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Proteins and Nucleic Acids
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1Department of Bioengineering, University of California Riverside, 900 University Avenue, 
Riverside, CA 52512, United States

2Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, 
CA 52512, United States

Abstract

Many large protein-nucleic acid complexes exhibit allosteric regulation. In these systems, the 

propagation of the allosteric signaling is strongly coupled to conformational dynamics and 

catalytic function, challenging state-of-the-art analytical methods. Here, we review established and 

innovative approaches used to elucidate allosteric mechanisms in these complexes. Specifically, 

we report network models derived from graph theory and centrality analyses in combination with 

molecular dynamics (MD) simulations, introducing novel schemes that implement the synergistic 

use of graph theory with enhanced simulations methods and ab-initio MD. Accelerated MD 

simulations are used to construct “enhanced network models”, describing the allosteric response 

over long timescales and capturing the relation between allostery and conformational changes. 

“Ab-initio network models” combine graph theory with ab-initio MD and quantum mechanics/

molecular mechanics (QM/MM) simulations to describe the allosteric regulation of catalysis by 

following the step-by-step dynamics of biochemical reactions. This approach characterizes how 

the allosteric regulation changes from reactants to products and how it affects the transition state, 

revealing a tense-to-relaxed allosteric regulation along the chemical step. Allosteric models and 

applications are showcased for three paradigmatic examples of allostery in protein-nucleic acid 

complexes: (i) the nucleosome core particle, (ii) the CRISPR-Cas9 genome editing system and 

(iii) the spliceosome. These methods and applications create innovative protocols to determine 

allosteric mechanisms in protein-nucleic acid complexes that show tremendous promise for 

medicine and bioengineering.
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Introduction

Allostery is a fundamental process by which biological macromolecules transmit the effect 

of a local perturbation (e.g. a binding event) at one site to a distal, functional site, 

allowing for regulation of activity.[1,2] This property plays a cardinal role in biological 

processes, as it enables signal transduction and drug-drug synergy.[3–8] Further, many 

large protein-nucleic acid complexes require facile communication between multi-domain 

structures for proper functionality.[9–13] Thus, structural remodeling and long-range 

allosteric communication are the main mechanistic determinants underlying their function 

in cells. Processes including DNA/RNA replication, chromatin packaging, gene editing and 

regulation involve these complexes, demonstrating the profound biological importance of 

allosteric regulation. Here we focus analysis of allostery on three systems for which this 

paradigm holds: 1. the nucleosome core particle,[14] which is the fundamental unit of 

chromatin, 2. the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 

complex,[15] which recently emerged as a transformative gene editing technology, and 3. 

the spliceosome,[16] which performs RNA splicing in eukaryotes (Fig.1). These systems 

hold tremendous potential for biomedicine, potential hampered by a poor fundamental 

understanding of the mechanisms that might be viable targets for their application.

Allosteric pathways in biomolecular systems have been widely investigated,[3–8,17–19] 

with a number of theoretical and experimental studies[20–23] revealing the significance of 

conformational dynamics. These studies led to the current idea that the propagation of the 

allosteric signaling arises from a concert of multiple timescales, over fast and slow motions, 

which transfer the information on multiple binaries.[24–26] This concept applies well to 

large macromolecular machines that process nucleic acids, where slow conformational 

changes and fast local perturbations could both impact the information transfer. Such 

phenomena can be examined in detail through the use of All-Atom MD simulations.[4–

9,27,28] By capturing atomic fluctuations and conformations, MD can uniquely describe 

the subtle dynamical changes associated with allosteric signaling. This has greatly enriched 

the experimental determination of the allosteric phenomena attained through NMR, X-ray 

crystallography, cryo-EM and single-molecule experiments.

The data obtained from MD simulations, though beneficial on their own, can also be 

effectively organized into network models derived from graph theory and centrality analyses, 

a methodology particularly useful for examining allosteric mechanisms. Here we present 

synergistic schemes, such as “enhanced network models”, which enable access to long 

timescale dynamics and capture the relation between allostery and conformational changes. 

We introduce a novel approach combining graph theory with ab-initio MD and quantum 

mechanics/molecular mechanics (QM/MM) simulations to decrypt the allosteric regulation 

of catalysis. These “ab-initio network models” have been introduced to describe how 
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long-range allosteric signals affect the DNA cleavage in CRISPR-Cas9, proposing a tense–

to–relaxed allosteric regulation along the chemical step. Altogether, interfacing different 

simulation techniques with graph theory creates innovative protocols to access multiple 

timescales and capture the role of the signal transduction in the biophysical and chemical 

function of proteins and nucleic acids. The innovative methods and applications described 

here will inspire and impact future studies of allostery in large proteins and nucleic acid 

complexes.

Critical overview of the field

Nonstop development of more powerful supercomputers and smarter algorithms enables 

researchers to study biomolecules of increasing motion complexity, reaching timescales 

from nanoseconds (ns) to microseconds (μs). This is critical to identify transitions and 

short-lived conformations that escape experimental characterization.[29] Nevertheless, 

investigating allosteric mechanisms in large proteins through MD is often difficult. 

Indeed, the biological function of such large macromolecular machines relies on slow 

dynamical motions ranging from μs to milliseconds (ms), which are associated with the 

(re)organization of protein domains and long-range conformational effects.

This challenges the state-of-the-art computational approaches, requiring methods that 

enhance the sampling of the configurational space to access long timescale dynamics. 

Another intriguing aspect of large biomolecules is that allostery can often activate catalysis,

[30] but the relation between the two phenomena is yet to be fully clarified. This relation can 

rely on the transmission of signaling over short timescales.[17,24–26,30,31] This transfer of 

information “cliques” the catalysis, but a comprehensive characterization has not yet been 

given. It is also largely unknown how the allosteric regulation changes from reactants to 

(R) to products (P) and how it affects the transition state (TS‡). In this complex scenario, 

an in-depth investigation requires novel strategies that leverage a variety of computational 

methodologies, able to capture the different extent of the motions. Enhanced sampling 

simulations are required to extend the timescale limits of classical MD and capture long 

timescale conformational changes.[32] Furthermore, since classical MD simulations are 

based on force field parameterization, they are unable to describe bond breakage and 

formation, and cannot be employed to understand the relation between catalysis and 

allostery. To overcome this limitation, quantum mechanical simulations can be valuable to 

study the allosteric response along the catalysis. These simulations allow one to integrate the 

equation of motion from the first quantum mechanical principles and are commonly referred 

as ab-initio MD simulations.[33]

Other long-lasting limitations associated to classical MD refer to the accuracy of the 

empirical force field in reproducing the experimental (or quantum mechanical) properties. 

Though ceaseless refinement of the most popular force field models – OPLS,[34] AMBER,

[35] GROMOS[36] and CHARMM[37] – is leading to good representations of proteins. 

For nucleic acids, the description of base-pairing, stacking and base/sugar interactions can 

be challenging. Improvements to the Cornell et al. model[38] led to the correction of 

several parameters, from van der Waals to electrostatic terms and dihedral parameters. These 

include the bsc0 corrections of the unbalanced α/γ transitions in DNA,[39] and the χOL3 
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corrections for RNA,[40,41] which balances the anti and the high-anti conformation related 

to the χ angle. Studies summarized here have indicated the reliability of these models for 

protein/nucleic acid complexes. Moreover, computational studies of protein allostery can be 

fundamentally assisted by solution NMR.[42] In this respect, recent force field models have 

improved the consistency of the backbone conformational ensemble with NMR experiments,

[43] and were used in combined MD-NMR studies discussed here.[44,45]

Overall, considering these challenges, our contribution accounts methods and innovative 

approaches to efficiently decrypt dynamic allostery in proteins and nucleic acids. Methods 

and applications showcased here will help in creating novel protocols to determine the 

allosteric network of communication over multiple scales, as well as the relation between 

allostery and catalysis, which has remained unaddressed through classical approaches.

Allosteric proteins and nucleic acids

Here, we introduce the biomolecular function of the three proteins-nucleic acid complexes 

that will be used as paradigmatic examples of allosteric mechanisms.

The nucleosome core particle is the fundamental unit of chromatin, composed of 

chromosomal DNA of 145–147 base pairs, wrapped around an octamer of four core 

histone proteins (H3, H4, H2A and H2B, Fig. 1a).[14] Nucleosomes have the essential 

role of compacting DNA in eukaryotic cells, where the majority of DNA assumes a packed 

conformation, rather than as free oligonucleotides or non-protein–DNA complexes. The 

allosteric regulation of nucleosomes have been well characterized, [11,48] revealing the 

effect of local alterations of the histones’ dynamics on the protein and DNA binding 

properties at distal sites. Moreover, drug targeting of nucleosomes can exploit histones’ 

allostery to achieve drug-drug synergistic effects.[49,50] This regulation is promising 

for developing new therapeutic strategies that could interfere with chromatin compaction.

[51,52] In fact, allosteric drugs can hinder the binding of chromatin transcription factors that 

modulate gene expression in cancer cells, leading to new strategies for anticancer therapy.

CRISPR-Cas9 is the core of a transformative genome editing technology that is 

innovating biomedicine, pharmaceutics and agriculture.[15] Cas9 is an RNA-guided DNA 

endonuclease, which generates double-stranded breaks in DNA by first recognizing its 

protospacer-adjacent motif (PAM) sequence, and then cleaving the two DNA strands via 

the HNH and RuvC nuclease domains. The large multi-domain Cas9 protein comprises a 

recognition (REC) and a nuclease (NUC) lobe, the latter including the catalytic domains 

and the PAM-interacting region (Fig. 1b).[46] At the molecular level, an intricate allosteric 

signaling regulates the CRISPR-Cas9 biochemical information transfer to activate double-

stranded DNA cleavage.[53,54] This allosteric communication is critical for transmitting the 

DNA binding information, affecting the function and specificity of Cas9. Its knowledge is 

essential for the system’s activation and for improving its genome editing applicability.

The spliceosome, a multi-mega Dalton assembly of proteins and small nuclear RNAs, 

is one of the most important non-coding RNA–protein complexes in humans (Fig. 1c).

[16] By performing RNA splicing, the spliceosome edits the premature messenger RNA 

(pre-mRNA), which is cleared of its non-coding sections (introns). The coding exons 
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are then ligated, forming messenger RNA (mRNA) which is subsequently translated into 

proteins. The spliceosome is composed of hundreds of proteins and five small nuclear 

ribonucleoprotein particles (snRNPs: U1, U2, U4, U5, and U6), which undergo a continuous 

conformational and compositional remodeling during the splicing cycles.[47] Understanding 

the inter-protein/RNA communication can pose the foundations to interfere with the 

spliceosome function, a clinically significant goal considering splicing deregulation is 

associated with more than 200 human diseases.

Allostery as a violin or a domino

The early models on protein cooperativity have been a stepping stone to the understanding 

of allostery as a fundamentally a dynamic phenomenon.[1,55,56] It is now established that 

allostery is characterized by a change in the dynamical properties. Indeed, the binding 

of an allosteric effector (e.g., a drug or a substrate) can induce major conformational 

rearrangements or subtle shifts in the conformational ensemble, resulting in the transmission 

of the binding information to distal sites.[5] This favorable free energy change, induced 

by effector binding, can be characterized by enthalpy, which implies an explicit change of 

conformation, or by entropy, as in the case of allostery without an explicit conformation 

change.[57]

A brilliant interpretation of the signal transmission suggested that this phenomenon can 

resemble a “violin” or a “domino”.[58] In the violin model, the binding of an allosteric 

effector (i.e., a drug or substrate) triggers a pattern of vibrations, which results in the 

activation of the system at distal sites. This behavior is analogous to a violin, when the 

player pitches a string (ligand binding) and triggers a pattern of vibrations that transfers 

itself to the sounding board (the biomolecule) for function. Substrate binding thereby shifts 

the conformational ensemble by altering the system’s motions in a non-specific way. On 

the other hand, in a domino model effector binding triggers a sequential set of local events 

propagating via a well-defined pathway from one allosteric active site to the other. Two 

examples that show the difference in mechanism between the “violin” and “domino” models 

are CRISPR-Cas9 and the nucleosome core particle (Fig. 2).

In the CRISPR-Cas9 complex, the binding of the PAM recognition sequence triggers 

coupled motions within the protein framework, resulting in a shift in the conformational 

dynamics (Fig. 2a).[10] In this case, PAM is the allosteric effector “pitching” the right cord 

and triggering a pattern of vibrations that transfers across the system. In-depth analysis of 

the dynamics of CRISPR-Cas9 bound to PAM and of its analogue crystallized without 

the PAM sequence revealed that PAM binding substantially strengthens inter-domain 

correlations between the RuvC and HNH catalytic domains. This suggested that PAM 

binding activates the system for concerted cleavages of the two DNA strands. Analysis of 

the allosteric inhibition in CRISPR-Cas9 also suggested a violin model, where the inhibition 

shifts the conformational ensemble toward a less catalytically competent state.[59] In the 

nucleosome core particle, the binding of two unrelated metal compounds – viz., RAPTA-

T and auranofin – that yield a synergistic activity in killing cancer cells, has shown to 

activate an allosteric response though a mechanism that resembles the “domino” model 

(Fig. 2b).[49] Crystallographic studies have shown that RAPTA-T and auranofin bind the 
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nucleosome core particle located at a ~40 Å distance from each other. Hence, experimental 

characterization of the synergistic activity was limited. Molecular simulations revealed that 

the binding of RAPTA-T induces a local kink in the α-helix of the H2A histone, which was 

not observed in the absence of RAPTA-T. This kink was found to be dynamically coupled 

to a path of adjacent α-helices, allowing the transfer of information from RAPTA-T to the 

auranofin site. This suggested that the signal transmission could mainly occur through a 

domino of events, where a few pathways with particularly high local correlations result in a 

defined sequence of correlations among α-helices connecting the RAPTA-T and auranofin 

sites. These findings led to cross-linking the allosteric sites, increasing nucleosome stability 

and proposing a novel strategy for therapeutic applications.[50]

Interestingly, in this system, the signal transmission was also shown to arise from the 

reorganization in coupled motions, and thereby not limited the domino model. In this 

respect, it is important to note that the violin vs. domino representation is not absolute 

and there is no marked physical difference between the two models. As the effector binds, 

a dynamic perturbation is observed, which could manifest as a pattern of non-specific 

vibrations and can also hold more specific information. This indicates that allosteric 

communication lands on a continuum between the violin and domino model. Both models 

are an effect of the change in free energy induced by effector binding. An important aspect 

of this effect is causality, which links the perturbation to the allosteric communication. A 

recent theoretical model reveals the causal relation between effector binding and allosteric 

communication on a per-residue basis.[60–62] In this model, an “allosteric potential” is 

used to measure the signaling on a residue, as a result of the conformational changes 

of its neighborhood. Then, the entropic contribution to the allosteric free energy of the 

residue is computed by comparing the conformational ensembles in the effector-free and 

effector-bound systems. This effectively tracks the causal relation between effector binding 

and the per-residue allosteric communication.

Long-range communication and mutual dynamics

The examples above clearly pinpoint the importance of dynamic cooperativity for 

biomolecular allostery. Correlation analysis allows detecting the presence of possible 

dynamic correlations among spatially distant sites, and the molecular elements responsible 

for the “signal transmission” between them. Dynamic correlations can be detected through 

Cross-Correlation (CC) analysis, by computing the Pearson’s correlations between the 

fluctuations of the Cα atoms relative to their average position. Cross-correlations measure 

the collinear coupling between two atoms, determining whether they tend to move in 

lockstep (positive CC) or show opposed motions (negative CC).

This analysis neglects correlated motions occurring out of phase, prompting the introduction 

of a Generalized Correlation (GC) method.[63] This approach measures the degree of 

correlation between residues based on their mutual information, capturing also non-linear 

correlations. Here, the correlations of fluctuations in the positions of Cα atoms is based 

on the GC coefficients, namely rMI xi, xj = 1 − exp − 2
3 I xi, xj

− 1
2  and is computed in 

terms of mutual information I xi, xj =  H xi ,   + H xj − H xi, xj . Here, H xi ,  H xj  are 
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the marginal Shannon entropies, while H xi, xj   is the joint Shannon entropy for atomic 

vector displacements xi, xj . These are computed as ensemble averages over trajectories 

from multiple replicates. This provides a method for detecting any type of dependence in 

the atomic motions, regardless of the direction of motion. Notably, the GC method uses 

the mutual information to discretize positional displacements. This prompted alternative 

approaches to also consider the dihedral space as a valuable descriptor of coupled dynamics.

[64] Overall, the GC method is a normalized measure of how much information on one 

atom’s position is dependent on that of another atom. It does not inform the sign, nor the 

direction of the correlations.

The synergistic application of CC and GC analyses is useful to characterize any type of 

correlation and how it contributes the signal transmission. An example is given by the 

study of the conformational dynamics of CRISPR-Cas12a, a recent CRISPR system that 

expands applications to nucleic acid detection (Fig. 3a).[65] CC analysis revealed that the 

REC lobe of Cas12a, which mediates nucleic acid binding, moves in the opposite direction 

with respect to the NUC lobe, suggesting an “open-to-close” conformational transition for 

nucleic acid binding. CC analysis did not detect relevant differences in the RNA- and DNA-

bound states. On the other hand, GC analysis revealed an overall increase in the system’s 

correlations upon DNA binding, suggesting a DNA-induced allosteric dynamic switch to 

favor the conformational activation of Cas12a toward DNA cleavage. Taken together, the 

CC and GC methods inform how coupled motions contribute to the allosteric phenomenon. 

Since both methods provide information on the per-residue correlations, it is difficult for 

very large biomolecules to localize the correlations effectively responsible for the signaling, 

due to a high noise. To overcome this limitation, a coarse representation of the correlation 

matrix, which accumulates the inter-domain correlations, has been introduced to provide 

a measure of the per-domain correlations.[10] This approach has been useful in detecting 

allosteric responses in large systems, where >1500 amino acids generate a large noise. 

An example is the human spliceosome, where a per-domain correlation matrix has been 

instrumental in describing the functional dynamics (Fig. 3b).[66]

Using graphs to describe communication networks

Graph theory is a sub-discipline of mathematics and computer science pioneered by Leonard 

Euler in the eighteenth century. Euler was a mathematician in Königsberg (now Kaliningrad, 

Russia), where the Pregel river dissected the city in a peculiar fashion and was crossed by 

seven bridges. Euler answered the question of whether it is possible to find a path crossing 

each bridge exactly once, and in doing so pioneered graph theory. This field experienced 

an enormous development, leading to the widespread use of networks in communication 

science (e.g., for social media), economics, geology, physics, and systems biology.[67]

Network models for protein allostery build on correlation analysis to construct a network 

of long range interactions, which efficiently describes the allosteric transmission.[9] In 

a typical dynamical network model, the biomolecular system is described as a graph of 

nodes and edges (Fig. 4a–b), where nodes represent the amino acids (Cα atoms) and 

the nucleotides (P atoms, N1 in purines and N9 in pyrimidines), while edges denote the 

connection between them. An edge’s length is weighted as a function of the strength 
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of the correlations, placing strongly correlated nodes close to each other (i.e., displaying 

shorter edge-length). This network model has been developed building on Pearson’s 

cross-correlations.[9] Recent applications have shown that a GC-based dynamical network 

analysis sensibly improves the description of the allosteric network.[10,68,69] Indeed, the 

GC method does not only provide a more complete estimation of the overall coupled 

motions but, building on Shannon’s entropy, it allows for a direct evaluation of the system’s 

entropy redistribution, induced by effector binding.

As noted above, the edge lengths are obtained by “weighting” the system’s 

correlations, with the weight (wij) of the edge connecting nodes i and j computed as 

w ij
0 =   − log rMI xi, xj . The resulting “weighted graph” defines the system as a dynamical 

network, with information on the critical nodes that are important for the communication 

within the complex. The weighted network is then structured in a set of “communities”, 

groups of nodes in which the network connections are dense but between which they are 

sparse (Fig. 4c). These local substructures of highly correlated residues can be obtained 

through the Girvan-Newman algorithm,[70] a divisive algorithm that uses the “edge 
betweenness” (EB) partitioning criterion. The EB is the number of shortest pathways that 

cross the edge, and is computed using the Floyd-Warshall algorithm,[71] which sums the 

lengths (wij) of all edges in different paths of nodes, and identifies the pathway displaying 

the shortest total length. In a typical community network plot (Fig. 4c), the communities 

are linked by bonds whose thickness is proportional to the total EB, indicating the strength 

of the communication between communities. Recently, a community network model of 

the transcription preinitiation complex was constructed.[72] This work delivered critical 

insights into the biomolecular function of an important complex involved in the expression 

of protein-encoding genes, demonstrating the tremendous value of MD simulations in 

combination with graph theory.

Circular networks to depict allosteric gain and loss

The EB is an important measure of the “traffic” passing through edges. It accounts for the 

number of times an edge acts as a bridge in the communication flow between nodes of 

the network. Hence, the total EB between couples of communities (i.e., the sum of the EB 

of all edges connecting two communities) is an important measure of their communication 

strength. In a recent study, this measure has been used to construct circular networks of the 

mutation-induced allosteric gain/loss (Fig. 5).[44]

In detail, in a study of improved specificity by lysine-to-alanine mutations in CRISPR-

Cas9, the mutation-induced EB change (ΔEB) was computed as a difference between the 

EB of the mutant and the WT system. The normalized ΔEB were plotted using circular 

networks, where the communities are displayed in a circle and connected using links with 

thickness proportional to the ΔEB. Negative values of ΔEB (−1 < 0, red) represent loss of 

communication, as opposed to positive values (0 < 1, blue), which indicate a communication 

gain upon mutation. As a result, a dramatic loss of communication was observed between 

the allosteric communities that connect the functional sites (i.e., the A1–A3 communities). 

On the contrary, the non-allosteric sites (NA1–NA4) gained in communication, overall 

indicating that mutations increasing Cas9 specificity also perturb its allosteric signaling. In 
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summary, circular networks are useful to spot the allosteric gain or loss upon mutation in 

biomolecular systems.

Shortest paths linking allosteric sites

A useful applications of network analysis is the identification of “shortest pathways” 
between distal sites through the Floyd-Warshall algorithm. These pathways are likely to be 

efficient communication routes among allosteric sites, as shown for the allosteric pathways 

communicating the HNH and RuvC catalytic sites in CRISPR-Cas9.[10] Calculation of 

the shortest routes for information transfer revealed that the crosstalk between HNH and 

RuvC flows through the L1/L2 loops (Fig. 4e), which have been indicated as “signal 

transducers”. Structural studies supporting this notion[46,73] revealed that the L1/L2 loops 

allow the conformational activation of the HNH domain toward DNA cleavage. The Floyd-

Warshall algorithm was also employed for the identification of the shortest pathways in the 

spliceosome[12] and its components.[74] The principal routes of communication identified 

the splicing cofactors as signal conveyors for pre-mRNA maturation. This is a paradigmatic 

example of how the signaling transfer may not happen exclusively through a single optimal 

path, granting in-depth investigation of the alternative or sub-optimal paths.

For increasingly complex biological systems, however, the number of paths between distal 

nodes increases with the total number of interconnected nodes and poses a combinatorial 

problem. Hence, the identification of the near optimal pathways for the signaling transfer 

might quickly become computationally intractable as the number of nodes increases.[75] 

Recent contributions have shown that alternative path searches are valuable to overcome 

this possible limitation. Among them, distance fluctuation analysis[76,77] and machine 

learning-based analyses,[78,79] which can provide excellent agreement with experimental 

testing, holding a tremendous potential in the drug discovery field. An efficient algorithm 

for path search in large biomolecular systems is the scheme proposed by Dijkstra,[80] which 

is widely used in cartography to find the shortest roads leading to the desired destination. 

The Dijkstra’s algorithm defines a starting and destination point and optimizes iteratively a 

pathway from the former to the latter (Fig. 6a).

For protein allostery, the algorithm uses the correlation coefficients as a metric to define 

the iterative optimization problem. It finds the roads, composed by the w ij
0  inter-node 

connections, which minimize the total distance (and so maximize the correlation) between 

nodes. In this way, the Dijkstra’s algorithm finds the roads that optimize the momentum 

transport between distal sites (nodes) and therefore are efficient signaling pathways. The 

Dijkstra’s algorithm was applied to identify the allosteric signaling within the HNH 

nuclease of CRISPR-Cas9 (Fig. 6b).[23,45] Dijkstra revealed a potential route of signal 

transduction connecting the DNA recognition region to the catalytic sites. This signaling 

route, comprising the top ten most likely pathways, displayed a remarkable overlap with 

the slow residues of HNH identified through NMR Carr-Purcell-Meiboom-Gill (CPMG) 

relaxation dispersion experiments. Altogether this suggested a mechanism of activation, 

where the transfer of the DNA binding information is critical to activate DNA cleavage.
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Central residues in the allosteric network

One of the cornerstones of the network theory is the concept of centrality,[81] i.e. the 

relative influence of a node or cluster of amino acid nodes in the network.[82–84] The 

application of graph theory to social media emphasizes the importance of centrality in the 

information transfer. In a social network, some friends hold more connections, becoming 

the hubs of the communication, where the information centralizes and transfers more 

efficiently. Analogously, central residues are the hubs governing the biomolecular dynamics. 

Three main measures can be harnessed to define centrality: (i) degree centrality (DC), (ii) 

betweenness centrality (BC) and (iii) eigenvector centrality (EC). DC is simply the number 

of edges hold by a node and can be interpreted as a local centrality measure. BC is the 

number of shortest pathways passing through a node and quantifies the number of times 

a node acts as a bridge along the shortest path between two other nodes. BC is the most 

popular centrality measure and has been applied in studies of allostery in CRISPR-Cas9[10], 

the nucleosome core particle[48] and the spliceosome.[12,74] The EC is the third centrality 

measure, which defines influence of a node in the network, weighting the nodes based on 

their contribution to the system’s dynamics. This approach relies on assigning the functional 

dynamics to the major collective mode of the system, i.e., the first eigenvector of the 

adjacency matrix A (based on the generalized correlations rMI). The EC of a node, ci, is 

defined as the sum of the centralities of all nodes that are connected to it by an edge, 

ci = 1
λ ∑j = 1

n Aijcj, where the edges Aij are elements of the adjacency matrix A and λ is 

the eigenvalue associated to the eigenvector composed by ci elements. The EC estimation 

quantifies the degree of connectivity of each amino acid (or nucleobase) within the system 

and quantifies how well nodes are interconnected. Hence, this measure holds significant 

promise to identify the hubs of the signal transduction in protein/nucleic acid complexes.

Application of the centrality analysis to the HNH–RuvC cross-talk in CRISPR-Cas9 

revealed that the E584, Q771, K775, and R905 residues of the L1/L2 loops act as central 

hubs of the dynamics.[10] Mutations of the central node residues, through which the 

majority of allosteric pathways pass, reported an increased specificity, observed for the 

K775A and R905A residues in the eCas9[85] and HypaCas9[86] variants. This indicates that 

altering the central hubs of the dynamics affects the system function, also suggesting the 

targeting of the allosteric regulation as a strategy for the specificity enhancement.

Enhanced network models and conformational control

In large biomolecular complexes, such as those of multidomain proteins with nucleic 

acid elements, the conformational dynamics are characterized “per se” by slow dynamical 

motions, affecting the transmission of the allosteric response that occurs over longer 

timescales. Understanding this conformational control of the allosteric response is difficult 

though conventional MD simulations, which are notoriously limited to short ns–to–µs 
motions. Another hurdle of MD simulations of large ribonucleoproteins is that the protein 

components are tightly entangled to nucleic acids, requiring extensive sampling for 

converged results.
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Considering the above, to investigate the allosteric response in large biomolecular systems, it 

is essential to capture their long timescale dynamics, and to combine enhanced simulations 

methods with graph theory. Through “enhanced network models”, the conformational 

landscape obtained through enhanced sampling methods can be used as a basis to construct 

the allosteric network (Fig. 7a). In this way, the allosteric network preserves the memory 

of the long timescale conformational change. Enhanced network models can also be 

constructed through Markov State Models of biomolecular allostery, to elucidate the 

kinetic pathways connected to the allosteric transmission.[87–89] Recent studies combined 

a Gaussian accelerated MD (GaMD) method[90] with network models to characterize 

the allosteric response over long timescales. GaMD adds a harmonic boost potential to 

smoothen the potential energy surface of the simulation system, accelerating the transitions 

between low-energy states. In GaMD, when the threshold energy is set to the maximum 

potential (E = Vmax), the system’s potential energy surface is smoothened by adding a 

harmonic boost potential that follows a Gaussian distribution (Fig. 7b). Briefly, when 

the system potential V r  is lower than a threshold energy E (i.e., for V r < E), the 

energy surface is modified by adding a boost potential as V* r = V r + ΔV r , where 

∆ V r = 1
2k E − V r 2

. The harmonic constant k0 determines the magnitude of the applied 

boost potential, accelerating the conformational sampling by orders of magnitude and 

reducing energy barriers. k0 is an adjustable parameter (ranging from 0 to 1), which 

can be determined from conventional MD runs, considering the max/min, average and 

standard deviation of the system’s potential energy V). We refer to the original article for a 

theoretical description,[90] and to a recent review for the explanation of its application.[91] 

This method allows enhancing the exploration of the configurational space and “routine 

access” to the ms timescale.[92] The canonical ensemble average system is obtained 

by reweighting each point in the configuration space on the modified potential by the 

strength of the Boltzmann factor of the bias energy, exp βΔV rt i  at that particular 

point. Since the boost potential follows a near-Gaussian distribution, this also allows for 

an improved reweighting procedure (through cumulant expansion to the 2nd order).[93] 

Enhanced network models are then constructed by applying graph theory on the reweighted 

conformational landscape, which reports the canonical ensemble.

GaMD simulations have been employed to generate a µs–to–ms timescale conformational 

ensemble of the CRISPR-Cas9 HNH nuclease, which was used for the application of the 

Dijkstra’s algorithm for shortest path search.[23] As a result, the enhanced network model 

identified a route of residue–to–residue amino acids that maximizes the correlations from 

long timescale motions. The residues composing this pathway also displayed slow dynamics 

through CPMG relaxation dispersion experiments (vide supra, Fig. 6b). Hence, residues 

that are critical for the long timescale dynamics, as computed through GaMD and the 

enhanced network model, overlap with residues displaying slow dynamics experimentally. 

This consistency indicates that the experimental dynamics is captured well by the enhanced 

network model. On the other hand, classical MD simulations described faster timescales 

(ns range), as arising from the comparison of the computed and measured S2 order 

parameters. Hence, the use of enhanced sampling could properly describe the long timescale 

dynamics responsible for the transmission of the allosteric signaling. This application 
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thereby demonstrates the value of “enhanced network models” in the characterization of 

allosteric mechanisms in large ribonucleoproteins, and suggests the combination of graph 

theory with other enhanced sampling methods.[32] This will allow the description of the 

allosteric network as arising from extended timescales (µs to ms), characterizing how slow 

dynamical motions affect the communication network.

Ab-initio network models and allosteric regulation of the catalysis

The allosteric regulation is critical in enzymes to activate their catalytic function.[30] 

This modulation can occur over long timescale conformational changes, and through 

an instantaneous sub-ns transfer of motions.[17,24–26,30,31] Allosteric modifications 

can activate catalysis relying on short timescale motions with instantaneous transfer of 

information. However, the mechanism of sub-ns transfer and the relation between allostery 

and catalysis has not yet been fully clarified. It is also not clear how the allosteric regulation 

changes from reactants to (R) to products (P) and how it affects the transition state (TS‡). 

This is mainly because graph theory-based techniques have been widely applied on classical 

and enhanced MD simulations, but little is known on the network dynamics along chemical 

reactions. To comprehend the allosteric regulation of catalysis, graph theory met ab-initio 
quantum mechanics/molecular mechanics (QM/MM) simulations. In this approach, local 

events within the biomolecular system – such as catalytic reactions or short timescale 

fluctuations – can be sampled though MD at a high QM level, while the rest of the 

system is treated using the classical force field.[33] Ab-initio QM/MM MD can provide 

the step-by-step dynamics along the chemical reaction, and allow sub-ns sampling at critical 

steps. Building on these dynamics, graph theory can be used to inform how the allosteric 

pathway of communication changes from the R to P states, passing through the TS‡. This 

approach has been introduced to study the allosteric regulation of the RuvC catalysis in 

Cas9 (Fig. 8a).[95,96] Analysis of the generalized correlations (GC) revealed highly coupled 

motions in the R state, which are progressively reduced in the TS‡ and in the P states (Fig. 

8a, bottom panel). The R is therefore in a “tense” state, with highly entangled dynamics. 

The TS‡ reduces its tension toward a more “relaxed” state, while the signal fades away in 

the P state, which demonstrates quenched GC coefficients. Building on this observation, 

the allosteric regulation of the catalysis follows a tense–to–relaxed model, where “tense” 

refers to highly correlated and “relaxed” to poorly coupled. This suggests that the R is in a 

tense state, allosterically “prone” due to highly coupled dynamical motions and enthalpically 

poised for catalysis.

As the reaction proceeds, the dynamics of the TS‡ starts losing correlated motions as an 

effect of the starting of bond breaking. As the system fully relaxes, it reaches the P state. 

To further understand how the allosteric signaling changes from the R to P, the pathways 

communicating the DNA recognition region (REC) to the RuvC catalytic core have been 

computed using the Dijkstra’s algorithm. In the R and TS‡ states, the information transfers 

through a pathway of charged and polar residues (Fig. 8b, shown for the R state). This 

suggests that electrostatic and conformational effects could influence the chemistry from 

a long-range though allostery, in addition to the electrostatics being critical at the active 

site level.[97] It is also notable that alanine mutation of central nodes in the REC lobe 

reduces the catalytic efficiency of Cas9 toward off-target DNAs,[86] reinforcing the notion 
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that distal point mutations could allosterically modulate the catalysis.[98,99] Analysis of the 

P state revealed that the allosteric pathway is largely disrupted, in line with alteration of the 

correlation system. Overall, this was the first attempt to characterize the allosteric regulation 

of catalysis by following the step-by-step dynamics of biochemical reactions. Future studies 

by our lab will delve into further understanding the role of allostery along the catalysis.

Perspectives

Here, we review established and innovative approaches to decrypt allostery in proteins 

and nucleic acids. We discuss the use of classical and enhanced molecular dynamics 

(MD) simulations in combination with network models and centrality analyses. We report 

emerging schemes, such as the synergistic use of enhanced simulations methods and 

network models, which define the allosteric response over long timescales, and “ab 
initio network models” to describe the allosteric regulation of catalysis. These approaches 

revealed the allosteric transfer in three paradigmatic examples: (i) the nucleosome core 

particle, (ii) the CRISPR-Cas9 genome editing system and (iii) the spliceosome. Examples 

of applications also highlight the current challenges and the prospects of the field, 

attempting to capture the allosteric response over multiple timescales, relating allostery 

to conformational changes and catalysis. Indeed, investigating allosteric mechanisms in 

large biomolecules is often difficult, due to slow dynamical motions virtually inaccessible 

through classical simulation methods. Along the same lines, little is known about the 

evolution of the allosteric response along chemical reactions. Taken together, methods and 

applications showcased here will help overcome these challenges, creating novel protocols 

to determine the allosteric network of communication over multiple time scales, as well 

as the relation between allostery and catalysis, which has remained unaddressed through 

classical approaches.
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Figure 1. Overview of three allosteric protein and nucleic acid complexes.
(a) The nucleosome core particle, composed of chromosomal DNA wrapped around an 

octamer of four core histone proteins (H3, H4, H2A and H2B, PDB: 1AOI).[14] (b) The 

CRISPR-Cas9 gene editing system (PDB: 5F9R),[46] composed of the Cas9 protein bound 

to RNA (orange) and DNA (purple). The HNH and RuvC catalytic domains are shown in 

green and blue, respectively. (c) The pre-catalytic spliceosome, composed of several proteins 

and five small nuclear ribonucleoprotein particles (snRNPs: U1, U2, U4, U5, and U6) (B 

complex, PDB ID: 5NRL).[47]
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Figure 2. Violin and domino models for biomolecular allostery.
[58] (a) In a violin model, the binding of an allosteric effector triggers a pattern of 

vibrations, similar to the player’s pitch on a string, leading to the activation of the system 

at distal sites. In CRISPR-Cas9, the binding of the PAM recognition sequence (i.e., the 

allosteric effector) leads to a change in the conformational dynamics, as indicated by a 

shift in the free energy basin and in the correlated motions (bottom panel).[10] (b) In a 

domino model, the allosteric effector triggers a sequential set of local events propagating via 

a well-defined pathway, similar to the effect of a hand touch to a domino. In the nucleosome 

core particle, the biding of RAPTA-T induces a local kink, that is dynamically coupled to a 

path of adjacent α-helices (shown using arrows), allowing the transfer of information to the 

auranofin site.[49]
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Figure 3. Correlation analysis.
(a) Coupled motions in the CRISPR-Cas12a system, suggesting an “open-to-close” 

conformational transition for nucleic acid binding.[45] Cross-Correlation (CC, upper 

triangles) and Generalized Correlations (GC, lower triangles) matrices, computed for 

Cas12a in the RNA-bound (left) and DNA-bound (right) states (color-coded according 

to the scales on the right). DNA binding induces a sensible increase in GCs. Adapted 

with permission from Saha et al. (2020).[65] Copyright 2020 American Chemical Society. 

https://pubs.acs.org/doi/full/10.1021/acs.jcim.0c00929. Further permissions related to the 
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material excerpted should be directed to the American Chemical Society. (b) Per-domain 

CC histogram of the spliceosome dynamics.[46] The inter-domain cross-correlations reveal 

domains moving in lockstep (blue) and through opposite motions (red). Adapted with 

permission from Casalino et al. (2018). [65] Copyright 2018 National Academy of Sciences.
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Figure 4. 
Network models for biomolecular allostery, shown for the CRISPR-Cas9 system. The 

biomolecule (a) can be described as a network of residue nodes and edges whose length is 

weighted by the strength of the residues’ correlations (b), and as a network of communities 

connected by bonds measuring their intercommunication strength (c).[9] The network model 

builds on correlation analysis (d), whereby the Generalized Correlations (GC = rMI xi, xj ) 

are used to weight the edges connecting nodes (wij = − logGC), such placing strongly 

correlated nodes close to each other. (e) From the network model, the shortest pathways 

crossing the edges between distal sites can be computed as efficient communication routes 

among allosteric sites. This is shown for the L1/L2 loops in CRISPR-Cas9, connecting the 

HNH and RuvC domains as shortest pathways.[10]
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Figure 5. 
Circular network of the allosteric communication, reporting the mutation-induced Edge 

Betweenness change (ΔEB), a measure of communication gain or loss between couples 

of communities upon mutation.[44] The communities are displayed in a circle and are 

connected by links with thickness proportional to ΔEB. Communities connecting allosteric 

sites (A1–A3) display a loss of communication (negative ΔEB, red), while the non-allosteric 

sites (NA1–NA4) gain in communication (positive ΔEB, blue). Circular network adapted 

from Nierzwicki et al. (2021),[44] published in eLife under a Creative Commons Attribution 

license. https://elifesciences.org/articles/73601.
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Figure 6. Shortest paths connecting allosteric sites.
(a) Dijkstra algorithm for shortest path calculation. The algorithm defines a starting and 

a destination point (i.e., nodes A and C) and optimizes iteratively a path from the former 

to the latter. In each iteration, the closest unvisited node is designated as the current node, 

updating the remaining unvisited nodes until the destination is reached. For biomolecular 

allostery, the algorithm uses the correlation coefficients as a metrics to identify the closest 

nodes (i.e., wij = − logGC), maximizing the correlation between starting and destination 

nodes. (b) Allosteric pathway within the HNH domain of CRISPR-Cas9 connecting the 

Arantes et al. Page 25

J Mol Biol. Author manuscript; available in PMC 2022 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA recognition region (REC2) to the RuvC cleavage site. The signaling route identified 

through the Dijkstra algorithm (pink line) overlaps with slow dynamical residues found 

through solution NMR (purple spheres).[23]
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Figure 7. Enhanced network models.
(a) The conformational landscape obtained through enhanced sampling molecular dynamics 

(top) is used as a basis to construct the allosteric network (bottom). Enhanced network 

models are constructed by applying graph theory on the reweighted conformational 

landscape, which reports the canonical ensemble. Inspired by Wereszczynski & McCammon 

(2012) Proc. Natl. Acad. Sci. USA 109, 7759–7764. [94] (b) Gaussian accelerated MD 

(GaMD) method.[86] Quadratic functions are used to modify the original potential energy 

of the system to overcome energetic barriers. The extent of acceleration is controlled by 
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the harmonic constant k0, varying from 0 to 1. The greater the value of k0, the greater the 

acceleration and the easier the system overcomes the barrier between states, enhancing the 

conformational ensemble.
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Figure 8. Ab-initio network models.
(a) Catalytic mechanism of DNA cleavage in the RuvC active site of CRISPR-Cas9, 

investigated through QM/MM ab-initio simulations.[95,96] The reaction evolves from 

the Reactants (R) to the Transition State (TS‡) and Product though an associative SN2 

mechanism activated by H983, and with an activation barrier of ~16.5 kcal mol−1 (free 

energy profile at the bottom left). Analysis of the generalized correlations (GC, bottom 

right) reveals highly coupled motions in the R state, which are progressively reduced in the 

TS‡ and in the P states. This reveals a tense-to-relaxed model for the allosteric regulation 
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of the chemical step (details in the main text). (b) Allosteric pathways connecting the DNA 

recognition region (REC) to the RuvC catalytic core in the R (green) and P (magenta) 

states. Adapted with permission from Casalino et al. (2020).[95] Copyright 2020 American 

Chemical Society. https://pubs.acs.org/doi/10.1021/acscatal.0c03566. Further permissions 

related to the material excerpted should be directed to the American Chemical Society.
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