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RESEARCH ARTICLE

A cancer cell-line titration series 
for evaluating somatic classification
Robert E. Denroche1*, Laura Mullen1, Lee Timms1, Timothy Beck1, Christina K. Yung1, Lincoln Stein1,2, 
John D. McPherson1,3 and Andrew M. K. Brown1

Abstract 

Background: Accurate detection of somatic single nucleotide variants and small insertions and deletions from DNA 
sequencing experiments of tumour-normal pairs is a challenging task. Tumour samples are often contaminated with 
normal cells confounding the available evidence for the somatic variants. Furthermore, tumours are heterogeneous 
so sub-clonal variants are observed at reduced allele frequencies. We present here a cell-line titration series dataset 
that can be used to evaluate somatic variant calling pipelines with the goal of reliably calling true somatic mutations 
at low allele frequencies.

Results: Cell-line DNA was mixed with matched normal DNA at 8 different ratios to generate samples with known 
tumour cellularities, and exome sequenced on Illumina HiSeq to depths of >300×. The data was processed with 
several different variant calling pipelines and verification experiments were performed to assay >1500 somatic variant 
candidates using Ion Torrent PGM as an orthogonal technology. By examining the variants called at varying cellulari-
ties and depths of coverage, we show that the best performing pipelines are able to maintain a high level of precision 
at any cellularity. In addition, we estimate the number of true somatic variants undetected as cellularity and coverage 
decrease.

Conclusions: Our cell-line titration series dataset, along with the associated verification results, was effective for this 
evaluation and will serve as a valuable dataset for future somatic calling algorithm development. The data is available 
for further analysis at the European Genome-phenome Archive under accession number EGAS00001001016. Data 
access requires registration through the International Cancer Genome Consortium’s Data Access Compliance Office 
(ICGC DACO).

Keywords: Whole exome sequencing dataset, Somatic mutation calling, Cancer bioinformatics, Tumour cellularity, 
Normal contamination
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Background
Since the first cancer genome was sequenced in 2008 
[1], next generation DNA sequencing (NGS) technology 
continues to uncover new insights in the field of cancer 
genomics. The landscape of somatic alterations has been 
elucidated in many different tumour types, which has 
identified new driver mutations and pathways. Further-
more, a framework for utilizing NGS in clinical practice 
has also been laid out [2]. No matter the study design, 
all cancer NGS studies require the calling of somatic 

variants from sequence read data, which remains a chal-
lenging process. For a genetic variant to be detected in 
NGS data, a sufficient number of high-quality sequenc-
ing reads supporting the variant is required to distinguish 
the signal from the noise. When calling germline variants 
where, in theory, the DNA is derived from a homogenous 
population of cells, the variants are expected to appear 
in either half or all of the sequencing reads (correspond-
ing to heterozygous or homozygous calls respectively), 
and the signal is typically well above the noise. The iden-
tification of somatic variants in cancer genomes, how-
ever, is more complicated; there is a reduction in signal 
that arises due to the fact that tumour samples may be 
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comprised of a heterogeneous population of genetically 
distinct cells (subclones) including normal, non-tumour 
cells [3].

Several groups have developed tools to identify can-
cer specific mutations from sequencing of tumour and 
normal sample pairs [4–8]. In order to evaluate the per-
formance of each software tool at different depths of 
coverage and tumour cellularity, a dataset with well-
established attributes and somatic variants is required. 
One method to create such a dataset is to simulate data 
consisting of sequencing reads with germline and somatic 
variants at predetermined allele frequencies [9], however 
simulation data is unlikely to model all the nuances of 
sequencing and biological variations [10]. Alternatively, 
DNA sequencing data from different samples can be 
mixed in silico [11]. The Cancer Genome Atlas (TCGA) 
has made available a dataset consisting of sequencing 
reads from two public cell-lines with matched normals 
that were synthetically mixed together at varying ratios, 
and an additional dataset with a sub-clone simulated by 
artificially introducing variants [12]. The TCGA dataset 
has been included as part of the ICGC-TCGA DREAM 
Mutation Calling challenge, which is ongoing [13].

In order to reflect the effects of tumour heterogene-
ity on the entire process of data generation, from DNA 
library construction through target enrichment and 
sequencing, we have produced a cancer cell line titra-
tion series dataset by physically mixing the DNA from 
a xenograft derived tumour cell-line and matched nor-
mal at different concentrations prior to library genera-
tion and sequencing. Exome regions were captured and 
sequenced to >300× depth on an Illumina HiSeq, result-
ing in high quality libraries with known tumour cellular-
ity. Furthermore, we performed extensive experimental 
verification; over 1500 potential somatic variant positions 
were assayed using an Ion Torrent PGM as an orthogo-
nal sequencing platform. Using this dataset, we evaluated 

several data analysis pipelines that included two differ-
ent sequence alignment tools (BWA [14] and Novoalign 
[15]), realignment and recalibration using the Genome 
Analysis Tool Kit (GATK) [16], and six different somatic 
variant callers (GATK, JointSNVMix [4], MuTect [5], 
Somatic Sniper [6], Strelka [7] and VarScan 2.3.2 [8]). 
We assayed the performance of each tool at varying lev-
els of cellularity and also examined the effect of reduced 
coverage on somatic variant calling. We focused on 
somatic single nucleotide variants (SNVs) for the evalu-
ation results and provide a discussion of performance on 
somatic insertions and deletions (indels). Our findings in 
the cell line titration series were confirmed using a set of 
primary and xenograft tumour exomes and an additional 
round of experimental verification, as well as participa-
tion in a recent ICGC benchmarking exercise [17]. The 
cell line titration series dataset is available to research-
ers and is an excellent resource to serve as a standard 
for evaluating software performance at differing tumour 
cellularities.

Results
Tumour cell-line and matched normal DNA were mixed 
into eight different ratios. Sequencing resulted in very 
deep, high quality coverage of the exome targets for all 
eight cellularity titrations (see Table 1). On average, only 
0.21  % of aligned bases were mapped as mismatches or 
indels. Each titration library was sequenced to an aver-
age depth of coverage greater than 300x, and over 90 % of 
the targeted bases were covered with a minimum depth 
of 20×.

Phase 1 results
In Phase 1 of our analysis, we applied seven different 
pipelines to the Novoalign mapped reads from each 
cellularity titration (see Phase 1 of Fig.  1). Candidate 
somatic variants were selected from each of the tools for 

Table 1 Sequencing quality control metrics

Several quality control metrics are reported here for the cell-line titration series libraries, as determined from Novoalign mapped reads. Error % is defined as the 
number of bases mapped as mismatches or indels over the total number of mapped bases. An on target read is defined as any read with at least one base overlapping 
the Agilent SureSelect All Exon v4 target regions

Library Read  
length

Error % (%) Soft  
clip % (%)

% Reads  
on target (%)

# Reads  
on target

Average  
coverage

90 %  
covered at

100 % Cell-line 2 × 101 0.18 1.76 65.34 164,598,000 326.04× >22×
60 % Cell-line 2 × 101 0.19 1.54 67.30 154,878,000 307.48× >21×
40 % Cell-line 2 × 101 0.18 1.59 66.29 171,334,000 339.97× >24×
20 % Cell-line 2 × 101 0.29 1.18 67.25 153,932,000 306.70× >21×
15 % Cell-line 2 × 101 0.18 1.52 66.05 182,028,000 361.46× >25×
10 % Cell-line 2 × 101 0.20 2.13 66.03 184,641,000 364.35× >27×
5 % Cell-line 2 × 101 0.21 1.70 67.40 186,666,000 369.99× >29×
100 % Normal 2 × 101 0.23 1.78 66.81 200,737,000 397.55× >27×
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verification using orthogonal technologies. Of the 1368 
somatic SNV candidates we attempted to verify, 193 were 
found to be true somatic SNVs, while 696 were deter-
mined to be false positives (535 were wildtype and 161 
were germline). The remaining 479 positions were found 
to be inconclusive due to low coverage (270) or ambigu-
ous variant signal (209), and were discarded from fur-
ther consideration. A list of the 193 true somatic SNVs is 
available in Additional file 1: Table S1 and in VCF format 
in Additional file 2.

Pipelines were evaluated in terms of precision and 
recall. Precision is defined as the ratio of true positive 
calls to all positive calls. Recall is defined as the ratio of 
true positive calls to all true calls. Both metrics are dis-
played in the following formulas:

Figure  2 shows the performance of the seven pipe-
lines on the seven different cellularity titrations. The 
GATK + In-House somatic filtering script pipeline shows 
high precision at the 100, 60 and 40 % cellularity levels, 
but has very limited recall. Next to zero true calls were 
made by this pipeline at the 20  % and lower cellularity 
levels. Strelka and MuTect are the best performing tools 
in terms of both recall and precision across the cellular-
ity titrations. Both JointSNVMix models have reason-
able recall down to the 15  % cellularity level, but suffer 
from poor precision; roughly two-thirds of the calls made 
by these pipelines were false positives, suggesting that 

precision =
#true positives

#true positives + #false positives

recall =
#true positives

#true positives + #false negatives

additional filtering is required. Finally, Somatic Sniper 
and VarScan 2 showed limited precision and recall, with 
almost no true calls reported when cellularity was 20 % 
or lower. Additional file  3: Figure  S1 shows the number 
of calls made by each tool on each cellularity titration, 
and breaks the calls down to illustrate how many titra-
tions each variant was observed in. A full listing of the 
performance of all the Phase 1 and Phase 2 pipelines can 
be found in Additional file 4: Table S2.

Phase 2 results
In order to evaluate the performance of MuTect and 
Strelka under different pipeline conditions, we applied 
the callers to reads that were mapped with either Novoa-
lign or BWA, and reads that were either left unprocessed 
or realigned and recalibrated using GATK (see Phase 2 
of Fig. 1). The performance of the eight pipeline configu-
rations is shown in Fig. 3. Strelka maintains high preci-
sion across the cellularity levels regardless of aligner or 
inclusion of realignment or recalibration steps. The per-
formance of the MuTect pipelines is higher when BWA 
is used as the aligner, approaching the performance of 
the Strelka pipelines seen here and in Phase 1. Precision 
of the MuTect pipeline falls at the 10 and 5 % cellularity 
titrations for all four MuTect pipelines. Realigning and 
recalibrating reads using GATK tends to result in slightly 
increased precision and slightly reduced recall when 
compared to the same pipelines without this processing. 
Finally, when compared to the number of true calls made 
at the 100 % cellularity level, each pipeline was only able 
to call approximately 50 % of the true SNVs at 20 % cel-
lularity, and only 10 % of the true SNVs at 5 % cellularity.

Fig. 1 The eight cell-line titration libraries were mapped with Novoa-
lign and BWA, collapsed with Picard and optionally realigned and 
recalibrated with GATK. All somatic variant calling tools were applied 
to the collapsed Novoalign reads without GATK processing for the 
Phase 1 evaluation. MuTect and Strelka were applied to Novoalign 
and BWA reads with and without GATK processing to create the eight 
pipelines evaluated in Phase 2

Fig. 2 Precision and recall performance of the somatic callers at 
each cellularity. The 7 data points for each tool are represented by 
pie charts which correspond to the different cellularities (from 5 % 
tumour to 100 % tumour). The data points for a caller with perfect 
performance would be in the top right corner of the plot, indicating 
that all verified SNVs were called, and no false calls were made. Input 
to the callers was created by aligning with Novoalign and collaps-
ing duplicate reads. Realignment or recalibration with GATK was not 
performed. Note the high performance of MuTect and Strelka
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Downsampling results
By randomly removing unaligned read pairs, we gener-
ated a series of lower coverage datasets and then applied 
the pipelines from phase 2 to each set. The coverage 
ranged from the original average of 347× down to 46×. 
When the depth of coverage was reduced, the preci-
sion of MuTect and Strelka remained consistently high 
while the recall began to drop significantly at 160× and 
below. At 46×, in the 100 % tumour sample, the pipelines 
were only able to report roughly half of the true somatic 
variants called in the 347× set. This proportion became 
smaller as tumour cellularity was reduced; only approx-
imately one-third of the true somatic variants were 
reported in the 20 % cellularity titration with 46× cover-
age, and only a tenth of the calls were made in the 5  % 
cellularity titration at 46×. The tumour cell line is hetero-
geneous; of the 193 calls verified to be true somatics, only 
38 SNVs had an allele frequency greater than 40 %, and 
70 SNVs were present in less than 20 % of the reads in the 
pure tumour (see Additional file  5: Figure  S2 for a plot 
of the allele frequency distribution). It is predominantly 
the low frequency sub-clonal calls that become unde-
tectable when coverage is limited or tumour cellularity 
is low. When only considering the variants with an allele 
frequency greater than 40  % in the pure tumour, nearly 
80  % of the SNVs were successfully reported in 46× 
coverage. Figure  4 shows the recall of the BWA/Strelka 
pipeline with no GATK recalibration at varying tumour 

cellularities and levels of down-sampled coverage, with 
the SNVs split into three groups based on their allele fre-
quencies in the pure tumour sample.

Pipeline validation
We applied the eight Phase 2 pipelines to 139 pancre-
atic ductal adenocarcinoma (PDAC) exomes with vary-
ing cellularity, coverage depth and sequencing quality in 
order to confirm the results we observed on the cell-line 
titration dataset. The number of somatic SNVs called per 
sample averaged at 147.6 and ranged from 1 (in a sample 
with very high normal cell contamination) to 1544 (in a 
hypermutated sample discussed next).

Twelve representative samples were selected and the 
status of 1237 somatic SNVs candidates was verified. Per-
formance of the eight pipelines on the twelve samples, 
as well as the total union and intersection can be seen in 
Fig. 5. Samples 47P and 47X had the lowest verification 
rate across all eight pipelines. The nucleotide changes 
and read frequencies exhibited by the verified false posi-
tives in these two samples were consistent with an oxida-
tive DNA damage artifact signature [18], which explains 
the diminished verification rate. The 5 xenograft samples 
also show poor verification rates, especially when vari-
ants were called by the two Novoalign/Strelka pipelines, 
which is a result of mouse reads mapping to the human 
reference despite read filtering with Xenome [19] and 
variant filtering against a black-list of mouse-human 
interspecies SNPs. The xenograft sample 90X initially 
appeared to be the exception to this trend, however, as 
mentioned above, it seems to be a hypermutated sam-
ple with many more true somatic variants than the other 
samples, so the likelihood of selecting a true SNV for 
verification as opposed to an interspecies SNV is higher. 
Metrics on the verification status of the variants called 
in these twelve samples can be found in Additional file 6: 
Table S3.

For some samples, GATK realignment and recalibra-
tion improved precision; however, we observed that 
GATK processing tended to result in lower recall. This 
is quantified in Fig.  5, where the pipelines that include 
GATK showed a higher true positive to total calls ratio, 
but also identified fewer true positives overall than their 
GATK-free (Raw) counterparts. Contrary to the results 
on the cell-line titration series (Fig.  3), MuTect showed 
higher precision than Strelka on the PDAC exomes, while 
Strelka displayed an advantage in recall. The best per-
forming pipeline in terms of recall over the 12 samples 
was BWA/Strelka with no GATK realignment or recali-
bration, which reported 513 of 541 true somatic variants 
(94.8  %) with a precision of 78.7  %. The BWA/MuTect 
pipeline with the GATK realignment and recalibration 
steps included had a much higher precision of 90.1  %, 

Fig. 3 Precision and recall performance of MuTect and Strelka at 
each cellularity with different read preprocessing pipelines. The 
seven data points for each tool are represented as pie charts which 
correspond to the different cellularities (5 % tumour to 100 % tumour. 
Novo refers to Novoalign, GATK indicates that collapse, realignment 
and recalibration was performed, while Raw pipelines only include 
the collapse (GATK realign and recalibration were skipped). MuTect 
performs better when BWA is the aligner, and Strelka has high perfor-
mance in all pipelines. Raw pipelines tend to call more true somatic 
SNVs, while GATK pipelines report fewer false positives. Note that the 
Novo-Raw-Strelka and Novo-Raw-MuTect results featured here are 
identical to those from Phase 1 and Fig. 2
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but missed a number of true calls, only identifying 489 
true somatic variants (a recall of 90.4 %). We evaluated all 
possible unions and intersections of pipeline results with 
the goal of improving precision without sacrificing recall 
and found that the intersection of the BWA/MuTect and 
BWA/Strelka pipelines, neither with GATK realignment 
or recalibration steps, called 491 (90.8  %) true somatic 
variants with a precision of 92.3 %. The performance of 
the BWA/MuTect-Strelka intersection pipeline can be 
seen in Fig. 5. A complete listing of the performance of 
each pipeline as well as the assorted union and inter-
section permutations is available in Additional file  7: 
Table S4.

Indel results
Of the 103 indels verified for Phase 1 and 2 (called by 
Strelka, GATK Unified Genotyper with In-House filter-
ing, or VarScan2 with default parameters), 17 (21 %) were 
confirmed to be true somatic variants (Additional file 1: 
Table  S1, Additional file  2). For the additional 93 indels 
sampled from VarScan2 with lowered cut-off settings, 
only 2 (3 %) of the variants were verified as true somatic 
events. A full breakdown of the indel verification results, 
as well as results for the three individual tools, is available 
in Table 2.

Overall, performance of the three individual tools was 
low compared to the SNV results. Recall was low for all 
tools, and the perfect precision demonstrated by Strelka 
is likely only due to the small number of indels called 
and is not expected to be representative. All three tools 
produced fewer calls when run on the reduced tumour 
cellularity data. Strelka called one true somatic indel at 
the 40 and 20  % tumour cellularity levels, and reported 
zero indels in 15 % tumour cellularity and below. GATK 
was unable to identify any verified true somatic indels at 
lower than 40 % tumour cellularity, and VarScan2 failed 
to report any true somatic indels at 60 % and lower.

Discussion
We have produced a cell-line titration series dataset 
which consists of 8 high quality exome libraries with 
varying tumour content and over 1500 somatic variant 
candidates which have been verified on an orthogonal 
platform. The cell-line appears to be multi-clonal; veri-
fied true somatic variants occur at a wide range of allele 
frequencies suggesting that assorted genetically distinct 
subpopulations exist within the sample. As a result, call-
ing somatic variants from the sample is difficult because 
low frequency mutations do not have sufficient reads sup-
porting them when normal contamination is increased or 

Fig. 4 Recall performance of the BWA and Strelka pipeline with no GATK realignment or recalibration on the seven tumour cellularities with cover-
age down-sampled. Unaligned reads were randomly removed to create the down-sampled libraries. Variants were split into three groups based on 
their allele frequency in the 100 % tumour sample with maximum coverage, and recall was calculated with respect to this set of variants
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when coverage is down-sampled. This underscores the 
importance of having high purity samples sequenced to 
high depth when researching cancers that may exhibit 
similar subpopulations. By mixing tumour and nor-
mal DNA prior to sequencing as opposed to syntheti-
cally combining reads from different sequencing runs 

or simulating variants at predetermined frequencies, we 
generated a dataset that closely mimics cancer sequenc-
ing data.

Two alignment algorithms and six somatic callers 
were applied to the cell-line titration series and evalu-
ated using the verified somatic SNV calls. This was not 
an exhaustive evaluation as only default parameters were 
used and only two of the six callers were evaluated with 
both aligners and the optional realignment and recalibra-
tion steps. However, given the effort and compute hours 
required to perform a more thorough evaluation, as well 
as the continued rate of evolution of software tools, we 
feel that this was a reasonable approach. In the valida-
tion phase where we applied the best pipelines from the 
titration series to 139 PDAC exomes, we found that per-
formance remained high, as expected, indicating that the 
results obtained from the cell line mixture data are appli-
cable to real life experiments.

Indels, however, remain difficult to call and verify 
accurately. Many of the indels reported occurred at the 
site of a homopolymer, and verification of such calls 

Fig. 5 Performance of MuTect and Strelka pipelines on 12 PDAC primary (P) and xenograft (X) exomes. GATK indicates that collapse, realignment 
and recalibration were performed, and Raw pipelines only include the collapse. Based on these results, we identified the intersection of the calls 
from MuTect and Strelka run on Raw BWA reads (bottom right) as the best performing somatic variant pipeline

Table 2 Indel verification results

Verification results for Phase 1 and 2 of indel verification, as well as the 
performance of the individual tools on BWA aligned reads with no GATK 
recalibration. Calls verified as Somatic are true positives, while calls verified 
to be Germline or Wildtype are false positives. 43 indels were removed from 
consideration as their verification was inconclusive due to insufficient coverage, 
marginal allele frequency or the presence of both insertion and deletion calls at 
the position. All tools were run with default settings

Verification  
result

Phase 1 Phase 2 Strelka GATK +
In-house

VarScan2

Somatic 17 2 11 12 2

Germline 38 8 0 2 3

Wildtype 26 62 0 4 3

Inconclusive 22 21 3 10 0
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proved difficult on the Ion Torrent. We used additional 
sequencing and manual review to resolve indels involv-
ing homopolymer regions, and note that this affected 
roughly two-thirds of the indels verified. It has been 
reported previously that indels called in such low com-
plexity regions are often systematic errors [10]. The 
tools showed limited performance in terms of both pre-
cision and recall, and reducing tumour cellularity or 
down-sampling coverage further hampered these met-
rics. There is a clear need for improved somatic indel 
detection.

When we applied the Phase 2 pipelines to the 139 
PDAC exomes and verified calls from a 12 sample sub-
set, we demonstrated that the performance observed 
on the cell-line titration set translates to actual experi-
mental conditions with a median verification rate of 
92 % for somatic SNVs. We expect the dataset and pipe-
line evaluation results described here to be applicable 
to whole genome sequencing in addition to exome. In 
fact, the BWA/MuTect-Strelka intersection pipeline was 
submitted to the recent ICGC benchmarking study [17] 
and performed well compared to other pipelines. When 
down-sampling to typical WGS coverage levels, the 
number of calls was reduced due to the heterogeneity 
described above. If such subclonal populations are rep-
resentative of the cancer types being studied, then many 
calls will be missed unless reasonably pure samples are 
sequenced to sufficiently deep coverage.

Conclusion
The cell-line titration series sequencing and supporting 
verification presented here proved to be an effective data-
set for evaluating somatic classifier performance at vari-
ous cellularities and coverage depths and allowed us to 
identify a pipeline. The dataset is available from the Euro-
pean Genome-phenome Archive [20] (accession number 
EGAS00001001016) to all researchers vetted for germline 
data access through the International Cancer Genome 
Consortium’s Data Access Compliance Office [21]. We 
anticipate it will be useful for tool development and pipe-
line evaluation where tumour purity and cellularity is a 
concern.

Methods
Sample collection and consent
The initial blood and tumour samples were collected 
from a patient with a surgically resected PDAC by col-
laborators at the Massachusetts General Hospital with 
approval by the MGH Institutional Review Board 
(2003P001289). Patient consent for genome sequenc-
ing and study was obtained as required. Sequencing and 
analysis of the samples and derived cell-lines was per-
formed at the Ontario Institute for Cancer Research with 

approval by the University of Toronto Research Ethics 
Board (#31989).

Library preparation and sequencing
Genomic DNA from a xenograft derived pancreatic 
ductal adenocarcinoma cell-line and matching normal 
sample was combined in eight different proportions 
(100, 60, 40, 20, 15, 10, 5 and 0 % tumour), each totalling 
3  μg. Qubit (Life Technologies, Carlsbad, CA, USA Cat 
#Q32854) was used to quantify the cell-line and normal 
gDNA. The mixed gDNA was sheared to 200  bp frag-
ments using the Covaris S2 Ultra-sonicator (Covaris Inc, 
Woburn, MA, USA) and a 1× volume AMPure XP SPRI 
bead clean-up (Beckman Coulter Genomics, Danvers, 
MA, USA Cat #A63881) was applied. Illumina paired-
end libraries were prepared on the Sciclone NGS work-
station (Perkin Elmer, Waltham, MA, USA) using the 
NEBNext DNA Sample Prep Master Mix Set for Illumina 
(New England Biolabs, Ipswich, MA, USA Cat #E6000) 
and IDT oligos (Integrated DNA Technologies, San Jose, 
CA, USA). From the purified library, 500 ng was used as 
input for a 72 h hybridization at 65 °C to Agilent Human 
SureSelect All Exon (v4) baits (Agilent Technologies, 
Santa Clara, CA, USA Cat #5190-4632). Targeted DNA 
was recovered using Dynabeads MyOne Streptavidin T1 
(Life Technologies, Carlsbad, CA, USA Cat #65601).

Libraries were validated using the Agilent Bioanalyzer 
High Sensitivity DNA Kit (Agilent Technologies, Santa 
Clara, CA, USA Cat #5067-4626) and quantified on the 
Illumina Eco Real-Time PCR Instrument (Illumina Inc., 
San Diego, CA, USA) using KAPA Illumina Library 
Quantification Kits (KAPA Biosciences, Woburn, MA, 
USA Cat# KK4835) according to the standard manufac-
turer’s protocols. Paired-end cluster generation (Illu-
mina Inc., San Diego, CA, USA Cat #PE-401-3001) and 
sequencing of 2 ×  101 cycles (Illumina Inc., San Diego, 
CA, USA Cat #FC-401-3001) was carried out for all eight 
libraries on the Illumina Hi-Seq 2000 platform (Illumina 
Inc., San Diego, CA, USA), one library per lane.

Bioinformatics methods
Sequencing basecalls were converted to fastq format 
reads using Illumina’s CASAVA software (version 1.8.2). 
Reads were mapped to the hg19 reference with two differ-
ent aligners: Novoalign (version 3.00.05) [15] and BWA 
sampe (version 0.6.2) [14]. Aligned reads were sorted, 
converted to BAM and collapsed using Picard (version 
1.90) [22]. Duplicate reads were removed. Somatic vari-
ant callers were applied to the reads and subsequently 
evaluated in two phases (see Fig. 1).

In Phase 1, seven sets of somatic variant calls were 
produced at each titration level by applying the fol-
lowing tools: GATK Unified Genotyper 1.3.16 [16], 
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JointSNVMix 0.7.5 (models 1 and 2) [4], MuTect 1.1.4 
[5], Somatic Sniper 1.0.2 [6], Strelka 1.0.7 [7] and Var-
Scan 2.3.2 [8]. All tools were applied to the normal and 
tumor BAM files generated by Novoalign. Default or 
best practice parameterization was used (as described 
in Additional file  8: Table  S5). A simple in-house script 
was employed to identify positions in the GATK output 
where the normal was homozygous for the reference and 
the tumour contained a variant. All seven pipelines iden-
tified somatic SNVs and GATK, Strelka and VarScan 2 
also identified somatic indels.

For Phase 2, we prepared four different input BAMs 
at each titration and applied the two best performing 
tools from Phase 1, resulting in eight different pipelines. 
The four inputs consisted of the BAM files produced 
by Novoalign (same as Phase 1), BAM files produced 
by BWA, Novoalign BAM files that were realigned and 
recalibrated with GATK 2.4.9, and BWA BAM files that 
were realigned and recalibrated with GATK 2.4.9. All 
BAM files were processed with Picard to remove dupli-
cate reads. Calls were made using the four inputs at each 
titration level using the Strelka and MuTect tools with 
default parameters, as in Phase 1.

In order to examine the effect of coverage on the 
somatic variant calls, we down-sampled to produce new 
sets of fastq files for each titration. A custom script was 
used to randomly select a subset of the reads in a fastq. 
Files were generated with 83.3, 66.7, 50, 33.3, 16.7 and 
8.3  % of the original number of reads and each down-
sampled set was processed through to calls using the 
same tools as Phase 2. Calls were made using tumour-
normal pairs at the same level of down sampling.

Verification
Two rounds of verification were performed in order to 
confirm the status of potential somatic variants that 
were identified in Phases 1 and 2. First, 96 of the SNVs 
deemed most likely to be true from Phase 1 were veri-
fied in Round 1. These variants were selected based on 
their presence in a high number of reads in the pure 
tumor (greater than 14 %), no reads in the normal (less 
than 1 %), and were called by most if not all of the seven 
Phase 1 pipelines. PCR primers were designed to flank 
the Round 1 variants and the amplified products were 
sequenced on an Ion Torrent PGM. Next, an additional 
1272 SNVs and 196 indels were selected from the Phase 
1 and Phase 2 calls for verification in Round 2. This 
includes the 482 SNVs that were called by any tool at 
any titration level in the Phase 2 calls, as well as the 790 
SNVs that were called at least twice by any tool in the 60 

or 100  % titrations during Phase 1. The indels verified 
include all 103 that were called by GATK, Strelka or Var-
Scan2 on any titration in either Phase, and 93 which were 
called at least seven times when applying VarScan 2 with 
lowered cut-off settings to the four 60 % and four 100 % 
titration BAM sets from Phase 2. Round 2 of verification 
was performed by designing a custom Ampliseq panel 
and running the tumor and normal samples on the Ion 
Torrent PGM. Based on the frequency and depth in the 
normal and tumor sequencing, variants were classified as 
being either truly somatic (a true positive call), germline 
or wildtype (both false positive calls). For indels, in addi-
tion to the custom Ampliseq panel, we considered the 
results of an Ion Ampliseq Whole Exome panel run on an 
Illumina MiSeq and manually inspected all 196 variants 
in the Integrative Genomics Viewer [23]. A list of the 193 
SNVs and 17 indels verified as true somatic variants is 
available in Additional file 1: Table S1 and in VCF format 
in Additional file 2. The decision tree used for the verifi-
cation classification process can be found in Additional 
file 9: Figure S3.

Pipeline validation
In order to demonstrate that the results obtained from 
our cell-line titration are transferable to actual experi-
mental situations, we applied the eight Phase 2 pipe-
lines to 139 PDAC tumor-normal and xenograft-normal 
exome pairs which had varying tumor cellularities and 
were sequenced to varying depths. Mouse reads were 
filtered from xenograft samples prior to alignment using 
Xenome [19], and a black list of mouse-human interspe-
cies variants created by aligning pure mouse to human 
was used to filter xenograft somatic calls. Twelve samples 
with moderate to high coverage and a range of tumor 
cellularities were chosen for verification Round 3. 1237 
somatic SNVs were selected randomly from the output 
of the eight pipelines on the twelve samples. A custom 
Ampliseq panel was designed to target the variant posi-
tions and tumor and normal material for each of the 
twelve samples was run on an Ion Torrent PGM.

Availability of supporting data
Exome sequencing data for the tumour cellularity titra-
tion series, as well as the associated amplicon based 
verification data is available at the European Genome-
phenome Archive [20], under accession number 
EGAS00001001016. The dataset is further described 
in Additional file  10. Data access requires registration 
through the International Cancer Genome Consortium’s 
Data Access Compliance Office [21].
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