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EPIGRAPH

When we try to pick out anything by itself, we find it hitched

to everything else in the Universe.

—John Muir
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ABSTRACT OF THE DISSERTATION

Polymer-Mediated Assembly of Nanoparticles into Anisotropic Architectures

by

Tsung-Yeh Tang

Doctor of Philosophy in Materials Science and Engineering

University of California San Diego, 2019

Professor Gaurav Arya, Chair

Polymer-nanoparticle composites have attracted considerable interest over the past few

decades. While many traditional applications of composites require the nanoparticles (NPs) to

remain well dispersed within the polymer matrix, some of the newer proposed applications rely

on higher-order organization of NPs. Self-assembly provides a powerful bottom-up approach

for organizing nanoparticles in a highly parallelized fashion. However, directing nanoparticles

to self-assemble into anisotropic architectures more complex than the isotropic, close-packed

structures or random aggregates observed under equilibrium or non-equilibrium conditions is

highly challenging. In this dissertation, I will demonstrate how we have used molecular dynamics

simulations to investigate and propose new polymer-mediated strategies for assembling spherical

xiii



NPs into anisotropic, and often unique, configurations.

We first investigated the underlying basis for anisotropic interactions between spherical

NPs uniformly grafted with polymer chains, which were recently shown to assemble into

anisotropic phases like strings and sheets. The anisotropy was shown to arise from the expulsion

of polymer grafts between two contacting NPs, which led to anisotropic graft-mediated steric

repulsion felt by a third approaching NP. Our computed phase diagram for formation of isotropic

versus anisotropic 3-particle clusters agreed qualitatively with that obtained experimentally

for larger aggregates of NPs. Next, we proposed a new strategy for assembling spherical

nanoparticles into unique, anisotropic architectures in a polymer matrix. The approach takes

advantage of the interfacial tension between two mutually immiscible polymers forming a bilayer

to trap NPs within two-dimensional planes parallel to the interface. We demonstrated both

trapping NPs at tunable distances from the interface and assembling them into a variety of

unconventional nanostructures. We also developed a theoretical model to predict the preferred

positions and free energies of NPs. Lastly, we studied the dynamics of polymer-grafted gold

nanoparticles loaded into polymer melts. Under certain annealing conditions, the diffusion is

one-dimensional and related to the direction of heat flow during annealing and is associated with

an dynamic alignment of the host polymer chains. We used molecular dynamics simulations to

investigate a single gold nanoparticle diffusing in a partially aligned polymer network which

semi-quantitatively reproduce the experimental results to a remarkable degree.
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Chapter 1

Introduction

In the past decades, researchers have made tremendous progress in the field of mate-

rials science owing to rapid advancements in nanoparticle synthesis and assembly methods.

Nanoparticles possess unique electronic and chemical properties, as they have large surface

area with respect to the volume, which makes them promising candidates for materials appli-

cations. However, precise control over the organization of these extremely small particles into

desired devices with specific functions remains a challenge. In the recent past, researchers have

demonstrated self-assembly of nanoparticles into increasingly complex higher-order structures

with versatile applications in fields ranging from plasmonics, optoelectronics, and molecular

sensing to medicine and drug delivery [1–9]. Self-assembly refers to process where discrete

components spontaneously aggregate into a group or a cluster in order to minimize the free

energy in the system. The driving forces for such process may arise from specific interactions

among the components or from their environment. Self-assembly of nanoparticles has long been

considered as a powerful strategy to fabricate ordered macroscopic structures [10–14]. How-

ever, to avoid random aggregation and flocculation, high degree of control over the interactions

between nanoparticles is required. Directed self-assembly offers a promising route to achieve

more regular assembly of nanoparticle building blocks. It basically employs the same idea of

self-assembly, but involves the use of chemical functionalization, templates, or external fields to
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promote anisotropic interparticle forces between particles.

In the following section, I will review previous work on utilizing polymers and external

fields for controlled assembly of nanoparticles. Considering the breadth of this topic, I would

mainly focus on the systems that involve synthetic polymers and address only a few of the most

significant works that was carried out using biological polymers (e.g. DNA).

1.1 Directed Assembly of Nanoparticles

The ability to exploit nanoparticle properties to device fabrication requires high degree

of control over the aggregation process. The aim is to initially avoid random aggregation and

flocculation, and eventually achieve desired structures. When it comes to nanofabrication, the

challenge lies in the rather weak and specific interaction forces which are hard to be harnessed.

There has been works that took different routes to achieve precise nanostructures, for example,

by operating the cantilever of AFM to accurately place nanoparticles to the designated positions

one by one [15], or by depositing nanoparticles onto stretchable elastomeric films and then tune

the position of each nanoparticle through stretching the film [16]. However, this process of

fabricating is either very time-consuming or expensive. In contrast, polymer scaffold directed

self-assembly provides various promising routes that ensure low-cost and efficient scale-up.

Either through intermolecular interactions between the polymer capping agents or through the

surrounding polymer template, the distribution and alignment of nanoparticle assemblies can be

effectively controlled. The morphology of nanoparticle assemblies can be further reconfigured

through the use of stimuli-responsive polymers that respond to stimuli such as temperature, pH,

light irradiation, solvent polarity or redox activity.

2



1.1.1 Template Supported Self-Assembly

Templates, in the context of nanofabrication, can be considered as surface-modified

substrates containing active sites that allow nanoparticles to selectively attach upon. The size

of the template can range from below to above the size of the nanoparticles, and the dimension

can be 1D, 2D or 3D, as long as the template can serve as a scaffold for nanoparticles to arrange

to whose morphology is complementary to that of the template. Templates can be soft (e.g.,

small molecule, linear polymer, biomolecule (DNA), copolymer), which offer better spatial

distribution of the active sites for nanoparticle deposition, or hard (e.g., carbon nanotube), which

provide relatively poor control over the particle distribution yet better performance at directing

nanoparticle assembly. Small molecules are often relatively less complicated and inexpensive

to synthesize which make them great candidates for use in nanoparticle self-assembly. For

instance, specific halogen bonding was used to direct gold nanoparticle aggregation by exploiting

the donor-acceptor interaction [17]. Chainlike structure or other dense assembly structures

can therefore be obtained by manipulating the assembly time and template concentration. The

challenge of using small molecule is that they can easily result in irreversible nanoparticle

aggregation. Fortunately, it has been shown that some of those that are sensitive to pH or

temperature can leads to interesting applications in reversible self-assembly [18, 19]. A more

interesting approach was proposed for reversible clustering of gold nanoparticles functionalized

with molecules containing active guest units that interact with a template containing host units

[20]. Via cyclic redox process, this host-guest interaction can lead to fully reversible assembly

in solution, and by varying the initial symmetry of template allows the assembly into dimers,

trimers and tetramers. This concept was further extended by combining the host units with linear

polymers [21], so that more complex network of nanoparticles cross-linked with polymer could

be obtained.

The idea of using DNA for directing nanoparticle self-assembly has become popular in

the past two decades since it was proposed [22–28]. It has been shown that using oligonucleotide
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as backbone for nanoparticle deposition to the selective sites can result in different symmetries

of nanoparticle assemblies [23]. Nanoparticles made out of gold, which has great compatibility

with DNA, can be functionalized with DNA strands to form either network materials or discrete

assemblies. In this case, gold nanoparticles tethered with non complementary DNA strands

will spontaneously aggregate upon the addition of double-complementary DNA strand. This

coupling interaction between the complementary strands can be “switched off” when the system

is heated above the DNA melting temperature which leads to spontaneous disassembly of the

aggregates. A temperature responsive device can thus be achieved using this concept. A similar

idea was employed by attaching single-stranded DNA-modified nanoparticles onto an unmodified

DNA template strand [25]. By attaching similar and different-sized nanoparticles onto the DNA

strand, different final configurations of assemblies can be achieved. In addition to simple linear

DNA-nanoparticle composites, more complex structures can also be fabricated using a similar

approach. For instance, DNA-modified gold nanoparticles can assemble into uniform linear

chains surrounding a template consist of DNA-functionalized Navicula diatom [29].

The discussion above has shown that the control of nanoparticle self-assembly can be

achieved over nanoscale distances. However, as the needs for technological applications may

require control over longer length-scale, the above tactics of exploiting short-ranged interparticle

interaction forces may not be applicable. Block copolymer offers feasible routes to control

organization over longer distances, and their well-defined microphase-separated domains provide

an ideal platform for directing nanoparticle assembly over macroscopic distance [30]. This

process requires surface modification of nanoparticles with polymers compatible with either

side of the copolymer. Nanoparticles with surface-modification will therefore migrate to its

favored domain and be constrained at the center or at the edge of the specific matrix domain

depending on the size. It is known that grafted particles of bigger sizes would tend to locate at

the center of the domain for less conformational entropic loss, while smaller particles in contrary

would tend to stay at the edge of the domain to minimize the interfacial energy between two

distinct monomer layers. Initially, nanoparticle assemblies are arranged in a low degree of order.
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However, after thermal annealing above a certain temperature, nanoparticle assemblies become

ordered and aligned in the direction parallel to the polymer matrix blocks. It was also shown that

upon continuous quenching, the monolayer of nanoparticle assembly will gradually transform

into double layer assemblies [31].

1.1.2 Directed Self-Assembly Without Template

In the previous section, the nanoparticles were assembled into specific positions or

relative positions based on the external scaffolding molecules or domains (template). However,

particles can also be made to assemble into specific configurations through their interparticle

interactions without the help of external template by functionalizing the particles with small

molecules, polymers, or DNA (capping agents). The distribution of the capping agents on the

surface of nanoparticles is especially important, as asymmetric distribution can result in patchy

nanoparticles and therefore leads to anisotropic assembly.

As previously mentioned, the utilization of complementary DNA strands to direct nanopar-

ticle assembly has led to many interesting applications [32, 33]. It has been shown that asymmet-

ric distribution of DNA on the surface of nanoparticle can result in anisotropic self-assembly.

With rational control of the synthesizing process or modulating the cDNA grafting density, the

shape of the assembly can be manipulated from dimer [24] to dendrimer [34]. Certain groups

of organic molecules has been found to change their physical properties under light irradiation

[35]. When irradiated with light of a specific wavelength, they become polar, which lead to

particle self-assembly. While under light irradiation with different wavelengths, they return to

nonpolar, and thus particles segregate. This is because these molecules possess special property

of photoisomerization that allows them to transit from a more stable trans state into the cis state,

thereby the induced dipole-dipole attraction drives nanoparticles into assemblies.

Stacking interactions between NPs tethered with π-conjugated polymers has also been

found to provide good control for directing nanoparticle self-assembly [36]. By changing the
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fraction of the polar component, the shape of the nanoparticle clusters will also transform. It has

been shown that solvent mixture fraction can also play a crucial role. For example, gold nanorod

assembly in a DMF/THF-water mixtures changes its shape from dimer, chainlike structures, to

spherical aggregates by changing the water volume fraction [37].

1.1.3 Self-Assembly Directed by External Fields

Nanoparticle assembly in electric fields occurs due to induced dipole-dipole interactions.

The reason that most particles polarized in electric field arise from the mismatch of their

dielectric properties. When particles are polarized, the induced field surrounding them takes

the form of a dipole and leads to anisotropic dipole-dipole interaction between them. When

this interaction is sufficiently stronger than thermal energy kBT , particles will form dipolar

chains whose length increases with time. The challenge is that when the size of the particle

approaches nanoscale, the magnitude of the dipole-dipole interaction also decreases accordingly

which prevents nanoparticle aggregation. However, it has been shown that applying stronger

field gradient arising from the dielectric difference can lead to successful crystallization of

nanoparticles [38]. Even though most studies have used spherical particles, it has been shown

that using non-spherical particles can lead to interesting ordering of particles in external fields.

For instance, at lower concentration, Janus particles under AC field will form staggered chain

structure [39]. In another instance, polarizable ellipsoids in electric fields form zig-zag chains at

low density but centered rectangular structures at higher density [40].

In a system comprised of two immiscible fluids, the natural tendency of a neutral

nanoparticle is to migrate to the fluid interface to reduce the interfacial energy. Thus a fluid

interface can also be considered as a template for nanoparticle assembly. It is especially powerful

for directing self-assembly of particles with nonspherical shapes by constraining the particle

clusters to 2D space. Nonspherical particles, say prolate and oblate, will be forced to lay flat at

the interface, and unable to flip up without sufficiently high surface pressure [41, 42]. Using the
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same concept, by controlling the aspect ratio, surface properties and concentration, it is possible

to generate different orientations and structures of nanorods. Furthermore, it has been shown

that silver nanocrystals at air-water interface tend to form spherical aggregations at lower density

and stripelike aggregation at higher density [43].

1.2 Control over Interparticle Spacing and Orientation

As the electromagnetic properties of nanoparticle-polymer composites strongly depend

on the distance between neighboring particles, strong control over interparticle distances is key

to applications in fields such as plasmonics, optoelectronics and sensing. Polymers can serve as

good separators in different forms for keeping nanoparticle assemblies in the desired interparticle

distances.

1.2.1 Polymer Size Determined NP Spacing and Orientation

A common route to controlling interparticle distances involves tethering polymer ligands

onto the surface of nanoparticle to create a protecting monolayer with specific thickness to

avoid close-packed aggregation of nanoparticles. Due to the presence of depletion force, the

polymer-tethered nanoparticles will still aggregate, but maintain an interparticle distance roughly

equal to twice the thickness of the protecting monolayer. As a result, the interparticle spacing

can be tuned by the length of the polymer ligands and the grafting density.

It has been shown by Ohno et al. that gold nanoparticles coated with well-defined

high-density polymer brushes can be a potential building blocks for optical applications [44].

The interparticle distance in this case is determined by the graft chain length of poly(methyl

methacrylate) (PMMA) which led to a tunable gap range from 10 nm to over 40 nm. They also

observed a blue shift of surface plasmonic absorption becoming more significant with increasing

PMMA chain length. Norsten et al. employed similar strategy by altering the chain lengths of
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the terpy ligands and the supporting monolayer to systematically control the interstitial distance

between terpyridine capped gold nanoparticles [45]. Their results examined by using small

angle X-ray scattering show that the control over this spacing is very subtle in the range of

sub-nanometer scale.

Shaped nanoparticles are also important building blocks for constructing functional com-

plex devices. Different from spherical particles, changes in interparticle spacing within shaped

nanoparticle clusters by altering the length of ligands is also usually accompanied by orientation

changes. Taking nanocubes for instance, when there is no polymer ligands grafted or only short

ligands grafted, nanocubes organize into close-packed face-to-face clusters to maximize van der

Waals interactions. However, face-to-face configuration becomes disfavored when the number or

length of grafted polymers increase leading to increasing steric repulsion between the grafted

chains, which eventually results in edge-to-edge configuration. This interesting phenomenon has

been experimentally demonstrated and theoretically modeled by Gao et al. [46]. Moreover, they

have also shown that this strategy can be applied on other anisotropic particles such as nanorods

and triangular nanoprisms, and if implemented in membrane, can even be achieved on isotropic

nanoparticles (i.e. spheres) [47].

1.2.2 "Brick and Mortar" Approach

Another route to regulate interparticle spacing is through the so-called “brick and mortar”

approach that generally employs dendrimers to promote nanoparticle assembly [48]. In this

approach, funtionalized nanoparticles act as “brick” and polyamidoamine (PAMAM) dendrimers

of different generations as “mortar”. The salt-bridge formation between PAMAM and nanopar-

ticles lead to electrostatic self-assembly which results in periodic nanocrystal thin films. The

interstitial distance between two nanoparticles is therefore determined by the generation (number

size) of the dendrimer. This approach offers great control over interparticle spacing for 3D

structures with efficient scale-up and periodic patterns. Ordered mesoporous nanocomposites
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with tunable mesopore sizes in the scale of sub-20 nm can thus be achieved with potential

applications in energy storage [49–52]. However, the power of this approach is limited to 3D

assembly as the “mortar” can randomly attach on any active site on the “brick”, eventually

leading to isotropic assembly. To further extend the applicability of this approach, introduction

of anisotropic interactions is required. The idea of employing polymers as separating entities has

been also achieved using block copolymers or patterned surfaces that lead to 1D or 2D assembly

with tunable spacing between nanoparticle clusters, which will be discussed in the following

sections.

The versatility of polymer dendrimers has also gained attention from the simulation fields.

Paulo et al. performed molecular dynamic simulations of charged PAMAM dendrimers with low

to intermediate half-genereation using optimized potential for liquid simulations force field that

shows great agreement with experimental data [53]. On the other hand, Lee et al. employed the

MARTINI coarse-grained force field [54] for higher generation of PAMAM dendrimers which

results in better accuracy as it distinguish nodes and branches in interior parts [55]. Despite

advances in dendrimer modeling, a quantitative understanding of the ability of dendrimers to

tune the interparticle spacing is rather poor.

1.2.3 Spacing Control With Environmental Constraints

While interparticle spacing can be well controlled using the approaches mentioned in

the previous sections, the size of this spacing is limited by the size of the mediated polymer,

usually less than 10 nanometers. Thus, nanoparticle self-assembly via environmental constraints

plays an important role to extend interparticle or intermolecular distance from nanometer to

micrometer scales. This can be achieved by intergrating nanoparticles with immiscible bilayer

stacks where nanoparticles are designed to be selectively compatible to one side of the layer, or by

nanoparticles deposition onto patterned templates with predefined spacing patterns. Additional

advantages of these approaches include allowance for on-chip fabrication, 1D and 2D ordered
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particle organization, and massive scalability.

Diblock copolymers, polymer consisting of two long sequence of distinct co-monomers,

have been widely used for fabricating ordered 1D, 2D and 3D nanopaticle arrays. The unique

feature of their periodic lamellar structure has also been employed for manipulating interparticle

spacing. The idea is to induce self-assembly of nanoparticles within one of the domains formed

by the block copolymer. Ideally, nanoparticles will assemble into organized linear or planar

structure parallel to each lamellar domain. Binder et al. demonstrated a different approach

to controlling interparticle spacing by selectively binding surface-modified nanoparticles onto

specific regions of microphase-separated block copolymer thin films [56]. However, at the time,

the separation of nanoparticle assembly among each domain was not as clear. Later on, Zhao

et al. demonstrated a novel approach to produce hierarchical assemblies of nanoparticles by

combining small molecules and block copolymer without the need of chemical modification

of either nanoparticles or block copolymers [57]. The addition of small molecules provides

new possibilities in directing interparticle ordering. Interestingly, their results show that the

separation of particle layers is responsive to heat. At low temperature, nanoparticles reside in

the center layer of each favored lamellae forming parallel and periodic nanoparticle layers with

separation distance about the period of lamellae. When the temperature rises up, they migrate

to the interface between two distinct lamellaes. The separation distance between nanoparticle

layers was found to be around half of the lamellar period. They also found that this process is

reversible and applicable to a wide range of nanoparticles. Furthermore, they showed that this

approach can be extended to hexagonal grid of block copolymer structure that lead to periodic

patterns of nanoparticles preferentially sequestered in the corners of the hexagons.

Despite that block copolymers provides versatile approaches to manipulation of interpar-

ticle spacing, their limited ability to create vertically stacked lamellae with respect to substrate

can limit their utility in optical and electromagnetic applications.
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1.3 Motivations for Dissertation Work

We outlined several key aspects of nanoparticle assembly in terms of achieving structural

and morphological control over nanoparticle higher-order assemblies. In particular, we high-

lighted the use of polymers and external fields to direct nanoparticle assembly. Functionalized

polymers can be used to induce anisotropic ordering of nanoparticles, tune interparticle spacing,

and control over assembly shape, size, and porosity. Some of the polymers respond to external

stimuli such as pH, temperature, solvent polarity and light, which can be further applied to

fabricate particle assemblies with reversible properties. External fields can be used for efficient

scale-up of ordered nanoparticle assembly and to increase the morphological consistence. More-

over, nanoparticle assembly can present unusual alignment coupling with external fields and

therefore yield more complex nanocomposite structure.

Despite the success in controlling the structure and morphology of nanoparticle assem-

bly to some extent, there are still various challenges to be resolved. For instance, isotropic

nanoparticles were originally thought to be incapable of forming aggregates other than isotropic,

close-packed structured (under equilibrium assembly conditions). Although it has been recently

demonstrated that isotropic nanoparticles can form anisotropic aggregates like 1D strings and

2D monolayers, the mechanism was unclear. Furthermore, strategies to trap and direct the

assembly of isotropic nanoparticles into more unique and anisotropic higher order structures are

rare. There is also relatively little research focusing on directing nanoparticle assembly at the

polymer/polymer interface without resorting to strongly charged polymers possibly due to our

limited ability in fabricating stable polymer layer stacks. The techniques for generating stable

polymer layer stacks have improved significantly, but researchers have yet to investigate how

nanoparticles might assemble within such stacks. All of these topics will be addressed in this

dissertation using coarse-grained models and molecular dynamics simulations. Finally, a close

collaborative research with experimentalists showcases the ability of our approaches not only in

effectively reproducing experimental results but also in providing new insights and interpretation
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of the experiments.
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Chapter 2

Anisotropic 3-Particle Interactions

Between Spherical Polymer-Grafted

Nanoparticles in a Polymer Matrix

2.1 Introduction

An emerging concept in materials science is the engineering of anisotropic interactions be-

tween nanoparticle (NP) building blocks to drive their self-assembly into higher-order structures

more complex than the random aggregates or simple close-packed lattices nominally obtained

from spherical NPs [58, 59]. Anisotropic interactions are most intuitively achieved by using

particle shapes that go beyond simple spheres [60], that is, by exploiting the inherent anisotropy

in the excluded volume interactions between “shaped” NPs. Materials chemists are now able to

synthesize a rich variety of particle shapes, ranging from simple rods and discs to more exotic

ones like cones, tetrapods, and various kinds of polyhedra [60–64], and assemble them into

anisotropic structures with some degree of success [46, 65, 66]. Alternatively, the surface of NPs

may be grafted or coated with chemical ligands in an anisotropic manner to produce gradients or

discrete patches of ligands. Such “patchy” NPs may be designed to exhibit anisotropic steric
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repulsion through polymer grafting [67, 68], anisotropic attraction through grafting of sticky

molecules such as single-stranded DNA [69], or anisotropic response to external fields like

magnetic fields [70].

Recent studies however suggest that even NPs exhibiting isotropic two-body interaction

potentials may assemble into anisotropic structures [43, 71, 72]. The most striking evidence

comes from recent experiments on the assembly of spherical silica NPs uniformly grafted with

polystyrene chains within a polystyrene matrix [72]. It was found that in addition to exhibiting

dispersed and densely-packed aggregate phases expected of isotropic particles, these NPs also

assembled into anisotropic structures like 1D strings and 2D sheets, depending on the length

and surface density of their polymer grafts. Similar anisotropic phases have been observed in

other grafted-NP systems as well [73–76] and also realized in molecular dynamics and Monte

Carlo simulations of simplified models of polymer-grafted NPs [72, 73, 77]. To explain the

observed “phase diagram”, it was proposed that the free energy of each phase is determined

by a competition between favorable enthalpic energy gained by forming contacts between NPs

and the entropic cost associated with compressing the polymer grafts to form such contacts

[77]. In general, the higher the dimensionality of a phase, the larger the number of favorable

contacts its NPs exhibit and the stronger the confinement that their grafted chains experience.

By using simple scaling relationships for the two effects, structures with the lowest free energy

were determined at various points across the parameter space, yielding a phase diagram that

qualitatively agreed with that observed experimentally.

Key to the unusual stability of anisotropic structures in polymer-grafted NPs is the

anisotropic distribution of polymer grafts that is supposed to develop when NPs come into close

contact [72, 73, 77]. Specifically, approaching NPs push aside the intervening polymer grafts,

causing an increase in polymer density near the contact region of the NPs. This effect is believed

to introduce an anisotropic steric repulsion felt by a third approaching NP, wherein the dimer

becomes more susceptible to binding by the third NP at its two poles on the longitudinal axis as

compared to the contact region, thus providing a natural driving force for the assembly of NPs
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into 1D strings. One would also presume that this steric repulsion increases as one moves away

from the NP poles and towards the contact region, and hence, binding of NPs at other locations

along this path may be favored if the steric repulsion at those locations can be compensated

by additional favorable contacts between the ensuing higher-order structures. Indeed, in the

absence of any such emergent 3-body anisotropic interactions arising from the polymer, the NPs

would either assemble into 3D hexagonally close-packed (“isotropic”) structures that maximize

the number of attractive contacts between NPs or else remain dispersed if the attraction was

sufficiently weak.

Here we investigate such polymer rearrangement-based origin of anisotropic interactions

between polymer-grafted NPs, a key hypothesis that has surprisingly not been tested thus far.

Our approach involves using molecular dynamics (MD) simulations of coarse-grained models of

the NP-polymer system to directly compute the potential of mean force of interaction between an

isolated NP and a NP dimer as a function of their relative separation and orientation, and to relate

any observed anisotropy in the computed interaction to that in the polymer conformations and

density. Our results provide the first direct confirmation of the above hypothesis and reveal new

insights into how the grafted and matrix polymer conspire to produce anisotropic interactions

between NPs. We further demonstrate how variations in anisotropic interactions with respect

to parameters like NP-graft length, grafting density, and interparticle-attraction strength lead

to intriguing “phase behavior” among various NP cluster configurations, including a novel

globally-stable dimer phase whose existence remains to be tested experimentally.

2.2 Computational Methods

2.2.1 System Design and Configuration

Our aim is to investigate the anisotropy in the free energy of interactions—the poten-

tial of mean force (PMF)—between an isolated polymer-grafted NP termed “test” NP and a
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Figure 2.1: (a) Coordinate system used for describing anisotropic interactions in a 3-particle
system. The test and dimer particles are identical but shown in different color for clarity. (b)
Schematic illustrating how a strong angular-dependence (anisotropy) in the 3-body PMF ∆W3
can cause particles to assemble into anisotropic structures. (c) Schematic showing the four
reaction coordinates chosen for examining the anisotropy in 3-particle interactions between
polymer-grafted NPs. The NP cores are shown as grey circles and the polymer grafts as blue
chains. The polymer matrix is not shown for clarity. (d) Schematic showing the reaction
coordinate used for computing the isotropic 2-particle interactions. All interactions were
computed as a function of the surface-to-surface distance d between the test NP and the
reference NP cores (or those of the nearest dimer NP).

pre-assembled dimer of polymer-grafted NPs in a polymer matrix and to examine how such

interactions lead to anisotropic structures. Due to the symmetry of the dimer, the PMF can be

described in terms of two coordinates: the center-to-center distance r between the test NP and

the right-hand-side dimer NP, and the angle θ subtended by the line connecting the centers of

these two NPs with the longitudinal axis of the dimer for characterizing the anisotropy in the

system. Note that the angle varies in the range θ � �
0,π� cos�1pd0{2rq�, where d0 is the fixed

center-to-center distance between the two dimer NPs (Fig. 2.1a).

To define “anisotropic structures” and “anisotropic interactions” in the context of such

a 3-particle system, we consider a simpler example where we replace the polymer matrix with
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vacuum and replace the polymer-grafted NPs with single particles that interact with each other via

a pairwise-additive isotropic potential Uprq that exhibits a single minimum at r � rmin. Since the

interaction depends on a single degree of freedom (r), the 2-body PMF W2prq for this interaction

is simply equal to Uprq. The overall 3-particle PMF W pr,θq for the interaction between the test

particle and the dimer is equal to the sum of the 2-body PMFs of the test particle with each of

the two dimer particles: W pr,θq �W2prq�W2pr2q, where r and r2 � r2pr,θq are the separation

distances between the test particle and the two dimer particles. Thus, the overall PMF depends

on the orientation angle θ (due to the interaction W2pr2q arising from the left-hand-side dimer

particle) and is therefore anisotropic. The most stable state of such a system is obviously one in

which the test particle sits symmetrically atop the dimer at a separation distance of r � r2 � rmin

and θ � π� cos�1pd0{2rminq coinciding with the minima of both the 2-body PMFs. We define

this compact, assembled state of particles as the “isotropic structure” for the 3-particle system,

and all other configurations such as the linear configuration of the three particles (where θ � 0)

are termed as “anisotropic structures”.

The above example clearly demonstrates that: (1) the anisotropy in the overall PMF

W pr,θq is not the most appropriate indicator of the formation of anisotropic structures, and

(2) overall PMFs that can be written as the pairwise sum of isotropic 2-body PMFs exhibiting

a single energy minimum will always form isotropic structures. Anisotropic structures in

such systems must therefore arise from multi-body contributions, or 3-body contributions in

the context of 3-particle systems. The overall 3-particle PMF is then given by W pr,θq �
W2prq�W2pr2q�∆W3pr,θq, where ∆W3 represents the 3-body contribution that likely depends

on r and θ. Thus, if ∆W3 exhibits a strong angular dependence (anisotropy), it allows for

the possibility of anisotropic structures becoming more stable than isotropic structures, e.g,

when ∆W3 is much larger for isotropic than anisotropic configurations (Fig. 2.1b). Hence, we

define “isotropic interactions” by interactions that either lead to negligible ∆W3pr,θq or angle-

independent ∆W3pr,θq � ∆W3prq, whereas “anisotorpic interactions” are defined in terms of the

strength and anisotropy in ∆W3pr,θq. In our polymer-grafted NPs, we expect ∆W3pr,θq to arise
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from the expulsion of polymer grafts from in between the two dimer NPs.

We aim to compute and analyze the distance- and orientation-dependent behavior of the

overall PMF W pr,θq as well as its 3-body contribution ∆W3pr,θq. The first quantity provides a

measure of the overall free energy of the 3-particle system and helps determine the stability of

the various assembled configurations of the system, both isotropic and anisotropic. The latter

quantity provides a measure of the “anisotropicity” in the interactions between the test NP and

the NP-dimer and its underlying source. However, traversing such a two-dimensional coordinate

space in r and θ would entail prohibitive computational costs. To this end, we computed the

PMF along four representative “reaction coordinates” spanning the relevant angular space around

one of the dimer NPs (Fig. 2.1c): (1) longitudinal axis of the NP dimer (denoted by x0�), (2)

tilted axis oriented 45� with respect to the longitudinal axis denoted by (x45�), (3) perpendicular

axis oriented 90� with respect to the longitudinal axis denoted by (x90�), and (4) different

perpendicular axis that passes through the dimer center of mass rather than through the NP center

(x190�). The PMFs were obtained as a function of the surface-to-surface distance d between the

cores of the test NP and the closest dimer NP, and not the center-to-center distance as typically

used. For comparison, we also computed “2-particle” PMF between a test NP and an isolated or

“reference” NP as a function again of their surface-to-surface distance d (Fig. 2.1d).

2.2.2 Coarse-Grained Model

To compute the PMFs between polymer-grafted NPs in a polymer matrix, we adopted

a coarse-grained model (Fig. 2.2a) similar to one we previously used for investigating the

viscoelastic properties of polymer-nanoparticle composites [78]. The model is simple, computa-

tionally efficient, and captures the essential physics of free and grafted polymer chains and the

interactions between NP cores.

According to this model, segments of the grafted and matrix polymer chains were treated

as beads of size σ and mass m (Fig. 2.2b) [79]. Adjacent segments in each chain were connected
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by a finitely extensible nonlinear elastic (FENE) spring with potential energy given by
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where r is the separation distance between the bonded segments, R0 � 1.5σ is the maximum

possible length of the spring, k � 30ε{σ2 is the spring constant, and ε is the characteristic energy

parameter of the system. The above choice of parameters ensures that chains do not cross

each other. Excluded volume interactions between all pairs of polymer segments, bonded or

nonbonded, were treated using a short-range, purely repulsive potential [80]
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where r is the distance between the segments. While highly simplified, this polymer model

captures well various experimentally measured structural and dynamical properties of simple

polymeric melts spanning the Rouse and reptation regimes, including the chain-length depen-

dence of the diffusion coefficient and the relaxation of the structure factor [79]. In this study, we

examined graft chains of lengths Lg (in terms of number of segments) in the range 5 to 20 and

matrix chains of lengths Lm in the range 1 to 40 segments. Apart from possible differences in

their lengths, the grafted and matrix chains were considered to be chemically identical, that is,

their segments exhibit identical interactions.

The NP cores were treated as spheres of diameter Dc � 6σ constructed out of a rigid

simple cubic lattice of “atoms” (Fig. 2.2c). The total van der Waals (vdW) interactions between

two NP cores was then calculated as the sum of individual vdW interactions between pairs

of atoms across the two NP cores with each interaction treated using the Lennard-Jones (LJ)

potential

ULJ � 4εc
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Figure 2.2: (a) Schematic of the simulation setup used for computing 3-particle PMFs between
polymer-grafted NPs within a polymer matrix. (b,c) Grafted polymer chains (blue) and matrix
chains (green) are treated as coarse-grained bead-chains. NP cores (gray) are treated as spheres
constructed from a rigid simple-cubic lattice of atoms.

where r is the distance between the interacting atoms, and σc and εc are the atomic size and

energy parameters, respectively. Such atom-level treatment of NP cores allows us to accurately

capture the variation in the vdW interactions between NPs as a function of their separation

distance; note that an analytical expression for such interactions between spheres is available for

only very short or very large distances. The precise values of the lattice constant and atom size are

not important as long as they are sufficiently small to minimize discretization (faceting) effects.

We found that lattice constant λ and atom size σc set equal to 0.35σ yielded reasonably isotropic

energies, with less than 10% variation in the total vdW energy across different orientations of the

NP cores. The strength of vdW interactions can also be conveniently tuned by varying the value

of εc. To calculate the surface-to-surface distance d between NP cores, we define their “surface”

as the smallest spherical surface that encloses all their atoms, accounting for their vdW radii σc.

Because the NP cores are rigid and near-isotropic, the interaction potential energy between two

NP cores is a function of only their surface-to-surface separation distance. The potential energy

profile therefore needs to be computed and tabulated just once before the MD simulations, which

allowed us to avoid the use of a LJ cutoff that is typically employed in simulations.

The grafted chains were attached to the surface of each NP core also using FENE springs
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(Eq. (2.1)). The grafting points were generated at the desired grafting density Γg using an

algorithm [81, 82] that yields a pseudo-uniform distribution of points on the surface of each NP

core. The grafting points were treated as virtual beads, and held fixed relative to each other and to

their NP core center by using rigid body constraints. Excluded volume interactions between NP

cores and the polymer segments were also treated via a short-range, purely repulsive potential

Ushift-LJ �
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where r is the distance between the centers of the interacting NP and the polymer segments and

the distance shift of rev � pDc�σq{2 ensured that the polymer segments and NP cores did not

penetrate each other.

All simulation parameters and quantities are henceforth reported in units of σ, m, and ε,

which set the length, mass, and time scales, respectively.

2.2.3 Potential of Mean Force Calculations

The PMFs along each of the four reaction coordinates shown in Fig. 2.1c were computed

using the so-called “blue moon ensemble” method [83, 84]. This method involves the use of

constrained MD simulations to confine a molecular system defined by atomic coordinates rN

to a sub-ensemble in which the reaction coordinate ξprNq is held fixed at a particular value

ξ1. The PMF is calculated by thermodynamic integration of the “mean force” (the negative

of the ensemble-averaged gradient of the Hamiltonian with respect to the reaction coordinate)

collected from multiple such simulations conducted at different fixed values of the reaction

coordinate. Accordingly, we performed MD simulations of the polymer-NP system in which the

centers of the dimer NPs were held fixed and the test NP was held fixed at different positions

ξ1 along the examined reaction coordinate. While calculation of this mean force can become

tedious for reaction coordinates that depend in a complex, nonlinear manner with atom positions,
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the calculation is relatively straightforward in our systems, where it reduces to evaluating the

time-average of the component of the true force Fpξ1q experienced by the test NP from the

reference NP or NP-dimer along the direction of the reaction coordinate, which we denote by

〈Fpξ1q〉 [85, 86]. The mean forces obtained from simulations conducted at different values of ξ1

were then be integrated to obtain the PMF at any position d along the reaction coordinate:

W pdq �W pd0q�
» d

d0

〈
Fpξ1q〉dξ

1, (2.5)

where W pd0q is the value of the PMF value at some reference point d0 on the reaction coordinate.

Choosing d0 to be a sufficiently large distance ensures that the test NP does not interact with the

NP dimer whereupon W pd0q � 0. We refer to the above PMF involving three NPs as “3-particle”

PMFs. A similar approach was used for computing “2-particle” PMF between a test NP and

an isolated or “reference” NP as a function of their surface-to-surface distance d (Fig. 2.1d).

To characterize the degree of anisotropy in these interactions, we also computed the 3-body

contribution to the overall 3-particle PMFs via

∆W3pdq �W pdq�W2pdq�W2pd1q (2.6)

where W2pdq and W2pd1q are the values of the 2-particle PMFs computed at the separation

distances d and d1 of the test NP from each of the two dimer NPs.

We also dissected the overall PMF into six different contributions arising from the

interaction between: NP-dimer cores and test-NP core [WcÑcpdq]; NP-dimer grafts and test-NP

core [WgÑcpdq]; NP-dimer cores and test-NP grafts [WcÑgpdq]; NP-dimer grafts and test-NP

grafts [WgÑgpdq]; polymer matrix and test-NP core [WmÑcpdq]; and matrix and test-NP grafts

[WmÑgpdq]. Each of these contributions were also computed via Eq. (2.5), by replacing the

net force 〈Fpξ1q〉 with the force component corresponding to the interaction being probed.

Note that all components of the PMF except Wc-cpdq involve some type of polymer-mediated
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interaction. Therefore, we can categorize the total PMF into a NP core-mediated component,

which we denote as Wcpdq �Wc-cpdq, and a polymer-mediated component, which we denote

as Wppdq �WgÑcpdq�WcÑgpdq�WgÑgpdq�WmÑcpdq�WmÑgpdq. Note that Wcpdq is simply

equal to UvdWpdq, the total vdW interactions between the atoms of the interacting NP cores.

In all 3-particle PMF calculations, the dimer NPs were held fixed with their cores

contacting each other, and they were not allowed to relax to their equilibrium separation distance

while the test NP was brought closer to the dimer along a reaction coordinate. This allowed us to

maintain a fixed reference configuration of the NP-dimer, thereby ensuring that all variations in

the PMFs observed with respect to the different parameters investigated here can be attributed

solely to variations in the graft conformations with respect to these parameters and not to changes

in the internal configuration of the dimer itself. Also, allowing for variations in the dimer

configuration would amount to computing two-dimensional PMFs, as a function of the separation

distance between the dimer NPs in addition to the position ξ1 of the test NP along the reaction

coordinate, which would increase the computational cost by an order of magnitude. As we

demonstrate later, grafted NPs that assemble into stable dimers in this study do so with their

cores almost touching each other. Hence, the PMFs computed with relaxed dimers resemble

quite closely those computed using fixed dimers.

2.2.4 Molecular Dynamics Simulations

The MD simulations were carried out in the canonical ensemble using a rectangular sim-

ulation box employing periodic boundary conditions in all three directions. The box dimensions

were taken to be large enough to accommodate the polymer-grafted NPs in their most spread-out

configuration for the PMF calculation along each reaction coordinate; this was achieved by

employing a padding of at least 2.5σ along the six directions. The NP-polymer system was

simulated in a melt-like state with a density of ρp � nb{Vb � 0.82, where nb is the total number of

grafted and matrix chain segments and Vb is the volume available to these segments, i.e., volume
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of the simulation box minus the volume of the NP cores. The equations of motion were integrated

by using a velocity-Verlet algorithm with a time step of ∆t � 0.002. A Nosé-Hoover thermostat

[87] with a time constant of τ � 1 was used for maintaining the temperature at T � 1 (in units of

ε{kB), though it should be noted that our polymer chains are largely athermal. All simulations

were performed using the LAMMPS package developed by Sandia National Laboratories [88].

The simulations were initialized by placing the grafted NPs and the polymer chains in a

simulation box 50–100 times larger than the required dimensions to prevent overlap amongst the

chain segments and NP cores. The box was then gradually compressed in each direction until the

targeted box dimension or polymer density was reached. Next, the NPs were assembled into a

configuration used for initiating the PMF calculations: We slowly moved two of the NPs into the

dimer configuration with their cores touching each other, i.e., their centers are Dc apart (Figs. 1

and 2), and simultaneously moved the third NP to a distance d � d0 � 12 along the reaction

coordinate being probed, a separation distance large enough to prevent the NP from interacting

with the dimer. This initialization procedure was carried out over a period of 0.2–0.5 million

time steps. Thereafter, the centers of the dimer NPs were held fixed.

To compute the PMF profile, the center of the third test NP was moved in a step-wise

manner along the reaction coordinate towards the NP dimer, first at steps of ∆ξ1 � 1 until a

distance of ξ1 � 4 was reached, and then at steps of ∆ξ1 � 0.25 until contact. During the mobile

phase of each step, the NP center was moved at a velocity of 0.00001σ per time step until the

target ∆ξ1 was reached. The NP center was held fixed for a time period of 0.6 million time steps

during the stationary phase of each step. The ensemble-averaged force 〈Fpξ1q〉 and the ensemble

averaged components of the force experienced by the test NP were computed from the last 0.5

million time steps of this stationary phase. The test NP and the dimer NPs were allowed to rotate

throughout the simulations. The simulations along each reaction coordinate were repeated four

times to improve accuracy and facilitate the calculation of error bars. A similar procedure was

used for calculating the 2-particle PMFs. The NP centers were fixed or moved fixed using “hard”

restraints implemented through the “fix move” command in LAMMPS; particles restrained in
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this manner are no longer influenced by forces from adjacent particles or from the thermostat.

Since the atomic lattice comprising the cores of the test and dimer NPs and their centers

are also held fixed using hard restraints in each MD simulation at fixed distance ξ1, the net vdW

interaction energy UvdWpξ1q, or vdW force FvdWpξ1q, between the cores remains fixed during

each such simulation. This feature allows for significant computational savings because the

vdW portion of the PMF Wcpdq �UvdWpdq can be calculated separately just once before or after

the simulation via Eq. (2.3); this Wcpdq can then be added back onto the portion of PMF Wppdq
arising from polymer-mediated forces that fluctuate during the simulations at fixed ξ1 to yield the

overall PMF W pdq. Furthermore, since the computed UvdWpdq9εc, one can calculate it for the

reference εc � 1 to yield a reference U0
vdWpdq, which can then be used to obtain UvdWpdq for any

arbitrary value of εc via UvdWpdq � εc�UvdWpdq. This allows us to explore arbitrary strengths

of core/core interaction without actually performing simulations at each of those εc values.

2.2.5 Systems and Parameters Investigated

To explore how NP interactions are affected by various attributes of the grafted NPs

and the polymer matrix, we computed the PMFs for a range of NP-polymer systems listed in

Table 2.1. To keep the number of systems investigated to a manageable amount, the NP core

diameter was fixed at Dc � 6 and the interactions mediated by the grafts and matrix chains were

fixed according to Eqs. 1-4. The former ensures that the NPs are much larger than the polymer

segments, consistent with most experimental systems, and the latter ensures that the grafted and

matrix polymer are chemically identical and that they interact with each other and with the NP

cores via excluded volume interactions. We explored the effect of four parameters considered to

affect the morphology of self-assembled NP structures [77]:

 Matrix chain length. Four different values were examined: Lm � 1, 5, 20, and 40 (note

that value 1 corresponds to a “monomeric” solvent), yielding chain radii of gyration of

Rg � 0.5, 1.12, 2.15, and 3.15. This allowed us to probe four different NP-to-matrix size
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Table 2.1: Details of simulation systems examined in this study.

System no.a Lg
b Lm

c Γg
d ng

e nm
f ,h V g,h

Reference system

1i 20 40 0.4 45 916, 1011, 1080 47216, 52949, 56315

Effect of polymer grafts

1 20 40 0.4 45 916, 1011, 1080 47216, 52949, 56315

2 10 40 0.4 45 418, 471, 520 21714, 24961, 27351

3 5 40 0.4 45 138, 156, 192 7507, 8772, 10528

4 20 40 0.2 23 938, 1044, 1112 47104, 52949, 56266

5 10 40 0.2 23 430, 486, 540 21763, 24888, 27522

6 5 40 0.2 23 142, 165, 200 7434, 8809, 10516

7 20 40 0.1 11 950, 1065, 1136 47104, 53095, 56559

8 10 40 0.1 11 436, 495, 548 21763, 24888, 27473

9 5 40 0.1 11 146, 171, 204 7482, 8882, 10492

Effect of polymer matrix

1 20 40 0.4 45 916, 1011, 1080 47216, 52949, 56315

10 20 20 0.4 45 1832, 2022, 2160 47216, 52949, 56315

11 20 5 0.4 45 7328, 8088, 8640 47216, 52949, 56315

12 20 1 0.4 45 36640, 40440, 43200 47216, 52949, 56315

13 20 0 0.4 45 0, 0, 0 47216, 52949, 56315

aIndex identifying the simulation system from a total of 13 studied systems. bLength of grafted chains. cLength of matrix chains. dGrafting

density. eNumber of grafted chains per NP. f Number of matrix chains in simulation box. gVolume of simulation box. hValues correspond to

simulations used for computing PMFs along 2- and 3-particle (x0� , x90� ) reaction coordinates; values used for computing PMFs along x190�

are identical to those along x90� . iFor this reference system we computed the PMF along an additional reaction coordinate (x45� ) for which we

employed nm � 1119 and V � 58189.

ratios Dc{2Rg � 0.95, 1.4, 2.7, and 6 without altering NP size. This size ratio is known to

affect the morphology of NP structures, with larger values leading to higher-dimensional

structures, and is therefore also expected to affect NP/NP interactions. We also examined

the impact of complete removal of matrix chains, that is, polymer-grafted NPs interacting

in vacuum.

 Graft chain length. Three different chain lengths Lg � 5, 10, and 20 were examined, which

together with variations in the grafting density described below, allow us to explore a wide
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range of grafting regimes known to affect the interactions between polymer-grafted NPs.

 Grafting density. Three different values Γg � 0.1, 0.2 and 0.4 were examined. To charac-

terize the conformation of the grafts, we computed the dimensionless surface coverage

parameter Γ�
g � ΓgR�

g
2, where R�

g is the unperturbed radius of gyration of the grafts (free

chains not grafted to NP surface) [78]. Our calculations indicate that we explored con-

formations ranging from the mushroom regime (Γ�
g � 0.1) to the dilute brush regime

(Γ�
g � 1.85).

 NP core/core interaction strength. This is dictated solely by the magnitude of the energy

parameter εc. As explained earlier, we can explore potentially any arbitrary value of εc for

every combination of Lm, Lg, and Γg investigated here (Table 2.1) without performing any

additional simulations. In general, we considered values of εc in the range 0.5 to 3 that

allowed us explore both stable and unstable configurations of associated NP clusters.

In all systems studied here, the grafted and matrix polymer chains are chemically identical

and modeled using FENE bonds and short-ranged, purely repulsive non-bonded interactions.

In this study, we refrained from exploring attractive non-bonded interactions and also studying

systems with chemically different NP-grafts and matrix chains. Examining such effects would

entail significantly higher computational costs, not only due to the slower conformational

sampling of attractive systems via MD simulations, but also due to the introduction of additional

parameters in the system associated with graft-graft, graft-matrix, and matrix-matrix interactions.

It was recently shown that replacing the repulsive non-bonded potential in the above model

with an attractive Lennard-Jones potential had negligible effect on the structure and dynamics

of polymer chains simulated at melt-like densities and temperatures at least twice as large as

the glass transition temperature Tg [89]. Thus, we do not expect the introduction of uniformly

attractive interactions across grafted and matrix polymer chains to have any significant effect on

computed PMFs given that we performed our simulations in the melt phase at T � ε{kB, much

higher than Tg (� 0.4ε{kB). However, differences in interactions amongst and between grafts
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and matrix chains should affect the PMFs; for instance, if the matrix-graft interactions were

attractive while the graft-graft and matrix-matrix interactions were repulsive, then one would

expect the grafted-NPs to exhibit less attraction (or more repulsion) with each other as compared

to systems with chemically identical grafts and matrix chains.

2.3 Results and Discussion

2.3.1 Anisotropy in NP Interactions

To determine if and how the interactions between two polymer-grafted NPs become

anisotropic when a third NP is in close proximity to one of the NPs, we computed using molecular

dynamics (MD) simulations the potential of mean force (PMF) between a test NP and a NP-dimer

along four distinct reaction coordinates spanning the angular space around the dimer. Though we

computed such PMFs for a range of NP-polymer systems, we present below results computed

for one representative system comprising of NPs grafted with polymer chains of length Lm � 40

at a grafting density of Γg � 0.4 surrounded by a polymer matrix of chain length Lg � 20

(Table 2.1, system 1). As discussed later, this system with long and dense NP-grafts displays

strong anisotropic interactions, making it an ideal system for showcasing this phenomenon and

elucidating its physical basis.

Figures 3a and 3b show the core- and polymer-mediated components Wcpdq and Wppdq
of the overall PMF computed along the four chosen reaction coordinates. For comparison, we

also plot for the same system the two components of the 2-particle PMF. The core-mediated

component Wcpdq scales linearly with the LJ energy parameter εc of the NP-core atoms and

is thus plotted in units of εc (Fig. 2.3a). As expected, this component is always attractive for

distances d ¡ 0 where all core atoms interacting across the test and dimer NPs are separated by

a distance greater than σc. At smaller distances d   0, some of these atoms begin to overlap

and Wc rises and becomes repulsive. All Wcpdq exhibit a minimum close to contact, at roughly
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Figure 2.3: (a-b) Core and polymer-mediated components of the overall PMF computed along
the 2- and the 3-particle reaction coordinates for the representative NP-polymer system with
Lg � 20, Γg � 0.4, and Lm � 40. (a) Core-mediated component normalized by interatomic
energy parameter εc. Inset shows closeup of the profiles at small d. (b) Polymer-mediated
component. (c) 3-body contribution to the overall PMF.

d � 0.024σ, which is consistent with notion that the NP cores can further lower their vdW

energy by getting closer than d � p21{6�1qσc � 0.043σ (location of the energy minimum for

the interaction between the closest pair of atoms on different cores directly facing each other)

to increase favorable interactions between the remaining atoms of the interacting cores. The

3-particle Wcpdq profiles along all reaction coordinates except x190� are almost identical to the

profile obtained for the 2-particle configuration. The reason is that the LJ interaction between

the NP-core atoms is short-ranged and none of these reaction coordinates allow the test NP to

simultaneously contact both NPs of the dimer. Each of these profiles exhibit an attractive well

whose depth scales as � 21εc. The Wcpdq profile along x190� is exactly twice in magnitude to that

of the 2-particle PMF given that the test NP now feels exactly the same attraction from both NPs

of the dimer, which also implies that the 3-body contribution ∆W3 is exactly zero, as expected

for rigid cores. Also as expected, the 3-body contribution to the Wcpdq for the remaining three

profiles is zero as well.

The polymer-mediated PMF component Wppdq, on the other hand, are all repulsive and

decrease much slower than Wcpdq with increasing separation distance d (Fig. 2.3b). By d � 7–8,

the polymer grafts of the interacting NPs are out of reach of each other and Wp approaches zero.

Importantly, the Wppdq profiles for the 3-particle PMFs are substantially more repulsive than that

of the 2-particle PMF. More importantly, the polymer-mediated repulsion displays large variation
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across the four reaction coordinates. In particular, the degree of repulsion increases in the order

x0�   x45�   x90�   x190� . Thus, while Wcpdq is largely independent of the orientation of the test

NP with respect to the NP dimer, except for the sharp enhancement close to the perpendicular

axis of the dimer, Wppdq shows a more uniform increase with the orientation angle away from

the poles of the NP dimer.

In Fig. 2.3c, we have plotted the 3-body contribution ∆W3 to the overall PMF, which

arises completely from polymer-mediated interactions, as the core-mediated PMF does not

have any 3-body contribution. We find that ∆W3 is substantial and contributes 30–40 % of the

overall polymer-mediated repulsion (Wp) at near-contact d � 0, and as expected, this contribution

becomes smaller with further distance. Furthermore, ∆W3 increases in the order x0�   x45�  
x90�   x190� with respect to the four reaction coordinates, i.e., the 3-body contribution becomes

larger as the test NP moves from the pole of the dimer (θ � 0) to the contact point of the two

dimer NPs (θ � 4π{3; see Fig. 2.1a).

Fig. 2.4 shows the overall 3-particle PMF W pdq for two representative values of the

energy parameter (εc � 3 and 7) depicting intermediate and strong core-core attraction; Note that

for much smaller or much larger values of εc, W pdq converge to Wppdq and Wcpdq, respectively.

Compared to the two components, the overall PMFs exhibit a more complex dependence with

distance and reaction coordinate. First, for sufficiently strong core/core attraction, the overall

PMFs exhibit an energy barrier at short distances, which separates the stable (or metastable)

bound state of the test NP from its dispersed state. The height of this energy barrier depends on

the strength of the core-core attraction. Second, the overall PMFs no longer necessarily exhibit

monotonic variations in the strength of attraction (or repulsion) with orientation as exhibited by

Wppdq and Wcpdq. For example, the most stable bound state of the test NP occurs along the x190�

coordinate when εc � 7, whereas it occurs along x0� when εc � 3. Indeed, it is such variations

in the relative stability of the different bound states of NPs that leads to the rich and complex

phase behavior exhibited by polymer-grafted NPs, as discussed in more detail further below.

Interestingly, all PMFs W pdq that exhibit an energy minimum do so at a distance close to the

30



0 2 4 6 8 10 12
0

20

40

60

80

100

W

a

εc=3

0 0.2 0.4
0

40

80

0 2 4 6 8 10 12
d

-240

-180

-120

-60

0

60

W

b

εc=7

0 0.2 0.4
-100
-50

0
50

d

Figure 2.4: Overall PMFs computed along the 2- and the 3-particle reaction coordinates for
the representative NP-polymer system with Lg � 20, Γg � 0.4, and Lm � 40. The PMFs have
been computed for (a) εc � 3 and (b) εc � 7. Insets show closeups at small d.

location of the minimum exhibited by the core-mediated PMF Wcpdq. This observation is not

surprising given the sharp, shorter-ranged decay of the vdW core/core attraction as compared

to the flatter, longer-ranged decay of polymer-mediated repulsion, which causes the cores to

position themselves close to each other to take advantage of the strong vdW attraction without

sacrificing much steric repulsion.

The overall PMFs also importantly reveal that the dimer NPs prefer to assemble with their

cores almost touching each other (d � 0.024σ), very similar to the contact configuration (d � 0)

we used for computing 3-particle PMFs. Given that this difference in the dimer configuration is

much smaller than even the size of a single polymer segment (σ), we expect the 3-particle PMFs

computed here to closely approximate the “true” 3-particle PMFs obtained from calculations

in which the dimers are allowed to relax. To confirm this, we conducted additional simulations

to compute the 3-particle Wppdq with dimer NPs separated by 0.024σ. Our results plotted in

Sup. Fig. 2.13 showed that the PMFs are very close to each other.

2.3.2 Monomer Density Distribution

It was previously proposed [72, 73, 77] that the anisotropic assembly of spherical grafted

NPs could putatively arise from the displacement of polymer grafts from in between the interact-

ing NPs, potentially leading to anisotropic distribution of polymer chains around the NPs. To

investigate if the observed anisotropy in the overall polymer-mediated repulsion Wppdq, and in
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its 3-body contribution ∆W3pdq (Fig. 2.3b,c) is related to any such changes in polymer density,

we computed the position-dependent segmental density around a NP-dimer, defined here as the

number of polymer chain segments (beads) per unit volume. For this purpose, we carried out

separate MD simulations of the NP-dimer in the same polymer matrix, but without the test NP,

and computed three kinds of densities: the overall segmental density ρg+mpx,rq (Fig. 2.5a) arising

from both grafted and matrix chains, the graft segmental density ρgpx,rq (Fig. 2.5b) arising

from grafted chains alone, and the matrix segmental density ρmpx,rq (Fig. 2.5c) arising from

matrix chains alone, each of which were computed as a function of the longitudinal (x) and radial

coordinate (r) relative to the NP dimer. To more directly relate these densities to the computed

Wppdq and ∆W3pdq, we also obtained 1D segmental density profiles ρg+mpr1q (Fig. 2.5d), ρgpr1q
(Fig. 2.5e), and ρmpr1q (Fig. 2.5f) as a function of the radial distance r1 to the center of the

dimer NP(s) along the reaction coordinates introduced earlier. Because Wp (and ∆W3pdq) and the

density profile along x45� are only marginally different from that along x0� , we present only the

density profiles along the three reaction coordinates x0� , x90� , and x190� . For comparison, we also

computed the density profile around a single NP computed from a separate MD simulation of an

isolated NP in a polymer matrix.

The overall segmental density shows enhancement and oscillations close to the surface

of the dimer (Fig. 2.5a) that are more apparent in the ρg+mpr1q profiles (Fig. 2.5d). This behavior

is caused by a combination of two effects: the tethering of the terminal graft segment to the NP

core and the layering of particles (segments) with excluded volume next to an impenetrable wall

(NP cores). Sufficiently far from the dimer surface (¡ 3σ), the densities asymptote to the bulk

density. More importantly, we observe minimal variations in ρg+mpx,rq around either of the two

dimer NPs with respect to the angular coordinate. In particular, ρg+mpr1q profiles along the three

reaction coordinates x0� , x90� and x190� all remain similar to the density profile obtained for the

isolated NP. These results indicate that the observed anisotropy in polymer-mediated repulsion

between NPs might not arise from any enhancement in the overall segmental density near the

contact region of the dimer.
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Figure 2.5: 2D contour maps of (a) overall segmental density ρg+mpx,rq, (b) graft segmental
density ρgpx,rq, and (c) matrix segmental density ρmpx,rq surrounding the NP-dimer. Color
bars denote the density magnitude in units of segments{σ3. (d) Overall segmental density
ρg+mpr1q, (e) graft segmental density ρgpr1q, and (f) matrix segmental density ρgpr1q profiles
along the three reaction coordinates labeled in (a) plotted as a function of radial distance r1

from the center of the dimer NP. The “reference” density profile around an isolated NP as a
function of radial distance from its center is shown in blue.

The segmental density associated with grafts only, in contrast, displays strong anisotropy,

as noted from the angle-dependence of ρgpx,rq (Fig. 2.5b) or from differences in ρgpr1q across

the three reaction coordinates (Fig. 2.5e). In particular, the region around the dimer that displays

high to moderate density (ρg Á 0.4), as depicted by the green-cyan halo in Fig. 2.3b, extends

farther into the matrix along the perpendicular than the longitudinal coordinate. The ρgpr1q
profiles show that the density rises monotonically from the dimer poles to the contact region, i.e.,

in the order x0�   x90�   x190� (Fig. 2.5e). These results suggest that when two NPs come into

contact, as in the case of the dimer, their intervening grafts get pushed outwards into the region

immediately surrounding the contact point, causing a strong enhancement in the graft segmental

density along the perpendicular axis passing through the contact point. The displaced grafts

encroach on their neighboring grafts, causing them to extend outwards and sideways, triggering

a “domino effect” that propagates outwards from the contact point to the dimer poles. That the

density along x0� is only slightly higher than that for a single NP (Fig. 2.5e) indicates that the
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propagation eventually subsides, with the grafts at either of the two dimer poles remaining mostly

unaffected by the presence of the other dimer NP. We also observe that the ρgpr1q profiles along

the three reaction coordinates increase in the same sequence as the 3-particle Wppr1q profiles

and that the ρgpr1q profile along x0� is only slightly higher than its 2-particle counterpart, also

similar to Wppr1q (see Fig. 2.3b). This close analogy between Wppr1q and ρgpr1q suggests that the

anisotropy in polymer-mediated PMFs may be caused by the anisotropy in the graft segmental

density, thereby providing direct support for the hypothesis that the anisotropic interactions

between NPs could indeed arise from the conformational rearrangement of grafted chains at the

contact region.

Lastly, the segmental density arising from the matrix chains shows the opposite trends

compared to those exhibited by the density arising from the grafts. In this case, ρmpx,rq gets

increasingly depleted as one gets closer to the dimer surface, evidently due to increased exclusion

by the polymer grafts. Also, the depletion of matrix chains is most severe along x190� and gets

weaker as one rotates towards the dimer axis, the x0� coordinate. As discussed below, this

anisotropy in the depletion of matrix chains around the dimer will lead to an anisotropy in the

depletion forces between test NP and the dimer.

2.3.3 Steric versus Depletion Interactions

Polymer-mediated interactions between grafted NPs in a polymeric matrix arise from a

combination of steric repulsion due to compression of the grafted chains and depletion attraction

due to osmotic pressure of the matrix chains. To evaluate the role of steric and depletion

forces in producing the anisotropic polymer-mediated repulsion between NPs, we dissected

Wppdq into components arising from the interactions between: (1) NP-dimer grafts and test-NP

grafts, WgÑgpdq; (2) dimer cores and test-NP grafts, WcÑgpdq; (3) dimer grafts and test-NP core

WgÑcpdq; (4) polymer matrix and test-NP grafts WmÑgpdq; and (5) polymer matrix and test-NP

core WmÑcpdq. The first three components involving the polymer grafts of the test or dimer NPs

34



d

ba

c

W
c→

g

W
m

→
N

P
W

g→
c

W
g→

g

d d

4000

3000

2000

1000

0

120

80

60

40

20

0

100

160

120

80

40

0

0

-1000

-4000

-2000

-3000

6 8 10 12420 6 8 10 12420

∆
W

3,
 c

→
g

∆
W

3,
 g

→
g

∆
W

3,
 g

→
c

∆
W

3,
 m

→
N

P

d d

dd

0 2 4 6 8 10 12-200
0

200
400
600
800

0 2 4 6 8 10 12-20
0

20
40
60

0 2 4 6 8 10 12-800
-600
-400
-200

0
200

0 2 4 6 8 10 12-60
-40
-20

0
20

Figure 2.6: Breakdown of the net polymer-mediated repulsion Wp into its four components:
WgÑg, (b) WgÑc, (c) WcÑg, and (d) WmÑNP. Each component is plotted as a function of position
d along the 2- and 3-particle reaction coordinates. The insets provide the 3-body contributions
for each of these components.

constitute “steric” interactions, while the last two components arising from the polymer matrix

constitute “depletion” interactions.

We begin by examining how these individual components vary with respect to the reac-

tion coordinate. Incidentally, the computed WmÑcpdq were substantially smaller than WmÑgpdq
and had a large statistical uncertainty, which made it difficult to glean any statistically significant

trends. To this end, we combined both these matrix-centered terms into a single term that we

denote by WmÑNPpdq corresponding to the net depletion force acting on the entire test NP. Fig-

ure 2.6 shows the four components WgÑgpdq, WcÑgpdq, WgÑcpdq, and WmÑNPpdq corresponding

to the 2-particle PMF and the 3-particle PMFs along x0� , x90� , and x190� . The insets provide

the 3-body contributions ∆W3,gÑgpdq, ∆W3,gÑcpdq, ∆W3,cÑgpdq, and ∆W3,mÑNPpdq for each of

these four interactions along x0� , x90� , and x190� .

The PMF component WgÑgpdq arising from graft-graft interactions (Fig. 2.6a) is found

to be extremely repulsive, approaching 1000s of kBT at contact (d � 0). Decomposing WgÑgpdq
further into its energetic and entropic contributions using an approach described elsewhere [86]
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(Sup. Fig. 2.14) reveals that most of this repulsion arises from the huge entropic loss incurred

by the grafts that get increasingly squeezed in between the NP cores as they approach each

other. Furthermore, the repulsion is stronger for the 3-particle configurations and increases in the

order x10�   x90�   x190� , with the former approaching the 2-particle WgÑg. Clearly, the strong

enhancement in graft segmental density along x190� (Fig. 2.5b,e) is responsible for the strong graft-

graft repulsion along this reaction coordinate. The smaller enhancements along x90� and x0� leads

to concomitantly smaller degrees of repulsion along those reaction coordinates. Interestingly,

the 3-body contributions to graft-graft repulsion are all negative (attractive), suggesting that the

cumulative graft-graft repulsion arising from the two dimer NPs in isolation is stronger than that

arising from the dimer. This result is likely related to the cumulative graft segmental density

arising from two isolated dimer NPs being much higher than that from the dimer (see Fig. 2.5e),

which despite the anticipated stronger-than-linear dependence of steric repulsion with graft

segmental density, leads to stronger graft/graft repulsion. In addition, the 3-body contributions

are found to become increasingly negative in the order x10� , x90� , and x190� .

The two components WgÑcpdq and WcÑgpdq arising from interactions between NP grafts

and cores are also purely repulsive, but more than an order of magnitude weaker than WgÑgpdq
due to the strong shielding of NP cores by their grafts (Figs. 6b and 6c). Similar to WgÑgpdq,
the WgÑcpdq repulsion also increases in the order x0�   x90�   x190� with the repulsion along

x0� approaching that in the 2-particle configuration. This trend is expected given that the graft

segmental density around the dimer NPs also increases in the same sequence, leading to more

interactions between the dimer grafts and the test NP core along the two perpendicular directions

as compared to the longitudinal direction. However, WcÑgpdq exhibits a somewhat different

trend in that the repulsion along x0� is weaker than that for the 2-particle configuration, and

becomes even weaker along x90� . The reason is that the increasing graft segmental density along

x0� and then x90� shields the dimer NP core from interacting with the test NP grafts. Interestingly,

the repulsion rises up again along x190� because both dimer cores are now able to interact with

the grafts of the test-NP. The 3-body contributions to WgÑcpdq are all positive. The positive
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contribution arises from the enforced interactions of polymer grafts from the dimer with the

surface of the test NP core due to their inability to escape from the tight confinement in between

the test and dimer NPs. Comparatively, polymer grafts from isolated dimer NPs have much

more freedom to get displaced. In contrast, the 3-body contributions to WcÑgpdq are all negative,

which is likely due to the increased cumulative ability of test NP grafts to interact with the

surface of the dimer NPs when isolated as compared to the dimer that excludes a large fraction

of the dimer NPs from interacting with the grafts. As usual, the magnitude of the 3-body terms

for both these interactions increase in the order x0�   x90�   x190� .

The last component WmÑNPpdq due to depletion interactions is strongly attractive

(Fig. 2.6d). The main source of this attraction is the difference in the osmotic pressure that

develops across the two halves of the test NP (facing toward and away from the dimer) due to

exclusion of matrix chains from in between the test NP and the dimer. This component is so

strong that it almost counterbalances the graft-graft repulsion. In addition, the magnitude of

depletion attraction increases in the order x0�   x90�   x190� with the former approaching the

2-particle WmÑNPpdq. This trend is consistent with that of the graft segmental density in the

region in between the test and dimer NPs (Fig. 2.5b,d), which rises in the same order with respect

to the reaction coordinates, leading to increasing exclusion of the matrix chains from this region,

and thereby higher depletion attraction. The 3-body contributions to depletion attraction are all

positive. This can be explained in terms of the overlap between the excluded volumes of the test

NP and NP dimer being smaller than the sum of the overlaps between the excluded volumes

of the test NP and the dimer NPs individually. The magnitude of 3-body contributions again

increase in the order x10� , x90� , and x190� .

The rise in polymer-mediated repulsion Wppdq with increased tilting of the reaction

coordinate from the dimer longitudinal axis may now be explained in terms of a competition

between the net steric repulsion Wster �WgÑg�WgÑc�WcÑg and depletion attraction Wdepl �
WmÑNP. Figure 2.7a compares the net steric repulsion against depletion attraction for the 2-

and 3-particle configuration. While both interactions become stronger with increased tilting
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Figure 2.7: (a) Comparison of the net steric repulsion and depletion attraction experienced
by the test NP along the 2- and 3-particle reaction coordinates. The two components nearly
cancel each other and the resulting PMF W pdq �Wsterpdq�Wdeplpdq for the different reaction
coordinates are shown in Fig. 2.3b. (b) Bar-chart of the differences ∆Wi| j �Wip0q|3-particle, j�
Wip0q|2-particle in the values (specified above each bar) of the four PMF components i� gÑg,
mÑNP, gÑc, and cÑg between the 3- and the 2-particle configurations, calculated for each of
the reaction coordinates j � x0� ,x90� ,x190� at contact (d � 0).

of the reaction coordinate, as explained above in terms of the gradient in the graft segmental

density from dimer contact point to poles, the increase in steric repulsion always exceeds that

in depletion attraction, causing an increased net repulsion with increased tilting of the reaction

coordinate; A possible explanation for this observation is provided further below.

To further evaluate the contribution of the three components of steric repulsion WgÑg,

WgÑc, and WcÑg to the increase in overall repulsion with tilting of the reaction coordinate, we

calculated the difference ∆Wi| j �Wip0q|3-particle, j�Wip0q|2-particle in the value of the four PMF

components i � gÑg, gÑc, cÑg, mÑNP between the 3- and the 2-particle configurations;

These differences were calculated for each of the three reaction coordinates j � x0� ,x90�,x190� at

the contact distance d � 0, where the repulsion Wppdq is the strongest. This analysis, presented in
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Fig. 2.7b, reveals that the stronger repulsion Wppdq along x0� (compared to the 2-particle scenario)

(Fig. 2.3b) occurs primarily due to the increase in the steric repulsion between grafts (Fig. 2.7b,

top panel) overriding the corresponding increase in depletion attraction. The corresponding

changes in the remaining two components—graft-to-core and core-to-graft repulsion—are

smaller and in opposite directions, and effectively cancel each other out. However, this is

not the case for repulsion along x90� , where the increase in graft-to-core repulsion is larger in

magnitude than the decrease in the core-to-graft repulsion (middle panel). The residual repulsion

from core-graft interactions, combined with the stronger graft-graft repulsion versus depletion

attraction, as in the case of x0� , leads to even stronger repulsion along x90� as compared to x0�

(Fig. 2.3b). The situation is entirely different for the repulsion along x190� . Here, the increase

in graft-to-graft repulsion is more than counterbalanced by the depletion attraction and the

core-to-graft repulsion now increases instead of decreasing as in the case of x0� and x90� (bottom

panel). Moreover, the core-to-graft and graft-to-core repulsion are both fairly strong and become

the primary contributors to the very strong repulsion observed along x190� .

2.3.4 Effects of Polymer Grafts and Surrounding Matrix

To gain further insight into the influence of polymer grafting on the anisotropic interac-

tions between the NPs, we extended our study to additional NP-polymer systems differing in the

grafting density and/or graft length. Specifically, we examined nine different systems (Table 2.1,

systems 1–9), resulting from combining three different grafting densities (Γg � 0.1, 0.2, and 0.4)

and three different graft lengths (Lg � 5, 10, and 20), that includes the representative system with

Γg � 0.4 and Lg � 20 discussed so far. Figure 2.8 compares the polymer-mediated repulsion

Wppdq computed for these systems along x0� , x90� , and x190� . We find that the repulsion is very

strong and differs significantly between the three reaction coordinates for large values of Γg and

Lg. As these grafting parameters become smaller, the repulsion weakens and the Wppdq profiles

for the three reaction coordinates become increasingly similar to each other. In other words, the
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Figure 2.8: Polymer-mediated component of the PMF computed along the 2- and 3-particle
reaction coordinates for nine distinct NP-polymer systems differing in NP graft length (Lg � 5,
10, 20) or grafting density (Γg � 0.1, 0.2, 0.4). Insets show the corresponding 2D contour maps
of graft segmental density surrounding an isolated dimer (scale bar = 6σ).

polymer-mediated repulsion is strongly anisotropic for long grafts and high grafting densities

and becomes more isotropic as the grafts become shorter and more sparsely grafted. To further

characterize this anisotropy as a function of graft length and grafting density, we computed the

3-body contributions ∆W3pdq for four of these NP-polymer systems differing in graft length and

grafting density. Our results plotted in Fig. 2.3 indicate that the interactions become increasingly

anisotropic with increasing graft length and grafting density. In fact, for the lowest grafting

density studied here (Γg � 0.1), the 3-body contributions are negligible, even for relatively long

grafts (Fig. 2.9c,d).

The observed reduction in anisotropy with decreasing graft length and grafting density is

easily explained from the graft segmental density maps ρgpx,rq (Fig. 2.8 insets): When either
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Figure 2.9: 3-body contribution ∆W3pdq for four different NP-polymer systems differing in
graft length and grafting density as specified in the figures along x0� , x90� , and x190� .

of the two grafting parameters is reduced, the high-density region depicted by the yellow-cyan

halo around the NP cores changes from an anisotropic elliptical shape to a more isotropic shape

that closely “hugs” the dimer surface. The strong correlation between the density contours and

the PMFs reemphasizes the strong connection between anisotropy and graft segmental density.

As expected, the overall segmental density (Sup. Fig. 2.15) remains almost identical across all

systems, again confirming the little-to-no correlation between anisotropy and overall segmental

density. Dissecting Wppdq into steric and depletion contributions (Sup. Fig. 2.16) reveals that

both components are substantial for systems with high grafting density and long grafts, and that

the dominance of steric repulsion over depletion attraction results in strong polymer-mediated

repulsion and large differences in the repulsion over the three reaction coordinates. As the

grafting density and/or graft lengths become smaller, both components become weaker, leading

to weaker overall repulsion and smaller differences in repulsion between the different reaction

coordinates.

Our calculations have shown that the matrix chains produce strong depletion attraction

between the NPs that negates much of the steric repulsion between them (Fig. 2.7a). To further

investigate the impact of the surrounding medium on the polymer-mediated repulsion between

NPs, we examined the effects of replacing the matrix chains, currently of length Lm � 40, with
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shorter chains of length Lm � 20, 5, and 1, the last of which represents a “monomeric” solvent

(Table 2.1, systems 10–12); We also examined the effect of removing the matrix altogether by

considering NP interactions in vacuum (system 13). Figure 2.10 presents the Wppdq profiles

computed for these new systems along x0� , x90� , and x190� . Comparing against the profiles

obtained for the reference system (Fig. 2.3b), we find that decreasing the matrix chain length to

Lm � 20 (Fig. 2.10a) has no measurable effect on Wppdq, and a further decrease to Lm � 5 leads

to some (�40%) increase in repulsion (Fig. 2.10b). However, dissolving the bonds between the

matrix chain segments (Lm � 1) leads to a significant increase in repulsion, roughly twice in

magnitude along each reaction coordinate (Fig. 2.10c). The removal of matrix chains altogether

leads to further increase in the strength of repulsion (Fig. 2.10d). We note that each increase in

the strength of repulsion with chain shortening is also accompanied by an outward extension in

the range of repulsion. Also plotted in Fig. 2.10 are the 3-body contributions to the PMF, which

are observed to decrease with the decreasing matrix chain length (Fig. 2.10e–g) and, somewhat

interestingly, become quite small when the matrix chains are removed altogether (Fig. 2.10h).

Thus, the presence of a matrix surrounding the polymer-grafted NPs seems to play an important

role in their enhancing 3-body interactions between them.
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To investigate the origin of this increase in the strength and range of repulsion with

reduction in the length of the matrix chains and their subsequent removal, we turn to the graft

segmental density maps (Fig. 2.10 insets) and the steric and depletion components of Wppdq
(Sup. Fig. 2.17). The density maps clearly show that the NP grafts extend outwards with the

shortening and subsequent removal of matrix chains. This observation is consistent with the

fact that the shorter the matrix chains, the weaker the depletion force (osmotic pressure) they

exert (Sup. Fig. 2.17) and thereby the farther the grafts extend into the matrix, which explains

the observed increase in the range of repulsion with decreasing length and removal of matrix

chains. Such extension of grafts also leads to a sparser layer of grafted polymer segments around

the dimer NPs (Fig. 2.10 insets), allowing easier interpenetration between the grafts of the test

and dimer NPs. Thus, the diminishing depletion attraction with shortening and removal of

matrix chains also results in smaller steric repulsion between grafts. However, this decrease

in steric repulsion is smaller in magnitude than the corresponding decrease in depletion forces

(Sup. Fig. 2.17), which causes increase in the overall polymer-mediated repulsion with reduction

in the length of the matrix chains or their removal. Though we did not study systems with matrix

chains longer than 40 due to computational reasons, we expect their PMFs to look similar to

those of Lm � 40 given that Wppdq and ρgpx,rq seem to have converged at this chain length,

indicating that the grafted chains are close to their maximum compression. The above results

underscore the importance of the surrounding medium when examining interactions between

NPs and suggest that the effects of the surrounding matrix cannot be neglected, even when the

matrix is neutral to the grafts, as is the case in this study.

2.3.5 Additional Insights into Depletion Interactions

The polymer-grafted NPs examined here exhibit unusually strong depletion attraction,

even in a monomeric matrix where the strength of the depletion interactions is �1300kBT

(Sup. Fig. 2.17). To understand the origin of such strong interactions, we turn to the classical
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model of Asakura and Oosawa (AO model) [90, 91] that provides an analytical expression for the

strength of depletion interactions between two spherical particles in a solution of macromolecules

(depletant). The model treats both components as hard spheres and uses an ideal-gas approxi-

mation to estimate the translational entropy that the macromolecules gain from the additional

volume that frees up due to the overlap between the macromolecule-excluded volumes of two

particles when they come into contact. Specifically, the free energy change ∆Gd resulting from

the contact of two particles of diameter Dp in a surrounding solution of volume V containing N

macromolecules of diameter Dm is given by [91]

∆Gd ��NπkBT D2
m
�
3Dp�2Dm

�
12V

, (2.7)

where it was further assumed that V is much greater than the excluded volume overlap between

the particles, applicable to most situations where the particles are present at low volume fraction.

We first investigated if the AO model could explain the large depletion attraction exhibited

by our polymer-grafted NPs in a monomeric matrix. However, a straightforward application was

not possible because Eq. (2.6) was derived for hard particles with an excluded volume defined

by a sphere of diameter pDp�Dmq, while our NPs have a soft shell of polymer grafts around a

hard core. If one considers the average height of the polymer grafts to be hg and the diameter

of the NP core to be Dc, the true excluded volume of the NP can be approximated as a sphere

of diameter pDc�2hg�1q, where 1 is the diameter of the depletant (monomeric segments) in

reduced units. Thus, the diameter of the depletants Dm in Eq. (2.6) needs to be replaced by an

“effective” diameter given by p2hg�1q. By substituing hg � 3.0 computed from simulations,

Dp � Dc � 6, and N{V � ρp � 0.82, we obtained ∆Gd ��340kBT , which is of similar scale as

the depletion attraction WmÑNPp0q computed from simulations. As reference, the AO depletion

interactions for bare NPs of the same size in the same medium yielded only ∆Gd ��4kBT . Thus,

the depletion interactions in polymer-grafted NPs can indeed be very large, primarily because

they can exhibit an unusually large excluded volume overlap with other NPs due to their soft
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polymer grafts.

Next, we applied the model to polymer-grafted NPs in a polymeric matrix of length

Lm � 40, where an entire matrix chain (depletant) was approximated as a hard-sphere of diameter

equal to 2Rg, where Rg is the radius of gyration of the matrix chains; the effective diameter of the

depletant now becomes equal to p2hg�2Rgq and the depletant density N{V is given by ρp{Lm.

By computing Rg � 3.0 from simulations, we obtained a value of ∆G � �25kBT , which is

almost two orders of magnitude smaller than the value of �2500kBT computed from simulations.

Thus, the AO model does a poor job of estimating depletion interactions in polymer melts, as it

neglects the gain in the internal configurational entropy of the chains, which can be substantial in

melts. Nevertheless, to test the reasonableness of this huge depletion attraction observed in our

simulations, we simulated the same system but containing bare NPs of diameters equal to the

effective diameter pDc�2hgq of the polymer-grafted NPs and found that the depletion attraction

is indeed comparable to that computed for polymer-grafted NPs (Sup. Fig. 2.18).

It was noted earlier that the strength of the depletion attraction always goes hand-in-hand

with that of steric repulsion and that the former is consistently weaker than the latter in all the

systems investigated here, including 2-particle configurations (see, for example, Fig. 2.7a). The

first observation is easily explained by recognizing that both types of forces increase with the

amount of overlap between the grafts, and therefore if the steric repulsion were large due to a

large overlap between grafts, the depletion attraction will also be large, and vice versa.

To explain the second observation, we consider the simpler case of a 2-particle system

comprised of the test and reference NP (Fig. 2.1c). In this system, the depletion force on the

test NP arises due to differences in the population of matrix chains interacting with the inside

and outside halves of the test NP (facing toward and away from the reference NP); Similarly,

most of the steric force (¡ 95% in Fig. 2.6) on the test NP arises from its interactions with the

grafts of the reference NP, which are clearly more populated on the inside half of the test NP. The

observed dominance of steric forces over depletion forces could then be perceived to arise from

the mismatch in population of reference NP grafts over the two halves of the test NP being larger
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than the corresponding mismatch in population of matrix chains [92]. To test this conjecture, we

computed the differences ∆ρg and ∆ρm in the average density of polymer segments belonging to

reference NP grafts and matrix chains within cylindrical volumes of radius R and thickness d

touching the right and left poles of the test NP:

∆ρi �
³R

0 2πrdr
³d

0 rρipx,rq�ρipDc�2d� x,rqsdx
πR2d

, (2.8)

where d is the surface-to-surface distance between the reference and test NP whose centers

are assumed to be located at positions x ��Dc{2 and x � Dc{2�d, and index i � g,m refers

to the reference NP grafts or the matrix chains. We obtained ∆ρg � 0.33, 0.31, and 0.25 and

∆ρm ��0.22,�0.23, and�0.20 for the representative system (system 1, Table 2.1) at increasing

separation d � 2, 4, and 6; for these calculations we employed R � 6, roughly corresponding

to the footprint of a polymer-grafted NP (Fig. 2.5). The positive ∆ρg indicates depletion of

reference NP grafts on the outside region of the test NP and the negative ∆ρm indicates depletion

of matrix chains in the region between the reference and test NP. The decreasing magnitudes of

∆ρg and ∆ρm with increasing d indicates that the matrix and graft segmental densities become

more isotropic around the test NP. More importantly, we find that the overall density difference

p∆ρg�∆ρmq is positive, suggesting a greater imbalance in the segmental density of grafted chains

compared to matrix chains, explaining the slightly larger steric forces compared to depletion

forces in this system.

2.3.6 Stability of NP Clusters and Phase Diagram

Experiments have shown that polymer-grafted NPs exhibit a rich phase diagram in which

they transition from a dispersed morphology at sufficiently high grafting density and graft length

to 1D strings to 2D sheets to 3D close-packed structures with decreasing grafting density and

graft length. While it is not possible to directly relate the computed 2- and 3-particle PMFs to

the stability of several of these higher-order structures due to multi-body effects, such PMFs can
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nevertheless provide valuable information on the stabilities of small 2- and 3-particle clusters

(dimer and trimer) as a function of parameters like grafting density and graft length; These

clusters may be conceived as precursors of the 1D, 2D, and 3D higher-order structures. Note that

each of the 3-particle reaction coordinates yields a distinct configuration of the trimer: linear,

L-shaped and triangular configuration from x0� , x90� , or x190� , respectively. The “phase” diagram

we seek therefore comprises of five distinct phases: dispersed, dimer, and the three types of

trimers.

We constructed such a phase diagram by first calculating the free energy change associated

with forming a dimer or a trimer from isolated NPs. The free energy ∆Gdimpdq of forming a

dimer with a surface-to-surface separation distance d is simply given by the 2-particle PMF

computed earlier that we now denote by W2pdq:

∆Gdimpdq �W2pdq. (2.9)

The free energy ∆Gtripd1,d2q of forming any one of the three trimer configurations can be

calculated as the sum of the free energies of first forming a dimer, as a function of distance d1

between the dimer NPs, and then forming a trimer, as a function of distance d2 between the third

NP attaching onto the dimer:

∆Gtripd1,d2q �W2pd1q�W 2D
3 pd2;d1q. (2.10)

Here, W pd1q is the 2-particle PMF computed earlier and W 2D
3 pd2;d1q is a 2D 3-particle PMF

that depends on both d1 and d2; Note that W 2D
3 pd2;d1q is different from the 1D 3-particle PMFs

computed thus far, and now denoted by W3pdq, which consider interactions of a third NP with a

dimer fixed at the contact distance d1 � 0, that is, W3pdq �W 2D
3 pd;0q.

The next step involves determining the global minimum in the computed ∆Gdim and ∆Gtri

profiles that provides the relative stability of a structure. If this minimum free energy value is
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positive or if the entire profile is always positive, then that structure is deemed unstable. The

stability of a dimer can be easily obtained as it involves computation of a 1D free energy profile,

but determining the stability of the trimer phase is extremely computationally demanding, as it

involves computation of a 2D 3-particle PMF. To this end, we made the following reasonable

approximation:

mint∆Gtripd1,d2qu � mintW2pd1qu�mintW 2D
3 pd2;0qu � mintW2pdqu�mintW3pdqu, (2.11)

which allowed us to estimate the stability of the trimer clusters using only the already-computed

PMFs. Note that we have assumed here that the minimum free energy of attaching the third NP

is minimally affected by the precise configuration of the dimer as long as the dimer NPs are

almost at touching distance in their most favorable configuration. This assumption is reasonable

considering that (1) the most stable configuration of dimers are indeed ones in which the NPs are

separated by small distances (d1 � 0.024σ; see Fig. 2.3a and earlier discussion), and (2) the PMF

computed for system in which the dimer exhibits its most stable configuration (d1 � 0.024σ) was

found to be very similar to the 3-particle PMF computed here with contacting dimer NPs (d1 � 0)

(see Sup. Fig. 2.13 and earlier discussion). As explained earlier, the reason that our grafted

NPs assemble at such close distances has to do with the short-ranged nature of vdW attraction

between NPs as compared to polymer-mediated repulsion (Fig. 2.3a and 2.3b). Therefore, we

envision that for systems in which the vdW attraction is longer ranged, for instance when the size

of the NPs is much larger and the attraction scales as � 1{d or if the systems were so densely

grafted that the NPs are unable to displace the grafts to access the strong vdW attraction.

Figure 2.11 compares the formation free energy profiles of the dimer and trimer phases

for nine different combinations of graft lengths and grafting densities with the core-core attraction

strength fixed at a value of εc � 1 roughly corresponding to that of solid silicon. In particular,

we compare ∆Gdimpdq and ∆Gtripdq, where the latter corresponds to the variation in the free

energy of an NP trimer as a function of the distance between a NP and a NP dimer already
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assembled and fixed in its most favorable configuration. We observe that the free energy profiles

of the dimer and all three trimers are positive at pLg,Γgq � p20,0.4q, p20,0.2q, p10,0.4q, and

p5,0.4q. This implies that the NPs prefer to remain dispersed for such strongly grafted NPs,

where the vdW attraction between the NP cores is too weak to overcome the polymer-mediated

repulsion between the NPs. However, as the grafting density and graft length is reduced, the

polymer-mediated repulsion becomes weaker, and the dimer and trimer phases begin to exhibit

negative free energies of formation. In particular, we find that the linear trimer phase is the most

stable phase at pLg,Γgq � p10,0.2q while the triangular trimer phase becomes most stable at

pLg,Γgq � p20,0.1q, p10,0.1q, p5,0.2q, and p5,0.1q. In general, we find that the stability of the

L-shaped trimer is always intermediate to that of the linear and triangular trimers, and hence

does not appear as the most stable phase under any grafting condition. We also note the presence

of large energy barriers separating the associated and dispersed states. In cases where the bound

state is globally stable, the presence of such energy barriers could cause the NPs to get kinetically

trapped in the dispersed state, and thermal annealing of the polymer-NP system might be required

to help NPs to cross over the barrier and bind to each other.

The above results on cluster stabilities along with those obtained for weaker (εc � 0.5)

and stronger core/core attraction (εc � 3) are summarized in terms of phase diagrams in Fig. 2.12.

The general features of these phase diagrams resemble those observed experimentally [72], that is

the NPs transition from isotropic structures of high dimensionality (3D aggregates in experiments,

triangular trimers here) to anisotropic structures of decreasing dimensionality (2D sheets to 1D

strings in experiments, linear trimers to dimers here) with increasing grafting density and graft

length, eventually yielding dispersed NPs (both here and in experiments) at sufficiently strong

grafting conditions. As expected, a weak core-core attraction strength shifts the boundaries of the

phases inwards to small grafting densities and graft lengths, and vice versa for strong attraction.

Our phase diagrams also reveal a unique feature that is missing in the experimental phase

diagram—the presence of a globally stable dimer phase (see Fig. 2.12c). This phase appears

within a small window of parameter space—arguably at high grafting densities, long grafts,
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Figure 2.11: Free energies of formation of the NP dimer [∆Gdimpdq] and of the three different
configurations of NP trimers [∆Gtripdq] for nine different kinds of polymer-grafted NPs in a
polymer matrix of chain length Lm � 40. The NPs in all systems exhibit the same core-core
attraction (εc � 1), but differ in terms of their graft length (Lg � 5, 10, 20) or grafting density
(Γg � 0.1, 0.2, 0.4).

and strong core/core attraction according to our results—where the 2-particle PMF W2 exhibits

an attractive minimum while the 3-particle PMF W3 is purely repulsive due to the polymer

redistribution effect discussed earlier. Within this region of the parameter space, the dimers are

stable against dissociation into individual NPs and also stable against growing into trimers.

Since a linear trimer is less stable than the dimer in this region of the phase diagram,

then we expect all n-particle linear structures (1D strings) to be less stable than the dimer, as

each j-particle PMF Wj ( j ¡ 3) is at least as repulsive as W3. Now, it may be argued that the free

energies of formation of other more compact higher-dimensional structures (such as tetragonally

arranged tetramers, octahedrally-arranged hexamers, etc.) may become lower than the formation
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the most favorable configuration adopted by three NPs at different fixed values of the core-core
attraction strength: (a) εc � 0.5, (b) εc � 1, and (c) εc � 3. The dashed-lines depict qualitatively
the boundaries between the different phases.

free energy of the dimer. However, for that to occur, the j-particle PMF associated with the

addition of an NP to a ( j� 1)-particle cluster would have to become strongly attractive, e.g.,

due to sudden jump in the vdW attraction Wc due to increase in the number of NP contacts, and

more than counterbalance the strong polymer-mediated repulsion Wp arising from each of these

contacting NPs, which is highly unlikely given that Wp increases stronger than linearly with the

number of contacts (due to positive many-body contributions). Understandably, such compact

higher-order structures appear only under weak grafting conditions (when the graft density/graft

length are sufficiently small) in the experimental phase diagram, which is clearly incompatible
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with the strong grafting conditions under which the dimer phase is stabilized. Thus, we believe

that the dimer phase identified here is also stable against forming higher-order structures. It

would be interesting to experimentally test the existence of such a phase and to further investigate

and map out its precise location within the grafting parameter space. Such stable NP dimers, as

well as other small clusters, could find applications in plasmonics [46, 93].

Note that one cannot make a similar claim about the global stability of any of the trimer

configurations observed to be the most stable phase in our phase diagram. The reason is that

though this phase has been determined to be averse to dissociating into lower-order structures

(individual NPs, or dimer + isolated NP), it remains undetermined whether the phase is also

averse to growing into larger structures (e.g., tetramers). In fact, when the trimer phase is

determined to be stable, the 3-particle PMF W3 must be favorable (possess a minimum with

negative free energy) according to Eq. (2.11). This would then imply that the 4-particle PMF W4

associated with attaching a fourth NP to the trimer, would also likely be favorable, especially

when the location of attachment is sufficiently far from other non-contacting NPs of the trimer in

which case W4 would be almost as favorable as W3. The trimer would thus merely represent an

intermediate to a more stable tetramer structure, and so forth. Applying such an argument to a

linear trimer would suggest that the trimer will continue to grow into a longer linear NP string as

each NP addition to the ends of the string serves to further stabilize it. Similarly, the L-shaped

and triangular trimer phases may be precursors of the square and hexagonal sheets, though we do

not expect each subsequent addition of NP to yield the same free energy change as the 3-particle

PMF.

Lastly, we comment that the free energies of formation of clusters calculated from the

PMFs ignore the loss in translational entropy and the gain in rotational entropy that NPs undergo

upon assembly. The change in entropy associated with the dimerization of two NPs may be
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roughly estimated via [94]

∆S � kB
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�
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where ρN is the number density of NPs, h is the Planck’s constant, m is the mass of each NP, and

I � mD2
c{2 is the moment of inertia of the NP dimer. Using typical sizes (5–100 nm), densities

(2–5 g/cm3), and loadings (2–5 vol%) of NPs, we obtain ∆S in the range �9 to �18 kB. Thus,

the entropy change is small compared to the losses and gains in configurational entropy of the

grafts and matrix chains (1000s of kB according to Figs. 6 and Sup. Fig. 2.14). Hence, we expect

the qualitative features of the phase diagram to be largely preserved even in the absence of this

free energy component. Moreover, the translational entropy loss is expected to depend on the

concentration of NPs. Therefore, the “standard” free energies of formation computed here do

not depend on NP concentration, which facilitates easier comparison of the relative free energies

of the structures as it does not require any specification of NP concentration.

2.4 Conclusion

We have investigated the role of polymer-mediated interactions between NPs in the for-

mation of anisotropic structures from spherically-symmetric polymer-grafted NPs by computing

the overall PMF between a NP-dimer and a test NP along with its 3-body contribution as a

function of its orientation relative to the dimer. The rationale is that stable anisotropic phases

like 1D strings and 2D sheets must emerge from an anisotropy in the 3-body polymer-mediated

component of the PMF because if that is not the case, the NPs would simply assemble into

hexagonal close-packed aggregates to maximize the number of attractive contacts between the

NPs, or else remain dispersed if the attraction is weak. Our calculations show that the 3-body,

polymer-mediated component of the PMF is indeed highly anisotropic, exhibiting the strongest

repulsion along the perpendicular axis passing through the center of the dimer and the least

53



repulsion along its longitudinal axis. Further analysis reveals that this anisotropy, and the even

stronger anisotropy observed in the overall PMFs, is directly related to the anisotropic distribution

of graft segments near the surface of the dimer. In particular, the polymer grafts in between

the dimer NPs get pushed outwards from their contact point causing strong enhancement in

the graft segmental density in the contact region in between the two NPs. The enhancement is

highest within this region and gradually decreases away from it, reaching its lowest value at the

dimer poles, similar to the observed variation in polymer-mediated repulsion. By decomposing

the polymer-mediated PMF into steric repulsion arising from the grafted chains and depletion

interactions arising from the surrounding matrix, we find that the reduction in the grafted poly-

mer density from dimer contact region to its poles leads to concomitant reduction in steric and

depletion interactions along the same direction. However, with the steric repulsion consistently

dominating depletion attraction, the net effect is a reduction in polymer-mediated repulsion from

the contact region to the poles. This consistent dominance of steric over depletion forces seems

to arise from a greater mismatch in the segmental density of grafted chains, as opposed to that of

matrix chains, across the inner and outer halves of the interacting NPs. Interestingly, despite the

strong variation in the graft segmental density, the overall segmental density remains independent

of location around the dimer surface.

Probing further the role of the NP grafts and the surrounding matrix, the anisotropy in

both the overall and 3-body contribution of polymer-mediated interactions is found to intensify

with increasing graft length and grafting density. This trend arises again due to the simultaneous

rise in the steric repulsion and depletion attraction, and the increasing dominance of the former

over the latter, with increasing graft length and grafting density. The surrounding matrix has

a very different effect, where the anisotropy in the overall PMF is found to diminish with

increasing length of matrix chains. In fact, NPs interacting in a monomeric matrix at the same

density as the polymer matrix exhibit much higher anisotropy, and those interacting in vacuum

exhibit even higher anisotropy. The strength of and anisotropy in the 3-body component, in

contrast, are found to increase with increasing matrix chain length. Our analysis shows that
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even though both depletion and steric forces decrease rapidly with the monomerization and

subsequent removal of matrix chains, the steric forces decrease less rapidly than the depletion

forces, leading to increasing anisotropy in polymer-mediated repulsion. Additional analysis

reveals that the unusually large depletion forces observed in polymer-grafted NPs arises from the

ability of their grafts to overlap when they come into close contact, leading to unusually large

changes in the matrix-excluded volume.

Representative overall PMFs, obtained by adding an attractive vdW core/core potential

to the polymer-mediated PMF, exhibit more complex behavior. While vdW attraction favors the

formation of triangular 3-particle clusters and polymer-mediated repulsion favors (least disfavors)

linear clusters, the overall PMF stipulates that all three cluster configurations (triangular, L-

shaped, or linear) may be stable depending on the relative strengths of the two PMF components.

The overall PMFs also provide some basis for the experimentally observed anisotropic phases

given that the triangular, L-shaped, and linear 3-particle clusters may be conceived as precursors

of the 2D hexagonal, 2D square, and 1D string phases, and that the three cluster configurations

were found to occupy qualitatively similar regions of the parameter space as the three higher-

order anisotropic phases. Lastly, our cluster phase diagram predicts the possibility of observing a

stable NP dimer phase within a narrow window of parameter space where the 2-particle PMF is

attractive and all 3-particle PMFs are repulsive. The existence of this novel phase with potential

applications in plasmonics remains to be tested.

55



2.5 Acknowledgments

Chapter 2, in full, is a reprint of the material as it appears in Macromolecules: Tsung-Yeh

Tang, and Gaurav Arya. "Anisotropic Three-Particle Interactions between Spherical Polymer-

Grafted Nanoparticles in a Polymer Matrix." Macromolecules 50, no. 3 (2017): 1167-1183. The

dissertation author was the primary investigator and author of this paper.

56



2.6 Supporting Figures
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Figure 2.18: Comparison of depletion attraction computed from simulations of grafted NPs in
a polymer matrix (system 1 with NP cores of size Dc � 6 but effective span of Dc�2hg � 12,
where hg is the average height of the polymer brush) against that computed from simulations of
bare NPs of size Dc � 12 in the same polymer matrix.
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Chapter 3

Interfacial Assembly of Tunable

Anisotropic Nanoparticle Architectures

3.1 Introduction

Polymer-nanoparticle composites have attracted considerable scientific and technological interest

in the past few decades. While many traditional applications of such composites require the

nanoparticles (NPs) to remain well dispersed within the polymer matrix, some of the newer

proposed applications rely on higher-order organization of NPs [59]. For instance, by arranging

plasmonic NPs into non-close-packed clusters and periodic arrays, one could take advantage

of the unique plasmonic couplings between particles to create optically-active composites

[93, 95–98]. In the same vein, the organization of magnetic, semiconducting, or mixtures

of semiconducting and plasmonic NPs into specific arrangements results in unique magnetic,

exciton, or plasmon-exciton couplings that may be harnessed for novel applications [59, 99–

103]. Self-assembly provides a powerful bottom-up approach for organizing NPs in a highly

parallelized fashion. However, achieving precise, unique, and complex assemblies of NPs in

polymers is challenging. Inorganic NPs are usually polydisperse in size and immiscible in

polymers (due to strong interparticle van der Waals interactions, solvophobic surfaces, and

61



polymer-mediated depletion forces), which cause the particles to kinetically agglomerate into

random fractal structures [104–106]. Even if the NPs were homogeneous and their interactions

were weakened to access thermodynamically-favored structures, the spherical NPs typically used

for assembly would result in close-packed “isotropic” structures that maximize the total number

of favorable contacts between the particles.

Several strategies have been proposed to promote NP assembly into “anisotropic” struc-

tures that go beyond the isotropic morphologies obtained with spherical NPs. An obvious strategy

is to use shaped particles,[46, 60, 107, 108] which can now be routinely synthesized due to

advances in inorganic synthesis methods. A related approach is to adsorb or graft functional

groups nonuniformly across the surface of the NPs, resulting in “patchy” particles that interact

asymmetrically with each other [34, 68, 109]. Though these approaches have yielded encour-

aging assembly outcomes in aqueous media, achieving similar levels of success in polymeric

media has been challenging. A third approach involves grafting polymer chains onto the surface

of the NPs [110]. In addition to improving the polymer-miscibility of the NPs, this strategy

also introduces anisotropic interactions between NPs due to “polarization” of the distribution of

grafted chain segments around NPs when they get close to each other [72, 111]. In this manner,

spherical NPs have been assembled into anisotropic structures like sheets and strings by simply

varying the grafting density or the length of the grafted chains [72]. Researchers have also used

microphase separation of block copolymers to trap small NPs within or at the interface of the

formed domains, [31, 112–115] providing an avenue for spatially organizing the NPs. Other

approaches involving the use of magnetic and electric fields to align particles also hold promise

for directing NP assembly towards anisotropic structures but have so far been applied mostly to

micron-sized particles in aqueous systems [39, 40, 116].

Here we propose a new strategy for assembling NPs into unique, anisotropic structures

within a polymer matrix, as depicted schematically in Fig. 3.1A. Our approach is motivated by the

well-known phenomenon of colloids migrating to gas-liquid or liquid-liquid interfaces to reduce

their surface energy [117–120]. We take advantage of this effect to trap NPs at the interface
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Figure 3.1: Interfacial assembly of NPs into unique clusters and phases. (A) Schematic of the
proposed strategy: Bare NPs neutral to both polymer layers p1 and p2 of a bilayer get trapped
symmetrically at the interfacial plane. Grafting NPs with chains selective to p1 displaces the
NP downwards to a new equilibrium position. Grafts selective to p2 displace the NPs upwards,
but by a smaller distance if the chains are grafted at lower density. Mixtures of such NP species
assemble into unique configurations that minimize the overall free energy of the system. A
tilted NP dimer assembled in this manner is shown for illustration. (B) Simulation setup and
coarse-grained model of the polymer bilayer and polymer-grafted NPs used for demonstrating
interface-mediated assembly of NPs. Throughout this study, the top and bottom polymer layers
are shown in cyan and fluorescent green, the NP cores are colored grey, and the grafts selective
to the two layers are shown in blue and green.

between two mutually immiscible polymers forming a stable bilayer. Thus, NPs that interact

similarly with both polymer layers would be expected to localize at the interfacial plane, where

they can occlude the largest possible area of the interface and thereby provide the largest free

energy benefit. Consider now multiple such NPs that also exhibit strong attractive interactions

amongst themselves. While this scenario may facilitate the formation of free-floating planar

sheets of NPs, it is not particularly useful for assembling unique structures. To address this

shortcoming, we suggest trapping of NPs at multiple, distinct planes parallel to the interfacial

plane, where the spacing between adjacent planes is small enough to allow the NPs to interact,

and potentially assemble, across the planes. For instance, two NPs on opposite sides of the
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interfacial plane at normal displacements smaller than the particle radii should still be able

to interact with each other to potentially form a tilted NP dimer. To achieve control over the

normal positioning of NPs relative to the interfacial plane, we propose grafting the NPs with

polymer chains that are preferentially miscible (or immiscible) with one of the two polymer

layers. Selective interactions of the grafts should then provide the necessary thermodynamic

driving force to displace NPs away from the interfacial plane, and the extent of grafting, a

controllable experimental parameter, should be able to provide precise control over the extent of

this normal displacement of particles. In the following sections, we demonstrate using computer

simulations the ability of the proposed assembly strategy to obtain NP architectures currently

not achievable by conventional approaches.

3.2 Results and Discussion

To demonstrate and further investigate the proposed assembly approach, we carried out

molecular dynamics (MD) simulations of polymer-grafted NPs in a polymer bilayer formed by

two mutually immiscible polymers. Since our primary aim is to elucidate general features of

the assembly mechanism and not to model any specific system, we used a coarse-grained (CG)

model to represent the polymer chains and NPs, which also kept computational costs reasonable

(Fig. 3.1B, left). Briefly, the NP grafts and the matrix chains of the bilayer (denoted by “g”, and

“p1” and “p2”) were treated as bead-chains [79] in which polymer segments are represented by

beads, and the NP cores (denoted by “NP”) were treated as rigid spheres. Chains of the same

polymer type were considered to be miscible, and hence their segments interacted with each

other via a potential that accounts for attractive and excluded-volume interactions. In contrast,

the two polymer layers were considered immiscible, and hence their intersegmental interactions

were treated using a potential that accounts only for excluded-volume interactions. The grafts

were considered to be either partly or fully miscible with one layer and immiscible with the

other, and their interactions were again treated using the two kinds of potentials. Attractive and
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excluded-volume potentials were also used for modeling interactions between NP cores, and

between NP cores and polymer segments. The size σ of polymer beads and the strength ε of

attraction between like segments set the length and energy scale of the system. This simple

model captures the essential physics of the NP-bilayer system, including the conformational

dynamics of the polymer chains, interactions between tethered and free chains, depletion forces

exerted by the matrix, and diffusion of grafted particles in polymers [78, 111]. Furthermore, the

potentials used for treating miscible and immiscible interactions have been shown to yield stable

bilayers that reproduce the density profiles, surface tension, and capillary fluctuations of fluid

interfaces [121–123].

The MD simulations were performed in the canonical ensemble at a fixed temperature

of T � ε{kB and a fixed density of 0.85 beads{σ3, wherein the system is present in a melt-like

state. Periodic boundary conditions were implemented in the x and y directions parallel to the

interface and rigid walls were used in the normal direction z (Fig. 3.1B, right). A sufficiently

large simulation box was chosen in the normal and lateral directions to prevent artifacts from the

confining wall and periodic boundaries, respectively. The chain lengths of both matrix polymers

were fixed at Lp � 10 beads. The radii of the NP cores were set to RNP � 3σ, unless otherwise

stated, and their surfaces were isotropically grafted with chains; Graft lengths of Lg � 5–20 beads

and grafting densities of Γg � 0–0.4 chains/σ2 spanning the mushroom to weak-brush grafting

regimes were explored. The strength of attraction εg between graft segments and those of the

layer miscible to them were varied in the range 0.5–2ε, and an attraction of εNP � 50ε was

used for modeling inter-NP interactions. The CG model, choice of parameters, and simulation

methods are described in more detail in the Supporting Information.
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3.2.1 Particle Trapping at Interface

We first examined the behavior of individual NPs in polymer bilayers to determine how

NP grafting with chains selective to one of the polymer layers affects the interfacial location

of the particles. While MD simulations can directly provide the 3D trajectory of a NP as a

function of time t from which one could obtain its ensemble-averaged normal position 〈zptq〉
relative to the interfacial plane (represented by z � 0), we used an alternative, more informative

route to determining the preferred positions of the NPs. Specifically, we used simulations to

compute the free energy (potential of mean force) ∆Fpzq of the NP-polymer system as a function

of particle displacement z from the interfacial plane; See Supporting Information for specifics

on these free-energy calculations. The delta symbol is meant to emphasize that this free energy

is obtained relative to the free energy of the reference system in which the NP is located far

from the interface, in the bulk of the polymer layer miscible with the NP grafts. The location

of the global minimum in ∆Fpzq, denoted by zm, should then provide us the most energetically

favorable (equilibrium) position of the NP. In addition to equilibrium positions, this free-energy-

computation route reveals the energetic basis of particle trapping not possible to obtain from NP

trajectories alone and also enables quantitative comparison with the theoretical model of NP

trapping developed further below.

To study the effect of grafting, we computed ∆Fpzq for NPs of radii RNP � 3σ grafted

with chains of length Lg � 5 beads that are miscible with one polymer layer (p1) and immiscible

with the other (p2). For convenience, we chose the grafts to be chemically identical to p1 chains

(i.e., εg � ε). We examined NPs with four different grafting densities Γg in the range 0.1 to

0.4 chains{σ2. For comparison, we also computed ∆Fpzq for a bare NP. Figure 2A presents

these computed free energy profiles, all of which exhibit a parabolic dependence on z and

contain a single minimum. These minima, representing equilibrium positions zm of particles,

shift away from the interfacial plane, and toward the layer compatible with the grafts, with

increasing grafting density. Compared to the bare NP that prefers to reside at the interfacial plane
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Figure 3.2: Free energy profiles of polymer-grafted NPs as a function of their position from
the interfacial plane. (A) ∆Fpzq for NPs with grafting densities Γg � 0.1, 0.2, 0.3, and 0.4
chains{σ2 compared against that of a bare NP (Γg � 0). (B) Fluctuations in position zptq of
NPs as a function of time t captured from MD simulations of free particles in the bilayer. The
five trajectories correspond to the five different NPs examined in (A). Dashed lines correspond
to the equilibrium positions zm obtained from the ∆Fpzq profiles. (C) ∆Fpzq for NPs grafted
with chains that are equally incompatible to polymer p2, but exhibit different compatibility
with polymer p1 (εg � 0.5, 0.75, 1, and 2ε). (D) ∆Fpzq for NPs grafted with chains of different
lengths Lg � 5, 10, and 20 beads.

(zm � 0), the NP with the largest grafting density Γg considered here gets displaced by a distance

(zm � �3.25σ) almost as large as the NP radius. The equilibrium positions zm obtained from

the free energy profiles agree well with the average positions 〈zptq〉 obtained from simulations

of freely-mobile NPs (Fig. 3.2B). Note that even though zm reports the most favorable position

while 〈zptq〉 reports the ensemble-averaged position, the two quantities are expected to be similar

for systems exhibiting a deep and symmetric energy well at the minimum, as observed for our

NPs.

The bare NP’s preference for the interfacial plane is obviously due to the particle occlud-

ing the largest possible area of the interface at this position, which leads to the largest reduction

in the interfacial free energy. The free energy gain of ∆Fpzmq � �100 kBT indicates very strong
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trapping of the NPs; larger particles, in the colloidal range, have been reported to exhibit even

stronger trapping [117, 124, 125]. For the grafted NPs, even though their displacement away

from the interface reduces the interfacial area occluded by the particle, the resulting increase in

the interfacial free energy is more than compensated by favorable interactions between NP grafts

and surrounding matrix that are gained as a result of the displacement. This gain arises from both

the increase in favorable interactions of the grafts with the polymer layer compatible with them,

and the decrease in unfavorable interactions of the grafts with the incompatible layer. The higher

the grafting density, the higher the gain in favorable graft-matrix interactions, and the more the

particle displaces from the interfacial plane. At sufficiently high grafting density (Γg Á 0.4), the

free energy gain arising from these favorable graft-matrix interactions overwhelms the gain in

free energy arising from interface occlusion, causing the NPs to completely detach from the

interface and move into the bulk of the polymer layer compatible with the grafts.

We also studied the effects of two additional parameters related to the grafts: the extent

of their miscibility with the compatible polymer layer as quantified by the interaction strength εg,

and their length Lg. Figure 3.2C shows the ∆Fpzq profiles computed for grafted NPs with εg in the

range 0.5 to 2ε, keeping other grafting parameters fixed (Lg � 5 beads and Γg � 0.2 chains{σ2).

The free energy profiles retain the characteristic parabolic shape obtained earlier, and the

equilibrium position shifts away from the interface with increasing magnitude of εg until the NPs

completely detach from the interface and go into the bulk phase at εg Á 1.5. Figure 3.2D shows

the free energy profiles obtained for varying graft lengths between Lg � 5 and 20 beads with

fixed Γg � 0.2 chains{σ2 and εg � ε. In contrast to the trends obtained with varying Γg or εg,

the equilibrium positions surprisingly show little to no change with increasing magnitude of Lg.

A likely source for this insensitivity is the flexibility of the grafts that allows the longer grafts

facing the incompatible polymer layer to bend “backwards” to avoid unfavorable interactions

with this layer and maximize favorable interactions with the compatible layer (Sup. Fig. 3.8).

This effect apparently allows the NPs to maintain the same amount of favorable graft-matrix

interactions (interactions with miscible layer minus those with immiscible layer) regardless of
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the graft length. Interestingly, NPs with long grafts (especially those with Lg � 20 beads) lead to

a shallow energy barrier as the particle approaches the interface from the side of the compatible

polymer layer (�6.5σ   z  �4.5σ) that also likely arises from this backward bending of grafts,

which leads to some loss of their conformational entropy.

The above results demonstrate that NPs grafted with chains selective to one of the layers

of a polymer bilayer provides a viable approach for trapping NPs at normal positions located

roughly within a radius of the particle on either side of the interface (|zm| À RNP). We also

illustrated that the equilibrium displacement zm of the NPs from the interface can be effectively

tuned by modulating the surface density of the grafts or the difference in their compatibility with

the two polymer layers, though the former perhaps offers the best control and range from an

experimental standpoint. Hence, in the remainder of this work, we use the grafting density as

our “knob” (keeping the length and misciblity of the grafts fixed at Lg � 5 and εg � ε) to tune

the positions, and thereby the interactions between polymer-grafted NPs at polymer/polymer

interfaces.

3.2.2 Theoretical Model of Trapping

The free energy profiles and equilibrium positions computed from simulations can be

described by a simple model, enabling quantitative prediction and explanation of the observed

effects of NP grafting. To obtain this model, we considered the migration of a NP from the

bulk region of the polymer layer compatible with its grafts (say p1) to a distance z from the

interfacial plane where the NP intersects it (Fig. 3.1A). The free energy change associated with

this migration is made up of two contributions: ∆Fpzq � ∆Fintpzq�∆Fgraftpzq. The first term

∆Fint ��γp1-p2Ap1-p2pzq   0 represents the gain in free energy due to the NP occluding part of

the interface, where γp1-p2 is its surface tension and Ap1-p2 is its circular area occluded by the

NP. The second term ∆Fgraft � ∆γ1g-pAg-p2pzq ¡ 0 represents the loss in free energy caused by

the replacement of part of the favorable interactions of the grafts with the compatible chains of
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layer p1 for unfavorable interactions with incompatible chains of layer p2 across the interface,

where ∆γ1g-p is the difference in the surface energies of the grafts interacting with the two layers

and Ag-p2 is the area of the spherical cap of grafts in contact with layer p2; The prime symbol is

used for differentiating such energies from the surface tension traditionally applied to interfaces

formed between free polymer chains. By writing down the two area terms in terms of effective

radii R1 ¡ RNP of NPs that includes the graft contribution, we arrive at the following expression

for the free energy change we seek (see Supporting Information and the associated Sup. Figs.

3.9 and 3.10 for complete derivation):

∆Fpzq �

$''''&
''''%

0 z ¤�R1

�π

�
R12� z2

	
γp1-p2 �2πR1pR1� zq∆γ1g-p |z|  R1

4πR12∆γ1g-p z ¥ R1

, (3.1)

The above expression yields a quadratic dependence of ∆F in position z, explaining the

parabolic shapes of the computed free energy profiles in Fig. 3.2A. The equilibrium position of the

NPs may be obtained via B∆F{Bz|zm � 0, yielding zm ��p∆γ1g-p{γp1-p2qR1. This result suggests

that the NPs prefer to stay at the interfacial plane when they are equally selective to both polymer

layers (∆γ1g-p � 0), and get increasingly displaced from this position with increasing difference

in the compatibility of the NP with the two layers (increasing ∆γ1g-p), predictions consistent with

our simulations. The model also predicts that no minimum exists for ∆γ1g-p ¡ γp1-p2 when the

NPs become too selective for one of the layers and prefer to remain fully immersed in it. The

relative stability of the NP to reside at locations intersecting the interfacial plane, as compared to

the bulk within their favored layer, is given by ∆Fpzmq � �πR12pγp1-p2 �∆γ1g-pq2{γp1-p2 . Thus,

the NPs that exhibit the highest interfacial stability are those that are neutral to both polymer

layers ∆γ1g-p � 0, and thereby position themselves at the interfacial plane to occlude the largest

possible area of the interface without sacrificing any favorable graft-matrix interactions. The

stability decreases as the NP-matrix interactions become more asymmetric (∆γ1g-p � 0), and
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Figure 3.3: Free energy model for NP trapping at interfaces. (A) Schematic showing the
two main contributions to the free energy in this model: loss in interfacial surface energy
proportional to the circular cross-sectional area Ap1-p2

occluded by the polymer-grafted NP, and
gain in the surface energy of the grafts with the surrounding polymer matrix proportional to the
area Ag-p2

of the spherical cap contacting the incompatible polymer p2. (B) Model fits (solid
lines) to the free energy profiles computed from simulations (symbols) for bare NPs and NPs
grafted with chains at the four grafting densities shown in Fig. 3.2A.

the NPs get increasingly displaced away from the interfacial plane. Another consequence of

the quadratic nature of this model is its curvature κ � B2∆F{Bz2 � 2πγp1-p2 that, interestingly,

depends only on properties of the bilayer (its interfacial tension) and not of the grafted NPs (e.g.,

their size or interactions). This result also implies that the NPs trapped at the interface should

exhibit similar fluctuations δz in their normal position irrespective of NP size or interactions,

given that δz�akBT{κ. Indeed, the computed free-energy profiles for the various NPs explored

here appear to display similar curvatures (Fig. 3.2A,C,D), and the trapped NPs appear to exhibit

similar extents of fluctuations irrespective of their grafting density (Fig. 3.2B). Our model is thus

able to qualitatively explain all observed trends in the computed free energy profiles.

We also investigated the ability of our model to quantitatively fit the free energy profiles
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computed from simulations by setting R1 � 4.95σ and using the unknown γp1-p2 and ∆γ1g-p as

adjustable parameters. Since the bilayer was kept the same across all systems, γp1-p2 in the

model was kept unchanged across all profiles during the fitting procedure. However, ∆γ1g-p,

which is expected to vary with the grafting density, was adjusted independently for each profile.

Figure 3.2B shows model fits obtained for the bare NP and the grafted NPs at the four grafting

densities simulated here. We find that the model does an excellent job in fitting all profiles.

There are slight discrepancies at z   �R1 where our model enforces ∆F to instantly flatten

out as the NPs no longer contact the interface, whereas the computed profiles indicate a more

longer-ranged effect of the interface, albeit weak, that extends to distances as large as �6σ.

This effect could arise from multiple factors not accounted in this model, including capillary

fluctuations of the interface and stretching of NP grafts or the deformation of the interface to

remain in mutual contact, as depicted in Sup. Fig. 3.11. The model does an excellent job in

predicting the equilibrium positions of the NPs for both the bare and grafted NPs (Sup. Fig. 3.8a).

In addition, the fitted value of γp1-p2 compares favorably to surface tensions estimated from

theory and those measured experimentally, and the fitted values of ∆γ1g-p also seem physically

reasonable (see Supporting Information and Sup. Fig. 3.12b).

3.2.3 Assembly of Interfacial Clusters

Having demonstrated how a polymer bilayer could be used to trap polymer-grafted NPs

in 2D planes parallel to the interface and how the NP grafting density could be used to control the

position of these NP traps, we next investigated how the interactions between multiple such NPs

trapped within different planes could be harnessed to assemble NPs into unique configurations.

We began by probing the assembly of two “anti-symmetric” polymer-grafted NPs identical in all

aspects except that they are grafted with chains compatible with opposite layers of the bilayer.

Based on our earlier results, we anticipated that the two NPs would partition into opposite sides

of the interfacial plane while still intersecting partly with it, thereby allowing for interactions
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Figure 3.4: NP dimers with a tunable tilt relative to the interface assembled from anti-symmetric
polymer-grafted NPs. Representative configurations taken from simulations illustrate how
dimers become increasingly tilted with increasing grafting density, exhibiting average tilt
angles of (A) θ � 0� for bare NPs, (B) θ � 30� for Γg � 0.1 chains{σ2, (C) θ � 55� for
Γg � 0.2 chains{σ2, and (D) θ¡ 75� for Γg � 0.3 chains{σ2. Dimer axes are shown as dashed
lines.

between the NPs across the interface. To examine how these interactions manifest into assembly,

we simulated the dynamics of two such NPs within a bilayer, starting from a well separated

configuration of NPs, where they were present in their respective layers at distances z ��RNP

sufficiently far from the interface but well within the influence of the interfacial trap. As earlier,

we studied NPs of size RNP � 3σ grafted with chains of length Lg � 5 beads at four different

grafting densities in the range Γg � 0.1 to 0.4 chains{σ2 with bare NPs as control. In each

simulation, one NP had grafts chemically identical to the chains of layer p1 with attraction

strength εg � ε, and the other to p2, also with εg � ε.

Our simulations show that the bare NPs assembled into a stable dimer whose axis is

oriented horizontally, parallel to the interface ( 3.4A). The assembly was found to occur via
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two pathways: the two NPs diffused and migrated to their preferred location, the interfacial

plane, before colliding with each other to form a horizonally-aligned dimer; or the NPs collided

and stuck to each other before reaching the interface to yield a tilted dimer, which eventually

rotated into the preferred horizontal orientation. The grafted NPs of low to medium grafting

densities (Γg � 0.1–0.3 chains{σ2) also exhibited similar assembly dynamics, except that they

partitioned to their off-centered locations above and below the interface, and yielded stable NP

dimers whose center of masses remain at interfacial plane (zcom � 0) but whose axes display

a visible tilt relative to the interface (Fig. 3.4B–D). Interestingly, the tilt angle increases with

increasing grafting density. This effect results from the NP cores attempting to maintain contact

with each other (as a result of strong but short-range attraction between them) without sacrificing

the free energy gained from the interface. Due to this geometric constraint, the tilt angle θ can be

easily predicted as θ� sin�1 p|zm|{RNPq, where |zm| is the equilibrium distance of either NP from

the interfacial plane in isolation. Comparison of the predicted tilt angles with those measured

directly from simulations reveals good agreement between the two sets of angles (Sup. Fig. 3.13),

confirming that NPs indeed prefer to stay within their interfacial traps zm, largely unhindered by

the presence of the other particle. At sufficiently high grafting densities (Γg � 0.4 chains{σ2),

the NPs stay relatively far from the interface and even when the two NPs collide with each

other, they are unable to form a stable dimer, arguably due to strong steric repulsion between

their grafts. Thus, interfacial trapping of NPs could indeed be used to assemble anti-symmetric

dimers of NPs, and moreover tune their orientation with respect to the interface. It should be

straightforward to extend these results to asymmetric dimers, where the two NPs have different

sizes or grafting densities. In both cases, the particles will prefer to reside at different absolute

distances |zm,1| � |zm,2| from the interface, resulting in dimers that are overall shifted from the

interfacial plane (zcom � 0), and exhibit a tilt angle θ � sin�1rp|zm,1|� |zm,2|q{pRNP,1�RNP,2qs,
where RNP,1 and RNP,2 are the core radii of the two NPs.

The NP-trapping approach could also be used to assemble larger anisotropic clusters

encompassing more than two species of NPs. As demonstration, we attempted to assemble open
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Figure 3.5: NP trimers with open and tunable bending angle assembled at the polymer interface.
(A) Schematic of the strategy for assembling such trimers involving three NPs (NP1, NP2, and
NP3) grafted with different kinds of chain (see text for more details). (B) Bending angles ϕptq
obtained as a function of time t from simulations of trimer systems differing in the grafting
density on NP3 (as specified), but fixed grafting densities on NP1 and NP2, respectively. (C-
E) Representative configurations of these trimers captured from simulations with ϕ � 115�

(C), ϕ � 135� (D), and ϕ ¡ 165� (E) obtained using grafting densities of 0.04, 0.13, and
0.22 chains/σ2 on NP3 (insets show NP configurations more clearly without their grafts). (F)
Representative configuration of a closed trimer with ϕ � 73� obtained from bare NPs (inset
shows top view for better visualization).

NP trimers with a tunable “bending” angle, defined as the angle ϕ subtended by the two terminal

NPs about the middle NP. Clearly, such configurations cannot be achieved using bare NPs, which

would simply assemble into closed triangles, both in the bulk phase and at an interface. To this

end, we proposed grafting the three NPs with distinct types and/or numbers of chains to trap

them at different distances from the interfacial plane in such a way that the two terminal NPs

cannot contact and stick to each other (Fig. 3.5A). Specifically, we proposed trapping the middle

NP (labeled “NP2” in the figure) at the interface by leaving the particle bare or grafting it with

chains neutral to both polymer layers. The other two NPs (labeled “NP1” and “NP3”) could

be trapped on either sides of the interface by grafting them with chains selective to opposite

polymer layers. To achieve the widest possible range of ϕ, one of these terminal NPs (NP1, say)

was densely grafted to push it as far as possible into the bulk polymer phase without completely
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detaching from the interface, and the middle NP was kept sufficiently small so that it contacted

NP1 in a perpendicular orientation. The other terminal NP (NP3) whose relative orientation with

respect to NP2 could be modulated via its grafting density should then provide us a “knob” for

tuning ϕ.

To test this strategy, we performed simulations of appropriately chosen polymer-grafted

NPs in the bilayer. We used RNP � 3σ particles for the terminal NPs and graft lengths of

Lg � 5 beads on all three NPs, as in the dimer simulations. As proposed, NP1 was densely

grafted with chains miscible to p1; We found that Γg � 0.52 chains{σ2 pushed NP1 to z � 5σ,

a position where its grafts barely touch the interface. NP2 was chosen to have a smaller

size of RNP � 2 so that it could bind to NP1 in a vertical orientation without sacrificing its

equilibrium position (zm � 0). While a bare particle could also yield this desired position and

contact orientation, we chose to graft NP2 with neutral chains at a moderate grafting density

of 0.32 chains{σ2 given that grafting offers the additional benefit of stability against potential

aggregation of NPs. While this is not an issue when studying isolated clusters, nonspecific

aggregation of NPs could become problematic when examining the assembly of larger numbers

of clusters at high concentrations. Lastly, NP3 was grafted with chains miscible to p2, and its

grafting density was varied between 0.04 and 0.3 chains{σ2 to modulate the trapped position of

NP3, and thereby modulate ϕ. As before, we used εg � ε to treat all miscible interactions of NP1

grafts with p1, NP2 grafts with p1 and p2, and NP3 grafts with p2. All simulations were initiated

from a dispersed configuration of NPs.

Figure 3.5B shows the results of these simulations in terms of the bending angle ϕptq
measured as a function of simulation time t for each successfully-formed trimer post assembly.

Representative snapshots of several of these trimer configurations as captured from the simu-

lations are provided in Fig. 3.5C-E. Our results confirm the assembly of open trimers with the

“bond” between NP1 and NP2 oriented vertically with respect to the interface, consistent with

our design strategy. Equally importantly, the results confirm that the grafting density on NP3

could indeed be used to modulate the bending angle of the trimers. In particular, the lowest

76



grafting density examined here yielded bending angles close to 115�, and increasing the grafting

density gradually pushed NP3 away from the interface, yielding larger trimer angles. In this

manner, we were able to achieve trimer bending angles between 115� to 180�. Also evident

from Fig. 3.5B is the absence of bending angle data for systems in which NP3 was grafted with

Γg ¡ 0.22 chains{σ2. Though these systems were able to yield stable dimers of NP1 and NP2,

the densely-grafted NP3 was unable to bind sufficiently strongly to NP2 due to the combined

effect of NP3 residing too far from the interface as a result of the strong grafting and NP2

being pulled away from the interface due to NP1. Finally, to confirm that bare NPs, even at

interfaces, are unable to yield such open trimer configurations, we simulated the above NPs

without any grafts. As anticipated, the three bare NPs migrated to the interface and assembled

into a horizontally-aligned trimer with a closed angle of approximately 73� (Fig. 3.5F); Note

that the smaller size of the middle NP compared to the end NPs makes ϕ ¡ 60�.

3.2.4 Assembly of Interfacial Phases

Consider the small clusters of interfacial NPs assembled above. While clusters of densely-

grafted NPs are likely stable against further association with other NPs and clusters due to steric

repulsion from their grafts, clusters of weakly-grafted or bare NPs might continue to assemble

if additional NPs were available. We sought to investigate the kind of macroscopic structures

(phases) such NPs formed. A single species of NPs would be expected to assemble into a

hexagonally-packed monolayer (assuming sufficiently high surface tension, and negligible or

weak multibody interactions between bare or weakly-grafted NPs [72, 111]), and depending on

the preferred positions zm of its NPs, the monolayer will form at the interface plane or offset from

it. However, the assembly outcome is less straightforward for multiple NP species, where the

different NP species prefer to reside in distinct planes parallel to the interfacial plane. Here, the

NPs would be expected to compete for their favorite locations at or displaced from the interfacial
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plane while the system as a whole attempts to also maximize the net number of favorable contacts

between the NPs.

To illustrate how this interplay between interfacial and interparticle forces leads to novel

assembly structures, we considered a binary system composed of equal numbers of the two

anti-symmetric NP species studied earlier in the context of tilted dimers. The two NP types

prefer to occupy positions within 2D planes on opposites sides of the interface with an interplanar

distance ∆d � 2|zm| that can be tuned via the grafting density from a value of 0 to a value as large

as 2R1, the effective diameter of the NPs. The two layers of NPs are therefore expected to interact

with each other, especially for weakly-grafted NPs where ∆d is small, raising the possibility of

forming interdigitated bi-layered structures. In this work, we simulated the assembly behavior

of N � 12 such NPs (6 particles of each species) with Γg in the range 0.05 to 0.3 chains/σ2.

The grafting densities were kept small enough to promote interactions between NPs across the

interface and to also allow NPs to stick to each other, and the particle numbers were kept large

enough to enable extrapolation of the resulting finite-sized structures to macroscopic phases. For

comparison, we also simulated the assembly of 12 bare NPs in a bulk polymer and in a polymer

bilayer.

Simulations of bare NPs showed that in the bulk they assembled into the expected close-

packed structure resembling a truncated triangular dipyramid [126, 127] (Fig. 3.6A), while in

the bilayer the NPs formed the expected interface-trapped hexagonally-arranged monolayer

[128] (Fig. 3.6B). In the N Ñ8 limit, the bulk structure should morph into a hexagonal- or

cubic-close-packed lattice, and the interfacial structure should continue growing into an infinite

planar sheet with hexagonally-arranged particles. In both these structures, as well as all ensuing

structures, the interparticle spacings are consistent with the minimum of the NP-NP interaction

potential given by 2RNP�p21{6�1qσ � 6.12σ, which we denote by R�.

Compared to these known structures, the symmetric grafted NPs assembled into uncon-

ventional structures in the bilayer. The NPs with the smallest grafting density of 0.05 chains/σ2

assembled into a hexagonally-arranged ridged monolayer comprised of alternating lines of NPs
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Figure 3.6: Higher-order structures of polymer-grafted NPs assembled at the interface of a
polymer bilayer compared against those assembled using bare NPs. (A) Truncated triangular
dipyramid obtained from bare NPs in a bulk polymer. (B) Hexagonal monolayer obtained from
bare NPs in a bilayer interface. Red dashed lines show the underlying hexagonal packing. (C)
Hexagonally-ordered ridged monolayer obtained from grafted NPs (Γg � 0.05 chains/σ2) in a
bilayer. Black and yellow dashed lines indicate NPs located above and below the interface. (D)
Cubic-ordered bilayer obtained with grafted NPs (Γg � 0.1 chains/σ2) in a bilayer. Red dashed
lines emphasize square packing. Insets show structures from a view parallel to the interface.

positioned �1.2σ above and below the interface (Fig. 3.6C). These undulations obviously arise

from the two species of NPs attempting to retain their preferred positions of zm � �0.9σ on

either side of the interfacial plane, as predicted for isolated NPs from Eqs. 2 and 6. As these

NPs prefer to remain close to the interface, the NPs would have to sacrifice a larger amount of

interfacial free energy to stretch apart to form a bilayer than the energy they would gain from

the additional NP contacts provided by such a bilayer. Consequently, the NPs prefer to form a

monolayer, albeit an undulating one, that exhibits a smaller number of favorable contacts, but

occludes a large area of the unfavorable interface.

The NPs with slightly denser grafts (Γg � 0.1 chains/σ2) form an interdigitated bilayer

displaying an unusual square arrangement of NPs in each layer (Fig. 3.6D). Due to their stronger

grafting, these NPs would individually prefer to reside farther from the interfacial plane (zm �
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�1.4σ from Eqs. 2 and 6). In the bilayer, these NPs are located roughly �2.16σ from the

interfacial plane, indicating that the NPs get displaced by a small distance (2.16σ�1.4σ� 0.76σ)

from their preferred positions. Hence, the formation of a bilayer from such NPs leads to only a

small sacrifice in the interfacial free energy, which is easily compensated by the interparticle

interaction energy gained by the formation of the bilayer (8 contacts per NP in the bilayer versus

6 in the monolayer). A similar reasoning can be used to explain why the NPs prefer to form

a square bilayer as opposed to a hexagonal bilayer that one might naively expect. Based on

geometrical arguments (see Sup. Fig. 3.14), the two NP layers of a close-packed hexagonal

bilayer would be located at a distance �R�{?6 ��2.5σ from the interface and each NP would

exhibit 9 contacts (6 within the layer and 3 in the other layer). Thus, the formation of a hexagonal

bilayer as opposed to a square one, would require larger displacements (2.5σ� 1.4σ � 1.1σ

vs. 0.76σ) of the NPs from their preferred positions, while gaining only a single additional

contact (9 vs. 8 contacts). To rule out the distinct possibility that the square arrangement

arose from any intrinsic tendency of NPs in each layer to form a square pattern (e.g., due to

multibody effects arising from the grafts), we performed simulations of the same system, but

containing only one of the NP species. Our results show that each NP species, on its own,

prefers to form a hexagonal monolayer (Sup. Fig. 3.15), confirming that it is indeed interlayer

interactions that are responsible for the formation of the square bilayer, which sacrifices much

less interfacial free energy than a bilayer that had retained the hexagonal arrangement of the

monolayers. Interestingly, simulations of systems with fewer NPs of one of the two species also

reveal partial to perfect square arrangement of the NPs of the other species (Sup. Fig. 3.16).

Higher grafting densities of 0.15 and 0.2 chains/σ2 allowed the top and bottom layers

of NPs to retain hexagonal order, but interestingly did not lead to the close-packed, hexagonal

bilayer configuration depicted in Sup. Fig. 3.14 that maximizes the number of NP-NP contacts

across the interface. Instead, the two NP layers stretched apart, shifted, and rotated relative to

each other (Sup. Fig. 3.17a,b), while remaining stably bound to one another. These deviations,

which increase in going from Γg � 0.15 to 0.2 chains/σ2, obviously arise from the stronger
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steric repulsion that the two NP layers experience due to the NP grafts, which are now present

at a higher density. The separation, shift, and rotation of the NP layers helps alleviate some

of this repulsion by creating larger voids for the grafts in between the two layers, and also

freeing up grafts on some of the exposed NPs at the monolayer corners. Whether the two layers

remain bound for N Ñ8 and retain the same orientation obtained here, and whether fine tuning

of the grafting density within the 0.1 to 0.15 chains/σ2 range not considered here yields the

ideal close-packed hexagonal bilayer remain open questions. Lastly, at even higher grafting

densities of 0.3 chains/σ2, the steric repulsion between the NPs becomes so large that they are

unable to even form ordered monolayers, resulting in significantly open and irregular structures

(Sup. Fig. 3.17c).

Lastly, we explored the potential of our approach to also assemble quasi-1D structures,

in addition to the small clusters and quasi-2D phases demonstrated above. One strategy for

promoting the formation of linear structures is through the use of NPs grafted with chains at

intermediate densities, where the steric repulsion between the grafts is small enough to allow

assembly along one lateral direction, but large enough to prevent assembly along both lateral

directions. Specifically, the expulsion of grafts from in between two bound NPs leads to an

anisotropic distribution of graft segments around the dimer, causing a third approaching NP to

feel stronger steric repulsion at the contact region of the dimer as opposed to its poles. Thus, the

dimer becomes more susceptible to further assembly through its poles (longitudinal axis) rather

than near the contact region (perpendicular directions) [72, 111]. Such “multibody interactions”

have indeed been proposed to lead to string-like NP aggregates in bulk polymers, and has the

potential to lead to interesting structures at interfaces.

Figure 3.7 provides two examples of such NP structures created via this strategy. The first

structure, exhibiting a “serpentine” morphology (Fig. 3.7A), was obtained from further assembly

of the four tilted NP dimers with Γg � 0.3 chains/σ2 reported in Fig. 3.4D, but in a bilayer of

shorter matrix chains (Lm � 5 beads) to promote stronger multibody effects [111]. While the

mechanism for the formation of the serpentine morphology is not fully known, it likely arises
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Figure 3.7: Quasi-linear structures of polymer-grafted NPs assembled at the interface of a
bilayer: (A) Serpentine structure obtained from two anti-symmetric species of NPs grafted at
Γg � 0.3 chains/σ2 in a bilayer of short matrix chains. (B) Branched structure obtained from
the assembly of three species of NPs where the two end NPs are anti-symmetric and grafted
at Γg � 0.1 chains/σ2. Top and bottom panels show the top and side view, and insets show
structures without grafts for better visualization of NP arrangement.

from the strong steric repulsion between grafts that prevents two dimers from simultaneously

forming two contacts with each other, and assembling into a 2D bilayer. However, the repulsion

is apparently weak enough to allow the dimers to form a single contact (though one of their NPs)

resulting in a “chain” of tilted dimers connected by single bonds. The linear morphology of

this chain as well as the alternating nature of these bonds going back and forth between the two

layers also likely arise from steric repulsion that pushes neighboring dimers into orientations that

maximize the separation distance between the two non-contacting NPs. The second structure,

exhibiting a “branched” morphology (Fig. 3.7B), was achieved by the assembly of four open

trimers composed of same three species of NPs used for assembling the trimers in Fig. 3.5C-E,

except that the two end NPs had much smaller grafting densities (Γg � 0.1 chains/σ2), causing

them to adopt positions slightly above and below the interfacial plane; This effect together with

strong steric repulsion between end NPs that pushes them apart likely led the trimers to adopt

the highly obtuse configuration observed in the figure. Interestingly, because the two end NPs
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of the trimer remain close to the interface, neighboring trimers could bind to each other in two

ways: via end NPs in the same layer or via those on opposite layers. The former type of contact

seems to permit interactions between two trimers, leading to the linear branches in the structure,

while the latter apparently permits interactions between more than two trimers, leading to the

branched node in the structure.

3.3 Conclusions

This study proposes and demonstrates through coarse-grained MD simulations a novel

approach for assembling spherical NPs into anisotropic structures within a polymer matrix. The

approach relies on two key ingredients—a polymer/polymer interface and polymer grafting of

NPs—to break the underlying symmetry of an otherwise isotropic system of interacting particles.

The polymer interface serves to introduce a finite-range, 1D harmonic field into the polymer

matrix (first term in Eq. (3.1)) that, independently, would trap NPs at the interfacial plane. The

grafts, when selective to one of the polymer layers, serve to introduce a linear field (second

term in Eq. (3.1)), also of finite range, that displaces the harmonic trap away from the interface,

the extent of which can be precisely controlled by the NP grafting density. The ability to trap

multiple species of NPs differing in graft selectivity and/or graft density at distinct planes from

the interface can then be used to assemble NPs into unique and tunable structures that go beyond

the isotropic, maximally close-packed assemblies nominally obtained in the bulk or at interfaces.

To illustrate the potential of this approach, we demonstrated the assembly of unique clusters, such

as tilted dimers and open trimers with tunable orientations and bending angles, as well as unique

quasi-1D and 2D phases, including serpentine and branched structures, hexagonally-arranged

ridged monolayers, and square-packed interdigitated bilayers. We introduced a simple model

to provide rapid predictions of the free energies and equilibrium positions of NPs based on

experimentally accessible parameters. Such a model should provide useful guidance on trapping

individual NPs at desired distances from the interface. Furthermore, this model, along with one
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for NP-NP interaction energies, could be input into an energy-minimization algorithm to provide

useful structure predictions on NP clusters and extended phases.

The ability of this approach to yield NP clusters with specific orientations or open

configurations would be especially attractive for plasmonics. In this case, the NP cores could be

made of a plasmonically-active metal like Ag or Au, and the NP clusters could be engineered

via polymer grafting to be stable against further assembly and exhibit nanoscopic gaps between

neighboring NPs. The most obvious benefit would be the unique plasmonic resonances that

might emerge from such atypical non-contacting particle arrangements, with the additional

possibility of unusual effects arising from clusters residing at the interface of two polymeric

media with potentially different dielectric properties [95, 129]. Furthermore, the ability of the

proposed approach to tune NP configuration could enable systematic studies of structure-property

relationships. Similarly assembled unique clusters and phases of magnetic and semiconducting

NPs would enable researchers to take advantage of unique magnetic and exciton couplings that

emerge from such particle arrangements [59]. Other potential applications exist in the fields of

solid-state catalysis, where catalytic NPs facilitating distinct reactions may be spatially organized

into clusters to drive multi-stage reactions [130].

The proposed approach and results presented here open up new avenues for future studies.

First of all, the higher-order structures demonstrated here likely constitute only a small subset

of architectures conceivable by this approach. For instance, we examined only the simplest

possible scenario of two anti-symmetric species of NPs to assemble quasi-2D structures, and

again two or three closely-related NP species to assemble quasi-1D structures. We envision

that using differently sized or grafted NPs and additional species of NPs has the potential to

create a vast array of unique and interesting macroscopic phases. Similarly, it may be possible

to assemble larger and more complex NP clusters (than the dimers and trimers demonstrated

here) using a wider choice of polymer-grafted NP species. Second, the approach has so far been

applied to spherical NPs in polymeric interfaces, but could be easily extended to other kinds

of interfaces, such as those formed between oil and water, and to aspherical NPs. In the latter
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scenario, we envision the interfacial forces to modulate not only the position of the NPs but also

their orientation. Third, the quantitative model developed here for predicting equilibrium position

of NPs could be further improved by accounting for the deformation of polymer grafts and the

interface, which become severe when the NPs are located near the interface in the polymer

layer incompatible with the grafts. Fourth, it would be instructive to study the translational and

rotational dynamics of NPs and their clusters trapped at or near interfaces, which are expected

to differ substationally from their dynamics in the bulk. Another topic that demands further

examination is the role of multibody effects in the interfacial assembly of higher-order structures.

These effects were cursorily used in this study to demonstrate assembly of quasi-linear structures,

but its full potential in particle assembly at interfaces remains to be explored. Finally, the

proposed assembly approach would need to be experimentally validated. Indeed, experiments

have already successfully demonstrated the ability to prepare stable polymer bilayers from

mutually immiscible polymers and to preferentially capture NPs within one of the layers [131].

Future experiments on the entrapment and asssembly of multiple species of NPs in such bilayers

should reveal the possibilities and caveats of this interface-mediated NP assembly approach.
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3.4 Supporting Information

3.4.1 Coarse-Grained Model

We used a coarse-grained (CG) representation to model both the polymer-grafted nanopar-

ticles (NPs) and the polymer bilayer formed from the two mutually immiscible polymers. The

grafted and matrix polymer chains, denoted by “g” and “p1” and “p2”, were treated as Kremer-

Grest bead-chains [79], in which polymer segments, typically a few monomers long, are repre-

sented by beads of size σ and mass m. The chain lengths of both matrix polymers were fixed at

Lp � 10 segments (beads). The length of the grafts were varied in the range Lg � 5–20 segments,

i.e., from half to twice as long as the matrix chains. The NP cores were treated as rigid spheres

of radius RNP � 3σ and mass mNP � 216m (unless otherwise stated) with uniformly distributed

grafting points across their surface. We explored grafting densities in the range Γg � 0 (bare

NPs) to 0.4 chains/σ2 (unless otherwise stated). Simple calculations based on unperturbed radii

of gyration R�
g of grafts (i.e. in the free state not attached to the NPs) yields fractional surface

coverages ΓgR�
g

2 of 0.1 to 1.85, indicating that we explored a range of grafting regimes, from

mushroom to weak-brush regimes.

Adjacent beads along the chain representing bonded segments were connected to each

other using a combination of a finitely extensible nonlinear elastic (FENE) spring and a Weeks-

Chandler-Anderson (WCA) potential [80] :

Ub �UFENE�UWCA, (3.2)

where the FENE potential ensures that the bonds between segments do not stretch beyond a

given separation distance of R0 � 1.5σ, and is given by

UFENEpr;k,R0q � �k
2

R2
0 ln

�
1�

�
r

R0


2
�
, (3.3)
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where r is the distance between the bonded segments, k � 30ε{σ2 is the spring constant, and ε is

an energy parameter. The WCA potential is a short-range purely repulsive potential given by

UWCApr;σ,εq �

$'&
'%

4ε

��
σ

r

�12� �σ

r

�6� 1
4

�
r   21{6σ

0 r ¥ 21{6σ

, (3.4)

that accounts for the excluded volume interactions between the bonded segments.

The interactions between non-bonded segments, both intra- and inter-chain, were treated

differently based on whether the parent chains were mutually miscible or immiscible, with the

former exhibiting attractive interactions on top of excluded volume interactions and the latter

exhibiting only excluded volume interactions, similar to approaches adopted in earlier studies

[121–123, 132]. Chains of the same polymer type were considered miscible, and their segmental

interactions were treated using a cut-and-shifted Lennard-Jones (LJ) potential

Uα-α
nb �ULJpr;σ,ε,rcq �

$'&
'%

4ε

��
σ

r

�12� �σ

r

�6�
�

σ

rc

	12�
�

σ

rc

	6
�

r   rc

0 r ¥ rc

, (3.5)

where α � g, p1, and p2, rc � 2.5σ is the cutoff distance of the potential, and ε represents the

common strength of all such nonbonded interactions irrespective of chain type. Segments of

the two polymer layers considered immiscible interacted with each other via the same WCA

potential as that used for describing excluded volume interactions between bonded segments:

Up1-p2
nb �UWCApr;σ,εq. (3.6)

The grafts were generally considered to be compatible with one polymer layer and incompatible

with the other. The former interactions were again treated using the LJ potential with an
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intersegmental attraction strength of εg, and the latter using the WCA potential

Ug-α

nb �

$'&
'%

ULJpr;σ,εg,rcq α is miscible

UWCApr;σ,εq α is immiscible
, (3.7)

where α � p1 or p2; We explored values of εg between 0.5 and 2ε, i.e., from half to twice as

strong as the attractive interactions between polymer segments of the same kind.

The excluded volume interactions between NP cores and the polymer segments were

treated using an expanded WCA potential that accounts for the larger excluded volume of the

cores (compared to polymer segments):

UNP-α
nb �UWCApr� rev;σ,εq, (3.8)

where α � g, p1, and p2, r is the distance between the center of the NP core and the polymer

segment, and rev � RNP�σ{2 is a distance shift implemented to prevent the polymer segments

from penetrating the NP core. The NP cores interact with each other via an expanded LJ potential

UNP-NP
nb �ULJpr�2RNP;σ,εNP,rcq, (3.9)

where r is the distance between the centers of the cores of NP, 2rNP shift prevents the NP cores

from penetrating each other, and a strong attraction εNP � 50ε was implemented to promote

NP assembly. This attraction strength is consistent with the typical van der Waals interactions

between small NPs

, and importantly, is also sufficiently strong to allow the NPs to overcome the steric

repulsion arising from their grafts to assemble and weak enough to favor the formation of

interfacial over bulk structures in the presence of an interface.The grafted chains were tethered

onto the surface of the NP via FENE springs and with a pseudo-uniform distribution of grafting

points at desired grafting density using the “generalized spiral points” algorithm of Rakhmanov
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et al. [81].

Table 3.1 summarizes values of all the CG model parameters considered in this study.

Note that all simulation parameters and quantities are defined in units of σ, m, and ε, which set

the respective length, mass, and time scales in this study.

3.4.2 Molecular Dynamics Simulations

All molecular dynamics (MD) simulations of the NP-polymer system were carried out

using the LAMMPS package [88] developed by the Sandia National Laboratory. The simulations

were carried out in the canonical (NVT) ensemble at a temperature of T � ε{kB and a polymer-

segment number density of ρ � 0.85{σ3 in the polymer bulk. Under these conditions, the

chains in each polymer layer are present in a melt-like state. A velocity-Verlet algorithm with

a time step of ∆t � 0.002 pmσ2{εq1{2 was used for integrating the equations of motion, and a

Nosé-Hoover thermostat with a time constant of τ � 1.0pmσ2{εq1{2 was used for regulating the

system temperature. The polymer bilayer was confined in the z direction normal to the interface

by two impermeable LJ walls, while periodic boundary conditions (PBCs) were implemented in

the x and y directions parallel to the interface. The polymer layers were each chosen to have a

thickness of ∆h � 15σ (or ∆h � 20σ for NPs with long grafts); Considering that the effective

diameters of the NPs are roughly 6 to 12σ (depending on the length and extent of grafting),

the polymer layers are sufficiently thick to capture the entire range of influence of the interface

without distortion by the enclosing walls. Similarly, the simulation box was kept sufficiently large

in the two lateral directions to ensure that a NP or its aggregate does not indirectly interact with

itself via hydrodynamic flows (generated by NP mobility) propagated and reinforced through

PBCs. Table 3.1 provides the size of simulation boxes considered in this study.

To carry out productive MD simulations for yielding meaningful data on NP dynamics,

entrapment, self-assembly and free energies, we first generated well-equilibrated system of

polymer-grafted NPs located at desired initial positions within a phase-separated polymer bilayer.
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This was achieved by first placing the required number of NPs and matrix chains in a non-

overlapping configuration in a simulation box 30 to 50 times larger than the required dimensions.

To avoid overlaps, the grafts were arranged in straight, ground-state configurations perpendicular

to the NP surface, the NPs were placed sufficiently far from each other, and the two types of

matrix chains were organized into loose bundles of straight chains that were respectively placed

above and below the NPs. Next, we assigned Maxwell-Boltzmann-distributed velocities to

all segments and performed MD simulations for 0.1–0.4 million time steps, keeping the NP

locations fixed at their initial positions. This allowed the grafted and matrix chains to randomize

their configurations and also spread across the simulation box to form a uniform low-density

matrix. Following this, we slowly compressed the simulation box over 1 million time steps

until the required dimensions consistent with the target density ρ were achieved and the two

matrix polymers phase-separated into a stable bilayer; Simultaneously, the NPs were gradually

moved to their desired positions within the box. Finally, the system was simulated for an

additional 1 million MD time steps, holding the particles fixed at their desired locations, to

further equilibrate the system.

We carried out two different types of simulations following equilibration. First, we

carried out equilibrium simulations of freely-mobile NPs within the bilayer for exploring the

dynamics of individual NPs, especially their equilibrium positioning at or close to the interface,

and for exploring the self-assembly of multiple such trapped NPs into higher-order structures.

These simulations were generally started with NPs in the polymer layer most compatible with

the NP grafts, specifically in the bulk region where the NPs “feel” neither the interface nor the

wall, e.g., z ��5–7σ. These simulations were typically performed for 12 million time steps and

the trajectories of the NPs were recorded every 100 time steps.

Second, we carried out simulations of a single constrained NP at different fixed distances

from the interface, which were used for computing the system free energy—the potential of

mean force (PMF)—as a function of the normal coordinate z of the NP. In these simulations,

the NP center was held fixed at equidistant points (spaced ∆z � 0.5 apart) along a normal path
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starting in the bulk region of one polymer layer at z � �9σ, crossing the interfacial plane at

z � 0, and ending in the bulk of the second layer at z � 9σ (or z � �12σ to 12σ for NPs with

longer grafts). The NP center was held fixed for 0.6 million time steps at each z location, and

the ensemble-averaged normal force 〈 fzptq〉 experienced by the NP was measured from the last

0.5 million time steps. All simulations was repeated four times to improve accuracy, yielding

a total of �100 million time steps for the entire procedure. The PMF was then computed by

integrating the force component over position as

∆Fpzq � Fpzq�Fpz0q � �
» z

z0

fzpzqdz (3.10)

where z0 represents a position in the bulk of the polymer layer most compatible with the NP

grafts where the net force experienced by the particle is expected to be zero, i.e., fzpz0q � 0;

In the case of bare NPs, the “reference” position z0 can be present in either layers (which are

both neutral to NP core). More details of this approach for computing PMFs are provided in our

earlier publication [111].

3.4.3 Theoretical Model of NP Trapping

We seek a simple theoretical model to describe the observed (simulated) variation in the

free energy (potential of mean force) of the NP-polymer system as a function of NP position

z relative to the interface. To derive such a model, we consider a polymer-grafted NP residing

in the bulk region of the polymer layer (say p1) compatible with the NP grafts (Fig. 3.9a). The

interfacial free energy F0 of this system is given by the sum of the free energy of the unperturbed

interface between the two polymer layers and the free energy of the interface present between

the NP grafts and the surrounding matrix polymer:

F0 � Aintγp1-p2 �Asphγ
1
g-p1

, (3.11)
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where Aint is the area of the planar interface between the two matrix polymers p1 and p2, Asph is

the area of the spherical interface between the NP grafts and the matrix polymer p1, γp1-p2 is the

interfacial tension between the two matrix polymers, and γ1g-p1
is the surface energy per unit area

between the grafts and matrix p1. Note that we used the prime symbol here to differentiate it

from the traditional interfacial tension that is applied to interfaces formed between free polymer

chains.

We next consider moving the NP center to a distance z from the interfacial plane, a

position sufficiently close for the NP to intersect it (Fig. 3.9b). This movement leads to a reduction

in the interfacial area between p1 and p2 by an amount equal to the circular crosssectional area

of the grafted NP at z � 0; we denote this area by Acirc. The NP movement also leads to the

introduction of a new interface between NP grafts and the incompatible matrix p2 resembling a

spherical cap with an area we denote by Acap. Note that this area also represents the amount of

interface lost between the grafts and the compatible matrix p1. The total interfacial free energy

of this new configuration is then given by

Fpzq � pAint�Acircpzqqγp1-p2 �pAsph�Acappzqqγ1g-p1
�Acappzqγ1g-p2

(3.12)

where γ1g-p2
represents the surface energy of the newly introduced graft-p2 interface.

The free energy change associated with moving the NP from the bulk of the compatible

polymer layer p1 to a position at or close to the polymer/polymer interface is then simply given

by

∆Fpzq � Fpzq�F0 ��Acircpzqγp1-p2 �Acappzqpγ1g-p2
� γ

1
g-p1

q, (3.13)

where the first term represents a favorable contribution from the NP occluding part of the unfa-

vorable polymer/polymer interface, and the second term represents an unfavorable contribution

caused by the replacement of part of the favorable graft-mediated interactions with the compatible

chains of p1 for unfavorable interactions with the incompatible chains of p2 across the interface.
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To obtain the two area terms in Eq. (3.12), we consider the grafted NPs to have “effective”

radii R1 larger than the core radius RNP based on two observations from our simulations. First,

analysis of polymer density around the NPs reveals strong layering (adsorption) of polymer

segments around the NP cores, irrespective of whether the NPs are bare or grafted (Fig. 3.10).

Second, the computed free energy profiles in Fig. 3.2 indicate that NPs begin to “feel” the

interface over normal distances considerably farther than the 3σ distance predicted from the NP

core radius. We found that R1 � 4.95σ provides a better representation of the effective size of

these NPs. The circular area Acirc occluded by the NP can then be obtained as

Acircpzq � πr2 � πpR12� z2q, (3.14)

and the curved surface area of the spherical cap Acap is given by

Acappzq � πpr2�h2q � πppR12� z2q�pR1� zq2q � 2πR1pR1� zq, (3.15)

where r is the radius of the circular crosssection and h is the height of the spherical cap (Fig. 3.9c).

Substituting these two area contributions into Eq. (3.13) yields our final model:

∆Fpzq � �πpR12� z2qγp1-p2 �2πR1pR1� zq∆γ
1
g-p, (3.16)

where we have used the short notation ∆γ1g-p to denote γ1g-p2
� γ1g-p1

, the difference in the surface

energy of the grafts interacting with the two polymers layers. Note that the above free energy

expression is only valid when the NP intersects the interfacial plane, i.e., �R1   z   R. For

z ¤�R1, the interfacial free energy is equal to F0, and therefore ∆Fpzq � 0. For z ¥ R1, the free

energy difference is entirely contributed by the grafts, and given by the difference in the surface

energy of the grafts in the two polymer layers, or in other words, ∆Fpzq � 4πR12∆γ1g-p.
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3.4.4 Surface-Tension Calculations

The model fits of the free energy profiles in Fig. 3.3 yielded best-fit values of the

surface energies γp1-p2 and ∆γ1g-p. We take a closer look at the magnitudes of the two fitted

quantities. The obtained value of γp1-p2 � 1.35 kBT{σ2 is reasonable when compared to the

surface tensions of 1–10 mN/m measured between weakly and strongly immiscible polymers

[133]; For instance, assuming room temperature and segment sizes on the order of a nanometer,

one obtains γp1-p2 � 5.6 mN/m for our CG system. We also tested how well the fitted value of

γp1-p2 matched against that estimated from the Helfand-Tagami theory [134], according to which

γp1-p2 � pχp1-p2{6q1{2σρ0kBT, (3.17)

where χp1-p2 is the Flory-Huggins parameter that quantifies the incompatibility of the two

polymers, σ is the effective size of a polymer segment, and ρ0 is the number density of these

segments in the bulk polymer. The Flory-Huggins parameter can be calculated using the standard

relationship

χp1-p2 � z∆w{kBT, (3.18)

where z is the average coordination number of the polymer segments (beads) in the two layers,

and ∆w � εp1-p2 � 1
2pεp1-p1 � εp2-p2q is an energy parameter describing the net interaction energy

associated with forming a contact between unlike polymer segments, i.e., p1 and p2. Using the

value of z � 12.5 obtained from simulations of the polymer bilayer at T � ε{kB, and the values

of εp1-p2 � 0, εp1-p1 � εp2-p2 ��ε prescribed by our CG model, we obtained γp1-p2 � 1.23kBT

via Eqs. 16 and 17. The model-fitted value of γp1-p2 � 1.35kBT obtained from our simulations

thus agrees quite well with both experiments and with estimates from theory.

The obtained ∆γ1g-p values are all smaller than γp1-p2 and increase with grafting density.

Since the chains of the compatible matrix are chemically identical to the grafts (so γ1g-p1
� 0), the

magnitude of ∆γ1g-p arises primarily from γ1g-p2
associated with the interactions between the grafts
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and the incompatible matrix. Hence, the small value of ∆γ1g-p, and of γ1g-p2
, seems reasonable

given that graft-matrix interface has a lower density of graft segments than matrix chain segments

at the polymer/polymer interface. The increase in ∆γ1g-p, and in γ1g-p2
, with grafting density Γg

also makes sense with denser grafting leading to larger number of unfavorable contacts with the

matrix and hence larger surface energy γ1g-p2
. Ideally, a proportional increase in ∆γ1g-p with Γg

might be expected. Instead, we find that the increase exhibits a weaker dependence ( Fig. 3.3D)

that is better described by a powerlaw

∆γ
1
g-p � 1.29γp1-p2Γg

0.66, (3.19)

suggesting an increased tendency of the grafted chains to extend themselves towards the compat-

ible polymer layer and avoid the incompatible layer with increasing grafting density.
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Table 3.1: Details of simulation systems examined in this study.

Lg
a Lm

b Γg
c ng

d nm
e V f

Isolated NPs

5–20 10 0.1–0.4 11–45 2206–6496 27000–80319

NP dimers

5 10 0.1–0.4 11–45 2196-2150 27000

NP trimers

5 10 0.04–0.3g 5–34 4245-4232 53905

Higher-order structures

5 10 0.1–0.3 11–34 4368–6552 54010–81031

aLength of grafted chains. bLength of matrix chains. cGrafting density. dNumber of grafted chains per NP. eNumber of matrix chains in

simulation box. f Volume of simulation box. gValues pertain to NP3 only. For NP1 and NP2, we used Γg � 0.52 and 0.32, and ng � 59 and 16,

respectively.
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(a) (b)

Representative configurations of grafted NPs with grafting 
length (A) Lg=5 and (B) Lg=10 showing the conformation of 
polymer grafts at their respective equilibrium positions (both 
at z = -2.5σ).

Figure 3.8: Representative configurations of grafted NPs, with two different graft lengths of
(a) Lg � 5 and (b) Lg � 10 beads, located at their respective equilibrium positions in the bilayer
(at z � �2.5σ from the interfacial plane). The flexible polymer grafts contort themselves to
maximize (minimize) contact with the compatible (incompatible) layer.
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Aint

Figure 3.9: Cartoons showing key aspects of our theoretical model for predicting NP positions
and free energies. (a) polymer-grafted NP completely immersed in the bulk of polymer layer p1
showing the two relevant polymer interfaces and their associated areas Aint and Asph. (b) NP
intersecting the interfacial plane highlighting its area Acirc occluded by the NP and the area Acap
of the new interface formed between the grafts and p2. (c) Radius of the circular crosssection r
and height h of the spherical cap formed by the intersection of the NP with the interface.
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(b)   Γg=0.1 (c)   Γg=0.4(a)   bare

z

10

5

0

-5

-10

0 5 10 15

r
0 5 10 15

r
0 5 10 15

r

1.2

1

0.8

0.6

0.4

0.2

0

Figure 3.10: Contour maps of the overall polymer segment density ρg+mpr,zq around bare
and grafted NPs located at their minimum-free-energy position zm. The density maps are
shown for NPs at three different grafting densities: (a) Γg � 0.0 (bare), (b) Γg � 0.1, and (c)
Γg � 0.4 beads{σ2. The ring-shaped density peaks around the NP cores suggest strong layering
of polymer segments. Color bar denotes the density in units of segments/σ3. Positions r and z
are defined as described in Fig. 3.8 caption.
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p1

p2

(b) Γg=0.1(a) bare

z=0

Figure 3.11: Representative simulated configurations of (a) bare NP, and (b) NP grafted with
chains at density 0.1 beads{σ2 placed at z��5σ showing some deformation of the interface
even when the particles are “far” from the interface (|z| ¡ RNP � 3σ).
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Figure 3.12: (a) Equilibrium positions zm of NPs predicted by the theoretical model compared
against those obtained from simulations. Black dotted line denotes perfect-agreement line.
(b) Surface energy ∆γ1g-p values obtained from model plotted as a function of grafting density.
Black dashed line denotes a power-law fit to the data.
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Figure 3.13: Equilibrium tilt-angles θ predicted by the model for NPs at different grafting
densities (as specified in plot) compared against angles measured from simulations. Black
dotted line denotes perfect-agreement line.
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HS

HT

(b)

(a)

Figure 3.14: Schematics showing particle arrangements in (a) square-ordered bilayer and (b)
hexagonal-ordered bilayer. Red dashed lines enclose the underlying square-pyramidal and
tetrahedral arrangement of NPs in the square and hexagonal bilayers. The vertical heights of
the square pyramid and tetrahedron, as denoted by HS and HT , provide the separation distance
between the two layers of NPs. The distances between the centers of the NPs forming each side
of the square base in the square pyramid and the triangular base in the tetrahedron are both equal
to R� � 6.12σ. From geometry, the heights of the square pyramid and the tatrahedron are then
given by HS � R�{?2 � 4.33σ and HT �

a
2{3R� � 5.0σ. The NP layers in the square and

hexagonal bilayers are therefore located roughly �4.33σ{2��2.16σ and �5.0σ{2��2.5σ

from the interfacial plane, respectively.

103



Figure 3.15: Representative configuration of a hexagonal-ordered monolayer obtained from
simulations of 6 polymer-grafted NPs at a polymer interface. All NPs were grafted with chains
miscible and immiscible with the bottom and top polymer layers, respectively. Inset shows the
structure from a view parallel to the interface.

104



Figure S9: Representative configuration of structures obtained from the assembly of unequal
numbers of the two anti-symmetric NP species grafted at Г" = 0.1 chains/#$. Structures
obtained from particle number ratios of (A) 1:6, (B) 2:6, and (C) 3:6 are shown. Inset shows
the structure from a view parallel to the interface.

(a) (c)(b)

Figure 3.16: Representative configuration of structures obtained from the assembly of unequal
numbers of the two anti-symmetric NP species grafted at Γg � 0.1 chains/σ2. Structures
obtained from particle number ratios of (A) 1:6, (B) 2:6, and (C) 3:6 are shown. Inset shows
the structure from a view parallel to the interface.
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(a) (b) (c)

Γg=0.15 Γg=0.2 Γg=0.3

Figure 3.17: Representative configurations of higher-order structures obtained from simulations
of 12 NPs with grafting densities of (a) 0.15, (b) 0.2, and (c) 0.3 beads{σ2 in a polymer bilayer.
Half of the NPs are grafted with chains miscible to polymer layer p1, and the other half are
grafted with chains miscible to p2. Insets show the structures from a view parallel to the
interface.
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Chapter 4

One-Dimensional Anomalous Diffusion of

Gold Nanoparticles in a Polymer Melt

4.1 Introduction

Functionalized metal nanoparticles (NPs) dispersed in a polymer matrix are of consider-

able interest scientific and technological. Dilute dispersions of NPs in polymers can serve as a

unique microrheological probe of the dynamics of the host polymer matrix, while at higher con-

centrations polymer nanocomposites (PNCs) are formed, which can exhibit a variety of complex

thermal, mechanical, rheological, plasmonic, optical and electrical properties [95, 104, 135–141].

Ensuring effective dispersion of the NPs is one of the key issues in synthesizing PNCs [142].

Consequently, the motion of the functionalized NPs in the embedding matrix is also of intrinsic

interest because it reveals how the NPs disperse at a microscopic level inside the polymer when

it is in the melt state.

It is known that functionalized nanoparticles introduced into a polymer matrix show

several different regimes of diffusion, ranging from classic Brownian motion to highly anomalous

diffusion depending on the degree of entanglement of the chains anchored to the NP’s with

the host polymer chain [143–158]. Of particular interest is the regime where the nanoparticle
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size is comparable to the mesh size, which is the case explored here. Dynamical measurements

may be made using multi-speckle dynamic light scattering (DLS) [143], photoluminescence or

fluorescence correlation spectroscopy [144, 145] or its X-ray analog, known as X-ray photon

correlation spectroscopy (XPCS) [146–156]. For NPs in polymer solutions, subdiffusive behavior

has been observed [144, 149]. For polystyrene (PS) melts, Guo et al. [152] found normal

hydrodynamic diffusion of Au NPs at high temperatures for host matrices of low to intermediate

MW, while a crossover to hyperdiffusion with ballistic-like motion occurred as the temperature

was lowered to below �1.1 Tg. Similar behavior was seen for alumina NPs in Polymethyl-

methacrylate (PMMA) host matrices [151]. This behavior may be attributed to the onset of

glassy behavior in the host matrix. Narayanan et al. studied the dynamics of Au NPs at the

surface of thin films of PS at temperatures well above Tg and observed almost normal diffusion

when the host matrix had a MW of 30 Kg/mole but ballistic-like motion for higher MW host PS

chains [154].

In DLS or XPCS experiments, one measures the normalized scattered intensity autocor-

relation function

g2pq, tq � xIpq, t 1qIpq, t 1� tqy
xIpq, t 1qy2 � 1�A | f pq, tq|2 (4.1)

where I(q,t) is the scattered intensity at time t, q is the wave vector transfer, the averages are

over time t1, and A (0   A   1) is the instrumental coherence factor (with A = 1 for complete

coherence of the beam). f(q,t) is the normalized intermediate scattering function (ISF) related to

the Fourier transform of the scattering function S(q, ω) and for uncorrelated particles is given by

f pq, tq � 1
N

¸
i

A
e�iq.rip0qeiq.riptq

E
(4.2)

where ri(t) is the position of particle i at time t and the bracket denotes an ensemble average. For

studies of the motion of NPs in polymers, the ISF generally has been fit with the form (isotropic

in q)
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f pq, tq �Ce�pt{τpqqq
β

(4.3)

where for normal diffusion, the exponent β =1 where D is the diffusion constant and τ(q)

=[Dq2]�1. The hyperdiffusive behavior observed previously for Au NPs in PS melts in certain

regimes is usually associated with β¡ 1 and τ(q) = [Vq]�1, where V has the dimensions of a

velocity related to a “drift velocity” of the NP, acquired due to the release of stresses at random

locations in the host matrix, as is believed to occur in jammed systems. An oscillatory g2

function can arise from uniform convective motion of the nanoparticles, if the scattered beam

were heterodyning with some static reference beam [159–161], or in homodyning from shear

flow [162], or a symmetric particle velocity distribution with a predominant magnitude of drift

velocity. From Eq. (4.2),

f pq, tq � 1
N

¸
i

A
eiq.rriptq�rip0qs

E
� 1

N

¸
i

@
eiq.vit

D

� 1
N

¸
i

@
eis.vi

D� »
dvPpvqeiv.s

(4.4)

where the vector variable qt has been defined by s and P(v) is the velocity distribution for the

particles. If P(v) is peaked around one particular magnitude of the velocity v, this will give rise

to an oscillatory f(q,t)1. From Eq. (4.4), P(v) can be obtained from the Fourier transform of f(q,t)

with respect to s. In this case, Fourier transforming f(q,t) can yield the distribution of particle

drift velocities [159, 163], as illustrated below. In several previous studies, β was found to be

dependent on both q and temperature, and in some cases τ(q) was found to crossover between the

forms given above at some values of q [146, 154]. Possible anisotropies in the particle motion or

oscillatory g2 functions have never been explored previously in the case of NPs in polymers.

In the present work, our collaborators, Sinha et al., report the results of XPCS studies

1Since g2(q, t) is |fpq, tq|2, a complex oscillatory f(q,t) will yield a constant. However, a symmetrical velocity
distribution will yield a real f(q,t), and thus an oscillatory g2 function.
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of functionalized Au NPs dispersed in molten PS that illustrates several such novel features,

including anisotropy effects, drift velocities, and the effect of stress in the host polymer network.

To validate the experimental observations, we present the results of molecular dynamics simula-

tions, which agree well with these experimental results and demonstrate the intermittent random

ballistic-like motion seen here.

4.2 Experimental Approach

The volume fraction of the NPs was very small, so as to minimally perturb the host

polymer. Two different sizes of Au NPs (13 nm and 18 nm diameter), were densely grafted

with ligands of linear PS of MW 38 Kg/mole to prevent aggregation, and dispersed at a volume

concentration of 0.5% in host matrices of linear PS of MWs of 13 Kg/mole (Tg� 90C), 30

Kg/mole and 97 Kg/mole (Tg� 100C) respectively, were studied as a function of temperature.

The high grafting density of the ligand chains (see Supporting Information) implies that they

form a brush and thus only the 13 Kg/mole host matrix chains can penetrate and wet the NPs

[164, 165].

The ligand-grafted NPs were mixed in solution and films were cast, embedding the NPs

in the polystyrene matrix. The mixture was then loaded into a flat stainless-steel sample container

(shown schematically in Supporting Information) with a circular opening. After the sample

was loaded into the cavity, Kapton windows were attached, using Momentive RTV106 high

temperature adhesive, to seal the sample. The samples were annealed at 180C in vacuum in

2 different orientations (illustrated in Sup. Fig. 4.5) for more than one day (24 hours) before

performing the XPCS measurements. In orientation A, the thermal gradient is along the plate-like

sample parallel to the long edge of the sample container (henceforth referred to as the z-axis).

For the other orientation the thermal gradient was along the x-axis, i.e. normal to the flat face

of the sample (orientation B in Sup. Fig. 4.5). XPCS experiments were performed at beamline

8-ID-I of the Advanced Photon Source at Argonne National Laboratory using 7.35 keV X-rays.
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Measurements were made for sample temperatures between 120C and 170C, where thermal

degradation is not expected to be significant. Some preliminary XPCS experiments carried out

on this system of NPs at the LCLS XFEL have been published previously [166].

For most XPCS measurements, the intensity auto-correlation function g2(q,t) is averaged

over all directions of q in the y-z plane (see Sup. Fig. 4.5) with the same magnitude q, on the

assumption of dynamical isotropy, to improve statistical accuracy of counting. In the present

experiment however, the pixels in the 2D detector were grouped into 36 pie-shaped sectors, each

subtending an angle of 10� at the center, and whose mean direction to the vertical is given by

the angle φ. φ = 0 corresponded to the direction parallel to the z-axis, i.e. long edge of the

sample container. The g2 functions were averaged in each sector over pixels corresponding

to a magnitude of q within ranges �∆q, where ∆q = 9.6�10�4 Å�1. Thus, we measured the

functions g2(q, φ, t).

The XPCS studies begin by discussing measurements made on samples annealed in

orientation A (see section 4.6.1). These samples show a progression from normal to anomalous

diffusion as the chain length of the PS in the host matrix is increased. For the 18nm Au NPs in

the host matrix of MW 13 Kg/mole at 160C the (g2-1) functions showed no dependence on sector

angle at any temperature, i.e. were isotropic, and could be described by a single exponential

for f(q, t), with relaxation times τ� q�2 as expected for normal Brownian motion, yielding a

value of D = 4450 Å2/sec for the diffusion constant at 160C (see Sup. Fig. 4.6 in Supporting

Information). Then the Einstein-Stokes relation yields for a particle with hydrodynamic radius 9

nm a viscosity of � 8�103 Poise which is close to the measured viscosity for PS with MW 13

Kg/mole at 160C [167]. This implies normal diffusion in an isotropic viscous fluid, as the host

polymer chains can penetrate the ligand brush.

Figure 4.1(a) shows the functions (g2 - 1) measured for the 18 nm Au NPs in the host

matrix of MW 30 Kg/mole (close to the entanglement MW) at 160C for q = 9� 10�3Å�1 for

several different angular sectors. One can see that these functions are oscillatory, but that the

period of the oscillation is independent of sector angle φ so that they are functions only of the
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Figure 4.1: (a) Isotropic (g2 - 1) functions for 18 nm gold particle in host Matrix MW=30
Kg/mole for T = 160C and q = 9� 10�3Å�1. The curves have been vertically displaced for
clarity. (b) 1/τ vs q and (c) ω vs q for the above mentioned system.

magnitude of q.

For the data shown in Fig.4.1(a), f(q,t) can be well described, for all q values, sectors and

temperatures in terms of a form for f(q,t) given by:

f pq, tq � Ae�pt{τq
β

cospωtq (4.5)

where β turns out to have a value of � 1.8, independent of q and almost temperature independent

(see Table 4.1 in Supporting Information). Thus the NP motion is isotropic and β¡1 indicates

that it is hyperdiffusive. The prefactor A also turned out to be essentially independent of q,

temperature and sample and has a value consistent with the instrumental coherence factor,

implying that there is no “escape from a cage” at very short timescales [155, 158]. For the above

system they find that τ = (1/v1)q�1 and ω = v2q, where v1 and v2 are constants (see Figs. 4.1(b)

and 4.1(c)). This corresponds to a ballistic motion of the NPs, with v2 representing the peak

velocity and v1 the width of the distribution.These turn out to be dependent on temperature and

the size of the NP. Similar results were found for the 13 nm diameter NPs.

Next they present results for the host matrix consisting of chains of MW 97 Kg/mole.

The dynamics they observed for this case were strikingly different for samples annealed in the

horizontal (B) and in the vertical (A) orientations. For the samples containing 18 nm Au NPs

annealed in orientation B, the results are very similar to those reported above for the 30 Kg/mole
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Figure 4.2: (a) Relaxation dynamics in terms of g2 - 1 as a function of τ at different angles
φ at T=160 C and q=9� 10�3 Å�1 for sample of 97 Kg/mole host matrix with nanoparticle
diameter 18 nm annealed in orientation A (�) and orientation B (�), plotted with 2 different time
scales as shown. The curves have been vertically displaced for clarity. Dependence of (b) 1/τ
and (c) ω as a function of qz (= qcosφ) at T=160 C for 18 nm Au NPs annealed in orientation A.
Inset panels in fig (b) and (c) represent the cases of samples at orientation B as a function of q.

MW host matrix, with isotropic, oscillatory (g2-1) functions which can be fit with Eq. (4.5).

For these samples β �2, implying a Gaussian spatial self-correlation function for the diffusing

particle with a width that increases linearly with time, as expected for ballistic motion.

However, the results for samples annealed in orientation A for the same host matrix of

MW 97 Kg/mole are very different. Figure 4.2(a) shows the functions (g2-1) for the 18 nm Au

NPs for both annealing orientations for q = 9�10�3 Å�1 for several different sector angles φ.

It can be seen that for this orientation these functions are also oscillatory, but in this case the

period of the oscillation varies with φ. They can be well fitted for all q values, sector angles φ

and temperatures, with the form for f(q, t) given by Eq. (4.5), where τ=(1/v1) (q cosφ)�1 and ω

= v2q cosφ. Note that (q cosφ) is simply qz the component of q along the z-axis. Thus in this

case f(q,t) may be rewritten as

f pq, tq � Ae�pv1qztqβ

cospv2qztq (4.6)

This corresponds to one-dimensional ballistic motion along the z-axis, with v1 and v2

representing 2 characteristic velocities, which are temperature dependent. By Eq. (4.4), the

velocity distributions can be obtained from the Fourier transform of f(q,t). Figure 4.3 show
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Figure 4.3: The variations of (a) v1 and v2 for the 13nm and 18nm Au NPs samples with
97 Kg/mole host matrix annealed in orientation A, as a function of temperature. Velocity
distributions at T=160 C for NPs in (b) 97Kg/mole and (c) 18nm Au NPs in the 30Kg/mole
host matrices annealed in orientation A.

the isotropic velocity distribution of the 18 nm NPs between v and pv�dvq in the 30 Kg/mole

MW host matrix, the velocities v1 and v2 for the 13 nm and 18 nm Au NPs as a function of

temperature, and the corresponding one-dimensional distributions of particle velocities along the

z-axis obtained by Fourier transforming f(qz,t) in the 97 Kg/mole MW host matrix, for samples

annealed in orientation A. Paradoxically, the larger NPs have higher drift velocities. They argue

that this may be due to the fact that the host matrix chains penetrate even less into the larger

NPs which have a higher density of grafted ligand chains, thus providing less resistance to drift

motion. In order to confirm this very unusual anisotropic motion of NPs, they repeated these

experiments on new but similar samples after a reasonable interval of time, with identical results.

These distributions peak at v = �v2. The present results show that the particle motion

can be described statistically in terms of a one-dimensional Levy flight [168], with a random

distribution of jump lengths, and a drift velocity along the z-axis between jumps, i.e. a Levy walk

[169], on a time-scale typically longer than the range of time scales measured for g2(q,t), with a

distribution of velocities around �v2. This distribution can be described statistically by a Levy

stable distribution [163, 168, 169]. As shown in the Supporting Information, P(v-v2) behaves

asymptotically as (v-v2)�p1�βq as expected for Levy stable distributions. They hypothesize that

the one-dimensional motion of the NPs arises from the dynamic alignment of the polymer chains

of the host matrix along the z-axis due to the NP motion along the direction of heat flow, during
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the thermal annealing process in orientation A, as discussed below.

4.3 Modeling and Simulations of Nanoparticle Diffusion

To test the above hypothesis, we conducted molecular dynamics simulations of a gold

NP diffusing in a polymer melt that is relaxing from a state with pre-aligned polymer chains in

the z-direction (see Supporting Information for details of calculations) [79–82]. In particular, we

examined 2 systems: a single PS-grafted (MW� 38 Kg/mol) NP diffusing within an unentangled

PS matrix (with short chains of MW � 13 Kg/mol) and in an entangled PS matrix (with long

chains of MW � 143 Kg/mol). During the simulations, the mean squared displacement (MSD)

of the NP and its components along the x, y, and z directions were calculated. We also calculated

the ISF f(q, t) defined in Eq. (4.2) for values of q = (2π/L)(nx,ny,nz); nx,ny,nz are integers, and L

is the size of the simulation box (which was taken to be as large as possible, i.e. 55σ, where σ is

the bead size. See Supporting Information). This is at least 5 times larger than the hydrodynamic

size of the polymer-grafted NP.

We performed calculations of f(q,t) with q along the x, y, z directions (which we label

f1,x, f1,y, and f1,z respectively) with nx, ny, nz ranging from 1 to 6. (Values   1 correspond to

wavelengths incompatible with the periodic boundary conditions). In the short-chain PS system,

simulations demonstrate a linear trend of the overall MSD with t and almost equivalent values of

the MSD in the x, y and z directions (Fig. 4.4(a)) suggesting normal isotropic diffusive behavior

of the NP, as observed experimentally. However, in the higher MW system, the MSD curves are

proportional to t2 over most of the time scale investigated, which corresponds to ballistic motion

(Fig. 4.4(b)), though they eventually become linear at much longer times. The x, y components

of the MSD are very small, while the z component is almost identical to the total MSD, implying

highly anisotropic motion of the NP along the z-direction. (In the Supporting Information section,

we discuss how the length- and time-scales of the simulations can be mapped onto the length-

and time-scales of the experimental measurements).
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Figure 4.4: Mean square displacement (MSD) and ISF computed from simulations. (a) Overall
MSD as a function of time and its x, y, z components of gold NP in MW = 13 Kg/mol polymer
host matrix. (b) Overall MSD and its x, y, z components and (c) ISF modulus square |f1,z|2 as
a function of t(sec) of gold NP in MW = 143 Kg/mol polymer host matrix. All f1 curves are
normalized and shifted vertically. Here, q (n) = 2πn/(55�45) Å�1.

Interestingly, the simulations also show damped oscillatory behavior of the f1,z curves with

time, for different values of qz (Fig. 4.4(c)), which agree with what is observed experimentally in

terms of the number of oscillations observed, the positions and amplitudes of the oscillations,

and the overall range of time scales. Our simulation reveals ballistic motion with velocities vsim

� 71 Å/s in the same range as the experiments vexp � 38 Å/s. The reason that vsim is higher than

vexp is likely because the system temperature in the simulations was held fixed at T � 485 K

while it was T � 434 K in the experiments.

Note that an oscillatory f1 does not imply oscillatory motion of these particles, but rather

confirms the drift like motion. However, following the motion of the particle in the simulations

did indicate frequent reversals of the direction of motion of the particle. The corresponding

f1,xy curves decay without significant oscillation, indicating that the ballistic motion of the NP

is confined to the z direction only. It confirms that this anisotropic motion of the NP can be

replicated only in the high molecular weight PS host matrix. Although a rigorous theory is

lacking, it is likely that the ballistic motion of the NPs through the higher MW chains of the

host matrix (which cannot penetrate the ligand chain brushes on the NPs) is due to thermal

gradients and/or release of stresses caused by local distortions in the network. In the case of the

97 Kg/mole host matrix, and samples annealed in orientation A, where the thermal gradient is
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along the z-axis, this motion can cause dynamical alignment of the host matrix chains. This can

be seen by considering the Weissenberg number [170] for this situation given by Wi = (v2/D)τm

where the first factor is the shear rate (v2 being the NP velocity, D its diameter) and τm is the

terminal chain relaxation time. Inserting appropriate values for the latter for the 97 Kg/mole

PS chain [171], we find Wi ¥ 1, which can result in chain alignment, as observed, with the

particles drifting in both directions along the aligned chains. For the 30 Kg/mole PS chains with

faster relaxation times or samples annealed in position B (with no strong thermal gradient), such

alignment does not occur, and the resulting motion is isotropic. Movies of the simulation of

the motion of the NP within the host polymer matrices may be accessed online (see Supporting

Information).

4.4 Conclusions

In summary, our collaborators and us have discovered cases of novel highly anisotropic

ballistic motion with characteristic drift velocities for densely grafted functionalized Au NPs

moving in high molecular weight polymer melts. We believe that the cause is dynamical

alignment of the chains by the NPs as they move driven by thermal gradients and release of

stresses in the network, but to our knowledge, there has been no theory to account for ballistic

motion of NPs in polymer networks. The theoretical treatment of Bouchaud and Pitard of jammed

colloidal particles moving due to the release of elastic stresses in the medium, characterized

by β¡ 1 and τ � q�1 [172] may be more appropriate to the present case. However, it is

remarkable that all these phenomena, are semi-quantitatively reproduced by the molecular

dynamics simulations reported here. Together, the experimental measurements and simulations

provide a detailed description of anomalous NP motion in an entangled polymer network.
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4.5 Supporting Information

4.5.1 XPCS details

Sup. Fig. 4.5 shows schematically how the samples were loaded into the container and

annealed prior to the XPCS measurements. Initial annealing of the samples was carried out prior

to the scattering measurements in a vacuum oven at a temperature of 180C in two orientations A

and B shown (see Sup. Fig. 4.5) where the heat flow was respectively along and normal to the

face of the thin sample holder as shown. Before the XPCS measurements, small angle X-ray

scattering (SAXS) patterns were measured for each sample. The scattering could be described

with the squared form factor of the gold nanoparticles, as expected for well-separated gold

particles, together with increased scattering at smaller q values. To ensure that the latter was not

due to aggregated clusters of the nanoparticles, we verified that the same scattering occurred in a

polymer melt without Au NPs, indicating that this was due to large length scale heterogeneities

in the polymer itself.

Sup. Fig. 4.6 shows the results for the 18 nm PS-grafted Au NPs in the lowest MW host

matrix of 13 Kg/mole PS, showing normal isotropic diffusion.
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Figure 4.5: (a) Illustration describes the detailed procedure of experiments including loading
polymer nanocomposite(PNC) melt into the kapton window sealed sample holder and annealing
vertically (Orientation A) and horizontally (Orientation B) under high vacuum at temperature
higher than the Tg of the sample. (b) Schematic elucidates the X-ray Photon Correlation
Spectroscopy (XPCS) beamline setup used for this measurement.

Figure 4.6: (a) (g2-1) as a function of delay time (t) with different φ’s at temperature T = 160C
& q = 9� 10�3 Å�1 for vertically annealed samples of 18 nm nanoparticles grafted with 38
Kg/mole PS ligands in polymer matrix of MW 13 Kg/mole showing relaxation in terms of (b)
Variation of (1/τ) vs q2 shows pure diffusional motion for the same system.
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4.5.2 Derivation of Particle Velocity Distributions.

(a) Ballistic motion; Isotropic case:-

Since τ and ω are � q�1, The function f(q,t) given in Eq. (4.7) of the paper is a function

only of the single variable qt, which is denoted by s, and can be related to the particle velocity

distribution P(v) by Eq. (4.8) of main text so the reverse Fourier transformation yields, for the

function W(v), the probability of the velocity being between v and (v+dv),

W pvq � 4πv2Ppvq � 2Av
π

» 8

0
dsse�pv1sqβ

cospv2sqsinpvsq (4.7)

(b) Ballistic motion; Anisotropic case:-

The function f(q,t) in this case is a function of the single variable qzt which is denoted by

s, and may be Fourier inverted to yield a one-dimensional distribution of particle velocities along

the z-axis between v and (v+dv)

W pvq � 1?
2π

» 8

�8
dse�ivsep�v1sqβ

cospv2sq

� 2?
2π

» 8

0
dscospvsqep�v1sqβ

cospv2sq (4.8)

This corresponds to the characteristic function of the Levy stable distribution Lµ,o[169]

shifted around th evelocity v2, where µ=β. Sup. Fig. 4.7 shows a double logarithmic plot of

this velocity distribution showing that its asymptotic form is (v-v2)�p1�βq as expected from the

theory of Levy stable distributions [169].

4.5.3 Molecular Dynamics Simulations

To investigate the anisotropic diffusion of gold NP, we performed molecular dynamics

simulations of a polymer-grafted NP diffusing in both nonentangled and entangled PS polymer
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Figure 4.7: (v-v2)�pµ�1q asymptotic behavior of velocity distribution at 160C for two different
gold nanoparticle sizes. The numbers on the plot indicate the power laws of the two curves.

Table 4.1: The parameters obtained from fitting of XPCS data for samples at T=160C with
different nanoparticle size, host matrix and annealing conditions.

Annealing condition Nanoparticle diameter Host matrix β A v1 v2
(nm) molecular weight(Kg/mole) (Å/s) (Å/s)

Orientation A (Vertical) 18 13 1.0 0.037 �0.003 D � 4450 Å2/s
Orientation A 18 30 1.73 � 0.07 0.038 �0.001 11.95 27.6
Orientation A 13 97 1.80 � 0.05 0.053 �0.004 3.56 23.1
Orientation A 18 97 1.88 � 0.05 0.037 �0.003 6.96 34.4

Orientation B(Horizontal) 18 97 1.98 � 0.06 0.044�0.003 1.85 20.1

melts. A coarse-grained (CG) model was adopted for improving computational efficiency [79],

where PS segments are treated as beads of size σ and mass m. Due to computational limitations,

we used a large size mapping factor by setting 1σ=4.5nm. The excluded volume interaction

between each pair of polymer segment was treated using a short-range, purely repulsive (WCA)

potential [80]:

Uev �

$'&
'%

4ε

��
σ

r

�12� �σ

r

�6� 1
4

�
r ¤ 21{6σ

0 r ¡ 21{6σ

, (4.9)

where r is the distance between the segments. For those adjacent polymer segments in the same

chain, a finitely extensible nonlinear elastic (FENE) spring was applied to connect them with

potential energy given by

UFENE ��k
2

R2
0 ln

�
1�

�
r

R0


2
�
, (4.10)
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Figure 4.8: Snapshot of Molecular Dynamics Simulation with a PGNP and its trajectories
inside a periodic box.

where r is the distance between the bonded segments, R0 is the maximum possible length of the

spring, k=30ε/σ2 is the spring constant, and ε sets the energy scale of the system. The NPs were

also treated using CG model as spheres of diameter DNP=4σ, consistent with the 18nm NPs used

experimentally. The excluded volume interactions between NPs and polymer segments were

treated using an WCA expanded potential:

UWCA-expand �

$'&
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� 4ε

��
σ

r�rev

	12�
�

σ

r�rev

	6� 1
4

�
r� rev ¤ 21{6σ

� 0 r� rev ¡ 21{6σ

(4.11)

where r is the distance between the centers of NP and polymer segments. rev � pDNP�σq{2
is a distance shift that prevents the polymer segments and the NP from penetrating each other.

The grafted chains were tethered onto the surface of NPs also by using FENE springs, and with

pseudouniform distribution of grafting points at desired grafting density using the “generalized

spiral points” algorithm of Rakhmanov et al. [81, 82].

A rough mapping scheme provided by Kremer and Grest for PS melts suggests that each
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polymer bead corresponds to a PS segment of MW � 515 g/mole and length � 1.26 nm, while a

reduced temperature of T = 1 corresponds to � 485 K [79]. Accordingly to this mapping scheme,

our experimental system should yield very long bead-chains and large NPs, whose simulations

are beyond our computational capability, in spite of the CG representation. To this end, we chose

to simulate systems 3.6 times smaller or shorter than the experimental system, and then used

a scaling approach to extrapolate our results to the larger experimental system. Subsequently,

the 18-nm NPs were represented by spheres of DNP = 4σ and the 38 Kg/mole PS grafts were

represented by CG bead-chains containing 20 beads. Similarly, the 13 Kg/mole, 30 Kg/mole, and

97 Kg/mole chains studied experimentally should be represented by 7-, 16-, and 52-beads long

CG chains. However, because the onset of chain entanglement in the Kremer-Grest model occurs

at N � 50 beads, we chose to use slightly longer chains containing 78 beads corresponding to

143 Kg/mole PS matrix to ensure that our CG polymer melt fell in the entanglement regime. For

the representative short-chain host matrix, we chose to use the 13 Kg/mole PS chains that were

studied experimentally.

To test the hypothesis that the anomalous diffusion of gold NP arises from the interactions

with vertically aligned PS chains due to thermal annealing, each simulation was started from a

non-overlapped configuration of a single NP surrounded by vertically aligned PS host matrix

chains in a large simulation box employing periodic boundary conditions (PBCs). The initial

condition was meant to provide a way to produce slightly more aligned chains compared to

completely isotropic system. The box was then quickly compressed to a reasonable polymer

melt-like density 0.85 nbeads/Vbeads, where nbeads is the total number of the polymer beads in the

simulation box, and Vbeads is the volume occupied by the polymer beads. Each dimension of

the simulation box was set to a large size to suppress anomalous propagation of hydrodynamic

effects through PBCs and allow exploration of low q-values in g1 calculations. Once the polymer

melt-like density was reached, 1 million time steps would be given to the system for polymer

relaxation, and the calculation of g1 and MSD would be performed afterward, while the polymer

host matrix chains remain preferentially vertically aligned. Each simulation was performed for
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10 million time steps. To rationally map the simulation time τ to real timescale, we compared

the diffusion coefficients of gold NP in the shortest PS host matrix system acquired respectively

in simulation (1.69�10�1 nm2/τ) and experiment (44.5 nm2/s). If the simulation replicates

the dynamics of the experiment system well, it should provide a similar value. By comparing

the results, we obtained that 1τ = 3.80�10�3 s, which effectively scales the time frame of

simulation into experimental time frame as observed. The snapshot of particle trajectory is

shown in Sup. Fig. 4.8 and complete trajectories of PGNP in both lower and higher molecular

host matrix are uploaded as separate supplementary movies.
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Chapter 5

Conclusion and Future Work

In this dissertation, we explored the intriguing phenomenon of nanoparticle (NP) self-

assembly, particularly in how one could create anisotropic assemblies using NPs that are inher-

ently isotropic. We began by investigating the role of polymer-mediated interactions between

NPs in the formation of anisotropic structures comprised of spherically-symmetric polymer-

grafted NPs. The polymer-mediated portion of the potential of mean force (PMF) and three-body

contribution were both found to be highly anisotropic. This anisotropy was shown to arise from

the expulsion of polymer grafts from in between the dimer NPs, which provides direct support

for the hypothesis that the anisotropic interactions could arise from the conformational rearrange-

ment of grafted chains at the contact region. The overall PMF also allowed us to compute the

free energies of formation of two- and three-particle clusters, yielding a phase diagram analogous

to that observed experimentally. Next, we proposed a novel approach for assembling spherical

nanoparticles into anisotropic architectures in a polymer matrix. The approach relies on two key

ingredients: the interfacial tension between two mutually immiscible polymers forming a bilayer

that serves to trap NPs within two-dimensional planes parallel to the interface; and the differ-

ences in the compatibility of the two polymer layers with polymer grafts on particles introduce

a linear field that displaces the harmonic trap away from the interface. We demonstrated the

viability of the proposed approach in both trapping NPs at tunable distances from the interface
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and assembling them into a variety of unusual nanostructures, such as dimers with tunable tilt

and trimers with tunable bending angle, as well as anisotropic macroscopic phases, including

serpentine and branched structures, ridged hexagonal monolayers, and square-ordered bilayers.

We also developed a theoretical model to predict the preferred positions and free energies of

NPs trapped at or near the interface that could help guide the design of polymer-grafted NPs

for achieving target NP architectures. Lastly, we investigated the dynamics of polymer-grafted

gold nanoparticles loaded into polymer melts. Our collaborators experimentally discovered

cases of novel highly anisotropic ballistic motion with characteristic drift velocities for densely

grafted functionalized Au NPs moving in high molecular weight polymer melts, which they

hypothesized is caused by the dynamical alignment of the chains by the NPs as they move driven

by thermal gradients and release of stresses in the network. We performed molecular dynamics

simulations of a single gold nanoparticle diffusing in a partially aligned polymer network to test

this hypothesis and reveal very similar anisotropic ballistic motion of NP in the higher molecular

weight system. We also performed calculations of normalized intermediate scattering function

from the simulations that quantitatively agree with that observed experimentally. Our simulations

were able to reproduce the experimental results to a remarkable degree and provide direct support

to the above hypothesis.

An interesting result found in our computed phase diagram of isotropic versus anisotropic

3-particle clusters was that it revealed possible existence of a hidden stable dimer phase within

a small window of parameter space, where the 2-particle PMF exhibits an attractive minimum

while the 3-particle PMF is purely repulsive due to the polymer redistribution effect. It would

be interesting to experimentally test the existence of such a phase and to further investigate

and map out its precise location within the grafting parameter space. We also envision the

proposed approach of trapping NP at the interface has potential to create a vast array of other

unique and interesting macroscopic phases. For instance, by including multiple tilted dimers and

carefully tailoring their interactions and conformational rearrangement of the graft polymers,

one may be able to confine the assembly of dimers in one-dimensional space and achieve quasi
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one-dimensional structures such as staggered, zig-zag, crisscross, or even helix NP wires. One

could also employ the idea of creating open angle trimer but instead use unequal number of NPs

with different sizes on different sides of the interface to create asymmetric clusters, and assemble

them into superlattices with different patterns and periodicities on either side of the interface.

In addition, this approach can be used to trap not only spherical NPs but also shaped NPs such

as cubes, ellipsoids, and rods accompanied by orientation changes. Indeed, we have observed

in preliminary work via molecular dynamics simulations that nanocube equilibrium orientation

can be tuned to achieve face-up, vertex-up, and edge-up configurations simply by adjusting the

properties of the grafted polymers. We have also observed an interesting phenomenon where

multiple dispersed nanocubes in one polymer layer can inhibit the aggregation of nanocubes

in another layer, resembling observations made experimentally by our collaborators. All these

topics will require further investigation both experimentally and through simulations to fully

understand the mechanisms. In summary, this dissertation has opened up new avenues to

assemble nanoparticles into unconventional anisotropic architectures with potential applications

in advanced polymer nanocomposites.
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