ 1/2 c1δn,p +δ

2/5
n,p√

2πτ(1− τ)
+

m3

2
√

τ(1− τ)n
+4n−1

(iii)
≤ P∗

{
var∗(S[n)

1/2G≤ x−‖S−1/2
λλλ‖2δ

2/5
n,p
}

+
1
2

∣∣∣∣var∗(S[n)
var(Sn)

−1
∣∣∣∣+ f̄ 1/2 c1δn,p +δ

2/5
n,p√

2πτ(1− τ)
+

m3

2
√

τ(1− τ)n
+4n−1

(iv)
≤ P∗

(
S[n ≤ x−‖S−1/2

λλλ‖2δ
2/5
n,p
)
+

(1/n)∑
n
i=1 |γiζi|3

2
√

n{var∗(S[n)}3/2

+
1
2

∣∣∣∣var∗(S[n)
var(Sn)

−1
∣∣∣∣+ f̄ 1/2 c1δn,p +δ

2/5
n,p√

2πτ(1− τ)
+

m3

2
√

τ(1− τ)n
+4n−1,

where steps (i) and (iv) follow respectively from the Berry-Esseen inequalities (A.30) and (A.31),

step (ii) uses the anti-concentration inequality (A.36), and step (iii) is due to the Gaussian

comparison inequality (A.35). Conditioned on En∩Gn,

P∗
(
S[n ≤ x−‖S−1/2

λλλ‖2δ
2/5
n,p
)

≤ P∗
(
S[n ≤ x−‖S−1/2

λλλ‖2‖n1/2rrr[n‖2
)
+P∗

(
‖n1/2rrr[n‖2 ≥ δ

2/5
n,p
)

≤ P∗
(
n1/2〈λλλ , β̂ββ

[
− β̂ββ 〉 ≤ x

)
+n−1 + c3δ

2/5
n,p .

Moreover, on the event E ′n, the bounds in (A.34) imply

(1/n)∑
n
i=1 |γiζi|3

2
√

n{var∗(S[n)}3/2 +
1
2

∣∣∣∣var∗(S[n)
var(Sn)

−1
∣∣∣∣.
√

logn
n

as long as n& logn. A similar argument leads to a series of reverse inequalities.
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Putting together the pieces, we conclude that conditioned on the event En∩E ′n∩Gn,

sup
x∈R

∣∣P(n1/2〈λλλ , β̂ββ −βββ
∗〉 ≤ x

)
−P∗

(
n1/2〈λλλ , β̂ββ

[
− β̂ββ 〉 ≤ x

)∣∣. δ
2/5
n,p .

Under the scaling p3(logn)2 = o(n), δn,p = o(1) as n→ ∞. Combined with the above bound,

this establishes the claim (2.15).
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Appendix B

Supplementary Material for Chapter 3

B.1 One-step Conquer with Higher-order Kernels

As noted in Section 3.3.1, the smoothing bias is of order h2 when a non-negative kernel

is used. The ensuing empirical loss βββ 7→ (1/n)∑
n
i=1(ρτ ∗Kh)(yi−〈xxxi,βββ 〉) is not only twice-

differentiable and convex, but also (provably) strongly convex in a local vicinity of βββ
∗ with high

probability. Kernel smoothing is ubiquitous in nonparametric statistics. The order of a kernel, ν ,

is defined as the order of the first non-zero moment. The order of a symmetric kernel is always

even. A kernel is called high-order if ν > 2, which inevitably has negative parts and thus is no

longer a probability density. Thus far we have focused on conquer with second-order kernels,

and the resulting estimator achieves an `2-error of the order
√

p/n+h2.

Let G(·) be a higher-order symmetric kernel with order ν ≥ 4, and b > 0 be a bandwidth.

Again, via convolution smoothing, we may consider a bias-reduced estimator that minimizes the

empirical loss βββ 7→ Q̂G
b (βββ ) := (1/n)∑

n
i=1(ρτ ∗Gb)(yi−〈xxxi,βββ 〉). This, however, leads to a non-

convex optimization. Without further assumptions, finding a global minimum is computationally

intractable: finding an ε-suboptimal point for a k-times continuously differentiable loss function

requires at least Ω{(1/ε)p/k} evaluations of the function and its first k derivatives, ignoring

problem-dependent constants; see Section 1.6 in Nemirovski and Yudin [1983]. Instead, various

gradient-based methods have been developed for computing stationary points, which are points βββ

with sufficiently small gradient ‖∇Q̂G
b (βββ )‖2≤ ε , where ε ≥ 0 is optimization error. However, the
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equation ∇Q̂G
b (βββ ) = 0 does not necessarily have a unique solution, whose statistical guarantees

remain unknown.

Motivated by the classical one-step estimator [Bickel, 1975], we further propose a one-

step conquer estimator using high-order kernels, which bypasses solving a large-scale non-convex

optimization. To begin with, we choose two symmetric kernel functions, K : R 7→ [0,∞) with

order two and G(·) with order ν ≥ 4, and let h,b > 0 be two bandwidths. First, compute an initial

conquer estimator βββ ∈ argminβββ∈Rp Q̂K
h (βββ ), where Q̂K

h (βββ ) = (1/n)∑
n
i=1(ρτ ∗Kh)(yi−〈xxxi,βββ 〉).

Denote by ε̄i = yi−〈xxxi,βββ 〉 for i = 1, . . . ,n the fitted residuals. Next, with slight abuse of notation,

we define the one-step conquer estimator β̂ββ as a solution to the equation ∇2Q̂G
b (βββ )(β̂ββ −βββ ) =

−∇Q̂G
b (βββ ), or equivalently,

{
1
n

n

∑
i=1

Gb(ε̄i)xxxixxxT
i

}
(β̂ββ −βββ ) =

1
n

n

∑
i=1

{
Gb(ε̄i)+ τ−1

}
xxxi. (B.1)

where Q̂G
b (βββ ) = (1/n)∑

n
i=1(ρτ ∗Gb)(yi − 〈xxxi,βββ 〉) and Gb(u) =

∫ u/b
−∞ G(v)dv. Provided that

∇2Q̂G
b (βββ ) is positive definite, the one-step conquer estimate β̂ββ essentially performs a Newton-

type step based on βββ :

β̂ββ = βββ −
{

∇
2Q̂G

b (βββ )
}−1

∇Q̂G
b (βββ ). (B.2)

In general, β̂ββ can be computed by the conjugate gradient method [Hestenes and Stiefel, 1952].

Theoretical properties of the one-step estimator β̂ββ defined in (B.1), including the Bahadur

representation and asymptotic normality with explicit Berry-Esseen bound, will be provided

in on-line supplementary materials. For practical implementation, we consider higher-order

Gaussian-based kernels. For r = 1,2, . . . , the (2r)-th order Gaussian kernels are

G(u;2r) =
(−1)rφ (2r−1)(u)

2r−1(r−1)!u
=

r−1

∑
`=0

(−1)`

2``!
φ
(2`)(u);
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see Section 2 of Wand and Schucany [1990]. Integrating G(·;2r) yields

G (v;2r) =
∫ v

−∞

G(u;2r)du =
r−1

∑
`=0

(−1)`

2``!
φ
(2`−1)(v).

In fact, both G(·;2r) and G (·;2r) have simpler forms G(u;2r) = pr(u)φ(u) and G (u;2r) =

Φ(u)+Pr(u)φ(u), where pr(·) and Pr(·) are polynomials in u. For example, p1(u)= 1, P1(u)= 0,

p2(u) = (−u2+3)/2, P2(u) = u/2, p3(u) = (u4−10u2+15)/8, and P3(u) = (−u3+7u)/8. We

refer to Oryshchenko [2020] for more details when r is large.

B.2 Proofs for Section 3.3

Recall that xxx = (x1, . . . ,xp)
T is such that x1 ≡ 1, E(x j) = 0 for j = 2, . . . , p, and ΣΣΣ =

E(xxxxxxT) is positive definite. In this case,

ΣΣΣ =

 1 0T
p−1

0p−1 S

 with S = E(xxx−xxxT
−) and www =

 1

S−1/2xxx−

 ,
where 0k is the zero vector in Rk (k ≥ 2). For every r ≥ 0, define the ellipse Θ(r) = {uuu ∈ Rp :

‖uuu‖ΣΣΣ ≤ r} and its boundary ∂Θ(r) = {uuu ∈ Rp : ‖uuu‖ΣΣΣ = r}.

B.2.1 Proof of Proposition 3.3.1

To begin with, define δδδ h = βββ
∗
h−βββ

∗ ∈ Rp and δh = ‖δδδ h‖ΣΣΣ. By the convexity of βββ 7→

Qh(βββ ) and the first-order optimality condition ∇Qh(βββ
∗
h) = 0, we have

0≤ 〈∇Qh(βββ
∗
h)−∇Qh(βββ

∗),βββ ∗h−βββ
∗〉= 〈−∇Qh(βββ

∗),δδδ h〉 ≤ ‖ΣΣΣ−1/2
∇Qh(βββ

∗)‖2 · ‖δδδ h‖ΣΣΣ,

(B.3)
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where the last step follows from Hölder’s inequality. Note that ∇Qh(βββ
∗) = E{K (−ε/h)− τ}xxx.

By integration by parts and a Taylor series expansion,

E
{
K (−ε/h)|xxx

}
=
∫

∞

−∞

K (−t/h)dFε|xxx(t)

=−1
h

∫
∞

−∞

K(−t/h)Fε|xxx(t)dt =
∫

∞

−∞

K(u)Fε|xxx(−hu)du

= τ +
∫

∞

−∞

K(u)
∫ −hu

0

{
fε|xxx(t)− fε|xxx(0)

}
dt du,

from which it follows that |E{K (−ε/h)|xxx}− τ| ≤ 0.5l0κ2h2. Consequently,

‖ΣΣΣ−1/2
∇Qh(βββ

∗)‖2 = sup
uuu∈Sp−1

E
{
K (−ε/h)− τ

}
〈uuu,ΣΣΣ−1/2xxx〉 ≤ 0.5l0κ2h2. (B.4)

Turning to the left-hand side of (B.3), applying the mean value theorem for vector-valued

functions implies

∇Qh(βββ
∗
h)−∇Qh(βββ

∗) =
∫ 1

0
∇

2Qh(βββ
∗+ tδδδ h)dt δδδ h, (B.5)

where ∇2Qh(βββ ) = E
{

Kh(y−〈xxx,βββ 〉)xxxxxxT
}

for βββ ∈ Rp. With δδδ = βββ −βββ
∗, note that

E
{

Kh(y−〈xxx,βββ 〉)|xxx
}
=

1
h

∫
∞

−∞

K

(
u−〈xxx,δδδ 〉

h

)
fε|xxx(u)du =

∫
∞

−∞

K(v) fε|xxx(〈xxx,δδδ 〉+hv)dv.

By the Lipschitz continuity of fε|xxx(·),

E
{

Kh(y−〈xxx,βββ 〉)|xxx
}
= fε|xxx(0)+Rh(δδδ ) (B.6)

with Rh(δδδ ) satisfying |Rh(δδδ )| ≤ l0
(
|〈xxx,δδδ 〉|+κ1h

)
. Together, (B.5), (B.6) and the assumption
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fε|xxx(0)≥ f > 0 (almost surely) yield

〈∇Qh(βββ
∗
h)−∇Qh(βββ

∗), βββ
∗
h−βββ

∗〉

≥ f · ‖δδδ h‖2
ΣΣΣ−0.5l0E|〈xxx,δδδ h〉|3− l0κ1h · ‖δδδ h‖2

ΣΣΣ ≥ f ·δ 2
h −0.5l0m3 ·δ 3

h − l0κ1h ·δ 2
h . (B.7)

Combining (B.3) with the upper and lower bounds (B.4) and (B.7), we find that δh ≥ 0

satisfies 0.5l0m3 ·δ 2
h − ( f − l0κ1h)δh +0.5l0κ2h2 ≥ 0. Provided that l0{κ1 +(m3κ2)

1/2}h > f ,

solving this inequality yields

δh ≤
l0κ2h2

f − l0κ1h+∆
1/2
h

or δh ≥
f − l0κ1h+∆

1/2
h

l0m3
. (B.8)

where ∆h := ( f − l0κ1h)2− l2
0m3κ2h2 > 0. It remains to rule out the second bound in (B.8).

Assume δh satisfies the second bound in (B.8), so that δh > l0(m3κ2)
1/2h/(l0m3) =

(κ2/m3)
1/2h =: r0. Then, there exists some η ∈ (0,1) such that β̃ββ := (1−η)βββ ∗+ηβββ

∗
h satisfies

‖β̃ββ −βββ
∗‖ΣΣΣ = ηδh = r0. By the convexity of βββ 7→ Qh(βββ ) and Lemma C.1 in the supplementary

material of Sun, Zhou and Fan [2020],

〈∇Qh(β̃ββ )−∇Qh(βββ
∗), β̃ββ −βββ

∗〉 ≤ η · 〈∇Qh(βββ
∗
h)−∇Qh(βββ

∗),βββ ∗h−βββ
∗〉= 〈−∇Qh(βββ

∗), β̃ββ −βββ
∗〉.

Repeating the above analysis, we find that the right-hand side of the above inequality ≤

0.5l0κ2h2 · r0, and the left-hand side

〈∇Qh(β̃ββ )−∇Qh(βββ
∗), β̃ββ −βββ

∗〉 ≥ f · r2
0−0.5l0m3 · r3

0− l0κ1h · r2
0

= { f − l0κ1h−0.5l0(m3κ2)
1/2h}r2

0.
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Canceling out the common factor r0 from both sides, we obtain

r0 ≤
0.5l0κ2h2

f − l0κ1h−0.5l0(m3κ2)1/2 <
0.5l0κ2h2

0.5l0(m3κ2)1/2h
= (κ2/m3)

1/2h = r0,

which leads to a contradiction. Consequently, δh must satisfy the first bound in (B.8), which in

turn implies the claimed result.

Next, to investigate the leading term in the bias, define

∆∆∆ = ΣΣΣ
−1/2{

∇Qh(βββ
∗
h)−∇Qh(βββ

∗)−J(βββ ∗h−βββ
∗)
}

and H = ΣΣΣ
−1/2JΣΣΣ

−1/2 = E{ fε|xxx(0)wwwwwwT},

where www = ΣΣΣ
−1/2xxx. Again, by the mean value theorem for vector-valued functions,

∆∆∆ =

{
ΣΣΣ
−1/2

∫ 1

0
∇

2Qh(βββ
∗+ tδδδ h)dt ΣΣΣ

−1/2−H

}
ΣΣΣ

1/2
δδδ h with δδδ h = βββ

∗
h−βββ

∗. (B.9)

The Lipschitz continuity of fε|xxx(·) ensures that

∥∥∥∥∥ΣΣΣ
−1/2

∫ 1

0
∇

2Qh(βββ
∗+ tδδδ h)dt ΣΣΣ

−1/2−H

∥∥∥∥∥
2

=

∥∥∥∥∥E
∫ 1

0

∫
∞

−∞

K(u)
{

fε|xxx(t〈xxx,δδδ h〉−hu)− fε|xxx(0)
}

dudt wwwwwwT

∥∥∥∥∥
2

≤ l0 sup
uuu∈Sp−1

E
∫ 1

0

∫
∞

−∞

K(u)
(
t|〈xxx,δδδ h〉|+h|u|

)
dudt 〈www,uuu〉2

≤ 0.5l0 sup
uuu∈Sp−1

E
(
|〈xxx,δδδ h〉|〈www,uuu〉2

)
+ l0κ1h

≤ 0.5l0m3‖δδδ h‖ΣΣΣ + l0κ1h.

This bound, together with (B.9), implies

‖∆∆∆‖2 ≤ l0
(
0.5m3‖δδδ h‖ΣΣΣ +κ1h

)
‖δδδ h‖ΣΣΣ. (B.10)
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Moreover, applying a second-order Taylor series expansion to fε|xxx(·) yields

E
{
K (−ε/h)|xxx

}
− τ

=
∫

∞

−∞

K(u)
∫ −hu

0

{
fε|xxx(t)− fε|xxx(0)

}
dt du

= 0.5κ2h2 · f ′
ε|xxx(0)+

∫
∞

−∞

∫ −hu

0

∫ t

0
K(u)

{
f ′
ε|xxx(v)− f ′

ε|xxx(0)
}

dvdt du.

For ∇Qh(βββ
∗) = E{K (−ε/h)− τ}xxx, it follows that

∥∥∥∥ΣΣΣ
−1/2

∇Qh(βββ
∗)− 1

2
κ2h2 ·ΣΣΣ−1/2E

{
f ′
ε|xxx(0)xxx

}∥∥∥∥
2
≤ 1

6
l1κ3h3. (B.11)

Combining (B.10) and (B.11) completes the proof of (3.21).

B.2.2 Proof of Theorem 3.3.1

For every δδδ ∈ Rp, define D̂h(δδδ ) = Q̂h(βββ
∗ + δδδ )− Q̂h(βββ

∗), Dh(δδδ ) = Qh(βββ
∗ + δδδ )−

Qh(βββ
∗), as well as first-order Taylor series remainder terms R̂h(δδδ ) = D̂h(δδδ )−〈∇Q̂h(βββ

∗),δδδ 〉

and Rh(δδδ ) = Dh(δδδ )−〈∇Qh(βββ
∗),δδδ 〉. With these notations, we have

D̂h(δδδ ) = 〈∇Qh(βββ
∗),δδδ 〉+Rh(δδδ )+{D̂h(δδδ )−Dh(δδδ )}

≥ Rh(δδδ )−‖ΣΣΣ−1/2
∇Qh(βββ

∗)‖2 · ‖δδδ‖ΣΣΣ−{Dh(δδδ )− D̂h(δδδ )}

≥ Rh(δδδ )−0.5l0κ2h2 · ‖δδδ‖ΣΣΣ−{Dh(δδδ )− D̂h(δδδ )}︸ ︷︷ ︸
sampling error

, (B.12)

where we used (B.4) in the last step. Following the same argument that leads to (B.7), it can be

shown that

Rh(δδδ )≥
1
2
(

f − l0κ1h−0.5l0m3 · ‖δδδ‖ΣΣΣ

)
· ‖δδδ‖2

ΣΣΣ for all δδδ ∈ Rp. (B.13)
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Take r0 = (2κ2/m3)
1/2h as an intermediate convergence radius. For any δδδ ∈ ∂Θ(r0), i.e.,

‖δδδ‖ΣΣΣ = r0, the last two displays imply

Rh(δδδ )−0.5l0κ2h2 · ‖δδδ‖ΣΣΣ ≥
1
2
{

f − l0κ1h− l0(2κ2m3)
1/2h

}
r2

0 for all δδδ ∈ ∂Θ(r0). (B.14)

To control the last term on the right-hand side of (B.12), the following lemma provides

some type of uniform law of large numbers for the zero-mean stochastic process {D̂h(δδδ )−

Dh(δδδ ),δδδ ∈ Θ(r)}, r > 0. This implies a form of restricted strong convexity (RSC) of the

empirical loss Q̂h(·).

Lemma B.2.1. Given any r ≥ 0, the bound

sup
δδδ∈Θ(r)

{Dh(δδδ )− D̂h(δδδ )} ≤ 3τ̄υ0r ·
(√

u
n
+

u
n

)
(B.15)

holds with probability at least 1− e4p−u for any u ≥ 0, where τ̄ = max(τ,1− τ). In addition,

given any ru > rl > 0, with probability at least 1−de log( ru
rl
)ee4p−u for any u≥ 0,

Dh(δδδ )− D̂h(δδδ )≤ 4.25τ̄υ0‖δδδ‖ΣΣΣ

(√
u
n
+

u
n

)
holds for all δδδ satisfying rl ≤ ‖δδδ‖ΣΣΣ ≤ ru.

(B.16)

First, applying (B.15) with r = r0 and u = 4p+ t yields that, with probability at least

1− e−t ,

sup
δδδ∈Θ(r0)

{Dh(δδδ )− D̂h(δδδ )} ≤ 3τ̄υ0r0

(√
4p+ t

n
+

4p+ t
n

)
. (B.17)

Combining this bound with (B.12) and (B.14) implies that with probability at least 1− e−t ,

D̂h(δδδ )> 0 for all δδδ ∈ ∂Θ(r0) as long as the bandwidth is subject to f−1m1/2
3 υ0

√
(p+ t)/n.

h . f m−1/2
3 . On the other hand, by the optimality of β̂ββ h, δ̂δδ := β̂ββ h− βββ

∗ satisfies D̂h(δ̂δδ ) ≤
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0. Consequently, the convexity of Q̂h(·) ensures that ‖δ̂δδ‖ΣΣΣ ≤ r0. See, e.g., Lemma 9.21 in

Wainwright [2019].

Next, we refine the convergence rate of β̂ββ h from r0 to the claimed one under the above

event. Consider the ring-shaped set Θ(rl,r0) = {δδδ ∈ Rp : rl ≤ ‖δδδ‖ΣΣΣ ≤ r0} with rl = r0h. If

δ̂δδ /∈ Θ(rl,r0), we must have δ̂δδ ∈ Θ(r0h), and thus the claimed bound follows immediately.

Hereinafter, we assume δ̂δδ ∈ Θ(rl,r0). Using the second inequality in Lemma B.2.1 with

(rl,ru) = (r0h,r0) and u=
√

log(e logh−1)+4p+ t, we find that with probability at least 1−e−t ,

Dh(δδδ )− D̂h(δδδ )≤ ‖δδδ‖ΣΣΣ ·4.25τ̄υ0

{√
log(e logh−1)+4p+ t

n
+

log(e logh−1)+4p+ t
n

}
︸ ︷︷ ︸

=:r1

(B.18)

holds for all δδδ ∈Θ(rl,r0), hence including δ̂δδ . Applying this along with the earlier bounds (B.12),

(B.13) and the fact D̂h(δ̂δδ )≤ 0, we obtain that

( f − l0κ1h)‖δ̂δδ‖2
ΣΣΣ ≤ (2r1 + l0κ2h2)‖δ̂δδ‖ΣΣΣ +0.5l0m3‖δ̂δδ‖3

ΣΣΣ
≤ 2(r1 + l0κ2h2)‖δ̂δδ‖ΣΣΣ.

Canceling out ‖δ̂δδ‖ΣΣΣ proves the claimed bound.

Proof of Lemma B.2.1

For each sample zzzi =(xxxi,εi), define the loss difference dh(δδδ ;zzzi)= `h(εi−〈xxxi,δδδ 〉)−`h(εi),

so that D̂h(δδδ ) = (1/n)∑
n
i=1 dh(δδδ ;zzzi). By the Lipschitz continuity of u 7→ `h(u), dh(δδδ ;zzzi) is τ̄-

Lipschitz continuous in 〈xxxi,δδδ 〉. That is, for any zzzi and δδδ ,δδδ ′ ∈ Rp, |dh(δδδ ;zzzi)− dh(δδδ
′;zzzi)| ≤

τ̄|〈xxxi,δδδ 〉−〈xxxi,δδδ
′〉|.

For any given r > 0 and some ε ∈ (0,1) to be determined, define the random variable

∆ε(r) = n(1− ε)supδδδ∈Θ(r){Dh(δδδ )− D̂h(δδδ )}/(2τ̄r), where Dh(δδδ ) = ED̂h(δδδ ). By Chernoff’s
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inequality, for any u≥ 0,

P{∆ε(r)≥ u} ≤ exp

[
− sup

λ≥0

{
λu− logEeλ∆ε (r)

}]
. (B.19)

To control the moment generating function Eeλ∆ε (r), by Rademacher symmetrization we have

Eeλ∆ε (r) ≤ Eexp

{
2λ (1− ε) sup

δδδ∈Θ(r)

1
2τ̄r

n

∑
i=1

eidh(δδδ ;zzzi)

}
,

where e1, . . . ,en are independent Rademacher random variables. Recall that dh(δδδ ;zzzi) is τ̄-

Lipschitz continuous in 〈xxxi,δδδ 〉, and dh(δδδ ;zzzi) = 0 if 〈xxxi,δδδ 〉= 0. Applying the Ledoux-Talagrand

contraction inequality (see Theorem 4.12 and inequality (4.10) in Ledoux and Talagrand [1991])

yields

Eexp

{
2λ (1− ε) sup

δδδ∈Θ(r)

1
2τ̄r

n

∑
i=1

eidh(δδδ ;zzzi)

}

≤ Eexp

{
λ

r
(1− ε) sup

δδδ∈Θ(r)

n

∑
i=1

ei〈xxxi,δδδ 〉
}
≤ Eexp

{
λ (1− ε)

∥∥∥∥ n

∑
i=1

eiwwwi

∥∥∥∥
2

}
,

where wwwi = ΣΣΣ
−1/2xxxi. For this ε ∈ (0,1), there exists an ε-net {uuu1, . . . ,uuuNε

} of Sp−1 with cardi-

nality Nε ≤ (1+2/ε)p such that ‖∑
n
i=1 eiwwwi‖2 ≤ (1−ε)−1 max1≤ j≤Nε ∑

n
i=1 eiuuuT

jwwwi. This implies

Eexp

{
λ (1− ε)

∥∥∥∥ n

∑
i=1

eiwwwi

∥∥∥∥
2

}
≤

Nε

∑
j=1

Eexp

{
λ

n

∑
i=1

eiuuuT
jwwwi

}
.

Write S j = ∑
n
i=1 eiuuuT

jwwwi, which is a sum of zero-mean random variables. Note that ei ∈ {−1,1} is

symmetric, and Condition 3.3.4 ensures that for any k ≥ 3, E|uuuT
jwwwi|k ≤ υk

0k
∫

∞

0 tk−1e−tdt = υk
0k!.
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Hence, for every 0≤ c < 1/υ0,

EeceiuuuT
j wwwi = 1+

c2

2
E(eiuuuT

jwwwi)
2 +

∞

∑
`=3

c`

`!
E(eiuuuT

jwwwi)
`

≤ 1+
c2

2
+

∞

∑
`=2

c2`

(2`)!
υ

2`
0 (2`)!≤ 1+

c2

2
+

∞

∑
`=2

(c2
υ

2
0 )

` ≤ 1+
υ2

0
2 ∑

`≥2
c`(
√

2υ0)
`−2.

It follows that for every 0 < λ < 1/(
√

2υ0) and j = 1, . . . ,Nε ,

logEeλS j ≤ nυ2
0 λ 2

2(1−
√

2υ0λ )
and thus logEeλ∆ε (r) ≤ logNε +

nυ2
0 λ 2

2(1−
√

2υ0λ )
.

For any u≥ 0, note that

sup
λ≥0

{
λu− logEeλ∆ε (r)

}
≥− logNε + sup

λ∈(0,(
√

2υ0)−1)

{
λu− nυ2

0 λ 2

2(1−
√

2υ0λ )

}

Substituting this into (B.19), and following the proof of Bernstein’s inequality (see, e.g., Theo-

rem 2.10 in Boucheron, Lugosi and Massart [2013]), it can be shown that with probability at

least 1− exp{p log(1+2/ε)−u},

sup
δδδ∈Θ(r)

{Dh(δδδ )− D̂h(δδδ )} ≤
2
√

2
1− ε

τ̄υ0r ·
(√

u
n
+

u
n

)
. (B.20)

This proves (B.15) by taking ε = 2/(e4−1).

Next, we prove the uniform bound (B.16), which holds for all δδδ ∈Θ(rl,ru) := {vvv ∈ Rp :

rl ≤ ‖vvv‖ΣΣΣ ≤ ru}, via a peeling argument. For some γ > 1 (to be specified) and positive integers

k = 1, . . . ,N := dlog( ru
rl
)/ log(γ)e, define the sets Θk = {vvv ∈Rp : γk−1rl ≤ ‖vvv‖ΣΣΣ ≤ γkrl}, so that
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Θ(rl,ru)⊆ ∪N
k=1Θk. Then,

P

{
∃δδδ ∈Θ(rl,ru) s.t. Dh(δδδ )− D̂h(δδδ )>

2
√

2γ

1− ε
τ̄υ0‖δδδ‖ΣΣΣ ·

(√
u
n
+

u
n

)}

≤
N

∑
k=1

P

{
∃δδδ ∈Θk s.t. Dh(δδδ )− D̂h(δδδ )>

2
√

2γ

1− ε
τ̄υ0γ

k−1rl ·
(√

u
n
+

u
n

)}

≤
N

∑
k=1

P

{
sup

δδδ∈Θ(γkrl)

Dh(δδδ )− D̂h(δδδ )>
2
√

2
1− ε

τ̄υ0γ
krl ·

(√
u
n
+

u
n

)}
(i)
≤

N

∑
k=1

exp
{

p log(1+2/ε)−u
}
≤ dlog( ru

rl
)/ log(γ)eexp

{
p log(1+2/ε)−u

}
,

where inequality (i) is obtained by repeatedly using (B.20) with r = γkrl for k = 1, . . . ,N. Taking

ε = 2/(e4−1) and γ = e1/e yields the claimed bound (B.16).

B.2.3 An alternative proof to Theorem 3.3.1

From the proof of Theorem 3.3.1 in Section B.2.2, we see that the use of peeling argument

will create an additional term log2(1/h) in the upper bound, although it is further bounded by

log(logn) (under the prescribed constraint on h), a very slowly growing function of n. In this

section, we argue that this extra term is an artifact of the proof technique, and can be avoided

through a more careful analysis regarding the (local) restricted strong convexity of the empirical

loss Q̂h(·).

The key is to refine the convergence rate of β̂ββ h from r0� h to the claimed one, conditioned

on δ̂δδ = β̂ββ h−βββ
∗ ∈Θ(r0). The first-order optimality condition implies ∇Q̂h(β̂ββ h) = 0, and hence

〈∇Q̂h(β̂ββ h)−∇Q̂h(βββ
∗), δ̂δδ 〉

= 〈−∇Q̂h(βββ
∗), δ̂δδ 〉 ≤

(
‖ΣΣΣ−1/2{∇Q̂h(βββ

∗)−∇Qh(βββ
∗)}‖2 +‖ΣΣΣ−1/2

∇Qh(βββ
∗)‖2︸ ︷︷ ︸

≤0.5l0κ2·h2

)
‖δ̂δδ‖ΣΣΣ.

(B.21)
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Define the symmetrized Bregman divergence associated with the convex function Q̂h(·):

D(βββ 1,βββ 2) = 〈∇Q̂h(βββ 1)−∇Q̂h(βββ 2),βββ 1−βββ 2〉 ≥ 0, βββ 1,βββ 2 ∈ Rp. (B.22)

Then the left-hand side of (B.21) reads D(βββ ∗+ δ̂δδ ,βββ ∗). Starting from (B.21), we need to bound

‖ΣΣΣ−1/2{∇Q̂h(βββ
∗)−∇Qh(βββ

∗)}‖2 from above, and derive a lower bound for D(βββ ∗+ δδδ ,βββ ∗)

uniformly over δδδ ∈ Rp in a local neighborhood of the origin. The following two lemmas serve

for this purpose.

Lemma B.2.2. Assume Conditions 3.3.1–3.3.4 hold. For any t ≥ 0,

‖ΣΣΣ−1/2{∇Q̂h(βββ
∗)−∇Qh(βββ

∗)}‖2 ≤ 1.46υ0

(
Cτ

√
4p+2t

n
+ τ̄

4p+2t
n

)
(B.23)

with probability at least 1− e−t , where C2
τ = τ(1− τ)+(1+ τ)l0κ2h2.

In addition to Condition 3.3.2, assume fε|xxx(0) ≤ f̄ for some f̄ ≥ f > 0. Then, for all

0 < h≤ f/(4l0),

7
8

f ≤ inf
|u|≤h/2

fε|xxx(u)≤ sup
|u|≤h/2

fε|xxx(u)≤
9
8

f̄ , (B.24)

almost surely (over xxx). Moreover, for δ ∈ (0,1], define ιδ ≥ 0 as

ιδ = inf
{

ι > 0 : E
{
〈uuu,www〉21

(
|〈uuu,www〉|> ι

)}
≤ δ for all uuu ∈ Sp−1}, (B.25)

where www = ΣΣΣ
−1/2xxx is the standardized covariate vector satisfying E(wwwwwwT) = Ip, and hence

E〈uuu,www〉2 = 1 for any uuu ∈ Sp−1. It can be shown that ιδ depends only on δ and υ0 in Condi-

tion 3.3.4, and the map δ 7→ ιδ is non-increasing with ιδ ↓ 0 as δ ↑ 1 and ι1 = 0. By Markov’s

inequality, for any ι > 0 it holds supuuu∈Sp−1 E{〈uuu,www〉21(|〈uuu,www〉|> ι)} ≤ ι−2m4. Hence, a rather

crude upper bound for ιδ is ιδ ≤ (m4/δ )1/2.
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Lemma B.2.3. Assume the kernel K(·) is such that κl =min|u|≤1 K(u)> 0, and let the bandwidth

satisfy 0 < h≤ f/(4l0). Given any 0 < r ≤ h/(4ι1/4) with ι1/4 defined in (B.25),

inf
δδδ∈Θ(r)

D(βββ ∗+δδδ ,βββ ∗)
κl‖δδδ‖2

ΣΣΣ

≥ c0 f − c1

{
f̄ 1/2 1

r

√
ph
n

+( f̄ m4)
1/2
√

t
nh

+
ht

r2n

}
(B.26)

with probability at least 1− e−t for any t ≥ 0, where c1 > 0 is an absolute constant, and

c0 = 21/32.

Let G (t) be the “good” event that the bounds (B.23) and (B.26) are satisfied. Together,

Lemma B.2.2, Lemma B.2.3 and (B.21) imply that, conditioned on {δ̂δδ ∈ Θ(r0)}∩G (t) with

r0 ≤ h/(4ι1/4),

c0κl f · ‖δ̂δδ‖2
ΣΣΣ ≤

{
1.46υ0

(
Cτ

√
4p+2t

n
+ τ̄

4p+2t
n

)
+0.5l0κ2h2

}
‖δ̂δδ‖ΣΣΣ

+ c1κl

{
f̄ 1/2 1

r0

√
ph
n

+( f̄ m4)
1/2
√

t
nh

+
ht

r2
0n

}
r0 · ‖δ̂δδ‖ΣΣΣ.

Consequently, we obtain the bound

c0 f · ‖δ̂δδ‖ΣΣΣ ≤ 1.46κ
−1
l υ0

(
Cτ

√
4p+2t

n
+ τ̄

4p+2t
n

)
+0.5κ

−1
l l0κ2h2

+ c1

{
f̄ 1/2

√
ph
n

+( f̄ m4)
1/2r0

√
t

nh
+

ht
r0n

}

without having the additional log2(1/h) term. For example, we may take r0 = h/(8m1/2
4 ).

Proof of Lemma B.2.2

Define ξi = K (−εi/h)− τ for i = 1, . . . ,n, so that ΣΣΣ
−1/2{∇Q̂h(βββ

∗)−∇Qh(βββ
∗)} =

(1/n)∑
n
i=1{ξiwwwi−E(ξiwwwi)} ∈ Rp, where wwwi = ΣΣΣ

−1/2xxxi. Using a covering argument, for any

ε ∈ (0,1), there exists an ε-net Nε of the unit sphere with cardinality |Nε | ≤ (1+2/ε)p such

124



that

‖ΣΣΣ−1/2{∇Q̂h(βββ
∗)−∇Qh(βββ

∗)}‖2 ≤ (1− ε)−1 max
uuu∈Nε

〈
uuu,ΣΣΣ−1/2{∇Q̂h(βββ

∗)−∇Qh(βββ
∗)}
〉
.

For each unit vector uuu ∈Nε , define centered random variables γuuu,i = 〈uuu,ξiwwwi−E(ξiwwwi)〉. It can

be shown that |ξi| ≤ τ̄ := max(1− τ,τ) and E(ξ 2
i |xxxi)≤Cτ = τ(1− τ)+(1+ τ)l0κ2h2. Hence,

for k = 2,3, . . .,

E
(
|〈uuu,ξiwwwi〉|k

)
≤ τ̄

k−2E
{
|〈uuu,wwwi〉|k ·E(ξ 2

i |xxxi)
}

≤C2
τ τ̄

k−2
υ

k
0

∫
∞

0
P(|〈uuu,wwwi〉| ≥ υ0t)ktk−1 dt

≤C2
τ τ̄

k−2
υ

k
0k
∫

∞

0
tk−1e−t dt

= k! ·C2
τ τ̄

k−2 ·υk
0

≤ k!
2
· (Cτυ0)

2 · (2τ̄υ0)
k−2 .

Consequently, it follows from Bernstein’s inequality that for every u≥ 0,

1
n

n

∑
i=1

γuuu,i ≤ υ0

(
Cτ

√
2u
n
+

2τ̄u
n

)

with probability at least 1− e−u.

Finally, applying a union bound over uuu ∈Nε yields

‖ΣΣΣ−1/2{∇Q̂h(βββ
∗)−∇Qh(βββ

∗)}‖2 ≤
υ0

1− ε

(
Cτ

√
2u
n
+

2τ̄u
n

)

with probability at least 1− elog(1+2/ε)p−u. Taking ε = 2/(e2−1) and u = 2p+ t (t ≥ 0) proves

the claimed result.
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Proof of Lemma B.2.3

Recall that the empirical loss Q̂h(·) in (3.5) is convex and twice continuously differen-

tiable with

∇Q̂h(βββ ) = (1/n)
n

∑
i=1
{Kh(〈xxxi,βββ 〉− yi)− τ}xxxi and

∇
2Q̂h(βββ ) = (1/n)

n

∑
i=1

Kh(〈xxxi,βββ 〉− yi)xxxixxxT
i .

For the symmetrized Bregman divergence D : Rp×Rp→ [0,∞) defined in (B.22), we have

D(βββ ∗+δδδ ,βββ ∗) =
1
n

n

∑
i=1

{
K

(〈wwwi,vvv〉− εi

h

)
−K

(−εi

h

)}
〈wwwi,vvv〉, (B.27)

where wwwi = ΣΣΣ
−1/2xxxi and vvv = ΣΣΣ

1/2
δδδ . Define the events Ei = {|εi| ≤ h/2}∩{|〈wwwi,vvv〉| ≤ ‖vvv‖2 ·

h/(2r)} for i = 1, . . . ,n. For any vvv ∈ Bp(r), note that |εi−〈wwwi,vvv〉| ≤ h on Ei, implying

D(βββ ∗+δδδ ,βββ ∗)≥ κl

nh

n

∑
i=1
〈wwwi,vvv〉21Ei, (B.28)

where 1Ei is the indicator function of Ei and κl = min|u|≤1 K(u). It then suffices to bound the

right-hand side of the above inequality from below uniformly over vvv ∈ Bp(r).

For R > 0, define the function ϕR(u) = u2
1(|u| ≤ R/2)+{usign(u)−R}2

1(R/2 < |u| ≤

R), which is R-Lipschitz continuous and satisfies

u2
1(|u| ≤ R/2)≤ ϕR(u)≤ u2

1(|u| ≤ R). (B.29)

Moreover, note that ϕcR(cu) = c2ϕR(u) for any c > 0 and ϕ0(u) = 0. Hence,

〈wwwi,vvv〉21Ei ≥ ϕ‖vvv‖2h/(2r)(‖vvv‖2〈wwwi,vvv/‖vvv‖2〉) ·ωi = ‖vvv‖2
2 ·ϕh/(2r)(〈wwwi,vvv/‖vvv‖2〉) ·ωi,
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where ωi := 1(|εi| ≤ h/2). By a change of variable, the problem is reduced to bounding

D0(vvv) :=
1
nh

n

∑
i=1

ωi ·ϕh/(2r)(〈wwwi,vvv〉) (B.30)

from below uniformly over vvv ∈ Sp−1.

In the following, we bound the expectation E{D0(vvv)} and the random fluctuation D0(vvv)−

E{D0(vvv)}, separately, starting with the former. By (B.24),

7
8

f h≤ E(ωi|xxxi) =
∫ h/2

−h/2
fεi|xxxi(u)du≤ 9

8
f̄ h. (B.31)

Moreover, define ξvvv = 〈www,vvv〉 such that E(ξ 2
vvv ) = 1. By (B.29) and (B.31),

E
{

ωi ·ϕh/(2r)(〈wwwi,vvv〉)
}
≥ 7

8
f h ·Eϕh/(2r)(〈wwwi,vvv〉)≥

7
8

f h ·
[
1−Eξ

2
vvv 1{|ξvvv|> h/(4r)}

]
.

With r ≤ h/(4ι1/4) and ι1/4 defined in (B.25), it follows that

inf
vvv∈Sp−1

E{D0(vvv)} ≥
7
8

f ·
{

1− sup
uuu∈Sp−1

E〈www,uuu〉21(|〈www,uuu〉| ≥ ι1/4)

}
≥ 21

32
f . (B.32)

Turning to the random fluctuation, we will use Theorem 7.3 in Bousquet [2003] (a refined

Talagrand’s inequality) to bound

∆ = sup
vvv∈Sp−1

{
D−0 (vvv)−ED−0 (vvv)

}
, (B.33)

where D−0 (vvv) :=−D0(vvv). Note that 0≤ ϕR(u)≤ (R/2)2 for all u ∈ R and ωi ∈ {0,1}. Hence,

χi := (ωi/h) ·ϕh/(2r)(〈wwwi,vvv〉)≥ 0 is bounded by h/(4r)2. Moreover, it follows from (B.31) that

E(χ2
i )≤ 9 f̄ m4/(8h). We then apply Theorem 7.3 in Bousquet [2003] and obtain that, for any
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t > 0,

∆≤ E(∆)+{E(∆)}1/2 1
2r

√
ht
n
+

3
2
( f̄ m4)

1/2
√

t
nh

+
h

(4r)2
t

3n
(B.34)

with probability at least 1− e−t .

It remains to bound the expected value E(∆). Recall that ωi = 1(|εi| ≤ h/2)∈ {0,1}, and

hence ωiϕh/(2r)(〈wwwi,vvv〉)=ω2
i ϕh/(2r)(〈wwwi,vvv〉)=ϕωih/(2r)(〈ωiwwwi,vvv〉) =ϕh/(2r)(〈ωiwwwi,vvv〉). Define

w̄wwi = ωiwwwi and E (vvv; w̄wwi) = ϕh/(2r)(〈w̄wwi,vvv〉), vvv ∈ Sp−1.

By Rademacher symmetrization,

E(∆)≤ 2E

{
sup

vvv∈Sp−1

1
nh

n

∑
i=1

ei ·E (vvv; w̄wwi)

}
,

where e1, . . . ,en are independent Rademacher random variables. Since ϕR(·) is R-Lipschitz,

E (vvv;zzzi) is an (h/2r)-Lipschitz function in 〈w̄wwi,vvv〉, i.e., for any w̄wwi and parameters vvv,vvv′ ∈ Sp−1,

∣∣E (vvv; w̄wwi)−E (vvv′; w̄wwi)
∣∣≤ h

2r

∣∣〈w̄wwi,vvv〉−〈w̄wwi,vvv′〉
∣∣. (B.35)

Moreover, observe that E (vvv; w̄wwi) = 0 for any vvv such that 〈w̄wwi,vvv〉= 0. With the above preparations,

we are ready to use Talagrand’s contraction principle to bound E(∆). Define the subset T ⊆ Rn

as

T =
{

ttt = (t1, . . . , tn)T : ti = 〈w̄wwi,vvv〉, i = 1, . . . ,n, vvv ∈ Sp−1},
and contractions φi : R→ R as φi(t) = (2r/h) ·ϕh/(2r)(t). By (B.35), |φ(t)−φ(s)| ≤ |t− s| for

all t,s ∈ R. Applying Talagrand’s contraction principle (see, e.g., Theorem 4.12 and (4.20) in
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Ledoux and Talagrand [1991]), we have

E(∆)≤ 2E

{
sup

vvv∈Sp−1

1
nh

n

∑
i=1

ei ·E (vvv; w̄wwi)

}
= E

{
sup
ttt∈T

1
nr

n

∑
i=1

eiφi(ti)

}
≤ E

(
sup
ttt∈T

1
nr

n

∑
i=1

eiti

)

= E

(
sup

vvv∈Sp−1

1
nr

n

∑
i=1

ei〈w̄wwi,vvv〉
)
≤ E

∥∥∥∥∥ 1
nr

n

∑
i=1

eiw̄wwi

∥∥∥∥∥
2

≤ f̄ 1/2 3
2r

√
ph
2n

.

This, combined with (B.33) and (B.34), yields that

∆≤ 3
2

f̄ 1/2

(
1.25

1
r

√
ph
2n

+m1/2
4

√
t

nh

)
+(1+1/48)

ht
r2n

with probability at least 1− e−t . Combining this with (B.27), (B.30) and (B.32) proves (B.26).

B.2.4 Proof of Theorem 3.3.2

We keep the notation used in the proof of Theorem 3.3.1, and for any t ≥ 0, let

r = r(n, p, t) �
√

(p+ t)/n+ h2 > 0 be such that P{β̂ββ h ∈ βββ
∗+Θ(r)} ≥ 1− 2e−t , provided√

(p+ t)/n. h. 1. Define the vector-valued random process

∆(δδδ ) = ΣΣΣ
−1/2{

∇Q̂h(βββ
∗+δδδ )−∇Q̂h(βββ

∗)−Jhδδδ
}
, δδδ ∈ Rp, (B.36)

where Jh = ∇2Qh(βββ
∗) is the population Hessian at βββ

∗. Since β̂ββ h falls in a local neighborhood

of βββ
∗ with high probability, it suffices to bound the local fluctuation supδδδ∈Θ(r) ‖∆(δδδ )‖2. By the

triangle inequality,

sup
δδδ∈Θ(r)

‖∆(δδδ )‖2 ≤ sup
δδδ∈Θ(r)

‖E∆(δδδ )‖2 + sup
δδδ∈Θ(r)

‖∆(δδδ )−E∆(δδδ )‖2 := I1 + I2. (B.37)

We now provide upper bounds for I1 and I2, respectively.
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UPPER BOUND FOR I1: By the mean value theorem for vector-valued functions,

E∆(δδδ ) = ΣΣΣ
−1/2

〈∫ 1

0
∇

2Qh
(
βββ
∗+ tδδδ

)
dt,δδδ

〉
−ΣΣΣ

−1/2Jhδδδ

=

〈
ΣΣΣ
−1/2

∫ 1

0
∇

2Qh
(
βββ
∗+ tδδδ

)
dt ΣΣΣ

−1/2−Hh,ΣΣΣ
1/2

δδδ

〉
,

where Hh := ΣΣΣ
−1/2JhΣΣΣ

−1/2 = E{Kh(ε)wwwwwwT}. By law of iterative expectation and a change of

variable,

ΣΣΣ
−1/2

∇
2Qh(βββ

∗+ tδδδ )ΣΣΣ−1/2 = E
{

Kh(t〈xxx,δδδ 〉− ε)wwwwwwT
}

= E

{∫
∞

−∞

K(u) fε|xxx(t〈xxx,δδδ 〉−hu)du ·wwwwwwT

}
.

Write vvv = ΣΣΣ
1/2

δδδ for δδδ ∈Θ(r), so that ‖vvv‖2 ≤ r and

ΣΣΣ
−1/2

∇
2Qh
(
βββ
∗+ tδδδ

)
ΣΣΣ
−1/2 = E

{∫
∞

−∞

K(u) fε|xxx(t〈www,vvv〉−hu)du ·wwwwwwT

}
.

By the Lipschitz continuity of fε|xxx(·),

∥∥ΣΣΣ
−1/2

∇
2Qh
(
βββ
∗+ tδδδ

)
ΣΣΣ
−1/2−Hh

∥∥
2

=

∥∥∥∥∥E
∫

K(u)
{

fε|xxx(t〈www,vvv〉−hu)− fε|xxx(−hu)
}

du ·wwwwwwT

∥∥∥∥∥
2

≤ l0t sup
‖uuu‖2=1

E
(
〈www,uuu〉2|〈www,vvv〉|

)
≤ l0m3rt,

where the third inequality holds by the Cauchy-Schwarz inequality. Consequently,

sup
δδδ∈Θ(r)

‖E∆(δδδ )‖2 ≤ 0.5l0m3r2. (B.38)

UPPER BOUND FOR I2: Next, we provide an upper bound for the supremum of the zero-
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mean stochastic process ∆(δδδ )−E∆(δδδ ) under `2-norm. Define the centered gradient process

G(βββ ) = ΣΣΣ
−1/2{∇Q̂h(βββ )−∇Qh(βββ )}, so that ∆(δδδ )−E∆(δδδ ) = G(βββ ∗+δδδ )−G(βββ ∗). Again, by a

change of variable vvv = ΣΣΣ
1/2

δδδ ,

sup
δδδ∈Θ(r)

‖∆(βββ )−E∆(βββ )‖2 ≤ sup
δδδ∈Θ(r)

‖G(βββ ∗+δδδ )−G(βββ ∗)‖2

= sup
‖vvv‖2≤r

‖G(βββ ∗+ΣΣΣ
−1/2vvv)−G(βββ ∗)︸ ︷︷ ︸
=:∆0(vvv)

‖2.

We will employ Theorem A.3 in Spokoiny [2013] to bound the supremum sup‖vvv‖2≤r ‖∆0(vvv)‖2,

where ∆0(·) defined above satisfies ∆0(0) = 0 and E{∆0(vvv)} = 0. Taking the gradient with

respect to vvv yields

∇∆0(vvv) =
1
n

n

∑
i=1

{
Ki,vvvwwwiwwwT

i −E
(
Ki,vvvwwwiwwwT

i
)}

,

where Ki,vvv := Kh(〈wwwi,vvv〉− εi) satisfies 0≤ Ki,vvv ≤ κuh−1. For any uuu,uuu′ ∈ Sp−1 and λ ∈ R, using

the elementary inequality |eu−1−u| ≤ u2e|u|/2, we obtain

Eexp
{

λn1/2〈uuu,∇∆0(vvv)uuu′〉
/

υ
2
1
}

≤
n

∏
i=1

{
1+

λ 2

2υ4
1 n

e
f̄ |λ |

υ2
1
√

n
E|〈wwwi,uuu〉〈wwwi,uuu′〉|×

E
{

Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉−E(Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉)
}2e

κu|λ |
h
√

n |〈wwwi,uuu〉〈wwwi,uuu′〉|/υ2
1

}

≤
n

∏
i=1

{
1+

λ 2

2υ4
1 n

e
f̄ |λ |√

n E
{

Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉−E(Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉)
}2e

κu|λ |
h
√

n |〈wwwi,uuu〉〈wwwi,uuu′〉|/υ2
1

}
,

(B.39)

where we used the bound E|〈wwwi,uuu〉〈wwwi,uuu′〉| ≤ (E〈wwwi,uuu〉2)1/2(E〈wwwi,uuu′〉2)1/2 = 1 in the second

inequality. Moreover, the first and second conditional moments of Ki,vvv can be rewritten as
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follows:

E
(
Ki,vvv|xxxi

)
=

1
h

∫
∞

−∞

K

(
〈wwwi,vvv〉− t

h

)
fεi|xxxi(t)dt =

∫
∞

−∞

K(u) fεi|xxxi(〈wwwi,vvv〉−hu)du;

E
(
K2

i,vvv|xxxi
)
=

1
h2

∫
∞

−∞

K2

(
〈wwwi,vvv〉− t

h

)
fεi|xxxi(t)dt =

1
h

∫
∞

−∞

K2(u) fεi|xxxi(〈wwwi,vvv〉−hu)du,

from which it follows that |E(Ki,vvv|xxxi)| ≤ f̄ and E(K2
i,vvv|xxxi)≤ κu f̄ h−1 almost surely.

By the Cauchy-Schwarz inequality and the inequality ab ≤ a2/2+b2/2, a,b ∈ R, we

have

E(〈wwwi,uuu〉〈wwwi,uuu′〉)2et|〈wwwi,uuu〉〈wwwi,uuu′〉|

≤ E(〈wwwi,uuu〉〈wwwi,uuu′〉)2e
t
2 〈wwwi,uuu〉2+ t

2 〈wwwi,uuu′〉2

≤
(
E〈wwwi,uuu〉4et〈wwwi,uuu〉2

)1/2(
E〈wwwi,uuu′〉4et〈wwwi,uuu′〉2

)1/2
, valid for any t > 0.

Given a unit vector uuu, let χ = 〈www,uuu〉2/(2υ1)
2 so that under Condition 3.3.5, P(χ ≥ u)≤ 2e−2u

for any u≥ 0. It follows that E(eχ) = 1+
∫

∞

0 euP(χ ≥ u)du≤ 1+2
∫

∞

0 e−udu = 3, and

E(χ2eχ) =
∫

∞

0
(u2 +2u)euP(χ ≥ u)du≤ 2

∫
∞

0
(u2 +2u)e−udu = 8.

Taking the supremum over uuu ∈ Sp−1, we have

sup
uuu∈Sp−1

Ee〈www,uuu〉
2/(2υ1)

2 ≤ 3 and sup
uuu∈Sp−1

E〈www,uuu〉4e〈www,uuu〉
2/(2υ1)

2 ≤ 8(2υ1)
4.
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Substituting the above bounds into (B.39) yields that, for any |λ | ≤min{h/(4κu),1/ f̄}n1/2,

Eexp
{

λn1/2〈uuu,∇∆0(vvv)uuu′〉/υ
2
1
}

≤
n

∏
i=1

[
1+

eλ 2

2υ4
1 n

E
{

Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉−E(Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉)
}2e|〈wwwi,uuu〉〈wwwi,uuu′〉|/(4υ2

1 )

]

≤
n

∏
i=1

[
1+

eλ 2

υ4
1 n

E
(
Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉

)2e|〈wwwi,uuu〉〈wwwi,uuu′〉|/(4υ2
1 )

+
eλ 2

υ4
1 n

{
E
(
Ki,vvv〈wwwi,uuu〉〈wwwi,uuu′〉

)}2Ee|〈wwwi,uuu〉〈wwwi,uuu′〉|/(4υ2
1 )

]

≤
n

∏
i=1

(
1+C2

0
λ 2

2nh

)
≤ exp

{
C2

0λ
2/(2h)

}
,

where C0 > 0 depends only on (κu, f̄ ). We have thus verified condition (A.4) in Spokoiny [2013]

with g = min{h/(4κu),1/ f̄}(n/2)1/2 and ν0 =C0h−1/2. Applying Theorem A.3 therein to the

process {∆0(rrr)/υ2
1 ,vvv ∈ Bp(r)}, we obtain that with probability at least 1− e−t ,

sup
‖vvv‖2≤r

‖∆0(vvv)‖2 ≤ 6C0υ
2
1 r

√
4p+2t

nh

as long as h≥ 8κu
√

(2p+ t)/n and n≥ 4 f̄ 2(2p+ t).

Joint with (B.37) and (B.38), this implies that with probability at least 1− e−t ,

sup
δδδ∈Θ(r)

‖∆(δδδ )‖2 ≤ 6C0υ
2
1 r

√
4p+2t

nh
+0.5l0m3r2. (B.40)

Recall from the beginning of the proof that δ̂δδ = β̂ββ h−βββ
∗ ∈Θ(r) with probability at least 1−2e−t

with r = r(n, p, t)�
√

(p+ t)/n+h2. Combined with (B.40), we conclude that with probability

at least 1−3e−t , ‖∆(δ̂δδ )‖2 . (p+ t)/(h1/2n)+h3/2
√

(p+ t)/n+h4, as claimed.
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B.2.5 Proof of Theorem 3.3.3

Let aaa∈Rp be an arbitrary vector defining a linear functional of interest. Given h= hn > 0,

define Sn = n−1/2
∑

n
i=1 γiξi and its centered version S0

n = Sn−E(Sn), where ξi = τ−K (−εi/h)

and γi = 〈J−1
h aaa,xxxi〉. By the Lipschitz continuity of fε|xxx(·) and the fundamental theorem of

calculus, it can be shown that |E(ξi|xxxi)| ≤ 0.5l0κ2h2, from which it follows by the law of iterated

expectation that |E(γiξi)| ≤ 0.5l0κ2‖J−1
h aaa‖ΣΣΣ ·h2.

Let ηn = (p+ logn)/n. Then, applying (B.36) and (B.40) with t = logn and the triangle

inequality, we obtain that under the constraint η
1/2
n . h. 1,

∣∣n1/2〈aaa, β̂ββ h−βββ
∗〉−S0

n
∣∣

= n1/2
∣∣∣∣〈ΣΣΣ

1/2J−1
h aaa,ΣΣΣ−1/2Jh(β̂ββ h−βββ

∗)−ΣΣΣ
−1/2 1

n

n

∑
i=1

{
τ−K (−εi/h)

}
xxxi

〉∣∣∣∣+ |E(Sn)|

≤ c1‖J−1
h aaa‖ΣΣΣ ·n1/2(h−1/2

δn +h2) (B.41)

with probability at least 1−3n−1 for some constant c1 > 0.

For the centered partial sum S0
n = Sn−E(Sn) = n−1/2

∑
n
i=1(1−E)γiξi, we have var(S0

n) =

var(Sn) = E(γξ )2−{E(γξ )}2, where γ = 〈J−1
h aaa,xxx〉 and ξ = τ −K (−ε/h). By the Berry-

Esseen inequality (see, e.g., Tyurin [2011]),

sup
x∈R

∣∣P{S0
n ≤ var(Sn)

1/2x
}
−Φ(x)

∣∣≤ E{|γξ −E(γξ )|3}
2[E(γξ )2−{E(γξ )}2]3/2√n

. (B.42)

We have shown that |E(γξ )| . ‖J−1
h aaa‖ΣΣΣ · h2. To bound E(ξ 2|xxx), by a change of variable and
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integration by parts,

E{K 2(−ε/h)|xxx}= 2
∫

∞

−∞

K(v)K (v)Fε|xxx(−vh)dv

= 2τ

∫
∞

−∞

K(v)K (v)dv︸ ︷︷ ︸
=1/2

−2h fε|xxx(0)
∫

∞

−∞

vK(v)K (v)dv︸ ︷︷ ︸
=
∫

∞

0 K (v){1−K (v)}dv>0

+2
∫

∞

−∞

∫ −vh

0
{ fε|xxx(t)− fε|xxx(0)}K(v)K (v)dtdv

≤ τ + l0κ2h2,

where κ2 and l0 are the constants from Conditions 3.3.1 and 3.3.2. It then follows that

τ(1− τ)−Ch− (1+ τ)l0κ2h2 ≤ E(ξ 2|xxxi)≤ τ(1− τ)+(1+ τ)l0κ2h2,

where C = 2 f̄ · ∫ ∞

0 K (v){1−K (v)}dv. For all sufficiently small h, var(Sn) = {τ(1− τ) +

O(h)}‖J−1
h aaa‖2

ΣΣΣ
. On the other hand,

E(|γξ |3)≤max(τ,1− τ)E(ξ 2|γ|3)≤ m3{τ(1− τ)+O(h2)}‖J−1
h aaa‖3

ΣΣΣ
.

Substituting these bounds into (B.42) yields

sup
x∈R

∣∣P{S0
n ≤ var(Sn)

1/2x
}
−Φ(x)

∣∣≤ c2n−1/2 (B.43)

for some constant c2 > 0.

Recall that σ2
h = E{Kh(−ε)− τ}2〈J−1

h aaa,xxx〉2 = E(γξ )2, and thus |var(Sn)− σ2
h | =

(Eγξ )2 . ‖J−1
h aaa‖2

ΣΣΣ
· h4. By an application of Lemma A.7 in the supplement of Spokoiny

and Zhilova [2015], for sufficiently small h, we have

sup
x∈R

∣∣Φ(x/var(Sn)
1/2)−Φ(x/σh)

∣∣≤ c3h4. (B.44)
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Before proceeding, we note that the constants c1–c3 appeared above are all independent

of aaa and (n, p). Let G ∼ N(0,1). Putting together the above derivations, for any x ∈ R and

aaa ∈ Rp, we obtain

P
(
n1/2〈aaa, β̂ββ h−βββ

∗〉 ≤ x
)

≤ P
{

S0
n ≤ x+ c1‖J−1

h aaa‖ΣΣΣ ·n1/2(h−1/2
ηn +h2)}+3n−1

≤ P
{

var(Sn)
1/2G≤ x+ c1‖J−1

h aaa‖ΣΣΣ ·n1/2(h−1/2
ηn +h2)}+ c2n−1/2 +3n−1

≤ P
{

σhG≤ x+ c1‖J−1
h aaa‖ΣΣΣ ·n1/2(h−1/2

ηn +h2)}+ c2n−1/2 + c3h4 +3n−1

≤ P
(
σhG≤ x

)
+ c1(2π)−1/2‖J−1

h aaa‖ΣΣΣ ·n1/2(h−1/2
ηn +h2)/σh + c2n−1/2 + c3h4 +3n−1,

where the first, second, and third inequalities holds by (B.41), (B.43), and (B.44), respec-

tively, and the last inequality follows from the fact that for any a ≤ b and σ > 0, Φ(b/σ)−

Φ(a/σ) ≤ (2π)−1/2(b− a)/σ . Recall that σ2
h = {τ(1− τ)+O(h)}‖J−1

h aaa‖2
ΣΣΣ

, ‖J−1
h aaa‖ΣΣΣ/σh .

{τ(1− τ)}−1/2 for all sufficiently small h. A similar argument leads to a series of reverse

inequalities. The above bounds are independent of x and aaa, and therefore hold uniformly over all

x and aaa.

Putting together the pieces, we conclude that under the requirement η
1/2
n . h. 1,

sup
x∈R,aaa∈Rp

∣∣P(n1/2〈aaa, β̂ββ h−βββ
∗〉 ≤ σhx

)
−Φ(x)

∣∣. p+ logn
(nh)1/2 +n1/2h2,

as claimed.

Under the additional smoothness condition on fε|xxx(·), using a higher-order Taylor series
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expansion of Fε|xxx(·) gives

E
{
K (−εi/h)|xxxi

}
=
∫

∞

−∞

K(u)Fε|xxx(hu)du

=
∫

∞

−∞

K(u)

[
Fε|xxx(0)+hu fε|xxx(0)+

h2

2
u2 f ′

ε|xxx(0)+
h3

3!
u3 f ′′

ε|xxx(0)

+
h3

2!
u3
∫ 1

0
(1−w)2{ f ′′

ε|xxx(huw)− f ′′
ε|xxx(0)

}
dw

]
du

= τ +
κ2

2
f ′
ε|xxx(0)h

2 +O(h4)κ4l2(xxx),

from which it follows that

∣∣∣∣∣E(γiξi)+
κ2

2
〈J−1

h aaa,E{ f ′
ε|xxx(0)xxxi}〉 ·h2

∣∣∣∣∣. κ4E|〈J−1
h aaa,xxxi〉l2(xxx)| ·h4

. κ4‖J−1
n aaa‖ΣΣΣ

{
El2

2(xxx)
}1/2h4.

Together, the above bound and (B.40) with t = logn imply

∣∣∣∣n1/2
〈

aaa, β̂ββ h−βββ
∗+

κ2

2
J−1

h E{ f ′
ε|xxx(0)xxxi}

〉
−S0

n

∣∣∣∣
. ‖J−1

h aaa‖ΣΣΣ ·n1/2

(
p+ logn

nh1/2 +h3/2

√
p+ logn

n
+h4

)
(B.45)

with probability at least 1−3n−1. Repeating the above analysis, with (B.41) replaced by (B.45),

proves the refined Berry-Esseen bound (3.26).

B.2.6 Proof of Theorem 3.3.4

Keep the notation used in the proof of Theorem 3.3.1. With non-negative multipliers wi’s,

the weighted loss Q̂[
h(·) given in (3.8) is also convex. For δδδ ∈Rp, define the bootstrap counterpart

of D̂h(·) as D̂[
h(δδδ ) = Q̂[

h(βββ
∗+δδδ )− Q̂[

h(βββ
∗). It is easy to see that E∗{D̂[

h(δδδ )}= D̂h(δδδ ). Similarly
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to (B.12), we have

D̂[
h(δδδ ) = D̂h(δδδ )+{D̂[

h(δδδ )− D̂h(δδδ )}

≥ Rh(δδδ )−0.5l0κ2h2 · ‖δδδ‖ΣΣΣ−{Dh(δδδ )− D̂h(δδδ )}−{D̂h(δδδ )− D̂[
h(δδδ )}

≥ 1
2
(

f − l0κ1h−0.5l0m3‖δδδ‖ΣΣΣ− l0κ2h2/‖δδδ‖ΣΣΣ

)
‖δδδ‖2

ΣΣΣ

−{Dh(δδδ )− D̂h(δδδ )}︸ ︷︷ ︸
sampling error

−{D̂h(δδδ )− D̂[
h(δδδ )}︸ ︷︷ ︸

bootstrap error

, δδδ ∈ Rp. (B.46)

As before, let r0 = (2κ2/m3)
1/2h be an intermediate convergence radius, and set rl = r0h. For

any δδδ ∈ ∂Θ(r0), it follows that

D̂[
h(δδδ )≥

1
2
{

f − l0κ1h− l0(2κ2/m3)
1/2h

}
r2

0−{Dh(δδδ )− D̂h(δδδ )}−{D̂h(δδδ )− D̂[
h(δδδ )}.

(B.47)

As a bootstrap counterpart of Lemma B.2.4, the following lemma provides high proba-

bility bounds for the bootstrap error D̂h(δδδ )− D̂[
h(δδδ ) uniformly over δδδ ∈ Rp in some compact

subset.

Lemma B.2.4. For each t ≥ 0, there exists an event E1(t) with P{E1(t)} ≥ 1− e−t such that

conditioned on E1(t),

P∗
{

sup
δδδ∈Θ(r)

{D̂h(δδδ )− D̂[
h(δδδ )} ≥Cτ̄υ1r

√
u
n

}
≤ e2p−u

for any u ≥ 0 as long as n & p+ t. Moreover, for any ru > rl > 0, with P∗-probability (over

{ei}n
i=1) at least 1−de log( ru

rl
)ee2p−u conditioned on E1(t),

D̂h(δδδ )− D̂[
h(δδδ )≤C′τ̄υ1‖δδδ‖ΣΣΣ

√
u
n

holds for all δδδ ∈ Rp satisfying rl ≤ ‖δδδ‖ΣΣΣ ≤ ru as long as n & p+ t. Here both C,C′ > 0 are
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absolute constants.

Let E1(t) be the event in Lemma B.2.4 that occurs with probability at least 1− e−t .

Applying the first inequality with r = r0 and u = 2p+ t, we obtain that conditioned on E1(t),

D̂h(δδδ )− D̂[
h(δδδ )≤Cτ̄υ1r0

√
2p+ t

n
.

Let E2(t) be the event that the bounds (B.17) and (B.18) hold. Then, the “good event” E (t) :=

E1(t)∩E2(t) satisfies P{E (t)} ≥ 1−3e−t . By (B.47) and the above bound, we find that with

P∗-probability at least 1− e−t conditioned on E (t), D̂[
h(δδδ )> 0 for all δδδ ∈ ∂Θ(r0) as long as the

bandwidth satisfies f−1m1/2
3 υ1

√
(p+ t)/n. h. f m−1/2

3 . Let δ̂δδ
[
= β̂ββ

[

h−βββ
∗. Then, D̂[

h(δ̂δδ
[
)≤ 0

by the optimality of β̂ββ
[

h. This, combined with the convexity of Q̂[
h(·), ensures that δ̂δδ

[
∈Θ(r0).

Next, consider the decomposition Θ(r0) = Θ(rl)∩Θ(rl,r0), where Θ(rl,r0) = {δδδ ∈Rd :

rl ≤ ‖δδδ‖ΣΣΣ ≤ r0} and rl = r0h = (2κ2/m3)
1/2h2. If δ̂δδ

[
∈Θ(rl), the claimed bound holds trivially.

Throughout the rest, we assume δ̂δδ
[
∈Θ(rl,r0). Taking u = log(e logh−1)+2p+ t in the second

inequality in Lemma B.2.4 yields that, with P∗-probability at least 1− e−t conditioned on E (t),

D̂h(δ̂δδ
[
)− D̂[

h(δ̂δδ
[
)≤ ‖δ̂δδ

[
‖ΣΣΣ ·C′τ̄υ1

√
log(e logh−1)+2p+ t

n︸ ︷︷ ︸
=:r[1

.

Substituting the above bound and (B.18) into (B.46), we conclude that

( f − l0κ1h)‖δ̂δδ
[
‖2

ΣΣΣ ≤ (2r1 +2r[1 + l0κ2h2)‖δ̂δδ
[
‖ΣΣΣ +0.5l0m3‖δ̂δδ

[
‖3

ΣΣΣ
≤ 2(r1 + r[1 + l0κ2h2)‖δ̂δδ

[
‖ΣΣΣ.

Canceling out a factor of ‖δ̂δδ
[
‖ΣΣΣ from both sides yields the claimed bound.

Proof of Lemma B.2.4

We will use a similar argument as in the proof of Lemma B.2.1. Consider the bootstrap

loss difference D̂[
h(δδδ )− D̂h(δδδ ) = (1/n)∑

n
i=1 eidh(δδδ ;zzzi), where dh(δδδ ;zzzi) = `h(εi− 〈xxxi,δδδ 〉)−
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`h(εi) with zzzi = (xxxi,εi), and ei’s are independent Rademacher random variables that are indepen-

dent of {zzzi}n
i=1.

For any r > 0 and any ε ∈ (0,1), applying a conditional version of Chernoff’s inequality

to ∆[
ε(r) := n(1− ε)supδδδ∈Θ(r){D̂h(δδδ )− D̂[

h(δδδ )}/(τ̄r) yields

P∗
{

∆
[
ε(r)≥ u

}
≤ exp

[
− sup

λ≥0

{
λu− logE∗eλ∆[

ε (r)
}]

.

Again, by the Ledoux-Talagrand contraction principle and discretization via an ε-net,

E∗eλ∆[
ε (r) ≤ E∗ exp

{
λ

r
(1− ε) sup

δδδ∈Θ(r)

n

∑
i=1

ei〈xxxi,δδδ 〉
}

≤ E∗ exp

{
λ (1− ε)

∥∥∥∥ n

∑
i=1

eiwwwi

∥∥∥∥
2

}
≤ E∗ exp

{
λ max

1≤ j≤Nε

n

∑
i=1

eiuuuT
jwwwi

}

≤
Nε

∑
j=1

n

∏
i=1

E∗eλeiuuuT
j wwwi ≤

Nε

∑
j=1

e(λ
2/2)∑

n
i=1〈uuu j,wwwi〉2,

where we used the Rademacher moment bound Eeλei ≤ eλ 2/2 for any λ ∈ R. Here {uuu j}Nε

j=1 are

unit vectors, and Nε ≤ (1+2/ε)p. Consequently,

logE∗eλ∆[
ε (r) ≤ logNε +

λ 2

2
max

1≤ j≤Nε

n

∑
i=1
〈uuu j,wwwi〉2,

so that for any u≥ 0,

sup
λ≥0

{
λu− logE∗eλ∆[

ε (r)
}
≥− logNε + sup

λ≥0

(
λu− 1

2
λ

2 max
1≤ j≤Nε

n

∑
i=1
〈uuu j,wwwi〉2

)

=− logNε +
u2

2max1≤ j≤Nε ∑
n
i=1〈uuu j,wwwi〉2

.

Substituting this into the earlier Chernoff’s inequality, and by a change of variable, we obtain
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that for any u≥ 0,

sup
δδδ∈Θ(r)

D̂h(δδδ )− D̂[
h(δδδ )≤

τ̄

1− ε

√
max

1≤ j≤Nε

1
n

n

∑
i=1
〈uuu j,wwwi〉2 · r

√
2u
n

holds with P∗-probability (over {ei}n
i=1) at least 1− ep log(1+2/ε)−u.

The above bound holds for any given r > 0. Proceed via a peeling argument, we obtain

that for any prespecified γ > 1 and radii ru > rl > 0,

D̂h(δδδ )− D̂[
h(δδδ )≤

γτ̄

1− ε

√
max

1≤ j≤Nε

1
n

n

∑
i=1
〈uuu j,wwwi〉2 · ‖δδδ‖ΣΣΣ

√
2u
n

holds for all rl ≤ ‖δδδ‖ΣΣΣ ≤ ru

(B.48)

with P∗-probability (over {ei}n
i=1) at least 1−dlog( ru

rl
)/ log(γ)eep log(1+2/ε)−u.

Next, we bound the data-dependent quantity max1≤ j≤Nε
(1/n)∑

n
i=1〈uuu j,wwwi〉2 with Nε ≤

(1+2/ε)p and uuu j ∈ Sp−1. Note that E〈uuu j,wwwi〉2 = 1. By the sub-Gaussianity of wwwi ∈Rp ensured

by Condition 3.3.5, for integers k = 2,3, . . .,

E
(
〈uuu j,wwwi〉2

)k ≤ υ
2k
1 ·2k

∫
∞

0
P
(
|〈uuu j,wwwi〉| ≥ υ1u

)
u2k−1 du

≤ υ
2k
1 ·4k

∫
∞

0
u2k−1e−u2/2 du

= 2k
υ

2k
1 ·2k

∫
∞

0
vk−1e−v dv = 2k+1k! ·υ2k

1 .

In particular, E(〈uuu,wwwi〉4)≤ 16υ4
1 and E(〈uuu,wwwi〉2)k ≤ k!

2 · (4υ2
1 )

2 · (2υ2
1 )

k−2 for k ≥ 3. With the

above calculations, applying Bernstein’s inequality (see, e.g., Theorem 2.10 in Boucheron,

Lugosi and Massart [2013]), and taking the union bound over j = 1, . . . ,Nε , we obtain that for

any v≥ 0,

P

(
max

1≤ j≤Nε

1
n

n

∑
i=1
〈uuu j,wwwi〉2 ≥ 1+4υ

2
1

√
2v
n
+2υ

2
1

v
n

)
≤ exp

{
p log(1+2/ε)− v

}
. (B.49)
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Finally, we take ε = 2/(e2−1), γ = e1/e and v = 2p+ t (t ≥ 0) in (B.48) and (B.49). Let

E1(t) be the event that (B.49) holds. Then, P{E1(t)} ≥ 1− e−t , and with P∗-probability (over

{ei}n
i=1) at least 1−de log( ru

rl
)ee2p−u conditioned on E1(t),

D̂h(δδδ )− D̂[
h(δδδ )≤ 3τ̄

√
1+4υ2

1

√
(4p+2t)/n+υ2

1 (4p+2t)/n · ‖δδδ‖ΣΣΣ

√
u
n

holds for all δδδ ∈ Rp satisfying rl ≤ ‖δδδ‖ΣΣΣ ≤ ru. This proves the claimed bound under the scaling

n& p+ t.

B.2.7 Proof of Theorem 3.3.5

The proof is based on an argument similar to that used in the proof of Theorem 3.3.2. To

begin with, define the random process

∆
[(δδδ ) = ΣΣΣ

−1/2{
∇Q̂[

h(βββ
∗+δδδ )−∇Q̂[

h(βββ
∗)−Jhδδδ

}
, δδδ ∈ Rp.

For a prespecified r > 0, a key step is to bound the local fluctuation supδδδ∈Θ(r) ‖∆[(δδδ )‖2. Since

E(wi) = E(1+ ei) = 1, we have E∗{∇Q̂[
h(βββ )}= ∇Q̂h(βββ ). Define the (conditionally) centered

process

G[(βββ ) = ΣΣΣ
−1/2{

∇Q̂[
h(βββ )−∇Q̂h(βββ )

}
=

1
n

n

∑
i=1

{
Kh(xxxT

i βββ − yi)− τ
}

eiwwwi,

so that ∆[(δδδ ) be be written as

∆
[(δδδ ) =

{
G[(βββ ∗+δδδ )−G[(βββ ∗)

}︸ ︷︷ ︸
bootstrap error

+ ∆(δδδ )︸︷︷︸
sampling error

,
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where ∆(δδδ ) is given in (B.36). By the triangle inequality,

sup
δδδ∈Θ(r)

‖∆[(δδδ )‖2 ≤ sup
δδδ∈Θ(r)

‖G[(βββ ∗+δδδ )−G[(βββ ∗)‖2 + sup
δδδ∈Θ(r)

‖∆(δδδ )‖2. (B.50)

Let E3(t) denote the event that the bound (B.40) holds. It suffices to deal with the

first term on the right-hand side of (B.50). Using a change of variable vvv = ΣΣΣ
1/2

δδδ ∈ Bp(r) for

δδδ ∈Θ(r), we have yi− xxxT
i βββ = εi−wwwT

i vvv and

sup
δδδ∈Θ(r)

‖G[(βββ ∗+δδδ )−G[(βββ ∗)‖2 ≤ sup
vvv∈Bp(r)

‖G[(βββ ∗+ΣΣΣ
−1/2vvv)−G[(βββ ∗)︸ ︷︷ ︸
=:∆[

0(vvv)

‖2, (B.51)

where ∆[
0(vvv) = (1/n)∑

n
i=1 eiwwwi{Kh(wwwT

i vvv−εi)−Kh(−εi)} satisfies ∆[
0(0) = 0 and E∗{∆[

0(vvv)}=

0. Note that ∇∆[
0(vvv) = (1/n)∑

n
i=1 eiKi,vvvwwwiwwwT

i , where Ki,vvv = Kh(wwwT
i vvv− εi). For any λ ∈ R and

uuu,uuu′ ∈ Sp−1, we have

E∗ exp
{

λn1/2uuuT
∆
[
0(vvv)uuu

′}= n

∏
i=1

E∗ exp
{

λn−1/2eiKi,vvvwwwT
i uuu ·wwwT

i uuu′
}

≤
n

∏
i=1

exp

{
λ 2

2n
K2

i,vvv(www
T
i uuu ·wwwT

i uuu′)2

}
= exp

{
λ 2

2n

n

∑
i=1

K2
i,vvv(www

T
i uuu ·wwwT

i uuu′)2

}
.

Note that Ki,vvv ≤ κuh−1, and by Hölder’s inequality,

1
n

n

∑
i=1

K2
i,vvv(www

T
i uuu ·wwwT

i uuu′)2 ≤ κu

h
·
{

1
n

n

∑
i=1

Ki,vvv(wwwT
i uuu)4

}1/2{
1
n

n

∑
i=1

Ki,vvv(wwwT
i uuu′)4

}1/2

.

Define the function Λr,h(·, ·) : Rp×Rp 7→ [0,∞)

Λr,h(uuu,vvv) =
1
n

n

∑
i=1

Kh(rwwwT
i vvv− εi)(wwwT

i uuu)4 for uuu,vvv ∈ Sp−1, (B.52)

and write ‖Λr,h‖∞ = supuuu,vvv∈Sp−1 Λr,h(uuu,vvv). With this notation, it follows that for any λ ∈ R and
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uuu,vvv ∈ Sp−1,

sup
δδδ∈Bp(r)

E∗ exp
{

λn1/2uuuT
∆
[
0(δδδ )vvv

}
≤ exp

{
λ 2

2
κuh−1‖Λr,h‖∞

}
.

Thus, applying a conditional version of Theorem A.3 in Spokoiny [2013] yields

sup
vvv∈Bp(r)

‖∆[
0(vvv)‖2 ≤ 6κ

1/2
u ‖Λr,h‖1/2

∞ · r
√

4p+2t
nh

(B.53)

with P∗-probability at least 1− e−t .

Next, we bound the data-dependent quantity ‖Λr,h‖∞. For any ε1,ε2 ∈ (0,1), there exist

ε1- and ε2-nets {uuu1, . . . ,uuud1} and {vvv1, . . . ,vvvd2} of Sp−1 with d1 ≤ (1+ 2/ε1)
p and d2 ≤ (1+

2/ε2)
p. Given uuu,vvv ∈ Sp−1, there exist some 1≤ j ≤ d1 and 1≤ k ≤ d2 such that ‖uuu−uuu j‖2 ≤ ε1

and ‖vvv− vvvk‖2 ≤ ε2. At (uuu,vvv), consider the decomposition

Λr,h(uuu,vvv) = Λr,h(uuu,vvv)−Λr,h(uuu,vvvk)+Λr,h(uuu,vvvk).

For Λr,h(uuu,vvv)−Λr,h(uuu,vvvk), the Lipschitz continuity of K(·) ensures that

|Λr,h(uuu,vvv)−Λr,h(uuu,vvvk)|

≤ lKr
nh2

n

∑
i=1
|wwwT

i (vvv− vvvk)|(wwwT
i uuu)4 ≤ lKrε2

h2 ·max1≤i≤n ‖wwwi‖2 ·
1
n

n

∑
i=1

(wwwT
i uuu)4. (B.54)

For Λr,h(uuu,vvvk), by the triangle inequality for the `4-norm we have

Λ
1/4
r,h (uuu,vvvk) =

{
1
n

n

∑
i=1

Kh(rwwwT
i vvvk− εi)(wwwT

i uuu)4

}1/4

≤
{

1
n

n

∑
i=1

Kh(rwwwT
i vvvk− εi)(wwwT

i uuu j)
4

}1/4

+

{
1
n

n

∑
i=1

Kh(rwwwT
i vvvk− εi)〈wwwi,uuu−uuu j〉4

}1/4

≤ Λ
1/4
r,h (uuu j,vvvk)+ ε1 · supuuu∈Sp−1 Λ

1/4
r,h (uuu,vvvk),
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which in turn implies

supuuu∈Sp−1 Λr,h(uuu,vvvk)≤ (1− ε1)
−4 max1≤ j≤d1 Λr,h(uuu j,vvvk). (B.55)

In view of (B.54) and (B.55), it suffices to bound max1≤i≤n ‖wwwi‖2, supuuu∈Sp−1(1/n)∑
n
i=1(www

T
i uuu)4

and max( j,k)∈[d1]×[d2]Λr,h(uuu j,vvvk).

Lemma B.2.5. For any t ≥ 0, max1≤i≤n ‖wwwi‖2
2 ≤C1υ2

1 (p+ logn+ t) with probability at least

1− e−t , where C1 > 0 is an absolute constant.

For the supremum supuuu∈Sp−1(1/n)∑
n
i=1(www

T
i uuu)4, similarly to (B.55) it can be shown that

supuuu∈Sp−1
1
n

n

∑
i=1

(wwwT
i uuu)4 ≤ (1− ε1)

−4 max1≤ j≤d1

1
n

n

∑
i=1

(wwwT
i uuu j)

4.

Fix j and k, Condition 3.3.5 implies

Ee{(www
T
i uuu j)

4/(36υ4
1 )}1/2

= Ee(www
T
i uuu j)

2/(6υ2
1 ) = 1+

∫
∞

0
euP
{
|wwwT

i uuu j| ≥ υ1(6u)1/2}du

≤ 1+2
∫

∞

0
eu−3udu = 1+1 = 2.

Therefore, ‖(wwwT
i uuu j)

4‖ψ1/2 ≤ 36υ4
1 , where ‖ · ‖ψr denotes the ψr-norm (r > 0); see Definition 2.1

in Adamczak et al. [2011]. Since 0≤ Kh(rwwwT
i vvvk−εi)≤ κuh−1, it is easy to see that ‖Kh(rwwwT

i vvvk−

εi)(wwwT
i uuu j)

4‖ψ1/2 ≤ 36κuυ4
1 h−1. Moreover, note that E(wwwT

i uuu j)
4 ≤ m4 and

E
{

Kh(rwwwT
i vvvk− εi)(wwwT

i uuu j)
4}= E

[
E
{

Kh(rwwwT
i vvvk− εi)|xxxi

}
(wwwT

i uuu j)
4]≤ f̄ m4.

Hence, for any u,v≥ 3, applying inequality (3.6) (and those above it) with s = 1/2 in Adamczak

et al. [2011] and the union bound, we obtain that

P

{
max

1≤ j≤d1

1
n

n

∑
i=1

(wwwT
i uuu j)

4 ≥ m4 +C2υ
4
1

(√
u
n
+

u2

n

)}
≤ d1e−u
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and

P

{
max

( j,k)∈[d1]×[d2]
Λ(uuu j,vvvk)≥ f̄ m4 +C2κuυ

4
1

(√
v

nh2 +
v2

nh

)}
≤ d1d2e−v.

Taking ε1 = 1−2−1/4, ε2 = n−2, u= p log(1+2/ε1)+t and v= p log{(1+2/ε1)(1+2/ε2)}+t

in the above bounds, it follows that with probability at least 1−2e−t ,

max
1≤ j≤d1

1
n

n

∑
i=1

(wwwT
i uuu j)

4 ≤ m4 +C3υ
4
1

{√
p+ t

n
+

(p+ t)2

n

}

and

max
( j,k)∈[d1]×[d2]

Λ(uuu j,vvvk)≤ f̄ m4 +C4κuυ
4
1

{√
p logn+ t

nh2 +
(p logn+ t)2

nh

}
.

Denote by E3(t) the event that the above two bounds and the bound in Lemma B.2.5 are satisfied.

Then P{E3(t)} ≥ 1−3e−t . Conditioned on E3(t) with t = logn, we have

‖Λr,h‖∞ ≤ 2 max
( j,k)∈[d1]×[d2]

Λ(uuu j,vvvk)+
2lKr
n2h2 ·max1≤i≤n ‖wwwi‖2 · sup

1≤ j≤d1

1
n

n

∑
i=1

(wwwT
i uuu j)

4

≤ 2 f̄ m4 +C5
υ4

1
h

{√
p logn

n
+

(p logn)2

n

}
+C6

υ5
1 r

(nh)2 (p+ logn)1/2. (B.56)

With the above preparations, we are ready to prove the Bahadur representation for the

bootstrap estimate. Let E (t) = E1(t)∩E2(t) be the event from Theorem 3.3.4 and its proof. In

the rest of the proof, we take t = logn, and set the bandwidth h� (q/n)2/5 with q = p+ logn.

Recall that δ̂δδ = β̂ββ h−βββ
∗ and δ̂δδ

[
= β̂ββ

[

h−βββ
∗. Conditioned on E1(t)∩E2(t), ‖δ̂δδ‖ΣΣΣ ≤ rest �

√
q/n,

and ‖δ̂δδ
[
‖ΣΣΣ ≤ r[est �

√
q/n with P∗-probability at least 1−2n−1. Conditioned further on E3(t),

‖ΣΣΣ−1/2Jh(β̂ββ h−βββ
∗)+ΣΣΣ

−1/2
∇Q̂h(βββ

∗)‖2 = ‖∆(δ̂δδ )‖2 ≤ sup
δδδ∈Θ(rest)

‖∆(δδδ )‖2 .

(
q
n

)4/5

,
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and with P∗-probability at least 1−3n−1,

‖ΣΣΣ−1/2Jh(β̂ββ
[

h−βββ
∗)+ΣΣΣ

−1/2
∇Q̂[

h(βββ
∗)‖2 = ‖∆[(δ̂δδ

[
)‖2

≤ sup
δδδ∈Θ(r[est)

‖∆[(δδδ )‖2 .

(
q
n

)4/5∨(q
n

)3/5( p logn
n

)1/4∨(q
n

)3/5 p logn
n1/2 .

Together, the above two bounds proves the claimed result.

Proof of Lemma B.2.5

Note that, after centering, wwwi = (1,wwwT
i,−)

T, where wwwi,− ∈ Rp−1 is a zero-mean sub-

Gaussian random vector. Under Condition 3.3.5, there exists some constant υ2 � υ1 de-

pending only on υ1 such that Eexp{αααT(www− eee1)} ≤ exp(‖ααα‖2
2υ2

2/2) for all ααα ∈ Rp, where

eee1 = (1,0, . . . ,0)T. Then, applying Theorem 2.1 in Hsu, Kakade and Zhang [2012] with

Σ = A = Ip yields that, for any u≥ 0,

‖wwwi‖2
2 ≤ υ

2
2
(

p+2
√

pu+2u
)
+1+2(u/p)1/2 ≤ υ

2
2
(
2p+3u

)
+1+2(u/p)1/2

holds with probability at least 1− e−u. Taking the union bound over i = 1, . . . ,n and setting

u = logn+ t prove the claimed bound.

B.2.8 Proof of Proposition 3.3.2

Consider the change of variable vvv = ΣΣΣ
1/2

δδδ , so that δδδ ∈Θ(r) is equivalent to vvv ∈ Bp(r).

Write wwwi = ΣΣΣ
−1/2xxxi ∈ Rp, which are isotropic random vectors, and define

Ĥh(vvv) = ΣΣΣ
−1/2Ĵh(δδδ )ΣΣΣ

−1/2 =
1
n

n

∑
i=1

Kh(εi−wwwT
i vvv)wwwiwwwT

i , Hh(vvv) = E
{

Ĥh(vvv)
}
. (B.57)

For any ε1 ∈ (0,r), there exists an ε-net N1 := {vvv1, . . . ,vvvd1} ⊆ Bp(r) with d1 ≤ (1+ 2r/ε1)
p

satisfying that, for every vvv ∈ Bp(r), there exists some 1 ≤ j ≤ d1 such that ‖vvv− vvv j‖2 ≤ ε1.
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Hence,

‖Ĥh(vvv)−Hh(0)‖2

≤ ‖Ĥh(vvv)− Ĥh(vvv j)‖2 +‖Ĥh(vvv j)−Hh(vvv j)‖2 +‖Hh(vvv j)−Hh(0)‖2

=: I1(vvv)+ I2, j + I3, j.

For I1(vvv), note that Kh(u) = (1/h)K(u/h) is Lipschitz continuous, i.e. |Kh(u)−Kh(v)| ≤

lKh−2|u− v| for all u,v ∈ R. It follows that

I1(vvv)≤ sup
uuu,uuu′∈Sp−1

1
n

n

∑
i=1
|Kh(εi−wwwT

i vvv)−Kh(εi−wwwT
i vvv j)| · |wwwT

i uuu ·wwwT
i uuu′|

≤ lKh−2 sup
uuu,uuu′∈Sp−1

1
n

n

∑
i=1
|wwwT

i (vvv− vvv j) ·wwwT
i uuu ·wwwT

i uuu′|

≤ lKh−2
ε1 sup

uuu∈Sp−1

1
n

n

∑
i=1
|wwwT

i uuu|3︸ ︷︷ ︸
=:Mn,3

. (B.58)

Next, we use the standard covering argument to bound Mn,3. Given ε2 ∈ (0,1), let N2 be an

ε2-net of the unit sphere Sp−1 with d2 := |N2| ≤ (1+ 2/ε2)
p such that for every uuu ∈ Sp−1,

there exists some uuu′ ∈N2 satisfying ‖uuu−uuu′‖2 ≤ ε2. Define the (standardized) design matrix

Wn = n−1/3(www1, . . . ,wwwn)
T ∈ Rn×p, so that Mn,3 = supuuu∈Sp−1 ‖Wnuuu‖3

3. By the triangle inequality,

‖Wnuuu‖3 ≤ ‖Wnuuu′‖3 +‖Wn(uuu−uuu′)‖3

= ‖Wnuuu′‖3 +

(
1
n

n

∑
i=1
|wwwT

i (uuu−uuu′)|3
)1/3

≤ ‖Wnuuu′‖3 + ε2 ·M1/3
n,3 .

Taking the maximum over uuu′ ∈N2, and then taking the supremum over uuu ∈ Sp−1, we arrive at

Mn,3 ≤ (1− ε2)
−3 ·Nn,3 := (1− ε2)

−3 · max
uuu′∈N2

1
n

n

∑
i=1
|wwwT

i uuu′|3. (B.59)
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For every uuu′ ∈N2, note that

Ee{|www
T
i uuu′|3/(63/2υ3

1 )}2/3
= 1+

∫
∞

0
euP
{
|wwwT

i uuu′| ≥ υ1(6u)1/2}du≤ 1+2
∫

∞

0
e−2udu = 2,

implying ‖|wwwT
i uuu′|3‖ψ2/3 ≤ 63/2υ3

1 . Hence, by inequality (3.6) in Adamczak et al. [2011] with

s = 2/3, we obtain that for any z≥ 3,

1
n

n

∑
i=1
|wwwT

i uuu′|3 ≤ E|wwwTuuu′|3 +C1υ
3
1

(√
z
n
+

z3/2

n

)

with probability at least 1− e−z. Taking the union bound over all vectors uuu′ in N2 yields that,

with probability at least 1−d2e−z ≥ 1− ep log(1+2/ε2)−z,

Nn,3 ≤ m3 +C1υ
3
1

(√
z
n
+

z3/2

n

)

where m3 = supuuu∈Sp−1 E|wwwTuuu|3. Reorganizing the terms, we get

Nn,3 ≤ m3 +C1υ
3
1

[√
p log(1+2/ε2)+ log2+ t

n
+
{p log(1+2/ε2)+ log2+ t}3/2

n

]
(B.60)

with probability at least 1− e−t/2. Taking ε2 = 1/8 in (B.59) and (B.60) implies

Mn,3 ≤ 1.5m3 +1.5C1υ
3
1

{√
3p+1+ t

n
+

(3p+1+ t)3/2

n

}
.

Under the sample size scaling n& p+ t, plugging the above bound into (B.58) yields

sup
vvv∈Bp(r)

I1(vvv). υ
3
1 (p+ t)1/2h−2

ε1 (B.61)

with probability at least 1− e−t/2.

Turning to I2, j, note that Ĥh(vvv j)−Hh(vvv j) = (1/n)∑
n
i=1(1−E)φi jwwwiwwwT

i , where φi j =
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Kh(εi−wwwT
i vvv j) satisfy |φi j| ≤ κuh−1 and

E
(
φ

2
i j|xxxi

)
=

1
h2

∫
∞

−∞

K2

(
〈wwwi,vvv〉− t

h

)
fεi|xxxi(t)dt =

1
h

∫
∞

−∞

K2(u) fεi|xxxi(www
T
i vvv−bu)du≤ f̄ κuh−1

almost surely. Given ε3 ∈ (0,1/2), there exits an ε3-net N3 of the sphere Sp−1 with |N3| ≤ (1+

2/ε3)
p such that ‖Ĥh(vvv j)−Hh(vvv j)‖2 ≤ (1− 2ε3)

−1 maxuuu∈N3 |uuuT{Ĥh(vvv j)−Hh(vvv j)}uuu|. Given

uuu ∈N3 and k = 2,3, . . ., we bound the higher order moments of φi j(wwwT
i uuu)2 by

E|φi j(wwwT
i uuu)2|k ≤ f̄ κuh−1 · (κuh−1)k−2

υ
2k
1 ·2k

∫
∞

0
P
(
|wwwT

i uuu| ≥ υ1u
)
u2k−1du

≤ f̄ κuh−1 · (κuh−1)k−2
υ

2k
1 ·4k

∫
∞

0
u2k−1e−u2/2du

≤ f̄ κuh−1 · (κuh−1)k−2
υ

2k
1 ·2k+1k!.

In particular, Eφ 2
i j(www

T
i uuu)4 ≤ (4υ2

1 )
2 f̄ κuh−1, and

E|φi j(wwwT
i uuu)2|k ≤ k!

2
· (4υ

2
1 )

2 f̄ κuh−1 · (2υ
2
1 κuh−1)k−2 for k ≥ 3.

Applying Bernstein’s inequality and the union bound, we find that for any u≥ 0,

‖Ĥh(vvv j)−Hh(vvv j)‖2

≤ 1
1−2ε3

max
uuu∈N3

∣∣∣∣∣1n n

∑
i=1

(1−E)φi j(wwwT
i uuu)2

∣∣∣∣∣≤ 2υ2
1

1−2ε3

(
2
√

2 f̄ κu
u

nh
+κu

u
nh

)

with probability at least 1− 2(1+ 2/ε3)
pe−u = 1− (1/2)elog(4)+p log(1+2/ε3)−u. Setting ε3 =

2/(e3−1) and u = log(4)+3p+ v, it follows that with probability at least 1− e−v/2,

I2, j . υ
2
1

(√
p+ v
nh

+
p+ v
nh

)
.

Once again, taking the union bound over j = 1, . . . ,d1 and setting v = p log(1+2r/ε1)+ t, we
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obtain that with probability at least 1−d1e−v ≥ 1− e−t/2,

max
1≤ j≤d1

I2, j .

√
p log(3er/ε1)+ t

nh
+

p log(3er/ε1)+ t
nh

. (B.62)

For I3, j, following the proof of (B.10) it can similarly shown that I3, j ≤ 0.5l0m3r. Com-

bining this with (B.61) and (B.62), and taking ε1 = r/n ∈ (0,r) in the beginning of the proof,

we conclude that with probability at least 1− e−t ,

sup
δδδ∈Θ(r)

‖ΣΣΣ−1/2{Ĵh(δδδ )−Jh}ΣΣΣ−1/2‖2 .

√
p logn+ t

nh
+

p logn+ t
nh

+
(p+ t)1/2r

nh2 + r

as long as n& p+ t. This leads to (3.32) under the prescribed bandwidth constraint.

To derive the same bound for V̂h(δδδ )−Vh, notice that u 7→ {Kh(u)− τ}2 is a (2τ̄κu/h)-

Lipschitz continuous function, where τ̄ = max(τ,1− τ). Moreover, for every δδδ ∈ Rp, the

random variable {Kh(〈xxxi,δδδ 〉− εi)− τ}2 takes values in [0, τ̄2]. We can thus apply the same

argument to bound supδδδ∈Θ(r) ‖ΣΣΣ−1/2{V̂h(δδδ )−Vh}ΣΣΣ−1/2‖2.

B.3 Theoretical Properties of One-step Conquer

In this section, we provide theoretical properties of the one-step conquer estimator β̂ββ ,

defined in Section B.1. The key message is that, when higher-order kernels are used (and if

the conditional density fε|xxx(·) has enough derivatives), the asymptotic normality of the one-step

estimator holds under weaker growth conditions on p. For example, the scaling condition

p = o(n3/8) that is required for the conquer estimator can be reduced to roughly p = o(n7/16)

for the one-step conquer estimator using a kernel of order 4.

Condition 1. Let G(·) be a symmetric kernel of order ν > 2, that is,
∫

∞

−∞
ukG(u)du = 0 for

k = 1, . . . ,ν − 1 and
∫

∞

−∞
uνG(u)du 6= 0. Moreover, gk =

∫
∞

−∞
|ukG(u)|du < ∞ for 1 ≤ k ≤ ν ,

G is uniformly bounded with gu = supu∈R |G(u)|< ∞ and is lG-Lipschitz continuous for some

lG > 0.
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As before, we write Gb(u) = G (u/b) and G (u) =
∫ u
−∞

G(v)dv for u ∈ R and b > 0. The

use of a higher-order kernel does not necessarily reduce bias unless the conditional density fε|xxx(·)

of ε given xxx is sufficiently smooth. Therefore, we further impose the following smoothness

conditions on fε|xxx(·).

Condition 2. Let ν ≥ 4 be the integer in Condition 1. The conditional density fε|xxx(·) is (ν−1)-

times differentiable, and satisfies | f (ν−2)
ε|xxx (u)− f (ν−2)

ε|xxx (0)| ≤ lν−2|u| for all u ∈ R almost surely

(over the random vector xxx), where lν−2 > 0 is a constant. Also, there exists some constant CG > 0

such that
∫

∞

−∞
|uν−1G(u)| · sup|t|≤|u| | f

(ν−1)
ε|xxx (t)− f (ν−1)

ε|xxx (0)|du≤CG almost surely.

Notably, we have

∇QG
b (βββ ) = E

{
Gb
(
〈xxx,βββ 〉− y

)
− τ
}

xxx and ∇
2QG

b (βββ ) = E
{

Gb(y−〈xxx,βββ 〉)xxxxxxT
}
, (B.63)

representing the population score and Hessian of QG
b (·) = EQ̂G

b (·). As b → 0, we expect

∇QG
b (βββ

∗) and ∇2QG
b (βββ

∗) to converge to 0 (zero vector in Rp) and J = E{ fε|xxx(0)xxxxxxT}, respec-

tively. The following proposition validates this claim by providing explicit error bounds.

Proposition B.3.1. Let b ∈ (0,1) be a bandwidth. Under Conditions 1 and 2, we have

‖ΣΣΣ−1/2
∇QG

b (βββ
∗)‖2 ≤ lν−2gν bν/ν! and

‖ΣΣΣ−1/2
∇

2QG
b (βββ

∗)ΣΣΣ−1/2−H‖2 ≤CG bν−1/(ν−1)!,

where H = ΣΣΣ
−1/2JΣΣΣ

−1/2 = E{ fε|xxx(0)wwwwwwT} with www = ΣΣΣ
−1/2xxx.

Proposition B.3.2 shows that when a higher-order kernel is used, the bias is significantly

reduced in the sense that ‖∇QG
b (βββ

∗)‖2 =O(bν) and ‖∇2QG
b (βββ

∗)−J‖2 =O(bν−1), where ν ≥ 4

is an even integer. Notably, even if the kernel G has negative parts, the population Hessian

∇2QG
b (βββ

∗) preserves the positive definiteness of J as long as the bandwidth b is sufficiently

small.
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To construct the one-step conquer estimator, two key quantities are the sample Hessian

∇2Q̂G
b (·) and sample gradient ∇Q̂G

b (·), both evaluated at βββ , a consistent initial estimate. In the

next two propositions, we establish uniform convergence results of the Hessian and gradient of

the empirical smoothed loss to their population counterparts. As a direct consequence, ∇2Q̂G
b (βββ )

is positive definite with high probability, provided that βββ is consistent (i.e., in a local vicinity of

βββ
∗). To be more specific, for r > 0, we define the local neighborhood

Θ
∗(r) =

{
βββ ∈ Rp : ‖βββ −βββ

∗‖ΣΣΣ ≤ r
}
. (B.64)

Proposition B.3.2. Conditions 1, 2 and 3.3.5 ensure that, with probability at least 1− e−t ,

sup
βββ∈Θ∗(r)

‖ΣΣΣ−1/2{∇2Q̂G
b (βββ )−∇

2QG
b (βββ )}ΣΣΣ−1/2‖2 .

√
p logn+ t

nb
+

p logn+ t
nb

+
(p+ t)1/2r

nb2

as long as n& p+ t.

Proposition B.3.3. Conditions 1, 2 and 3.3.5 ensure that, with probability at least 1− e−t ,

sup
βββ∈Θ∗(r)

‖ΣΣΣ−1/2{∇Q̂G
b (βββ )−∇Q̂G

b (βββ
∗)}−ΣΣΣ

−1/2J(βββ −βββ
∗)‖2 . r

(√
p+ t
nb

+ r+bν−1

)
(B.65)

as long as
√

(p+ t)/n. b.

With the above preparations, we are ready to present the Bahadur representation for the

one-step conquer estimator β̂ββ .

Theorem B.3.1. Assume Conditions 3.3.1, 3.3.2 and 3.3.5 in the main text and Conditions 1 and

2 hold. For any t > 0, let the sample size n, dimension p and the bandwidths h,b > 0 satisfy

n & p(logn)2 + t,
√

(p+ t)/n . h . {(p+ t)/n}1/4 and
√
(p+ t)/n . b . {(p+ t)/n}1/(2ν).
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Then, the one-step conquer estimator β̂ββ satisfies the bound

∥∥∥∥∥ΣΣΣ
−1/2J(β̂ββ −βββ

∗)− 1
n

n

∑
i=1

{
τ−Gb(−εi)

}
ΣΣΣ
−1/2xxxi

∥∥∥∥∥
2

.

{√
(p logn+ t)/(nb)︸ ︷︷ ︸

variance term

+ bν−1︸︷︷︸
bias term

}√
p+ t

n
(B.66)

with probability at least 1−5e−t .

Theorem B.3.1 shows that using a higher-order kernel (ν ≥ 4) allows one to choose larger

bandwidth, thereby reducing the “variance” and the total Bahadur linearization error. Similarly

to Theorem 3.3.3 in the main text, the following asymptotic normal approximation result for

linear projections of one-step conquer is a direct consequence of Theorem B.3.1.

Theorem B.3.2. Assume Conditions 3.3.1, 3.3.2 and 3.3.5 in the main text and Conditions 1

and 2 hold. Let the bandwidths satisfy (q/n)1/2 . h. (q/n)1/4 and (q/n)1/2 . b. (q/n)1/(2ν),

where q := p+ logn. Then,

sup
x∈R,aaa∈Rp

∣∣P(n1/2〈aaa, β̂ββ −βββ
∗〉/σ0 ≤ x

)
−Φ(x)

∣∣.√(p+ logn)p logn
nb

+n1/2bν , (B.67)

where σ2
0 = σ2

0 (aaa) = τ(1− τ)‖J−1aaa‖2
ΣΣΣ

. In particular, with b� (q/n)2/(2ν+1),

sup
x∈R,aaa∈Rp

∣∣P(n1/2〈aaa, β̂ββ −βββ
∗〉 ≤ σ0x

)
−Φ(x)

∣∣→ 0

as n→ ∞ under the scaling p4ν/(2ν−1)(logn)(2ν+1)/(2ν−1) = o(n).

Let G(·) be a kernel of order ν = 4. In view of Theorem B.3.2, we take h � {(p+

logn)/n}2/5 as in the main text and b= {(p+ logn)/n}2/9, thereby obtaining that n1/2〈aaa, β̂ββ−βββ 〉,

for an arbitrary aaa ∈Rp, is asymptotically normally distributed as long as p(logn)9/16 = o(n7/16)

as n→ ∞.
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B.3.1 Proof of Proposition B.3.1

We start from the gradient ΣΣΣ
−1/2

∇QG
b (βββ

∗) = E{Gb(−ε)− τ}www with www = ΣΣΣ
−1/2xxx. Let

Exxx be the conditional expectation given xxx. By integration by parts,

ExxxGb(−ε) =
∫

∞

−∞

G (−t/b)dFε|xxx(t) =
∫

∞

−∞

G(u)Fε|xxx(−bu)du. (B.68)

Applying a Taylor series expansion with integral remainder on Fε|xxx(−bu) yields

Fε|xxx(−bu) = Fε|xxx(0)+
ν−1

∑
`=1

F(`)
ε|xxx (0)

(−bu)`

`!

+
(−bu)ν−1

(ν−2)!

∫ 1

0
(1−w)ν−2{F(ν−1)

ε|xxx (−buw)−F(ν−1)
ε|xxx (0)

}
dw

= τ +
ν−2

∑
`=0

f (`)
ε|xxx(0)

(−bu)`+1

(`+1)!

+
(−bu)ν−1

(ν−2)!

∫ 1

0
(1−w)ν−2{ f (ν−2)

ε|xxx (−buw)− f (ν−2)
ε|xxx (0)

}
dw.

Recall that G is a kernel of order ν ≥ 4 (an even integer) and gν =
∫

∞

−∞
|uνG(u)|du < ∞.

Substituting the above expansion into (B.68), we obtain

ExxxGb(−ε) = τ− bν−1

(ν−2)!

∫
∞

−∞

∫ 1

0
uν−1G(u)(1−w)ν−2{ f (ν−2)

ε|xxx (−buw)− f (ν−2)
ε|xxx (0)

}
dwdu.

Furthermore, by the Lipschitz continuity of f (ν−2)
ε|xxx (·) around 0,

|ExxxGb(−ε)− τ| ≤ lν−2bν

(ν−2)!

∫
∞

−∞

∫ 1

0
|uνG(u)|(1−w)ν−2wdwdu

= B(2,ν−1)lν−2gν bν/(ν−2)!,
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where B(x,y) :=
∫ 1

0 tx−1(1− t)y−1dt denotes the beta function. In particular, B(2,ν − 1) =

Γ(2)Γ(ν−1)/Γ(ν +1) = (ν−2)!/ν!. Putting together the pieces yields

‖ΣΣΣ−1/2
∇QG

b (βββ
∗)‖2 = sup

uuu∈Sp−1
EExxx

{
Gb(−ε)− τ

}
wwwTuuu≤ lν−2gν bν/ν!.

Turning to the Hessian, note that

‖ΣΣΣ−1/2{∇2QG
b (βββ

∗)−J}ΣΣΣ−1/2‖2 =

∥∥∥∥∥E
∫

∞

−∞

G(u)
{

fε|xxx(−bu)− fε|xxx(0)
}

duwwwwwwT

∥∥∥∥∥
2

.

Applying a similar Taylor series expansion as above, we have

fε|xxx(t) = fε|xxx(0)+
ν−1

∑
`=1

f (`)
ε|xxx(0)

t`

`!
+

tν−1

(ν−2)!

∫ 1

0
(1−w)ν−2{ f (ν−1)

ε|xxx (tw)− f (ν−1)
ε|xxx (0)

}
dw.

(B.69)

Under Conditions 1 and 2, it follows that

‖ΣΣΣ−1/2{∇2QG
b (βββ

∗)−J}ΣΣΣ−1/2‖ΩΩΩ

≤ bν−1

(ν−2)!
sup

uuu,δδδ∈Sp−1
E
∫

∞

−∞

∫ 1

0
uν−1G(u)(1−w)ν−2×

{
f (ν−1)
ε|xxx (−buw)− f (ν−1)

ε|xxx (0)
}

dwdu
〈
www,uuu

〉〈
www,δδδ

〉
≤ bν−1

(ν−1)!
sup

uuu,δδδ∈Sp−1
E
∫

∞

−∞

|uν−1G(u)| sup
|t|≤b|u|

∣∣ f (ν−1)
ε|xxx (t)− f (ν−1)

ε|xxx (0)
∣∣du · |〈www,uuu〉〈www,δδδ

〉
|

≤ CGbν−1

(ν−1)!
sup

uuu∈Sp−1
E
〈
www,uuu

〉2
=

CG

(ν−1)!
bν−1.

This completes the proof.

B.3.2 Proof of Proposition B.3.2

The proof is almost identical to that of Proposition 3.3.2, and thus is omitted.
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B.3.3 Proof of Proposition B.3.3

Define the stochastic process ∆b(βββ ) = ΣΣΣ
−1/2{∇Q̂G

b (βββ )−∇Q̂G
b (βββ

∗)−J(βββ −βββ
∗)}. By

the triangle inequality,

sup
βββ∈Θ∗(r)

‖∆b(βββ )‖2 ≤ sup
βββ∈Θ∗(r)

‖E∆b(βββ )‖2 + sup
βββ∈Θ∗(r)

‖∆b(βββ )−E∆b(βββ )‖2

Recall that H = ΣΣΣ
−1/2JΣΣΣ

−1/2 = E{ fε|xxx(0)wwwwwwT}. For the first term on the right-hand side, using

the mean value theorem for vector-valued functions yields

E∆b(βββ ) =

{
ΣΣΣ
−1/2

∫ 1

0
∇

2QG
b
(
(1− s)βββ ∗+ sβββ

)
dsΣΣΣ

−1/2−J0

}
ΣΣΣ

1/2(βββ −βββ
∗).

By a change of variable δδδ = ΣΣΣ
1/2(βββ −βββ

∗),

∇
2QG

b
(
(1− s)βββ ∗+ sβββ

)
= E

∫
∞

−∞

G(u) fε|xxx(swwwT
δδδ −bu)du · xxxxxxT.

For every s ∈ [0,1] and u ∈ R, it ensures from fε|xxx(·) being Lipschitz that

| fε|xxx(swwwT
δδδ −bu)− fε|xxx(−bu)| ≤ l0s · |wwwT

δδδ |.

Moreover, by the Taylor series expansion (B.69),

fε|xxx(−bu) = fε|xxx(0)+
ν−1

∑
`=1

f (`)
ε|xxx(0)

(−bu)`

`!

+
(−bu)ν−1

(ν−2)!

∫ 1

0
(1−w)ν−2{ f (ν−1)

ε|xxx (−buw)− f (ν−1)
ε|xxx (0)

}
dw.
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Consequently,

∥∥∥∥∥ΣΣΣ
−1/2

∫ 1

0
∇

2QG
b
(
(1− s)βββ ∗+ sβββ

)
dsΣΣΣ

−1/2−H

∥∥∥∥∥
2

≤
∥∥∥∥∥ bν−1

(ν−2)!
E
∫

∞

−∞

∫ 1

0
uν−1G(u)(1−w)ν−2{ f (ν−1)

ε|xxx (−buw)− f (ν−1)
ε|xxx (0)

}
dwdu ·wwwwwwT

∥∥∥∥∥
2

+0.5l0 ·
∥∥E |wwwT

δδδ | ·wwwwwwT
∥∥

2

≤ CGbν−1

(ν−1)!
sup

uuu∈Sp−1
E
〈
www,uuu

〉2
+

l0
2

sup
uuu∈Sp−1

E
(
|wwwT

δδδ |〈www,uuu〉2
)

≤
(

CG

(ν−1)!
bν−1 +0.5l0m3‖δδδ‖2

)
.

Taking the supremum over βββ ∈Θ∗(r), or equivalently δδδ ∈ Bp(r), yields

sup
βββ∈Θ∗(r)

‖E∆b(βββ )‖ ≤
(

CG

(ν−1)!
bν−1 +0.5l0m3r

)
r . (bν−1 + r)r.

For the stochastic term supβββ∈Θ∗(r) ‖∆b(βββ )−E∆b(βββ )‖2, following the proof of Theo-

rem 3.3.2, it can be similarly shown that with probability at least 1− e−t ,

sup
βββ∈Θ∗(r)

‖∆b(βββ )−E∆b(βββ )‖2 . r

√
p+ t
nb

as long as
√

(p+ t)/n. b.

Combining the last two displays completes the proof of (B.65).

B.3.4 Proof of Theorem B.3.1

STEP 1 (Consistency of the initial estimate). First, note that the consistency of the initial estimator

βββ—namely, βββ lies in a local neighborhood of βββ
∗ with high probability, is a direct consequence

of Theorem 3.3.1. Given a non-negative kernel K(·) and for any t > 0, the initial estimator βββ
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satisfies

‖βββ −βββ
∗‖ΣΣΣ ≤ r1 �

√
p+ t

n
(B.70)

with probability at least 1−2e−t as long as ( p+t
n )1/2 . h . ( p+t

n )1/4. Let Einit(t) be the event

that (B.70) holds. Provided that the sample Hessian ∇2Q̂G
b (βββ ) is invertible, we have

J(β̂ββ −βββ ) =−J
{

∇
2Q̂G

b (βββ )
}−1

∇Q̂G
b (βββ )

=−J
{

∇
2Q̂G

b (βββ )
}−1

ΣΣΣ
1/2 ·ΣΣΣ−1/2{

∇Q̂G
b (βββ )−∇Q̂G

b (βββ
∗)−J(βββ −βββ

∗)
}

−J
{

∇
2Q̂G

b (βββ )
}−1

ΣΣΣ
1/2 ·ΣΣΣ−1/2{J(βββ −βββ

∗)+∇Q̂G
b (βββ

∗)
}
,

or equivalently,

ΣΣΣ
−1/2J(β̂ββ −βββ

∗) =−HĤ−1
b ·ΣΣΣ−1/2{

∇Q̂G
b (βββ )−∇Q̂G

b (βββ
∗)−J(βββ −βββ

∗)
}

+
(
Ip−HĤ−1

b

)
H ·ΣΣΣ1/2(βββ −βββ

∗)−HĤ−1
b ·ΣΣΣ−1/2

∇Q̂G
b (βββ

∗),

where H = E{ fε|xxx(0)wwwwwwT}= ΣΣΣ
−1/2JΣΣΣ

−1/2 and Ĥb := ΣΣΣ
−1/2

∇2Q̂G
b (βββ )ΣΣΣ

−1/2. It follows that

‖ΣΣΣ−1/2J(β̂ββ −βββ
∗)+ΣΣΣ

−1/2
∇Q̂G

b (βββ
∗)‖2

≤ ‖(Ip−HĤ−1
b )H‖2 · ‖βββ −βββ

∗‖ΣΣΣ +‖Ip−HH−1
b ‖2 · ‖∇Q̂G

b (βββ
∗)‖ΩΩΩ

+‖HĤ−1
b ‖2 · ‖∇Q̂G

b (βββ )−∇Q̂G
b (βββ

∗)−J(βββ −βββ
∗)‖ΩΩΩ. (B.71)

In view of (B.71), it remains to bound the following three quantities:

‖Ip−HĤ−1
b ‖2, ‖∇Q̂G

b (βββ
∗)‖ΩΩΩ and ‖∇Q̂G

b (βββ )−∇Q̂G
b (βββ

∗)−J(βββ −βββ
∗)‖ΩΩΩ.

STEP 2 (Consistency of the sample Hessian ∇2Q̂G
b (βββ )). Recall that Ĥb = ΣΣΣ

−1/2
∇2Q̂G

b (βββ )ΣΣΣ
−1/2
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and H = ΣΣΣ
−1/2JΣΣΣ

−1/2. By the triangle inequality,

‖Ĥb−H‖2 ≤ ‖ΣΣΣ−1/2{∇2Q̂G
b (βββ )−∇

2QG
b (βββ

∗)}ΣΣΣ−1/2‖2 +‖ΣΣΣ−1/2
∇

2QG
b (βββ

∗)ΣΣΣ−1/2−H‖2.

Let the bandwidth b satisfy max{ p logn+t
n ,n−1/2} . b . 1. Conditioned on Einit(t), applying

Propositions B.3.1 and B.3.2 with r = r1 yields that, with probability 1− e−t ,

‖Ĥb−H‖2 ≤ r2 �
√

p logn+ t
nb

+bν−1.

Under Condition 3.3.2, 0 < f ≤ λmin(H)≤ λmax(H)≤ f̄ , so that ‖H−1‖2 ≤ f−1. For sufficiently

large n and small b, this implies ‖ĤbH−1− Ip‖2 ≤ f−1r2 < 1, and hence

‖HĤ−1
b − Ip‖2 ≤

r2

f − r2
, ‖HĤ−1

b ‖2 ≤
f

f − r2
. (B.72)

STEP 3 (Controlling the scores). For ‖ΣΣΣ−1/2
∇Q̂G

b (βββ
∗)‖2, it follows from Lemma B.2.2 and

Proposition B.3.1 that with probability at least 1− e−t ,

‖ΣΣΣ−1/2
∇Q̂G

b (βββ
∗)‖2 .

√
p+ t

n
+bν . (B.73)

Turning to ‖ΣΣΣ−1/2{∇Q̂G
b (βββ )−∇Q̂G

b (βββ
∗)} − ΣΣΣ

−1/2J(βββ − βββ
∗)‖2, applying the concentration

bound (B.70) and Proposition B.3.3 we obtain that, with probability at least 1− e−t condi-

tioned on Einit(t),

‖ΣΣΣ−1/2{∇Q̂G
b (βββ )−∇Q̂G

b (βββ
∗)}−ΣΣΣ

−1/2J(βββ −βββ
∗)‖2 .

p+ t
nb1/2 +bν−1

√
p+ t

n
(B.74)

as long as ( p+t
n )1/2 . b. 1.

Finally, combining the bounds (B.70)–(B.74), we conclude that with probability at least
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1−5e−t ,

‖ΣΣΣ−1/2J(β̂ββ −βββ
∗)+ΣΣΣ

−1/2
∇Q̂G

b (βββ
∗)‖2 .

(√
p logn+ t

nb
+bν−1

)(√
p+ t

n
+bν

)
,

provided that max
{ p logn+t

n ,( p+t
n )1/2}. b. 1. Under the sample size scaling n& p(logn)2 + t

and bandwidth constraint b. ( p+t
n )1/(2ν), this leads to the claimed bound (B.66).
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Appendix C

Supplementary Material for Chapter 4

C.1 Optimization Algorithms

C.1.1 Low-dimensional setting

Solving the smoothed estimating equations (4.3) and (4.4) is highly similar to Section 3.2.

The method is summarized in Algorithm 3.

Algorithm 3. Barzilai-Borwein gradient descent method for minimizing L̂k(·).
Input: Censored data {(yi,xxxi,∆i)}n

i=1, current quantile level τk ∈ (0,1), previous estimates
{β̂ββ j}k−1

j=0,

initial values β̂ββ
(0)
k = β̂ββ k−1, bandwidth h, step size upper bound αmax, tolerance level ε .

1: Compute β̂ββ
(1)
k ← β̂ββ

(0)
k −∇L̂k(β̂ββ

(0)
k )

2: for t = 1,2 . . . do
3: ssst ← β̂ββ

(t)
k − β̂ββ

(t−1)
k , gggt ← ∇L̂k(β̂ββ

(t)
k )−∇L̂k(β̂ββ

(t−1)
k ) = ∇L̂0(β̂ββ

(t)
k )−∇L̂0(β̂ββ

(t−1)
k )

4: αt,1← ||ssst ||22/〈ssst ,gggt〉, αt,2← 〈ssst ,gggt〉/||gggt ||22
5: αt ←min{αt,1,αt,2,αmax} if 〈ssst ,gggt〉> 0, and αt ← 1 otherwise

6: Update β̂ββ
(t+1)
k ← β̂ββ

(t)
k −αt∇L̂k(β̂ββ

(t)
k )

7: end for when ‖∇L̂k(β̂ββ
(t)
k )‖2 ≤ ε
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C.1.2 High-dimensional setting

In the high dimensional regime, we need to solve the following weighted `1-penalized

programs sequentially:

β̂ββ k = β̂ββ (τk) ∈ argmin
βββ∈Rp

{
L̂k(βββ )+‖λλλ k ◦βββ‖1

}
, k = 0, . . . ,m, (C.1)

where ◦ denotes the Hadamard product, and λλλ k = (λk,1, . . . ,λk,p)
T may depend on the previous

estimates {β̂ββ j}k−1
j=0. To this end, we apply the iterative local adaptive majorize-minimize (I-

LAMM) algorithm proposed in Fan et al. [2018].

To illustrate the basic ideas, consider the general problem of minimizing a nonlinear

function f (·) on Rp. Starting at a given point βββ 0, the majorize-minimize (MM) algorithm

involves two steps: first, construct a majorizing function g(· |βββ 0), satisfying

g(βββ 0 |βββ 0) = f (βββ 0) and g(βββ |βββ 0)≥ f (βββ ) for any βββ ∈ Rp︸ ︷︷ ︸
global majorization property

;

secondly, update βββ 0 by βββ 1 := argminβββ∈Rp g(βββ |βββ 0) [Lange, Hunter and Yang, 2000]. Noting

that

f (βββ 1)
majorization
≤ g(βββ 1 |βββ 0)

minimization
≤ g(βββ 0 |βββ 0) = f (βββ 0),

the objective value of such an algorithm is non-increasing in each step. In fact, the global

majorization property is not necessary to ensure non-increasing objective values. Instead, we

only need the following local majorization property

g(βββ 0 |βββ 0) = f (βββ 0) and g(βββ 1 |βββ 0)≥ f (βββ 1).

To construct a proper majorizing function for L̂k(·) around βββ 0, we define an isotropic
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quadratic function

F(βββ ;φ ,βββ 0) := L̂k(βββ 0)+ 〈∇L̂k(βββ 0),βββ −βββ 0〉+
φ

2
‖βββ −βββ 0‖2

2

for some φ > 0. It is easy to see that F(βββ 0;φ ,βββ 0) = L̂k(βββ 0). Using such a surrogate loss

function, the weighted `1-penalized program minβββ∈Rp{F(βββ ;φ ,βββ 0)+‖λλλ k◦βββ‖1} admits a closed-

form solution βββ 1 = Ssoft(βββ 0−∇L̂k(βββ 0)/φ , λλλ k/φ), where Ssoft(βββ , λλλ ) := (sign(β j)max{|β j|−

λk, j,0}) j=1,...,p is the soft-thresholding operator. Moreover, the quadratic coefficient φ > 0

should be sufficiently large so that the local majorization property F(βββ 1;φ ,βββ 0) ≥ L̂k(βββ 1) is

satisfied. Starting with a relatively small value φ = φ0, we iteratively increase φ by a factor of

γ > 1 and compute

βββ 1,` = Ssoft(βββ 0−∇L̂k(βββ 0)/φ`, λλλ k/φ`) with φ` = γ
`
φ0, `= 0,1, . . . .

until the local majorization property holds. Repeating this procedure yields a sequence of iterates

{βββ t}t=0,1,... until the stopping criterion is met, say ‖βββ t+1−βββ t‖2 ≤ ε . We treat φ0,γ,ε as internal

optimization parameters; the default choice is (φ0,γ,ε) = (0.5,1.5,10−5).

C.2 Proofs of the Main Results in Section 4.3.2

To begin with, we revisit and define some notations that will be frequently used. For

predetermined grid points τL = τ0 < τ1 < · · ·< τm = τU , we write βββ
∗
j = βββ

∗(τ j) and β̂ββ j = β̂ββ (τ j),

j = 0, . . . ,m. Since the estimators {β̂ββ j}m
j=0 are constructed sequentially, the statistical error of

β̂ββ j at quantile level τ j depends on the accumulated errors of β̂ββ 0, . . . , β̂ββ j−1.

For every r > 0, define the local ellipse Θ(r) = {δδδ ∈Rp : ‖δδδ‖Σ ≤ r} under the Σ-induced

norm. Under Condition 4.3.2 on the (random) feature vector xxx ∈ Rp, for every δ ∈ (0,1] we set

ηδ = inf
{

η > 0 : E
{
(zzzTvvv)2

1(|zzzTvvv|> η)
}
≤ δ for all vvv ∈ Sp−1}, (C.2)
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where zzz = Σ−1/2xxx. Since E(zzzTvvv)2 = 1 for any vvv ∈ Sp−1, ηδ is well-defined for each δ , and

depends implicitly on the underlying distribution of zzz. Throughout the proof, we write

zzzi = (zi1, . . . ,zip)
T = Σ

−1/2xxxi, i = 1, . . . ,n.

For a non-negative kernel function K(·) and a bandwidth h > 0, we write

Kh(u) = h−1K(u/h), K̄h(u) = K̄(u/h) and K̄(u) =
∫ u

−∞

K(t)dt.

C.2.1 Technical lemmas

We first collect several technical lemmas that serve as the building blocks for proving the

main results.

Lemma C.2.1 (Convexity lemma). For a vector-valued function Q(βββ ) : Rp→ Rp with positive

semi-definite Jacobian, define the corresponding divergence function D = DQ : Rp×Rp→ [0,∞)

as D(βββ 1,βββ 2) = 〈Q(βββ 1)−Q(βββ 2),βββ 1−βββ 2〉. For any βββ ,βββ ′ ∈ Rp and η ∈ [0,1], we have

D(βββ ′+η(βββ −βββ
′),βββ ′)≤ ηD(βββ ,βββ ′).

Lemma C.2.2 below provides a Bernstein-type inequality for the `2-norm of a sum of

centered random vectors, which will be frequently used to bound the smoothed estimating

functions.

Lemma C.2.2. Assume Condition 4.3.2 holds, and let {ξi}n
i=1 be independent random variables

satisfying E(ξ 2
i |xxxi)≤ σ2 and |ξi| ≤M for some M ≥ σ > 0. Then, for any t > 0,

∥∥∥∥∥1
n

n

∑
i=1

(ξizzzi−Eξizzzi)

∥∥∥∥∥
2

≤ 2σ

√
p
n
+σ

√
2t
n
+Mζp

4t
3n

holds with probability at least 1− e−t , where ζp = maxxxx∈X ‖xxx‖Σ−1 .
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Lemma C.2.3 provides concentration inequalities for some of the stochastic terms in the

estimating functions Q̂0(·) and Q̂ j(·) ( j ≥ 1).

Lemma C.2.3. Let j = 0,1, . . . ,m and t > 0.

(i) With probability at least 1− e−t ,

||Q̂0(βββ
∗
j)−EQ̂0(βββ

∗
j)||Σ−1 ≤ 2τ̄0

(√
p
n
++

√
t

2n
+ζp

2t
3n

)
,

where τ̄0 = max(τ0,1− τ0).

(ii) With probability at least 1− e−t ,

∥∥∥∥∥1
n

n

∑
i=1

(1−E)K̄h(yi− xxxT
i βββ
∗
j)xxxi

∥∥∥∥∥
Σ−1

≤ 2

(√
p
n
+

√
t

2n
+ζp

2t
3n

)
.

(iii) With probability at least 1− e−t ,

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ j+1

τ j

{
K̄h(yi− xxxT

i βββ
∗(u))− K̄h(yi− xxxT

i βββ
∗(τ j))

}
dH(u) · xxxi

∥∥∥∥∥
Σ−1

. m1/2
4 w j ·δ ∗

√
p+ t
nh

+w j ·ζ 2
p δ
∗ t

nh
,

where w j = H(τ j+1)−H(τ j) = log( 1−τ j
1−τ j+1

).

The following lemma concerns the first-order property of the smoothed estimating

functions Q̂ j(·) in (4.3) and (4.4). Define the corresponding symmetrized Bregman divergence

D : Rp×Rp→ [0,∞) as

D(βββ 1,βββ 2) := 〈Q̂ j(βββ 1)− Q̂ j(βββ 2),βββ 1−βββ 2〉= 〈Q̂0(βββ 1)− Q̂0(βββ 2),βββ 1−βββ 2〉. (C.3)

Note that the divergence D is independent of j.

166



Lemma C.2.4 (Restricted strong convexity). Assume Conditions 3.1–3.3 hold, and let h,r > 0

satisfy 4η1/4r ≤ h≤ 1 with η1/4 defined in (C.2). Then, for any 0≤ j ≤ m and t > 0,

inf
βββ∈βββ

∗
j+Θ(r)

D(βββ ,βββ ∗j)

κl ||βββ −βββ
∗
j ||2Σ
≥ 3

4
g−g1/2r−1

(
5
4

√
hp
n

+

√
ht
8n

)
− cr−2 ht

n

with probability at least 1− e−t , where c = 1/4+1/48≈ 0.27.

For j = 0,1, . . . and r > 0, define

ϖ j(r) = sup
βββ∈βββ

∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

{
K̄h(yi− xxxT

i βββ )− K̄h(yi− xxxT
i βββ
∗
j)
}

xxxi +H j(βββ −βββ
∗
j)

∥∥∥∥∥
Σ−1

, (C.4)

ω j(r) = sup
βββ∈βββ

∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

∆i
{

K̄h(xxxT
i βββ − yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
xxxi−J j(βββ −βββ

∗
j)

∥∥∥∥∥
Σ−1

, (C.5)

where J j = J(τ j) = E{g(xxxTβββ
∗
j |xxx)xxxxxxT} and H j = H(τ j) = E{ f (xxxTβββ

∗
j |xxx)xxxxxxT}. The following

lemma provides upper bounds for the two suprema ϖ j(r) and ω j(r) for any given r > 0.

Lemma C.2.5. Assume Conditions 4.3.1–4.3.3 hold, and write mk = supuuu∈Sp−1 E|zzzTuuu|k (k = 3,4).

Let j = 0,1, . . . ,m and r > 0.

(i) With probability at least 1− e−t ,

sup
βββ∈βββ

∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
{

K̄h(yi− xxxT
i βββ )− K̄h(yi− xxxT

i βββ
∗
j)
}

xxxi

∥∥∥∥∥
Σ−1

(C.6)

. (κu f m4)
1/2
√

p+ t
nh
· r,

provided that the “effective” sample size satisfies nh & ζ 2
p(p+ t). Moreover, for any

βββ ∈ βββ
∗
j +Θ(r),

∥∥∥∥∥E{K̄h(y− xxxT
βββ )− K̄h(y− xxxT

βββ
∗
j)
}

xxx+H j(βββ −βββ
∗
j)

∥∥∥∥∥
Σ−1

≤ l1
(
0.5m3r+κ1h

)
· r.
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(ii) With probability at least 1− e−t ,

sup
βββ∈βββ

∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

(1−E)∆i
{

K̄h(xxxT
i βββ − yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
xxxi

∥∥∥∥∥
Σ−1

(C.7)

. (κugm4)
1/2
√

p+ t
nh
· r,

provided that nh& ζ 2
p(p+ t). Moreover, for any βββ ∈ βββ

∗
j +Θ(r),

∥∥∥∥∥E∆i
{

K̄h(xxxT
βββ − y)− K̄h(xxxT

βββ
∗
j − y)

}
xxx−J j(βββ −βββ

∗
j)

∥∥∥∥∥
Σ−1

≤ l1
(
0.5m3r+κ1h

)
· r.

Lemma C.2.6. Assume Conditions 4.3.1–4.3.3 hold. For any τL ≤ τl < τu ≤ τU ,

sup
τ∈[τl ,τu]

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ

τl

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · xxxi

∥∥∥∥∥
Σ−1

.
τu− τl

1− τu

(√
p+ logn+ t

n
+ζp

logn+ t
n

)

holds with probability at least 1− e−t .

Moreover, Lemma C.2.7 provides upper bounds on the approximation error, which

consists of the smoothing and discretization errors. Let Q0(βββ ) = EQ̂0(βββ ).

Lemma C.2.7. For each j = 1, . . . ,m,

∥∥∥∥∥Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxx}

∥∥∥∥∥
Σ−1

(C.8)

≤ 1
2

l1κ2h2{1+H(τ j)−H(τ0)
}
+( f/ f )

j−1

∑
`=0

w`(τ`+1− τ`),

where w` = H(τ`+1)−H(τ`). In particular, ‖Q0(βββ
∗
0)‖Σ−1 ≤ 0.5l1κ2h2.

The next lemma establishes the asymptotic uniform equicontinuity of the centered process

Gn(·) in `∞([τL,τU ]). This is an equivalent definition to asymptotic tightness, and is an important
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step towards the weak convergence stated in Theorem 4.3.3.

Lemma C.2.8 (Asymptotic uniform equicontinuity). Assume the conditions of Theorem 4.3.3

hold, and let {aaan}n≥1 be a normalized sequence such that ‖aaan‖Σ = 1. Then, for any x > 0,

lim
δ→0

limsup
n→∞

P

{
sup

|τ1−τ2|<δ

|Gn(τ1)−Gn(τ2)|> x

}
= 0,

where Gn(·) is defined in (4.20).

C.2.2 Proof of Theorem 4.3.1

We first prove a uniform upper bound over the grid of τ-values—{τ0,τ1, . . . ,τm}. That

is, with probability at least 1−C1n−1,

‖β̂ββ j−βββ
∗
j‖Σ = ‖β̂ββ (τ j)−βββ

∗(τ j)‖Σ ≤ r j, j = 0,1, . . . ,m (C.9)

for a sequence of radii {r j} j=0,1,...,m and some absolute constant C1 > 0. To begin with, define a

crude (sub-optimal) convergence radius r♦ = h/(4η1/4) with η1/4 given in (C.2). Accordingly,

define “intermediate” points β̃ββ j = (1−u j)βββ
∗
j +u jβ̂ββ j, where

u j = sup
{

u ∈ [0,1] : u(β̂ββ j−βββ
∗
j) ∈Θ(r♦)

}
= 1 if β̂ββ j ∈ βββ

∗
j +Θ(r♦),

∈ (0,1) if β̂ββ j /∈ βββ
∗
j +Θ(r♦).

It is easy to see that β̃ββ j = β̂ββ j if β̂ββ j ∈ βββ
∗
j +Θ(r♦), and β̃ββ j ∈ βββ

∗
j + ∂Θ(r♦) if β̂ββ j /∈ βββ

∗
j +Θ(r j).

Here ∂Θ(r) denotes the boundary of Θ(r). In either case, we have β̃ββ j ∈ βββ
∗
j +Θ(r♦).

Recall the symmetrized Bregman divergence D(βββ 1,βββ 2) = 〈Q̂ j(βββ 1)− Q̂ j(βββ 2),βββ 1−βββ 2〉

defined in (C.3). Applying Lemma C.2.1 yields that, for each j = 0,1, . . . ,m,

D(β̃ββ j,βββ
∗
j)≤ u j ·D(β̂ββ j,βββ

∗
j) = u j · 〈Q̂ j(β̂ββ j)− Q̂ j(βββ

∗
j), β̂ββ j−βββ

∗
j〉.
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Since β̂ββ j solves the estimating equation Q̂ j(β̂ββ j) = 0, by the Cauchy–Schwartz inequality we

have

D(β̃ββ j,βββ
∗
j)≤ u j · 〈−Q̂ j(βββ

∗
j), β̂ββ j−βββ

∗
j〉 ≤ ‖Q̂ j(βββ

∗
j)‖Σ−1 · ‖β̃ββ j−βββ

∗
j‖Σ.

For some curvature parameter κ > 0 to be specified, define the event

F =
m⋂

j=0

{
D(βββ ,βββ ∗j)≥ κ · ‖βββ −βββ

∗
j‖2

Σ for all βββ ∈ βββ
∗
j +Θ(r♦)

}
. (C.10)

Conditioning on F , it follows that

‖β̃ββ j−βββ
∗
j‖Σ ≤ κ

−1‖Q̂ j(βββ
∗
j)‖Σ−1, j = 0,1, . . . ,m. (C.11)

Next we derive upper bounds for {‖Q̂ j(βββ
∗
j)‖Σ−1} j=0,1,...,m sequentially. For each j, we

decompose Q̂ j(βββ
∗
j) as

Q̂ j(βββ
∗
j) = Q̂0(βββ

∗
j)−Q0(βββ

∗
j)−

j−1

∑
`=0

w`(∆̂`+∆`)+Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxx}

where Q0(βββ ) = EQ̂0(βββ ), w` = H(τ`+1)−H(τ`),

∆̂` =
1
n

n

∑
i=1

{
K̄h(yi− xxxT

i β̂ββ `)− K̄h(yi− xxxT
i βββ
∗
`)
}

xxxi and ∆` =
1
n

n

∑
i=1

(1−E)K̄h(yi− xxxT
i βββ
∗
`)xxxi. (C.12)
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By the triangle inequality,

‖Q̂ j(βββ
∗
j)‖Σ−1 ≤ ‖Q̂0(βββ

∗
j)−Q0(βββ

∗
j)‖Σ−1︸ ︷︷ ︸

statistical error of the jth estimating equation

+
j−1

∑
`=0

w`

(
‖∆̂`‖Σ−1 +‖∆`‖Σ−1

)
︸ ︷︷ ︸

accumulated error

(C.13)

+

∥∥∥∥Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxx}

∥∥∥∥
Σ−1︸ ︷︷ ︸

approximation error

, j = 1, . . . ,m.

In particular, ‖Q̂0(βββ
∗
0)‖Σ−1 ≤ ‖Q̂0(βββ

∗
0)−Q0(βββ

∗
0)‖Σ−1 + ‖Q0(βββ

∗
0)‖Σ−1 . For the approximation

error term in (C.13), by Lemma C.2.7 we have

∥∥∥∥Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxx}

∥∥∥∥
Σ−1

(C.14)

≤ 1
2

l1κ2h2 +
j−1

∑
`=0

w ja < a+
j−1

∑
`=0

w ja with a :=
1
2

l1κ2h2 + f f−1
δ
∗.

For some δ > 0 to be determined, define the second event

G =

{
max

0≤ j≤m
‖Q̂0(βββ

∗
j)−Q0(βββ

∗
j)‖Σ−1

∨
max

0≤`≤m−1
‖∆`‖Σ−1 ≤ δ

}
, (C.15)

where the ∆`’s are given in (C.12). Conditioned on F ∩G , it follows from (C.13)–(C.15) that

‖Q̂0(βββ
∗
0)‖Σ−1 < δ +a, ‖Q̂ j(βββ

∗
j)‖Σ−1 < δ +a+

j−1

∑
`=0

w`

(
δ +a+‖∆̂`‖Σ−1

)
, j = 1, . . . ,m.

Based on the above general bounds, we iteratively control ‖β̂ββ j− βββ
∗
j‖Σ and ‖∆̂ j‖Σ−1 ,

starting at j = 0. By (C.11),

‖β̃ββ 0−βββ
∗
0‖Σ ≤ κ

−1‖Q̂0(βββ
∗
0)‖Σ−1 < r0 := κ

−1(δ +a).

Provided r0 ≤ r♦, the intermediate point β̃ββ 0 falls into the interior of the local region βββ
∗
0 +Θ(r♦).
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Via proof by contradiction, we must have β̂ββ 0 = β̃ββ 0 and hence β̂ββ 0 ∈ βββ
∗
0 +Θ(r0).

Turning to (β̃ββ 1, β̂ββ 1), it follows from (C.11) with j = 1 that ‖β̃ββ 1−βββ
∗
1‖Σ < κ−1{δ +a+

w0(‖∆̂0‖Σ−1 +δ +a)}. Note that ∆̂0 depends on the preceding estimate β̂ββ 0. Since, as proved in

the last step, β̂ββ 0 ∈ βββ
∗
0 +Θ(r0) conditioned on F ∩G , it follows that

‖∆̂0‖Σ−1 ≤ ϖ0(r0)+‖H(τ0)(β̂ββ 0−βββ
∗
0)‖Σ−1 ≤ ϖ0(r0)+ f r0,

where ϖ0(·) is defined in (C.4). Conditioned further on {ϖ0(r0)≤ f r0}, this implies

‖β̃ββ 1−βββ
∗
1‖Σ < r1 := κ

−1{
δ +a+w0(2 f r0 +δ +a)

}
.

As long as r1 ≤ r♦, β̃ββ 1 lies in the interior of βββ
∗
1 +Θ(r♦), which enforces β̂ββ 1 = β̃ββ 1 and hence

β̂ββ 1 ∈ βββ
∗
1 +Θ(r1).

Applying the above argument repeatedly, at the j-th step (1 ≤ j ≤ m), we obtain that

conditioned on {ϖ j−1(r j−1)≤ f r j−1},

‖β̃ββ j−βββ
∗
j‖Σ <

1
κ

{
δ +a+

j−1

∑
`=0

w j
(
‖∆̂`‖Σ−1 +δ +a

)}

≤ 1
κ

{
δ +a+

j−1

∑
`=0

w`(2 f r`+δ +a)

}
=: r j. (C.16)

Provided r j ≤ r♦, by way of contradiction we must have β̂ββ j = β̃ββ j ∈ βββ
∗
j +Θ(r j). Equivalently,

the above sequence of radii {r j}m
j=0 can be recursively defined as

r j =
(
1+2κ

−1 f w j−1
)
r j−1 +κ

−1w j−1(δ +a), j = 1, . . . ,m, and r0 = κ
−1(δ +a),
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where a is given in (C.14). Taking C = κ−1(2 f +1), it follows that

r j ≤ (1+Cw j−1)r j−1 ≤ ·· · ≤
j−1

∏
`=0

(1+Cw`) · r0 ≤ exp

(
C

j−1

∑
`=0

w`

)
· r0 =

(
1− τL

1− τ j

)C

· r0.

(C.17)

Thus far we have established the result β̂ββ j ∈ βββ
∗
j +Θ(r j) ( j = 0,1, . . . ,m) as a determin-

istic claim, but conditioned on the “good” event

F ∩G ∩
m−1⋂
`=0

{ϖ`(r`)≤ f r`}

with properly chosen κ,δ and {r j}m
j=0. By Lemmas C.2.4 and C.2.3, we choose κ = (gκl)/2 and

δ �
√

(p+ logn)/n+ ζp log(n)/n, so that P(F c) ≤ (m+ 1)/n2 and P(G c) ≤ 2(m+ 1)/n2 as

long as nh& p+ logn. With this choice of δ , and since a = 0.5l1κ2h2 +( f/ f )δ ∗ . h2 +n−1/2,

we obtain from (C.17) that

r j ≤
(

1− τL

1− τ j

)C

· r0 �
(

1− τL

1− τ j

)C

g−1

(√
p+ logn

n
+ζp

logn
n

+h2

)
.

Moreover, it follows from Lemma C.2.5 that with probability at least 1−m/n2,

ϖ`(r`).

(
m1/2

4

√
p+ logn

nh
+m3r`+h

)
· r` for all `= 0,1, . . . ,m−1,

provided nh & ζ 2
p(p+ logn)1/2. By the prescribed choice of the bandwidth h = hn � {(p+

logn)/n}γ with γ ∈ [1/4,1/2), and the requirement n & ζ
2/(1−γ)
p (p+ logn)(1/2−γ)/(1−γ), we

conclude that the above “good” event occurs with probability at least 1−C1n−1, and

(
1− τL

1− τ j

)C

g−1

√
p+ logn

n
� r j ≤ r♦ �

(
p+ logn

n

)γ

for all j = 0,1, . . . ,m.

This proves the claim (C.9).
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To establish the uniform rate of convergence for {β̂ββ (τ),τ ∈ [τL,τU ]}, define disjoint

intervals I j = [τ j,τ j+1) for j = 0,1, . . . ,m− 1, and Im = {τm}. For any τ ∈ [τL,τU ], by the

definition of β̂ββ (·) there exits a unique index j ∈ {0,1, . . . ,m} such that τ ∈ I j and β̂ββ (τ) =

β̂ββ (τ j) = β̂ββ j. Hence, conditioned on the “good” event that occurs with high probability,

‖β̂ββ (τ)−βββ
∗(τ)‖Σ = ‖β̂ββ j−βββ

∗(τ)‖Σ ≤ ‖β̂ββ j−βββ
∗
j‖Σ +‖βββ ∗(τ)−βββ

∗(τ j)‖Σ ≤ r j + f−1
δ
∗.

Taking the maximum over j on the right-hand side, and then the supremum over τ ∈ [τL,τU ] on

the left, we obtain

sup
τ∈[τL,τU ]

‖β̂ββ (τ)−βββ
∗(τ)‖Σ ≤ max

0≤ j≤m
r j + f−1

δ
∗ = rm + f−1

δ
∗,

completing the proof.

C.2.3 Proof of Theorem 4.3.2

Similarly to the proof of Theorem 4.3.1, we divide the proof into two stages. In stage one,

we prove a uniform bound over the grid points {τ0, . . . ,τm}; in stage two, we prove the claimed

bound (4.16) which holds uniformly over the interval [τL,τU ].

STAGE ONE. As before, we write J j = J(τ j) and H j = H(τ j) for j = 0, . . . ,m, and define the

discretized integrated error up to τ j as

ẽ0 := J0(β̂ββ 0−βββ
∗
0) and ẽ j := J j(β̂ββ j−βββ

∗
j)︸ ︷︷ ︸

current step

+
j−1

∑
`=0

w`H`(β̂ββ `−βββ
∗
`)︸ ︷︷ ︸

preceding steps

, j = 1, . . . ,m. (C.18)

Let {r j}m
j=0 be the sequence of radii from the proof of Theorem 4.3.1. We will show that

sup
j=0,...,m

|| ẽ j +Q∗j ||Σ−1 .

(
m1/2

4

√
p+ logn

nh
+m3r j +h

)
· r j, (C.19)
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holds with probability at least 1−C2n−1 for some absolute constant C2 > 0, where

Q∗0 = Q̂0(βββ
∗
0) =

1
n

n

∑
i=1
{∆iK̄h(xxxT

i βββ
∗
0− yi)− τ0}xxxi and (C.20)

Q∗j =
1
n

n

∑
i=1

{
∆iK̄h(xxxT

i βββ
∗
j − yi)−

j−1

∑
`=0

w`K̄h(yi− xxxT
i βββ
∗
`)− τ0

}
xxxi for j ∈ [m]. (C.21)

We prove the claim (C.19) in a sequential manner, conditioned on some “good” events.

Set

A =
m⋂

j=0

{
‖β̂ββ j−βββ

∗
j‖Σ ≤ r j

}
, satisfying P(A )≥ 1−C1n−1,

For an increasing sequence 0 < λ0 ≤ λ1 ≤ ·· · ≤ λm to be determined, define the event

E =
m−1⋂
j=0

{
ϖ j(r j)≤ λ j · r j, ω j(r j)≤ λ j · r j

}⋂{
ω j(rm)≤ λm · rm

}
, (C.22)

where ϖ j(·)’s and ω j(·)’s are defined in (C.4) and (C.5), respectively. Recall that Q̂0(β̂ββ 0) =

Q̂1(β̂ββ 1) = · · ·= Q̂m(β̂ββ m) = 0. Conditioning on the event A ∩E , we have

|| ẽ0 +Q∗0||Σ−1 = ‖Q̂0(β̂ββ 0)− Q̂0(βββ
∗
0)−J0(β̂ββ 0−βββ

∗
0)‖Σ−1 ≤ λ0r0,
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and for j ∈ [m],

|| ẽ j +Q∗j ||Σ−1 =

∥∥∥∥∥J j(β̂ββ j−βββ
∗
j)− Q̂ j(β̂ββ j)+

j−1

∑
`=0

w`H`(β̂ββ `−βββ
∗
`)

+
1
n

n

∑
i=1

{
∆iK̄h(xxxT

i βββ
∗
j − yi)−

j−1

∑
`=0

w`K̄h(yi− xxxT
i βββ
∗
`)− τ0

}
xxxi

∥∥∥∥∥
Σ−1

=

∥∥∥∥∥J j(β̂ββ j−βββ
∗
j)−

1
n

n

∑
i=1

∆i{K̄h(xxxT
i β̂ββ j− yi)− K̄h(xxxT

i βββ
∗
j − yi)}xxxi

+
j−1

∑
`=0

w`H`(β̂ββ `−βββ
∗
`)+

j−1

∑
`=0

w` ·
1
n

n

∑
i=1
{K̄h(yi− xxxT

i β̂ββ `)− K̄h(yi− xxxT
i βββ
∗
`)}xxxi︸ ︷︷ ︸

=∆̂` in (C.12)

∥∥∥∥∥
Σ−1

≤
∥∥∥∥∥1

n

n

∑
i=1

∆i{K̄h(xxxT
i β̂ββ j− yi)− K̄h(xxxT

i βββ
∗
j − yi)}xxxi−J j(β̂ββ j−βββ

∗
j)

∥∥∥∥∥
Σ−1

+
j−1

∑
`=0

w`‖∆̂`+H`(β̂ββ `−βββ
∗
`)‖Σ−1

≤ ω j(r j)+
j−1

∑
`=0

w`ϖ`(r`)≤ λ jr j +
j−1

∑
`=0

w`λ`r`.

Recall from the definition of r j in (C.16), we have ∑
j−1
`=0 w`r` ≤ (2 f )−1κr j, and hence

|| ẽ j +Q∗j ||Σ−1 ≤
{

1+(2 f )−1
κ
}
·λ jr j, j ∈ [m].

In view of Lemma C.2.5 with t = 2logn, we set

λ j � m1/2
4

√
p+ logn

nh
+m3r j +h, j = 0,1, . . . ,m,

so that event E in (C.22) holds with probability at least 1−2(m+1)n−2. This proves (C.19).

STAGE TWO. To generalize (C.19) to (4.16) on the whole process β̂ββ (·), define disjoint intervals

I j = [τ j,τ j+1) for j = 0, . . . ,m−1 and Im = {τm}. For any τ ∈ [τL,τU ], there exists a unique

index j ∈ {0, . . . ,m} such that τ ∈I j and β̂ββ (τ) = β̂ββ j. With this notation, the left-hand side of
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(4.16) equals

max
j=0,...,m

sup
τ∈I j

∥∥∥∥∥ êee(τ)− 1
n

n

∑
i=1

{
τL +

∫
τ

τL

K̄h(yi− xxxT
i βββ
∗(u))dH(u)−∆iK̄h(xxxT

i βββ
∗(τ)− yi)

}
xxxi

∥∥∥∥∥
Σ−1

,

where êee(τ) = β̂ββ int(τ)−βββ
∗
int(τ). To control the discretization error, conditioning on the event

A ∩E we have, for each j = 0,1, . . . ,m,

sup
τ∈I j

‖J(τ){β̂ββ (τ)−βββ
∗(τ)}−J j(β̂ββ j−βββ

∗
j)‖Σ−1

≤ sup
τ∈I j

‖{J(τ)−J j}(β̂ββ j−βββ
∗
j)‖Σ−1 + sup

τ∈I j

‖J(τ){βββ ∗j −βββ
∗(τ)}‖Σ−1

≤ l1 f−1m3r jδ
∗+g f−1

δ
∗ . δ

∗, (C.23)

and

sup
τ∈I j

∥∥∥∥∥
∫

τ

τL

H(u){β̂ββ (u)−βββ
∗(u)}dH(u)−

j−1

∑
`=0

∫
τ`+1

τ`

H`(β̂ββ `−βββ
∗
`)dH(u)

∥∥∥∥∥
Σ−1

(C.24)

≤
∥∥∥∥∥ j−1

∑
`=0

∫
τ`+1

τ`

[
H(u){β̂ββ (u)−βββ

∗(u)}−H`(β̂ββ `−βββ
∗
`)
]
dH(u)

∥∥∥∥∥
Σ−1

+ sup
τ∈I j

∥∥∥∥∥
∫

τ

τ j

H(u){β̂ββ (u)−βββ
∗(u)}dH(u)

∥∥∥∥∥
Σ−1

. log
(

1− τ0

1− τ j+1

)
·δ ∗.

Next we control the approximation error for discretizing the process (1/n)∑
n
i=1UUU i(·).

For any interval I j, write vvv(τ) = βββ
∗(τ)−βββ

∗
j for τ ∈I j, satisfying ‖vvv(τ)‖Σ ≤ f−1(τ j+1− τ j)
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by the Lipschitz continuity of βββ
∗(·). Moreover, we have

∥∥∥E∆i
{

K̄h(xxxT
i βββ
∗(τ)− yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
xxxi

∥∥∥
Σ−1

= sup
uuu∈Sp−1

E
[
∆i{K̄h(xxxT

i βββ
∗(τ)− yi)− K̄h(xxxT

i βββ
∗
j − yi)}〈uuu,zzzi〉

]
= sup

uuu∈Sp−1
E
∫

∞

−∞

{
K̄

(
xxxT

i βββ
∗(τ)−u

h

)
− K̄

(
xxxT

i βββ
∗
j −u

h

)}
g(u|xxx)du · 〈uuu,zzzi〉

= sup
uuu∈Sp−1

h ·E
∫

∞

−∞

{
K̄(v+ xxxT

i vvv(τ)/h)− K̄(v)
}

g(xxxT
i βββ
∗
j −hv|xxx)dv · 〈uuu,zzzi〉

≤ g sup
uuu∈Sp−1

E
∫

∞

−∞

{∫ 1

0
K(v+wxxxT

i vvv(τ)/h)dw

}
dv · 〈vvv(τ),xxxi〉〈uuu,zzzi〉

≤ g sup
uuu∈Sp−1

E
(∫ 1

0

∫
∞

−∞

K(v+wxxxT
i vvv(τ)/h)dvdw

)
· 〈vvv(τ),xxxi〉〈uuu,zzzi〉

≤ g sup
uuu∈Sp−1

E|〈vvv(τ),xxxi〉〈uuu,zzzi〉| ≤ g‖vvv(τ)‖Σ ≤ g f−1(τ j+1− τ j).

This, combined with Lemma C.2.5–(ii) with r = f−1
δ ∗ and t = 2logn, yields that with probabil-

ity at least 1− (m+1)n−2,

max
0≤ j≤m

sup
τ∈I j

∥∥∥∥∥1
n

n

∑
i=1

∆i
{

K̄h(xxxT
i βββ
∗(τ)− yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
xxxi

∥∥∥∥∥
Σ−1

(C.25)

. δ
∗+δ

∗m1/2
4

√
p+ logn

nh
. δ

∗

as long as nh& ζ 2
p(p+ logn). Similarly, it follows from Lemma C.2.3–(iii), Lemma C.2.6 and
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the union bound that with probability at least 1−2mn−2,

sup
τ∈I j

∥∥∥∥∥1
n

n

∑
i=1

(1−E)

{∫
τ

τL

K̄h(yi− xxxT
i βββ
∗(u))dH(u)−

j−1

∑
`=0

∫
τ`+1

τ`

K̄h(yi− xxxT
i βββ
∗
`)dH(u)

}
xxxi

∥∥∥∥∥
Σ−1

≤
∥∥∥∥∥1

n

n

∑
i=1

j−1

∑
`=0

(1−E)
∫

τ`+1

τ`

{
K̄h(yi− xxxT

i βββ
∗(u))− K̄h(yi− xxxT

i βββ
∗
`)
}

dH(u) · zzzi

∥∥∥∥∥
2

+ sup
τ∈I j

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ

τ j

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · zzzi

∥∥∥∥∥
2

≤
j−1

∑
`=0

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ`+1

τ`

{
K̄h(yi− xxxT

i βββ
∗(u))− K̄h(yi− xxxT

i βββ
∗
`)
}

dH(u) · zzzi

∥∥∥∥∥
2

+ sup
τ∈I j

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ

τ j

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · zzzi

∥∥∥∥∥
2

. log
(

1− τ0

1− τ j

)(
m1/2

4

√
p+ logn

nh
+ζ

2
p

logn
nh

)
·δ ∗ (C.26)

+ log
(

1− τ j

1− τ j+1

)(√
p+ logn

n
+ζp

logn
n

)
·δ ∗

for all j = 0,1, . . . ,m. Turning to the deterministic approximation error, it can be shown that for

any j = 0,1, . . . ,m−1 and τ ∈I j,

∥∥∥∥∥E
{∫

τ

τL

K̄h(yi− xxxT
i βββ
∗(u))dH(u)−

j−1

∑
`=0

∫
τ`+1

τ`

K̄h(yi− xxxT
i βββ
∗
`)dH(u)

}
xxxi

∥∥∥∥∥
Σ−1

. log
(

1− τ0

1− τ j+1

)
·δ ∗.

Together, (C.19) and (C.23)–(C.26) prove the claimed bounds (4.14)–(4.16).

It remains to control the bias term EUUU i(·). Define the non-smoothed version of UUU i(·) as

VVV i(τ) =

[
τL +

∫
τ

τL

1{yi > xxxT
i βββ
∗(u)}dH(u)−∆i1{yi < xxxT

i βββ
∗(τ)}

]
xxxi, τ ∈ [τL,τU ].

179



By the martingale property, EVVV i(τ) = 0 for every τ ∈ [τL,τU ]. Note that

UUU i(τ)−VVV i(τ) =

(
∆i
[
1{yi < xxxT

i βββ
∗(τ)}− K̄h(xxxT

i βββ
∗(τ)− yi)

]
+
∫

τ

τL

[
K̄h(yi− xxxT

i βββ
∗(u))−1{yi > xxxT

i βββ
∗(u)}

]
dH(u)

)
xxxi.

Following the same calculations that lead to (C.67), we obtain

sup
τ∈[τL,τU ]

‖EUUU i(τ)‖Σ−1 = sup
τ∈[τL,τU ]

‖E{UUU i(τ)−VVV i(τ)}‖Σ−1 ≤ 0.5l1κ2
{

1+ log
( 1−τL

1−τU

)
}h2.

This completes the proof of the theorem.

C.2.4 Proof of Theorem 4.3.3

Assume without loss of generality that ||aaan||Σ = 1; otherwise, we simply replace aaan

by aaan/||aaan||Σ. Following the general result in Theorem 1.5.4 of van der Vaart and Wellner

[1996], the claimed weak convergence (4.22) is a direct consequence of the weak convergence

of finite-dimensional marginals and the asymptotic tightness of Gn(·).

For the former, via the Cramér–Wold device, it is equivalent to show that for any finite

set of values {τ`}L
`=1 ⊆ [τL,τU ] and (γ1, . . . ,γL)

T ∈ RL,

L

∑
`=1

γ`Gn(τ`)
d−→

L

∑
`=1

γ`G(τ`), (C.27)

with G(·) defined in (4.22). For i = 1, . . . ,n, define centered variables Wi = ∑
L
`=1 γ`〈aaan,UUU0i(τ`)〉
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with UUU0i(τ) :=UUU i(τ)−EUUU i(τ), so that ∑
L
`=1 γ`Gn(τ`) = n−1/2

∑
n
i=1Wi. Moreover,

Var(Wi) = Var

(
L

∑
`=1

γ`〈aaan,UUU0i(τ`)〉
)

=
L

∑
`1=1

L

∑
`2=1

γ`1γ`2 ·Cov
(
〈aaan,UUU0i(τ`1),〈aaan,UUU0i(τ`2)〉

)
=

L

∑
`1=1

L

∑
`2=1

γ`1γ`2 ·aaaT
nE
{

UUU0i(τ`1)UUU0i(τ`2)
T
}

aaan

=
L

∑
`1=1

L

∑
`2=1

γ`1γ`2 ·aaaT
nE
{

UUU i(τ`1)UUU i(τ`2)
T
}

aaan

−
L

∑
`1=1

L

∑
`2=1

γ`1γ`2 ·aaaT
nE
{

UUU i(τ`1)
}
E
{

UUU i(τ`2)
T
}

aaan

→
L

∑
`1=1

L

∑
`2=1

γ`1γ`2 ·H(`1, `2) = Var

(
L

∑
`=1

γ`G(τ`)

)
as n→ ∞,

where H(·, ·) is defined in (4.21). The finite-dimensional weak convergence (C.27) then follows

from the central limit theorem.

Turning to the asymptotic tightness of Gn(·), an equivalent characterization is the asymp-

totic uniform equicontinuity in probability; see Theorem 1.5.7 in van der Vaart and Wellner

[1996] and the definition above it. That is, for any x > 0,

lim
δ→0

limsup
n→∞

P

{
sup

|τ1−τ2|<δ

∣∣Gn(τ1)−Gn(τ2)
∣∣> x

}
= 0,

which is ensured by Lemma C.2.8.

Finally, the existence of almost surely continuous sample paths of G(·) follows from

Addendum 1.5.8 in van der Vaart and Wellner [1996].
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C.3 Proofs of the Main Results in Section 4.3.3

C.3.1 Technical lemmas

In this section, we provide the technical lemmas needed to establish the validity of the

multiplier bootstrap procedure. Recall that ei’s are i.i.d. Rademacher random variables that

are independent of the observed data Dn = {yi,∆i,xxxi}n
i=1. Similarly to (C.3), we define the

symmetrized Bregman divergence D[ : Rp×Rp→ [0,∞) in the bootstrap world as

D[(βββ 1,βββ 2) = 〈Q̂[
j(βββ 1)− Q̂[

j(βββ 2),βββ 1−βββ 2〉, (C.28)

which is also independent of j, where Q̂[
j(·)’s are the randomly perturbed estimating equations

defined in (4.7) and (4.8).

Lemma C.3.1 (Conditional restricted strong convexity). Assume Conditions 4.3.1 and 4.3.3 hold.

Let r = h/(4η1/4) with η1/4 defined in (C.2), and t ≥ 0. Suppose the “effective” sample size

satisfies nh&max{p,ζpt1/2}. Then, there exists an event E1(t) with P{E1(t)} ≥ 1− (m+3)e−t

such that, conditioning on E1(t),

inf
j∈{0,...,m}

inf
βββ∈βββ

∗
j+Θ(r)

D(βββ ,βββ ∗j)

κl ‖βββ −βββ
∗
j‖2

Σ

≥ 1
2

g, and

P∗
{

inf
j∈{0,...,m}

inf
βββ∈βββ

∗
j+Θ(r)

D[(βββ ,βββ ∗j)

κl ‖βββ −βββ
∗
j‖2

Σ

≥ 1
2

g

}
≥ 1− (m+1)e−t .

Lemma C.3.2. Assume Condition 4.3.2 holds. Let {ξi}n
i=1 be independent random variables

satisfying |ξi| ≤M for some M > 0, and {ei}n
i=1 are Rademacher random variables independent

of the data {xxxi,ξi}n
i=1. Then, there exists an event E2 depending on {xxxi,ξi}n

i=1 such that (i)

P(E2)≥ 1−n−2, and (ii) conditioned on E2,

∥∥∥∥∥1
n

n

∑
i=1

(ei ·ξizzzi)

∥∥∥∥∥
2

.

√
p+ logn

n
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holds with P∗-probability (over {ei}n
i=1) at least 1− n−2 as long as the sample size satisfies

n& ζ 2
p logn.

The following lemma provides upper bounds for two Rademacher weighted stochastic

processes. For j = 0,1, . . . ,m and any r > 0, define

Γ j(r) := sup
βββ∈βββ

∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

ei
{

K̄h(yi− xxxT
i βββ )− K̄h(yi− xxxT

i βββ
∗
j)
}

zzzi

∥∥∥∥∥
2

, (C.29)

Γ
∆
j (r) := sup

βββ∈βββ
∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

ei∆i
{

K̄h(xxxT
i βββ − yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
zzzi

∥∥∥∥∥
2

, (C.30)

where {ei}n
i=1 is a sequence of independent Rademacher random variables that are independent

of {yi,∆i,xxxi}n
i=1, and zzzi = Σ−1/2xxxi.

Lemma C.3.3. Assume that Conditions 4.3.1–4.3.3 hold, and K(·) in Condition 4.3.1 is lK-

Lipschitz continuous. Given any 0 < r≤ ζp, there exists an event E3 with P(E3)≥ 1−3n−1 such

that, with P∗-probability at least 1− (m+1)n−2 conditioned on E3,

sup
j∈{0,...,m}

Γ j(r). r

√
p+ logn

nh

(
m1/2

4 +ζ
2
p

√
p logn

nh

)
,

provided n& ζ 2
p logn. The same uniform bound also applies to Γ∆

j (r).

Lemma C.3.4. Assume that Conditions 4.3.1–4.3.3 hold, and K(·) in Condition 4.3.1 is lK-

Lipschitz continuous. Then, there exists an event E4 with P(E4)≥ 1− (m+3n+1)n−2 such that,

with P∗-probability at least 1−n−2 conditional on E4,

sup
βββ∈βββ

∗
j+Θ(r)

‖J j(βββ −βββ
∗
j)−{Q̂[

j(βββ )− Q̂[
j(βββ
∗
j)}‖Σ−1

.

{
m1/2

4

√
p+ logn

nh
+m3r+h+ζ

2
p
(p logn)1/2(p+ logn)1/2

nh

}
· r

holds uniformly over j = 0,1, . . . ,m, where J j = E{g(xxxTβββ
∗
j |xxx)xxxxxxT}.
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Lemma C.3.5. Assume Conditions 4.3.1–4.3.4 hold, and let r > 0. Then, there exists an event

E5 with P(E5)≥ 1−mn−2 such that conditioning on E5,

sup
∩ j−1
`=0{βββ `∈βββ

∗
`+Θ(r)}

∥∥∥∥∥1
n

n

∑
i=1

j−1

∑
`=0

∫
τ`+1

τ`

dH(u)
[
H`(βββ `−βββ

∗
`)−Wi

{
K̄h(yi− xxxT

i βββ
∗
`)− K̄h(yi− xxxT

i βββ `)
}

xxxi

]∥∥∥∥∥
Σ−1

. log
(1−τ0

1−τ j

)
·
{(

m1/2
4

√
p+ logn

nh
+m3r+h

)
· r+ max

`=0,..., j−1
Γ`(r)

}

holds for all j = 1, . . . ,m, where H` = E{ f (xxxTβββ
∗
` |xxx)xxxxxxT} and Γ`(r) is defined in (C.29).

The following lemma establishes the asymptotic uniform equicontinuity of the process

G[
n(·) = n−1/2

∑
n
i=1 ei〈aaan,UUU i(·)〉 in `∞([τL,τU ]), thus validating the asymptotic tightness of G[

n(·),

where UUU i(·) is defined in (4.15).

Lemma C.3.6. Assume that the conditions of Theorem 4.3.6 hold. For any x > 0 and sequence

of vectors aaan satisfying ‖aaan‖Σ = 1, conditioned on any observed data Dn = {(yi,∆i,xxxi}n
i=1, we

have

lim
δ→0

limsup
n→∞

P∗
{

sup
|τ1−τ2|<δ

∣∣G[
n(τ1)−G[

n(τ2)
∣∣> x

}
= 0. (C.31)

where G[
n(·) = n−1/2

∑
n
i=1 ei〈aaan,UUU i(·)〉 with UUU i(τ) defined in (4.15).

C.3.2 Proof of Theorem 4.3.4

Similar to the proof of Theorem 4.3.1, we first prove a uniform bound over the grid points

{τ0, . . . ,τm}. Recall the bootstrapped SEE Q̂[
j(βββ ) given in (4.7) and (4.8), and Q̂[

j(β̂ββ
[

j) = 000.

Following the localized argument as in the proof of Theorem 4.3.1, for the same radius parameter

r♦ therein, define β̃ββ
[

j = βββ
∗
j + γ j(β̂ββ

[

j−βββ
∗
j) with γ j := sup

{
γ ∈ [0,1] : γ(β̂ββ

[

j−βββ
∗
j) ∈ Θ(r♦)

}
, so

that β̃ββ
[

j = β̂ββ
[

j if β̂ββ
[

j ∈ βββ
∗
j +Θ(r♦) and β̃ββ

[

j ∈ βββ
∗
j +∂Θ(r♦) if β̂ββ

[

j /∈ βββ
∗
j +Θ(r♦). Consequently,

D[(β̃ββ
[

j,βββ
∗
j)≤ ρ j · 〈−Q̂[

j(βββ
∗
j), β̂ββ

[

j−βββ
∗
j〉 ≤ ‖Q̂[

j(βββ
∗
j)‖Σ−1 · ‖β̃ββ

[

j−βββ
∗
j‖Σ,
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where D[ is defined in (C.28).

In addition to F in (C.10), define

F [ =
m⋂

j=0

{
D[(βββ ,βββ ∗j)≥ κ · ‖βββ −βββ

∗
j‖2

Σ for all βββ ∈ βββ
∗
j +Θ(r♦)

}
. (C.32)

Conditioned on F [, we have for all j = 0,1, . . . ,m that

‖β̃ββ
[

j−βββ
∗
j‖Σ ≤ κ

−1‖Q̂[
j(βββ
∗
j)‖Σ−1 .

For the bootstrapped estimating function, by the triangle inequality we have

‖Q̂[
j(βββ
∗
j)‖Σ−1

≤
∥∥∥∥∥1

n

n

∑
i=1

ei

{
∆iK̄h(xxxT

i βββ
∗
j − yi)− τ0−

j−1

∑
`=0

w`K̄h(yi− xxxT
i βββ
∗
`)

}
xxxi

∥∥∥∥∥
Σ−1

+

∥∥∥∥∥1
n

n

∑
i=1

j−1

∑
`=0

eiw`

{
K̄h(yi− xxxT

i β̂ββ
[

`)− K̄h(yi− xxxT
i βββ
∗
`)
}

xxxi

∥∥∥∥∥
Σ−1

+

∥∥∥∥∥Q̂0(βββ
∗
j)−Q0(βββ

∗
j)−

j−1

∑
`=0

w`

(
∆̂
[
`+∆`

)
+Q0(βββ

∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxxi}

∥∥∥∥∥
Σ−1

≤
∥∥∥∥∥ 1

n

n

∑
i=1

ei

{
∆iK̄h(xxxT

i βββ
∗
j − yi)− τ0−

j−1

∑
`=0

w`K̄h(yi− xxxT
i βββ
∗
`)

}
xxxi︸ ︷︷ ︸

:=Q̃[
j(βββ
∗
j)

∥∥∥∥∥
Σ−1

(C.33)

+‖Q̂0(βββ
∗
j)−Q0(βββ

∗
j)‖Σ−1 +

j−1

∑
`=0

w`

(
‖∆̃[

`‖Σ−1 +‖∆̂[
`‖Σ−1 +‖∆`‖Σ−1

)
+

∥∥∥∥∥Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxxi}

∥∥∥∥∥
Σ−1

,
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for j ≥ 1, where w` = H(τ`+1)−H(τ`),

∆̃
[
` =

1
n

n

∑
i=1

ei
{

K̄h(yi− xxxT
i β̂ββ

[

`)− K̄h(yi− xxxT
i βββ
∗
`)
}

xxxi,

∆̂
[
` =

1
n

n

∑
i=1

{
K̄h(yi− xxxT

i β̂ββ
[

`)− K̄h(yi− xxxT
i βββ
∗
`)
}

xxxi

and ∆` is defined in (C.12). In particular,

‖Q̂[
0(βββ

∗
0)‖Σ−1 =

∥∥∥∥∥1
n

n

∑
i=1

ei

{
∆iK̄h(xxxT

i βββ
∗
0− yi)− τ0

}
xxxi

∥∥∥∥∥
Σ−1

+‖Q̂0(βββ
∗
0)−Q0(βββ

∗
0)‖Σ−1 +‖Q0(βββ

∗
0)‖Σ−1.

The rest of the proof is similar to that of Theorem 4.3.1, and thus we skip some of the

technical details. For some δ > 0 to be determined, define the event

G [ =

{
max

0≤ j≤m
‖Q̃[

j(βββ
∗
j)‖Σ−1

∨
max

0≤ j≤m
‖Q̂0(βββ

∗
j)−Q0(βββ

∗
j)‖Σ−1

∨
max

0≤`≤m−1
‖∆`‖Σ−1 ≤ δ

}
.

(C.34)

Conditioned on F [∩G [, it follows from Lemma C.2.7, (C.33) and (C.34) that

‖Q̂[
0(βββ

∗
0)‖Σ−1 < 2δ +a,

Q̂[
j(βββ
∗
j)‖Σ−1 < 2δ +a+

j−1

∑
`=0

w`

(
δ +a+‖∆̃[

`‖Σ−1 +‖∆̂`‖Σ−1
)
, j = 1, . . . ,m,

where a is defined in (C.14). Similarly to (C.17), conditioned on the “good” event

F [∩G [∩
m−1⋂
`=0

{
ϖ`(r`)∨Γ`(r`)≤ f r`

}
, (C.35)
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the convergence radii {r j}m
j=0 are recursively defined as

r j =
(
1+3κ

−1 f w j−1
)
r j−1 +κ

−1w j−1(δ +a), j = 1, . . . ,m, and r0 = κ
−1(2δ +a).

(C.36)

Denoting C = κ−1(3 f +1), it follows that r j ≤
(1−τL

1−τ j

)C · r0.

Next we complement the above deterministic analysis with probabilistic bounds. By Lem-

mas C.2.3, C.2.5 and Lemmas C.3.1–C.3.3, we choose κ = (gκl)/2 and δ �
√
(p+ logn)/n+

ζp log(n)/n so that there exists an event E with P(E )≥ 1−C1n−1 such that conditioned on E ,

P∗(F [∩G [)≥ 1−C2n−1,

sup
`∈{0,...,m−1}

ϖ`(r`).

(
m1/2

4

√
p+ logn

nh
+m3r`+h

)
· r`

and

sup
`∈{0,...,m−1}

Γ`(r`). r`

√
p+ logn

nh

(
m1/2

4 +ζ
2
p

√
p logn

nh

)

with probability at least 1−n−1, provided nh& ζ 2
p(p+ logn)1/2 and n& ζ 2

p logn. Moreover, the

uniform bound (4.11) holds conditioned on E . Consequently, it follows from (C.36) and (C.14)

that

r j ≤
(

1− τL

1− τ j

)C

· r0 �
(

1− τL

1− τ j

)C

g−1

(√
p+ logn

n
+ζp

logn
n

+h2

)

holds uniformly over j ∈ {0, . . . ,m}.

Recall that m3 and m4 are dimension-free moment parameters. Given the bandwidth

h = hn � {(p+ logn)/n}γ with γ ∈ [1/4,1/2), and under the sample size requirement n &

ζ
2/(1−γ)
p (p+ logn)(1/2−γ)/(1−γ)(p logn)1/(2−2γ), we conclude that conditioned on E , the “good”
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event (C.35) occurs with P∗-probability at least 1−C3n−1, and

(
1− τL

1− τ j

)C

g−1

√
p+ logn

n
� r j ≤ r♦ �

(
p+ logn

n

)γ

for all j = 0,1, . . . ,m.

This proves the uniform bound over τ ∈ {τ0,τ1, . . . ,τm}, which can naturally be extended to

τ ∈ [τL,τU ] following the last paragraph in the proof of Theorem 4.3.1.

C.3.3 Proof of Theorem 4.3.5

We divide the proof into two steps as in the proof of Theorem 4.3.2. Recall that Wi = ei+1,

where ei’s are independent Rademacher variables.

STEP 1. (Uniform bound over {τ0, . . . ,τm}) For simplicity, we write J j = J(τ j) and H j = H(τ j)

for j = 0, . . . ,m, and define the accumulated bootstrap errors as

ẽ[int(τ0) := J0(β̂ββ
[

0− β̂ββ 0) and

ẽ[int(τ j) := J j(β̂ββ
[

j− β̂ββ j)+
j−1

∑
`=0

∫
τ`+1

τ`

H`(β̂ββ
[

`− β̂ββ `)dH(u), j = 1, . . . ,m.

We claim that there exits an event F on which (4.14)–(4.16) hold such that P(F )≥ 1−C4n−1,

and

sup
j=0,...,m

|| ẽ[int(τ j)+Q∗[j ||Σ−1 . m1/2
4

p+ logn
nh1/2 +h

√
p+ logn

n
+ζ

2
p
(p+ logn)(p logn)1/2

n3/2h

(C.37)

with P∗-probability at least 1−C5n−1 conditioned on F , where

Q∗[0 =
1
n

n

∑
i=1

ei
{

∆iK̄h(xxxT
i βββ
∗
0− yi)− τ0

}
xxxi,

Q∗[j =
1
n

n

∑
i=1

ei

{
∆iK̄h(xxxT

i βββ
∗
j − yi)−

j−1

∑
`=0

∫
τ`+1

τ`

K̄h(yi− xxxT
i βββ
∗
`)dH(u)− τ0

}
xxxi
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for j = 1, . . . ,m.

From Theorem 4.3.4 and its proof, we see that there exists an event E1 with P(E1) ≥

1−C1n−1 such that conditioned on E1,

max
0≤ j≤m

‖β̂ββ j−βββ
∗
j‖Σ .

√
p+ logn

n
, and

P∗
(

max
0≤ j≤m

‖β̂ββ
[

j−βββ
∗
j‖Σ .

√
p+ logn

n

)
≥ 1−C3n−1. (C.38)

We then prove the claim (C.37). For j = 0, by the triangle inequality we have

|| ẽ[int(τ0)+Q∗[0 ||Σ−1

≤ || ẽint(τ0)+Q∗0||Σ−1 +

∥∥∥∥∥J0(β̂ββ
[

0−βββ
∗
0)+

1
n

n

∑
i=1

Wi{∆iK̄h(xxxT
i βββ
∗
0− yi)− τ0}xxxi

∥∥∥∥∥
Σ−1

=: I0 + II0,

and for j ≥ 1,

|| ẽ[int(τ j)+Q∗[j ||Σ−1

≤ || ẽint(τ j)+Q∗j ||Σ−1 +

∥∥∥∥∥J j(β̂ββ
[

j−βββ
∗
j)+

j−1

∑
`=0

∫
τ`+1

τ`

H`(β̂ββ
[

`−βββ
∗
`)dH(u)

+
1
n

n

∑
i=1

Wi

{
∆iK̄h(xxxT

i βββ
∗
j − yi)−

j−1

∑
`=0

∫
τ`+1

τ`

K̄h(yi− xxxT
i βββ
∗
`)dH(u)− τ0

}
xxxi

∥∥∥∥∥
Σ−1

=: I j + II j,

where ẽint(τ j) and Q∗j are defined in (C.18) and (C.20)–(C.21). Let E2 be the event that (4.14)–

(4.16) hold. Then P(E2)≥ 1−C2n−1 for some constant C2, and conditioned on E2,

max
0≤ j≤m

I j = || ẽint(τ j)+Q∗j ||Σ−1 . m1/2
4

p+ logn
nh1/2 +h

√
p+ logn

n
. (C.39)
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It remains to bound II j for j = 0,1, . . . ,m. Recall that Q̂[
j(β̂ββ

[

j) = 000, we have

II0 = ‖J0(β̂ββ
[

0−βββ
∗
0)−{Q̂[

0(β̂ββ
[

0)− Q̂[
0(βββ

∗
0)}‖Σ−1

and for j = 1, . . . ,m,

II j ≤ ‖J j(β̂ββ
[

j−βββ
∗
j)−{Q̂[

j(β̂ββ
[

j)− Q̂[
j(βββ
∗
j)}‖Σ−1

+

∥∥∥∥∥1
n

n

∑
i=1

j−1

∑
`=0

∫
τ`+1

τ`

dH(u)
[
H`(β̂ββ `−βββ

∗
`)−Wi

{
K̄h(yi− xxxT

i βββ
∗
`)+ K̄h(yi− xxxT

i β̂ββ `)xxxi
}]∥∥∥∥∥

Σ−1

.

Putting together the pieces, and taking r �
√
(p+ logn)/n, we conclude that conditioning on

E1∩E2,

II j ≤ sup
βββ∈βββ

∗
j+Θ(r)

‖J j(βββ −βββ
∗
j)−{Q̂[

j(βββ )− Q̂[
j(βββ
∗
j)}‖Σ−1 (C.40)

+ sup
∩ j−1
`=0{βββ `∈βββ

∗
`+Θ(r)}

∥∥∥∥∥1
n

n

∑
i=1

j−1

∑
`=0

∫
τ`+1

τ`

dH(u)
[
H`(βββ `−βββ

∗
`)−Wi

{
K̄h(yi− xxxT

i βββ
∗
`)+ K̄h(yi− xxxT

i βββ `)xxxi
}]∥∥∥∥∥

Σ−1

holds with P∗-probability at least 1−C3n−1.

Let E3–E5 be the events from Lemmas C.3.3–C.3.5, so that P(E3∩E4∩E5)≥ 1−C4n−1.

Applying Lemmas C.3.4 and C.3.5 to (C.40) yields that for any j = 0,1, . . . ,m,

II j .

{
m1/2

4
p+ logn

nh1/2 +h

√
p+ logn

n
(C.41)

+ζ
2
p
(p+ logn)(p logn)1/2

n3/2h
+ max

0≤`≤ j−1
Γ`(r)

}
·
{

log
(1−τ0

1−τ j

)
∨1
}

holds with P∗-probability at least 1− n−2 conditioned on E4 ∩E5, where Γ`(r) is defined in

(C.29). Note that log
(1−τ0

1−τ j

)
≤ log

( 1−τ0
1−τm

)
is bounded by a constant. For Γ`(r), it follows from
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Lemma C.3.3 with r �
√

(p+ logn)/n that conditioned on E3,

max
0≤`≤m

Γ`(r). m1/2
4

p+ logn
nh1/2 +ζ

2
p
(p+ logn)(p logn)1/2

n3/2h
(C.42)

holds with P∗-probability at least 1−C5n−1 provided n& ζ 2
p logn.

Finally, define the event F = E1∩E2∩E3∩E4∩E5, satisfying P(F ) ≥ 1−Cn−1 for

some constant C > 0 independent of (n, p). Combining (C.39), (C.41) and (C.42) proves (C.37),

as claimed.

STEP 2. The arguments from Stage Two in the proof of Theorem 4.3.2 can be similarly applied to

bridge the gap between discrete and continuous uniform bounds. Thus the details are omitted.

C.3.4 Proof of Theorem 4.3.6

Without loss of generality, we assume ||aaan||Σ = 1 throughout the proof; otherwise, we

first rescale the vectors aaan so that the same arguments apply.

Conditioned on the observed data Dn = {(yi,∆i,xxxi)}n
i=1, we have E∗〈aaan,UUU [

i (τ)〉= 0 for

any τ ∈ [τL,τU ]. By the asymptotic (conditional) tightness established in Lemma C.3.6 and

the central limit theorem, the limiting distribution of G[
n(·) given Dn is a zero-mean Gaussian

process. Following the arguments in Appendix 1 of Lin, Wei and Ying [1993], it suffices to

show that the conditional covariance function of G[
n(·) given Dn converges to H(·, ·) defined in

(4.21), which is the limit of the (unconditional) covariance function of Gn(·). To this end, for

any s, t ∈ [τL,τU ], note that

Cov∗
(
G[

n(s),G[
n(t)
)
= E∗{G[

n(s)G[
n(t)}

=
1
n
E∗
{

n

∑
i=1
〈aaan,eiUUU i(s)〉

}
·
{

n

∑
i=1
〈aaan,eiUUU i(t)〉

}

=
1
n

n

∑
i=1

aaaT
nUUU i(s)UUU i(t)Taaan

a.s.−−→ H(s, t),
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where the almost sure convergence follows from the strong law of large numbers. This completes

the proof.

C.4 Proof of Theorem 4.4.1

For j = 0,1, . . . , and r,q > 0, define

ψ j(r,q) = sup
βββ∈βββ

∗
j+Θ(r)∩Λ(q)

∥∥∥∥∥1
n

n

∑
i=1

{
K̄h(yi− xxxT

i βββ )− K̄h(yi− xxxT
i βββ
∗
j)
}

xxxi

∥∥∥∥∥
∞

, (C.43)

where Λ(q) := {uuu ∈ Rp : ‖uuu‖1 ≤ q‖uuu‖Σ} is a cone-like set.

C.4.1 Technical lemmas

Lemma C.4.1. Let j = 0,1, . . . ,m, and t > 0.

(i) With probability at least 1− e−t ,

‖Q̂0(βββ
∗
j)−Q0(βββ

∗
j)‖∞ ≤ τ̄0

{
σ

√
2t +2log(2p)

n
+

t + log(2p)
3n

}
,

where τ̄0 = max(τ0,1− τ0) and σ2 = max1≤k≤p σkk.

(ii) With probability at least 1− e−t ,

∥∥∥∥∥1
n

n

∑
i=1

(1−E)K̄h(yi− xxxT
i βββ
∗
j)xxxi

∥∥∥∥∥
∞

≤ σ

√
2t +2log(2p)

n
+

t + log(2p)
3n

.

Proof. It suffices to prove part (i) since the second inequality can be obtained from the same

argument. Fix j, we have

‖Q̂0(βββ
∗
j)−Q0(βββ

∗
j)‖∞ = max

1≤k≤p

∣∣∣∣∣1n n

∑
i=1

(1−E){∆iK̄h(xxxT
i βββ
∗
j − yi)− τ0}︸ ︷︷ ︸

=:ξi j

xik

∣∣∣∣∣,
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where ξi j =∆iK̄h(xxxT
i βββ
∗
j−yi)−τ0 is such that |ξi j| ≤ τ̄0 =max(τ0,1−τ0) and E(ξi jxik)

2≤ τ̄2
0 σkk.

Applying Bernstein’s inequality yields that, with probability at least 1−2e−z,

∣∣∣∣∣1n n

∑
i=1

(1−E)ξi jxik

∣∣∣∣∣≤ τ̄0

(
σ

1/2
kk

√
2z
n
+

z
3n

)
for any 1≤ k ≤ p.

The claimed bound then follows by taking z = t + log(2p) and the union bound.

Lemma C.4.2. For any t > 0, we have that with probability at least 1− e−t ,

ψ j(r,q).

(
q
h

√
log p

n
+ f 1/2

√
t + log p

nh

)
· r+ t + log p

n
.

Proof. For any j fixed, and k = 1, . . . , p, define after a change of variable vvv = βββ −βββ
∗
j that

ψ j,k(r,q) = sup
vvv∈Θ(r)∩Λ(q)

∣∣∣∣∣1n n

∑
i=1

(1−E)
{

K̄h(εi j− xxxT
i vvv)− K̄h(εi j)

}
xik︸ ︷︷ ︸

=:gvvv(yi,xxxi)

∣∣∣∣∣,
where εi j = yi−xxxT

i βββ
∗
j . Then ψ j(r,q)≤max1≤k≤p ψ j,k(r,q). Note that supvvv |gvvv(yi,xxxi)| ≤ |xik| ≤ 1.

Let σ be any positive number such that σ2 ≥ supvvv∈Θ(r)∩Λ(q)Eg2
vvv(yi,xxxi). By Theorem 7.3 in

Bousquet [2003]—an improved version of Talagrand’s inequality, we obtain that for any z > 0,

ψ j,k(r,q)≤ Eψi,k(r,q)+

√{
σ2 +2Eψi,k(r,q)

}2z
n
+

z
3n

(C.44)

holds with probability at least 1− e−z. For the second moment Eg2
vvv(yi,xxxi), by a change of
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variable and Minkowski’s integral inequality we derive that

Eg2
vvv(yi,xxxi) = E

[
x2

ik

∫
∞

−∞

{
K̄h(u− xxxT

i vvv)− K̄h(u)
}2 fyi(xxx

T
i βββ
∗
j +u|xxxi)du

]

= hE

[
x2

ik

∫
∞

−∞

{
K̄(v− xxxT

i vvv/h)− K̄(v)
}2 fyi(xxx

T
i βββ
∗
j + vh|xxxi)dv

]

≤ f h−1E

[
x2

ik(xxx
T
i vvv)2

∫
∞

−∞

{∫ 1

0
K(v−wxxxT

i vvv/h)dw

}2

dv

]

≤ f h−1E

(
x2

ik(xxx
T
i vvv)2

[∫ 1

0

{∫
∞

−∞

K2(v−wxxxT
i vvv/h)dv

}1/2

dw

]2)

≤ κu f h−1E(xik · xxxT
i vvv)2 ≤ κu f h−1r2, valid for any vvv ∈Θ(r).

It remains to bound Eψ j,k(r,q) in the concentration inequality (C.44). Note that gvvv(yi,xxxi)

is (κu/h)-Lipschitz continuous in xxxT
i vvv, i.e., for any vvv,vvv′, |gvvv(yi,xxxi)−gvvv′(yi,xxxi)| ≤ (κu/h)|xxxT

i vvv−

xxxT
i vvv′|. Hence, it follows from Rademacher symmetrization and Talagrand’s contraction principle

that

Eψ j,k(r,q)≤ 2E

{
sup

vvv∈Θ(r)∩Λ(q)

∣∣∣∣∣1n n

∑
i=1

eiψi j(vvv)

∣∣∣∣∣
}

≤ 4κuE

{
sup

vvv∈Θ(r)∩Λ(q)

∣∣∣∣∣ 1
nh

n

∑
i=1

eixxxT
i vvv

∣∣∣∣∣
}
≤ 4κu

qr
nh
·E
∥∥∥∥∥ n

∑
i=1

eixxxi

∥∥∥∥∥
∞

,

where e1, . . . ,en are independent Rademacher variables. By Hoeffding’s moment inequality,

Ee

∥∥∥∥∥ n

∑
i=1

eixxxi

∥∥∥∥∥
∞

≤ max
1≤k≤p

(
n

∑
i=1

x2
ik

)1/2√
2log(2p),

where Ee denotes the expectation over {ei}n
i=1. Plugging this into the previous bound yields

Eψ j,k(r,q)≤ 4κu
qr
h

√
2log(2p)

n
.
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Finally, the claimed result follows by taking z = t + log p in (C.44) and the union bound.

The following result extends the restricted strong property in Lemma C.2.4 to high dimen-

sions. It follows from Proposition 4.2 in Tan, Wang and Zhou [2021] with slight modifications.

Lemma C.4.3. Assume Conditions 4.3.1–4.3.3 hold, and let h,r > 0 satisfy 4η1/4r≤ h≤ g/(2l1)

with η1/4 defined in (C.2). Then, for any 0≤ j ≤ m and t > 0,

P

{
D(βββ ,βββ ∗j)≥

1
2

gκl · ||βββ −βββ
∗
j ||2Σ for all βββ ∈ βββ

∗
j +Θ(r)∩Λ(q)

}
≥ 1− e−t

provided that n& h(q/r)2(t ∨ log p).

C.4.2 Proof of the theorem

Following the argument as in the proof of Theorem 4.3.1, it suffices to derive a uniform

bound on the grid of τ-levels, τL = τ0 < τ1 < · · ·< τm = τU . Again, we start with constructing

intermediate points {β̃ββ j =(1−u j)βββ
∗
j +u jβ̂ββ j} j=0,1,...,m that satisfy β̃ββ j ∈ βββ

∗
j +Θ(r♦), where r♦=

h/(4η1/4). For each β̂ββ j, by the first-order optimality condition, there exists some subgradient

ĝgg j ∈ ∂‖β̂ββ j‖1 such that Q̂ j(β̂ββ j) + λ j · ĝgg j = 0 and 〈ĝgg j, β̂ββ j〉 = ‖β̂ββ j‖1. Consequently, for each

j = 0,1, . . . ,m,

D(β̃ββ j,βββ
∗
j)≤ u jD(β̂ββ j,βββ

∗
j) = u j〈−λ jĝgg j− Q̂ j(βββ

∗
j), β̂ββ j−βββ

∗
j〉

≤ λ j
(
‖(β̃ββ j−βββ

∗
j)S j‖1−‖(β̃ββ j−βββ

∗
j)S c

j
‖1
)
+ 〈−Q̂ j(βββ

∗
j), β̃ββ j−βββ

∗
j〉, (C.45)

where S j = supp(βββ ∗j). Denote the cardinality of S j by s j, satisfying s j ≤ s for all j. Consider

the decomposition

Q̂ j(βββ
∗
j) = Q̂0(βββ

∗
j)−Q0(βββ

∗
j)−

j−1

∑
`=1

w`(∆̂`+∆`)+Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxx},
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where ∆̂` are ∆` (`= 0,1, . . . ,m−1) are given in (C.12). Then, by Hölder’s inequality,

|〈Q̂ j(βββ
∗
j), β̃ββ j−βββ

∗
j〉| (C.46)

≤
{
‖Q̂0(βββ

∗
j)−Q0(βββ

∗
j)‖∞ +

j−1

∑
`=0

w`

(
‖∆̂`‖∞ +‖∆`‖∞

)}
‖β̃ββ j−βββ

∗
j‖1

+

∥∥∥∥∥Q0(βββ
∗
j)−

j−1

∑
`=0

w`E{K̄h(y− xxxT
βββ
∗
`)xxx}

∥∥∥∥∥
Σ−1︸ ︷︷ ︸

<(1+W j)a by (C.14)

‖β̃ββ j−βββ
∗
j‖Σ, j = 1, . . . ,m,

and |〈Q̂0(βββ
∗
0), β̃ββ 0−βββ

∗
0〉| ≤ ‖Q̂0(βββ

∗
0)−Q0(βββ

∗
0)‖∞‖β̃ββ 0−βββ

∗
0‖1 +a‖β̂ββ 0−βββ

∗
0‖Σ, where

a = 0.5l1κ2h2 + f f−1
δ
∗ and Wj =

j−1

∑
`=0

w` =
∫

τ j

τL

dH(u) = log
(1−τL

1−τ j

)
. (C.47)

For some positive sequence {q j} j=0,1,...,m and curvature parameter κ > 0 to be deter-

mined, define the “good” events

G =

{
‖Q̂0(βββ

∗
j)−Q0(βββ

∗
j)‖∞ ≤

λ0

2

}
⋂{
‖Q̂0(βββ

∗
j)−Q0(βββ

∗
j)‖∞ +

j−1

∑
`=0

w`‖∆`‖∞ ≤
λ j

3
, j = 1, . . . ,m

}
and

F =
m⋂

j=0

{
D(βββ ,βββ ∗j)≥ κ · ‖βββ −βββ

∗
j‖2

Σ for all βββ ∈ βββ
∗
j +Θ(r♦)∩Λ(q j)

}
.

Conditioned on F ∩G , it follows from (C.45) that

0≤ D(β̃ββ 0,βββ
∗
0)<

λ0

2
(
3‖(β̃ββ 0−βββ

∗
0)S0‖1−‖(β̃ββ 0−βββ

∗
0)S c

0
‖1
)
+a‖β̃ββ 0−βββ

∗‖Σ, (C.48)

thus implying the cone-like constraint ‖(β̃ββ 0−βββ
∗
0)S c

0
‖1 ≤ 3‖(β̃ββ 0−βββ

∗
0)S0‖1 +(2a/λ0)‖β̃ββ 0−

βββ
∗‖Σ. Taking q0 = 4(s0/γl)

1/2 +2a/λ0, we see that β̃ββ 0 falls into the cone-like set βββ
∗
0 +Λ(q0),

and so does β̂ββ 0. Hence, D(β̃ββ 0,βββ
∗
0)≥ κ · ‖β̃ββ 0−βββ

∗
0‖2

Σ
. Combining this with (C.48) yields, after
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some algebra, that

‖β̃ββ 0−βββ
∗
0‖Σ < r0 := κ

−1{1.5(s/γl)
1/2

λ0 +a
}
. (C.49)

Provided r0 ≤ r♦, β̃ββ 0 lies in the interior of the local region βββ
∗
0 +Θ(r♦). As before, we argue by

contradiction that β̂ββ 0 coincides with β̃ββ 0, thus implying β̂ββ 0 ∈ βββ
∗
0 +Θ(r0)∩Λ(q0).

For (β̃ββ 1, β̂ββ 1), from (C.45) and (C.46) it follows that

0≤ D(β̃ββ 1,βββ
∗
1)< λ1

(
‖(β̃ββ 1−βββ

∗
1)S1‖1−‖(β̃ββ 1−βββ

∗
1)S c

1
‖1
)

+
(
λ1/3+w0‖∆̂0‖∞

)
‖β̃ββ 1−βββ

∗
1‖1 +(a+w0a)‖β̃ββ 1−βββ

∗
1‖Σ.

We have already shown that β̂ββ 0 ∈ βββ
∗
0 +Θ(r0)∩Λ(q0) conditioning on F ∩G . Then ‖∆̂0‖∞ ≤

ψ0(r0,q0), where ψ j(·, ·) is defined in (C.43). Conditioned further on {w0ψ0(r0,q0) ≤ λ1/3},

we have

0≤ D(β̃ββ 1,βββ
∗
1)<

λ1

3
(
5‖(β̃ββ 1−βββ

∗
1)S1‖1−‖(β̃ββ 1−βββ

∗
1)S c

1
‖1
)
+a(1+w0)‖β̃ββ 1−βββ

∗
1‖Σ,

which in turn implies β̃ββ 1 ∈ βββ
∗
1 +Λ(q1) with q1 := 6(s1/γl)

1/2 +3(1+w0)a/λ1. On the event

F , D(β̃ββ 1,βββ
∗
1)≥ κ · ‖β̃ββ 1−βββ

∗
1‖2

Σ
. Combining the upper and lower bounds yields

‖β̃ββ 1−βββ
∗
1‖Σ < r1 := κ

−1{5
3(s/γl)

1/2
λ1 +a+w0a

}
. (C.50)

Provided r1 ≤ r♦, we reach the conclusion that β̂ββ 1 ∈ βββ
∗
1 +Θ(r1)∩Λ(q1).

We now recurse this argument, in particular controlling the error terms ‖∆̂`‖∞ sequentially,
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so that at the j-th step (1≤ j ≤ m), β̃ββ j satisfies

0≤ D(β̃ββ j,βββ
∗
j)< λ j

(
‖(β̃ββ j−βββ

∗
j)S j‖1−‖(β̃ββ j−βββ

∗
j)S c

j
‖1
)

+

(
λ j

3
+

j−1

∑
`=0

w`‖∆̂`‖∞

)
‖β̃ββ 1−βββ

∗
1‖1 +a

(
1+

j−1

∑
`=0

w`

)
‖β̃ββ 1−βββ

∗
1‖Σ.

Conditioning on the event {∑ j−1
`=0 w`ψ`(r`,q`)≤ λ j/3}, we obtain the cone-like constraint β̃ββ j ∈

βββ
∗
j +Λ(q j) with q j := 6(s j/γl)

1/2 +3(1+Wj)a/λ j, thus implying

‖β̃ββ j−βββ
∗
j‖Σ < r j := κ

−1{5
3(s/γl)

1/2
λ j +a+Wja

}
. (C.51)

As long as max0≤ j≤m r j ≤ r♦, we have established the result β̂ββ j ∈ βββ
∗
j +Θ(r j)∩Λ(q j)

( j = 0,1, . . . ,m) as a deterministic claim, conditioned on the event

F ∩G ∩
m⋂

j=1

{
j−1

∑
`=0

w`ψ`(r`,q`)≤
λ j

3

}

with properly chosen κ > 0 and parameters λ0,λ1, . . . ,λm, where q0 = 4(s0/γl)
1/2 +2a/λ0 and

q j = 6(s j/γl)
1/2 +3(1+Wj)a/λ j for j ≥ 1 with Wj given in (C.47).

Next we choose {λ j} j=0,1,...,m in a sequential manner so that the above good event occurs

with high probability. Applying the two inequalities in Lemma C.4.1, both with t = 2log p,

implies that with probability at least 1−2(m+1)p−2,

‖Q̂0(βββ
∗
j)−Q0(βββ

∗
j)‖∞ +

j−1

∑
`=0

w`‖∆`‖∞ . (1+Wj)σ

√
log p

n
for all j = 0,1, . . . ,m,

where W0 ≡ 0. Throughout, assume the following upper bound constraint on the magnitude of h:

h2 . (s/λl)
1/2

σ

√
log p

n
.
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Starting at j = 0, set λ0 � σ
√

log(p)/n so that q0 . (s/γl)
1/2 and r0 = κ−1{1.5(s/γl)

1/2λ0 +

a} . κ−1(s/γl)
1/2λ0. With this choice of (λ0,r0,q0), it follows from Lemma C.4.2 with t =

2log p that, with probability at least 1− p−2,

ψ0(r0,q0).
sλ0

κγlh

√
log p

n
+

log p
n

.

Recall that a� h2 +δ ∗ . h2 +n−1/2. We then choose λ1 � (1+W1)σ
√

log(p)/n so that λ1 ≥

3max
{

w0ψ0(r0,q0),‖Q̂0(βββ
∗
1)−Q0(βββ

∗
1)‖∞ +w0‖∆`‖∞

}
as long as h& (κγl)

−1w0s
√

log(p)/n.

Furthermore, it follows that q1 . (s/γl)
1/2 and r1 � κ−1(s/γl)

1/2λ1.

At a general j ≥ 1, assume we already have λ` � (1+W`)σ
√

log(p)/n, q` . (s/γl)
1/2

and r` � κ−1(s/γl)
1/2λ` for `= 0,1, . . . , j−1. And with probability at least 1− jp−2,

ψ`(r`,q`).
sλ`

κγlh

√
log p

n
+

log p
n

, `= 0,1, . . . , j−1.

The accumulated error can thus be bounded by

j−1

∑
`=0

w`ψ`(r`,q`).
σ

κγlh
s log p

n

j−1

∑
`=0

(1+W`)w`+Wj
log p

n
.

Provided that h& (κγl)
−1Wjs

√
log(p)/n,

(1+Wj)σ

√
log p

n
� λ j ≥ 3max

{
j−1

∑
`=0

w`ψ`(r`,q`),‖Q̂0(βββ
∗
j)−Q0(βββ

∗
j)‖∞ +

j−1

∑
`=0

w`‖∆`‖∞

}
.

and therefore the event that involves λ j is certified.

With the above choice of {r j} j=0,1,...,m and the lower bound constraint on the magnitude

of the bandwidth—h& (κγl)
−1Wms

√
log(p)/n, we have

κ
−1(1+Wj)σ(s/γl)

1/2

√
log p

n
� r j ≤ r♦ � h for all j = 0,1, . . . ,m.
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Finally, by the restricted strong convexity lemma—Lemma C.4.3 with r = h/(4η1/4), q �

(s/γl)
1/2 and t = 2log p—we take κ = (gκl)/2 so that event F happens with probability at least

1− (m+1)p−2 provided that the “effective” sample size satisfies nh& s log p.

C.5 Proof of Technical Lemmas

This section contains the proofs of all technical lemmas from Sections C.2 and C.3.

C.5.1 Proof of Lemma C.2.1

Fix βββ ,βββ ′ ∈ Rp, and define the function f (η) = 〈Q(βββ η)−Q(βββ ′),βββ − βββ
′〉 for η ∈

[0,1]. Since Q(·) is differentiable with a positive semi-definite Jacobian, we have f ′(η) =

〈∇Q(βββ η)(βββ − βββ
′),βββ − βββ

′〉 ≥ 0, and hence f (·) is non-decreasing. Consequently, for any

η ∈ [0,1],

D(βββ η ,βββ
∗) = 〈Q(βββ η)−Q(βββ ′),βββ η −βββ

′〉= η〈Q(βββ η)−Q(βββ ′),βββ −βββ
′〉

= η f (η)≤ η f (1) = η〈Q(βββ )−Q(βββ ′),βββ −βββ
′〉= ηD(βββ ,βββ ′),

as claimed.

C.5.2 Proof of Lemma C.2.2

First, by the variational representation of ‖ · ‖2,

∆ :=

∥∥∥∥∥1
n

n

∑
i=1

(ξizzzi−Eξizzzi)

∥∥∥∥∥
2

= sup
uuu∈Sp−1

1
n

n

∑
i=1

(1−E) fuuu(ξi,zzzi),

where fuuu(ξi,zzzi) := 〈uuu,ξizzzi〉 satisfies | fuuu(ξi,zzzi)| ≤Mζp and E{ f 2
uuu (ξi,zzzi)}= E{ξ 2

i 〈uuu,zzzi〉2} ≤ σ2.

Applying a refined Talagrand’s inequality (see, e.g., Theorem 7.3 in Bousquet [2003]) yields that
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with probability at least 1− e−t ,

∆≤ 2E∆+σ

√
2t
n
+

4Mζpt
3n

.

It remains to bound E∆. By the Cauchy-Schwarz inequality,

E∆≤
(
E

∥∥∥∥∥1
n

n

∑
i=1

(ξizzzi−Eξizzzi)

∥∥∥∥∥
2

2

)1/2

≤ 1
n

(
n

∑
i=1

E‖ξizzzi−Eξizzzi‖2
2

)1/2

≤ 1
n

{
n

∑
i=1

E
(
ξ

2
i ‖zzzi‖2

2
)}1/2

≤ σ

n1/2

(
E‖zzzi‖2

2
)1/2

= σ

√
p
n
.

Combining the above two displays gives

∥∥∥∥∥1
n

n

∑
i=1

(ξizzzi−Eξizzzi)

∥∥∥∥∥
2

≤ 2σ

√
p
n
+σ

√
2t
n
+Mζp

4t
3n

holds with probability at least 1− e−t .

C.5.3 Proof of Lemma C.2.3

Proof of (i). For each j = 0,1, . . . ,m, define random variables ξi j = ∆iK̄h(xxxT
i βββ
∗
j−yi)−τ0,

so that the centered process can be written as Σ−1/2{Q̂0(βββ
∗
j)−EQ̂0(βββ

∗
j)}= (1/n)∑

n
i=1(ξi jzzzi−

Eξi jzzzi). Since ∆i ∈ {0,1} and 0≤ K̄(·)≤ 1, we have |ξi j| ≤ τ̄0 = max(τ0,1− τ0). In particular,

for j = 0, it is shown in the proof of Lemma C.2 in He et al. [2022] that E(ξ 2
i0|xxxi) ≤ τ0(1−

τ0)+ (1+ τ0)l1κ2h2. For general j ≥ 1, we can simply use the crude second moment bound

E(ξ 2
i j|xxxi)≤ τ̄2

0 . The claimed bound of (i) then follows directly from Lemma C.2.2.

Proof of (ii). The bound follows trivially from Lemma C.2.2 and the facts that |K̄h(xxxT
i βββ
∗
j−yi)| ≤ 1

and E{K̄2
h (xxx

T
i βββ
∗
j − yi)|xxxi} ≤ 1.

Proof of (iii). The proof is based on a similar argument used in the proof of Lemma C.2.2. Fix j,

set vvv = βββ
∗
j+1−βββ

∗
j so that ‖vvv‖Σ ≤ f−1

δ ∗. By the monotonicity of u 7→ xxxT
i βββ
∗(u) and K̄h(·), we
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have

∣∣∣∣∫ τ j+1

τ j

{K̄h(xxxT
i βββ
∗(u)− yi)− K̄h(xxxT

i βββ
∗(τ j)− yi)}dH(u)

∣∣∣∣
≤ w j{K̄h(xxxT

i βββ
∗
j+1− yi)− K̄h(xxxT

i βββ
∗
j − yi)} ≤ κuw jh−1xxxT

i vvv≤ κu f−1w jh−1
ζpδ

∗, (C.52)

implying the boundedness, where the last step follows from Condition 4.3.4 and (4.10). To

control the (conditional) second moment, note that

E

[{∫
τ j+1

τ j

{
K̄h(xxxT

i βββ
∗(u)− yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
dH(u)

}2∣∣∣∣∣xxxi

]

≤ w2
j

∫
∞

−∞

{
K̄h(xxxT

i βββ
∗
j+1−u)− K̄h(xxxT

i βββ
∗
j −u)

}2 fy(u|xxx)du

= w2
jh
∫

∞

−∞

{
K̄(v+ xxxT

i vvv/h)− K̄(v)
}2 fy(xxxT

i βββ j−hv|xxx)dv

≤ f w2
jh
−1(xxxT

i vvv)2
∫

∞

−∞

{∫ 1

0
K(v+wxxxT

i vvv/h)dw
}2

dv

(∗)
≤ f w2

jh
−1(xxxT

i vvv)2

(∫ 1

0

{∫
∞

−∞

K2(v+wxxxT
i vvv/h)dv

}1/2

dw

)2

≤ κu f w2
jh
−1(xxxT

i vvv)2,

where Minkowski’s integral inequality is applied in step (∗). Turning to the unconditional second

moment, we have for any unit vector uuu that

E

{∫
τ j+1

τ j

{
K̄h(xxxT

i βββ
∗(u)− yi)− K̄h(xxxT

i βββ
∗(τ j)− yi)

}
dH(u)〈uuu,zzzi〉

}2

≤ κu f w2
jh
−1{E(xxxT

i vvv)4}1/2{E(zzzT
i uuu)4}1/2 ≤ κu f f−2m4w2

jh
−1

δ
∗2, (C.53)

where m4 is given in (4.9). Combining (C.52) and (C.53) with Talagrand’s inequality as in

Lemma C.2.2 proves the claimed bound.
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C.5.4 Proof of Lemma C.2.4

Throughout the proof, for any fixed j = 0,1, . . . ,m, we write βββ
∗ = βββ

∗
j , Q̂(·) = Q̂ j(·) and

Q(·) = EQ̂(·) for simplicity. Recall the smoothed estimating functions defined in (4.3), (4.4),

and the induced metric (symmetrized Bregman divergence)

D(βββ ,βββ ∗) =
1
n

n

∑
i=1

∆i
{

K̄h(xxxT
i βββ − yi)− K̄h(xxxT

i βββ
∗− yi)

}
xxxT

i (βββ −βββ
∗), (C.54)

where K̄h(·) = K̄(·/h). Given h,r > 0, define the events Ei = {|xxxT
i βββ
∗− yi| ≤ h/2}∩{|xxxT

i (βββ −

βββ
∗)| ≤ ‖βββ − βββ

∗‖Σ · h/(2r)} for i = 1, . . . ,n. For any βββ ∈ βββ
∗+Θ(r), it is easy to see that

|yi− xxxT
i βββ | ≤ h on Ei, hence implying

D(βββ ,βββ ∗)≥ κl

nh

n

∑
i=1

∆i{xxxT
i (βββ −βββ

∗)}2
1Ei. (C.55)

It then suffices to bound the right-hand side of (C.55) from below uniformly over βββ ∈ βββ
∗+Θ(r).

For R > 0, define the function ϕR(u) = u2
1(|u| ≤ R/2)+{usign(u)−R}2

1(R/2 < |u| ≤

R), which is R-Lipschitz continuous and satisfies the following properties: ϕcR(cu) = c2ϕR(u)

for any c≥ 0, ϕ0(u) = 0, and

u2
1(|u| ≤ R/2)≤ ϕR(u)≤ u2

1(|u| ≤ R). (C.56)

For βββ ∈ βββ
∗+Θ(r), consider the change of variable δδδ = Σ1/2(βββ −βββ

∗)/‖βββ −βββ
∗‖Σ. Together,

(C.55) and (C.56) imply

D(βββ ,βββ ∗)
κl‖βββ −βββ

∗‖2
Σ

≥ D0(δδδ ) :=
1

nh

n

∑
i=1

ωi ·ϕh/(2r)(zzz
T
i δδδ ), (C.57)

where ωi := 1(|xxxT
i βββ
∗− yi| ≤ h/2,∆i = 1).

We first bound the expectation E{D0(δδδ )}, and then control the concentration of D0(δδδ )
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around E{D0(δδδ )}. When 0 < h≤ 1, Condition 4.3.3 ensures that

g ·h≤ E(ωi|xxxi) =
∫ xxxT

i βββ
∗+h/2

xxxT
i βββ
∗−h/2

g(u|xxxi)du≤ g ·h almost surely. (C.58)

It then follows from (C.56) and (C.58) that

E
{

ωi ·ϕh/(2r)(zzz
T
i δδδ )
}
≥ gh ·Eϕh/(2r)(zzz

T
i δδδ )≥ gh ·E

{
(zzzT

i δδδ )2
1
(
|zzzT

i δδδ | ≤ h/(4r)
)}

= gh ·
{

1−E(zzzT
i δδδ )2

1
(
|zzzT

i δδδ |> h/(4r)
)}

,

which further implies

inf
δδδ∈Sp−1

E{D0(δδδ )} ≥ g ·
[

1− sup
uuu∈Sp−1

E
{
(zzzT

i δδδ )2
1
(
|zzzT

i δδδ |> h/(4r)
)}]

.

By the definition of ηξ in (C.2), as long as 0 < r ≤ h/(4η1/4),

inf
δδδ∈Sp−1

E{D0(δδδ )} ≥
3
4

g. (C.59)

Turning to the random process {D0(δδδ )−ED0(δδδ ) : δδδ ∈ Sp−1}, it suffices to bound

Λ = sup
δδδ∈Sp−1

{
−D0(δδδ )+ED0(δδδ )

}
. (C.60)

By the fact that 0≤ ϕR(u)≤min{(R/2)2,(R/2)|u|} for all u ∈ R, we have

0≤ (ωi/h)ϕh/(2r)(zzz
T
i δδδ )≤ ωi min

{
(4r)−2h,(4r)−1|zzzT

i δδδ |
}
.

Combining this with (C.58) yields

E
{
(ωi/h)2

ϕ
2
h/(2r)(zzz

T
i δδδ )
}
≤ (4r)−2E

{
E(ωi|xxxi)(zzzT

i δδδ )2}≤ (4r)−2ḡh.
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With the above preparations, we apply a refined Talagrand’s inequality—Theorem 7.3 in Bousquet

[2003]—to obtain that, for any t > 0,

Λ≤ EΛ+(EΛ)1/2

√
ht

4r2n
+ ḡ1/2

√
ht

8r2n
+

h
(4r)2

t
3n

≤ 5
4
EΛ+ ḡ1/2

√
ht

8r2n
+(1/4+1/48)

ht
r2n

(C.61)

with probability at least 1− e−t . It remains to bound EΛ. To this end, we define

E (δδδ ;zzzi,yi) =
ωi

h
ϕh/(2r)(zzz

T
i δδδ ) =

1
h

ϕωih/(2r)(ωizzzT
i δδδ ), δδδ ∈ Sp−1.

where the second equality follows from the property that ϕcR(cu) = c2ϕR(u) for any c ≥ 0.

By the Lipschitz continuity of ϕR(·), E (δδδ ;zzzi,yi) is (2r)−1-Lipschitz continuous in ωizzzT
i δδδ , and

E (δδδ ;zzzi,yi) = 0 for any δδδ such that ωizzzT
i δδδ = 0. Furthermore, define the subset T ⊆ Rn as

T =
{

ttt = (t1, . . . , tn)T : ti = ωizzzT
i δδδ , i = 1, . . . ,n, δδδ ∈ Sp−1},

and contractions φi : R→ R as φi(t) = (2r/h) ·ϕωih/(2r)(t). In fact, the Lipschitz continuity of

ϕR(·) implies |φ(t)−φ(s)| ≤ |t− s| for all t,s ∈ R. Let ε1, . . . ,εn be independent Rademacher

random variables, and denote by Eε the expectation taken only with respect to εi’s. Then, via a

standard symmetrization and contraction argument (see, e.g. Lemma 6.3 and Theorem 4.12 in

Ledoux and Talagrand [1991]), we have

EεΛ≤ 2Eε

{
sup

δδδ∈Sp−1

1
n

n

∑
i=1

εiE (δδδ ;zzzi,yi)

}
=

1
r
Eε

{
sup
ttt∈T

1
n

n

∑
i=1

εiφi(ti)

}

≤ 1
r
Eε

(
sup
ttt∈T

1
n

n

∑
i=1

εiti

)
=

1
r
Eε

{
sup

δδδ∈Sp−1

1
n

n

∑
i=1

εi ·ωizzzT
i δδδ

}
≤ 1

r
Eε

∥∥∥∥1
n

n

∑
i=1

εiωizzzi

∥∥∥∥
2
.

Taking the expectation over {(zzzi,yi)}n
i=1 on both sides yields EΛ≤ ḡ1/2

√
hp/(r2n). Substituting
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this into (C.61), we obtain

Λ≤ ḡ1/2r−1

(
5
4

√
hp
r2n

+

√
ht

8r2n

)
+(1/4+1/48)r−2 ht

n
(C.62)

with probability at least 1− e−t .

Finally, combining (C.57), (C.59), (C.60) and (C.62) completes the proof.

C.5.5 Proof of Lemma C.2.5

To begin with, define the centered process

S(βββ ) =
1
n

n

∑
i=1

(1−E)K̄h(yi− xxxT
i βββ )zzzi, βββ ∈ Rp.

After a change of variable vvv = Σ1/2(βββ −βββ
∗
j), we have

sup
βββ∈βββ

∗
j+Θ(r)

||S(βββ )−S(βββ ∗j)||2 = sup
vvv∈Bp(r)

‖S(βββ ∗j +Σ
−1/2vvv)−S(βββ ∗j)︸ ︷︷ ︸
=:Ψ(vvv)

‖2.

Since the empirical process Ψ(vvv) is continuous with respect to vvv, we will apply the concentration

bound from Theorem A.3 in Spokoiny [2013] to control the supremum supvvv∈Bp(r) ‖Ψ(vvv)‖2.

First, note that the function Ψ(·) : Rp→ Rp satisfies Ψ(0) = 0, E{Ψ(vvv)}= 0

∇Ψ(vvv) =
1
n

n

∑
i=1

{
φi,vvvzzzizzzT

i −E
(
φvvvzzzzzzT

)}
,

where φi,vvv = Kh(zzzT
i vvv− εi), φvvv = Kh(zzzTvvv− ε) and εi = yi− xxxT

i βββ
∗
j . It is easy to see that 0 ≤

φi,vvv ≤ κu/h with κu = supu∈RK(u). For any ggg,hhh ∈ Sp−1 and |λ | ≤ min{nh/(κuζ 2
p),n/g}, by
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independence and the elementary inequality eu ≤ 1+u+u2e|u|/2, we obtain that

Eexp
{

λgggT
∇Ψ(vvv)hhh

}
≤
[

1+
λ 2

2n2 e
g|λ |

n E|zzzTgggzzzThhh|E
{

φvvvzzzTgggzzzThhh−E(φvvvzzzTgggzzzThhh)
}2e

κu|λ |
nh |zzzTgggzzzThhh|

]n

(i)
≤
[

1+
λ 2

2n2 eg|λ |/nE
{

φvvvzzzTgggzzzThhh−E(φvvvzzzTgggzzzThhh)
}2e

κu|λ |
nh |zzzTgggzzzThhh|

]n

≤
[

1+
eλ 2

2n2 E
{

φvvvzzzTgggzzzThhh−E(φvvvzzzTgggzzzThhh)
}2eκuζ 2

p |λ |/(nh)

]n

≤
{

1+
(eλ )2

2n2 E
(
φvvvzzzTgggzzzThhh

)2

}n

, (C.63)

where inequality (i) follows from the bound E|zzzTgggzzzThhh| ≤ 1. For φvvv = Kh(zzzTvvv− ε), under

Condition 4.3.3, its conditional second moment can be bounded by

E
(
φ

2
vvv |xxx
)
=

1
h2

∫
∞

−∞

K2
(

zzzTvvv+ xxxTβββ
∗
j − t

h

)
fy(t|xxx)dt

=
1
h

∫
∞

−∞

K2(u) fy(zzzTvvv+ xxxT
βββ
∗
j +hu|xxx)du≤ κu f

h
. (C.64)

Substituting this into (C.63) yields

Eexp
{

λgggT
∇Ψ(vvv)hhh

}
≤
{

1+κu f e2m4λ
2/(2n2h)

}n ≤ exp
{

κu f e2m4λ
2/(2nh)

}
.

This verifies condition (A.4) in Spokoiny [2013]. Therefore, applying Theorem A.3 therein, we

obtain that with probability at least 1− e−t ,

sup
βββ∈βββ

∗
j+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
{

K̄h(yi− xxxT
i βββ )− K̄h(yi− xxxT

i βββ
∗
j)
}

zzzi

∥∥∥∥∥
2

= sup
vvv∈Bp(r)

‖Ψ(vvv)‖2 . (κu f m4)
1/2
√

p+ t
nh
· r (C.65)
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as long as nh & ζ 2
p(p+ t)1/2. This proves (C.6), and (C.7) can be obtained from the same

argument.

Turning to the mean difference approximation, applying the mean value theorem for

vector-valued functions implies

E{K̄h(y− xxxT
βββ )− K̄h(y− xxxT

βββ
∗
j)}zzz

=−
∫ 1

0
E
{

Kh(y−〈xxx,βββ ∗j + t(βββ −βββ
∗
j)〉)zzzxxxT

}
dt · (βββ −βββ

∗
j).

With vvv = Σ1/2(βββ −βββ
∗
j), note that

E
{

Kh(y−〈xxx,βββ ∗j + t(βββ −βββ
∗
j)〉)|xxx

}
=

1
h

∫
∞

−∞

K

(
u− tzzzTvvv

h

)
fy(xxxT

βββ
∗
j +u|xxx)du =

∫
∞

−∞

K(v) fy(xxxT
βββ
∗
j + tzzzTvvv+hv|xxx)dv.

By the Lipschitz continuity of fy(·|xxx), we have

∥∥∥∥∥E{K̄h(y− xxxT
βββ )− K̄h(y− xxxT

βββ
∗
j)}zzz+E

{
fy(xxxT

βββ
∗
j |xxx)zzzzzzT

}
vvv

∥∥∥∥∥
2

=

∥∥∥∥∥E
∫ 1

0

∫
∞

−∞

K(v)
{

fy(xxxT
βββ
∗
j + tzzzTvvv+hv|xxx)− fy(xxxT

βββ
∗
j |xxx)
}

zzzzzzTdvdt · vvv
∥∥∥∥∥

2

≤ l1 sup
uuu∈Sp−1

E
∫ 1

0

∫
∞

−∞

K(v)
(
t|zzzTvvv|+h|v|

)
dvdt · |zzzTuuuzzzTvvv| ≤ l1

(
0.5m3r+κ1h

)
r,

as claimed.

C.5.6 Proof of Lemma C.2.6

For any ε ∈ (0,τu− τl), we divide the interval [τl,τu] into L := d(τu− τl)/(2ε)e+ 1

subintervals, centered at the points τk for k ∈ [L], and each of length at most 2ε . For any
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τ ∈ [τl,τu], there exists some k such that |τ− τk| ≤ ε , and hence

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ

τl

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · xxxi

∥∥∥∥∥
Σ−1

≤
∥∥∥∥∥1

n

n

∑
i=1

(1−E)
∫

τk

τl

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · xxxi

∥∥∥∥∥
Σ−1

+

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ

τk
K̄h(yi− xxxT

i βββ
∗(u))dH(u) · xxxi

∥∥∥∥∥
Σ−1

≤
∥∥∥∥∥1

n

n

∑
i=1

(1−E)
∫

τk

τl

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · zzzi

∥∥∥∥∥
2

+2ζp|H(τ)−H(τk)|.

For any given k ∈ [L], applying Lemma C.2.2 yields that with probability at least 1− e−v,

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τk

τl

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · zzzi

∥∥∥∥∥
2

. |H(τk)−H(τl)|
(√

p+ v
n

+ζp
v
n

)
.

Recall that H(u) =− log(1−u), u∈ (0,1), we have |H(u)−H(v)| ≤ |u−v|/(1−u∨v). Finally,

taking ε = (τu− τl)/(2n), v = logL+ t (t > 0), and the union bound over k = 1, . . . ,L, we

conclude that

sup
τ∈[τl ,τu]

∥∥∥∥∥1
n

n

∑
i=1

(1−E)
∫

τ

τ j

K̄h(yi− xxxT
i βββ
∗(u))dH(u) · xxxi

∥∥∥∥∥
Σ−1

.
τu− τl

1− τu

(√
p+ logn+ t

n
+ζp

logn+ t
n

)

holds with probability at least 1− e−t . This proves the claimed result.

209



C.5.7 Proof of Lemma C.2.7

For Q0(βββ ) = E{∆K̄h(xxxTβββ −y)−τ0}xxx, it follows from integration by parts and change of

variables that

E{∆K̄h(xxxT
βββ
∗− y)|xxx}=

∫
∞

−∞

K̄

(
xxxTβββ

∗− t
h

)
dG(t|xxx) = 1

h

∫
∞

−∞

K

(
xxxTβββ

∗− t
h

)
G(t|xxx)dt

=
∫

∞

−∞

K(u)G(xxxT
βββ
∗+hu|xxx)du

= G(xxxT
βββ
∗|xxx)+

∫
∞

−∞

K(u)
∫ xxxTβββ

∗+hu

xxxTβββ
∗ {g(t|xxx)−g(xxxT

βββ
∗|xxx)}dt du. (C.66)

On the other hand, using the martingale property gives

E

[∫
τ j

0
1{y≥ xxxT

βββ
∗(u)}dH(u)

∣∣∣∣∣xxx
]
= E{N(xxxT

βββ
∗
j)|xxx}= P(y≤ xxxT

βββ
∗
j ,∆ = 1|xxx) = G(xxxT

βββ
∗
j |xxx).

Together, the last two displays and the Lipschitz continuity of g(·|xxx) imply

∥∥∥∥∥E
[

∆K̄h(xxxT
βββ
∗
j − y)−

∫
τ j

0
1{y≥ xxxT

βββ
∗(u)}dH(u)

]
xxx

∥∥∥∥∥
Σ−1

≤ 1
2

l1κ2h2. (C.67)

Next, for `= 0,1, . . . , j−1,

E
{

K̄h(y− xxxT
βββ
∗
`)|xxx
}
= 1−Fy(xxxT

βββ
∗
` |xxx)−

∫
∞

−∞

K(v)
∫ xxxTβββ

∗
`+hv

xxxTβββ
∗
`

{ fy(t|xxx)− fy(xxxT
βββ
∗
` |xxx)}dtdv.

This, combined with the Lipschitz continuity of f (·|xxx), implies

∥∥∥∥∥E
[

j−1

∑
`=0

w`

{
K̄h(yi− xxxT

i βββ
∗
`)−1(yi ≥ xxxT

i βββ
∗
`)
}

xxxi

]∥∥∥∥∥
Σ−1

≤ 1
2

l1κ2h2
j−1

∑
`=0

w`. (C.68)

It remains to compare
∫ τ j

0 1{y≥ xxxTβββ
∗(u)}dH(u) and ∑

j−1
`=0 w`1(yi ≥ xxxT

i βββ
∗
`)+ τ0. By the global

linear conditional quantile model assumption, the function u 7→1{y≥ xxxTβββ
∗(u)} is non-increasing
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in u ∈ [τL,τU ]. Consequently,

0≤ E

(
j−1

∑
`=0

∫
τ`+1

τ`

[
1(y≥ xxxT

βββ
∗
`)−1{y≥ xxxT

βββ
∗(u)}

]
dH(u)

∣∣∣∣xxx
)

≤ E

(
j−1

∑
`=0

∫
τ`+1

τ`

{
1(y≥ xxxT

βββ
∗
`)−1(y≥ xxxT

βββ
∗
`+1)

}
dH(u)

∣∣∣∣xxx
)

=
j−1

∑
`=0

∫
τ`+1

τ`

{
Fy(xxxT

βββ
∗
`+1|xxx)−Fy(xxxT

βββ
∗
` |xxx)
}

dH(u)

≤ f̄
j−1

∑
`=0

w` · xxxT(βββ ∗`+1−βββ
∗
`).

Recall from the last paragraph of Section 4.3.1 that ‖βββ ∗`+1− βββ
∗
`‖Σ ≤ f−1|τ`+1− τ`| for ` =

0,1, . . . ,m− 1. Under the condition of no censoring below τ0 = τL, we have E
∫ τ0

0 1{y ≥

xxxTβββ
∗(u)}dH(u) = τ0. Putting together the pieces, we conclude that

∥∥∥∥∥E
[∫

τ j

0
1{y≥ xxxT

βββ
∗(u)}dH(u)−

j−1

∑
`=0

w`1(y≥ xxxT
βββ
∗
`)− τ0

]
xxx

∥∥∥∥∥
Σ−1

≤ ( f/ f )
j−1

∑
`=0

w`(τ`+1− τ`).

Combining this with (C.67) and (C.68) proves (C.8).

C.5.8 Proof of Lemma C.2.8

Fix δ > 0, for any τ1,τ2 ∈ [τL,τU ] satisfying |τ1− τ2|< δ , define the centered random

variables Vi := 〈aaan,UUU0i(τ1)−UUU0i(τ2)〉 for i= 1, . . . ,n, where UUU0i(τ) =UUU i(τ)−EUUU i(τ). Assume

without loss of generality that τ2 ≥ τ1. For some constant L ≥ 1 to be determined, applying

Rosenthal’s inequality to S := ∑
n
i=1Vi yields

(
ES2L)1/(2L) ≤CL

{(
n

∑
i=1

EV 2
i

)1/2

+

(
n

∑
i=1

EV 2L
i

)1/(2L)}
,
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where CL > 0 is a constant depending only on L. We then bound the second and higher-order

moments of Vi’s. By Minkowski’s integral inequality as in the proof of Lemma C.2.3,

E〈aaan,UUU i(τ1)−UUU i(τ2)〉2

= E
{
−
∫

τ2

τ1

K̄h(yi− xxxT
i βββ
∗(u))dH(u)+∆iK̄h(xxxT

i βββ
∗(τ2)− yi)−∆iK̄h(xxxT

i βββ
∗(τ1)− yi)

}2

〈aaan,xxxi〉2

. ( f ∨g)
{
(1− τ2)

−2 + f−2m4h−1}(τ2− τ1)
2.

Moreover, for any q > 2,

|E〈aaan,UUU i(τ1)−UUU i(τ2)〉q|

. ζ
q/2−1
p E〈aaan,UUU i(τ1)−UUU i(τ2)〉2 . ( f ∨g)

{
(1− τ2)

−2 + f−2m4h−1}
ζ

q/2−1
p (τ2− τ1)

2.

Putting together the pieces, we obtain that for any τ1 < τ2 with τ2− τ1 ≥ (ζp/m4)
1/2(h/n)1/2,

(
ES2L)1/(2L)

. n1/2(m4/h)1/2|τ2− τ1|+n1/(2L)
ζ
(L−1)/(2L)
p

{
(m4/h)1/2|τ2− τ1|

}1/L

. n1/2(m4/h)1/2|τ2− τ1|.

Note that Gn(τ1)−Gn(τ2) = n−1/2S. Hence, taking ψ(x) = x2L in the above inequality leads to

||Gn(τ1)−Gn(τ2)||ψ . (m4/h)1/2|τ2− τ1|, (C.69)

where || · ||ψ denotes the ψ-Orlicz norm; see Section 2.2 in van der Vaart and Wellner [1996].

The rest of the proof is based on a packing argument, and is inspired by the proof

of Lemma A.3 in Chao, Volgushev and Cheng [2017]. Define the metric d(·, ·) as d(s, t) =

h−1/2|s− t| for s, t ∈ [τL,τU ]. Then, for any ε > 0, the packing number P([τL,τU ],ε,d) .

h1/2ε−1. Let η̄ = 2
√

ζp/(m4n), so that limn→∞ η̄ → 0, and (C.69) holds for all τ1,τ2 satisfying

212



d(τ1,τ2)≥ η̄/2. Applying Lemma A.1 in the Appendix of Kley et al. [2016] gives

sup
|τ1−τ2|<δ

∣∣Gn(τ1)−Gn(τ2)
∣∣= sup

d(τ1,τ2)<h−1/2δ

∣∣Gn(τ1)−Gn(τ2)
∣∣

≤ S1 + sup
d(s,t)<η̄ , t∈T̃

∣∣Gn(s)−Gn(t)
∣∣, (C.70)

where the set T̃ contains at most P([τL,τU ], η̄ ,d) . h1/2η̄−1 .
√

nh/ζp points, and S1 is a

random variable satisfying

P(|S1|> x).

{∫
η

η̄/2
ψ
−1(P([τL,τU ],ε,d))dε +(h−1/2

δ +2η̄)ψ−1(P2([τL,τU ],η ,d))

}2L

x−2L

(C.71)

for any η ≥ η̄ and x > 0. Note that

∫
η

η̄/2
ψ
−1(P([τL,τU ],ε,d))dε . h(4L)−1

∫
η

η̄/2
ε
−(2L)−1

dε = h(4L)−1 · η
1−(2L)−1− (η̄/2)1−(2L)−1

1− (2L)−1 ,

and ψ−1(P2([τL,τU ],η ,d)). h(2L)−1
η−L−1

. Substituting these into (C.71) with η = h−1/4 and

L = 1 implies

P(|S1|> x).

{
h(4L)−1 · η

1−(2L)−1− (η̄/2)1−(2L)−1

1− (2L)−1 +(h−1/2
δ +2η̄) ·h(2L)−1

η
−L−1

}2L

· x−2L

=
{

2h1/8−2h1/4(η̄/2)1/2 +h1/4
δ +2η̄h3/4

}2
· x−2.

Since η̄ → 0 and h→ 0 as n→ ∞, we have for any x > 0 that

lim
δ→0

limsup
n→∞

P(|S1|> x) = 0. (C.72)

It remains to deal with the supremum on the right-hand side of (C.70). For any fixed
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t ∈ T̃ , and s ∈ [τL,τU ] satisfying |s− t|< h1/2η̄ = 2
√

ζph/(m4n),

sup
|s−t|<h1/2η̄

∣∣Gn(s)−Gn(t)
∣∣

≤ sup
|s−t|<h1/2η̄

∣∣∣∣∣ 1√
n

n

∑
i=1

∫ s

t
K̄h(yi− xxxT

i βββ
∗(u))dH(u) ·aaaT

nxxxi

∣∣∣∣∣
+ sup
|s−t|<h1/2η̄

∣∣∣∣∣ 1√
n

n

∑
i=1

{
∆iK̄h(xxxT

i βββ
∗(t)− yi)−∆iK̄h(xxxT

i βββ
∗(s)− yi)

}
aaaT

nxxxi

∣∣∣∣∣
:= I+ II. (C.73)

We bound the two terms on the right-hand side respectively. For the first one, applying the

triangle inequality and Lemma C.2.6 to the centered random quantity yields

I≤ sup
|s−t|<h1/2η̄

∣∣∣∣∣ 1√
n

n

∑
i=1

E
∫ s

t
K̄h(yi− xxxT

i βββ
∗(u))dH(u) ·aaaT

nxxxi

∣∣∣∣∣
+ sup
|s−t|<h1/2η̄

∣∣∣∣∣ 1√
n

n

∑
i=1

(1−E)
∫ s

t
K̄h(yi− xxxT

i βββ
∗(u))dH(u) ·aaaT

nxxxi

∣∣∣∣∣
. n−1/2h1/2

η̄

n

∑
i=1

E|aaaT
nxxxi| +n1/2h1/2

η̄

(√
p+ logn+ v

n
+ζp

logn+ v
n

)

. (ζph)1/2

(√
p+ logn+ v

n
+ζp

logn+ v
n

)
(C.74)

with probability at least 1− e−v for any v > 0. Turning to the second term, by the Lipschitz

continuity of ‖βββ ∗(·)‖Σ as in (4.10), |s− t|< h1/2η̄ indicates ||βββ ∗(s)−βββ
∗(t)||Σ ≤ f−1h1/2η̄ =
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2 f−1√
ζph/(m4n). Denote r := 2 f−1√

ζph/(m4n), we have

II≤ sup
|s−t|<h1/2η̄

∣∣∣∣∣ 1√
n

n

∑
i=1

E
{

∆iK̄h(xxxT
i βββ
∗(t)− yi)−∆iK̄h(xxxT

i βββ
∗(s)− yi)

}
aaaT

nxxxi

∣∣∣∣∣
+ sup

βββ∈βββ
∗(t)+Θ(r)

∣∣∣∣∣ 1√
n

n

∑
i=1

(1−E)
{

∆iK̄h(xxxT
i βββ
∗(t)− yi)−∆iK̄h(xxxT

i βββ − yi)
}

aaaT
nxxxi

∣∣∣∣∣
. (ζph)1/2 +ζ

1/2
p

√
p+ logn

n
(C.75)

with probability at least 1− e−v for any v > 0, where Lemma C.2.5–(ii) is applied in the

last step. With the bandwidth h � {(p+ logn)/n}2/5 and under the sample size requirement

n& ζ
5/2
p (p+ logn), it follows from (C.73)–(C.75) with v = 2logn that, for any t ∈ T̃ ,

sup
s:|s−t|<h1/2η̄

∣∣Gn(s)−Gn(t)
∣∣. ζ

1/2
p

(
p+ logn

n

)1/5

holds with probability at least 1− n−2. Since |T̃ | .
√

nh/ζp, taking the union bound over

t ∈ T̃ renders

sup
d(s,t)<η̄ , t∈T̃

∣∣Gn(s)−Gn(t)
∣∣= sup

|s−t|<h1/2η̄ , t∈T̃

∣∣Gn(s)−Gn(t)
∣∣. ζ

1/2
p

(
p+ logn

n

)1/5

with probability at least 1− c̃/n for some constant c̃ > 0. Provided ζ
5/2
p (p+ logn) = o(n), this

implies

limsup
n→∞

P

{
sup

d(s,t)<η̄ , t∈T̃

∣∣Gn(s)−Gn(t)
∣∣> x

}
= 0, valid for any x > 0. (C.76)

Finally, putting together (C.70), (C.72) and (C.76) completes the proof.
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C.5.9 Proof of Lemma C.3.1

For simplicity, we omit the subscript j as in the proof of Lemma C.2.4. Using arguments

similar to those that lead (C.55) and (C.57), we obtain

D[(βββ ,βββ ∗) =
1
n

n

∑
i=1

∆i
{

K̄h(xxxT
i βββ − yi)− K̄h(xxxT

i βββ
∗− yi)

}
(1+ ei)xxxT

i (βββ −βββ
∗)

≥ κl · ‖βββ −βββ
∗‖2

Σ ·
1
nh

n

∑
i=1

(1+ ei)ωi ·ϕh/(2r)(zzz
T
i vvv)︸ ︷︷ ︸

=:D[
0(vvv)

,

where vvv = Σ1/2(βββ −βββ
∗)/‖βββ −βββ

∗‖Σ ∈ Sp−1, ωi = ∆i1(|xxxT
i βββ
∗− yi| ≤ h/2) ∈ {0,1}, and ϕ(·) is

as in (C.56). Recall the definition of D0(vvv) in (C.57), we have

inf
βββ∈βββ

∗+Θ(r)

D[(βββ ,βββ ∗)
κl‖βββ −βββ

∗‖2
Σ

≥ inf
vvv∈Sp−1

D0(vvv)− sup
vvv∈Sp−1

{D0(vvv)−D[
0(vvv)}. (C.77)

A lower bound for infvvv∈Sp−1 D0(vvv) can be derived from Lemma C.2.4. Let Ersc(t) be the event

that the bounds in Lemma C.2.4 with r = h/(4η1/4) hold uniformly over j = 0,1, . . . ,m, so that

P{Ersc(t)} ≥ 1− (m+1)e−t . It suffices to control the bootstrap error

Γn := sup
vvv∈Sp−1

{D0(vvv)−D[
0(vvv)}= sup

δδδ∈Sp−1

1
nh

n

∑
i=1

eiωi ·ϕh/(2r)(zzz
T
i vvv).

Since ϕR(u) ≤ (R/2)2, ωi ∈ {0,1} and ei ∈ {−1,1}, we have that E∗{eiωi ·ϕh/(2r)(zzzT
i vvv)}2 ≤

(h/4r)4ωi and |eiωi ·ϕh/(2r)(zzzT
i vvv)| ≤ (h/4r)2. Then, by Theorem 7.3 in Bousquet [2003],

Γn ≤ 2E∗(Γn)+
h

(4r)2

{(
1
n

n

∑
i=1

ωi

)1/2√
2t
n
+

4t
3n

}
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holds with probability at least 1− e−t . Furthermore, by the Lipschitz continuity of u→ ϕR(u)

and Ledoux-Talagrand contraction principle,

E∗(Γn)≤
1
2r

E∗
(

sup
δδδ∈Sp−1

1
n

n

∑
i=1

eiωi · zzzT
i vvv

)

=
1
2r

E∗
∥∥∥∥∥1

n

n

∑
i=1

eiωizzzi

∥∥∥∥∥
2

≤ 1
2rn1/2

(
1
n

n

∑
i=1

ωi‖zzzi‖2
2

)1/2

.

Next we deal with the data-dependent quantities (1/n)∑
n
i=1 ωi and (1/n)∑

n
i=1 ωi‖zzzi‖2

2.

Note that E(ωi|xxxi) ≤ gh and thus E(ωi‖zzzi‖2
2) ≤ gph. Moreover, ωi‖zzzi‖2

2 ≤ ζ 2
p (almost surely)

and E(ω2
i ‖zzzi‖4

2) = E(ωi‖zzzi‖4
2)≤ gζ 2

p ph. By Bernstein’s inequality, together

1
n

n

∑
i=1

ωi ≤ Eωi +

√
Eωi ·

2t
n
+

t
3n
≤
(√

Eωi +

√
t

2n

)2

≤
(√

gh+

√
t

2n

)2

(C.78)

and

1
n

n

∑
i=1

ωi‖zzzi‖2
2 ≤ gph+(gph)1/2

ζp

√
2t
n
+ζ

2
p

t
3n
≤ 3

2
gph+ζ

2
p

4t
3n

(C.79)

hold with probability at least 1− 2e−t . Let Eloc(t) be the event that (C.78) and (C.79) hold.

Putting the above four bounds together, we conclude that conditioned on Eloc(t),

sup
vvv∈Sp−1

{
D0(vvv)−D[

0(vvv)
}
≤
(

3
2

gph+ζ
2
p

4t
3n

)1/2
1

2rn1/2 (C.80)

+
h

(4r)2

{(√
gh+

√
t

2n

)√
2t
n
+

4t
3n

}

holds with P∗-probability greater than 1− e−t .

Define radius r = h/(4η1/4) and event E1(t) = Ersc(t)∩Eloc(t). Together, Lemma C.2.4,
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(C.77) and (C.80) imply that, with P∗-probability at least 1− e−t conditioned on E1(t),

D[(βββ ,βββ ∗j)≥
1
2

gκl ‖βββ −βββ
∗
j‖2

Σ

holds uniformly over βββ ∈ βββ
∗
j +Θ(r) as long as nh&max(p,ζpt1/2). Taking the union bound

over j = 0,1, . . . ,m concludes the proof.

C.5.10 Proof of Lemma C.3.2

We proceed the proof via a covering argument. Let N be an (1/2)-net of the unit sphere

Sp−1 with cardinality |N | ≤ 5p such that

∥∥∥∥∥1
n

n

∑
i=1

(ei ·ξizzzi)

∥∥∥∥∥
2

≤ 2 max
uuu∈Nε

1
n

n

∑
i=1

ei ·ξi〈uuu,zzzi〉.

Since ei’s are independent Rademacher random variables and |ξi| ≤M, conditional on the data

{xxxi,ξi}n
i=1, it follows from Hoeffding’s inequality (see, e.g., Theorem 2.8 in Boucheron, Lugosi

and Massart [2013]) that, with P∗-probability (over {ei}n
i=1) at least 1− e−u,

1
n

n

∑
i=1

ei ·ξi〈uuu,zzzi〉 ≤Mλ
1/2
max

(
1
n

n

∑
i=1

zzzizzzT
i

)√
2u
n
, (C.81)

where λmax(A) denotes the largest eigenvalue of a symmetric matrix A. For the normalized

empirical design matrix (1/n)∑
n
i=1 zzzizzzT

i satisfying E(zzzizzzT
i ) = Ip and ‖zzzi‖2 ≤ ζp (almost surely),

it follows from Theorem 5.41 in Vershynin [2012] that with probability at least 1−n−2,

λ
1/2
max

(
1
n

n

∑
i=1

zzzizzzT
i

)
≤ 1+Cζp

√
log(2pn)

n
. (C.82)

We denote by E2 the event that (C.82) holds.

Finally, taking a union bound over uuu ∈N and setting u = 2(p+ logn) in (C.81), we
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conclude that with P∗-probability at least 1−n−2 conditioned on E2,

∥∥∥∥∥1
n

n

∑
i=1

(ei ·ξizzzi)

∥∥∥∥∥
2

.

(
1+ζp

√
logn

n

)√
p+ logn

n
.

√
p+ logn

n
,

as long as the sample size satisfies n& ζ 2
p logn. This proves the claimed bound.

C.5.11 Proof of Lemma C.3.3

To avoid unnecessary repetitions, we only provide details for bounding Γ j(r). After a

change of variable vvv = ΣΣΣ
1/2(βββ −βββ

∗
j) ∈ Bp(r) for βββ ∈ βββ

∗
j +Θ(r), we write

Γ
∆
j (r) = sup

vvv∈Bp(r)
‖G j(vvv)‖2 := sup

vvv∈Bp(r)

∥∥∥∥∥1
n

n

∑
i=1

ei · {K̄h(zzzT
i vvv− εi j)− K̄h(−εi j)}zzzi

∥∥∥∥∥
2

, (C.83)

where εi j = yi− xxxT
i βββ
∗
j . The process {G j(·)} satisfies G j(0) = 0, E∗{G j(vvv)}= 0 and ∇G j(vvv) =

(1/n)∑
n
i=1 eiφi j,vvvzzzizzzT

i , where φi j,vvv = Kh(zzzT
i vvv− εi j) and Kh(x) = K(x/h)/h. For any λ ∈ R and

uuu,www ∈ Sp−1, we have

E∗ exp
{

λn1/2uuuT
∇G j(vvv)www

}
=

n

∏
i=1

E∗ exp
{

λn−1/2eiφi j,vvvzzzT
i uuu · zzzT

i www
}

≤
n

∏
i=1

exp

{
λ 2

2n
φ

2
i j,vvv(zzz

T
i uuu · zzzT

i www)2

}
= exp

{
λ 2

2n

n

∑
i=1

φ
2
i j,vvv(zzz

T
i uuu · zzzT

i www)2

}
.

Note that φi j,vvv ≤ κu/h, and by Hölder’s inequality,

1
n

n

∑
i=1

φ
2
i j,vvv(zzz

T
i uuu · zzzT

i www)2 ≤ κu

h
·
{

1
n

n

∑
i=1

φi j,vvv(zzzT
i uuu)4

}1/2{
1
n

n

∑
i=1

φi j,vvv(zzzT
i www)4

}1/2

.

Given r > 0, define the supremum

Ψ(r) = sup
uuu,vvv∈Sp−1

ψuuu,vvv(r) := sup
uuu,vvv∈Sp−1

1
n

n

∑
i=1

Kh(rzzzT
i vvv− εi j)(zzzT

i uuu)4.
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Under this notation,

sup
vvv∈Bp(r)

logE∗ exp
{

λn1/2uuuT
∇G j(vvv)www

}
≤ κu

2h
Ψ(r)λ 2.

It then follows from a conditional version of Theorem A.3 in Spokoiny [2013] that

sup
vvv∈Bp(r)

‖G j(vvv)‖2 . κ
1/2
u Ψ(r)1/2 · r

√
p+ logn

nh
(C.84)

holds with P∗-probability at least 1−n−2.

It remains to control the data-dependent quantity Ψ(r) = supuuu,vvv∈Sp−1 ψuuu,vvv(r). For any

ε1,ε2 ∈ (0,1), let {uuu1, . . . ,uuud1} and {vvv1, . . . ,vvvd2} be the ε1- and ε2-nets of Sp−1 with cardinalities

d1 ≤ (1+ 2/ε1)
p and d2 ≤ (1+ 2/ε2)

p. Given uuu,vvv ∈ Sp−1, there exist some 1 ≤ ` ≤ d1 and

1≤ k ≤ d2 such that ‖uuu−uuu`‖2 ≤ ε1 and ‖vvv− vvvk‖2 ≤ ε2. Consider the decomposition

ψuuu,vvv(r) = ψuuu,vvv(r)−ψuuu,vvvk(r)+ψuuu,vvvk(r). (C.85)

For ψuuu,vvv(r)−ψuuu,vvvk(r), the Lipschitz continuity of K(·) ensures that

|ψuuu,vvv(r)−ψuuu,vvvk(r)| ≤
lKr
nh2

n

∑
i=1
|zzzT

i (vvv− vvvk)|(zzzT
i uuu)4 ≤ lK

h2 ζ
3
p λmax

(
1
n

n

∑
i=1

zzzizzzT
i

)
· rε2. (C.86)
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For ψuuu,vvvk(r), using the triangle inequality gives

ψuuu,vvvk(r)
1/4 =

{
1
n

n

∑
i=1

Kh(rzzzT
i vvvk− εi j)〈zzzi,uuu`+uuu−uuu`〉4

}1/4

≤
{

1
n

n

∑
i=1

Kh(rzzzT
i vvvk− εi j)(zzzT

i uuu`)4

}1/4

+

{
1
n

n

∑
i=1

Kh(rzzzT
i vvvk− εi j)〈zzzi,uuu−uuu`〉4

}1/4

≤ ψuuu`,vvvk(r)+ ε1 · supuuu∈Sp−1 ψuuu,vvvk(r)
1/4.

Taking the supremum over uuu ∈ Sp−1 and then the maximum over ` yields

supuuu∈Sp−1 ψuuu,vvvk(r)≤ (1− ε1)
−4 max1≤`≤d1 ψuuu`,vvvk(r). (C.87)

The problem then boils down to controlling the maximum max(`,k)∈[d1]×[d2]ψuuu`,vvvk(r). Note that

EK2
h (rzzzT

i vvvk− εi j)(zzzT
i uuu`)8 ≤ f κum4ζ 4

p/h and Kh(rzzzT
i vvvk− εi j)(zzzT

i uuu`)4 ≤ κuζ 4
p/h. By Bernstein’s

inequality, we have that with probability at least 1− e−u,

ψuuu`,vvvk(r)≤ Eψuuu`,vvvk(r)+( f κum4)
1/2

ζ
2
p

√
2u
nh

+κuζ
4
p

u
3nh

≤ f m4 +( f κum4)
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4
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.

Taking ε1 = 1−2−1/4, ε2 = n−2 and u = p log(1+2/ε1)(1+2/ε2)+ log(n) in the above

bounds, we conclude from (C.82) and (C.85)–(C.87) that with probability at least 1−n−1,

Ψ(r). m4 +ζ
4
p

p logn
nh

+ζ
3
p

r
(nh)2

as long as n& ζ 2
p logn. Substituting this bound into (C.84) completes the proof for a particular
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j ∈ {0, . . . ,m}. The claimed uniform bound follows from a union bound over the grid points.

C.5.12 Proof of Lemma C.3.4

For j = 0, . . . ,m, define the random process

Λ
[
j(βββ ) = Q̂[

j(βββ )− Q̂[
j(βββ
∗
j)−J j(βββ −βββ

∗
j), βββ ∈ Rp.

The goal is to bound the local fluctuation sup
βββ∈βββ

∗
j+Θ(r) ‖Λ[

j(βββ )‖2 for a prespecified r > 0. Since

E(Wi) = 1, we have E∗{Q̂[
j(βββ )}= Q̂ j(βββ ), and E∗{Λ[

j(βββ )}= Λ j(βββ ), where

Λ j(βββ ) =
1
n

n

∑
i=1
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{

K̄h(xxxT
i βββ − yi)− K̄h(xxxT

i βββ
∗
j − yi)

}
xxxi−J j(βββ −βββ

∗
j).

Consequently, by the triangle inequality,

sup
βββ∈βββ

∗
j+Θ(r)

‖Λ[
j(βββ )‖Σ−1 ≤ sup

βββ∈βββ
∗
j+Θ(r)

‖Λ[
j(βββ )−Λ j(βββ )‖Σ−1︸ ︷︷ ︸

=Γ∆
j (r) by (C.30)

+ sup
βββ∈βββ

∗
j+Θ(r)

‖Λ j(βββ )‖Σ−1. (C.88)

For the first term on the right-hand side of (C.88), Lemma C.3.3 guarantees the existence

of an event E3 with P(E3)≥ 1−3n−1 such that, conditioned on E3,

sup
βββ∈βββ

∗
j+Θ(r)

‖Λ[
j(βββ )−Λ j(βββ )‖2 .

(
m1/2

4 +ζ
2
p

√
p logn

nh

)
· r
√

p+ logn
nh

, (C.89)

holds with P∗-probability at least 1−n−2, provided n& ζ 2
p logn. Moreover, let E ′3 be the event

that (C.7) holds for all j = 0, . . . ,m with t = 2logn, so that P(E ′3)≥ 1−(m+1)n−2. Conditioning

on E ′3,

sup
βββ∈βββ

∗
j+Θ(r)

‖Λ j(βββ )‖Σ−1 .

(
m1/2

4

√
p+ logn

nh
+m3r+h

)
· r, (C.90)
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provided that nh& ζ 2
p(p+ t).

Finally, taking E4 = E3 ∩E ′3 so that P(E4) ≥ 1− (m+ 3n+ 1)n−2. Together, (C.88)–

(C.90) yield that with P∗-probability at least 1−n−2 conditioned on E4,

sup
βββ∈βββ

∗
j+Θ(r)

‖Λ[
j(βββ )‖2 .

{
m1/2

4

√
p+ logn

nh
+m3r+h+ζ

2
p
(p logn)1/2(p+ logn)1/2

nh

}
· r,

completing the proof.

C.5.13 Proof of Lemma C.3.5

For j = 1, . . . ,m, define the random processes
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j(βββ 0,βββ 1, . . . ,βββ j−1)

=
1
n

n

∑
i=1

j−1

∑
`=0

∫
τ`+1

τ`

dH(u)
[
Wi
{

K̄h(yi− xxxT
i βββ
∗
`)− K̄h(yi− xxxT

i βββ `)
}

zzzi−Σ
−1/2H`(βββ `−βββ

∗
`)
]

and

R j(βββ 0,βββ 1, . . . ,βββ j−1)

=
1
n

n

∑
i=1

j−1

∑
`=0

∫
τ`+1

τ`

dH(u)
[{

K̄h(yi− xxxT
i βββ
∗
`)− K̄h(yi− xxxT

i βββ `)
}

zzzi−Σ
−1/2H`(βββ `−βββ

∗
`)
]
,

and note that E∗R[
j(βββ 0,βββ 1, . . . ,βββ j−1) = R j(βββ 0,βββ 1, . . . ,βββ j−1). By the triangle inequality,

sup
∩ j−1
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∗
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(C.91)

+ sup
∩ j−1
`=0{βββ `∈βββ

∗
`+Θ(r)}

||R[
j(βββ 0,βββ 1, . . . ,βββ j−1)−R j(βββ 0,βββ 1, . . . ,βββ j−1)||2.

Let E5 be the event that (C.6) holds for all ` = 0, . . . ,m− 1 with t = 2logn. Then,
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P(E5)≥ 1−mn−2, and conditional on E5,
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(C.92)

holds for all j = 0,1, . . . ,m provided that nh& ζ 2
p(p+ t). For the second term on the right-hand

side of (C.91), note that

sup
∩ j−1
`=0{βββ `∈βββ

∗
`+Θ(r)}

||R[
j(βββ 0,βββ 1, . . . ,βββ j−1)−R j(βββ 0,βββ 1, . . . ,βββ j−1)||2

≤
j−1

∑
`=0

sup
βββ `∈βββ

∗
`+Θ(r)

∥∥∥∥∥1
n

n

∑
i=1

ei
{

K̄h(yi− xxxT
i βββ
∗
`)− K̄h(yi− xxxT

i βββ `)
}

zzzi

∥∥∥∥∥
2

· log
( 1−τ`

1−τ`+1

)
=

j−1

∑
`=0

Γ`(r) · log
( 1−τ`

1−τ`+1

)
≤ max

`=0,..., j−1
Γ`(r) · log

(1−τ0
1−τ j

)
, (C.93)

where {Γ`(r)} j−1
`=0 are defined in (C.29).

Combining (C.91)–(C.93) proves the claimed result.

C.5.14 Proof of Lemma C.3.6

We first show an unconditional version

lim
δ→0

limsup
n→∞

P

{
sup

|τ1−τ2|<δ

∣∣G[
n(τ1)−G[

n(τ2)
∣∣> x

}
= 0 (C.94)

via the proving techniques of Lemma C.2.8. By the law of total expectation and following the

arguments that lead to (C.69), it can be verified that

‖G[
n(τ1)−G[

n(τ2)‖ψ . (m4/h)1/2|τ2− τ1|,
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for any τ1 < τ2 satisfying τ2− τ1 ≥ (ζp/m4)
1/2(h/n)1/2, where ψ(x) = x2 so that || · ||ψ coin-

cides with the L2-norm. The rest follows from the same packing argument as in the proof of

Lemma C.2.8.

Then, we prove the claimed result by contradiction. Conditioned on a sequence of

observed data {Dn}, if (C.31) does not hold, then there is a sequence {δm : m⊂ N+} such that

limm→∞ δm = 0, and a subsequence of natural numbers {nk : k ⊂ N+} ⊂ N+ such that

lim
m→∞

lim
k→∞

P∗
{

sup
|τ1−τ2|<δm

∣∣G[
nk
(τ1)−G[

nk
(τ2)

∣∣> x

}
︸ ︷︷ ︸

:=χm,k

> 0 over A ,

where A is an event over the data space with P(A ) = p0 > 0. This further means there are

sufficiently large integers M and K such that χm,k ≥ c0 > 0 over A for any m≥M and k ≥ K.

On the other hand, by the law of total probability,

P

{
sup

|τ1−τ2|<δm

∣∣G[
nk
(τ1)−G[

nk
(τ2)

∣∣> x

}
≥ E

[
χm,k ·1{A }

]
≥ c0 p0,

for any m ≥M and k ≥ K. So far, we have identified subsequences {δm} and {nk}, such that

limm→∞ δm = 0, limk→∞ nk = ∞, and

lim
m→∞

lim
k→∞

P

{
sup

|τ1−τ2|<δm

∣∣G[
nk
(τ1)−G[

nk
(τ2)

∣∣> x

}
≥ c0 p0 > 0,

which contradicts with (C.94), thus completes the proof of (C.31).
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ARCONES, M. A. and GINÉ, E. (1992). On the bootstrap of M-estimators and other statistical
functionals. In Exploring the Limits of Bootstrap (R. LePage and L. Billard, ed.) 14–47. Wiley,
New York.

BARBE, P. and BERTAIL, P. (1995). The Weighted Bootstrap. Lecture Notes in Statistics 98.
Springer, New York.

BARRODALE, I. and ROBERTS, F. (1974). Solution of an overdetermined system of equations in
the `1 norm. Communications of the ACM 17 319–320.

BARZILAI, J. and BORWEIN, J. M. (1988). Two-point step size gradient methods. IMA J. Numer.
Anal. 8 141–148.

BASSETT, G. and KOENKER, R. (1978). Asymptotic theory of least absolute error regression. J.
Amer. Statist. Assoc. 73 618–622.

BASSETT, G. and KOENKER, R. (1986). Strong consistency of regression quantiles and related
empirical processes. Econom. Theory 2 191–201.

226



BELLONI, A. and CHERNOZHUKOV, V. (2011). `1-penalized quantile regression in high-
dimensional sparse models. Ann. Statist. 39 82–130.

BELLONI, A., CHERNOZHUKOV, V., CHETVERIKOV, D. and FERNANDEZ-VAL, I. (2019).
Conditional quantile processes based on series or many regressors. J. Econom. 213 4–29.

BERTSIMAS, D., KING, A. and MAZUMDER, R. (2016). Best subset selection via a modern
optimization lens. Ann. Statist. 44 813–852.

BICKEL, P. J. (1975). One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70
428–434.

BOUCHERON, S., BOUSQUET, O., LUGOSI, G. and MASSART, P. (2005). Moment inequalities
for functions of independent random variables. Ann. Probab. 33 514–560.

BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013). Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford Univ. Press, Oxford.

BOUSQUET, O. (2003). Concentration inequalities for sub-additive functions using the entropy
method. In Stochastic Inequalities and Applications. Progress in Probability 56 213–247.
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