
Lawrence Berkeley National Laboratory
LBL Publications

Title
Early Lessons from Deployment of IFC Compatible Software

Permalink
https://escholarship.org/uc/item/8vq2d70s

Author
Bazjanac, V

Publication Date
2002-05-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8vq2d70s
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


LBNL-51548 

ERNEST 
BERKELEY 

ORLANDO LAWRENCE 
NATIONAL LABORATORY 

Early Lessons from Deployment 
of IFC Compatible Software 

V; Bazjanac 

Environmental Energy 
Technologies Division 

May2002 

Presented at the 

r­
CJ z 
r-
1 

U1 
1-' 
U1 
~ 
en 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wananty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 

D 



LBNL-51548 
10-461 

Presented at the European Community Product and Process Modeling Conference (ECPPM 2003) on September 11-
13, 2002 in Portoroz, Slovenia. 

EARLY LESSONS FROM DEPLOYMENT OF IFC 
COMPATIBLE SOFTWARE 

V. Bazjanac 

Building Technologies Department 
Environmental Energy Technologies Division 

Ernest Orlando Lawrence Berkeley National Laboratory 
University of California 

1 Cyclotron Road 
Berkeley, California 94720-8134 USA 

May 1, 2002 

This work was supported in part by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of 
Building Technology, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE­
AC03-76SF00098, and internal funding from Lawrence Berkeley National Laboratory 



EARLY LESSONS FROM DEPLOYMENT OF IFC 
COMPATIBLE SOFTWARE 

V. Bazjanac 

Building Technologies Department, Environmental Energy Technologies Division 
Ernest Orlando Lawrence Berkeley National Laboratory 

ABSTRACT 

The Industry Foundation Classes (IFC) model of 
the International Alliance for Interoperability 
(IAI)-an object data model of buildings-is in its 
seventh year of development. The last three re­
leases of the model (IFC 1.5.1, 2.0 and 2x) have 
been implemented by a number of "mission criti­
cal" industry applications. The deployment of 
such software in real life projects is just starting. 
The author is exploring lessons from early de­
ployment that are related to end user and general 
industry readiness for software interoperability, 
project model population with data and issues with 
compatibility of project data, built-in limitations in 
applications and in the data model, exchange file 

size and the selection of interoperable software for 
a project, as well as benefits attainable today from 
the use of interoperable software. He concludes 
that software interoperability is beginning to work 
in this industry, although not as smoothly as first 

expected. 

INTRODUCTION 

The International Alliance for Interoperability 
(IAI) has been developing its Industry Foundation 
Classes (IFC), a universal object-oriented data 
model ofbuildings, for almost seven years. What 
started as a relatively small and exclusive architec­
ture, engineering, construction, and facilities­

management (AEC/FM) industry consortium, the 
Industry Alliance for Interoperability, in North 
America in 1994, modified its name and became 
an open and international not-for-profit industry 

alliance a year later (in 1995) that now includes 
about 600 members worldwide (IAI 1995a). The 
membership includes organizations and individu­

als that are architects, engineers, contractors, 
building owners, facility managers, material and 

equipment manufacturers, software vendors, in­

formation providers, government agencies, re­
search laboratories, universities and more. 

The mission of the IAI is to " ... define, publish 
and promote specifications for Industry Founda­
tion Classes (IFC) as a basis for project informa­
tion sharing in the building industry (architecture, 
engineering, construction,. and facilities­
management). The information sharing is world­
wide, throughout the project life cycle, and across 
all disciplines and technical applications." (IAI 
1995b) In practical terms this has a dual intent: 
(a) to facilitate information exchange in the 
AEC/FM industry by enabling industry software 
interoperability, and (b) to create a de facto stan­

dard for the AEC/FM industry that defines how 
information is formulated and exchanged elec­
tronically. 

The meaning of interoperability for the IAI is 
software interoperability. Three ingredients are 
necessary for any software interoperability to 
function: (1) a data model, (2) software implemen­
tations of the data model, and (3) deployment of 
that software (Fig. 1). The three ingredients are 

inseparable; they feed on each other and interop­
erability is not attainable if one is missing. 

Figure 1. Ingredients necessary 
for software interoperability. 



A data model developed today must be intelligent 
and extensible. This implies the use of object ori­
ented technology, modularity and extensible 
model architecture. Software implementation in 
the AEC/FM industry is largely confined to the 
development of interfaces to the data model for 
existing software; development ofbrand·new in­
teroperable software is rare. An exception to this 
is software made possible by the existence of the 
data model, such as Solibri Model Checker (Soli­
bri 2001 ). Software deployment is the use of soft­
ware by industry professionals in performing their 
regular daily work and tasks on real life projects. 

The IAI has spent most of its effort so far on the 
development of its object data model, IFC. This is 
a universal model of buildings that standardizes 
how buildings are defined electronically from 
every 'AEC/FM industry professional point of 
view. It is intelligent and extensible. While any 
large and complex data model is never complete 

. and is always in the state of "work in progress," 
the latest IFC release (IFC2x) offers some very 
useful functionality. It is now possible to ex­
change building geometry of almost any arbitrary 
complexity, as well as some rudimentary informa­
tion about project and facilities-management, 
HV AC and electrical equipment, furnishings, and 

· more. Model functionality will expand signifi­
cantly with the release of IFC2x Second Edition 
(IFC2x2), planned for the first quarter of2003. 

The last three releases of the data model (IFC 
1.5.1, 2.0 and 2x) have been implemented in a va­
riety of industry software over the last couple of 
years. This has been accomplished mostly by 
members of two groups: the W Implementation 
Support Group (W_ISG 2001) and the Building 
Lifecycle Interoperable Software group (BLIS 
2000). The focus of the former is mostly data·ex­
change among CAD applications; it is composed 
primarily of CAD vendors and their implementa­
tions are based on IFC releases 1.5.1 and 2x, with 
IFC2x based software fmally corning to the market 
later this fall. The latter is mostly composed of 
"downstream" vendors with a focus on building 
lifecycle; these implementations are based on IFC 

2 

2.0. A number of software developers are mem­
bers of both groups. 

Most of software that implemented IFC to date is 
ofthe "mission critical" type: professional soft­
ware that is critical to conducting business in a 
segment of industry. The IFC object data model is 
already too large for implementation in its en­
tirety. W implementers have reached agreements 
on what information their software should be able 
to exchange and, consequently, what subset of the 
data model to implement in their individual soft­
ware to enable the agreed-upon exchange of in­
formation. These agreements are expressed in im­
plemented "views" of the modeL Views supported 
to date reflect parts of the work flow in the indus­
try: "CAD," "architectural design to quantity take­
off and cost estimating," "HV AC design to quan­
tity take-off and cost estimating," "architectural 
design to thermal load calculation and Hv AC de­
sign," and "client brief and space layout to archi­
tectural design" (BLIS 2000; IAI_ISG 2001). Ad­
ditional views will emerge in the future with the 
implementations of IFC release 2x2. 

As an organization, the IAI has done very little to 
directly support software deployment in the indus­
try to date. The IAI End User Support Group 
never gained momentum and was deelared inac­
tive by the end of 2000. As newly interoperable 
industry software is released, individuals and indi­
vidual organizations within the W are embarking 
on "pilot projects." Such efforts are trying to use 
small groups of interoperable software to accom­
plish a variety of professional tasks on real-life 
projects. 

DEPLOYMENT OF INTEROPERABLE 
SOFTWARE 

While the number of implementations is still reh­
tively small, a few real-life industry projects have 
lately employed such software with !he expecta­
tion of benefiting from the promised direct data 
exchange. The IAI "pilot project" web site lists 
quite a few projects (IAI 2002). Only a handful of 
those represent true deployment of IFC compati­
ble software in industry projects; most listed 



projects are actually development projects of some 

kind. 

True deployment of IFC compatible software in­
volves the use of such software in real life profes­

sional work. Deployment projects exchange data 
about a real building (i.e., one that is in design or 

was built) among several applications. This means 

that the end users are using multiple software ap­
plications to accomplish, individually or as a 

group, a set of professional tasks they are expected 

to do, such as to design the building or building 
systems, create renderings and other visualization 

media to communicate something about the build­

ing, prepare a cost estimate, plan the construction 
sequence, operate the building or manage the 
project. 

It is difficult to determine how many software de­
ployment projects are in progress. Several projects 

are kept private for a variety of reasons, with very 

little or no information about them released. Only 
three deployment projects with information avail­

able to the public have been exposed to date. 

Helsinki University of Technology-HUT 600 

The famous auditorium designed by Alvar Aalto 

in 1960s needed enlargement to 600 seats - thus 
the project name "HUT 600" (Fig. 2). The multi­

disciplinary effort involved the use of several 

software applications in the design and planning 
of the reconstruction (Iso-Aho 2002a). The use of 

interoperable software was monitored (Kan, C., in 

prep.). The building model is based on IFC 2.0; 
IFC compatible software aided in visualization, 

lighting simulation, comfort analysis, simulation 

of energy performance, air flow analysis, and en­
vironmental and lifecycle cost analyses. In addi­

tion, other software was used for 4D construction 
planning and visualization. 

Headquarters for the Danish Broadcasting 
Corporation 

This is a design for a geometrically complex 

building of 50,000 m2 (Fig. 3). The project goals, 
among other, were to demonstrate the use of IFC 

3 

Figure 2. Auditorium HUT 600 at the Helsinki Univer­
sity ofTechnology. Architect: A-KONSULTITOY 

compatible software with real project data, and to 
develop an end user guide for those who wanted to 

use such software in their projects (Karlsh0j 

2002). The three-dimensional building model was 
developed and used by nine applications (three of 

them CAD) for model viewing and checking, 
thermal performance analysis, quantity take-off 
and cost estimating. 

Figure 3 . Headquarters for the Danish Broadcasting 
Corporation 

LBNL E-Lab Building 

The preliminary schematic design for a new five­
story 3000 m2 laboratory building (Fig. 4) at the 

Lawrence Berkeley National Laboratory (LBNL) 

in Berkeley, CA includes unusual features, such as 
two-story rotating laboratories and segments of 
replaceable far;:ade (Bazjanac 2002). The three­

dimensional building model is based on IFC re­
lease 2.0; five IFC compatible software 



Figure 4. Preliminary schematic design for the E-Lab 
building at the Lawrence Berkeley National Labora­
tory. Architect: Stanley Saitowitz. 

applications used the model for model checking, 
visualization studies, energy performance analysis 

and cost estimating. Four other applications that 
can indirectly import building geometry through 

other IFC compatible software from which they 

can import data, were also deployed in work on 
additional tasks, such as lighting simulation and 

additional high end visualization. LBNL hired ex­

perts to operate software or extend data bases for 
some of the used applications. 

Even though interoperable software deployment 

efforts are still in their infancy, a number of im­
portant lessons are already emerging. While the 

author is drawing his findings primarily from his 

involvement with and experience from the E-Lab 
project at LBNL, very similar findings have been 
reported in personal communications and oral 

presentations by individuals who directly partie i­
pated in the other two deployment projects 

(Karlsh0j 200 l; Backas 2002; lsGAho 2002b ). 

LESSON 1: THE INDUSTRY AT LARGE IS 
STILL UNPREPARED 

It is clear that the industry is still largely unpre­

pared for software interoperability. The average 
end user does not "think" in terms of three­
dimensional building models yet, and is lost when 

asked to define information required by and ac­

cording to the rules of interoperable software. The 

4 

dominating mind- frame in the AEC!FM industry 

is still two-dimensional ; even architects, trained to 
visualize in 3-D, still " think" in 2-D (i.e ., concep­

tualize and sketch in tem1s of2-D plans, sections 

and elevations). Some CAD vendors' attempts to 
convince their end user community to switch to 

three-dimensional modeling have apparently had 

only limited success- while some vendors claim 
that sales of such software are substantial, there is 

no evidence that the actual creation and submis­

sion of three-dimensional project models has 
markedly increased. Anecdotes abound in the ar­

chitectural design community where end users 

purchased new three-dimensional modeling CAD 
software only to use the built-in drawing engines 

to draw in 2-D. 

Such end users face a very steep learning curve 
with typically little time available to learn. 

Practicing professionals, faced with day to day 
project deadlines, seldom have the time, resources 
or institutional support to retrain- they must learn 

"on the job." Learning modeling in 3-D and 

fundamentally changing how they do their daily 
work is too much for them to handle. It will 
probably first take a new generation of consultants 

to show industry the benefits of changing the work 
paradigm, and a new generation of educators to 

teach future professionals how to do it before 
three-dimensional modeling of buildings becomes 
widespread. Government demands on project 

submission formats may accelerate this process, as 
seems to be the case in Singapore (Mok 2002). 

For the time being, success in deployment of in­

teroperable software and gains in real life projects 

seem possible only if teams of experts do most of 
the work. These are individuals who are experts in 
both the profession they represent and in the cor­

responding professional software, working to­
gether (see LESSON 8 below). The number of 

such experts is still small and it may be difficult 

and costly to assemble such expert teams; this 
may be more than offset by the long range benefits 

of successful deployment of interoperable soft­

ware (see LESSON 7 below). 



LESSON 2: POPULATING THE PROJECT 
MODEL WITH DATA IS NOT ALWAYS 
EASY 

Populating the project model properly with data 
can cause significant difficulty. Most downstream 
applications expect upstream definition of at least 
some of the data they use. Since the defmition of 
building geometry is exchangeable, at the very 
least one would expect to be able to import build­
ing geometry from an upstream application that 
developed it or imported it successfully itself, and 
proceed using it without difficulty. This may not 
always be the case for one of the following rea­
sons: 

l. The data cannot be exchanged because, while 
they exist and are available, they are not part of 
the exchange "view" of the model. 

2. The development of specific data is not part of 
the (design) problem for which upstream appli­
cations were used. 

3. The data in question simply cannot yet be 
meaningfully defmed at that stage of project 
development-it is too early in the project. 

Exchange views limit data that are exchanged 
among participating applications to a subset of 
what is available. The end user is seldom aware of 
what is specifically excluded imd expects all pre­
viously defined data to be available and import­
able. This is the case of the implementers' agree­
ment to exchange data defined in the building 
model floor by floor. If the building has a multi­
story space (i.e., a space with height that exceeds 

· one floor) complete information about that space 
is distributed over more than one floor, and is ex­
changed among interoperating applications ac­
cordingly. A downstream application that needs a 
complete definition of this space must "assemble" 
the information itself; if it cannot, some of the in­
formation is lost to it. Such an application must 
then rely on middleware that can pre-process the 
information and assemble the complete set before 
it reaches the application. 

Some data may be perfectly exchangeable, but up­
stream applications did not create and insert them 

5 

in the project model simply because the end users 
upstream did not concern themselves with these 
specific data. An example of that is the case where 
the building model does not include the equipment 
and furnishings in the immediate surroundings of 
the building, such as exterior lighting. End users 
who populated the project model with data about 
the building (in this case architects) did not create 
any data about exterior lighting because that is the 
task for which someone else is responsible (in this 
case lighting designers). A cost estimating appli­
cation needs those data to generate a complete 
cost estimate. The end user who operates the cost 
estimating application must either invent the miss­
ing data and import them in the application exter­
nally, or find a way for the application to bypass 
its request for the data in question. 

Inability to define meaningful data because it is 
"too early" in the project is a frequent issue. One 
of many available examples involves again cost 
estimating early in the building design process. 
Most cost estimating applications require detailed 
information about building foundations to gener­
ate a complete cost estimate. While the foundation 
system may already be known in schematic build­
ing design, it is too early for detailed foundation 
design - the necessary information that is needed 
in detailed foundation design has not been devel­
oped yet. The cost estimating end user must again 
either improvise the missing foundation data and 
import them in the applic arion, or find a way for 
the application to bypass its request for those data. 

LESSON 3: DATA INCOMPATIBILITY 

Problems arise also from data incompatibility 
among interoperating applications. In some cases 
data defined by one application do not match ex­
actly what another application expects. Or one ap­
plication does the same type of operation differ­
ently from another, which results in data that 
require different interpretation and reformatting. 

For example, CAD applications typically defme 
individual walls as single instances, regardless of 
how many spaces such walls may be part of. Ther­
mal analysis applications, on the other hand, 



define walls as part of space; the single (long) wall 
defined in CAD may actually constitute a string of 
several (shorter) walls in the thermal analysis ap­
plications. The end user operating the thermal 
analysis applications must find a way to divide the 
imported (long) wall into multiple segments and 
"attach" them to corresponding spaces (thermal 
zones). 

Some of the existing middleware can perform this 
task for-the end user: associate wall geometry with 
defined spaces, generate geometry of wall seg­
ments, and attach them to appropriate spaces. This 
is not a trivial task; interior walls have spaces on 
both sides and often intersect with other walls. 
The problem gets even more complicated if floor 
and/or ceiling slabs are involved instead of walls, 
and the floor plan above does not match the one 
below. If the end user does not have access to such 
middleware, the building model has to be rede­
fined to include the wall and slab segmentation 
needed by the thermal analysis application. 

The problem in this particular example has its root 
in the original implementers' agreement forged by 
CAD implementers. For valid economic reasons 
related to the internal workings of CAD engines, 
the participating developers agreed not to imple­
ment space boundary. Thus, IFC compatible CAD 
applications do not presently populate project 
models with information related to space bounda­
ries, leaving it to downstream software to resolve 
issues like the one in the example above. This will 
be rectified in the future with a new implementers' 
agreement reached in April 2002. 

LESSON 4: BUlL T-IN LIMITATIONS OF 
THE DATA MODEL AND APPLICATIONS 

And then there are limitations that are built in the 
IFC object data model or in a given application. 
The IFC data model is far from complete. Several 
definitions critical to some of the industry profes­
sions are not part of the model yet, or have not 
been implemented in the specific software. 

One critical inability is related to the modeling of 
dynamic exterior shading systems. Contemporary 

6 

designs for glass buildings often employ sophisti­
cated and intricate systems of exterior blinds, lou­
vers and shading fins that protect the inside from 
excessive solar gain while permitting the penetra­
tion of natural light It is not possible to define 
such systems in the current release of the IFC ob­
ject data model, even if the CAD application can 
model them. The end user has no choice but to ap­
proximate them as something else, such as minia­
ture beams and/or walls. 

Some of the available interoperable software is not 
capable of generating some of the critical data that 
can be defined in IFC format For example, some 
IFC compatible applications are incapable of de­
fining or understanding geometry of pitched roofs. 
Other applications cannot deal with sloped or 
curved walls. In such cases the end user must re­
define the geometry in question to mimic the ac­
tual geometry in a way the application can accept. 
In the case of downstream applications, this means 
that the end user must reach the CAD application 
upstream to reformulate the geometry. 

LESSON 5: PROJECT MODEL EXCHANGE 
FILE SIZE 

At this point all data exchange among applications 
involves the exchange ·of the entire project model, 
as defined by the particular exchange view. Even 
modestly sized buildings can result in very large 
project model files that can be tens of megflbytes. 
While modem computer hardware can easily ex­
change files of that size, the manipulation of the 
data in the files can slow down the operation of 
some of the IFC compatible software to the point 
where it becomes annoying. 

To be effective and avoid paging, any activity re­
lated to model checking and visualization requires 
a large RAM and video RAM; a very fast CPU 
and data buss can be of considerable convenience. 
Such hardware can be the difference in meeting 
project deadlines and avoiding frustration. 

The W has started investigating partial model ex­
change. When a solution is eventually imple­
mented, partial exchange promises to dramatically 



reduce the size of future exchange files. End users 
of IFC compatible software will be have to rely on 
top-of-the- line hardware until then. 

LESSON 6: CHOOSE SOFTWARE 
CAREFULLY 

It does not help when the application is ridden 
with software bugs. Several IFC compatible soft­
ware applications are still in beta status. While 
their developers usually respond promptly to bug 
reports and fix most bugs quickly, discovering and 
fixing software bugs slows down the work process 
and truly frustrates the affected end users. When 
end users continue to run into bugs or when de­
velopers do not fix them promptly, frustrated end 
users usually stop using the application, some­
times regardless of the investment they have al­
ready made in its use. 

Industry software users have choices in selecting 
which software to use, even within the limited 
sample of interoperable software. When deciding 
which interoperable applications to deploy in a 
particular project, they should consider and thor­
oughly check all of the following: 

I. Software functionality 

2. Software maturity 
3. Software's level of interoperability 
4. Vendor support 
5. Support from other software users 
6. User's ability and skill to use all features of the 

software 

The interoperable software application must be 
able to perform all tasks required in the project 
that it is expected to perform. That is the most im­
portant criterion in selecting a single application. 
Using software that cannot do all the tasks results 
in frustration, delays and excessive cost. 

The software should be mature. It should work 
flawlessly, be free of bugs, well documented and 
be user friendly. Software that lacks these charac­
teristics can also cause frustration, delays and ex­
cessive cost. 

7 

Some IFC compatible software supports more 
than one exchange view. Such software can typi­
cally intemperate with more applications of other 
type than the software that incorporates only a 
single exchange view. Using such software can 
simplifY work on the project and can save time 
and resources. 

Vendor support is critical. End user problems in 
data exchange that have not been foreseen and are 
thus not documented can arise even if the software 
is mature and is well documented. Vendor support 
is even more important for software that is less 
than mature. Poor vendor support causes frustra­
tion and delays, and can result in elimination of 
that application from the project. 

The ability to obtain advice and tips from others 
that have experience in the use or in data exchange 
with the particular software can prevent many a 
headache and save time. The number of end users 
who can help others is still fairly small, but some 
help can already be found. As the use of interop­
erable software in industry projects grows, the 
body of experience and the pool of experienced 
end users will grow too. 

End users should not overestimate their own abil­
ity to use advanced features of the candidate ap­
plication(s). Many industry software applications 
require expert user knowledge and considerable 
experience in the use of the software to perform 
complex tasks they are capable of. "Learning on 
the job" is not the appropriate solution for end us­
ers who do not posses such expert knowledge or 
experience. Selecting a less sophisticated applic a­
rion or involving expert users in the running of the 
application is usually a more effective approach. 

Of course, few currently IFC compatible software 
applications meet all the listed criteria. The end 
user must then strike a balance that works best for 
the project. Eventually, the selected software must 
be able to perform together as a group to accom­
plish project tasks more effectively and more effi­
ciently than available applications that are not in­

teroperable. 



LESSON 7: INTEROPERABILITY IS 
INDEED BEGINNING TO WORK 

This is possibly the most important conclusion 
from early deployment of interoperable software. 

Despite initial problems and limitations that are 

typical of "growing pains," softWare interoperabil­
ity in the AEC/FM industry is beginning to work. 

Deployment of IFC compatible softWare in pilot 

sofiware deployment projects quoted above shows 
that gains can be made in industry projects even at 

this early stage of-deployment. While only some 
of the deployment has been objectively observed 
(Kan, C., in prep.), actual gains have not been 

measured yet. This may not be an easy task to do; 

it will require the development of appropriate 
strategies and procedures of tracking and meas­
urement. 

Still, it is already evident that the use of three­
dimensional building models that are .prerequisite 

for software interoperability in the AEC/FM in­
dustry is changing the process .of how buildings 
are designed, and how building components and 

systems are selected. No room is left for ambigu­
ity in the creation of the building model; many de­
sign decisions that are typically made later in the 

standard design process now must be made up 

front when the model is generated. Design defini­
tions of space above the plane of a given floor 

plan, as well as those in front or behind the plane 

of a taken building section, that are implied and 
left to the imagination of the viewer of two­
dimensional drawings, now must be resolved en­

tirely in 3-D. Models of buildings in early design 
stages require the consideration of much more de­
tail than is normally included in 2-D drawings. 

This all leads to buildings that are much better 
thought out much earlier in the design process. In 

turn, this leads to fewer mistakes, conflicts, mis­

understandings and corrections, fewer change or­
ders later on. 

Exchange of building geometry works flawlessly 

for the most part. Downstream applications in the 
three pilot deployment projects quoted above suc­

cessfully imported available building geometry 

8 

generated by CAD applications upstream, even if 

the acquisition of geometry was at first not as 
smooth as expected. Automatic or semi-automatic 

acquisition of building geometry dramatically re­

duces the input preparation for downstream appli­
cations, which should save significant time and 

considerable cost (Bazjanac 2001 ). 

One of the emerging important benefits from 
three-dimensional building models is visualization 
"onthe fly." Using a building model, different in­
teroperable visualization software can relatively 
easily and quickly generate multiple high resolu­

tion images of different types, from different van­
tag;e points inside and/or outside of the building. 
Such images can play a significant role in effec­

tive communication about the building and en­
countered issues, as well as aid in model debug­
gmg. 

LESSON 8: INTEROPERABLE SOFTWARE 
DEPLOYMENT REQUIRES TEAMS OF 
EXPERTS 

Successful deployment of interoperable software 

requires teams of experts. These experts mu~t have 
substantial experience and expert knowledge in 

the particular software as well as in the profession 

they represent. This may be the second most im­
portant message to this industry from early de­

ploym~nt of interoperable software. 

An industry software end user who is a practicing 
professional may be an expert user of a particular 
software application, but seldom also possesses 

sufficient knowledge of the IFC object data 
model, the exchange view of the interoperable ap­

plication, and the software's interface to the data 

model. At present, these are all required to 
smoothly operate interoperable software. A person 

with all these skills and knowledge is an expert. 

The single end user, who wants software interop­
erability without the participation of others, must 

have that type of knowledge about all interoper­

ating software used in the project. A typical indus­
try end user is very likely to lack the necessary 

expertise in the use of any single interoperable 



application (see LESSON 1 above), let alone mul­

tiple applications. 

A different type of end user may be a software ex­

pert who is also in command of all the information 

listed above, but does not have the professional 
expertise that is needed to effectively operate the 

interoperable application. While possibly guiding 

a smooth data exchange, such a user may not be 
able to correctly apply the exchanged information. 

At present, typical industry end users stand a very 

poor chance of reaping possible benefits from in­
teroperability on their own. Individuals who pos­

sess both types of expertise extended to multiple 
interoperable applications are extremely rare. In 
absence of such individuals, it is necessary to as­

semble teams of experts who, as a group, can pro­

vide software and professional expertise for all in­
teroperable applications that are deployed in the 

project. Only such teams of experts can facilitate a 

smooth exchange of data among multiple applica­
tions, avoid problems and find solutions quickly. 

Typical industry end users can find roles on this 

team, but should leave all interoperability issues to 
experts. This condition is not likely to change in 

the foreseeable future. 

CONCLUSION 

Software interoperability in the AEC/FM industry 

is beginning to work, though one can certainly en­
counter a number of annoying problems that need 

to be worked out. The benefits of interoperable 
software seem at hand.·. 

While the IFC object data model in its present 

form is still far from complete, little seems to be 

wrong with the data model itself- its architecture, 
and the definitions of object/attribute/relationship 

and property sets that are included in the defined 

exchange views, serve their purpose well. In gen­
eral, most technical problems encountered in the 

early deployment of interoperable software are re­

lated to the software itself or to the implementa­
tion of the IFC model. 

Some problems will probably "fix themselves" 

with time. Software developers, given time, will 

9 

certainly fix bugs in "mission critical" software 

and add needed functionality that is currently 
missing in some of the interoperable applications: 

The IAI will continue to extend the IFC object 

data model with new definitions, and those will be 
implemented by existing and additional applica­

tions. 

Other problems are structural and will be consid­
erably more difficult to solve. This includes filling 

in of the data that are missing in project models 

because upstream applications did not generate 
them, and cases where different interoperable ap­

plications are doing the same task differently. 

The early lessons from interoperable software de­
ployment sh0uld benefit both end users and soft­

ware developers, as they are beginning to expose 

the strengths and the weaknesses of the available 
interoperable software, and the process of generat­

ing and exchanging data. This paper provides se­

lected examples from actual software deployment 
cases in real-life projects to illustrate the lessons 

learned. 

Some lessons are limited to issues of building ge­
ometry. This is by necessity, as by far most of the 

data exchange in the pilot deployment projects in­

volved building geometry. Other lessons are gen­
eral in nature or applicable to other types of data 

exchange. 

At this point, most of the lessons result from and 
reflect deployment in early stages of building de­

sign. This too is by necessity. As buildings are 

constructed and start operation with the help of in­
teroperable software, lessons will follow from 

early deployment of interoperable software in 

those stages of the building lifecycle. 

WORK AHEAD 

The deployment of interoperable software in this 
industry is only beginning. Much still needs to be 

done to facilitate this development. 

Members of the AEC/FM industry will eventually 
have to become much more knowledgeable about 

information technology and software in general, 



and specifically about software interoperability. 

The education of the industry must start now. It 
can start by educating a new generation of con­

sultants and teachers who will teach future profes­

siortals: by finding a role for them in real life pro­
jects that are deploying interoperable software and 

involve some of the experts in interoperability. 

The industry stands to reap many benefits from 
the use of interoperable software. The use of such 

software should dramatically increase and expe­

dite the project inforrrtation flow, reduce project 
and building delivery times, reduce overall project 

cost, and make building operation much more ef­

ficient and cost effective. It should result in better 
buildings. At this point such claims are still noth­

ing more than claims. They need to be substanti­
ated with measurement of actual benefits attained 
in real life projects. 

Developers of interoperable software need to ac­
celerate their effort. They often claim that invest­
ments in development cannot be justified without 

a beneficial and measurable effect of the invest­

ment on the market. But market acceptance of 
some of the newly interoperable software is not 

likely to markedly improve until that software be­

comes more robust. Software bugs must be fixed; 
planning for effective vendor support of a substan­
tially larger end user population should start now. 

In the future, project models that are populated by 
data from some of the downstream applications 
are likely to become extremely large. The IAI 

needs to solve the problem of partial data ex­
change. This will make the exchange of needed in­

formation that is contained in such enormously 

large data bases much more manageable. 

ACKNOWLEDGMENT 

This work was supported in part by the Assistant 
Secretary for Energy Efficiency and Renewable 

Energy, Office of Building Technology, Building 

Technologies Program, of the U.S. Department of 
Energy under Contract No. DE-AC03-76SF00098, 

and internal funding from Lawrence Berkeley Na­

tional Laboratory. 

10 

REFERENCES 

Backas, S. 2002. Comments during presentation, 
23 April 2002, 

http://cic.vtt.fi/vera/IAI_Summit_2002NIT.pd£ 

B~ariac, V. 2001. Acquisition of Building Ge­

ometry in the Simulation of Energy Performance. 

In R. Lamberts eta!. (eds), Building Simulation 
2001, Proc. intern. conf, Rio de Janeiro, Vol. 1: 

305-311. ISBN 85-901939-2-6. 

Bazjanac, V. 2002. Energy Efficiency and Electri­
cal Reliability Laboratory: Virtual Building De­
sign, http://cic.vtt.fi/niai/IAI_Surnrnit_2002.htm. 

Building Lifecycle Interoperable Software (BLIS) 
2000. http://www.blis-project.org. 

IAI Implementation Support Group (IAI_ISG). 
2001. http://www.bauwesen.fh­

muenchen.de/iai/iai_isg/. 

International Alliance for Interoperability (IAI). 

1995a. http://www .iai-international.org. 

International Alliance for Interoperability (IAI). 

1995b. http://iaiweb.lbl.gov. 

International Alliance for Interoperability 
(IAI). 2002. 

http :1/www. iai-intemational. org/iai_international/ 

Marketing/Pilots_List.jsp. 

Iso-Aho, J. 2002. Benefits and Challenges in Us­
ing Product Model in Actual Capital Project, 

http://cic.vtt.fi/niai!IAI_Surnrnit_2002.htm. 

Iso-Aho, J. 2002. Comments during presentation, 

23 April 2002. 

http :II cic. vtt. fi/niai!IAI_ Summit _2002.htm 

Karlsh0j, J. 200 l. Pers. comm. 

Karlsh0j, J. 2002. IFC Pilot Project- Headquarters 

for the Danish Broadcasting Corporation, 
http ://cic. vtt. fi/niai/IAI_Summit_2002.htm 

Mok, J. 2002. Joint IT Effort between Govern­

ment and Industry: A Unique Experience, 
http://cic.vtt.fi/niai!IAI_Surnrnit_2002.htm. 

Solibri, Inc. 2001. http://www.solibri.com 



@!l!;J¢1¥110--:nr' ~ I!~'W.i;Jl!W!!J§!: ®:iii;;J::<il¥111.@':'1 ~ ~ 

~elm:~~ t @lj£U!!JLJ'EiR'/o ~ ~ 




