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Abstract-The powerful standard representation for uncertainty de- 
scriptions in a basic perturbation model based on a standard plant 
representation can be used to attain necessary and sufficient conditions 
for stability robustness within various uncertainty descriptions. In this 
paper, these results are employed to formulate necessary and sufficient 
conditions for stability robustness of several uncertainty sets based on 
unstructured additive coprime factor uncertainty, gap-metric uncertainty, 
as well as the recently introduced A-gap uncertainty. 
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Fig. 1. Feedback connection structure 7(P, C) of a plant P and a controller 
C. 

I. INTRODUCTION 
In a model-based control design paradigm, the design is based on a 

(necessarily) approximative model P of a plant to be controlled. An 
apparently successful control design leads to a controller C having 
spme desired closed-loop properties for the feedback controlled model 
P ,  but due to the mismatch between the actual plant Po and the model 
P ,  a verification of these desired closed-loop properties is preferred 
before implementing the controller C on the actual plant Po. In this 
paper the discussion is directed toward the verification of one of the 
most important closed-loop properties: stability. 

To evaluate stability when the controller C is being applied to the 
plant Po, a chyacterization of the mismatch between the plant Po 
and the model P is indispensible. Since the real plant Po is unknown, 
the discrepancy in general is characterized by a so-called uncertainty 
set, denoted with P. Typically, an uncertainty set P is defined by 
the (nominal) model P which is found by physical modeling or 
identification techniques and some bounded “area” around it [4]. 
The uncertainty set P itself reflects all possible perturbations of the 
(nominal) model P that may occur. 

By defining the uncertainty set in such a way that at least the plant 
Po E P, stability robustness results for the set P will reflect sufficient 
conditions under which the plant Po will be stabilized by C; see [4] 
or [5]. In this perspective, special attention will be given in this 
paper to an uncertainty set PCF which is characterized by additive 
perturbations on a coprime factor description of the nominal model 
P .  The specific application of such an uncertainty set description 
will be motivated by the favorable properties it has over a standard 
additive or multiplicative uncertainty set description. 

Using the simple and powerful stability robustness results for 
a basic perturbation model in a standard plant configuration [4], 
[5], [15], several different uncertainty sets employing weighted and 
unstructured additive perturbations on a coprime factorization, gap- 
metric based uncertainty sets, and the recently introduced A-gap 
uncertainty sets will be shown to be closely related to each other. 
The contribution of this paper is in the unified treatment of these 
different uncertainty sets. While stability robustness results for uncer- 
tainty sets using additive perturbations on normalized (left) coprime 
factorizations [ 111 and gap-metric based uncertainty sets [ 101 have 
separately been derived before, this paper amplifies their relation, as 
well as the extension to a less conservative A-gap uncertainty set 
description [l], [2]. 

11. PRELIMINARIES 
Throughout this paper, the feedback configuration of a plant P and 

a controller C is denoted by 7 ( P ,  C) and defined by the feedback 
connection structure depicted in Fig. 1. 

A plant P and a controller C are assumed to be given by real 
rational transfer function matrices, and it will be assumed that the 
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feedback connection is well-posed, i.e., that det  [I + CP] $ 0. Then 
the feedback system I(P, C) is defined to be internally stable if the 
mapping from col(r2, T I )  to coI(uc, U )  is bounded-input bounded- 
output BIBO stable, i.e., if the corresponding transfer function is in 
REw, where Iw',YFt, denotes the Hardy space of real rational transfer 
function matrices with bounded ',Ym-norm [6] 

with r the maximum singular value. Furthermore, the dynamics of the 
closed-loop system I ( P ,  C) will also be described by the mapping 
from col(r2,rl) to col(y, U )  which is given by the transfer function 
matrix T ( P ,  C )  

T (P ,  C )  := [;I [I + cP]-1[c I ] .  

Internal stability of I(P, C) is equivalent to the condition that 
T ( P ,  C) E REFt,. Using the theory of fractional representations, 
e.g., as presented in [17], a plant P is expressed as a ratio of two 
stable transfer function matrices N and D .  For two transfer functions 
N ,  D E RX,, the pair (N, D )  is called right coprime over RE, 
if there exist X , Y  E RE, such that X N  + Y D  = I .  The pair 
(N, D )  i s  a right coprime factorization (rcf) of P if ( N ,  0)  is right 
coprime and P = ND-' .  An rcf ( N ,  D )  is called normalized 
(nrcf) if it satisfies N * N  + D * D  = I, where * denotes complex 
conjugate transpose. For (normalized) left coprime factorizations (lcf) 
dual definitions exist. 

Fractional representations have a close relation with approximation 
in the graph topology. The graph topology is the weakest topology' in 
which a variation of the elements of a stable feedback configuration 
around their nominal values preserves stability of that closed-loop 
system [18]. The graph topology is known to be induced by several 
metiics, e.g., the graph metric introduced in E161 or the gap metric 
introduced in [19], expressed in the following way. 

DeJnition 2.1 [8]: Consider two plants PI, PZ with an nrcf 
(NI, D l ) ,  ( N 2 ,  D z ) ,  respectively. Then the gap between PI and PZ 
is expressed by 

 PI, ~ 2 )  := max {;(PI, pz), Z ( P ~ ,  P I ) >  

with 

Stability robustness results will be considered for two equivalent 
interconnection structures depicted in Fig. 2(a) and (b) (see [4] 
and [15]). Internal stability of the feedback system of Fig. 2(a) is 
equivalent to input-output stability of the upper linear fractional 
transformation F ( M ,  A) := M z z + M z ~ A [ ~ - M I , A ] - ' M I z ,  where 
the decomposition of M = [z: E::] i s  in accordance with 
Fig. 2(b). 

If the transfer function M is BIBO stable, the small gain theorem 
can be applied to characterize stability results for the connection 
structure of Fig. 2(b), as formulated next. 

Lemma 2.2: Let the stable transfer functions M , A  E RX, 
construct a feedback connection F ( M ,  A). Then: 

a) A sufficient condition for BIBO stability of F ( M ,  A) is given 
by 

Fig. 2. 
controller C. (b) Basic perturbation model F ( M ,  A). 

(a) Feedback connection structure of a (perturbed) plant Po and the 

b) Provided that for all A with llAlIFt, < y the transfer function 
MzIA[I - M ~ ~ A ] - ' M I z  does not exhibit unstable pole/zero 
cancellations; F ( M ,  A) is BIBO stable for all A with 
l[AllFt, <y if and only if 

IlMllllw IT1. (4) 

Since M E RE,, and thus MII,MIZ,MZI,MZZ E REw, the 
small gain theorem directly leads to result a). Additionally, necessary 
conditions can be formulated on the stability of [ I -  M11 A]-' for all 
A with llAllm < y. Provided that unstable poles of [I - M11Al-l 
are not cancelled in 111, this leads to the necessary condition of (4). 
For a complete proof, see [113 or [17]. 

m. STABILITY ROBUSTNESS FOR UNCERTAINTY DESCRIPTIONS 
BASED ON FRACTIONAL MODEL REPRESENTATIONS 

The framework for stability robustness from the previous section 
can be directly applied to uncertainty sets based on coprime factor 
perturbations. As the uncertainty block A is assumed to be stable, this 
implies that for simple additive or multiplicative uncertainty sets, the 
locations of all unstable poles of the plant Po are assumed to be fixed. 
Additive perturbations on coprime factorizations are more flexible 
and allow changes in both the number and the locations of poles 
and zeros anywhere in C [3]. Moreover, fractional representations 
have a close relation with approximation in the graph topology. 
First, an uncertainty set based on additive perturbations on a coprime 
factorization will be discussed. 

( 3 )  
2This additional condition which is often discarded in literature excludes 

trivial situations, e.g., M21 = 0 or Mlz = 0. It can be shown to be 
satisfied for the common uncertainty classes based on additive, multiplicative, 
or coprime factor uncertainty. 

IlMiiAlI, < 1. 

Given two topologies 0 1  and 0 2 ,  0 1  is said to be weaker than 0 2  if 
0 1  is a subcollection of 0 2 ;  see also [18]. 
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Corollary 3.1: Consider a plant P with rcf  (fi, fi), stabilized by separately in [lo], can be considered as a special case of Corollary 
3.1. To this end the following uncertainty sets are being considered: a given controller C, and consider the uncertainty set 

for which the following relation with the coprime factor uncertainty 
sets can be shown, as presented before. 

Lemma 4.1: Let a plant P and Aa controller c constitute an 
internally stab!e feedback system T ( P ,  C ) .  Consider the uncertainty 
set P,p(N, D ,  V N ,  Vn. W, y) under the additional conditions that 
[ N ,  D) is an nrcf of P ,  and VD = I ,  VN = I, and W = I .  Then: 

for stable and stably invertible filters VD, VN, W. Then the feedback 
system 7 ( P ,  C )  is internally stable for all P E PCF if and only if 

/lIv-l[B + Cfi]-'[I C ]  1 1  5 y-l. a) ~ c F ( f i ,  D,v., VU, W,Y) 
b) For y < l ,Pz (P ,y )  = P,(P,y) .  
Part a): According to Proposition 3.2-b) and taking into account 

pa(@. y). 
00 

Defining 
the specific choice of weighting functions in the lemma, it follows: 

T C F ( f i ,  D, VN. V D ,  W,y) 
( 5 )  

it can simply be shown that this leads to an uncertainty set according 
to Fig. 2(b) with 

For unity weightings VD, V . ,  and W it follows from [ 111 that the 
corresponding M is stable and pole/zero cancellations as mentioned 
in Lemma 2.2-b) do not occur for stable A. These results can be 
extended directly to stable and stably invertible weighting functions 
VD, VN, and W, and thus Lemma 2.2 can be applied. 

The corollary can alternatively be proven by employing stability 
results directly in terms of coprime factor representations of plant and 
controller. Here it has been stressed that the considered uncertainty 
set allows a description in terms of a standard perturbation model as 
depicted in Fig. 2. 

The following equivalent formulations of the coprime factor un- 
certainty set discussed in Corollary 3.1 will appear to be useful in 
the sequel of the paper. 

Proposition 3.2: The uncertainty set F ' c F ~ N ,  D, VU, Kv, W, y) 
as defined in Corollary 3.1 can alternatively be written in the 
following equivalent forms: 

a) P ~ ~ ( ~ ~ , ~ , v A ~ , ~ v D , w , ~ )  
= {PIP = (NW + V i 1 A ~ ) [ 6 W  + VG'Ao)-', 

with !I 1 I loo < (7) 

I t [ ?  &][[;I"- [:-,QllIl,<4. (8) 

b) P c F ( N ,  D ,  Kv, VD, W, y) 
= {PIP = N,D;', (N,,D,) an nrcf and 
3Q E WX, such that 

Part a) follows by simple calculation. The proof of part b) is more 
involved and is based on the fact that in any stable right, but not 
necessarily coprime, fractional representation [ N ,  D )  can be written 
as a right fractional representation (N,Q, D n Q )  with Q E RXFI, 
and ( N , ,  D n )  an nrcf. In this way the right, but not necessarily 
coprime, fractional representation Of P in (7) can be written as 
(NW + V;-'A,) = N,Q and ( D W  + VG'AD) = D,Q with 
(iVn, D,) anAnrcf and Q E Ram.  It fol1:ws then that A N  = 
Kv[N,Q - N W ]  and AD = VD[D,Q - D W ]  which proves the 
result. Note that the factor Q cancels in the representation of P. 

Iv. STABILITY ROBUSTNESS BASED ON DISTANCE MEASURES 
Stability robustness results for gap-metric uncertainty sets can 

be considered in the same framework. It will be illustrated that 
the available stability robustness results for this situation, proven 

{ P I P  = N,D;', [ N , ,  D,) an nrcf and 

Since [fi, 6) is chosen to be an nrcf of P ,  it is straightforward 
to verify that PCF = Pg 

Part b): This is proven in [lo]. The restriction to y < 1 is caused 
by the fact that these sets with y 2 1 cannot be stabilized by a single 
controller. 0 

Lemma 4.1 relates the set defined by a gap metric bound with 
the set of coprime factor perturbations by a special choice of 
the weighting functions VD, V,, W and the coprime factorization 
( f i , D )  of the model P .  This gives rise to a unified approach 
to handle sets of plants that are bounded by a gap metric, and 
the stability robustness result for these sets follows directly from 
Corollary 3.1. 

Corollary 4.2: Consider the situation of Lemma 4.1 with y < 1. 
Then each of the three sets of plants Pc,, Pg, and P,, I ( P ,  C )  is 
internally stable for all P E P if and only if 

II~(P,C)llco I 7-l. (9) 

The proof follows simply by substituting the specific weightings in 
the result of Corollary 3.1, employing the fact-that premultiplication 
of the expression within the norm by [ N T  DT]' leaves the norm 
invariant, due to the normalization of the rcf. 0 

Note that the result of this corollary is not new. It was shown 
already in [lo], where a complete proof of the stability robustness 
result is given. It has been shown here that the stability robustness 
results in the standard form can simply be exploited, as formulated in 
Section 11. Restricting attention t: the situation that y < 1 is natural, 
as \lTIP,C)/loo 2 Il[I + CP]-'II, > 1, according to Bode's 
sensitivity integral, showing that stability robustness can only be 
achieved for sets with y < 1. 

Finally, it should be noted that the gap and graph metric are induced 
by the same topology and are uniformly equivalent [8]. Therefore, 
stability robustness in the graph metric yields a similar result as 
mentioned in Corollary 4.2, and their interrelation is discussed in 
~ 3 1 .  

v. STABILITY ROBUSTNESS 1N THE A-GAP 
The results obtained in the previous section for gap-based stability 

robustness can be further extended for uncertainty sets based on 
the recently introduced A-gap [l], [2].  This &gap is a distance 
measure that adds an additional frequency weighting in the expression 
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that is utilized in the gap-metric, while the frequency weighting is 
controller-dependent. 

DeJinition5.1: Let two plants PI, PZ have nrcf's (KI ,  DI), 
( N z ,  D z ) ,  respectively. Let C be a controller with nlcf (fic,N,) 
such that I( PI ,  C) is internally stable. Then the A-gap between the 
plants P I ,  PZ is defined to be expressed by 

with A = [D,Dl + N c i V ~ ] .  
The difference between  PI, Pz) and S',(Pl, Pz) is the additional 

shaping of the nrcf of PI with A-' into a rcf ( N . D ) .  In this way 
A :=DcD + N,N = I ,  with = NlA-',D = DIA-', which 
is used to consider the closed-loop operation of PI induced by the 
controlier C being employed. This makes the distance between PI 
5nd P2 dependent on the controller ,C. Note that the_distance measure 
SA(&, Pz) is not a metric, since 6 ~ ( P 1 ,  Pz )  # PI) due to 
the influence of the controller C [2]. 

Accordingly, an uncertainty set based on A-gap uncertainty can be 
defined as 

_ _  
- 

This uncertainty set can also be shown to be equivalent to an 
uncertainty set of coprime factor uncertainties, provided appropriate 
weighting functions are chosen. 

Lemma 5.2: Let a plant P and a controller C with nlcf ( D c ,  N c )  
constitute an intemally stable- feedback system 7 ( P ?  C ) .  Consider 
the uncertainty se,t PCF (N, D ,  V N ,  V p ,  W, y) under the additional 
conditions that ( N ,  B )  is an nrcf of P ,  and VD = I, VAT = I, and 
W = A-' with A = [ D c D  + fit"]. Then: 

a> ~cF(fi,fi,vN,vD,~,~) = P$~(P?Y). 
b) 7 ( P ,  C) is intemally stable for all P E PCF if and only if 

The proof of a) is straightforward, along the same lines as the proof 
of Lemma 4.1-a). Result b) then follows directly from Corollary 3.1, 
employing the fact that A[D + Cfi] - ' [ I  ~i'~] having 
an m-nomi of one due to the fact that it is a normalized left coprime 
factorization. 0 

As said before, in case of the A-gap, the uncertainty set defined 
accordingly considers perturbations of the nominal plant P that are 
controller dependent. 

The introduction of weightings in the gap metric has also been 
studied in [7], [9], and [14]. In [7] a multiplicative uncertainty 
description on the nrcf (fi, D )  of the model P is being used, leading 
to an uncertainty structure A having a diagonal form. Due to the 
diagonal form only necessary and sufficient conditions based on the 
structured singular value p i . }  can be obtained. The weightings in 
the weighted gap of [SI have to be defined a posteriori which makes 
the choice of the weighting functions, to access robustness issues on 
the basis of a weighted gap, not a trivial task. Information on the 
size of the coprime factor perturbations can be used in the weighted 
pointwise gap metric defined in [14], but an efficient computational 
method for pointwise gap metric is not available yet. The A-gap can 
simply be calculated. Controller synthesis in the A-gap, however, is 
more complicated and is a problem that is not solved yet. 

Y I 1. 

C]  = [Bc 

VI. CONSERVATISM ISSUES 
All stability robustness results in this paper reflect necessary and 

sufficient conditions of an uncertainty set to be stabilized by a single 
controller. As such, no conservatism is introduced in the test for 
checking stability robustness itself. However, for a single given 
controller, different uncertainty sets contain a different portion of 

the set of all systems that is stabilized by the controller. In this 
perspective, the concept of conservatism is an intrinsic property of 
the uncertainty set being used. As a result, an uncertainty set will 
be called more conservative than another if one controller stabilizes 
both sets, while the former set is contained in the latter. 

Theorem 6.1 [ I ] :  Consider a plant P and a stabilizing controller 
C with nlcf (D,..N,). Consider the following two uncertainty sets 
resulting from the stability robustness results in the previous sections: 

Ss(P.C):= { U P , ( P ,  b), b < IIT(P, C)llZ1} 
Sg* ( P ,  C )  := {UP& ( P ,  e ) ,  c < l} 

then 

s@, C) c S& ( R  C). 

P E s s ( P , C ) ~ g E S ~ A ( P , C ) .  

The following implication will be proven: 

As E Sg ( P .  C), there exists a U E WX, such that 

This implies that 

Lower bounding the left-hand term of this expression implies that 

which proves the result. 
The gap-metric uncertainty set can exhibit severe conservatism, as 

very well illustrated in, e.g., [12]. As the gap-metric does not take into 
account the closed-loop operation of the plant P in the set, induced 
by the controller C being used, this conservatism can intuitively be 
understood. In the situation that A = a!V, with a! E Iw and V a unitary 
matrix, it can he shown that the two sets in (10) are equal. For other 
situations, examples in [l] and [2] indicate a substantial decrease of 
conservatism when using A-gap uncertainty. The controller-relevant 
weighting within the A-gap is the basic reason for this. 

VII. CONCLUSIONS 
The powerful standard representation for uncertainty descriptions 

in a basic perturbation model based on a standard plant configu- 
ration can be used to attain necessary and sufficient conditions for 
stability robustness within various uncertainty descriptions. In this 
paper these results are applied to uncertainty descriptions based on 
fractional model representations, leading to necessary and sufficient 
conditions for stability robustness in case of additive coprime factor 
uncertainties. 

In this way a unified approach to handle additive coprime fac- 
tor perturbations can be derived which yields a manageable and 
comprehensive way to relate gap and A-gap based uncertainty sets 
to (weighted) additive coprime factor perturbations. Based on this 
framework necessary and sufficient conditions for gap and A-gap 
based uncertainty sets are presented, and it is shown that in terms 
of stability robustness, the A-gap uncertainty set is less conservative 
than the gap uncertainty set. 
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PooGyeon Park and Thomas Kailath 

Abstract-This paper presents new square-root smoothing algorithms 
for the three best-known smoothing formulas: 1) Rauch-Tung-Striebel 
(RTS) formulas, 2) Desai-Weinert-Yusypchuk (DWY) formulas, called 
backward RTS formulas, and 3) Mayne-Fraser (MF) formulas, called 
two-filter formulas. The main feature of the new algorithms is that they 
use unitary rotations to replace all matrix inversion and backsubstitution 
steps common in earlier algorithms with unitary operations; this feature 
enables more efficient systolic array and parallel implementations and 
leads to algorithms with better numerical stability and conditioning 
properties. 

I. INTRODUCTION 

Square-root (or factorized, as they are sometimes called) algorithms 
for state-space estimation have been found to have several advantages 
over the conventional equation-based algorithms in terms of numer- 
ical stability, conditioning, and amenability to parallel and systolic 
implementation. While such algorithms for prediction and filtering 
have by now been studied quite extensively (see, e.g., [l]-[S]), the 
picture is not quite as complete for smoothing. 

In the literature, there are two classes of square-root smoothing 
algorithms, both based on using quantities propagated by the square- 
root information filter algorithm (SRIF) presented by Dyer and 
McReynolds in 1969 [4]. In 1971, Kaminski [9] proposed the square- 
root information smoother (SRIS) of which Bierman in 1983 [lo] 
gave a so-called UD (free of arithmetic square-root) version. The 
SRIF and SRIS propagate the square-root of the inverse of the filter- 
ing and smoothing error covariances, respectively, hence the name 
“infomation” form. In 1974, Bierman [ 111 proposed propagating 
the smoothing error covariance itself, using certain outputs from the 
SRIF to provide the coefficients of certain smoothing error covariance 
recursions. He called this the DMCS (Dyer-McReynolds Covariance 
Smoothing)-SRIF algorithm. A UD version of the DMCS-SRIF was 
given by Watanabe and Tzafestas [12]; see also McReynolds [13]. 
Watanabe [14] also gave a square-root form of certain smoothing 
formulas of Desai-Weinert-Yusypchuk (DWY) formulas [ 151, while 
Dobbins [ 161 derived a square-root version of the Mayne-Fraser (MF) 
(or two-filter) formulas. 

These square-root algorithms have various advantages and disad- 
vantages. However, all of them require certain matrix inversion and/or 
backsubstitution steps and, thus, none of them is particularly well- 
suited for parallel implementation. Recently, we have presented in 
[ 171 a new square-root smoothing algorithm for Bryson-Frazier (BF) 
formulas [18] (1963) that employs unitary rotations instead of matrix 
inversion and backsubstitution steps, thus simultaneously improving 
numerical stability and conditioning and also making parallel and 
systolic implementation easier-see, e.g., the discussion of these 
issues in [19] and 1201. 

There are essentially three more best-known smoothing formulas: 
those of Rauch-Tung-Striebel (RTS) [21] (1965), DWY [15] (1983), 
and Mayne [22] (1966) and Fraser 1231 (1967). In this paper, we 

Manuscript received May 20, 1994; revised March 17, 1994 and November 
3, 1995. This work was supported in part by the Advanced Research Projects 
Agency of the Department of Defense and was monitored by the Air Force 
Office of Scientific Research under Grant F49620-93- 1-0085. 

The authors are with the Information Systems Laboratory, Department of 
Electrical Engineering, Stanford University, Stanford, CA 94305 USA. 

Publisher Item Identifier S 0018-9286(96)02824-3. 

0018-9286/96$05.00 0 1996 IEEE 




