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ABSTRACT OF THE DISSERTATION 

 

Neural Mechanisms of Change in Schizophrenia 

following Cognitive Training 

 

by 

 

Caroline Kemper Diehl 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2023 

Professor Cindy M. Yee-Bradbury, Co-Chair 

Professor Gregory Allen Miller, Co-Chair 

 

The period following a first episode of schizophrenia (SZ) is considered a critical 

window for treating cognitive impairment, and cognitive training (CT) interventions have shown 

promising efficacy. Cognitive impairment in SZ is associated with widespread alterations in 

functional neural network connectivity. However, research has not identified consistent 

associations between specific connectivity measures and individual domains of cognitive 

impairment. Furthermore, few studies have examined whether CT works by promoting 

normalization of neural networks (i.e., reduction of pre-existing disturbances) and/or by fostering 

compensatory network processes. In the present studies, we used graph-theory connectivity 

analysis to evaluate properties of intrinsic functional network organization and their relationship 

to cognitive function in first-episode SZ before and after CT. Using resting-state fMRI data from 
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45 young adults with SZ and 32 healthy comparison participants (HC), we tested for group 

differences in graph properties of the ‘task-positive’ cingulo-opercular (CON) and frontoparietal 

(FPN) networks and the whole-brain network, as well as their relationship with global and 

domain-specific measures of cognitive function prior to CT. SZ and HC did not differ 

substantially on measures of network organization, and across groups, generalized cognitive 

performance was positively associated with centrality of a node in right dorsal anterior cingulate 

cortex (dACC). Cognitive function in SZ was more positively associated with whole-brain 

functional segregation than in HC. In SZ, cognitive performance appeared to be decoupled from 

bilateral dACC node centrality, though effects were non-significant after correcting for multiple 

comparisons. Next, using longitudinal data from 17 SZ who completed a six-month course of CT 

and 20 HC who received no intervention, we tested for network normalization and compensation 

following CT. Although effects were non-significant after correcting for multiple comparisons, 

we found preliminary evidence of compensation in SZ following CT. Centrality of a node in 

right dACC decreased after CT, and this decrease corresponded with gains in processing speed. 

Reduced centrality of two other nodes in right dACC following CT was associated with gains in 

working memory and generalized cognitive performance. Results illuminate a potential role for 

compensation in cognitive recovery from SZ and may contribute to increased precision of future 

CT interventions.  
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Introduction 
 

The Role of Cognitive Training in Schizophrenia Recovery 
 

Recovery from schizophrenia (SZ) is multidimensional and has been defined in terms of 

psychotic symptom remission, patient self-assessment, and community functioning (Lahera et 

al., 2018; Lysaker, Roe, & Buck, 2010; Van Eck, Burger, Vellinga, Schirmbeck, & De Haan, 

2018; Vita & Barlati, 2018). Although positive symptoms of psychosis can be managed 

effectively with medication for the majority of treatment-seekers, other aspects of recovery 

remain elusive for many (Green, 2016; Miyamoto, Miyake, Jarskog, Fleischhacker, & 

Lieberman, 2012). A major barrier to robust and meaningful recovery from SZ is cognitive 

impairment in domains such as attention, memory, and executive function, which typically 

emerges prior to the onset of other SZ symptoms (McCleery & Nuechterlein, 2019). Cognitive 

impairment negatively predicts social and occupational functioning in both early-course and 

chronic SZ (Green, 1996, 2016; Green, Kern, Braff, & Mintz, 2000; Bowie, Reichenberg, 

Patterson, Heaton, & Harvey, 2006; Fu, Czajkowski, Rund, & Torgalsbøen, 2017), is not 

substantially alleviated by pharmacological interventions (Kahn & Keefe, 2013; Miyamoto et al., 

2012), and may be exacerbated by anticholinergic medication use (Joshi et al., 2021, 2023). 

Thus, augmenting available treatments for SZ with intervention components that promote 

cognitive function may be an essential step toward more widespread and lasting recovery.  

A growing literature has established computerized cognitive training (CT) as a promising 

intervention for promoting cognitive recovery in SZ. Meta-analyses of CT for SZ suggest that it 

has modest beneficial effects on both cognitive performance and functional outcomes (McGurk, 

Twamley, Sitzer, McHugo, & Mueser, 2007; Vita et al., 2021; Wykes, Huddy, Cellard, McGurk, 

& Czobor, 2011). In some trials, CT has been linked to sustained benefits six months after 
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completion (Fisher, Holland, Subramaniam, & Vinogradov, 2010; Subramaniam et al., 2012, 

2014). Although CT may be beneficial at any stage of illness, its effects appear to be markedly 

larger in early-course than in chronic SZ (Bowie, Grossman, Gupta, Oyewumi, & Harvey, 2014). 

In general, individuals with a shorter duration of untreated psychosis experience greater gains 

from comprehensive treatment (Browne et al., 2017; Kane et al., 2016) and have more favorable 

long-term functional outcomes (Santesteban-Echarri et al., 2017), indicating that the period 

following a first episode of SZ is a critical one for intervention and may offer the greatest 

potential for change along cognitive and other dimensions of recovery. 

CT interventions are heterogeneous in their guiding theoretical frameworks and mode of 

delivery (for a review, see Best & Bowie, 2017). One prevalent class of CT interventions takes a 

“bottom-up” approach to cognitive function by initially targeting basic cognitive processing and 

incrementally increasing the complexity of training tasks (Nuechterlein et al., 2014). This 

approach is based on findings from cognitive neuroscience suggesting that cognitive impairment 

and perceptual disturbances in SZ arise from disruptions in basic sensory processing (Javitt, 

2009). Bottom-up approaches employ repetitive practice and dynamically tailor the difficulty of 

training tasks to individual recipients based on learning rate (Genevsky, Garrett, Alexander, & 

Vinogradov, 2010; Nuechterlein et al., 2014). In contrast, “top-down” approaches to CT (e.g., 

Medalia, Revheim, & Casey, 2001) directly target higher-level cognitive processes by providing 

training in executive skills rather than sensory ‘building blocks’ (Nuechterlein et al., 2014). 

Whereas bottom-up approaches rely on implicit learning through rehearsal of basic cognitive 

skills, top-down approaches typically involve explicit teaching of strategies for managing 

cognitive demands (Genevsky, Garrett, Alexander, & Vinogradov, 2010; Nuechterlein et al., 

2014). Top-down approaches may also focus on providing opportunities for translation of 
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cognitive strategies to real-world contexts, typically through “bridging groups” where 

participants discuss their application of cognitive skills in daily life (Bowie & Medalia, 2016; 

Nuechterlein et al., 2014). 

Although there is no firm consensus on the optimal set of intervention components that 

should comprise CT, treatment efficacy appears to be enhanced when CT is delivered alongside 

psychosocial interventions rather than in isolation (Best & Bowie, 2017; Genevsky, Garrett, 

Alexander, & Vinogradov, 2010). Recent studies have integrated elements of bottom-up and top-

down CT approaches into a comprehensive intervention package (Nuechterlein et al., 2014) with 

promising results. Specifically, a recent clinical trial evaluated an integrated CT intervention that 

incorporated both bottom-up and top-down training strategies, a bridging skills group, case 

management, education and employment support, and medication management using oral or 

injectable risperidone. After 12 months of participation, individuals with first-episode SZ 

demonstrated substantial gains in both cognitive performance and occupational functioning 

(Nuechterlein et al., 2022). These findings highlight the potential benefits of integrating multiple 

theoretically driven approaches to CT and the potential for comprehensive CT interventions to 

significantly alter functional outcomes in first-episode SZ. 

Neural Mechanisms of Cognitive Impairment and Intervention 

Cognitive function is subserved by functional brain networks – systems of distinct brain 

regions that project to one another and exhibit coordinated activity. Cognitive impairment in SZ 

corresponds with disrupted connectivity within and between functional neural networks during 

performance of cognitive tasks and in the resting state, suggesting intrinsic, state-independent 

aberrations in the functional organization of the brain (Repovš & Barch, 2012). Multiple studies 

of functional connectivity in SZ have linked cognitive impairment to dysconnectivity within 
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cortico-striatal-thalamic-cerebellar networks (Ji et al., 2019a; Sheffield & Barch, 2016), as well 

as disturbances in the anticorrelation of task-oriented networks with the default mode network 

(Anticevic et al., 2012; Sheffield & Barch, 2016). However, few consistent trends have emerged 

regarding the contributions of specific network disruptions to discrete components of cognitive 

impairment (as opposed to generalized impairment), highlighting the diffuse nature of both 

dysconnectivity and cognitive dysfunction in SZ (Sheffield & Barch, 2016).  

Previous work from our lab has indicated that during CT for first-episode SZ, 

psychophysiological processes act as both mechanisms of cognitive recovery and predictors of 

patient response to intervention. This work has focused primarily on inhibition (or ‘gating’) of 

the P50 event-related potential (captured via EEG or MEG) during exposure to extraneous 

auditory stimuli, which represents effective filtering of sensory information. Hamilton et al. 

(2015) found that following CT, first-episode SZ patients exhibited a significant increase in 

inhibition of P50 when presented with a redundant stimulus, which correlated with gains in 

cognitive function. A greater degree of P50 inhibition prior to intervention was also predictive of 

greater post-intervention gains. Separate studies found that a CT intervention targeting auditory 

discrimination and verbal memory increased sensory gating, verbal learning, and memory 

accuracy among participants with SZ (Popov et al., 2011) and that these effects were 

accompanied by changes in neural oscillations (i.e., gamma activity and alpha 

desynchronization) (Popov, Rockstroh, Weisz, Elbert, & Miller, 2012; Popova et al., 2018). 

These findings provide preliminary evidence that modulation of functional neural activity has 

mechanistic and clinical relevance to CT-based interventions. 

Similarly, studies of functional connectivity inferred from blood-oxygen-level-dependent 

(BOLD) activity have suggested that modulation of functional connectivity is a key mechanism 
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of cognitive recovery in CT interventions. One study reported that after completing a CT 

intervention, SZ patients demonstrated increased activation of medial prefrontal cortex (PFC) 

during a reality-monitoring task, which correlated with subsequent gains in social functioning 

(Subramaniam et al., 2012). In the same study, CT participants showed increased activation of 

left middle frontal gyrus (MFG) and increased coupling of right MFG activation with 

performance during a working memory task, which correlated with subsequent gains in both 

working memory and occupational functioning (Subramaniam et al., 2014). Activation during 

working memory tasks has also been shown to increase in dorsolateral PFC, anterior cingulate 

cortex, and frontopolar cortex following CT for SZ, and such effects have been positively 

associated with working memory performance (Haut, Lim, & MacDonald, 2010; Ramsay, 

Nienow, Marggraf, & MacDonald, 2017). An activation likelihood estimate meta-analysis of 14 

task-based fMRI studies of CT for SZ did not identify any brain subregions that consistently 

showed increased activation across studies, which may be attributable to the heterogeneous 

nature of CT intervention protocols and/or their diffuse neural mechanisms (Mothersill & 

Donohoe, 2019). However, systematic reviews and meta-analyses indicate that studies of CT in 

SZ have widely reported increased activation in bilateral prefrontal, frontal, and parietal regions, 

and some have reported subcortical effects in caudate and thalamus (Mothersill & Donohoe, 

2019; Ramsay & Macdonald, 2015; Wei et al., 2016). Furthermore, by identifying changes in 

neural activity during cognitive tasks that are not explicitly rehearsed during CT, task-based 

fMRI studies have demonstrated that both the behavioral and the neural effects of CT can 

generalize to different contexts that require similar cognitive engagement (Ramsay & 

Macdonald, 2015).  
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Alongside regional, task-based activation, intrinsic (i.e., resting-state) activation and 

connectivity have evidenced change following CT for SZ in several studies. A study comparing 

CT to a placebo control in chronic SZ reported that in CT exclusively, patients demonstrated 

increased connectivity between thalamus and right MFG at rest, which predicted cognitive gains 

(Ramsay, Nienow, & MacDonald, 2017). Similarly, a separate study found that CT, but not a 

treatment-as-usual intervention, was associated with both increased cognitive performance and 

increased resting-state activity in medial PFC and anterior cingulate cortex (Fan, Zou, Tan, 

Hong, & Tan, 2017). In the magnetoencephalography (MEG) literature, CT for SZ has been 

associated with change in resting-state neural oscillations, including increased gamma activity 

within the default mode network, which has been found to predict gains in cognitive function 

(Popova et al., 2018). Although these initial findings align with trends from task-based fMRI, 

there is a need for broader, network-based exploration of resting-state change following CT that 

goes beyond measuring activity in individual regions or connectivity between pairs of regions. 

Another limitation of recent literature is its emphasis on evaluating neural mechanisms 

known to support cognitive function in healthy individuals. Although functional networks have 

widely demonstrated dysconnectivity in SZ, the broader picture of functional disorganization (or 

lack of typical functional specialization) in SZ is less understood. In particular, relatively little is 

known about compensatory engagement of alternative functional networks or network-related 

processes in SZ. Some evidence suggests that, although dorsal PFC is preferentially engaged by 

healthy adults during working memory tasks, those with SZ exhibit hypo-activation of dorsal 

PFC and elevated, potentially compensatory activation of ventral PFC (Tan et al., 2006). Other 

evidence suggests that posterior parietal cortex exhibits compensatory activation in SZ during 

cue anticipation in working memory tasks (Quintana et al., 2003), such that hypo-activation of 



 

 7 

task-relevant regions in SZ is coupled with compensatory hyper-activation of less functionally- 

specialized regions (Crossley et al., 2016). Based on these findings, further investigation of the 

relationship between network connectivity and cognitive function in SZ is warranted in order to 

clarify how certain aspects of atypical network organization may promote rather than detract 

from cognitive function.  

The study of compensatory network processes has important clinical applications, as 

targeted enhancement of compensation may be a mechanism of existing cognitive interventions 

and/or an important objective for future interventions. Thus far, there has been minimal 

exploration of the potential for interventions to modulate compensatory network engagement in 

SZ. However, emerging evidence suggests that CT for SZ may enhance naturalistic 

compensatory mechanisms related to cognitive function. In a recent study, individuals with 

early-course SZ demonstrated resting-state hyperconnectivity between thalamus and left superior 

temporal gyrus, which increased after CT but decreased after a computer gaming intervention. 

Enhanced hyperconnectivity after CT was associated with gains in overall cognitive function, 

indicating that thalamo-temporal hyperconnectivity may serve a compensatory function that 

benefits cognition in SZ (Ramsay et al., 2020). Likewise, a meta-analysis of nine task-based 

fMRI studies noted that although neural mechanisms of CT across studies appeared to reflect 

normalization in regions that have shown aberrant activity in SZ (e.g., PFC and thalamus), there 

was also evidence of potential compensation in the form of enhanced activity in inferior frontal 

gyrus, precentral gyrus, and postcentral gyrus following CT (Ramsay & Macdonald, 2015). 

Thus, compensatory network engagement both before and after CT represents a promising area 

for continued study that may increase understanding of intervention mechanisms and, more 
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broadly, the contributions of alternative network processes to cognitive function in SZ. 

Graph Theory Approaches to Connectivity 

Graph theory is an approach to quantifying complex network characteristics that is 

quickly gaining traction in studies of neural network connectivity (Bullmore & Sporns, 2009; 

Guye, Bettus, Bartolomei, & Cozzone, 2010; Spielberg, Miller, Heller, & Banich, 2015). Graph- 

theory analysis of BOLD fMRI time series data is used to derive probabilistic maps of the 

significant connections (also referred to as ‘edges’ or ‘links’) between pairs of pre-defined 

‘nodes’ (i.e., brain regions of interest) and to estimate intra-network parameters (properties) 

(Bullmore & Sporns, 2009). Unlike other approaches to connectivity analysis, which typically 

focus on pairwise connections, graph theory analysis examines the functional organization of 

networks by quantifying multiple distinct properties of both networks and nodes, including the 

role of individual nodes or connections within a larger network. Categories of graph-theory 

properties include those related to i) segregation, which refers to a network’s capacity for 

functional specialization; ii) integration, or the capacity within a network for effective 

communication between distal nodes; iii) resilience, or the degree to which the network can 

maintain functioning when aspects of it are disrupted; and iv) centrality, or the degree to which a 

node contributes to different aspects of network functioning (e.g., how much a node contributes 

to communication efficiency) (Rubinov & Sporns, 2010). Each of these four qualities is 

quantifiable in multiple graph-theory properties, allowing for a multifaceted and highly specific 

characterization of each network.  

Several studies have investigated neural network organization and cognitive function in 

SZ through the lens of graph theory. Graph-theory analysis of white matter tracts in SZ via 

diffusion tensor imaging has found reduced centrality of frontal hubs (i.e., nodes with high 
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numbers of connections to other nodes), suggesting reduced structural support for complex 

integration of executive function (van den Heuvel, Mandl, Stam, Kahn, & Hulshoff Pol, 2010). 

In childhood-onset SZ, graph-theory analysis of resting-state fMRI has evidenced reduced 

network segregation and increased global integration (Alexander-Bloch et al., 2010), aligning 

with the aforementioned reports of loss of specialization and compensatory recruitment of less- 

specialized networks in SZ (Crossley et al., 2016; Quintana et al., 2003; Tan et al., 2006). 

Similarly, several studies of adult-onset SZ have identified reduced functional segregation 

(Vecchio et al., 2023; Fornito, Zalesky, Pantelis, & Bullmore, 2012; Lynall et al.., 2010), 

although some have conversely reported increased functional segregation in SZ (Gao et al., 

2023; Hadley et al., 2016). In both healthy adults and adults with SZ, graph-theory analysis of 

fMRI has linked local and global efficiency of the frontoparietal network (FPN) and cingulo-

opercular network (CON), as well as whole-brain global efficiency and centrality (participation 

coefficient) of right anterior insula, to generalized cognitive ability (Sheffield et al., 2015). 

Reduced centrality of right anterior insula and lower global efficiency of CON, but not FPN, 

appear to partially mediate the relationship between psychotic-like experiences and lower 

cognitive ability (Sheffield, Kandala, Burgess, Harms, & Barch, 2016), suggesting a mechanistic 

role for altered network organization in cognitive impairment. Given the demonstrated utility of 

graph-theory principles for clarifying complex network organization in SZ, such methods have 

significant potential to improve understanding of neural network changes that occur during CT 

interventions for SZ.  
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Project Overview 

The objective of the present studies was to identify, via graph-theory analysis of resting-

state (rs) functional network organization, 1) neural mechanisms involved in cognitive 

impairment in first-episode SZ and 2) neural mechanisms by which CT promotes cognitive 

recovery in first-episode SZ. A secondary objective was to examine whether features of 

functional network organization corresponded with generalized or domain-specific cognitive 

impairment and/or recovery.  

Participants with first-episode SZ were enrolled in a randomized controlled trial (RCT) in 

which they received 24 weeks of a Posit Science/BrainHQ CT intervention at the UCLA 

Aftercare Research Program. Initial results from the RCT indicate that the CT intervention was 

highly efficacious and that efficacy was enhanced among a subset of participants who completed 

an aerobic exercise program alongside CT (Nuechterlein et al., 2023). As the present studies 

focused on mechanisms of CT more broadly, participants in the CT and CT + exercise conditions 

were collapsed into a single group. Prior to beginning CT and again after six months of CT, SZ 

participants completed an rs-fMRI scan and the MATRICS Consensus Cognitive Battery 

(MCCB; Kern et al., 2008; Nuechterlein et al., 2008), a clinician-administered measure of 

cognitive function. Cognitive and rs-fMRI data were also collected at two time points, spaced six 

months apart, from demographically matched healthy comparison participants (HC) who did not 

undergo any intervention. Analyses focused on identifying features of intrinsic functional 

networks that were associated with cognitive function and impairment prior to intervention 

(Study 1), as well as changes in network features that were associated with cognitive change 

following CT (Study 2). 
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The present studies introduce a novel framework for differentiating between restoration 

of typical neural network organization (i.e., normalization) and development of alternative 

network processes that support cognition (i.e., compensation) (Figure 1). In this framework, 

changes in neural network properties that occur from pre- to post-intervention are considered 

normalization if they consist of a) decreases in network features that differentiate pre-

intervention SZ from HC and predict cognitive impairment in pre-intervention SZ or b) increases 

in network features that differentiate HC from pre-intervention SZ and positively predict 

cognitive function in HC. Neural network changes from pre- to post-intervention are considered 

compensation if they are significantly associated with cognitive gains but do not involve a 

connection or property that predicts cognitive impairment in pre-intervention SZ or that 

positively predicts cognitive function in HC. Normalization and compensation are not positioned 

as mutually exclusive processes and may co-occur within individuals and groups. 

The normalization vs. compensation framework is informed by evidence of naturalistic 

and treatment-induced compensatory network function in SZ, as reviewed above. It also draws 

from neurodiversity theory, which calls for recognition of alternative modes of neurocognitive 

functioning as legitimate and not necessarily pathological (e.g., Chapman, 2019), and provides 

an initial model for extending such theory to the study of neurobiological processes. As such, 

studying functional connectivity using a framework that incorporates both normalization and 

compensation may provide additional context for understanding SZ according to an ecological 

model (Chapman, 2021) that acknowledges strengths of minority cognitive styles and considers 

impairment as deriving from social context as well as intra-individual processes (Diehl, Heller, 

Yee, & Miller, 2023). 
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Figure 1. Conceptual diagram: Normalization and compensation. N(+): area where change in the 
positive direction indicates normalization. N(-): area where change in the negative direction 
indicates normalization. C(+): area where change in the positive direction indicates 
compensation.  

The present studies quantified change in neural network organization by employing 

graph-theory methods to examine resting-state functional connectivity. The ability of graph-

theory methods to differentially quantify multiple components of network organization is 

particularly well suited to addressing outstanding questions about mechanisms of cognitive 

recovery in SZ. Research on network engagement in SZ during cognitive tasks has suggested 

that functional network specialization is disrupted in SZ and has identified engagement of less 

specialized networks as a compensatory phenomenon, suggesting reduced network segregation 

and compensatory global integration (Crossley et al., 2016; Quintana et al., 2003; Tan et al., 
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2006). Such phenomena may not be fully captured by analytic approaches that focus on 

identifying positive, negative, or effective connectivity, as these approaches produce a less 

granular picture of intra-network organization. Therefore, graph-theory quantification of pre- to 

post-intervention changes provides a particularly appropriate framework for differentiating 

between normalization and compensation. This approach also provides an avenue for 

differentiating between compensatory mechanisms that are engaged naturalistically in SZ (i.e., 

those engaged prior to intervention, possibly including elevated global integration [Alexander-

Bloch et al., 2010]) and those that are introduced or enhanced by intervention.   

Study 1: Prior to intervention, identify associations between resting-state neural network 

aberrations and cognitive function in first-episode SZ.  

Prior studies point to an overall pattern of reduced functional specialization of nodes and 

networks in SZ coupled with increased reliance on less-specialized nodes and networks 

(Crossley et al., 2016; Quintana et al., 2003; Tan et al., 2006). Likewise, several graph-theory 

studies have found reduced network modularity and clustering (i.e., reduced segregation) and/or 

increased global efficiency and robustness (global integration) in SZ (Alexander- Bloch et al., 

2010; Vecchio et al., 2023; Fornito, Zalesky, Pantelis, & Bullmore, 2012; Lynall et al., 2010), 

although results have been inconsistent across studies (Gao et al., 2023; Hadley et al., 2016). 

Reduced local and global efficiency of CON has been linked to cognitive impairment in SZ 

(Sheffield et al., 2016, 2017), although in some studies, SZ have not differed from HC on 

efficiency or other properties of CON (Sheffield et al., 2015). Centrality of right anterior insula, 

a key hub in CON, has previously been associated with cognitive function in SZ and healthy 

adults (Sheffield et al., 2015), and reduced centrality of this hub may be implicated in cognitive 

impairment associated with psychotic-like experiences (Sheffield, Kandala, Burgess, Harms, & 
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Barch, 2016). Dorsal anterior cingulate cortex (dACC), also considered a CON hub, is known to 

contribute to cognitive control and error monitoring in healthy adults (Brockett & Roesch, 2021), 

has been implicated in SZ pathophysiology (Fornito, Yücel, Dean, Wood, & Pantelis, 2009), and 

has demonstrated reduced connectivity in SZ, although the same study found that dACC 

centrality was intact (Becerril, Repovš, & Barch, 2011). 

Aim 1a. We expected a similar pattern of reduced network segregation and increased 

global (whole-brain) integration in SZ as reported by Alexander-Bloch et al. (2010) and others. 

Consistent with a pattern of reduced functional specialization, we hypothesized that first-episode 

SZ patients would exhibit one or more of the following effects: i) intact or elevated whole-brain 

global efficiency and robustness (assortativity), yet ii) reduced clustering coefficient and 

transitivity, iii) reduced centrality of right anterior insula and bilateral dACC, and iv) within 

CON, reduced intra-network global efficiency and clustering coefficient. 

Aim 1b. We hypothesized that an individual SZ participant’s degree of aberrance in 

network segregation, CON efficiency, and CON hub centrality would correspond with the 

severity of that individual’s generalized cognitive impairment, as assessed by the MCCB 

composite score. On an exploratory basis, we also planned to test for associations between 

aberrant network features and domain-specific cognitive function, as assessed by the MCCB 

working memory, attention/vigilance, and processing speed summary scores.  

Study 2: Following 6 months of CT, evaluate resting-state neural network normalization and 

compensation as mechanisms of cognitive change.  

In order to determine whether functional neural mechanisms of cognitive improvement in 

CT for SZ consist primarily of normalization or compensation, we examined normalization and 

compensation as competing hypotheses. However, normalization and compensation were not 
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expected to be mutually exclusive processes across networks, nor are network segregation and 

integration mutually exclusive within networks (e.g., “small-world” networks are high on both) 

(Rubinov & Sporns, 2010).  

Aim 2a. To evaluate the hypothesis that improvement in CT is driven by network 

normalization, we tested for network properties that i) were aberrant in SZ (relative to HC) prior 

to intervention, ii) predicted impaired cognitive performance in SZ prior to intervention, and iii) 

became less aberrant in SZ post-intervention. It was expected that such properties could correlate 

positively or negatively with post-intervention cognitive performance, as normalization might be 

incomplete (i.e., a property could predict cognitive impairment in SZ both before and after CT, 

but its effect could be significantly attenuated following CT). We also allowed for the possibility 

of no correlation between a normalized property and post-intervention cognitive performance, as 

normalization might decouple a given property from cognitive function. Normalization was also 

evaluated by testing for network properties that i) were more pronounced in HC than SZ prior to 

intervention, ii) were positively associated with cognitive targets in HC, and iii) became more 

pronounced in SZ following intervention.  

In line with research described above, we expected that normalization from pre- to post-

intervention in SZ would consist primarily of increased PFC functional specialization, 

manifesting as increased segregation within networks that involve PFC hubs. Specifically, we 

hypothesized that normalization would occur primarily within CON and would involve one or 

more of the following effects: i) increased centrality of right anterior insula and bilateral dACC 

within the whole-brain network, and ii) within CON, increased intra-network clustering 

coefficient and global efficiency, given prior reports (Sheffield et al., 2015, 2016, 2017).  
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Aim 2b. To evaluate the alternative hypothesis that improvement in CT is driven by 

network compensation, we tested for network properties that i) changed from pre- to post-

intervention and ii) were relevant to cognitive performance in SZ post-intervention, but iii) did 

not predict cognitive impairment in SZ prior to intervention or positively predict cognitive 

function in HC. We expected that because compensatory mechanisms fostered by CT may build 

upon naturalistic compensatory engagement that is present prior to intervention, properties 

involved in compensation might or might not distinguish SZ from HC prior to CT. Changes in 

network properties were only eligible to be considered compensatory if their association with 

post-intervention cognitive targets was positive, since a negative association would indicate a 

decline in cognitive function following intervention.  

Given evidence that efficiency of FPN may predict cognitive performance (Sheffield et 

al., 2015) but does not appear to be compromised in SZ (Sheffield et al., 2016, 2017), as well as 

evidence that posterior parietal cortex (involved in FPN) may exhibit compensatory activation 

during working memory tasks (Quintana et al., 2003), we hypothesized that compensation would 

occur primarily within FPN. Specifically, we hypothesized that within FPN, SZ would 

demonstrate increased intra-network global efficiency following CT. Compensation was also 

expected to involve increased global integration, evidenced by increased whole-brain global 

efficiency and robustness. We did not anticipate any significant changes in neural network 

properties in HC from baseline to six-month follow-up.  

Study 1: Functional Network Organization in First-Episode Schizophrenia and its 

Relationship to Cognitive Function 

Method 

Participants and Screening Procedures  
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Participants with first-episode SZ were recruited through a randomized controlled trial 

(RCT) conducted by the UCLA Aftercare Research Program (Nuechterlein et al., 2023). SZ 

participants met DSM-5 criteria for SZ, schizophreniform disorder, or schizoaffective disorder, 

depressed type, with onset within the last two years, and received comprehensive care through 

the Aftercare Research Program throughout their participation in the RCT and the present 

studies. Additional inclusion criteria for SZ participants were as follows: i) between 18 and 45 

years old, ii) no history of neurological disorder or significant head injury, iii) no substance use 

disorder within the six months prior to SZ onset, iv) premorbid IQ ³ 70, v) fluent in English, vi) 

able to commute to UCLA regularly for appointments, and vii) not pregnant or lactating at the 

time of study participation. All participants were stabilized on antipsychotic medication prior to 

beginning study procedures. A total of 69 participants with SZ completed MRI scanning. Of 

these, six were scanned using a beta rs-fMRI protocol incompatible with later scanner protocols; 

13 did not complete the rs-fMRI portion of the scan due to time constraints or early termination 

of scanning; two were missing spin echo fieldmap files; one was excluded due to severe metal-

induced artifact; one did not complete a cognitive assessment (MCCB); and one was an outlier 

on the MCCB (composite score more than two standard deviations below the group mean) and 

was excluded, resulting in a final sample of N = 45 SZ participants included in analyses. 

HC participants were recruited from the greater Los Angeles community and were 

demographically matched to the SZ sample on age, gender, race/ethnicity, and parental 

education. HC completed the Structured Clinical Interview for DSM-5, Research Version 

(SCID-5-RV; First, Williams, Karg, & Spitzer, 2015) prior to enrollment and were eligible for 

inclusion if they met the following criteria: i) between 18 and 45 years old, ii) no history of 

neurological disorder or significant head injury, iii) no current or past psychotic disorder, bipolar 
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disorder, obsessive-compulsive disorder, post-traumatic stress disorder, or substance use 

disorder, iv) no current major depressive disorder or past major depressive episode with a 

duration greater than one year; v) no history of psychotic disorder among first-degree relatives; 

vi) fluent in English, and vii) no pregnancy at the time of study participation. A total of 38 HC 

participants completed MRI scanning. Of these, two later endorsed exclusion criteria and were 

retroactively excluded; one did not complete the rs-fMRI portion of the scan due to time 

constraints; one was excluded following preprocessing and quality checking due to faulty 

registration of imaging data (see Preprocessing of MRI Data); one did not complete the MCCB; 

and one was an outlier on the MCCB (composite score more than two standard deviations below 

the group mean) and was excluded, resulting in a final sample of N = 32 HC included in 

analyses. 

Data were collected from March 2017 to April 2023. Due to the COVID-19 pandemic, 

data collection was paused for parts of 2020-2021. Study procedures were continuously 

approved and overseen by the UCLA Institutional Review Board (IRB). All participants 

provided written informed consent prior to their participation and were compensated for their 

time at the conclusion of each study visit. All procedures were in accordance with the 

Nuremburg Code and the Declaration of Helsinki. 

Cognitive Assessment  

Cognitive function was assessed using the MATRICS Consensus Cognitive Battery 

(MCCB; Kern et al., 2008; Nuechterlein et al., 2008), a clinician-administered 

neuropsychological battery developed by Nuechterlein and colleagues for the purpose of 

evaluating the efficacy of interventions for SZ. The MCCB assesses functioning in seven 

domains: processing speed, attention/vigilance, working memory, verbal learning, visual 
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learning, reasoning/problem solving, and social cognition. A composite score is computed based 

on summary scores for each of these domains. In the present studies, the MCCB composite score 

was used to test for associations between functional connectivity and generalized cognitive 

function. Summary scores for processing speed, attention/vigilance, and working memory were 

used to probe for relationships between functional connectivity and specific domains of cognitive 

function. Among SZ participants, the MCCB was completed prior to the initiation of any RCT 

intervention components that targeted cognitive function. 

Neuroimaging Data Acquisition  

All neuroimaging data were acquired at the UCLA Staglin Center for Cognitive 

Neuroscience using a 3T Siemens Prisma scanner. A high-resolution T1-weighted anatomical 

scan was acquired using an MPRAGE sequence with 208 interleaved slices (TR = 2500 ms, TE 

= 1.81 ms, flip angle = 8°, FOV = 208 mm anterior-to-posterior x 144 mm inferior-to-superior x 

208 mm right-to-left, voxel size = 0.8 mm x 0.8 mm x 0.8 mm). Two spin echo fieldmap images, 

one anterior-to-posterior and one posterior-to-anterior, were collected with 72 interleaved slices 

(TR = 8000 ms, TE = 66 ms, flip angle = 90°, FOV = 208 mm anterior-to-posterior x 144 mm 

inferior-to-superior x 208 mm right-to-left, voxel size = 2 mm x 2 mm x 2 mm). Resting-state 

BOLD data were acquired using a 6.5-minute sequence with 488 volumes and 72 interleaved 

slices (TR = 800 ms, TE = 37 ms, flip angle = 52°, FOV = 208 mm anterior-to-posterior x 144 

mm inferior-to-superior x 208 mm right-to-left, voxel size = 2 mm x 2 mm x 2 mm). Foam 

padding was used to minimize participant head movement. During rs-fMRI, participants were 

asked to remain awake with their eyes open and to focus on a neutral stimulus. rs-fMRI data 

were collected approximately 30-40 minutes after the start of each scan, allowing ample time for 
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participants to acclimate to scanning conditions. 

Preprocessing of MRI Data  

Raw data in DICOM format were converted to NIfTI format using dcm2niix version 

1.0.20210317 (Li, Morgan, Ashburner, Smith, & Rorden, 2016). Data were then preprocessed 

using the FMRIB Software Library (FSL; https://fsl.fmrib.ox.ac.uk/fsl/) version 6.0.4 (Smith et 

al., 2004), Advanced Normalization Tools (ANTs; http://stnava.github.io/ANTs/; Tustison et al., 

2014), HD-BET (https://github.com/MIC-DKFZ/HD-BET; Isensee et al., 2019), and the Graph 

Theory GLM (GTG) MATLAB toolbox (https://www.nitrc.org/projects/metalab_gtg; Spielberg, 

2014), which draws from the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/; 

Rubinov & Sporns, 2010). GNU Parallel (https://www.gnu.org/software/parallel/; Tange, 2020) 

was used to speed up processing by parallelizing computations to multiple CPU cores. 

Preprocessing of T1-weighted images consisted of signal intensity normalization using 

the ANTs N4BiasFieldCorrection tool (Tustison et al., 2010) and brain extraction using 

antsBrainExtraction.sh to create participant-specific brain masks. An initial brain mask was 

generated for each participant by summing masks created using the OASIS and Kirby brain 

templates provided by ANTs (Avants & Tustison, 2018). Following visual inspection, brain 

masks were regenerated using HD-BET for a subset of participants with faulty ANTs extractions 

(i.e., excess skull inclusion or problematic brain exclusion). On a case-by-case basis, custom 

brain masks were created to address problematic inclusion and/or exclusion by summing the 

masks created by ANTs and HD-BET, using a single ANTs template instead of a sum of 

multiple, or incorporating additional ANTs templates (i.e., NKI). 

Spin echo fieldmaps in the anterior-to-posterior and posterior-to-anterior directions were 

merged into a single file, and the TOPUP function in FSL was used to correct for distortions 
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caused by the susceptibility-induced field (Andersson, Skare, & Ashburner, 2003). A mean 

unwarped fieldmap image was computed, and signal intensity normalization was applied using 

the ANTs N4BiasFieldCorrection tool. Brain extraction was then performed using several 

methods, including HD-BET and FSL BET (Smith, 2002) with variable parameters. The 

resulting brain masks were visually inspected, and the best quality mask was selected for each 

participant. 

Masks capturing signal from white matter and cerebrospinal fluid (CSF) were generated 

for each participant using FSL FAST and eroded using FSLMATHS to prevent overlap with gray 

matter. Masks were visually inspected for quality. 

 Initial preprocessing of rs-fMRI timeseries data was performed using FSL FMRI Expert 

Analysis Tool (FEAT) version 6.00. Preprocessing steps included grand-mean intensity 

normalization, correction of susceptibility-induced field distortions using the unwarped fieldmap 

image, motion correction using rigid-body transformations via MCFLIRT (Jenkinson, Bannister, 

Brady, & Smith, 2002), brain extraction using BET, FLIRT linear registration (Jenkinson & 

Smith, 2001; Jenkinson, Bannister, Brady, & Smith, 2002) to the T1-weighted image, and 

FNIRT nonlinear registration (Andersson, Jenkinson, & Smith, 2007a, 2007b) to the Montreal 

Neurologic Institute (MNI) 2 mm standard brain. FEAT outputs were visually inspected for 

quality. Motion censoring was then performed using ICA-based Automatic Removal of Motion 

Artifacts (ICA-AROMA; Pruim et al., 2015). As spatial smoothing is required for ICA-AROMA, 

FEAT was run once with spatial smoothing (5 mm Gaussian kernel) and once without 

smoothing, and motion censoring was initially performed on smoothed timeseries. The 

unsmoothed timeseries for each participant was then regressed on the motion components 

obtained from that participant’s smoothed data. A DVARS value (Smyser, Snyder, & Neil, 2011; 
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Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) was computed for each volume of the 

motion-censored unsmoothed data. For participants with more than five DVARS outlier 

volumes, motion-censored data were visually inspected, and data with visible motion artifacts 

were subjected to spike regression. Additional preprocessing of rs-fMRI data was completed 

using the GTG toolbox (Spielberg, 2014) and consisted of regressing each participant’s 

timeseries data on participant-specific white matter, ventricular, and global signal and their first 

derivatives.  

Region of Interest (ROI) Selection 

 Cortical regions of interest (ROIs) were defined for each participant using the 360-region 

Human Connectome Project (HCP) atlas derived from a multimodal parcellation by Glasser et al. 

(2016). Fifteen participant-specific subcortical ROIs were generated using FSL FIRST 

(Patenaude, Smith, Kennedy, & Jenkinson, 2011). For each participant, cortical ROIs and 14 

non-brainstem subcortical ROIs were concatenated using MATLAB, and areas of overlap (i.e., 

two hippocampal ROIs included in the HCP atlas) were eliminated. The resulting 372 ROIs were 

applied to rs-fMRI data and used to compute connectivity matrices. Following this computation, 

four ROIs (L_OFC, L_pOFC, L_TGv, and R_TGv) representing left orbitofrontal cortex, left 

posterior OFC complex, left temporal pole, and right temporal pole, respectively, were removed 

for all participants due to insufficient signal in some participants. One additional ROI (R_LIPd) 

representing a section of right superior parietal lobule (SPL) had insufficient signal in one SZ 

participant. This participant was excluded from analyses of whole-brain graph properties, as 

removal of R_LIPd was inadvisable due to the demonstrated relevance of SPL to cognitive 

processes such as visuospatial attention (e.g., Wu et al., 2016). The remaining 368 ROIs were 

used to calculate whole-brain graph properties (see Study 1 Analyses). 
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 To address hypotheses related to a priori networks of interest (CON and FPN), subsets of 

HCP cortical ROIs were identified as members of CON and FPN according to Ji et al.’s (2019b) 

classification (https://github.com/ColeLab/ColeAnticevicNetPartition). A total of 56 cortical 

ROIs across hemispheres were identified as members of CON, and 50 were identified as 

members of FPN. To limit the number of ROIs included in the present studies, and because 

specific hypotheses involved only cortical regions, we did not include subcortical ROIs in CON 

or FPN analyses, despite the inclusion of subcortical ROIs in Ji et al.’s (2019b) classification.  

 
Table 1. Cingulo-opercular network (CON) regions of interest (ROIs). ROIs from the Glasser et 
al. (2016) Human Connectome Project (HCP) parcellation were classified as members of CON 
based on Ji et al. (2019b). 

Hemisphere Label Description 

Left L_FEF Frontal Eye Fields 
Left L_5mv Area 5m ventral (SPL) 
Left L_23c Area 23c (PCC) 
Left L_SCEF Supplementary and Cingulate Eye Field 
Left L_6ma Area 6m anterior (SMA) 
Left L_7Am Medial Area 7A (superior precuneous) 
Left L_p24pr Area Posterior 24 prime (mid-cingulate) 
Left L_33pr Area 33 prime (dACC) 
Left L_a24pr Anterior 24 prime (dACC) 
Left L_p32pr Area p32 prime (dACC) 
Left L_6r Rostral Area 6 (premotor) 
Left L_46 Area 46 (central dlPFC) 
Left L_9_46d Area 9-46d (central dlPFC) 
Left L_43 Area 43 (posterior operculum) 
Left L_PFcm Area PFcm (posterior operculum) 
Left L_PoI2 Posterior Insular Area 2 
Left L_FOP4 Frontal Opercular Area 4 
Left L_MI Middle Insular Area 
Left L_FOP1 Frontal Opercular Area 1 (posterior operculum) 
Left L_FOP3 Frontal Opercular Area 3 
Left L_PFop Area PF opercular (supramarginal) 
Left L_PF Area PF Complex (supramarginal) 
Left L_PoI1 Area Posterior Insular 1 
Left L_FOP5 Area Frontal Opercular 5 
Left L_PI Para-Insular Area 
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Left L_a32pr Area anterior 32 prime (dACC) 
Left L_p24 Area posterior 24 (dACC/rACC boundary) 
Right R_FEF Frontal Eye Fields 
Right R_PEF Premotor Eye Field 
Right R_PSL PeriSylvian Language Area 
Right R_5mv Area 5m ventral (SPL) 
Right R_23c Area 23c (PCC) 
Right R_SCEF Supplementary and Cingulate Eye Field 
Right R_6ma Area 6m anterior (SMA) 
Right R_7Am Medial Area 7A (superior precuneous) 
Right R_p24pr Area Posterior 24 prime (mid-cingulate) 
Right R_a24pr Anterior 24 prime (dACC) 
Right R_p32pr Area p32 prime (dACC) 
Right R_6r Rostral Area 6 (premotor) 
Right R_IFSa Inferior frontal sulcus area IFSa (IFC) 
Right R_46 Area 46 (central dlPFC) 
Right R_9_46d Area 9-46d (central dlPFC) 
Right R_43 Area 43 (posterior operculum) 
Right R_PFcm Area PFcm (posterior operculum) 
Right R_PoI2 Posterior Insular Area 2 
Right R_FOP4 Frontal Opercular Area 4 
Right R_MI Middle Insular Area 
Right R_FOP1 Frontal Opercular Area 1 (posterior operculum) 
Right R_FOP3 Frontal Opercular Area 3 
Right R_PFop Area PF opercular (supramarginal) 
Right R_PF Area PF Complex (supramarginal) 
Right R_PoI1 Area Posterior Insular 1 
Right R_FOP5 Area Frontal Opercular 5 
Right R_PI Para-Insular Area 
Right R_a32pr Area anterior 32 prime (dACC) 
Right R_p24 Area posterior 24 (dACC/rACC boundary) 
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Figure 2. Cingulo-opercular network (CON) regions of interest (ROIs). Figure was created using 
BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia, Wang, & He, 2013). 

 
 
Table 2. Frontoparietal network (FPN) regions of interest. ROIs from the Glasser et al. (2016) 
Human Connectome Project (HCP) parcellation were classified as members of FPN based on Ji 
et al. (2019b). 

Hemisphere Label Description 

Left L_RSC RetroSplenial Complex 
Left L_POS2 Parieto-Occipital Sulcus Area 2 
Left L_7Pm Medial Area 7P (SPL) 
Left L_8BM Area 8BM (superior paracingulate) 
Left L_8C Area 8C (dlPFC) 
Left L_a47r Area anterior 47r (anterior lateral OFC) 
Left L_IFJp Inferior frontal sulcus area IFJp (IFC) 
Left L_IFSa Inferior frontal sulcus area IFSa (IFC) 
Left L_p9_46v Area posterior 9-46v (central dlPFC) 
Left L_a9_46v Area anterior 9-46v (central dlPFC) 
Left L_a10p Area anterior 10p (fronto-polar) 
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Left L_11l Area 11l (anterior middle OFC) 
Left L_13l Area 13l (middle OFC) 
Left L_i6_8 Inferior 6-8 Transitional Area (dlPFC) 
Left L_s6_8 Superior 6-8 Transitional Area (dlPFC) 
Left L_AVI Anterior Ventral Insular Area 
Left L_TE1p Area TE1 posterior (MTG) 
Left L_IP2 Area IntraParietal 2 (supramarginal) 
Left L_IP1 Area IntraParietal 1 (LOC) 
Left L_PFm Area PFm Complex (supramarginal) 
Left L_p10p Area posterior 10p (fronto-polar) 
Left L_p47r Area posterior 47r (IFC) 
Right R_RSC RetroSplenial Complex 
Right R_POS2 Parieto-Occipital Sulcus Area 2 
Right R_7Pm Medial Area 7P (SPL) 
Right R_33pr Area 33 prime (dACC) 
Right R_d32 Area dorsal 32 (superior rACC) 
Right R_8BM Area 8BM (superior paracingulate) 
Right R_8C Area 8C (dlPFC) 
Right R_44 Area 44 (IFC) 
Right R_a47r Area anterior 47r (anterior lateral OFC) 
Right R_IFJp Inferior frontal sulcus area IFJp (IFC) 
Right R_IFSp Inferior frontal sulcus area IFSp (IFC) 
Right R_p9_46v Area posterior 9-46v (central dlPFC) 
Right R_a9_46v Area anterior 9-46v (central dlPFC) 
Right R_a10p Area anterior 10p (fronto-polar) 
Right R_11l Area 11l (anterior middle OFC) 
Right R_13l Area 13l (middle OFC) 
Right R_OFC Orbitofrontal 
Right R_i6_8 Inferior 6-8 Transitional Area (dlPFC) 
Right R_s6_8 Superior 6-8 Transitional Area (dlPFC) 
Right R_AVI Anterior Ventral Insular Area 
Right R_TE1p Area TE1 posterior (MTG) 
Right R_IP2 Area IntraParietal 2 (supramarginal) 
Right R_IP1 Area IntraParietal 1 (LOC) 
Right R_PFm Area PFm Complex (supramarginal) 
Right R_31a Area 31a (PCC) 
Right R_p10p Area posterior 10p (fronto-polar) 
Right R_p47r Area posterior 47r (IFC) 
Right R_TE1m Area TE1 Middle (MTG) 
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Figure 3. Frontoparietal network (FPN) regions of interest (ROIs). Figure was created using 
BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia, Wang, & He, 2013). 

 
 
Selection of Graph Properties 

 A subset of graph properties was selected for analysis based on study hypotheses related 

to functional network segregation, integration, and robustness and node centrality (Table 3). The 

following brief definitions are based on Rubinov and Sporns (2010, 2011) and GTG 

documentation (Spielberg, 2014). 

 Clustering Coefficient: A measure of functional segregation that quantifies the extent to 

which nodes are organized into clusters of multiple interconnected nodes. In the present study, 
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we examined mean clustering coefficient across all nodes in the whole-brain network, CON, and 

FPN. 

 Current-Flow Global Efficiency: A measure of functional integration that represents the 

extent to which nodes can efficiently communicate with other nodes distributed throughout a 

network as opposed to communicating primarily within isolated subnetworks.   

 Assortativity: A measure of network robustness (i.e., resilience) that quantifies the extent 

to which highly connected nodes (also known as hubs) are connected to each other. 

 Transitivity: A measure of functional segregation that is computed by normalizing a 

network’s mean clustering coefficient in order to avoid bias toward less connected nodes.  

Node Strength: A measure of node centrality that quantifies the overall connectedness of 

a node to other nodes in the network. 

 Communicability Betweenness Centrality: A measure of node centrality that quantifies 

the extent to which a node facilitates connections between other nodes. 

 Eigenvector Centrality: A measure of node centrality that quantifies the extent to which a 

node is connected to other nodes that are highly connected (i.e., hubs). 

 Of the 368 ROIs included in whole-brain analyses, a subset of 10 ROIs located in right 

anterior insula and bilateral dACC were selected for analyses of node centrality. We focused on 

these regions based on their previously established role as hubs within CON and their 

demonstrated relevance to cognitive function (Wu et al., 2019; Brockett & Roesch, 2021). 

Although right anterior insula and dACC are typically characterized as members of CON, we 

evaluated their centrality in the context of the whole-brain network rather than within CON 

because 1) in the Ji et al. (2019b) classification that was used to identify CON and FPN ROIs in 

the present study, the regions we selected for centrality analyses were not classified as members 
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of CON, and 2) analyzing centrality in the whole-brain context allows for a more complete 

characterization of nodes’ behavior as hubs, since hubs may participate in multiple networks or 

facilitate inter-network connections. A similar approach has been taken in other studies (e.g., 

Sheffield et al., 2015). For analyses focused on CON and FPN, rather than examining the 

centrality of specific nodes within each network, we computed total node strength across each 

network as a measure of the overall connectedness of nodes classified as network members. 

Study 1 Analyses 

Aim 1a. Connectivity matrices with robust correlations were computed using the GTG 

toolbox. For each participant, we generated a 368 x 368 whole-brain connectivity matrix, a 56 x 

56 CON matrix, and a 50 x 50 FPN matrix. The GTG toolbox was then used to compute selected 

graph properties of the whole-brain network, CON, and FPN (Table 3) using positive weights 

only. To test for hypothesized group differences in graph properties, non-parametric 

permutation-based GLMs were computed within the GTG toolbox, with whole-brain and 

network-specific graph properties as dependent variables and group membership (SZ vs. HC) as 

the predictor. 

Aim 1b. Graph properties were evaluated as predictors of cognitive performance in SZ 

and HC. Using the GTG toolbox, another series of GLMs was run with group (SZ vs. HC) and 

MCCB composite score entered simultaneously as independent variables, such that the test of the 

main effect of MCCB involved only its unique contribution to DV variance. A separate model 

tested a Group x MCCB interaction with main effects of group and MCCB partialed out. On an 

exploratory basis, separate models were used to test each domain-specific cognitive measure 

(MCCB working memory, attention/vigilance, and processing speed summary scores) as a 

predictor of graph properties, as well as the interaction of each domain-specific measure with 
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group. Effects were visualized using the ggplot2 function (Wickham, 2016) in R Statistical 

Software version 4.3.0 (R Core Team, 2023). 

Correction for multiple comparisons. At each step of analysis, the set of tests 

associated with a single graph property was considered one family, and Bonferroni correction 

was used to control the family-wise error rate. For global (i.e., non-node-specific) properties that 

were evaluated for CON, FPN, and the whole-brain network (clustering coefficient, current-flow 

global efficiency, and assortativity), we divided our baseline significance threshold of .05 by the 

number of networks (three) to obtain a corrected critical a of .017. Total node strength was 

evaluated only for CON and FPN, so a was set at .05 / 2 = .025. The remaining global property, 

transitivity, was only evaluated for the whole-brain network, so no correction was applied, and a 

was set at .05. Node-specific properties (node strength, communicability betweenness centrality, 

and eigenvector centrality) were each evaluated for 10 nodes, so a was set at .05 / 10 = .005 

(Table 3). A similar approach to correcting for multiple comparisons involving graph-theory 

properties has been taken in other studies (e.g., Sheffield et al., 2015).  

Study 1 was intended to lay the foundation for Study 2 by informing our 

conceptualization of normalization and compensation following CT. Given this objective, as well 

as a lack of consensus in the literature regarding the relationship of graph properties to cognitive 

function in SZ, we tested a wide-ranging set of hypotheses in Study 1. Bonferroni correction is 

an overly conservative method for correcting for multiple comparisons when the comparisons are 

not independent. At the same time, we took a lenient approach by applying Bonferroni only 

within families of tests associated with each graph property rather than across the entire set of 

tests involved in each study aim. With this approach, we did not adjust significance thresholds or 

p values to account for the number of graph properties we examined (N = 8). Furthermore, since 
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MCCB composite score was our primary cognitive variable of interest, and tests of domain-

specific MCCB summary scores (working memory, attention/vigilance, and processing speed) 

were considered exploratory, we treated tests associated with each MCCB subscore as separate 

families rather than correcting for the total number of tests performed across all four MCCB 

subscores. Thus, our application of Bonferroni was intended to strike a balance between 

minimizing Type I error and preserving the exploratory potential of Study 1, given our limited 

sample size.  

Although effects were considered statistically significant only if they met Bonferroni-

corrected critical a thresholds, all effects with uncorrected p < .05 are reported and discussed in 

the Study 1 Results and Discussion sections below. Although effects with critical a < p < .05 

should be interpreted with caution, they provide a basis for hypothesis testing in future studies 

with higher statistical power. 

 
Table 3. Graph properties computed for the whole-brain network, CON, and FPN. 
Graph Property Relevance Critical a 
Whole Brain, CON, and FPN  
Clustering Coefficient Functional segregation .017 
Current-Flow Global Efficiency Functional integration .017 
Assortativity Network robustness .017 
  
Whole Brain  
Transitivity Functional segregation .05 
Node Strength  

R_AVI (anterior ventral insular area) Centrality of right anterior 
insula 

.005 
R_AAIC (anterior agranular insula complex) .005 
L_33pr (area 33 prime) 

Centrality of left dACC 

.005 
L_a24pr (area anterior 24 prime) .005 
L_p32pr (area posterior 32 prime) .005 
L_a32pr (area anterior 32 prime) .005 
R_33pr (area 33 prime) 

Centrality of right dACC 

.005 
R_a24pr (area anterior 24 prime) .005 
R_p32pr (area posterior 32 prime) .005 
R_a32pr (area anterior 32 prime) .005 
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Communicability Betweenness Centrality  
R_AVI (anterior ventral insular area) Centrality of right anterior 

insula 
.005 

R_AAIC (anterior agranular insula complex) .005 
L_33pr (area 33 prime) 

Centrality of left dACC 

.005 
L_a24pr (area anterior 24 prime) .005 
L_p32pr (area posterior 32 prime) .005 
L_a32pr (area anterior 32 prime) .005 
R_33pr (area 33 prime) 

Centrality of right dACC 

.005 
R_a24pr (area anterior 24 prime) .005 
R_p32pr (area posterior 32 prime) .005 
R_a32pr (area anterior 32 prime) .005 

Eigenvector Centrality  
R_AVI (anterior ventral insular area) Centrality of right anterior 

insula 
.005 

R_AAIC (anterior agranular insula complex) .005 
L_33pr (area 33 prime) 

Centrality of left dACC 

.005 
L_a24pr (area anterior 24 prime) .005 
L_p32pr (area posterior 32 prime) .005 
L_a32pr (area anterior 32 prime) .005 
R_33pr (area 33 prime) 

Centrality of right dACC 

.005 
R_a24pr (area anterior 24 prime) .005 
R_p32pr (area posterior 32 prime) .005 
R_a32pr (area anterior 32 prime) .005 

  
CON & FPN  
Total Node Strength Overall node centrality .025 

Note. Critical a values listed in this table were used as significance thresholds for all tests in 
Aims 1a and 1b (i.e., main effect of group, main effect of MCCB subscores, and Group x MCCB 
interactions), as well as all tests in Study 2. 
 
 
Results 
 
Participants 

Complete demographic, clinical, and cognitive data for Study 1 participants are provided 

in Table 4. SZ and HC did not differ in age (t(72) = 1.37, p = .176), sex (t(75) = 1.26, p = .210), 

race/ethnicity (c2(7) = 7.41, p = .388), educational attainment (t(75) = -1.76, p = .082), or highest 

parental educational attainment (t(75) = 0.23, p = .818). As expected, SZ scored lower than HC 

on the MCCB composite score (t(75) = -7.03, p < .001, Cohen’s d = -1.63) and working memory 
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(t(75) = -4.00, p < .001, Cohen’s d = -0.92), attention/vigilance (t(75) = -2.69, p = .009, Cohen’s 

d = -0.62), and processing speed summary scores (t(75) = -6.69, p < .001, Cohen’s d = -1.55). 

 
Table 4. Demographic and clinical characteristics of participants, Study 1.  
 Participants 

with  
First-Episode SZ 

(N = 45) 

Healthy 
Comparison 
Participants 

(N = 32) 
Demographics  
Age, years M (SD)a 22.95 (5.24) 21.50 (3.38) 
Sex (female) N (%) 19 (42.22%) 9 (28.13%) 
Race/Ethnicity N (%) 

Asian, Asian American, or Pacific Islander 10 (22.22%) 7 (21.88%) 
Black or African American 6 (13.33%) 2 (6.25%) 
White 10 (22.22%) 7 (21.88%) 
Hispanic or Latinx 15 (33.33%) 12 (37.5%) 
Southwest Asian/North African 0 (0%) 3 (9.38%) 
Native American 1 (2.22%) 0 (0%) 
Other or Multiracial 1 (2.22%) 1 (3.13%) 
Unknown 2 (4.44%) 0 (0%) 

Education, years M (SD) 13.42 (2.05) 14.19 (1.61) 
Highest parental education, years M (SD) 15.24 (3.53) 15.05 (3.94) 
 
Clinical Characteristics 
DSM-5 Diagnosis N (%) 

Schizophrenia 33 (73.33%) -- 
Schizoaffective Disorder, depressed type 3 (6.67%) -- 
Schizophreniform Disorder 9 (20.00%) -- 

SAPS Total Score M (SD)b 10.39 (3.82) -- 
SANS Total Score M (SD)b 12.80 (4.71) -- 
BPRS Total Score M (SD) 42.73 (12.38) -- 
 
MCCB Scores M (SD) 
Composite 34.13 (10.78) 50.94 (9.69) 
Working Memory 43.00 (11.17) 53.06 (10.47) 
Attention/Vigilance 40.69 (9.86) 46.56 (8.87) 
Processing Speed 35.27 (12.01) 52.94 (10.56) 

Note. SAPS, Scale for the Assessment of Positive Symptoms (Andreasen, 1984). SANS, Scale 
for the Assessment of Negative Symptoms (Andreasen, 1989). BPRS, Brief Psychiatric Rating 
Scale (Overall & Gorham, 1962). MCCB, MATRICS Consensus Cognitive Battery (Kern et al., 
2008; Nuechterlein et al., 2008). 
a Age: For SZ, N = 42 due to missing data. 
b SAPS and SANS: N = 41 SZ due to missing data.  
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Group Differences in Graph Properties 

To evaluate group differences in graph properties, the GTG toolbox was used to run 

robust GLMs with 5,000 non-parametric permutations. Group was dummy coded with HC as the 

reference group (SZ = 1 and HC = 0), and the intercept term occupied a second column in the 

design matrix. The contrast [1 0] was tested, with a two-tailed t test used to evaluate the beta 

coefficient for group. Separate GLMs were run for whole-brain properties, CON properties, and 

FPN properties. For global (non-node-specific) properties other than total node strength (i.e., 

clustering coefficient, current-flow global efficiency, assortativity, and transitivity), network 

density and total strength were included as covariates of no interest to remove variance related to 

overall intra-network connectivity. For node-specific properties other than node strength, 

covariates of no interest included network density, total strength, node degree, and node strength. 

For GLMs testing whole-brain node strength of individual nodes, only network density and total 

strength were included as covariates of no interest. For GLMs testing total node strength within 

CON and FPN, no covariates of no interest were included, as total node strength (a covariate in 

other analyses) was the DV in this case, and variance related to network density was expected to 

have excessive overlap with the DV. 

SZ and HC did not differ on measures of whole-brain functional segregation (mean 

clustering coefficient, transitivity), whole-brain functional integration (current-flow global 

efficiency), whole-brain network robustness (assortativity), or whole-brain centrality of right 

anterior insula or dACC (node strength, communicability betweenness centrality, eigenvector 

centrality). SZ and HC also did not evidence any differences in segregation (mean clustering 

coefficient), integration (current-flow global efficiency), robustness (assortativity), or total node 

strength within CON or FPN. 
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Association of Graph Properties with Cognitive Performance 

 Given that SZ did not differ from HC on any of the graph metrics evaluated above, we 

tested for associations between graph metrics and cognitive function across groups (i.e., main 

effect of MCCB score with group-related variance partialed out). The series of GLMs described 

above was rerun, this time with both MCCB composite score and dummy-coded group entered 

simultaneously as independent variables and the intercept in the third column of the design 

matrix. All other specifications, including covariates, were the same as described above. The 

contrast [1 0 0] was used to test for the main effect of MCCB composite score, with two-tailed t 

tests used to evaluate the beta coefficient. GLMs were then repeated on an exploratory basis with 

each of the domain-specific MCCB scores (MCCB working memory, attention/vigilance, and 

processing speed) entered as an independent variable alongside group.  

Across groups, node strength of R_p32pr (area posterior 32 prime in right dACC) was 

positively associated with MCCB composite score, t = 2.92, p = .004 (Figure 4). There was no 

significant main effect of MCCB composite score on measures of whole-brain functional 

segregation (mean clustering coefficient, transitivity), whole-brain functional integration 

(current-flow global efficiency), whole-brain network robustness (assortativity), whole-brain 

centrality of other nodes in right anterior insula or dACC (node strength, communicability 

betweenness centrality, eigenvector centrality), CON or FPN segregation (mean clustering 

coefficient), CON or FPN integration (current-flow global efficiency), CON or FPN robustness 

(assortativity), or total node strength within CON or FPN.  

Exploratory analyses revealed a main effect of MCCB attention/vigilance on FPN 

current-flow global efficiency that did not survive correction for multiple comparisons, t = -1.27, 

p = .028 (n.s.) (Figure 5; an outlier may be driving the effect). There were no other main effects 
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of domain-specific MCCB scores (working memory, attention/vigilance, or processing speed) on 

any of the whole-brain or network-specific graph metrics that we evaluated.  

 
Figure 4. Main effect of MCCB composite score on node strength of R_p32pr. Across groups, 
MCCB composite score was positively associated with node strength of area p32 prime in right 
dACC. Plotted node strength values are residuals following regression on two covariates of no 
interest, network density and total strength. 

 
 
 
 
 
 
 
 
 



 

 37 

Figure 5. Main effect of MCCB attention/vigilance on current-flow global efficiency within 
FPN. Across groups, there was a non-significant negative association between attention/vigilance 
and FPN current-flow global efficiency, a measure of functional integration. Plotted current-flow 
global efficiency values are residuals following regression on two covariates of no interest, FPN 
network density and total strength. 

 

Group Differences in the Association of Graph Properties with Cognitive Performance 

 A final series of GLMs tested interactions between group and MCCB scores in predicting 

whole-brain, CON, and FPN graph properties. An interaction term was computed by multiplying 

the dummy-coded group variable by MCCB composite score. In each GLM, MCCB composite 

score, group, and the interaction term were entered as independent variables, with the intercept in 

the fourth column of the design matrix. The contrast [0 0 1 0] was tested, and two-tailed t tests 

were used to evaluate the beta coefficient for the interaction term. All other specifications, 

including covariates of no interest, were the same as described above. GLMs were repeated on 

an exploratory basis with domain-specific MCCB scores substituted for the composite score.  

 There was an interaction between group and MCCB composite score in predicting whole-

brain transitivity, such that transitivity was more positively associated with MCCB composite 
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score among SZ than among HC, t = 2.17, p = .028 (Figure 6). There were no significant 

interactions between group and MCCB composite score for any of the other whole-brain, CON, 

or FPN metrics we evaluated. 

 
Figure 6. Interaction of Group x MCCB composite score in relation to whole-brain transitivity.  
Plotted transitivity values are residuals following regression on two covariates of no interest, 
network density and total strength. 

  

Exploratory analyses involving domain-specific MCCB scores revealed several 

interactions between group and MCCB working memory summary score that were non-

significant after correcting for multiple comparisons. Group and MCCB working memory 

interacted to predict whole-brain assortativity, such that assortativity was less negatively 

associated with working memory for SZ than for HC, t = 2.25, p = .023 (n.s. after correcting for 

multiple comparisons) (Figure 7). There were also interactions between group and MCCB 

working memory in relation to several measures of dACC node centrality: node strength of 

R_p32pr (area posterior 32 prime in right dACC), t = -2.11, p = .037 (n.s.) (Figure 8a), 
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eigenvector centrality of L_a24pr (area anterior 24 prime in left dACC), t = -2.04, p = .048 (n.s.) 

(Figure 8b), eigenvector centrality of L_a32pr (area anterior 32 prime in left dACC), t = -2.00, p 

= .046 (n.s.) (Figure 8c), and eigenvector centrality of R_a24pr (area anterior 24 prime in right 

dACC), t = -2.14, p = .032 (n.s.) (Figure 8d). Each of these metrics was less positively 

associated with working memory in SZ than in HC. 

 
Figure 7. Interaction of Group x MCCB working memory in relation to whole-brain 
assortativity. The relationship between whole-brain assortativity and MCCB working memory 
summary score was less negative for SZ than for HC, though this effect was not significant after 
correcting for multiple comparisons. Plotted assortativity values are residuals following 
regression on two covariates of no interest, network density and total strength. 
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Figure 8. Interaction of Group x MCCB working memory in relation to dACC node centrality. 
8a: Node strength of R_p32pr was more positively associated with working memory in HC than 
in SZ, though this effect was not significant after correcting for multiple comparisons.  Plotted 
node strength values are residuals following regression on two covariates of no interest, network 
density and total strength. 8b-d: Eigenvector centrality of L_a24pr, L_a32pr, and R_a24pr was 
positively associated with working memory in HC but negatively associated with working 
memory in SZ, though these interaction effects were not significant after correcting for multiple 
comparisons. Plotted eigenvector centrality values are residuals following regression on four 
covariates of no interest: network density, total strength, node degree, and node strength. 
 

 

 

a 

c 
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Finally, there was an interaction between group and MCCB attention/vigilance summary 

score in relation to eigenvector centrality of R_p32pr that was not significant after correcting for 

multiple comparisons, t = -1.96, p = .05 (n.s.) (Figure 9). Attention/vigilance was less positively 

associated with eigenvector centrality of R_p32pr for SZ than for HC. 

 
Figure 9. Interaction of Group x MCCB attention/vigilance in relation to eigenvector centrality 
of R_p32pr. The positive relationship between eigenvector centrality of R_p32pr and MCCB 
attention/vigilance summary score was less pronounced for SZ than for HC, though this effect 
was not significant after correcting for multiple comparisons. Plotted eigenvector centrality 
values are residuals following regression on four covariates of no interest: network density, total 
strength, node degree, and node strength. 

 

There were no significant interactions of group with MCCB processing speed summary 

score for any of the whole-brain, CON, or FPN graph metrics examined here.  

Discussion 

 The objective of Study 1 was to identify aberrant features of resting-state functional 

network organization in first-episode SZ and evaluate their relationship to generalized and 

domain-specific cognitive function. It was hypothesized that SZ would show altered network 
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organization consistent with a pattern of reduced functional segregation and intact or elevated 

global integration and robustness, as well as reduced centrality of CON hubs and reduced 

clustering and global efficiency within CON. We anticipated that most of these network features 

would be associated with cognitive impairment but that some (i.e., elevated global integration 

and robustness) might represent naturalistic compensation. Contrary to hypotheses, SZ did not 

differ from HC on any of the properties of functional network organization that we evaluated. 

However, results indicated that whole-brain functional segregation may be more beneficial to 

generalized cognitive performance in SZ than in HC, possibly reflecting a naturalistic 

compensatory mechanism. In addition, we found evidence that the strength of a node in right 

dACC is associated with generalized cognitive performance across SZ and HC, suggesting a 

shared mechanism of cognitive function that is intact in first-episode SZ. Conversely, we found 

that in SZ, certain features of functional network organization (including centrality of several 

nodes in bilateral dACC) may be decoupled from cognitive performance. These findings suggest 

that aspects of cognitive performance in SZ do not rely on the same functional network features 

as in HC, which may indirectly reflect the role of compensatory neural mechanisms of cognitive 

function. Alternatively or in addition, cognitive impairment in SZ may be more related to 

disrupted engagement of network processes than to disruptions in network organization itself, 

leading SZ to experience less cognitive benefit from network features that resemble those of HC. 

Notably, some effects were found only for a single domain of cognitive function (e.g., 

decoupling of dACC node centrality from cognitive performance was only found in the domain 

of working memory), suggesting relevance to specialized rather than generalized cognitive 

processes. However, the latter set of effects did not survive correction for multiple comparisons, 

so this interpretation must be regarded cautiously. 
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 Based on prior literature (Alexander-Bloch et al., 2010; Fornito, Zalesky, Pantelis, & 

Bullmore, 2012; Vecchio et al., 2023), it was hypothesized that an overall reduction in functional 

network segregation would serve as a mechanism of cognitive impairment in SZ. However, SZ 

did not differ from HC on measures of network segregation (whole-brain transitivity; clustering 

coefficient of CON, FPN, and the whole-brain network), and across groups, these measures were 

not associated with cognitive performance. Surprisingly, a Group x MCCB interaction indicated 

that in SZ, whole-brain transitivity was more positively associated with generalized cognitive 

function than in HC. In other words, functional segregation appeared more beneficial to 

cognitive performance in SZ than in HC. Given previous literature suggesting that segregation is 

reduced in SZ, it is possible that this effect was related to illness severity and/or duration (i.e., 

both segregation and cognitive performance may have been higher among participants with less 

severe and/or more recent-onset illness). Alternatively, the present findings could be interpreted 

as evidence that, to the extent that functional segregation is present in SZ, it serves as a 

compensatory mechanism supporting cognitive function.  

More broadly, the present findings raise questions about the role of functional 

segregation in SZ cognitive function and whether this role differs in HC. Studies of neurotypical 

adults have indicated that cognitive function is supported by a balance between functional 

segregation and integration and that different cognitive processes are optimized by each (Wang 

et al., 2021). In both SZ and non-psychosis samples, generalized cognitive function has been 

positively associated with measures of functional integration (Wang et al., 2021; Sheffield et al., 

2015, 2016, 2017). Although in the present study, there were no significant effects related to 

whole-brain integration (i.e., current-flow global efficiency), it is possible that generalized 

cognitive function in HC relied on the coexistence of segregation and integration (i.e., small 
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worldness) or on an optimal balance between the two rather than benefitting linearly from 

segregation. In follow-up studies, it may be beneficial to examine the balance between 

segregation and integration (as has been done in other studies, e.g., Duan et al., 2019) and 

whether the optimal ratio is different in SZ than in HC.  

We also hypothesized that two hubs associated with CON – right anterior insula and 

bilateral dACC – would demonstrate lower centrality in SZ than in HC. Although this hypothesis 

was not supported, we did find that across groups, node strength of R_p32pr (a dACC node 

representing right area posterior 32 prime) was positively associated with MCCB composite 

score. Contrary to hypotheses, this suggests that centrality of right posterior dACC is an intact 

mechanism of generalized cognitive function in SZ. This finding may have implications for 

understanding mechanisms of CT interventions. Specifically, enhancing connectivity of R_p32pr 

may not be a fruitful target for interventions seeking to normalize disruptions in network 

functioning, but it may be an appropriate target for interventions seeking to promote 

compensation by enhancing intact network processes.  

 A consistent pattern of effects emerged from exploratory analyses of dACC node 

centrality in relation to MCCB working memory summary score, although these effects were 

non-significant after correcting for multiple comparisons. The eigenvector centrality of three 

nodes in dACC (R_a24pr, L_a24pr, and L_a32pr, representing bilateral area anterior 24 prime 

and left area anterior 32 prime) was more positively associated with working memory in HC than 

in SZ. A similar effect was observed for node strength of a fourth dACC node (R_p32pr), despite 

its positive association with generalized cognitive function across groups. Taken together, these 

findings suggest that further research is warranted to determine whether working memory in SZ 

relies less on dACC hubs than it does in HC. If such a finding emerged in better-powered 
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studies, it would suggest that dACC hubs are less beneficial to working memory in SZ despite 

maintaining their centrality within the global network. This could be the result of reduced 

engagement of these regions during working memory tasks. Future studies may be able to 

provide further insight by examining dACC activation and centrality during working memory 

tasks in addition to during the resting state. It may also be beneficial to examine whether reduced 

reliance on dACC centrality is associated with increased, compensatory reliance on alternative 

nodes or hubs that were not evaluated in the present study (e.g., nodes in posterior parietal 

cortex, as suggested by Quintana et al., 2003).   

Consistent with a pattern of network metrics becoming decoupled from cognitive 

performance, whole-brain network assortativity (a measure of robustness) was more negatively 

associated with cognitive function in HC than in SZ, although this effect was non-significant 

after correction for multiple comparisons. Notably, although some studies have reported elevated 

network robustness in SZ (e.g., Lynall et al., 2010), no group differences in assortativity emerged 

in the present study. It is possible that in SZ, widely distributed functional dysconnectivity (as 

has been demonstrated in a large body of literature) and/or reduced recruitment of specialized 

nodes during cognitive tasks (e.g., Crossley et al., 2016) makes network resilience less relevant 

to cognitive performance in SZ. Although the present findings do not provide any evidence of 

naturalistic compensation through elevated robustness in SZ, they do suggest that elevated 

robustness is less detrimental or perhaps less relevant to cognitive performance in SZ than in HC.   

 A secondary objective of the present study was to explore whether features of network 

organization corresponded with generalized or domain-specific cognitive function and 

impairment in SZ. Previous findings have been mixed, with few consistent associations emerging 

between specific patterns of functional dysconnectivity and individual cognitive domains 
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(Sheffield & Barch, 2016). In the present study, analyses involving domain-specific MCCB 

summary scores were considered exploratory. Furthermore, we did not make direct comparisons 

between different MCCB summary scores’ associations with graph properties, so we cannot 

make inferences about the domain specificity of the observed effects. It is nonetheless notable 

that for three of the four dACC nodes that showed non-significant Group x MCCB working 

memory interactions in relation to measures of node centrality, similar effects did not emerge for 

generalized cognitive function, attention/vigilance, or processing speed. It is possible that 

decoupling of dACC centrality from cognitive function specifically impacts cognitive processes 

relevant to working memory, and it may be informative to formally test this hypothesis in future 

resting-state and task-based studies. Thus, the present non-significant findings can be seen as 

laying the groundwork for future, hypothesis-driven investigations of domain specificity. 

 In exploratory analyses of main effects, a non-significant relationship emerged between 

FPN global efficiency and the MCCB attention/vigilance summary score. Across both SZ and 

HC, higher FPN global efficiency was associated with lower attention/vigilance score. A specific 

relationship between FPN efficiency and the domain of attention/vigilance is plausible given 

FPN’s established relationship to attention (Markett et al., 2014). However, the direction of the 

observed non-significant effect was unexpected, as we had hypothesized that in Study 2, 

compensation following CT might consist of increased FPN global efficiency accompanied by 

gains in cognitive function. Furthermore, previous studies have linked lower FPN efficiency to 

working memory impairment in major depressive disorder (Tan et al., 2021) and higher FPN 

efficiency to generalized cognitive performance in both SZ and HC (Sheffield et al., 2015). As 

discussed above, it may be useful in future studies to examine measures of functional segregation 

and integration in tandem and to clarify whether different ratios between these measures are 
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beneficial to different types of cognitive tasks in SZ and HC. In the case of FPN, further 

investigation is needed to determine whether integration (i.e., global efficiency) impacts 

attention/vigilance differently than other cognitive domains. 

 Although the lack of any group differences in whole-brain, CON, or FPN properties 

contradicts hypotheses, it aligns with a recent meta-analysis that found that SZ resembled HC on 

most graph metrics of functional networks (Gao et al., 2023). The lack of group differences in 

the present sample also aligns with Sheffield et al. (2015)’s findings. Taken together with the 

other results of Study 1, this lack of group differences highlights the importance of 

conceptualizing cognitive impairment as arising not necessarily from disruptions in network 

organization, but also potentially from dissociation of network features from key cognitive 

processes. It is also possible that graph properties do not distinguish SZ from HC as reliably as 

other measures of neural network disruption. In a machine learning study, Lei et al. (2020) 

demonstrated that individuals with SZ were more consistently differentiated from HC by overall 

functional connectivity than by graph properties of functional networks. As discussed by Gao et 

al. (2023), meaningful but poorly understood heterogeneity within SZ may account for 

contradictory effects and lack of effects at the group level when studying graph properties. 

 Overall, the present study sheds light on both intact and altered neural mechanisms of 

cognitive function in first-episode SZ. Most notably, we found evidence that a hub in right 

dACC supports generalized cognitive function across SZ and HC but that whole-brain 

transitivity may have different implications in each group. Our findings highlight the need for 

cognitive neuroscience studies of SZ to consider not only network dysconnectivity itself, but also 

disruptions in the relationship between network organization and cognition. Results from the 

present study suggest that on a group level, the organization of key networks (CON and FPN) 



 

 48 

and the global network in SZ resembles typical network organization. However, certain features 

of network organization may be decoupled from cognitive performance. This insight has 

implications for theorizing about mechanisms of CT interventions in SZ. Specifically, rather than 

targeting network organization itself, CT interventions may benefit from attempting to increase 

the extent to which individuals with SZ engage existing network processes or hubs while 

completing cognitive tasks. Future studies can expand on the present findings by formally 

investigating the domain-specificity of the observed effects and by exploring whether decoupling 

of network features from cognition is accompanied by naturalistic compensation in other nodes 

or networks in SZ. 

Study 2: Normalization and Compensation in Functional Networks following 

Cognitive Training and Implications for Cognitive Recovery 

Method 

Participants 

 Participants with SZ from Study 1 were included in Study 2 if they 1) completed the 24-

week CT intervention detailed below and 2) completed a follow-up MRI approximately six 

months after their initial MRI. HC participants from Study 1 were included in Study 2 if they 

completed a follow-up MRI approximately six months after their initial MRI and continued to 

meet all inclusion criteria. Of the participants included in Study 1, 17 SZ and 20 HC provided 6-

month follow-up data and were included in Study 2. 

Cognitive Training Intervention  

Following their initial study visit, participants with SZ received a 24-week CT 

intervention as part of their participation in the RCT. SZ participants also attended a weekly 

bridging skills group, in which they discussed and practiced strategies for translating cognitive 
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skills from CT to everyday life. To promote adherence, participants received small monetary 

incentives for completing CT sessions. Intervention procedures are detailed by Nuechterlein and 

colleagues (2016, 2023).  

The CT intervention consisted of 96 total hours of computerized CT, half of which 

specifically targeted neurocognitive domains (auditory discrimination, speed of processing, 

working memory, verbal memory, and verbal reasoning) and half of which targeted social and 

affective cognitive skills. This approach integrated aspects of bottom-up and top-down cognitive 

training (Nuechterlein et al., 2014) by beginning with training of fundamental sensory processes 

and progressing to training of complex cognitive skills. Intervention content was developed by 

BrainHQ of Posit Science Corporation. Initial results from the RCT associated with the present 

studies confirmed the efficacy of the CT intervention (Nuechterlein et al., 2023). 

HC participants did not receive any intervention. 

Cognitive Assessment 

 SZ and HC participants completed a second administration of the MCCB following 

procedures described in Study 1. SZ were administered the follow-up MCCB after completing 

the CT intervention (approximately six months following initial assessment). HC completed the 

follow-up MCCB approximately six months after their initial MCCB. In both groups, different 

forms of the Brief Visuospatial Memory Test-Revised (BVMT-R; Benedict, 1997), which 

assesses visual learning, and the Hopkins Verbal Learning Test-Revised (HVLT-R; Brandt & 

Benedict, 2001), which assesses verbal learning, were administered at six-month follow-up to 

minimize practice effects from the initial assessment. 

Neuroimaging Data Acquisition & Preprocessing 
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 Neuroimaging data collected at the six-month time point were acquired and preprocessed 

using procedures identical to those described in Study 1. As in Study 1, the Glasser et al. (2016) 

HCP cortical atlas was applied to each participant’s rs-fMRI data and concatenated with 

participant-specific subcortical ROIs produced by FSL FIRST, resulting in 372 total ROIs. Four 

ROIs, consistent with those removed in Study 1, were removed for all participants, resulting in 

368 ROIs that were used to compute whole-brain graph properties. The 56 CON ROIs and 50 

FPN ROIs that were selected based on the Ji et al. (2019b) network classification (see Study 1) 

were used to evaluate intra-network properties for CON and FPN. 

Study 2 Analyses 

As in Study 1, the GTG toolbox was used to compute a 368 x 368 whole-brain 

connectivity matrix, a 56 x 56 CON matrix, and a 50 x 50 FPN matrix for each participant. 

Matrices from the six-month time point were concatenated with matrices from the pre-

intervention time point to create a repeated-measures data structure for each participant. The 

same set of graph properties evaluated in Study 1 (Table 3) was computed for each participant at 

each time point using positive weights only. The GLM tool within the GTG toolbox was used to 

test for change in graph-theory properties from pre- to post-intervention in SZ. A separate 

repeated-measures GLM was run for each graph property of interest, with graph properties at the 

pre-intervention and six-month time points entered as repeated measures and group (SZ vs. HC) 

entered as a dummy-coded independent variable. A Group x Time interaction was tested to 

evaluate whether SZ experienced change in graph properties that differed from change 

experienced by HC. As we did not hypothesize any meaningful change in HC network properties 

given the lack of experimental intervention in this group, this design was intended to detect 
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change in SZ network properties that exceeded a level of variance in graph properties attributable 

to scanning participants at two different time points.  

Associations between change in graph properties and change in cognitive performance in 

SZ were evaluated using a repeated-measures design with longitudinal data from SZ participants 

only. Change in cognitive performance was examined in relation to change in all graph 

properties of interest, even those that did not evidence change from pre- to post-intervention, 

because clinically relevant change could have occurred only in a subset of SZ participants. In 

other words, change in a given graph property could be associated with change in cognitive 

function even if, on a group level, SZ did not experience significant change in that property. 

MCCB change scores were computed for each participant by subtracting baseline scores from 

six-month scores. In a series of GLMs, MCCB composite change score was entered as a 

continuous predictor, with graph properties at the pre-intervention and six-month time points 

entered as repeated measures, and an MCCB x Time interaction was tested. The interaction term 

was used to evaluate whether change in MCCB composite score was associated with changes in 

graph properties from pre- to post-intervention. On an exploratory basis, analyses were repeated 

using domain-specific MCCB scores for working memory, attention/vigilance, and processing 

speed. 

As in Study 1, network density and total strength were included as covariates of no 

interest in analyses of clustering coefficient, current-flow global efficiency, assortativity, and 

transitivity. Network density, total strength, node degree, and node strength were included as 

covariates of no interest in analyses of communicability betweenness centrality and eigenvector 

centrality. In analyses of individual nodes’ strength within the whole-brain network, only 

network density and total strength were included as covariates of no interest. For GLMs testing 
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total node strength within CON and FPN, no covariates of no interest were included, as total 

node strength (a covariate in other analyses) was the DV in this case, and variance related to 

network density was expected to have excessive overlap with the DV. 

To correct for multiple comparisons, Bonferroni-adjusted critical a values were selected 

for tests of each graph property following the same procedures described in Study 1 (a values 

are listed in Table 3). As in Study 1, all effects with uncorrected p < .05 are reported and 

discussed below, as effects that were non-significant after Bonferroni correction may inform the 

design of future studies with higher statistical power. Effects were visualized using the ggplot2 

function (Wickham, 2016) in R Statistical Software version 4.3.0 (R Core Team, 2023). 

Aim 2a. Normalization: As described above (see Project Overview), changes in network 

properties following CT were considered to reflect normalization if they i) involved decreases in 

properties that were aberrant in SZ prior to intervention and predictive of pre-intervention 

cognitive impairment or ii) involved increases in properties that differentiated HC from SZ prior 

to intervention and positively predicted cognitive targets in HC. Although no group differences 

in graph properties emerged in the larger Study 1 sample, it was unknown whether the Study 2 

subsample displayed any group differences in graph properties at the pre-intervention time point. 

Therefore, normalization was not ruled out as a possibility in Study 2. 

Aim 2b. Compensation: As described above (see Project Overview), changes in network 

properties following CT were considered compensation if they i) were positively associated with 

post-intervention cognitive performance, ii) involved properties that were not associated with 

cognitive impairment prior to intervention, and iii) did not involve properties that positively 

predicted cognitive performance in HC.  

Results 
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Participants 

Complete demographic, clinical, and cognitive data for Study 2 participants are provided 

in Table 5. SZ and HC did not differ in age (t(34) = 1.01, p = .318), sex (t(35) = 0.65, p = .520), 

race/ethnicity (c2(6) = 5.08, p = .533), educational attainment (t(35) = -0.70, p = .489), or highest 

parental educational attainment (t(35) = -0.02, p = .986). As expected, prior to CT, SZ scored 

lower than HC on the MCCB composite score (t(35) = -4.32, p < .001, Cohen’s d = -1.43) and 

working memory (t(35) = -2.87, p = .007, Cohen’s d = -0.95), attention/vigilance (t(35) = -2.10, 

p = .043, Cohen’s d = -0.69), and processing speed summary scores (t(35) = -3.78, p < .001, 

Cohen’s d = -1.25). 

 
Table 5. Demographic and clinical characteristics of participants, Study 2.  
 Participants 

with  
First-Episode SZ 

(N = 17) 

Healthy 
Comparison 
Participants 

(N = 20) 
Demographics  
Age, years M (SD)a 23.38 (4.60) 21.95 (3.85) 
Sex (female) N (%) 5 (29.41%) 4 (20.00%) 
Race/Ethnicity N (%) 

Asian, Asian American, or Pacific Islander 5 (29.41%) 5 (25.00%) 
Black or African American 3 (17.65%) 2 (10.00%) 
White 3 (17.65%) 3 (15.00%) 
Hispanic or Latinx 5 (29.41%) 6 (30.00%) 
Southwest Asian/North African 0 (0%) 3 (15.00%) 
Native American 0 (0%) 0 (0%) 
Other or Multiracial 0 (0%) 1 (5.00%) 
Unknown 1 (5.88%) 0 (0%) 

Education, years M (SD) 13.82 (2.04) 14.25 (1.67) 
Highest parental education, years M (SD) 15.35 (3.61) 15.38 (3.72) 
 
Clinical Characteristics at Baseline 
DSM-5 Diagnosis N (%) 

Schizophrenia 14 (82.35%) -- 
Schizoaffective Disorder, depressed type 0 (0%) -- 
Schizophreniform Disorder 3 (17.65%) -- 

SAPS Total Score M (SD) 10.88 (4.14) -- 
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SANS Total Score M (SD) 12.47 (4.29) -- 
BPRS Total Score M (SD) 43.12 (13.74) -- 

 
Clinical Characteristics at Six-Month Follow-Up 
SAPS Total Score M (SD) 5.88 (4.61) -- 
SANS Total Score M (SD) 7.94 (4.66) -- 
BPRS Total Score M (SD) 40.41 (14.88) -- 
 
MCCB Scores at Baseline M (SD) 
Composite 32.88 (12.65) 48.25 (8.91) 
Working Memory 40.59 (10.88) 51.25 (11.57) 
Attention/Vigilance 38.18 (10.20) 44.55 (8.26) 
Processing Speed 35.18 (13.59) 50.75 (11.50) 
 
MCCB Scores at Six-Month Follow-Up M (SD) 
Composite 37.18 (13.09) 53.65 (9.86) 
Working Memory 42.82 (10.00) 54.00 (11.66) 
Attention/Vigilance 41.06 (9.60) 46.00 (9.98) 
Processing Speed 38.35 (11.47) 56.45 (10.97) 

Note. SAPS, Scale for the Assessment of Positive Symptoms (Andreasen, 1984). SANS, Scale 
for the Assessment of Negative Symptoms (Andreasen, 1989). BPRS, Brief Psychiatric Rating 
Scale (Overall & Gorham, 1962). MCCB, MATRICS Consensus Cognitive Battery (Kern et al., 
2008; Nuechterlein et al., 2008). 
a Age: For SZ, N = 16 due to missing data. 
 
 
Change in Network Properties following CT 
 
 The GTG toolbox was used to implement an Ordinary Least Squares (OLS) repeated-

measures GLM with 5,000 permutations for each graph property listed in Table 3. OLS 

regression was used because GTG is unable to calculate robust GLMs for repeated-measures 

designs. Graph properties at the baseline (pre-intervention) and six-month follow-up time points 

were entered as repeated DVs, and group was entered as a dummy-coded between-subjects IV 

with HC as the reference group (SZ = 1 and HC = 0). Two-tailed t tests were used to evaluate the 

beta coefficients for main effect of group and Group x Time interaction. The main effect of time 

was partialed out of the interaction term. 
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 There was a main effect of group on communicability betweenness centrality of R_AVI 

(right anterior ventral insular area) that did not survive correction for multiple comparisons, t = 

7.58, p = .010 (n.s.) (Figure 10). Across time points, R_AVI had higher communicability 

betweenness centrality among SZ than among HC. However, there was no significant Group x 

Time interaction for communicability betweenness centrality of R_AVI. There was a Group x 

Time interaction for node strength of R_AVI in which SZ experienced an increase in R_AVI 

strength from pre- to post-intervention, while HC showed a decrease, although this effect did not 

survive correction for multiple comparisons, t = 4.36, p = .043 (n.s.) (Figure 11). 

 
Figure 10. Main effect of group on communicability betweenness centrality of R_AVI. Across 
time points, SZ had higher R_AVI communicability betweenness centrality than HC, although 
this effect was not statistically significant after correcting for multiple comparisons. Plotted 
communicability betweenness centrality values are mean residuals following regression on 
covariates of no interest (network density, total strength, node degree, and node strength, each 
measured at both time points). 
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Figure 11. Interaction of Group x Time in relation to node strength of R_AVI. The interaction 
effect was non-significant after correcting for multiple comparisons. Plotted node strength values 
are mean residuals following regression on covariates of no interest (network density and total 
strength, each measured at both time points). 

 

 There was a Group x Time interaction for communicability betweenness centrality of 

R_33pr (area 33 prime in right dACC), such that HC experienced an increase in this measure and 

SZ experienced a decrease, although this effect did not remain significant after correcting for 

multiple comparisons, t = 4.53, p = .040 (n.s.) (Figure 12). 

 There were no group effects or Group x Time interactions for any of the CON or FPN 

properties we evaluated.  
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Figure 12. Interaction of Group x Time in relation to communicability betweenness centrality of 
R_33pr. The interaction effect was non-significant after correcting for multiple comparisons. 
Plotted communicability betweenness centrality values are mean residuals following regression 
on covariates of no interest (network density, total strength, node degree, and node strength, each 
measured at both time points). 

 
 
Association of Network Changes with Change in MCCB 
 
 Among SZ, increased MCCB composite score from pre- to post-intervention was 

associated with decreased eigenvector centrality of R_a24pr (area anterior 24 prime in right 

dACC), as indicated by a Time x MCCB composite score interaction, although this effect did not 

survive correction for multiple comparisons, t = 11.40, p = .013 (n.s.) (Figure 13). 
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Figure 13. Association of change in MCCB composite score with change in eigenvector 
centrality of R_a24pr. The effect was non-significant after correcting for multiple comparisons. 
Plotted values for eigenvector centrality are pre-post differences in residuals following 
regression on covariates of no interest (network density, total strength, node degree, and node 
strength, each measured at both time points). 

 

 Across time points, there was a significant main effect of MCCB composite change score 

on FPN clustering coefficient, such that gains in MCCB composite performance were negatively 

associated with FPN clustering coefficient pre- and post-intervention (t = 9.08, p = .010) (Figure 

14). 
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Figure 14. Main effect of MCCB composite change score on FPN clustering coefficient in SZ 
across time points. 14a: Negative association between pre-intervention FPN clustering 
coefficient and pre-post change in MCCB composite score in SZ. 14b: Negative association 
between post-intervention FPN clustering coefficient and pre-post change in MCCB composite 
score in SZ. Plotted values for FPN clustering coefficient are mean residuals following 
regression on covariates of no interest (network density and total strength, each measured at both 
time points). 
 

 
 
 
 In exploratory analyses, gains in MCCB working memory among SZ were associated 

with decreased node strength of R_p32pr (area posterior 32 prime in right dACC) from pre- to 

post-intervention, t = 5.48, p = .042 (n.s.), although this effect was non-significant after 

correcting for multiple comparisons (Figure 15). 

 
 
 
 
 
 
 
 
 
 
 
 

a b 
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Figure 15. Association of change in MCCB working memory with change in node strength of 
R_p32pr. The effect was non-significant after correcting for multiple comparisons. Plotted node 
strength values are pre-post differences in residuals following regression on covariates of no 
interest (network density and total strength, each measured at both time points). 

  
 
 

There were no significant associations between change in MCCB attention/vigilance and 

change in graph properties. However, there was a main effect of MCCB attention/vigilance 

difference score on node strength of R_p32pr, t = 12.49, p = .004, indicating that gains in 

attention/vigilance from pre- to post-intervention were negatively associated with R_p32pr node 

strength across time points (Figure 16). Several other main effects of MCCB attention/vigilance 

difference score became non-significant after correcting for multiple comparisons. Specifically, 

gains in attention/vigilance from pre- to post-intervention were associated with lower 

eigenvector centrality of R_p32pr, t = 6.80, p = .037 (n.s.), lower whole-brain transitivity, t = 

6.65, p = .032 (n.s.), lower whole-brain clustering coefficient, t = 6.87, p = .027 (n.s.), and higher 

communicability betweenness centrality of L_a24pr (area anterior 24 prime in left dACC), t = 

11.80, p = .009 (n.s.) across time points. 
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Figure 16. Main effect of MCCB attention/vigilance change score on node strength of R_p32pr 
in SZ across time points. 16a: Negative association between pre-intervention R_p32pr node 
strength and pre-post change in MCCB attention/vigilance score in SZ. 16b: Negative 
association between post-intervention R_p32pr node strength and pre-post change in MCCB 
attention/vigilance score in SZ. Plotted values for node strength are mean residuals following 
regression on covariates of no interest (network density and total strength, each measured at both 
time points). 
 

 

  

 

 

 

 

 

 
 

Finally, gains in MCCB processing speed from pre- to post-intervention were associated 

with increased communicability betweenness centrality of L_a24pr, t = 13.00, p = .010 (n.s.) and 

decreased eigenvector centrality of R_33pr (area 33 prime in right dACC), t = 6.28, p = .042 

(n.s.), although these effects did not survive correction for multiple comparisons (Figure 17). 

 There were no significant associations between change in CON graph properties and 

change in any of the MCCB subscores. 
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Figure 17. Association of change in MCCB processing speed with changes in dACC node 
centrality. 17a: Gains in processing speed were associated with increased communicability 
betweenness centrality of L_a24pr. 17b: Gains in processing speed were associated with 
decreased eigenvector centrality of R_33pr. Effects were non-significant after correcting for 
multiple comparisons. Plotted centrality values are pre-post differences in residuals following 
regression on covariates of no interest (network density, total strength, node degree, and node 
strength, each measured at both time points).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parsing Normalization and Compensation 
 
 Based on results of Study 1 and Study 2, we identified network effects that appeared to 

be candidates for normalization and/or compensation according to our a priori definitions 

(Figure 1). In identifying candidate effects, we considered all findings from Studies 1 and 2 with 

uncorrected p < .05. This allowed for a more generative (though tentative) consideration of 

potential normalization and compensation effects, as most results did not reach significance 

according to Bonferroni-corrected thresholds. For each candidate effect, we determined whether 

additional tests would clarify whether the effect could be classified as normalization or 

compensation. Table 6 summarizes candidate effects, relevant findings from Studies 1 and 2, 

and additional tests identified for each effect. 

 
 

a b 
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Table 6. Network effects identified as candidates for normalization and/or compensation. 
Effect Candidate 

For 
Study 1 Evidence Study 2 Evidence Additional Tests 

Increased 
R_AVI 
Centrality 

Compensation No group differences 
in centrality prior to 
CT 
 
No association with 
MCCB prior to CT 

Communicability 
betweenness 
centrality: SZ > HC 
both pre- and post-
CT 
 
Node strength 
increases after CT 
 

Is centrality 
associated with 
cognitive 
performance in SZ 
after CT? 

Decreased 
R_33pr 
Centrality 

Compensation No group differences 
in centrality prior to 
CT 
 
No association with 
MCCB prior to CT 

Communicability 
betweenness 
centrality decreases 
after CT 
 
Decreased 
eigenvector 
centrality after CT is 
associated with 
increased processing 
speed 
 

-- 

Decreased 
R_a24pr 
Centrality 

Compensation No group differences 
in centrality prior to 
CT 
 
Eigenvector 
centrality more 
negatively associated 
with working 
memory in SZ than 
in HC 

Decreased 
eigenvector 
centrality after CT is 
associated with 
increased MCCB 
composite 

-- 

Decreased 
R_p32pr 
Centrality 

Compensation No group differences 
in centrality prior to 
CT 
 
Node strength 
positively associated 
with MCCB 
composite across 
groups 
 
Node strength less 
positively associated 

Decreased node 
strength after CT is 
associated with 
increased working 
memory 
 
Lower node strength 
pre- and post-CT is 
associated with 
greater gains in 
attention/vigilance 
after CT 

-- 
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with working 
memory in SZ than 
in HC 
 
Eigenvector 
centrality more 
negatively associated 
with attention/ 
vigilance in SZ than 
in HC 

 
Lower eigenvector 
centrality pre- and 
post-CT is associated 
with greater gains in 
attention/vigilance 
after CT 

Increased 
L_a24pr 
Centrality 

Normalization 
and/or 
Compensation 
(inconclusive) 

Eigenvector 
centrality more 
negatively associated 
with working 
memory in SZ than 
in HC 

Increased 
communicability 
betweenness 
centrality after CT is 
associated with 
increased processing 
speed 
 
Higher 
communicability 
betweenness 
centrality pre- and 
post-CT is associated 
with greater gains in 
attention/vigilance 
after CT 

-- 

 
  

To address the outstanding question identified for R_AVI centrality, we tested simple 

main effects of MCCB composite, working memory, attention/vigilance, and processing speed 

subscores on three measures of R_AVI centrality (node strength, communicability betweenness 

centrality, and eigenvector centrality) among SZ at the post-intervention time point. Effects were 

tested in GTG using robust GLMs with 5,000 permutations and covariates of no interest included 

in a manner consistent with previous analyses. Within the SZ group, there were no significant 

associations between post-intervention MCCB performance and any of the three measures of 

R_AVI centrality. 

Discussion 
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 In Study 2, we evaluated change in resting-state functional network properties as a 

mechanism of change in CT for first-episode SZ. We first tested for changes in graph properties 

of resting-state networks following a 24-week CT intervention. We then identified associations 

between changes in network properties and changes in cognitive performance as assessed by the 

MCCB. Our overarching goal was to determine whether CT promotes cognitive recovery by 

fostering normalization of functional networks, compensation via alternative network features, or 

a combination of both. Although no single graph property fully met our a priori criteria for 

normalization or compensation, we identified several intervention effects that are potentially 

consistent with compensation (Table 6). Tests of these effects were statistically significant at the 

p < .05 level but were non-significant after correcting for multiple comparisons. Thus, inferences 

about CT mechanisms in the present study should be treated with caution but provide an initial 

basis for further inquiry. 

 We hypothesized that normalizing effects of CT would include increased centrality of 

nodes that are considered CON hubs in HC, including right anterior insula and bilateral dACC. 

Surprisingly, results instead pointed to decreased centrality of several nodes in right dACC 

(R_33pr, R_a24pr, and R_p32pr) as a potential compensatory mechanism of intervention. 

Centrality of a fourth node located in left dACC (L_a24pr) was also identified as potentially 

relevant to intervention effects, but the pattern of effects for this node was not fully consistent 

with either normalization or compensation. In line with our hypotheses, centrality of a node in 

right anterior ventral insula (R_AVI) increased from pre- to post-intervention in SZ. However, 

we found no evidence that this increase contributed to cognitive recovery in the domains we 

examined, making its implications uncertain. 
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The observed dACC effects, though unexpected, may be explained by the variable role of 

dACC in cognitive tasks with differing demands. Prior task-based imaging studies have 

suggested that in healthy adults, dACC activity and connectivity increase during more complex 

cognitive tasks and are suppressed during less complex tasks (Xu, Calhoun, Pearlson, & Potenza, 

2014; Aben, Calderon, Van den Bussche, & Verguts, 2020). Similarly, in healthy children and 

adolescents, degree centrality of dACC has been positively associated with performance on 

complex working memory tasks (i.e., Digit Span Backward) and negatively associated with 

performance on less complex tasks (Digit Span Forward) (Yang et al., 2015). As discussed by 

Yang et al. (2015), dACC centrality may therefore be adaptive for complex cognitive function 

but confer a disadvantage during less demanding cognitive tasks that are slowed by elevated 

performance monitoring. This pattern provides essential context for interpreting findings from 

the present study. Specifically, individuals with SZ may compensate for pervasive cognitive 

impairment by prioritizing neural processes that support essential and/or less demanding 

cognitive tasks, making dACC centrality less beneficial. Likewise, the “bottom-up” components 

of the present CT intervention focus on strengthening foundational cognitive processes before 

moving to complex processes (Nuechterlein et al., 2014), so CT may initially encourage neural 

network changes that promote cognitive performance on less complex tasks. Decreased dACC 

centrality may therefore be an effective compensatory mechanism both for coping with cognitive 

impairment prior to intervention and for harnessing the benefits of a bottom-up CT approach.  

 Of the three nodes in right dACC identified as potential sites of compensatory change, 

R_33pr (area 33 prime) was the only one that evidenced change in centrality at the group level 

following CT. As a group, SZ showed a decrease in communicability betweenness centrality of 

R_33pr from pre- to post-intervention. Although changes in communicability betweenness 



 

 67 

centrality of R_33pr were not associated with changes in MCCB performance, decreases in a 

separate measure of R_33pr centrality – eigenvector centrality – were associated with gains in 

processing speed. Communicability betweenness centrality and eigenvector centrality do not 

index identical node characteristics, but they are closely related; betweenness quantifies a node’s 

role in connecting other nodes to each other, and eigenvector centrality captures a node’s degree 

of connectedness to other nodes that may serve as network hubs. As these two measures of 

centrality were implicated in our findings in different ways, the nuances of R_33pr’s role remain 

unclear. However, CT appears to be associated with a decrease in the overall centrality of 

R_33pr, and this decrease corresponds with gains in processing speed. Since the SZ sample as a 

whole experienced a decrease in R_33pr centrality following intervention, CT may already be 

well designed to promote this potential mechanism of recovery across participants. 

 Two other nodes in right dACC, R_a24pr and R_p32pr, did not show changes in 

centrality at the group level following CT. However, within the SZ group, those who 

experienced greater decreases in the centrality of these nodes experienced more pronounced 

gains in cognitive function from pre- to post-intervention, suggesting a compensatory effect that 

was distributed unequally across participants. Based on Study 1 results, potential compensation 

involving R_a24pr and R_p32pr may build on naturalistic compensation that is present prior to 

intervention. In Study 1, we observed a decoupling of R_a24pr (area anterior 24 prime) 

eigenvector centrality from working memory performance in SZ, although this effect was non-

significant after correcting for multiple comparisons. A normalizing intervention might have 

restored a positive relationship between R_a24pr centrality and working memory or increased 

centrality itself, given the apparent positive relationship between centrality and working memory 

in HC. However, we instead found that gains in generalized cognitive function were associated 
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with decreased eigenvector centrality of R_a24pr following intervention. This suggests that for 

individuals who benefitted most from CT, the intervention built upon the more negative 

centrality-cognition relationship that was observed in SZ prior to intervention. In other words, 

CT appeared to reduce a network feature that, unlike in HC, was potentially detrimental to 

cognitive function in SZ to begin with. This raises the question of whether SZ who experienced a 

decrease in R_a24pr centrality experienced a corresponding increase in centrality of one or more 

alternative nodes and, if so, whether this contributed to cognitive gains. Our limited focus on a 

priori CON hubs in the present study did not allow us to answer this question, but future studies 

should examine whether CT augments the centrality of alternative hubs (e.g., nodes in posterior 

parietal cortex, as suggested by Quintana et al., 2003).  

 A similar but more complicated pattern of results was observed for R_p32pr (area 

posterior 32 prime). In Study 1, node strength of R_p32pr was less positively associated with 

working memory in SZ than in HC, and eigenvector centrality was more negatively associated 

with attention/vigilance in SZ than in HC, although these effects were non-significant after 

correcting for multiple comparisons. CT did not appear to make cognitive performance more 

positively related to or reliant on R_p32pr centrality, as would be expected if normalization had 

occurred. Instead, SZ who experienced greater decreases in R_p32pr node strength experienced 

greater gains in working memory following CT. In addition, lower R_p32pr centrality prior to 

CT (as indexed by node strength and eigenvector centrality) appeared to predict a stronger 

treatment response in the domain of attention/vigilance, suggesting that SZ whose cognitive 

function already relied less on R_p32pr centrality may have been best positioned to harness 

compensatory benefits of CT. As discussed above, lower dACC centrality has been shown to 

facilitate performance on less complex cognitive tasks, so participants with lower R_p32pr 
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centrality prior to intervention may have had less difficulty engaging with “bottom-up” cognitive 

exercises involved in CT. Complicating this picture is the finding from Study 1 that across SZ 

and HC, node strength of R_p32pr was positively associated with MCCB composite score. The 

implications of R_p32pr centrality appear different for generalized cognitive performance than 

for domain-specific performance, potentially indicating that certain aspects of SZ cognitive 

function benefit from R_p32pr centrality, while others do not. The MCCB composite score 

incorporates several additional domains (verbal learning, visual learning, reasoning and problem 

solving, and social cognition) that were not examined individually in the present study, so it is 

possible that R_p32pr centrality is more beneficial to one or more of these domains than to the 

three examined here (working memory, attention/vigilance, and processing speed). 

 The SZ group as a whole did not experience a decrease in R_a24pr or R_p32pr centrality 

following CT. Thus, potential compensatory effects associated with these two nodes may have 

occurred only in a subset of participants who had already experienced some naturalistic 

compensation prior to intervention or who were otherwise more responsive to this potential 

mechanism of CT. It is also possible that decreases in centrality of these two nodes occurred 

naturalistically in some participants and were not attributable to CT. Given the lack of a group-

wide effect, we cannot confidently infer that decreases in R_a24pr or R_p32pr centrality among 

some participants constituted intervention effects. However, the overall trend of our findings 

across R_33pr, R_a24pr, and R_p32pr suggests that reduced centrality of right dACC is a 

promising subject for future studies of potential compensatory mechanisms of CT. 

 We did not observe any pattern of effects that was clearly consistent with normalization. 

However, effects related to one node in left dACC were inconclusive, and neither normalization 

nor compensation can be fully ruled out. In Study 1, eigenvector centrality of L_a24pr (area 
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anterior 24 prime) was more negatively associated with working memory in SZ than in HC, 

although this effect was not statistically significant after correction for multiple comparisons. 

Following CT, increased communicability betweenness centrality of L_a24pr in SZ was 

associated with increased processing speed. Unlike centrality of the right dACC nodes discussed 

above, L_a24pr centrality appeared to have a different (i.e., more positive) relationship to 

cognitive change than it did to pre-CT cognitive function. However, the effects observed before 

and after CT pertained to different cognitive domains (working memory and processing speed, 

respectively), making this finding difficult to interpret. If the effect related to processing speed is 

indicative of a more positive relationship between L_a24pr centrality and overall cognitive 

function following CT, then it could represent normalization. Alternatively, the effects observed 

before and after CT may indicate that L_a24pr centrality has different relevance to different 

cognitive domains. It should also be noted that Study 2 involved only a subsample of Study 1 

participants, and this subsample may or may not be representative of the full sample. As such, 

there are limitations to interpreting results from Study 1 and Study 2 in tandem, and secondary 

analyses of Study 2 results may be required to clarify interpretations of intervention effects. 

 In line with hypotheses, node strength of R_AVI (right anterior ventral insular area) 

increased in SZ following CT. This is particularly notable in light of previous studies that have 

linked centrality of right anterior insula to cognitive function in both SZ and HC (Sheffield et al., 

2015). It is also notable that in Study 2, SZ exhibited higher communicability betweenness 

centrality of R_AVI than HC both before and after CT, whereas in the larger Study 1 sample, no 

group differences emerged for R_AVI centrality. Although Study 2 results for R_AVI centrality 

appear to align with compensation, R_AVI centrality was not associated with any of the MCCB 

outcome measures examined in SZ following intervention. This does not rule out the possibility 
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that increased R_AVI centrality is a form of compensation. For example, increases in R_AVI 

centrality may have been associated with intervention effects that were not captured by the 

MCCB subscores included in the present study. In SZ, connectivity of anterior ventral insula has 

previously been associated with negative symptoms (Sheffield et al., 2020). Therefore, it is 

possible that increased R_AVI centrality following CT serves as a mechanism of negative 

symptom alleviation or worsening rather than cognitive recovery. 

Finally, although identifying predictors of treatment response was not an objective of the 

present study, several effects emerged that may speak to prediction of CT intervention response. 

As discussed above, lower node strength of R_p32pr across pre- and post-intervention time 

points was associated with greater gains in attention/vigilance following CT, and this was one of 

the few effects in Study 2 to survive correction for multiple comparisons. Within FPN, lower 

functional segregation (as indexed by clustering coefficient) across pre- and post-intervention 

time points was associated with greater gains in MCCB composite score, and this effect 

remained significant after correction for multiple comparisons. Similarly, lower whole-brain 

functional segregation (as indexed by transitivity and clustering coefficient) across time points 

predicted greater gains in attention/vigilance. These findings indicate that higher functional 

segregation might interfere with CT intervention response and/or that lower segregation allows 

participants to benefit more from CT. However, given the use of MCCB change scores in Study 

2 analyses, secondary analyses may be needed to investigate whether ceiling effects played a role 

(i.e., if functional segregation was associated with cognitive benefits prior to CT, it might have 

also been associated with less pronounced change following CT due to ceiling effects). 

Communicability betweenness centrality of L_a24pr across pre- and post-intervention time 

points was also positively associated with gains in attention/vigilance following intervention. 
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Although predictors of treatment response do not speak directly to mechanisms of CT, follow-up 

investigations of such predictors may help identify neural network profiles that influence SZ 

participants’ fit with the CT intervention as currently conceived. Such insights could lead to 

modifications to CT that improve its efficacy in a heterogenous population of SZ treatment-

seekers. 

In summary, the present study provides preliminary evidence that enhancing 

compensatory neural network function may be an influential component of CT. Past studies of 

neural mechanisms of CT and other SZ interventions have focused primarily on evaluating 

normalization of functional connectivity or other brain metrics. However, in light of the present 

findings, studies may benefit from considering the role of alternative, compensatory neural 

processes in cognitive recovery. Such an approach may also invite a reconceptualization of CT 

itself as an intervention that works in part by capitalizing on existing strengths. As understanding 

of compensation grows, efforts to improve or augment CT may benefit from targeting alternative 

neural network features that are not considered primary mechanisms of cognitive function in HC. 

General Discussion 
 

Several limitations are important to consider in contextualizing results from the present 

studies. First, the available sample was limited in size, particularly for analyses of intervention 

effects (Study 2). As there is no firm basis in the literature for anticipating the likely effect sizes 

of neural network changes following CT, we cannot confidently estimate the statistical power 

required to detect effects discussed in our hypotheses. However, the statistical power afforded by 

the present sample likely carried a significant risk of Type II error, especially given the wide-

ranging hypotheses we tested and the subsequent need to correct for multiple comparisons. The 

present studies were intentionally broad and inclusive of exploratory analyses in response to the 
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field’s still-nascent understanding of neural mechanisms of CT and cognitive recovery in SZ. 

Thus, future studies with greater statistical power will be important both for replicating the 

observed effects and for clarifying the amount of statistical power needed to reliably observe 

CT’s effects on neural networks. 

 Another limitation was the lack of an SZ comparison group receiving medication only. 

The RCT did not include such a group because spontaneous gains in cognitive performance 

(beyond practice effects) are not typically observed in SZ, and even practice effects may be 

blunted (Goldberg et al., 2007; Hedman, van Haren, van Baal, Kahn, & Hulshoff Pol, 2013), 

suggesting that gains in cognitive function following CT can reasonably be attributed to the 

intervention. Variability in second-generation antipsychotics has also not been associated with 

significant variability in cognitive change over time in a first-episode SZ sample (Goldberg et al., 

2007). Even so, in Study 2, a medication-only SZ group could have provided a desirable 

alternative to using the HC sample as a control in our analyses of change in network properties. 

In those analyses, we considered pre-post change in SZ network properties to be indicative of an 

intervention effect if it differed from longitudinal change observed in the HC sample. However, 

it is unknown whether HC longitudinal change is a valid control in this context, as fluctuations in 

network properties over a six-month period in HC may or may not be similar to those expected 

in SZ in the absence of intervention. 

 A final consideration is the present studies’ focus on properties of resting-state neural 

networks rather than networks engaged during cognitive tasks. One advantage of this approach 

was our ability to analyze network properties in relation to the MCCB rather than relying on 

scanner-based tasks to measure cognitive performance. Since cognitive performance was 

evaluated outside the scanner environment, we were able to employ a robust, clinician-
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administered measure that assesses cognitive performance in multiple distinct domains. 

However, our exclusive focus on intrinsic network organization prevented us from examining 

whether CT led to network changes that would have been evident only during pursuit of 

cognitive tasks. Thus, we were only able to observe normalizing and compensatory effects of CT 

if they were detectable even in the absence of cognitive demands. Both normalization and 

compensation may involve network changes that are observable only when task-positive 

networks are actively engaged. In future studies, collecting both task-based and resting-state data 

may help clarify whether normalizing and compensatory mechanisms of CT manifest differently 

during cognitive task engagement than during rest. 

The present studies were innovative in their effort to distinguish between normalization 

and compensation components of cognitive recovery in SZ; their use of graph-theory methods to 

examine neural mechanisms of CT; and their objective of translating neural network modulation 

to cognitive outcomes in SZ. The normalization vs. compensation framework introduced here 

can be adapted to a wide variety of data modalities and study designs aimed at understanding 

intervention effects, both in SZ and transdiagnostically. Preliminary evidence of compensation in 

SZ following CT highlights the importance of considering the contributions of a broad range of 

intervention mechanisms to recovery from psychopathology.  
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