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A B S T R A C T

Introduction: Obstructive sleep apnea (OSA) patients show hippocampal-related autonomic and neurological
symptoms, including impaired memory and depression, which differ by sex, and are mediated in distinct hip-
pocampal subfields. Determining sites and extent of hippocampal sub-regional injury in OSA could reveal lo-
calized structural damage linked with OSA symptoms.
Methods: High-resolution T1-weighted images were collected from 66 newly-diagnosed, untreated OSA (mean
age ± SD: 46.3 ± 8.8 years; mean AHI ± SD: 34.1 ± 21.5 events/h;50 male) and 59 healthy age-matched
control (46.8 ± 9.0 years;38 male) participants. We added age-matched controls with T1-weighted scans from
two datasets (IXI, OASIS-MRI), for 979 controls total (426 male/46.5 ± 9.9 years). We segmented the hippo-
campus and analyzed surface structure with “FSL FIRST” software, scaling volumes for brain size, and evaluated
group differences with ANCOVA (covariates: total-intracranial-volume, sex; P < .05, corrected).
Results: In OSA relative to controls, the hippocampus showed small areas larger volume bilaterally in CA1
(surface displacement ≤0.56mm), subiculum, and uncus, and smaller volume in right posterior CA3/dentate
(≥− 0.23mm). OSA vs. control males showed higher bilateral volume (≤0.61mm) throughout CA1 and
subiculum, extending to head and tail, with greater right-sided increases; lower bilateral volumes
(≥− 0.45mm) appeared in mid- and posterior-CA3/dentate. OSA vs control females showed only right-sided
effects, with increased CA1 and subiculum/uncus volumes (≤0.67mm), and decreased posterior CA3/dentate
volumes (≥− 0.52mm). Unlike males, OSA females showed volume decreases in the right hippocampus head
and tail.
Conclusions: The hippocampus shows lateralized and sex-specific, OSA-related regional volume differences,
which may contribute to sex-related expression of symptoms in the sleep disorder. Volume increases suggest
inflammation and glial activation, whereas volume decreases suggest long-lasting neuronal injury; both pro-
cesses may contribute to dysfunction in OSA.

1. Introduction

The hippocampus shows both damage and dysfunction in ob-
structive sleep apnea (OSA), which may contribute to memory, auto-
nomic and depressive symptoms in the disorder. Early findings indicate
volume reductions and other structural changes in or adjacent to the
hippocampus (Macey et al., 2002; Dusak et al., 2013; Morrell et al.,

2003; Tummala et al., 2017; Tummala et al., 2016), and metabolite
levels suggestive of inflammation and glial activation (O'Donoghue
et al., 2012; Sarma et al., 2014; Alkan et al., 2013; Kizilgoz et al., 2013;
Algin et al., 2012; Bartlett et al., 2004). Patterns of activity within the
structure are modified in OSA, as measured by functional neuroimaging
(Henderson et al., 2003; Harper et al., 2003; Macey et al., 2003; Macey
et al., 2006; Castronovo et al., 2009; Fatouleh et al., 2014; Li et al.,
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2016a; Li et al., 2016b), and are reflected in symptoms such as elevated
sympathetic tone, high levels of depressive and anxiety symptoms, and
memory difficulties (Narkiewicz and Somers, 2003; Hoth et al., 2013;
Rezaeitalab et al., 2014). The particular areas of injury in the hippo-
campus are not well defined, nor are patterns of volume increase or
decrease understood; inflammation and glial activation should produce
volume increases, whereas neuronal death or damage to cells should
cause volume decreases. Moreover, the symptoms expressed in OSA
differ by sex, and it is unclear whether structural changes differ be-
tween males and females in a way that reflects those characteristics.
Finally, hippocampal roles in some functions, such as regulation of
blood pressure, are highly lateralized, and it is unclear whether OSA
damage is equally expressed in both left and right hippocampi.

Knowing the location and nature of hippocampal volume changes
would provide insights into mechanisms of pathology which accom-
pany OSA. The multitude of potentially damaging processes occurring
in OSA makes predicting volume changes in the disorder difficult, since
neuronal death results in volume loss, but glial responses to hypoxia
can increase tissue volume. Both of these effects are visible in the pu-
tamen in OSA (Kumar et al., 2014a), and similar patterns may occur in
the hippocampus. Precise volumetric assessment is possible, but sensi-
tivity is limited by small subject samples. However, a combination of
publically-available MRI databases and analytic software now allow
hundreds of subjects to be used as a population reference. Early hip-
pocampal analyses required manual, time-consuming tracing of struc-
tures (Morrell et al., 2003; Macey et al., 2009; Thompson et al., 2004).
Automatic segmentation methods include FreeSurfer (Fischl et al.,
2002), its subsequent improvements (Clerx et al., 2015; Iglesias et al.,
2015), and FSL FIRST (Patenaude et al., 2011), and these approaches
allow analysis of large numbers of subjects in an objective, repeatable
manner. In particular, FSL FIRST allows for shape analysis with group
and regression analyses, and using conventional anatomical MRI scans
can distinguish between hippocampal subregions of volume change
measured as surface displacement at sub millimeter resolution.

Our objective was to assess OSA-related differences in regional
hippocampal volume, relative to a large reference population, and to
assess laterality, regional site, and sex-specific effects of OSA on hip-
pocampal structure. Based on symptoms found in OSA patients, we
hypothesized volume changes would appear in memory-, autonomic-,
and mood-related subfields of the hippocampus. However, we did not
hypothesize a direction of change, since available evidence suggests the
potential for both acute (volume increases from inflammatory and other
processes) and long-term (volume decreases and cell death) injury.

2. Methods

2.1. Subjects

We performed high-resolution T1-weighted imaging in 66 newly-
diagnosed, untreated OSA (mean age ± SD: 46.3 ± 8.8 years; mean
AHI ± SD:34.1 ± 21.5 events/h; 50 male) and 59 healthy age-mat-
ched control (46.8 ± 9.0 years; 38 male) participants. Further sleep

and demographic details are in Tables 1 & 2. Sleep scoring was per the
1999 AASM criteria (Author, 1999). The study was approved by the
UCLA Institutional Review Board, and all subjects provided written
informed consent. To improve sensitivity, we combined our healthy
control sample with two large datasets, IXI (https://www.nitrc.org/
projects/ixi_dataset/) and OASIS (http://www.oasis-brains.org/;
Marcus et al., 2007), resulting in a control group of 979 age-matched
subjects (426 male, 46.5 ± 9.9 years) representative of the general
population. These studies were approved by their governing ethics
committees, and all subjects provided written informed consent.

2.2. Implications of using a large reference dataset

While including the IXI and OASIS subjects means the control group
will likely include some people with OSA, the large number of subjects
leads to improved sensitivity to detect OSA-related effects. For example,
a sensitivity analysis for ANCOVA shows that 125 subjects with a two
group, three covariate model at alpha=0.05 and power of 0.95 is
sensitive to an effect size f of 0.46, whereas the same model with 1045
subjects is sensitive to an effect size f of 0.15. The main consequence of
the undetected OSA in the control group would be to reduce the OSA-
control group differences, and hence underestimate the magnitude of
any effect. A further advantage of using these datasets as a population
reference is that other researchers can compare their findings against a
common standard.

2.3. MRI protocol

Image volumes for the UCLA subjects were acquired on a Siemens 3
Tesla Trio scanner with magnetization prepared rapid acquisition gra-
dient echo protocol product sequence (MPRAGE; TR=2200ms,
TE= 2.34ms, inversion time=900ms, flip angle= 9°), with
320× 320 matrix size, 230×230mm field of view (FOV), 0.9mm
slice thickness, 192 sagittal slices, and two repeats. An acceleration
factor of two was applied with generalized-autocalibrating-partially-
parallel-acquisition parallel imaging (GRAPPA).

2.4. Analysis

All T1-weighted image scans were visually inspected for artifact and

Table 1
Characteristics of OSA and control subjects. Group differences assessed with independent samples t-tests for continuous variables, and chi-square for sex. Gray cells
indicate not applicable.

Mixed Female Male

OSA
N=65

Control population
N=980

OSA vs Control OSA
N=15

Control population
N=553

OSA vs Control OSA
N=50

Control population
N=426

OSA vs Control

Mean± std P Mean± std P Mean± std P

Age
(years)

47.5 ± 9.9 47.5 ± 18.8 0.6 51.4 ± 10.2 49.6 ± 19.2 0.7 44.9 ± 9.4 44.9 ± 17.7 1.0

Sex 16 ♀, 50♂ 553 ♀, 426♂ <0.001

Table 2
Polysomonographic characteristics of OSA patients.

Mixed Female Male

OSA
N=65

OSA
N=15

OSA
N=50

Mean± std Mean± std Mean± std

AHI events/hour 30.6 ± 20.7 23.0 ± 22.4 33.0 ± 19.5
SaO2 (minimum %) 81.9 ± 9.1 86.9 ± 6.0 80.2 ± 9.4
SaO2 (baseline %) 94.7 ± 2.3 94.7 ± 2.4 94.7 ± 2.4
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signs of movement. Scans were manually rigid-body aligned to the MNI
template using the SPM “Display” function, with rotations and x/y/z
shifts. FSL FIRST processing was then applied, which segments the
hippocampus and assesses regional surface structure (Patenaude et al.,
2011). Visual assessment of each scan's registration and segmentation
accuracy was performed. In cases where subjects did not have accurate
brainstem segmentation, they were nevertheless retained if the hippo-
campus was accurately segmented. The FIRST algorithm produces si-
milar segmentations as manual outlining (Mulder et al., 2014; Perlaki
et al., 2017), with the advantage of being reproducible independent of
expert effort. The FIRST method also provides reproducible results
(Bartel et al., 2017). That said, our experience is that the anatomical
scans need to be rigid-body realigned to template space, as otherwise,
segmentation with FIRST (and other algorithms) can fail.

Hippocampal volumes were scaled for total brain size based on re-
gistration to a common space (6 parameter affine normalization), and
included total intracranial volume (TIV) and sex as covariates (ANOVA;
P < .05, false discovery rate [FDR] correction for multiple compar-
isons). TIV was derived from the SPM segmentation of gray and white
mater and cerebrospinal fluid, with voxels classified based on the sum
of probabilities of the three tissue types ≥0.5.

Surface regions showing significant deviations were visualized with
MRIcroS (https://www.nitrc.org/projects/mricros/), a MATLAB-based
surface rendering package developed from concepts in MRIcroN soft-
ware (Rorden et al., 2007). We modified the MRIcroS code to allow
display of volume increases as warm colors and decreases as cool colors.
We also enabled scaling of the overlays, such that the effect size in
millimeter deviation could be shown. To localize the affected subfields,
we used a standard atlas (Mai et al., 2004) to infer the dominant areas
underlying any particular surface point. We also created a visual guide
using a freely-available high-resolution hippocampal atlas (Winterburn
et al., 2013). The “Winterburn” atlas consists of very high-resolution T1
and T2 scans (0.3 mm3 voxel size), with hippocampal subfield seg-
mentations (CA1, CA2/3, CA4/dentate, undetermined/strata, and sub-
iculum; CA=Cornu ammonis). Using MRIcroS, we created volume
renderings of the subfields (Fig. 1), which illustrate the principal sub-
fields underlying each surface location. For example, the inferior sur-
face reflects the subiculum along the medial aspect and CA1 along the
lateral aspect [see also Fig. 2 in (Ogren et al., 2009). Link: http://www.
ncbi.nlm.nih.gov/pmc/articles/PMC2773143/figure/F2/]. However,
changes in some surface regions likely reflect the volume of deeper
subfields, as shown by the cross sections in Fig. 3. We used the Mai atlas
(Mai et al., 2004) to infer regions most likely represented at surface
locations, based on the relative proportion of each subregion under the
hippocampal surface.

2.5. Sex differences

To provide context for the sex-specific effects, we also described the
sex differences within the control and OSA groups. For each group, the
female vs male effects were calculated and presented using the same
analysis approach.

2.6. Platform influences

All hippocampi segmentations were manually verified. However, to
further address possible influences of scanner and platform variations,
we calculated descriptive statistics (mean and standard deviation) for
age, TIV, and brain volume by platform. We separated our UCLA scans
into two “platforms” since a scanner upgrade was performed part way
through the study, although evidence suggests such upgrades have little
effect on variability (Jovicich et al., 2009). Brain volume was calculated
as voxels where the combined probability of gray and white matter was
≥0.5. We did not include platform as a covariate since this action
would reduce sensitivity (Takao et al., 2014), and these measures were
intended as a description, rather than a correction of possible scanning

influences.

3. Results

3.1. Quality control

Quality control revealed hippocampal segmentation problems in
one IXI and four OASIS subjects (numbers IXI #600, OASIS #80, #147,
#270, #370), which were excluded from analysis. The remainder were
deemed to have accurate segmentations of the structure. Fig. 2 illus-
trates the reconstructed average surface of the right hippocampus from
the 1045 mixed (i.e., all male and female) subjects, which had a length
of 51.4 mm (in common space). Other metrics of reconstructed sizes are
shown in Table 3, illustrating slight variations in size between sexes and
between left and right sides. The reported sizes reflect brain scans
normalized to MNI space via FLS FIRST processing. Thus, the larger
female values for left and right hippocampi reflect structures that are
larger proportionally (relative to overall brain size), as opposed to na-
tive, unscaled sizes where female values would likely be smaller, due to
known smaller overall brain volumes relative to males (Leonard et al.,
2008; Luders et al., 2009).

3.2. Platform variations

There were six groups separated by platform: the three IXI scanning
sites, the OASIS set, and the UCLA scans collected under both the “VB”
and “VD” platforms. Supplementary Fig. 1 illustrates the mean and
standard deviation for age, TIV and brain volume. Overall values were
similar by platform. TIV varied most substantially, likely reflecting the
variation in scanning volume, with scanning protocols that extend
down the neck probably leading to more CSF voxels being included as
TIV. However, the brain volume values, arguably the most important
indicator of systematic variation, were very similar across platforms.

3.3. Mixed-sex OSA findings

Significant overall changes in the mixed OSA group appeared in a
number of hippocampal regions (P < .05, FDR control for multiple
comparisons), controlling for age, sex, and TIV. Obstructive sleep apnea
was accompanied principally by volume increases, reflected as surface
displacement from the mean up to 0.56mm in subfields of the left and
right hippocampi, and some regions of volume decrease, reflected as
surface displacement from the mean to−0.23mm (Table 4; Fig. 3). The
regions showing volume increases included the bilateral anterior sub-
iculum extending to the uncus, with more substantial increases on the
left side (Table 4; Fig. 3). The left side also showed two small regions of
volume increase in the mid-hippocampal area of the subiculum on the
medial aspect. The posterior CA1 in the lateral region was affected
bilaterally, again with greater changes on the left side. Changes specific
to the right hippocampus included a small area of volume increase in
CA2 of the posterior hippocampus, close to the tail. A volume decrease
was present in CA3/dentate of the posterior hippocampus.

3.4. Female OSA findings

Female OSA subjects showed right-sided volume declines, with up
to −0.5mm surface reductions, and volume increases up to 0.67mm
(Table 4; Fig. 4). Sex-specific OSA-related changes were substantially
more extensive than in the mixed group, with larger maximum effect
sizes (Table 4). However, no changes were significant in female OSA
patients in the left hippocampus after FDR correction for multiple
comparisons (Table 4; Fig. 4). On the right side, extensive areas of
volume increase appeared, with the largest in the anterior subiculum
and uncus. Increased volumes also appeared in the medial subiculum in
the mid-hippocampal regions, and a small area near the tail. The entire
lateral aspect of CA1 showed increased volume from anterior to
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posterior. CA2/3 in the anterior hippocampus showed increased vo-
lume. Volume declines appeared in the head and the tail, and in CA3/
dentate in the posterior region.

3.5. Male OSA findings

Male OSA showed left-sided volume decreases up to−0.20mm, and
volume increases up to 0.58mm (Table 4; Fig. 5). On the right side,
volume declines up to −0.23mm and volume increases up to 0.61mm
appeared. The male OSA bilateral volume variations had similar dis-
tributions on both sides. Volume increases appeared through CA1, ex-
tending to the head and tail regions, with the magnitude of increases
larger on the right. The subiculum was larger from mid-to-anterior
hippocampus, extending to the uncus in the anterior portion. Anterior
CA2/3 showed volume increases. Bilateral volume decreases appeared
in CA3/dentate in the posterior hippocampus, with changes visible on
the superior surface bilaterally, and also on the inferior surface on the
left side.

3.6. Model fit and residuals

Lower variance of residuals indicates better model fit. The variance
of the residuals was greatest in the tail of the hippocampus (Fig. 6). The
medial head of the hippocampus also showed higher residual variability
than other areas, although the magnitude was approximately half that
of the tail (right side: ~1.2 mm2 versus ~2.6 mm2). The inferior and
superior surfaces showed very low residual variance, and medial and
lateral aspects showed moderate levels. The right side residual variance

Fig. 1. Hippocampal subfields based on the Winterburn atlas [subject 1; 37]. Left panel shows 45° rotations around anterior-posterior axis for surfaces of left and
right hippocampi. Right panel shows right hippocampus dorsal (left) and ventral (right) representations, and the center shows coronal slices along anterior-posterior
axis with the subregions overlaid onto the subject's high-resolution T1-weighted anatomical scan included with the Winderburn atlas.

Fig. 2. Reconstruction of average of 1045 right hippocampal segmentations,
illustrating shape and size of the “template” hippocampus against which in-
dividual surface displacements are measured.
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was substantially higher than the left. Females showed slightly lower
variance than males (Table 5).

3.7. Sex differences in control and OSA groups

We assessed female and male differences separately within control
and OSA groups. Table 1 shows the group numbers and breakdown for
female and male subjects. The OSA group did not show significant ef-
fects, likely because the sensitivity was relatively low due to the small
sample size (Table 6). The control group showed regions of significantly
high volume in female vs males (Table 6 and Fig. 7). Since the model
includes scaling by head size and TIV as a covariate, these findings
represent relative variations, as opposed to absolute differences in vo-
lume. The effect sizes in OSA were larger than control (Table 6), and the
patterns of male-female difference were distinct in OSA and control
groups (Fig. 7). Of note, multiple regions of higher relative volume in
females in the control group (darker red in middle row of Fig. 7)
showed opposite effects in the OSA group (blue in bottom row of
Fig. 7).

4. Discussion

4.1. Overview

Obstructive sleep apnea is accompanied by isolated areas of bi-
lateral hippocampal volume increases in CA1, subiculum and uncus,
and volume decreases in right CA3/dentate in the posterior hippo-
campus. The alterations show extensive sex-specific changes. Males
show bilateral volume increases through the extent of CA1 and sub-
iculum, with greater changes on the right side. The volume increases
extend to the head and tail of the structure. Bilateral volume decreases
in CA3/dentate appear in the mid and posterior hippocampus. Females
show significant effects only on the right side, with CA1 and subiculum/

uncus volume increases and posterior CA3/dentate volume decreases,
as in males. However, in contrast to males, females with OSA show
volume decreases in the right head and tail of the hippocampus. The
findings demonstrate the importance of considering sex in the assess-
ment of OSA-related brain changes, since mixed groups masked the
extent of volume alterations linked to the sleep disorder. Additionally,
the different patterns of change in females and males may be reflected
in the differing symptoms between the sexes. Of particular importance
is that certain functions, especially those related to autonomic regula-
tion, are typically lateralized, and the asymmetric damage found in
females may contribute significantly to sex-based differences in symp-
toms in OSA.

4.2. Discussion of findings

The sex-related differences in volume change patterns suggest that
separate neuropathologies contribute to symptom characteristics in
females and males with OSA. Another possibility is that OSA is diag-
nosed later in females, and hence more chronic injury may be present in
that group. However, this possibility would not account for the site-
specific nature of the volume reductions. Depression is elevated in OSA,
but more so in females vs. males (Macey et al., 2010), and the hippo-
campus plays significant roles in depressive disorders and symptom
levels in the general population (Neumeister et al., 2005; Bremner
et al., 2000). Depression in females is linked with greater morphological
changes in the right over the left hippocampus (Tae et al., 2011). Since
the primary volumetric changes in OSA females appeared on the right
side, lateralization of tissue change may contribute in some fashion to
initiating or maintaining depression signs in OSA females. The dentate
shows volume reductions in the posterior region, and in the right head
and tail in female OSA subjects. The findings suggest cell loss in these
regions, which presumably impact neural functions performed by the
structure. The pathophysiology may also differ by sex: astrocytic
swelling following hypoxia is attenuated by estradiol (Rutkowsky et al.,
2011), which is approximately four times higher in females than males
(Elmlinger et al., 2002). Estradiol and other sex hormones, which in-
fluence both pathological and normal processes (McCarthy et al.,
2003), likely underlie at least some of the gender-specific volume
changes.

The sex differences within the control group show that females and
males have different baseline hippocampus sizes, so when combined
with likely sex-specific OSA influences, there is little understanding to
be gained from OSA female vs. male comparisons.

Decreased volume occurs in the presence of cellular loss or
shrinkage, which in adults is usually associated with age-related
atrophy or neurodegenerative processes, with the hippocampus being
especially affected (Hof and Morrison, 1996; Raz et al., 2005). Ex-
citotoxicity, common in epilepsy, is a suspect mechanism, given the
excitotoxic mechanism triggered by hypoxia (Fung et al., 2012; Fung
et al., 2007), and the high levels of insular glutamate in OSA (Macey
et al., 2016). However, in epilepsy, excitotoxicity leads to decreased
volumes in CA1 (Kim et al., 2015), and thus does not explain the vo-
lume increases in that subfield found here. Increased volumes in any
brain region can arise from inflammation in the acute phase (Cheriyan
et al., 2012), a process likely operating in OSA (Chen et al., 2015); over
the long term, inflammation is accompanied by volume decreases
(Braskie et al., 2014; Jefferson et al., 2007). Animal models show
hippocampal inflammation in response to intermittent hypoxia (Sapin
et al., 2015). Astrocyte activation is also likely present in OSA, since

Fig. 3. OSA hippocampal volume changes relative to controls in a mixed group (males and females). Regions of significant displacement (P < .05, corrected for
multiple comparisons) are color-coded according to average displacement. Warm colors reflecting outward displacement, i.e., volume increases, and cool colors
reflect inward displacement, i.e., volume decreases (key at top). The model includes age, sex and TIV as covariates. The left hippocampus is on the left side of the
figure, and the right hippocampus on the right of the figure. The panel shows views with the structure rotation about the anterior-posterior axis. The large images are
90° rotations and the smaller middle images are 15° rotations.

Table 3
Sizes of mean MNI-space hippocampi calculated by FIRST.

Size of mean hippocampi Left Right

Surface voxels
1mm3

Length
mm

Surface voxels
1 mm3

Length
mm

Mixed 6498 51.39 6480 51.44
Female 6597 51.46 6567 51.44
Male 6378 51.20 6356 51.44
Difference

(male - female)
−219 −0.263 −211 0

Table 4
Effect size ranges for significant OSA-control differences. Units are mm surface
displacement from mean. ns= not significant.

Effect size
(mm)

Increase Decrease

Min Max Min Max

Mixed Left 0.161 0.559 ns ns
Right 0.285 0.455 0.156 0.231

Female Left ns ns ns ns
Right 0.059 0.674 0.080 0.518

Male Left 0.042 0.582 0.043 0.204
Right 0.039 0.609 0.045 0.233
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Fig. 4. Female OSA hippocampal volume changes relative to controls, with age and TIV as covariates. Figure conventions as in Fig. 3.
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Fig. 5. Male OSA hippocampal volume changes relative to controls, with age and TIV as covariates. Figure conventions as in Fig. 3.
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animal models show glial swelling in response to intermittent hypoxia
(Rumpel et al., 1997; Kempski and Volk, 1994). Such volume increases
could occur in white or gray matter, given the distribution of glia in
both tissue types. Gray matter-specific changes can also arise from
dendritic growth through “learning” or other functional requirements;
that aspect is suggested by the findings of enlarged hippocampi in
London taxi drivers, attributed to the spatial learning needed for that
profession (Maguire et al., 2000). Neurogenesis is another potential
source of volume increase, with such processes especially prominent in
the hippocampus (Eriksson et al., 1998). Based on animal models and
patient symptoms, inflammation and astrocyte activation are the most
likely sources of OSA volume increases reported here, whereas cellular
loss and shrinkage, especially in neurons, are the most likely sources of
volume decreases.

Previous assessments of the brain in OSA showed varying

hippocampal findings, including both left (Morrell et al., 2003) and
right (Macey et al., 2002) volume reductions, the latter together with
bilateral parahippocampal gyri volume reduction. Similar tissue loss
was found by other groups (Yaouhi et al., 2009). Reduced gray matter
was found in the bilateral anterior hippocampus, perhaps reflective of
reduced cell density (Joo et al., 2010). Metabolite changes in the left
hippocampus include higher N-Acetylaspartic acid (NAA)/creatine ra-
tios (Alkan et al., 2013), possibly stemming from reduced creatine,
which is associated with lower cell density. A pilot study showed lower
NAA in the left hippocampus (Sarma et al., 2014), but the OSA group
included treated subjects, and the location may have overlapped with
frontal white matter, which several studies show to have lower NAA
(Alchanatis et al., 2004; Sarchielli et al., 2008; Kamba et al., 2001;
Kamba et al., 1997; Tonon et al., 2007). Diffusion tensor imaging in-
dicates that females with OSA show reduced axonal integrity in the
mid-hippocampal area (Macey et al., 2012). Mean water diffusivity has
shown both lower (Kumar et al., 2012) and higher (Emin Akkoyunlu
et al., 2013) values, perhaps from acute pathology (lower values) versus
chronic neurodegeneration (higher values). More advanced diffusion
assessment indicates myelin and axon damage in the hippocampus
(Tummala et al., 2016; Kumar et al., 2014b). Cerebral blood flow
findings are variable, with reductions in severe middle-aged OSA pa-
tients in the right hippocampus (Innes et al., 2015), no change in an-
other sample of recently-diagnosed patients (Yadav et al., 2013), and
increases in an older OSA group (Baril et al., 2015). All of these find-
ings, however, combine male and female subjects for analyses, with
little consideration of sex.

The hippocampal alterations presumably contribute to altered
function related to OSA symptoms, especially impaired verbal memory,
a common cognitive issue noted in OSA (Bucks et al., 2013; Hrubos-
Strom et al., 2012). Hippocampal volume loss also appears in untreated
depression (Bremner et al., 2000; Campbell et al., 2004), a finding
which may be reversed with treatment (Sheline et al., 2003; Malykhin
and Coupland, 2015). The hippocampus serves significant roles in au-
tonomic, especially blood pressure, regulation and respiration (Cragg,
1958; Shoemaker et al., 2015; Ruit and Neafsey, 1988), both impaired
in OSA (Macey et al., 2013; Narkiewicz et al., 1998). The rodent dorsal
hippocampus, which corresponds to the hippocampal tail in humans
(Sasaki et al., 2004), is particularly involved with autonomic regulation
(Scopinho et al., 2013), and fMRI evidence shows impaired responses to
respiratory, memory, and blood pressure challenges, as well as altered

Fig. 6. Variance of residuals in mm2, illustrating higher variability in the tail, moderate variability in the head, and low variability in the body. The right side showed
higher variability than the left, and males showed higher variability than females.

Table 5
Variance of residuals.

Variance
mm2

Sum over voxels Variance/voxel Max voxel variance

Left Right Left Right Left Right

Mixed 1119 1187 0.172 0.183 1.49 2.19
Female 1071 1085 0.162 0.165 1.42 1.95
Male 1167 1288 0.183 0.203 1.63 2.63

Table 6
Effect size of sex differences in control and OSA groups, based on comparisons
with TIV as covariate and whole-brain scaling. Units are mm surface dis-
placement from mean. Effects with Min/Max are significant (p < .05, cor-
rected). ns= not significant; effect size of maximum shown.

Effect size
(mm)

Female < Male Female > Male

Min Max Min Max

OSA
N=66

Left ns
max effect size= 0.51

ns
max effect size= 0.36

Right ns
max effect size= 0.36

ns
max effect size= 0.45

Control
N=979

Left ns
max effect size= 0.0003

0.123 0.291

Right ns
max effect size= 0.0001

0.088 0.216
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resting state (Henderson et al., 2003; Harper et al., 2003; Macey et al.,
2003; Macey et al., 2006; Castronovo et al., 2009; Fatouleh et al., 2014;
Li et al., 2016a; Shoemaker and Goswami, 2015).

The characteristics of how water diffuses through brain tissue in
OSA provide evidence as to the nature of the hippocampal volume
changes found here. Diffusivity, measured in an MRI scanner with
diffusion tensor imaging procedures, is inversely related to intercellular
barriers to water movement (Le Bihan et al., 2001). Lower mean dif-
fusivity typically reflects increases in cell size or densities, such as occur
with inflammation or astrocyte activation, whereas higher mean dif-
fusivity reflects smaller or fewer cells, and is consistent with cell injury
or death. Lower mean diffusivity (or the equivalent apparent diffusion
coefficient) was found in some studies of OSA (Tummala et al., 2016;
Emin Akkoyunlu et al., 2013; Kumar et al., 2014b), but others found no
change (Algin et al., 2012), or an increase (Emin Akkoyunlu et al.,
2013). One explanation for the divergent findings is that the popula-
tions with high diffusivity were at a later stage of the disorder, or had
additional comorbidities, whereas the lower diffusivity occurred in OSA
patients with a more recent development of the disorder. Consistent
with this possibility, our study showing lower diffusivity (Kumar et al.,
2012) had only recently-diagnosed OSA patients with no other chronic
conditions. Diffusion measurements also highlight OSA-related altera-
tions in structural connections to the hippocampus (Macey et al., 2008),
including sex-specific differences (Macey et al., 2012).

Neurochemical levels measured with magnetic resonance spectro-
scopy are also sensitive to hippocampal changes in OSA, with altera-
tions in metabolic state and structural composition consistent with in-
flammation and glial activation (O'Donoghue et al., 2012; Sarma et al.,
2014; Alkan et al., 2013; Kizilgoz et al., 2013; Algin et al., 2012;
Bartlett et al., 2004). The standard treatment, continuous positive
airway pressure (CPAP), increases dentate volume after 8 or more
months in some OSA populations (Kim et al., 2016), and reverses hip-
pocampal metabolic changes potentially related to inflammation after
12months (O'Donoghue et al., 2012). The evidence is therefore sug-
gestive of acute structural changes in the hippocampus occurring early
in OSA, which over time develop into cellular damage. This possibility

suggests early CPAP or other interventions may minimize the devel-
opment of hippocampal functional deficits.

Clinical implications of the findings include the possible contribu-
tion of OSA to cognitive decline and subsequent Alzheimer's disease
(AD). OSA is associated with AD pathophysiology, including amyloid
burden and atherosclerosis (Polsek et al., 2018; Lutsey et al., 2018;
Sharma et al., 2018), and there is some evidence sleep-disordered
breathing precipitates dementia (Lutsey et al., 2018; Osorio et al., 2015;
Emamian et al., 2016). Additionally, brain changes in OSA impact
structures that are associated with AD-related cognitive decline (Lutsey
et al., 2016; Kerner et al., 2017), and the hippocampal changes shown
here are another such finding. An intriguing possibility raised by the sex
differences in OSA-related hippocampus volume changes is that the
sleep disorder confers different risks for AD in females and males, a
possibility raised over 30 years ago (Smallwood et al., 1983). The
greater magnitude of volume declines in females shown here may relate
to the greater impact of AD in females (Laws et al., 2016; Laws et al.,
2018). Considering the subregions of the hippocampus affected in OSA,
a meta-analysis of combined structural and functional alterations shows
a region overlapping the medial CA1 (perhaps extending into the
dentate) affected [Fig. 2A in (Tahmasian et al., 2016)], consistent with
the present findings. The CA1, CA3 and dentate subfields have also
been shown to be altered in AD (Yassa et al., 2010; Carmichael et al.,
2012), so the combined findings are consistent with a neurobiological
underpinning to the OSA as a risk factor for AD.

4.3. Limitations

The subjects in the IXI and OASIS datasets were not screened for
OSA; thus, the control group probably included individuals with sleep-
disordered breathing. The likely impact would be to reduce the sensi-
tivity of the method to detect OSA-related changes, but the large
number of control subjects should minimize the impact of undetected
sleep disturbances (see Methods). A further possible confound of the
population dataset is scanning variations. While such variations may be
present, the brain volumes were consistent across platforms.

Fig. 7. Sex differences in control and OSA groups. Areas of significantly higher volume in female vs male in controls are shown in top row (P < .05). Effect sizes for
all differences are shown for control (middle row) and OSA (bottom row). See Table 1 for subject details.
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Furthermore, the population dataset provide a common reference for
other researchers. The identification of subfields based on the location
of surface displacement is a simplification, since multiple subfields
underlie each point on the surface. However, the location and magni-
tude of surface displacement measures are precise with this metho-
dology (Patenaude et al., 2011).

4.4. Conclusions

The hippocampus shows sex-specific regional volume increases and,
to a lesser extent, volume decreases in OSA, with increases largely in
CA1 and decreases largely in dentate. The hippocampus in OSA shows
increased bilateral volume in anterior and posterior lateral areas, and
left medial mid-to-posterior sites, as well as volume decreases in right
mid-to-posterior regions. Female volume changes were principally
right-sided, an asymmetry that may contribute to the autonomic and
depression differences relative to males. Volume increases suggest in-
flammation and glial activation, while declines could arise from loca-
lized neuronal injury. Sites of volume increase appeared in depression-
related areas, whereas right-side volume decline sites mediate some
cognitive processing functions. These hippocampal changes suggest at
least some of the common symptoms in OSA, including sex-specific
comorbidities, may be driven by damage-induced dysfunction in hip-
pocampal subregions, and thus the structure is a potential target for
neuroprotective interventions.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.07.027.
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